WorldWideScience

Sample records for spatially characterizing effective

  1. Spatially resolved characterization in thin-film photovoltaics

    CERN Document Server

    Bokalic, Matevz

    2015-01-01

    The book is devoted to the spatial characterization of solar cells and PV modules. It is written both as a monograph as well as a succinct guide for the state-of-the-art spatial characterization techniques and approaches. Amongst the approaches discussed are visual imaging, electro- and photo-luminescence imaging, thermography, and light beam induced mapping techniques. Emphasis is given on the luminescence image acquisition and interpretation due to its great potential. Characterization techniques are accompanied by simulation tools. The contents are aimed at a readership of students and s

  2. Landscape characterization integrating expert and local spatial knowledge of land and forest resources.

    Science.gov (United States)

    Fagerholm, Nora; Käyhkö, Niina; Van Eetvelde, Veerle

    2013-09-01

    In many developing countries, political documentation acknowledges the crucial elements of participation and spatiality for effective land use planning. However, operative approaches to spatial data inclusion and representation in participatory land management are often lacking. In this paper, we apply and develop an integrated landscape characterization approach to enhance spatial knowledge generation about the complex human-nature interactions in landscapes in the context of Zanzibar, Tanzania. We apply an integrated landscape conceptualization as a theoretical framework where the expert and local knowledge can meet in spatial context. The characterization is based on combining multiple data sources in GIS, and involves local communities and their local spatial knowledge since the beginning into the process. Focusing on the expected information needs for community forest management, our characterization integrates physical landscape features and retrospective landscape change data with place-specific community knowledge collected through participatory GIS techniques. The characterization is established in a map form consisting of four themes and their synthesis. The characterization maps are designed to support intuitive interpretation, express the inherently uncertain nature of the data, and accompanied by photographs to enhance communication. Visual interpretation of the characterization mediates information about the character of areas and places in the studied local landscape, depicting the role of forest resources as part of the landscape entity. We conclude that landscape characterization applied in GIS is a highly potential tool for participatory land and resource management, where spatial argumentation, stakeholder communication, and empowerment are critical issues.

  3. Dissociable spatial and temporal effects of inhibition of return.

    Directory of Open Access Journals (Sweden)

    Zhiguo Wang

    Full Text Available Inhibition of return (IOR refers to the relative suppression of processing at locations that have recently been attended. It is frequently explored using a spatial cueing paradigm and is characterized by slower responses to cued than to uncued locations. The current study investigates the impact of IOR on overt visual orienting involving saccadic eye movements. Using a spatial cueing paradigm, our experiments have demonstrated that at a cue-target onset asynchrony (CTOA of 400 ms saccades to the vicinity of cued locations are not only delayed (temporal cost but also biased away (spatial effect. Both of these effects are basically no longer present at a CTOA of 1200 ms. At a shorter 200 ms CTOA, the spatial effect becomes stronger while the temporal cost is replaced by a temporal benefit. These findings suggest that IOR has a spatial effect that is dissociable from its temporal effect. Simulations using a neural field model of the superior colliculus (SC revealed that a theory relying on short-term depression (STD of the input pathway can explain most, but not all, temporal and spatial effects of IOR.

  4. Characterization of a Fiber-Coupled 36-Core 3-Mode Photonic Lantern Spatial Multiplexer

    DEFF Research Database (Denmark)

    Rommel, Simon; Mendinueta, José Manuel Delgado; Klaus, Werner

    2017-01-01

    A fiber-coupled 108-port photonic lantern spatial-MUX is characterized with a spatially-diverse optical vector network analyzer. Insertion loss, mode-dependent losses, and time response are measured, showing significant mode mixing at a fiber splice.......A fiber-coupled 108-port photonic lantern spatial-MUX is characterized with a spatially-diverse optical vector network analyzer. Insertion loss, mode-dependent losses, and time response are measured, showing significant mode mixing at a fiber splice....

  5. Characterization factors for terrestrial acidification at the global scale: a systematic analysis of spatial variability and uncertainty.

    Science.gov (United States)

    Roy, Pierre-Olivier; Azevedo, Ligia B; Margni, Manuele; van Zelm, Rosalie; Deschênes, Louise; Huijbregts, Mark A J

    2014-12-01

    Characterization factors (CFs) are used in life cycle assessment (LCA) to quantify the potential impact per unit of emission. CFs are obtained from a characterization model which assess the environmental mechanisms along the cause-effect chain linking an emission to its potential damage on a given area of protection, such as loss in ecosystem quality. Up to now, CFs for acidifying emissions did not cover the global scale and were only representative of their characterization model geographical scope. Consequently, current LCA practices implicitly assume that all emissions from a global supply chain occur within the continent referring to the characterization method geographical scope. This paper provides worldwide 2°×2.5° spatially-explicit CFs, representing the change in relative loss of terrestrial vascular plant species due to an emission change of nitrogen oxides (NOx), ammonia (NH3) and sulfur dioxide (SO2). We found that spatial variability in the CFs is much larger compared to statistical uncertainty (six orders of magnitude vs. two orders of magnitude). Spatial variability is mainly caused by the atmospheric fate factor and soil sensitivity factor, while the ecological effect factor is the dominant contributor to the statistical uncertainty. The CFs provided in our study allow the worldwide spatially explicit evaluation of life cycle impacts related to acidifying emissions. This opens the door to evaluate regional life cycle emissions of different products in a global economy. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Characterizing spatial uncertainty when integrating social data in conservation planning.

    Science.gov (United States)

    Lechner, A M; Raymond, C M; Adams, V M; Polyakov, M; Gordon, A; Rhodes, J R; Mills, M; Stein, A; Ives, C D; Lefroy, E C

    2014-12-01

    Recent conservation planning studies have presented approaches for integrating spatially referenced social (SRS) data with a view to improving the feasibility of conservation action. We reviewed the growing conservation literature on SRS data, focusing on elicited or stated preferences derived through social survey methods such as choice experiments and public participation geographic information systems. Elicited SRS data includes the spatial distribution of willingness to sell, willingness to pay, willingness to act, and assessments of social and cultural values. We developed a typology for assessing elicited SRS data uncertainty which describes how social survey uncertainty propagates when projected spatially and the importance of accounting for spatial uncertainty such as scale effects and data quality. These uncertainties will propagate when elicited SRS data is integrated with biophysical data for conservation planning and may have important consequences for assessing the feasibility of conservation actions. To explore this issue further, we conducted a systematic review of the elicited SRS data literature. We found that social survey uncertainty was commonly tested for, but that these uncertainties were ignored when projected spatially. Based on these results we developed a framework which will help researchers and practitioners estimate social survey uncertainty and use these quantitative estimates to systematically address uncertainty within an analysis. This is important when using SRS data in conservation applications because decisions need to be made irrespective of data quality and well characterized uncertainty can be incorporated into decision theoretic approaches. © 2014 Society for Conservation Biology.

  7. Characterizing Traffic Conditions from the Perspective of Spatial-Temporal Heterogeneity

    Directory of Open Access Journals (Sweden)

    Peichao Gao

    2016-03-01

    Full Text Available Traffic conditions are usually characterized from the perspective of travel time or the average vehicle speed in the field of transportation, reflecting the congestion degree of a road network. This article provides a method from a new perspective to characterize traffic conditions; the perspective is based on the heterogeneity of vehicle speeds. A novel measurement, the ratio of areas (RA in a rank-size plot, is included in the proposed method to capture the heterogeneity. The proposed method can be performed from the perspective of both spatial heterogeneity and temporal heterogeneity, being able to characterize traffic conditions of not only a road network but also a single road. Compared with methods from the perspective of travel time, the proposed method can characterize traffic conditions at a higher frequency. Compared to methods from the perspective of the average vehicle speed, the proposed method takes account of the heterogeneity of vehicle speeds. The effectiveness of the proposed method has been demonstrated with real-life traffic data of Shenzhen (a coastal urban city in China, and the advantage of the proposed RA has been verified by comparisons to similar measurements such as the ht-index and the CRG index.

  8. Spatial characterization of nanotextured surfaces by visual color imaging

    DEFF Research Database (Denmark)

    Feidenhans'l, Nikolaj Agentoft; Murthy, Swathi; Madsen, Morten H.

    2016-01-01

    We present a method using an ordinary color camera to characterize nanostructures from the visual color of the structures. The method provides a macroscale overview image from which micrometer-sized regions can be analyzed independently, hereby revealing long-range spatial variations...

  9. Spatial-Temporal Synchrophasor Data Characterization and Analytics in Smart Grid Fault Detection, Identification, and Impact Causal Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaiguang; Dai, Xiaoxiao; Gao, David Wenzhong; Zhang, Jun Jason; Zhang, Yingchen; Muljadi, Eduard

    2016-09-01

    An approach of big data characterization for smart grids (SGs) and its applications in fault detection, identification, and causal impact analysis is proposed in this paper, which aims to provide substantial data volume reduction while keeping comprehensive information from synchrophasor measurements in spatial and temporal domains. Especially, based on secondary voltage control (SVC) and local SG observation algorithm, a two-layer dynamic optimal synchrophasor measurement devices selection algorithm (OSMDSA) is proposed to determine SVC zones, their corresponding pilot buses, and the optimal synchrophasor measurement devices. Combining the two-layer dynamic OSMDSA and matching pursuit decomposition, the synchrophasor data is completely characterized in the spatial-temporal domain. To demonstrate the effectiveness of the proposed characterization approach, SG situational awareness is investigated based on hidden Markov model based fault detection and identification using the spatial-temporal characteristics generated from the reduced data. To identify the major impact buses, the weighted Granger causality for SGs is proposed to investigate the causal relationship of buses during system disturbance. The IEEE 39-bus system and IEEE 118-bus system are employed to validate and evaluate the proposed approach.

  10. Effects on ground motion related to spatial variability

    International Nuclear Information System (INIS)

    Vanmarcke, E.H.

    1987-01-01

    Models of the spectral content and the space-time correlation structure of strong earthquake ground motion are combined with transient random vibration analysis to yield site-specific response spectra that can account for the effect of local spatial averaging of the ground motion across a rigid foundation of prescribed size. The methodology is presented with reference to sites in eastern North America, although the basic approach is applicable to other seismic regions provided the source and attenuation parameters are regionally adjusted. Parameters in the spatial correlation model are based on data from the SMART-I accelerograph array, and the sensitivity of response spectra reduction factors with respect to these parameters is examined. The starting point of the analysis is the Fourier amplitude spectrum of site displacement expresses as a function of earthquake source parameters and source-to-site distance. The bedrock acceleration spectral density function at a point, derived from the displacement spectrum, is modified to account for anelastic attenuation, and where appropriate, for local soil effects and/or local spatial averaging across a foundation. Transient random vibration analysis yields approximate analytical expressions for median ground motion amplitudes and median response spectra of an earthquake defined in terms of its spectral density function and strong motion duration. The methodology is illustrated for three events characterized by their m b magnitude and epicentral distance. The focus in this paper is on the stochastic response prediction methodology enabling explicit accounting for strong motion duration and the effect of local spatial averaging on response spectra. The numerical examples enable a preliminary assessment of the reduction of response spectral amplitudes attributable to local spatial averaging across rigid foundations of different sizes. 36 refs

  11. Few-mode fiber, splice and SDM component characterization by spatially-diverse optical vector network analysis

    DEFF Research Database (Denmark)

    Rommel, Simon; Mendinueta, José Manuel Delgado; Klaus, Werner

    2017-01-01

    This paper discusses spatially diverse optical vector network analysis for space division multiplexing (SDM) component and system characterization, which is becoming essential as SDM is widely considered to increase the capacity of optical communication systems. Characterization of a 108-channel ...... in the few-mode multi-core fiber and their impact on system IL and MDL are analyzed, finding splices to cause significant mode-mixing and to be non-negligible in system capacity analysis.......This paper discusses spatially diverse optical vector network analysis for space division multiplexing (SDM) component and system characterization, which is becoming essential as SDM is widely considered to increase the capacity of optical communication systems. Characterization of a 108-channel...... photonic lantern spatial multiplexer, coupled to a 36-core 3-mode fiber, is experimentally demonstrated, extracting the full impulse response and complex transfer function matrices as well as insertion loss (IL) and mode-dependent loss (MDL) data. Moreover, the mode-mixing behavior of fiber splices...

  12. Variation of High-Intensity Therapeutic Ultrasound (HITU) Pressure Field Characterization: Effects of Hydrophone Choice, Nonlinearity, Spatial Averaging and Complex Deconvolution.

    Science.gov (United States)

    Liu, Yunbo; Wear, Keith A; Harris, Gerald R

    2017-10-01

    Reliable acoustic characterization is fundamental for patient safety and clinical efficacy during high-intensity therapeutic ultrasound (HITU) treatment. Technical challenges, such as measurement variation and signal analysis, still exist for HITU exposimetry using ultrasound hydrophones. In this work, four hydrophones were compared for pressure measurement: a robust needle hydrophone, a small polyvinylidene fluoride capsule hydrophone and two fiberoptic hydrophones. The focal waveform and beam distribution of a single-element HITU transducer (1.05 MHz and 3.3 MHz) were evaluated. Complex deconvolution between the hydrophone voltage signal and frequency-dependent complex sensitivity was performed to obtain pressure waveforms. Compressional pressure (p + ), rarefactional pressure (p - ) and focal beam distribution were compared up to 10.6/-6.0 MPa (p + /p - ) (1.05 MHz) and 20.65/-7.20 MPa (3.3 MHz). The effects of spatial averaging, local non-linear distortion, complex deconvolution and hydrophone damage thresholds were investigated. This study showed a variation of no better than 10%-15% among hydrophones during HITU pressure characterization. Published by Elsevier Inc.

  13. Effects of small-world connectivity on noise-induced temporal and spatial order in neural media

    International Nuclear Information System (INIS)

    Perc, Matjaz

    2007-01-01

    We present an overview of possible effects of small-world connectivity on noise-induced temporal and spatial order in a two-dimensional network of excitable neural media with FitzHugh-Nagumo local dynamics. Small-world networks are characterized by a given fraction of so-called long-range couplings or shortcut links that connect distant units of the system, while all other units are coupled in a diffusive-like manner. Interestingly, already a small fraction of these long-range couplings can have wide-ranging effects on the temporal as well as spatial noise-induced dynamics of the system. Here we present two main effects. First, we show that the temporal order, characterized by the autocorrelation of a firing-rate function, can be greatly enhanced by the introduction of small-world connectivity, whereby the effect increases with the increasing fraction of introduced shortcut links. Second, we show that the introduction of long-range couplings induces disorder of otherwise ordered, spiral-wave-like, noise-induced patterns that can be observed by exclusive diffusive connectivity of spatial units. Thereby, already a small fraction of shortcut links is sufficient to destroy coherent pattern formation in the media. Although the two results seem contradictive, we provide an explanation considering the inherent scale-free nature of small-world networks, which on one hand, facilitates signal transduction and thus temporal order in the system, whilst on the other hand, disrupts the internal spatial scale of the media thereby hindering the existence of coherent wave-like patterns. Additionally, the importance of spatially versus temporally ordered neural network functioning is discussed

  14. Estimates of spatial correlation in volcanic tuff, Yucca Mountain, Nevada: Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Rautman, C.A.

    1991-02-01

    The spatial correlation structure of volcanic tuffs at and near the site of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada, is estimated using samples obtained from surface outcrops and drill holes. Data are examined for four rock properties: porosity, air permeability, saturated hydraulic conductivity, and dry bulk density. Spatial continuity patterns are identified in both lateral and vertical (stratigraphic) dimensions. The data are examined for the Calico Hills tuff stratigraphic unit and also without regard for stratigraphy. Variogram models fitted to the sample data from the tuffs of Calico Hills indicate that porosity is correlated laterally over distances of up to 3000 feet. If air permeability and saturated conductivity values are viewed as semi-interchangeable for purposes of identifying spatial structure, the data suggest a maximum range of correlation of 300 to 500 feet without any obvious horizontal to vertical anisotropy. Continuity exists over vertical distances of roughly 200 feet. Similar variogram models fitted to sample data taken from vertical drill holes without regard for stratigraphy suggest that correlation exists over distances of 500 to 800 feet for each rock property examined. Spatial correlation of rock properties violates the sample-independence assumptions of classical statistics to a degree not usually acknowledged. In effect, the existence of spatial structure reduces the ''equivalent'' number of samples below the number of physical samples. This reduction in the effective sampling density has important implications for site characterization for the Yucca Mountain Project. 19 refs., 43 figs., 5 tabs

  15. CHARACTERIZING LANDSCAPE SPATIAL HETEROGENEITY USING SEMIVARIOGRAM PARAMETERS DERIVED FROM NDVI IMAGES

    Directory of Open Access Journals (Sweden)

    Eduarda Martiniano de Oliveira Silveira

    2017-12-01

    Full Text Available Assuming a relationship between landscape heterogeneity and measures of spatial dependence by using remotely sensed data, the aim of this work was to evaluate the potential of semivariogram parameters, derived from satellite images with different spatial resolutions, to characterize landscape spatial heterogeneity of forested and human modified areas. The NDVI (Normalized Difference Vegetation Index was generated in an area of Brazilian amazon tropical forest (1,000 km².We selected samples (1 x 1 km from forested and human modified areas distributed throughout the study area, to generate the semivariogram and extract the sill (σ²-overall spatial variability of the surface property and range (φ-the length scale of the spatial structures of objects parameters. The analysis revealed that image spatial resolution influenced the sill and range parameters. The average sill and range values increase from forested to human modified areas and the greatest between-class variation was found for LANDSAT 8 imagery, indicating that this image spatial resolution is the most appropriate for deriving sill and range parameters with the intention of describing landscape spatial heterogeneity. By combining remote sensing and geostatistical techniques, we have shown that the sill and range parameters of semivariograms derived from NDVI images are a simple indicator of landscape heterogeneity and can be used to provide landscape heterogeneity maps to enable researchers to design appropriate sampling regimes. In the future, more applications combining remote sensing and geostatistical features should be further investigated and developed, such as change detection and image classification using object-based image analysis (OBIA approaches.

  16. Characterizing Pavement Surface Distress Conditions with Hyper-Spatial Resolution Natural Color Aerial Photography

    Directory of Open Access Journals (Sweden)

    Su Zhang

    2016-05-01

    Full Text Available Roadway pavement surface distress information is critical for effective pavement asset management, and subsequently, transportation management agencies at all levels (i.e., federal, state, and local dedicate a large amount of time and money to routinely evaluate pavement surface distress conditions as the core of their asset management programs. However, currently adopted ground-based evaluation methods for pavement surface conditions have many disadvantages, like being time-consuming and expensive. Aircraft-based evaluation methods, although getting more attention, have not been used for any operational evaluation programs yet because the acquired images lack the spatial resolution to resolve finer scale pavement surface distresses. Hyper-spatial resolution natural color aerial photography (HSR-AP provides a potential method for collecting pavement surface distress information that can supplement or substitute for currently adopted evaluation methods. Using roadway pavement sections located in the State of New Mexico as an example, this research explored the utility of aerial triangulation (AT technique and HSR-AP acquired from a low-altitude and low-cost small-unmanned aircraft system (S-UAS, in this case a tethered helium weather balloon, to permit characterization of detailed pavement surface distress conditions. The Wilcoxon Signed Rank test, Mann-Whitney U test, and visual comparison were used to compare detailed pavement surface distress rates measured from HSR-AP derived products (orthophotos and digital surface models generated from AT with reference distress rates manually collected on the ground using standard protocols. The results reveal that S-UAS based hyper-spatial resolution imaging and AT techniques can provide detailed and reliable primary observations suitable for characterizing detailed pavement surface distress conditions comparable to the ground-based manual measurement, which lays the foundation for the future application

  17. A preliminary characterization of the spatial variability of precipitation at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Hevesi, J.A.; Flint, A.L.; Ambos, D.S.

    1994-01-01

    Isohyetal maps of precipitation and numerical models for simulating precipitation are needed to help characterize natural infiltration at Yucca Mountain, Nevada. A geostatistical analysis of measured precipitation accumulated from storm periods. Precipitation was measured during a 3.8 year period from January 1990 to October, 1993 using a network of precipitation gages. A total of 34 winter-type storms and 12 summer-type storm, categorized using synoptic weather records, were analyzed using the 1st and 2nd statistical moments and sample variograms. Average standardized variograms indicated good spatial correlation for both storm types with only slight differences in the general spatial structure. Coefficients of variation and average relative variograms indicated that summer storms are characterized by greater variability as compared to winter storms. Models were fitted to the average summer and winter standarized variograms for each storm using the mean storm depth and the coefficient of variation as scaling parameters. Isohyetal maps of 4 representative storms were created using the standarized models. Results indicate that standarized models can be used to simulate the spatial distribution of precipitation depth, provided that the 1st and 2nd moments are known or can be estimated, and that identifiable deterministic trends can be included in the models. A single, fixed model representing the spatial variability of precipitation at Yucca Mountain is not recommended

  18. Feasibility of spatial frequency domain imaging (SFDI) for optically characterizing a preclinical oncology model.

    Science.gov (United States)

    Tabassum, Syeda; Zhao, Yanyu; Istfan, Raeef; Wu, Junjie; Waxman, David J; Roblyer, Darren

    2016-10-01

    Determination of chemotherapy efficacy early during treatment would provide more opportunities for physicians to alter and adapt treatment plans. Diffuse optical technologies may be ideally suited to track early biological events following chemotherapy administration due to low cost and high information content. We evaluated the use of spatial frequency domain imaging (SFDI) to characterize a small animal tumor model in order to move towards the goal of endogenous optical monitoring of cancer therapy in a controlled preclinical setting. The effects of key measurement parameters including the choice of imaging spatial frequency and the repeatability of measurements were evaluated. The precision of SFDI optical property extractions over repeat mouse measurements was determined to be within 3.52% for move and replace experiments. Baseline optical properties and chromophore values as well as intratumor heterogeneity were evaluated over 25 tumors. Additionally, tumor growth and chemotherapy response were monitored over a 45 day longitudinal study in a small number of mice to demonstrate the ability of SFDI to track treatment effects. Optical scattering and oxygen saturation increased as much as 70% and 25% respectively in treated tumors, suggesting SFDI may be useful for preclinical tracking of cancer therapies.

  19. Characterization of spatial distribution of Tetranychus urticae in peppermint in California and implication for improving sampling plan.

    Science.gov (United States)

    Rijal, Jhalendra P; Wilson, Rob; Godfrey, Larry D

    2016-02-01

    Twospotted spider mite, Tetranychus urticae Koch, is an important pest of peppermint in California, USA. Spider mite feeding on peppermint leaves causes physiological changes in the plant, which coupling with the favorable environmental condition can lead to increased mite infestations. Significant yield loss can occur in absence of pest monitoring and timely management. Understating the within-field spatial distribution of T. urticae is critical for the development of reliable sampling plan. The study reported here aims to characterize the spatial distribution of mite infestation in four commercial peppermint fields in northern California using spatial techniques, variogram and Spatial Analysis by Distance IndicEs (SADIE). Variogram analysis revealed that there was a strong evidence for spatially dependent (aggregated) mite population in 13 of 17 sampling dates and the physical distance of the aggregation reached maximum to 7 m in peppermint fields. Using SADIE, 11 of 17 sampling dates showed aggregated distribution pattern of mite infestation. Combining results from variogram and SADIE analysis, the spatial aggregation of T. urticae was evident in all four fields for all 17 sampling dates evaluated. Comparing spatial association using SADIE, ca. 62% of the total sampling pairs showed a positive association of mite spatial distribution patterns between two consecutive sampling dates, which indicates a strong spatial and temporal stability of mite infestation in peppermint fields. These results are discussed in relation to behavior of spider mite distribution within field, and its implications for improving sampling guidelines that are essential for effective pest monitoring and management.

  20. Characterizing Spatial Organization of Cell Surface Receptors in Human Breast Cancer with STORM

    Science.gov (United States)

    Lyall, Evan; Chapman, Matthew R.; Sohn, Lydia L.

    2012-02-01

    Regulation and control of complex biological functions are dependent upon spatial organization of biological structures at many different length scales. For instance Eph receptors and their ephrin ligands bind when opposing cells come into contact during development, resulting in spatial organizational changes on the nanometer scale that lead to changes on the macro scale, in a process known as organ morphogenesis. One technique able to probe this important spatial organization at both the nanometer and micrometer length scales, including at cell-cell junctions, is stochastic optical reconstruction microscopy (STORM). STORM is a technique that localizes individual fluorophores based on the centroids of their point spread functions and then reconstructs a composite image to produce super resolved structure. We have applied STORM to study spatial organization of the cell surface of human breast cancer cells, specifically the organization of tyrosine kinase receptors and chemokine receptors. A better characterization of spatial organization of breast cancer cell surface proteins is necessary to fully understand the tumorigenisis pathways in the most common malignancy in United States women.

  1. Characterizing the spatial structure of endangered species habitat using geostatistical analysis of IKONOS imagery

    Science.gov (United States)

    Wallace, C.S.A.; Marsh, S.E.

    2005-01-01

    Our study used geostatistics to extract measures that characterize the spatial structure of vegetated landscapes from satellite imagery for mapping endangered Sonoran pronghorn habitat. Fine spatial resolution IKONOS data provided information at the scale of individual trees or shrubs that permitted analysis of vegetation structure and pattern. We derived images of landscape structure by calculating local estimates of the nugget, sill, and range variogram parameters within 25 ?? 25-m image windows. These variogram parameters, which describe the spatial autocorrelation of the 1-m image pixels, are shown in previous studies to discriminate between different species-specific vegetation associations. We constructed two independent models of pronghorn landscape preference by coupling the derived measures with Sonoran pronghorn sighting data: a distribution-based model and a cluster-based model. The distribution-based model used the descriptive statistics for variogram measures at pronghorn sightings, whereas the cluster-based model used the distribution of pronghorn sightings within clusters of an unsupervised classification of derived images. Both models define similar landscapes, and validation results confirm they effectively predict the locations of an independent set of pronghorn sightings. Such information, although not a substitute for field-based knowledge of the landscape and associated ecological processes, can provide valuable reconnaissance information to guide natural resource management efforts. ?? 2005 Taylor & Francis Group Ltd.

  2. Few-mode fiber, splice and SDM component characterization by spatially-diverse optical vector network analysis.

    Science.gov (United States)

    Rommel, Simon; Mendinueta, José Manuel Delgado; Klaus, Werner; Sakaguchi, Jun; Olmos, Juan José Vegas; Awaji, Yoshinari; Monroy, Idelfonso Tafur; Wada, Naoya

    2017-09-18

    This paper discusses spatially diverse optical vector network analysis for space division multiplexing (SDM) component and system characterization, which is becoming essential as SDM is widely considered to increase the capacity of optical communication systems. Characterization of a 108-channel photonic lantern spatial multiplexer, coupled to a 36-core 3-mode fiber, is experimentally demonstrated, extracting the full impulse response and complex transfer function matrices as well as insertion loss (IL) and mode-dependent loss (MDL) data. Moreover, the mode-mixing behavior of fiber splices in the few-mode multi-core fiber and their impact on system IL and MDL are analyzed, finding splices to cause significant mode-mixing and to be non-negligible in system capacity analysis.

  3. The Determinants of VAT Introduction : A Spatial Duration Analysis

    NARCIS (Netherlands)

    Cizek, P.; Lei, J.; Ligthart, J.E.

    2012-01-01

    Abstract: The spatial survival models typically impose frailties, which characterize unobserved heterogeneity, to be spatially correlated. This specification relies highly on a pre-determinate covariance structure of the errors. However, the spatial effect may not only exist in the unobserved

  4. Geophysical characterization of soil moisture spatial patterns in a tillage experiment

    Science.gov (United States)

    Martinez, G.; Vanderlinden, K.; Giráldez, J. V.; Muriel, J. L.

    2009-04-01

    Knowledge on the spatial soil moisture pattern can improve the characterisation of the hydrological response of either field-plots or small watersheds. Near-surface geophysical methods, such as electromagnetic induction (EMI), provide a means to map such patterns using non-invasive and non-destructive measurements of the soil apparent electrical conductivity (ECa. In this study ECa was measured using an EMI sensor and used to characterize spatially the hydrologic response of a cropped field to an intense shower. The study site is part of a long-term tillage experiment in Southern Spain in which Conventional Tillage (CT), Direct Drilling (DD) and Minimum Tillage (MT) are being evaluated since 1982. Soil ECa was measured before and after a rain event of 115 mm, near the soil surface and at deeper depth (ECas and ECad, respectively) using the EM38-DD EMI sensor. Simultaneously, elevation data were collected at each sampling point to generate a Digital Elevation Model (DEM). Soil moisture during the first survey was close to permanent wilting point and near field capacity during the second survey. For the first survey, both ECas and ECad, were higher in the CT and MT than in the DD plots. After the rain event, rill erosion appeared only in CT and MT plots were soil was uncovered, matching the drainage lines obtained from the DEM. Apparent electrical conductivity increased all over the field plot with higher increments in the DD plots. These plots showed the highest ECas and ECad values, in contrast to the spatial pattern found during the first sampling. Difference maps obtained from the two ECas and ECad samplings showed a clear difference between DD plots and CT and MT plots due to their distinct hydrologic response. Water infiltration was higher in the soil of the DD plots than in the MT and CT plots, as reflected by their ECad increment. Higher ECa increments were observed in the depressions of the terrain, where water and sediments accumulated. On the contrary, the

  5. Effects of spatial and spectral frequencies on wide-field functional imaging (wifi) characterization of preclinical breast cancer models

    Science.gov (United States)

    Moy, Austin; Kim, Jae G.; Lee, Eva Y. H. P.; Choi, Bernard

    2010-02-01

    A common strategy to study breast cancer is the use of the preclinical model. These models provide a physiologically relevant and controlled environment in which to study both response to novel treatments and the biology of the cancer. Preclinical models, including the spontaneous tumor model and mammary window chamber model, are very amenable to optical imaging and to this end, we have developed a wide-field functional imaging (WiFI) instrument that is perfectly suited to studying tumor metabolism in preclinical models. WiFI combines two optical imaging modalities, spatial frequency domain imaging (SFDI) and laser speckle imaging (LSI). Our current WiFI imaging protocol consists of multispectral imaging in the near infrared (650-980 nm) spectrum, over a wide (7 cm x 5 cm) field of view. Using SFDI, the spatially-resolved reflectance of sinusoidal patterns projected onto the tissue is assessed, and optical properties of the tissue are determined, which are then used to extract tissue chromophore concentrations in the form of oxy-, deoxy-, and total hemoglobin concentrations, and percentage of lipid and water. In the current study, we employ Monte Carlo simulations of SFDI light propagation in order to characterize the penetration depth of light in both the spontaneous tumor model and mammary window chamber model. Preliminary results suggest that different spatial frequency and wavelength combinations have different penetration depths, suggesting the potential depth sectioning capability of the SFDI component of WiFI.

  6. Characterization of spatial and temporal variability in hydrochemistry of Johor Straits, Malaysia.

    Science.gov (United States)

    Abdullah, Pauzi; Abdullah, Sharifah Mastura Syed; Jaafar, Othman; Mahmud, Mastura; Khalik, Wan Mohd Afiq Wan Mohd

    2015-12-15

    Characterization of hydrochemistry changes in Johor Straits within 5 years of monitoring works was successfully carried out. Water quality data sets (27 stations and 19 parameters) collected in this area were interpreted subject to multivariate statistical analysis. Cluster analysis grouped all the stations into four clusters ((Dlink/Dmax) × 1001) that explained 82.6% of the total variance of the data set. Classification matrix of discriminant analysis assigned 88.9-92.6% and 83.3-100% correctness in spatial and temporal variability, respectively. Times series analysis then confirmed that only four parameters were not significant over time change. Therefore, it is imperative that the environmental impact of reclamation and dredging works, municipal or industrial discharge, marine aquaculture and shipping activities in this area be effectively controlled and managed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Spatial effects in meta-foodwebs.

    Science.gov (United States)

    Barter, Edmund; Gross, Thilo

    2017-08-30

    In ecology it is widely recognised that many landscapes comprise a network of discrete patches of habitat. The species that inhabit the patches interact with each other through a foodweb, the network of feeding interactions. The meta-foodweb model proposed by Pillai et al. combines the feeding relationships at each patch with the dispersal of species between patches, such that the whole system is represented by a network of networks. Previous work on meta-foodwebs has focussed on landscape networks that do not have an explicit spatial embedding, but in real landscapes the patches are usually distributed in space. Here we compare the dispersal of a meta-foodweb on Erdős-Rényi networks, that do not have a spatial embedding, and random geometric networks, that do have a spatial embedding. We found that local structure and large network distances in spatially embedded networks, lead to meso-scale patterns of patch occupation by both specialist and omnivorous species. In particular, we found that spatial separations make the coexistence of competing species more likely. Our results highlight the effects of spatial embeddings for meta-foodweb models, and the need for new analytical approaches to them.

  8. Spatial Congruity Effects Reveal Metaphorical Thinking, not Polarity Correspondence.

    Science.gov (United States)

    Dolscheid, Sarah; Casasanto, Daniel

    2015-01-01

    Spatial congruity effects have often been interpreted as evidence for metaphorical thinking, but an alternative account based on polarity correspondence (a.k.a. markedness) has challenged this view. Here we compared metaphor- and polarity-correspondence-based explanations for spatial congruity effects, using musical pitch as a testbed. In one experiment, English speakers classified high- and low-frequency pitches as "high" and "low," or as "front" and "back," to determine whether space-pitch congruity effects could be elicited by any marked spatial continuum. Although both pairs of terms describe bipolar spatial continuums, we found congruity effects only for high/low judgments, indicating that markedness is not sufficient to produce space-pitch congruity effects. A second experiment confirmed that there were no space-pitch congruity effects for another pair of terms that have clear markedness (big/small), but which do not denote spatial height. By contrast, this experiment showed congruity effects for words that cued an appropriate vertical spatial schema (tall/short), even though these words are not used conventionally in English to describe pitches, ruling out explanations for the observed pattern of results based on verbal polysemy. Together, results suggest that space-pitch congruity effects reveal metaphorical uses of spatial schemas, not polarity correspondence effects.

  9. Spatial congruity effects reveal metaphorical thinking, not polarity correspondence

    Directory of Open Access Journals (Sweden)

    Sarah eDolscheid

    2015-11-01

    Full Text Available Spatial congruity effects have often been interpreted as evidence for metaphorical thinking, but an alternative account based on polarity correspondence (a.k.a. markedness has challenged this view. Here we compared metaphor- and polarity-correspondence-based explanations for spatial congruity effects, using musical pitch as a testbed. In one experiment, English speakers classified high- and low-frequency pitches as high and low, or as front and back, to determine whether space-pitch congruity effects could be elicited by any marked spatial continuum. Although both pairs of terms describe bipolar spatial continuums, we found congruity effects only for high/low judgments, indicating that markedness is not sufficient to produce space-pitch congruity effects. A second experiment confirmed that there were no space-pitch congruity effects for another pair of terms that have clear markedness (big/small, but which do not denote spatial height. By contrast, this experiment showed congruity effects for words that cued an appropriate vertical spatial schema (tall/short, even though these words are not used conventionally in English to describe pitches, ruling out explanations for the observed pattern of results based on verbal polysemy. Together, results suggest that space-pitch congruity effects reveal metaphorical uses of spatial schemas, not polarity correspondence effects.

  10. Do neighbours influence value-added-tax introduction? A spatial duration analysis

    NARCIS (Netherlands)

    Cizek, Pavel; Lei, J.; Ligthart, J.E.

    The spatial survival models typically impose frailties, which characterize unobserved heterogeneity, to be spatially correlated. However, the spatial effect may not only exist in the unobserved errors, but it can also be present in the baseline hazards and the dependent variables. A new spatial

  11. Fiber Bragg grating based spatially resolved characterization of flux-pinning induced strain of rectangular-shaped bulk YBCO samples

    International Nuclear Information System (INIS)

    Latka, Ines; Habisreuther, Tobias; Litzkendorf, Doris

    2011-01-01

    Highlights: → Fiber Bragg gratings (FBG) act as strain sensors, also at cryogenic temperatures. → FBGs are not sensitive to magnetic fields. → Local, shape dependent magnetostriction was detected on rectangular samples. → Magnetostrictive effects of the top surface and in a gap between two samples are different. - Abstract: We report on measurements of the spatially resolved characterization of flux-pinning induced strain of rectangular-shaped bulk YBCO samples. The spatially resolved strain measurements are accomplished by the use 2 fiber Bragg grating arrays, which are with an included angle of 45 o fixed to the surface. In this paper first attempts to confirm the shape distortions caused by the flux-pinning induced strain as predicted in will be presented. Two sample setups, a single bulk and a 'mirror' arrangement, will be compared. This mirror setup represents a model configuration for a measurement inside the superconductor, where demagnetization effects can be neglected and the magnetic field merely has a z-component.

  12. Urban sprawl and fragmentation in Latin America: a dynamic quantification and characterization of spatial patterns.

    Science.gov (United States)

    Inostroza, Luis; Baur, Rolf; Csaplovics, Elmar

    2013-01-30

    South America is one of the most urbanized continents in the world, where almost 84% of the total population lives in cities, more urbanized than North America (82%) and Europe (73%). Spatial dynamics, their structure, main features, land consumption rates, spatial arrangement, fragmentation degrees and comparability, remain mostly unknown for most Latin American cities. Using satellite imagery the main parameters of sprawl are quantified for 10 Latin American cities over a period of 20 years by monitoring growth patterns and identifying spatial metrics to characterize urban development and sprawling features measured with GIS tools. This quantification contributes to a better understanding of urban form in Latin America. A pervasive spatial expansion has been observed, where most of the studied cities are expanding at fast rates with falling densities trend. Although important differences in the rates of land consumption and densities exist, there is an underlying fragmentation trend towards increasing sprawl. These trends of spatial discontinuity may eventually be intensified by further economic development. Urban Sprawl/Latin America/GIS metrics/spatial development. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Discontinuous Galerkin Time-Domain Modeling of Graphene Nano-Ribbon Incorporating the Spatial Dispersion Effects

    KAUST Repository

    Li, Ping; Jiang, Li Jun; Bagci, Hakan

    2018-01-01

    It is well known that graphene demonstrates spatial dispersion properties, i.e., its conductivity is nonlocal and a function of spectral wave number (momentum operator) q. In this paper, to account for effects of spatial dispersion on transmission of high speed signals along graphene nano-ribbon (GNR) interconnects, a discontinuous Galerkin time-domain (DGTD) algorithm is proposed. The atomically-thick GNR is modeled using a nonlocal transparent surface impedance boundary condition (SIBC) incorporated into the DGTD scheme. Since the conductivity is a complicated function of q (and one cannot find an analytical Fourier transform pair between q and spatial differential operators), an exact time domain SIBC model cannot be derived. To overcome this problem, the conductivity is approximated by its Taylor series in spectral domain under low-q assumption. This approach permits expressing the time domain SIBC in the form of a second-order partial differential equation (PDE) in current density and electric field intensity. To permit easy incorporation of this PDE with the DGTD algorithm, three auxiliary variables, which degenerate the second-order (temporal and spatial) differential operators to first-order ones, are introduced. Regarding to the temporal dispersion effects, the auxiliary differential equation (ADE) method is utilized to eliminates the expensive temporal convolutions. To demonstrate the applicability of the proposed scheme, numerical results, which involve characterization of spatial dispersion effects on the transfer impedance matrix of GNR interconnects, are presented.

  14. Discontinuous Galerkin Time-Domain Modeling of Graphene Nano-Ribbon Incorporating the Spatial Dispersion Effects

    KAUST Repository

    Li, Ping

    2018-04-13

    It is well known that graphene demonstrates spatial dispersion properties, i.e., its conductivity is nonlocal and a function of spectral wave number (momentum operator) q. In this paper, to account for effects of spatial dispersion on transmission of high speed signals along graphene nano-ribbon (GNR) interconnects, a discontinuous Galerkin time-domain (DGTD) algorithm is proposed. The atomically-thick GNR is modeled using a nonlocal transparent surface impedance boundary condition (SIBC) incorporated into the DGTD scheme. Since the conductivity is a complicated function of q (and one cannot find an analytical Fourier transform pair between q and spatial differential operators), an exact time domain SIBC model cannot be derived. To overcome this problem, the conductivity is approximated by its Taylor series in spectral domain under low-q assumption. This approach permits expressing the time domain SIBC in the form of a second-order partial differential equation (PDE) in current density and electric field intensity. To permit easy incorporation of this PDE with the DGTD algorithm, three auxiliary variables, which degenerate the second-order (temporal and spatial) differential operators to first-order ones, are introduced. Regarding to the temporal dispersion effects, the auxiliary differential equation (ADE) method is utilized to eliminates the expensive temporal convolutions. To demonstrate the applicability of the proposed scheme, numerical results, which involve characterization of spatial dispersion effects on the transfer impedance matrix of GNR interconnects, are presented.

  15. Spatial Temporal Modelling of Particulate Matter for Health Effects Studies

    Science.gov (United States)

    Hamm, N. A. S.

    2016-10-01

    Epidemiological studies of the health effects of air pollution require estimation of individual exposure. It is not possible to obtain measurements at all relevant locations so it is necessary to predict at these space-time locations, either on the basis of dispersion from emission sources or by interpolating observations. This study used data obtained from a low-cost sensor network of 32 air quality monitoring stations in the Dutch city of Eindhoven, which make up the ILM (innovative air (quality) measurement system). These stations currently provide PM10 and PM2.5 (particulate matter less than 10 and 2.5 m in diameter), aggregated to hourly means. The data provide an unprecedented level of spatial and temporal detail for a city of this size. Despite these benefits the time series of measurements is characterized by missing values and noisy values. In this paper a space-time analysis is presented that is based on a dynamic model for the temporal component and a Gaussian process geostatistical for the spatial component. Spatial-temporal variability was dominated by the temporal component, although the spatial variability was also substantial. The model delivered accurate predictions for both isolated missing values and 24-hour periods of missing values (RMSE = 1.4 μg m-3 and 1.8 μg m-3 respectively). Outliers could be detected by comparison to the 95% prediction interval. The model shows promise for predicting missing values, outlier detection and for mapping to support health impact studies.

  16. Spatially telescoping measurements for improved characterization of groundwater-surface water interactions

    Science.gov (United States)

    Kikuchi, Colin; Ferre, Ty P.A.; Welker, Jeffery M.

    2012-01-01

    The suite of measurement methods available to characterize fluxes between groundwater and surface water is rapidly growing. However, there are few studies that examine approaches to design of field investigations that include multiple methods. We propose that performing field measurements in a spatially telescoping sequence improves measurement flexibility and accounts for nested heterogeneities while still allowing for parsimonious experimental design. We applied this spatially telescoping approach in a study of ground water-surface water (GW-SW) interaction during baseflow conditions along Lucile Creek, located near Wasilla, Alaska. Catchment-scale data, including channel geomorphic indices and hydrogeologic transects, were used to screen areas of potentially significant GW-SW exchange. Specifically, these data indicated increasing groundwater contribution from a deeper regional aquifer along the middle to lower reaches of the stream. This initial assessment was tested using reach-scale estimates of groundwater contribution during baseflow conditions, including differential discharge measurements and the use of chemical tracers analyzed in a three-component mixing model. The reach-scale measurements indicated a large increase in discharge along the middle reaches of the stream accompanied by a shift in chemical composition towards a regional groundwater end member. Finally, point measurements of vertical water fluxes -- obtained using seepage meters as well as temperature-based methods -- were used to evaluate spatial and temporal variability of GW-SW exchange within representative reaches. The spatial variability of upward fluxes, estimated using streambed temperature mapping at the sub-reach scale, was observed to vary in relation to both streambed composition and the magnitude of groundwater contribution from differential discharge measurements. The spatially telescoping approach improved the efficiency of this field investigation. Beginning our assessment

  17. Spatial Stochastic Point Models for Reservoir Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Syversveen, Anne Randi

    1997-12-31

    The main part of this thesis discusses stochastic modelling of geology in petroleum reservoirs. A marked point model is defined for objects against a background in a two-dimensional vertical cross section of the reservoir. The model handles conditioning on observations from more than one well for each object and contains interaction between objects, and the objects have the correct length distribution when penetrated by wells. The model is developed in a Bayesian setting. The model and the simulation algorithm are demonstrated by means of an example with simulated data. The thesis also deals with object recognition in image analysis, in a Bayesian framework, and with a special type of spatial Cox processes called log-Gaussian Cox processes. In these processes, the logarithm of the intensity function is a Gaussian process. The class of log-Gaussian Cox processes provides flexible models for clustering. The distribution of such a process is completely characterized by the intensity and the pair correlation function of the Cox process. 170 refs., 37 figs., 5 tabs.

  18. Spatial Pattern of Residential Carbon Dioxide Emissions in a Rapidly Urbanizing Chinese City and Its Mismatch Effect

    Directory of Open Access Journals (Sweden)

    Heli Lu

    2018-03-01

    Full Text Available Cities undergoing rapid urbanization are characterized by quick successions of spatiotemporal patterns, meaning that traditional methods cannot adequately assess carbon emissions from urban residential areas, which prevents the study of spatial mismatch. Therefore, this study utilizes night-time lights to construct a spatial emissions model that enables the analysis of the evolution of emissions patterns in China. The results indicate that, compared to the traditional method, the spatial modeling based on night-time lights reflects the spatial emissions trajectories in a more timely and accurate manner in rapidly urbanizing cities. Additionally, we found a relatively low degree of spatial match between emissions and economic activities, with the former, which are greatly affected by urbanization, having a larger dynamism and instability than the latter. Such spatial mismatch effect illustrates that policy makers should focus on factors beyond economics in order to reduce residential carbon emissions during China’s rapid urbanization process.

  19. Spatially Multiplexed Micro-Spectrophotometry in Bright Field Mode for Thin Film Characterization

    Directory of Open Access Journals (Sweden)

    Valerio Pini

    2016-06-01

    Full Text Available Thickness characterization of thin films is of primary importance in a variety of nanotechnology applications, either in the semiconductor industry, quality control in nanofabrication processes or engineering of nanoelectromechanical systems (NEMS because small thickness variability can strongly compromise the device performance. Here, we present an alternative optical method in bright field mode called Spatially Multiplexed Micro-Spectrophotometry that allows rapid and non-destructive characterization of thin films over areas of mm2 and with 1 μm of lateral resolution. We demonstrate an accuracy of 0.1% in the thickness characterization through measurements performed on four microcantilevers that expand an area of 1.8 mm2 in one minute of analysis time. The measured thickness variation in the range of few tens of nm translates into a mechanical variability that produces an error of up to 2% in the response of the studied devices when they are used to measure surface stress variations.

  20. Spatial stochasticity and non-continuum effects in gas flows

    Energy Technology Data Exchange (ETDEWEB)

    Dadzie, S. Kokou, E-mail: k.dadzie@glyndwr.ac.uk [Mechanical and Aeronautical Engineering, Glyndwr University, Mold Road, Wrexham LL11 2AW (United Kingdom); Reese, Jason M., E-mail: jason.reese@strath.ac.uk [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom)

    2012-02-06

    We investigate the relationship between spatial stochasticity and non-continuum effects in gas flows. A kinetic model for a dilute gas is developed using strictly a stochastic molecular model reasoning, without primarily referring to either the Liouville or the Boltzmann equations for dilute gases. The kinetic equation, a stochastic version of the well-known deterministic Boltzmann equation for dilute gas, is then associated with a set of macroscopic equations for the case of a monatomic gas. Tests based on a heat conduction configuration and sound wave dispersion show that spatial stochasticity can explain some non-continuum effects seen in gases. -- Highlights: ► We investigate effects of molecular spatial stochasticity in non-continuum regime. ► Present a simplify spatial stochastic kinetic equation. ► Present a spatial stochastic macroscopic flow equations. ► Show effects of the new model on sound wave dispersion prediction. ► Show effects of the new approach in density profiles in a heat conduction.

  1. Spatial networks

    Science.gov (United States)

    Barthélemy, Marc

    2011-02-01

    Complex systems are very often organized under the form of networks where nodes and edges are embedded in space. Transportation and mobility networks, Internet, mobile phone networks, power grids, social and contact networks, and neural networks, are all examples where space is relevant and where topology alone does not contain all the information. Characterizing and understanding the structure and the evolution of spatial networks is thus crucial for many different fields, ranging from urbanism to epidemiology. An important consequence of space on networks is that there is a cost associated with the length of edges which in turn has dramatic effects on the topological structure of these networks. We will thoroughly explain the current state of our understanding of how the spatial constraints affect the structure and properties of these networks. We will review the most recent empirical observations and the most important models of spatial networks. We will also discuss various processes which take place on these spatial networks, such as phase transitions, random walks, synchronization, navigation, resilience, and disease spread.

  2. Spatial characterization of the meltwater field from icebergs in the Weddell Sea.

    Science.gov (United States)

    Helly, John J; Kaufmann, Ronald S; Vernet, Maria; Stephenson, Gordon R

    2011-04-05

    We describe the results from a spatial cyberinfrastructure developed to characterize the meltwater field around individual icebergs and integrate the results with regional- and global-scale data. During the course of the cyberinfrastructure development, it became clear that we were also building an integrated sampling planning capability across multidisciplinary teams that provided greater agility in allocating expedition resources resulting in new scientific insights. The cyberinfrastructure-enabled method is a complement to the conventional methods of hydrographic sampling in which the ship provides a static platform on a station-by-station basis. We adapted a sea-floor mapping method to more rapidly characterize the sea surface geophysically and biologically. By jointly analyzing the multisource, continuously sampled biological, chemical, and physical parameters, using Global Positioning System time as the data fusion key, this surface-mapping method enables us to examine the relationship between the meltwater field of the iceberg to the larger-scale marine ecosystem of the Southern Ocean. Through geospatial data fusion, we are able to combine very fine-scale maps of dynamic processes with more synoptic but lower-resolution data from satellite systems. Our results illustrate the importance of spatial cyberinfrastructure in the overall scientific enterprise and identify key interfaces and sources of error that require improved controls for the development of future Earth observing systems as we move into an era of peta- and exascale, data-intensive computing.

  3. Spatial coherence resonance and spatial pattern transition induced by the decrease of inhibitory effect in a neuronal network

    Science.gov (United States)

    Tao, Ye; Gu, Huaguang; Ding, Xueli

    2017-10-01

    Spiral waves were observed in the biological experiment on rat brain cortex with the application of carbachol and bicuculline which can block inhibitory coupling from interneurons to pyramidal neurons. To simulate the experimental spiral waves, a two-dimensional neuronal network composed of pyramidal neurons and inhibitory interneurons was built. By decreasing the percentage of active inhibitory interneurons, the random-like spatial patterns change to spiral waves and to random-like spatial patterns or nearly synchronous behaviors. The spiral waves appear at a low percentage of inhibitory interneurons, which matches the experimental condition that inhibitory couplings of the interneurons were blocked. The spiral waves exhibit a higher order or signal-to-noise ratio (SNR) characterized by spatial structure function than both random-like spatial patterns and nearly synchronous behaviors, which shows that changes of the percentage of active inhibitory interneurons can induce spatial coherence resonance-like behaviors. In addition, the relationship between the coherence degree and the spatial structures of the spiral waves is identified. The results not only present a possible and reasonable interpretation to the spiral waves observed in the biological experiment on the brain cortex with disinhibition, but also reveal that the spiral waves exhibit more ordered degree in spatial patterns.

  4. Opportunities for multivariate analysis of open spatial datasets to characterize urban flooding risks

    Science.gov (United States)

    Gaitan, S.; ten Veldhuis, J. A. E.

    2015-06-01

    Cities worldwide are challenged by increasing urban flood risks. Precise and realistic measures are required to reduce flooding impacts. However, currently implemented sewer and topographic models do not provide realistic predictions of local flooding occurrence during heavy rain events. Assessing other factors such as spatially distributed rainfall, socioeconomic characteristics, and social sensing, may help to explain probability and impacts of urban flooding. Several spatial datasets have been recently made available in the Netherlands, including rainfall-related incident reports made by citizens, spatially distributed rain depths, semidistributed socioeconomic information, and buildings age. Inspecting the potential of this data to explain the occurrence of rainfall related incidents has not been done yet. Multivariate analysis tools for describing communities and environmental patterns have been previously developed and used in the field of study of ecology. The objective of this paper is to outline opportunities for these tools to explore urban flooding risks patterns in the mentioned datasets. To that end, a cluster analysis is performed. Results indicate that incidence of rainfall-related impacts is higher in areas characterized by older infrastructure and higher population density.

  5. Spatial variation in nutrient and water color effects on lake chlorophyll at macroscales

    Science.gov (United States)

    Fergus, C. Emi; Finley, Andrew O.; Soranno, Patricia A.; Wagner, Tyler

    2016-01-01

    The nutrient-water color paradigm is a framework to characterize lake trophic status by relating lake primary productivity to both nutrients and water color, the colored component of dissolved organic carbon. Total phosphorus (TP), a limiting nutrient, and water color, a strong light attenuator, influence lake chlorophyll a concentrations (CHL). But, these relationships have been shown in previous studies to be highly variable, which may be related to differences in lake and catchment geomorphology, the forms of nutrients and carbon entering the system, and lake community composition. Because many of these factors vary across space it is likely that lake nutrient and water color relationships with CHL exhibit spatial autocorrelation, such that lakes near one another have similar relationships compared to lakes further away. Including this spatial dependency in models may improve CHL predictions and clarify how well the nutrient-water color paradigm applies to lakes distributed across diverse landscape settings. However, few studies have explicitly examined spatial heterogeneity in the effects of TP and water color together on lake CHL. In this study, we examined spatial variation in TP and water color relationships with CHL in over 800 north temperate lakes using spatially-varying coefficient models (SVC), a robust statistical method that applies a Bayesian framework to explore space-varying and scale-dependent relationships. We found that TP and water color relationships were spatially autocorrelated and that allowing for these relationships to vary by individual lakes over space improved the model fit and predictive performance as compared to models that did not vary over space. The magnitudes of TP effects on CHL differed across lakes such that a 1 μg/L increase in TP resulted in increased CHL ranging from 2–24 μg/L across lake locations. Water color was not related to CHL for the majority of lakes, but there were some locations where water color had a

  6. China’s Energy Intensity, Determinants and Spatial Effects

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2016-06-01

    Full Text Available In the shadow of the energy crisis and environmental degradation, energy intensity is a hot topic in academic circles in China. The energy intensity distribution map of China indicates the fairly large geographic disparities globally and clustering locally in some areas, ascending from the southeast regions to the northwest provinces. Although energy intensity and its determinants vary from place to place, few studies have been made from the spatial perspective. Determinates of energy intensity and spatial spillover effects should be taken into consideration. Controlling for seven exogenous variables (per capita GDP; the share of the secondary sector; foreign direct investment; international trade, energy price, the share of coal, and transport sector and their spatial lags, we apply a spatial Durbin model to test for spatial spillover effects among energy intensity and exogenous variables from a panel of 29 Chinese provinces over 1998 to 2014. We find that per capita GDP has an insignificant and negative direct and indirect effect, but has a significant and negative total effect on energy intensity. The share of the secondary sector and the share of coal are found to have significant and positive direct and indirect effects on energy intensity. Foreign Direct Investment (FDI and Trade have significant and negative direct and indirect effects on energy intensity. The direct effect of energy price is found to be significantly positive while the indirect effect is negative. Only the direct effect of the Transport variable is significant and positive. The results of this study offer some theoretical evidence for differential localized policy making related to reduction in energy intensity.

  7. Quantification of Spatial Heterogeneity in Old Growth Forst of Korean Pine

    Science.gov (United States)

    Wang Zhengquan; Wang Qingcheng; Zhang Yandong

    1997-01-01

    Spatial hetergeneity is a very important issue in studying functions and processes of ecological systems at various scales. Semivariogram analysis is an effective technique to summarize spatial data, and quantification of sptail heterogeneity. In this paper, we propose some principles to use semivariograms to characterize and compare spatial heterogeneity of...

  8. Spatial representations elicit dual-coding effects in mental imagery.

    Science.gov (United States)

    Verges, Michelle; Duffy, Sean

    2009-08-01

    Spatial aspects of words are associated with their canonical locations in the real world. Yet little research has tested whether spatial associations denoted in language comprehension generalize to their corresponding images. We directly tested the spatial aspects of mental imagery in picture and word processing (Experiment 1). We also tested whether spatial representations of motion words produce similar perceptual-interference effects as demonstrated by object words (Experiment 2). Findings revealed that words denoting an upward spatial location produced slower responses to targets appearing at the top of the display, whereas words denoting a downward spatial location produced slower responses to targets appearing at the bottom of the display. Perceptual-interference effects did not obtain for pictures or for words lacking a spatial relation. These findings provide greater empirical support for the perceptual-symbols system theory (Barsalou, 1999, 2008). Copyright © 2009 Cognitive Science Society, Inc.

  9. Sex effects on spatial learning but not on spatial memory retrieval in healthy young adults.

    Science.gov (United States)

    Piber, Dominique; Nowacki, Jan; Mueller, Sven C; Wingenfeld, Katja; Otte, Christian

    2018-01-15

    Sex differences have been found in spatial learning and spatial memory, with several studies indicating that males outperform females. We tested in the virtual Morris Water Maze (vMWM) task, whether sex differences in spatial cognitive processes are attributable to differences in spatial learning or spatial memory retrieval in a large student sample. We tested 90 healthy students (45 women and 45 men) with a mean age of 23.5 years (SD=3.5). Spatial learning and spatial memory retrieval were measured by using the vMWM task, during which participants had to search a virtual pool for a hidden platform, facilitated by visual cues surrounding the pool. Several learning trials assessed spatial learning, while a separate probe trial assessed spatial memory retrieval. We found a significant sex effect during spatial learning, with males showing shorter latency and shorter path length, as compared to females (all pretrieval (p=0.615). Furthermore, post-hoc analyses revealed significant sex differences in spatial search strategies (pretrieval. Our study raises the question, whether men and women use different learning strategies, which nevertheless result in equal performances of spatial memory retrieval. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The effect of occlusion on the semantics of projective spatial terms: a case study in grounding language in perception.

    Science.gov (United States)

    Kelleher, John D; Ross, Robert J; Sloan, Colm; Mac Namee, Brian

    2011-02-01

    Although data-driven spatial template models provide a practical and cognitively motivated mechanism for characterizing spatial term meaning, the influence of perceptual rather than solely geometric and functional properties has yet to be systematically investigated. In the light of this, in this paper, we investigate the effects of the perceptual phenomenon of object occlusion on the semantics of projective terms. We did this by conducting a study to test whether object occlusion had a noticeable effect on the acceptance values assigned to projective terms with respect to a 2.5-dimensional visual stimulus. Based on the data collected, a regression model was constructed and presented. Subsequent analysis showed that the regression model that included the occlusion factor outperformed an adaptation of Regier & Carlson's well-regarded AVS model for that same spatial configuration.

  11. Characterizing Subpixel Spatial Resolution of a Hybrid CMOS Detector

    Science.gov (United States)

    Bray, Evan; Burrows, Dave; Chattopadhyay, Tanmoy; Falcone, Abraham; Hull, Samuel; Kern, Matthew; McQuaide, Maria; Wages, Mitchell

    2018-01-01

    The detection of X-rays is a unique process relative to other wavelengths, and allows for some novel features that increase the scientific yield of a single observation. Unlike lower photon energies, X-rays liberate a large number of electrons from the silicon absorber array of the detector. This number is usually on the order of several hundred to a thousand for moderate-energy X-rays. These electrons tend to diffuse outward into what is referred to as the charge cloud. This cloud can then be picked up by several pixels, forming a specific pattern based on the exact incident location. By conducting the first ever “mesh experiment" on a hybrid CMOS detector (HCD), we have experimentally determined the charge cloud shape and used it to characterize responsivity of the detector with subpixel spatial resolution.

  12. Employment Effects of Spatial Dispersal of Refugees

    DEFF Research Database (Denmark)

    Damm, Anna Piil; Rosholm, Michael

    Spatial dispersal policies may influence labour market integration of refugees through two mechanisms. First, it may affect the local job offer arrival rate, and second, it may affect place utility. We investigate the second mechanism theoretically by formulating a partial search model in which a...... due to large local reservation wage effects. We investigate both mechanisms empirically and test the predictions of the theoretical model by evaluating the employment effects of the Danish spatial dispersal policy carried out 1986-1998....

  13. Spatially resolved characterization of biogenic manganese oxideproduction within a bacterial biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Toner, Brandy; Fakra, Sirine; Villalobos, Mario; Warwick, Tony; Sposito, Garrison

    2004-10-01

    Pseudomonas putida strain MnB1, a biofilm forming bacteria, was used as a model for the study of bacterial Mn oxidation in freshwater and soil environments. The oxidation of Mn{sub (aq)}{sup +2} by P. putida was characterized by spatially and temporally resolving the oxidation state of Mn in the presence of a bacterial biofilm using scanning transmission x-ray microscopy (STXM) combined with near edge x-ray absorption fine structure (NEXAFS) spectroscopy at the Mn-L{sub 2,3} absorption edges. Subsamples were collected from growth flasks containing 0.1 mM and 1 mM total Mn at 16, 24, 36 and 48 hours after inoculation. Immediately after collection, the unprocessed hydrated subsamples were imaged at 40 nm resolution. Manganese NEXAFS spectra were extracted from x-ray energy sequences of STXM images (stacks) and fit with linear combinations of well characterized reference spectra to obtain quantitative relative abundances of Mn(II), Mn(III) and Mn(IV). Careful consideration was given to uncertainty in the normalization of the reference spectra, choice of reference compounds, and chemical changes due to radiation damage. The STXM results confirm that Mn{sub (aq)}{sup +2} was removed from solution by P. putida and was concentrated as Mn(III) and Mn(IV) immediately adjacent to the bacterial cells. The Mn precipitates were completely enveloped by bacterial biofilm material. The distribution of Mn oxidation states was spatially heterogeneous within and between the clusters of bacterial cells. Scanning transmission x-ray microscopy is a promising tool to advance the study of hydrated interfaces between minerals and bacteria, particularly in cases where the structure of bacterial biofilms needs to be maintained.

  14. Site characterization: a spatial estimation approach

    International Nuclear Information System (INIS)

    Candy, J.V.; Mao, N.

    1980-10-01

    In this report the application of spatial estimation techniques or kriging to groundwater aquifers and geological borehole data is considered. The adequacy of these techniques to reliably develop contour maps from various data sets is investigated. The estimator is developed theoretically in a simplified fashion using vector-matrix calculus. The practice of spatial estimation is discussed and the estimator is then applied to two groundwater aquifer systems and used also to investigate geological formations from borehole data. It is shown that the estimator can provide reasonable results when designed properly

  15. Opportunities for multivariate analysis of open spatial datasets to characterize urban flooding risks

    Directory of Open Access Journals (Sweden)

    S. Gaitan

    2015-06-01

    Full Text Available Cities worldwide are challenged by increasing urban flood risks. Precise and realistic measures are required to reduce flooding impacts. However, currently implemented sewer and topographic models do not provide realistic predictions of local flooding occurrence during heavy rain events. Assessing other factors such as spatially distributed rainfall, socioeconomic characteristics, and social sensing, may help to explain probability and impacts of urban flooding. Several spatial datasets have been recently made available in the Netherlands, including rainfall-related incident reports made by citizens, spatially distributed rain depths, semidistributed socioeconomic information, and buildings age. Inspecting the potential of this data to explain the occurrence of rainfall related incidents has not been done yet. Multivariate analysis tools for describing communities and environmental patterns have been previously developed and used in the field of study of ecology. The objective of this paper is to outline opportunities for these tools to explore urban flooding risks patterns in the mentioned datasets. To that end, a cluster analysis is performed. Results indicate that incidence of rainfall-related impacts is higher in areas characterized by older infrastructure and higher population density.

  16. Employment Effects of Spatial Dispersal of Refugees

    DEFF Research Database (Denmark)

    Damm, Anna Piil; Rosholm, Michael

    We argue that spatial dispersal influences labour market assimilation of refugees through two mechanisms: first, the local job offer arrival rate and, second, place utility. Our partial search model with simultaneous job and residential location search predicts that the reservation wage for local...... by evaluating the employment effects of the Danish spatial dispersal policy carried out 1986-1998....

  17. In-situ materials characterization across spatial and temporal scales

    CERN Document Server

    Graafsma, Heinz; Zhang, Xiao; Frenken, Joost

    2014-01-01

    The behavior of nanoscale materials can change rapidly with time either because the environment changes rapidly, or because the influence of the environment propagates quickly across the intrinsically small dimensions of nanoscale materials. Extremely fast time resolution studies using X-rays, electrons and neutrons are of very high interest to many researchers and is a fast-evolving and interesting field for the study of dynamic processes. Therefore, in situ structural characterization and measurements of structure-property relationships covering several decades of length and time scales (from atoms to millimeters and femtoseconds to hours) with high spatial and temporal resolutions are crucially important to understand the synthesis and behavior of multidimensional materials. The techniques described in this book will permit access to the real-time dynamics of materials, surface processes, and chemical and biological reactions at various time scales. This book provides an interdisciplinary reference for res...

  18. Spatially characterizing visitor use and its association with informal trails in Yosemite Valley meadows.

    Science.gov (United States)

    Walden-Schreiner, Chelsey; Leung, Yu-Fai

    2013-07-01

    Ecological impacts associated with nature-based recreation and tourism can compromise park and protected area goals if left unrestricted. Protected area agencies are increasingly incorporating indicator-based management frameworks into their management plans to address visitor impacts. Development of indicators requires empirical evaluation of indicator measures and examining their ecological and social relevance. This study addresses the development of the informal trail indicator in Yosemite National Park by spatially characterizing visitor use in open landscapes and integrating use patterns with informal trail condition data to examine their spatial association. Informal trail and visitor use data were collected concurrently during July and August of 2011 in three, high-use meadows of Yosemite Valley. Visitor use was clustered at statistically significant levels in all three study meadows. Spatial data integration found no statistically significant differences between use patterns and trail condition class. However, statistically significant differences were found between the distance visitors were observed from informal trails and visitor activity type with active activities occurring closer to trail corridors. Gender was also found to be significant with male visitors observed further from trail corridors. Results highlight the utility of integrated spatial analysis in supporting indicator-based monitoring and informing management of open landscapes. Additional variables for future analysis and methodological improvements are discussed.

  19. Spatially Characterizing Visitor Use and Its Association with Informal Trails in Yosemite Valley Meadows

    Science.gov (United States)

    Walden-Schreiner, Chelsey; Leung, Yu-Fai

    2013-07-01

    Ecological impacts associated with nature-based recreation and tourism can compromise park and protected area goals if left unrestricted. Protected area agencies are increasingly incorporating indicator-based management frameworks into their management plans to address visitor impacts. Development of indicators requires empirical evaluation of indicator measures and examining their ecological and social relevance. This study addresses the development of the informal trail indicator in Yosemite National Park by spatially characterizing visitor use in open landscapes and integrating use patterns with informal trail condition data to examine their spatial association. Informal trail and visitor use data were collected concurrently during July and August of 2011 in three, high-use meadows of Yosemite Valley. Visitor use was clustered at statistically significant levels in all three study meadows. Spatial data integration found no statistically significant differences between use patterns and trail condition class. However, statistically significant differences were found between the distance visitors were observed from informal trails and visitor activity type with active activities occurring closer to trail corridors. Gender was also found to be significant with male visitors observed further from trail corridors. Results highlight the utility of integrated spatial analysis in supporting indicator-based monitoring and informing management of open landscapes. Additional variables for future analysis and methodological improvements are discussed.

  20. Competing sound sources reveal spatial effects in cortical processing.

    Directory of Open Access Journals (Sweden)

    Ross K Maddox

    Full Text Available Why is spatial tuning in auditory cortex weak, even though location is important to object recognition in natural settings? This question continues to vex neuroscientists focused on linking physiological results to auditory perception. Here we show that the spatial locations of simultaneous, competing sound sources dramatically influence how well neural spike trains recorded from the zebra finch field L (an analog of mammalian primary auditory cortex encode source identity. We find that the location of a birdsong played in quiet has little effect on the fidelity of the neural encoding of the song. However, when the song is presented along with a masker, spatial effects are pronounced. For each spatial configuration, a subset of neurons encodes song identity more robustly than others. As a result, competing sources from different locations dominate responses of different neural subpopulations, helping to separate neural responses into independent representations. These results help elucidate how cortical processing exploits spatial information to provide a substrate for selective spatial auditory attention.

  1. Characterizing permafrost active layer dynamics and sensitivity to landscape spatial heterogeneity in Alaska

    Science.gov (United States)

    Yi, Yonghong; Kimball, John S.; Chen, Richard H.; Moghaddam, Mahta; Reichle, Rolf H.; Mishra, Umakant; Zona, Donatella; Oechel, Walter C.

    2018-01-01

    An important feature of the Arctic is large spatial heterogeneity in active layer conditions, which is generally poorly represented by global models and can lead to large uncertainties in predicting regional ecosystem responses and climate feedbacks. In this study, we developed a spatially integrated modeling and analysis framework combining field observations, local-scale ( ˜ 50 m resolution) active layer thickness (ALT) and soil moisture maps derived from low-frequency (L + P-band) airborne radar measurements, and global satellite environmental observations to investigate the ALT sensitivity to recent climate trends and landscape heterogeneity in Alaska. Modeled ALT results show good correspondence with in situ measurements in higher-permafrost-probability (PP ≥ 70 %) areas (n = 33; R = 0.60; mean bias = 1.58 cm; RMSE = 20.32 cm), but with larger uncertainty in sporadic and discontinuous permafrost areas. The model results also reveal widespread ALT deepening since 2001, with smaller ALT increases in northern Alaska (mean trend = 0.32±1.18 cm yr-1) and much larger increases (> 3 cm yr-1) across interior and southern Alaska. The positive ALT trend coincides with regional warming and a longer snow-free season (R = 0.60 ± 0.32). A spatially integrated analysis of the radar retrievals and model sensitivity simulations demonstrated that uncertainty in the spatial and vertical distribution of soil organic carbon (SOC) was the largest factor affecting modeled ALT accuracy, while soil moisture played a secondary role. Potential improvements in characterizing SOC heterogeneity, including better spatial sampling of soil conditions and advances in remote sensing of SOC and soil moisture, will enable more accurate predictions of active layer conditions and refinement of the modeling framework across a larger domain.

  2. Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas - a review

    Science.gov (United States)

    Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick

    2017-07-01

    In urban areas, hydrological processes are characterized by high variability in space and time, making them sensitive to small-scale temporal and spatial rainfall variability. In the last decades new instruments, techniques, and methods have been developed to capture rainfall and hydrological processes at high resolution. Weather radars have been introduced to estimate high spatial and temporal rainfall variability. At the same time, new models have been proposed to reproduce hydrological response, based on small-scale representation of urban catchment spatial variability. Despite these efforts, interactions between rainfall variability, catchment heterogeneity, and hydrological response remain poorly understood. This paper presents a review of our current understanding of hydrological processes in urban environments as reported in the literature, focusing on their spatial and temporal variability aspects. We review recent findings on the effects of rainfall variability on hydrological response and identify gaps where knowledge needs to be further developed to improve our understanding of and capability to predict urban hydrological response.

  3. Closed-loop digital control of nuclear reactors characterized by spatial dynamics

    International Nuclear Information System (INIS)

    Bernard, J.A.; Henry, A.F.; Lanning, D.D.; Meyer, J.E.

    1991-03-01

    This report describes the theoretical development and the evaluation via both simulation and, to a lesser degree, experiment of a digital method for the closed-loop control of power and temperature in reactors characterized by spatial dynamics. The major conclusions of the research are that (1) the sophistication of advanced reactor physics and thermal-hydraulic nodal methods is now such that accurate, real-time models of spatially-dependent, heterogeneous reactor cores can be run on present-generation minicomputers; (2) operation of both present-day commercial reactors as well as the multi-modular reactors now being considered for construction in the United States could be significantly improved by incorporating model-generated information on in-core conditions in a digital controller; and (3) digital controllers for spatially-dependent reactors should have a hierarchical or multi-tiered structure consisting of supervisory algorithms that preclude challenges to the safety system, global control laws designed to provide an optimal response to temperature and power perturbations, and local control laws that maintain parameters such as the margin to departure from nucleate boiling within specification. The technology described is appropriate to present-day pressurized water reactors and to the proposed multi-modular designs. The end-product of this research was a (near) real-time analytic plant-estimation code that was given the acronym POPSICLE for POwer Plant SImulator and ControlLEr. POPSICLE's core neutronics model is based on a quasi-static transient solution of the analytic nodal diffusion equations. 126 refs., 159 figs., 17 tabs

  4. Closed-loop digital control of nuclear reactors characterized by spatial dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, J.A. (Massachusetts Inst. of Tech., Cambridge, MA (USA). Nuclear Reactor Lab.); Henry, A.F.; Lanning, D.D.; Meyer, J.E. (Massachusetts Inst. of Tech., Cambridge, MA (USA). Dept. of Nuclear Engineering)

    1991-03-01

    This report describes the theoretical development and the evaluation via both simulation and, to a lesser degree, experiment of a digital method for the closed-loop control of power and temperature in reactors characterized by spatial dynamics. The major conclusions of the research are that (1) the sophistication of advanced reactor physics and thermal-hydraulic nodal methods is now such that accurate, real-time models of spatially-dependent, heterogeneous reactor cores can be run on present-generation minicomputers; (2) operation of both present-day commercial reactors as well as the multi-modular reactors now being considered for construction in the United States could be significantly improved by incorporating model-generated information on in-core conditions in a digital controller; and (3) digital controllers for spatially-dependent reactors should have a hierarchical or multi-tiered structure consisting of supervisory algorithms that preclude challenges to the safety system, global control laws designed to provide an optimal response to temperature and power perturbations, and local control laws that maintain parameters such as the margin to departure from nucleate boiling within specification. The technology described is appropriate to present-day pressurized water reactors and to the proposed multi-modular designs. The end-product of this research was a (near) real-time analytic plant-estimation code that was given the acronym POPSICLE for POwer Plant SImulator and ControlLEr. POPSICLE's core neutronics model is based on a quasi-static transient solution of the analytic nodal diffusion equations. 126 refs., 159 figs., 17 tabs.

  5. Planning paths through a spatial hierarchy - Eliminating stair-stepping effects

    Science.gov (United States)

    Slack, Marc G.

    1989-01-01

    Stair-stepping effects are a result of the loss of spatial continuity resulting from the decomposition of space into a grid. This paper presents a path planning algorithm which eliminates stair-stepping effects induced by the grid-based spatial representation. The algorithm exploits a hierarchical spatial model to efficiently plan paths for a mobile robot operating in dynamic domains. The spatial model and path planning algorithm map to a parallel machine, allowing the system to operate incrementally, thereby accounting for unexpected events in the operating space.

  6. The role of working memory in spatial S-R correspondence effects.

    Science.gov (United States)

    Wühr, Peter; Biebl, Rupert

    2011-04-01

    This study investigates the impact of working memory (WM) load on response conflicts arising from spatial (non) correspondence between irrelevant stimulus location and response location (Simon effect). The dominant view attributes the Simon effect to automatic processes of location-based response priming. The automaticity view predicts insensitivity of the Simon effect to manipulations of processing load. Four experiments investigated the role of spatial and verbal WM in horizontal and vertical Simon tasks by using a dual-task approach. Participants maintained different amounts of spatial or verbal information in WM while performing a horizontal or vertical Simon task. Results showed that high load generally decreased, and sometimes eliminated, the Simon effect. It is interesting to note that spatial load had a larger impact than verbal load on the horizontal Simon effect, whereas verbal load had a larger impact than spatial load on the vertical Simon effect. The results highlight the role of WM as the perception-action interface in choice-response tasks. Moreover, the results suggest spatial coding of horizontal stimulus-response (S-R) tasks, and verbal coding of vertical S-R tasks.

  7. SPATIAL DYNAMICS OF CEARÁ’S COCONUT PRODUCTION

    Directory of Open Access Journals (Sweden)

    Leandro Vieira Cavalcante

    2017-07-01

    Full Text Available The main purpose of this article is to discuss the spatial dynamics of coconut production in the State of Ceará (Brazil while highlighting the spatialization of this process and the characterization of the coconut production spaces in Ceará’s territory. It also debates the effect agricultural activity has on the space production process, empirically evidenced from the coconut cultivation analysis.

  8. Characterization of Spatial Memory Reconsolidation

    Science.gov (United States)

    De Jaeger, Xavier; Courtey, Julie; Brus, Maïna; Artinian, Julien; Villain, Hélène; Bacquié, Elodie; Roullet, Pascal

    2014-01-01

    Reconsolidation is necessary for the restabilization of reactivated memory traces. However, experimental parameters have been suggested as boundary conditions for this process. Here we investigated the role of a spatial memory trace's age, strength, and update on the reconsolidation process in mice. We first found that protein synthesis is…

  9. The Importance of Spatial Reasoning Skills in Undergraduate Geology Students and the Effect of Weekly Spatial Skill Trainings

    Science.gov (United States)

    Gold, Anne; Pendergast, Philip; Stempien, Jennifer; Ormand, Carol

    2016-04-01

    Spatial reasoning is a key skill for student success in STEM disciplines in general and for students in geosciences in particular. However, spatial reasoning is neither explicitly trained, nor evenly distributed, among students and by gender. This uneven playing field allows some students to perform geoscience tasks easily while others struggle. A lack of spatial reasoning skills has been shown to be a barrier to success in the geosciences, and for STEM disciplines in general. Addressing spatial abilities early in the college experience might therefore be effective in retaining students, especially females, in STEM disciplines. We have developed and implemented a toolkit for testing and training undergraduate student spatial reasoning skills in the classroom. In the academic year 2014/15, we studied the distribution of spatial abilities in more than 700 undergraduate Geology students from 4 introductory and 2 upper level courses. Following random assignment, four treatment groups received weekly online training and intermittent hands-on trainings in spatial thinking while four control groups only participated in a pre- and a posttest of spatial thinking skills. In this presentation we summarize our results and describe the distribution of spatial skills in undergraduate students enrolled in geology courses. We first discuss the factors that best account for differences in baseline spatial ability levels, including general intelligence (using standardized test scores as a proxy), major, video gaming, and other childhood play experiences, which help to explain the gender gap observed in most research. We found a statistically significant improvement of spatial thinking still with large effect sizes for the students who received the weekly trainings. Self-report data further shows that students improve their spatial thinking skills and report that their improved spatial thinking skills increase their performance in geoscience courses. We conclude by discussing the

  10. The dynamic and indirect spatial effects of neighborhood conditions on land value, spatial panel dynamic econometrics model

    Science.gov (United States)

    Fitriani, Rahma; Sumarminingsih, Eni; Astutik, Suci

    2017-05-01

    Land value is the product of past decision of its use leading to its value, as well as the value of the surrounded land. It is also affected by the local characteristic and the spillover development demand of the previous time period. The effect of each factor on land value will have dynamic and spatial virtues. Thus, a spatial panel dynamic model is used to estimate the particular effects. The model will be useful for predicting the future land value or the effect of implemented policy on land value. The objective of this paper is to derive the dynamic and indirect spatial marginal effects of the land characteristic and the spillover development demand on land value. Each effect is the partial derivative of the expected land value based on the spatial dynamic model with respect to each variable, by considering different time period and different location. The results indicate that the instant change of local or neighborhood characteristics on land value affect the local and the immediate neighborhood land value. However, the longer the change take place, the effect will spread further, not only on the immediate neighborhood.

  11. Engineering characterization of ground motion. Task II: Soil structure interaction effects on structural response

    Energy Technology Data Exchange (ETDEWEB)

    Luco, J E; Wong, H L [Structural and Earthquake Engineering Consultants, Inc., Sierra Madre, CA (United States); Chang, C -Y; Power, M S; Idriss, I M [Woodward-Clyde Consultants, Walnut Creek, CA (United States)

    1986-08-01

    This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. The overall objective of this research program sponsored by the U.S. Nuclear Regulatory Commission (USNRC) is to develop recommendations for methods for selecting design response spectra or acceleration time histories to be used to characterize motion at the foundation level of nuclear power plants. Task I of the study, which is presented in Vol. 1 of NUREG/CR-3805, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in Vols. 2 through of NUREG/CR-3805 as follows: Vol. 2 effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects; Vol. 3 observational data on spatial variations of earthquake ground motions; Vol. 4 soil-structure interaction effects on structural response; and Vol. 5, summary based on Tasks I and II studies. This report presents the results of the Vol. 4 studies.

  12. Characterizing the spatial variations and correlations of large rainstorms for landslide study

    Directory of Open Access Journals (Sweden)

    L. Gao

    2017-09-01

    Full Text Available Rainfall is the primary trigger of landslides in Hong Kong; hence, rainstorm spatial distribution is an important piece of information in landslide hazard analysis. The primary objective of this paper is to quantify spatial correlation characteristics of three landslide-triggering large storms in Hong Kong. The spatial maximum rolling rainfall is represented by a rotated ellipsoid trend surface and a random field of residuals. The maximum rolling 4, 12, 24, and 36 h rainfall amounts of these storms are assessed via surface trend fitting, and the spatial correlation of the detrended residuals is determined through studying the scales of fluctuation along eight directions. The principal directions of the surface trend are between 19 and 43°, and the major and minor axis lengths are 83–386 and 55–79 km, respectively. The scales of fluctuation of the residuals are found between 5 and 30 km. The spatial distribution parameters for the three large rainstorms are found to be similar to those for four ordinary rainfall events. The proposed rainfall spatial distribution model and parameters help define the impact area, rainfall intensity and local topographic effects for landslide hazard evaluation in the future.

  13. Non-destructive spatial characterization of buried interfaces in multilayer stacks via two color picosecond acoustics

    Science.gov (United States)

    Faria, Jorge C. D.; Garnier, Philippe; Devos, Arnaud

    2017-12-01

    We demonstrate the ability to construct wide-area spatial mappings of buried interfaces in thin film stacks in a non-destructive manner using two color picosecond acoustics. Along with the extraction of layer thicknesses and sound velocities from acoustic signals, the morphological information presented is a powerful demonstration of phonon imaging as a metrological tool. For a series of heterogeneous (polymer, metal, and semiconductor) thin film stacks that have been treated with a chemical procedure known to alter layer properties, the spatial mappings reveal changes to interior thicknesses and chemically modified surface features without the need to remove uppermost layers. These results compare well to atomic force microscopy scans showing that the technique provides a significant advantage to current characterization methods for industrially important device stacks.

  14. Theory of spatial networks

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T

    1983-01-01

    A new framework of synchronous parallel processing systems called spatial networks is examined, in which the family of all cellular automata is included perfectly. This framework is free from the two restrictions of cellular automata of which one is the finiteness of the set of states of a cell and the other is the countability of an array space. Throughout this article, the relationships between function and structure of spatial networks are considered. First, the necessary and sufficient condition for spatial networks to be uniformly interconnected is given. That for spatial networks to be finitely interconnected is also given with a topological approach. The characterization theorem of cellular automata comes from these results. Second, it is shown that finitely and uniformly interconnected linear spatial networks can be characterized by the convolution form. Last, the conditions for their global mappings to be injective or surjective are discussed. 10 references.

  15. Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas – a review

    Directory of Open Access Journals (Sweden)

    E. Cristiano

    2017-07-01

    Full Text Available In urban areas, hydrological processes are characterized by high variability in space and time, making them sensitive to small-scale temporal and spatial rainfall variability. In the last decades new instruments, techniques, and methods have been developed to capture rainfall and hydrological processes at high resolution. Weather radars have been introduced to estimate high spatial and temporal rainfall variability. At the same time, new models have been proposed to reproduce hydrological response, based on small-scale representation of urban catchment spatial variability. Despite these efforts, interactions between rainfall variability, catchment heterogeneity, and hydrological response remain poorly understood. This paper presents a review of our current understanding of hydrological processes in urban environments as reported in the literature, focusing on their spatial and temporal variability aspects. We review recent findings on the effects of rainfall variability on hydrological response and identify gaps where knowledge needs to be further developed to improve our understanding of and capability to predict urban hydrological response.

  16. Characterizing the Spatial Contiguity of Extreme Precipitation over the US in the Recent Past

    Science.gov (United States)

    Touma, D. E.; Swain, D. L.; Diffenbaugh, N. S.

    2016-12-01

    The spatial characteristics of extreme precipitation over an area can define the hydrologic response in a basin, subsequently affecting the flood risk in the region. Here, we examine the spatial extent of extreme precipitation in the US by defining its "footprint": a contiguous area of rainfall exceeding a certain threshold (e.g., 90th percentile) on a given day. We first characterize the climatology of extreme rainfall footprint sizes across the US from 1980-2015 using Daymet, a high-resolution observational gridded rainfall dataset. We find that there are distinct regional and seasonal differences in average footprint sizes of extreme daily rainfall. In the winter, the Midwest shows footprints exceeding 500,000 sq. km while the Front Range exhibits footprints of 10,000 sq. km. Alternatively, the summer average footprint size is generally smaller and more uniform across the US, ranging from 10,000 sq. km in the Southwest to 100,000 sq. km in Montana and North Dakota. Moreover, we find that there are some significant increasing trends of average footprint size between 1980-2015, specifically in the Southwest in the winter and the Northeast in the spring. While gridded daily rainfall datasets allow for a practical framework in calculating footprint size, this calculation heavily depends on the interpolation methods that have been used in creating the dataset. Therefore, we assess footprint size using the GHCN-Daily station network and use geostatistical methods to define footprints of extreme rainfall directly from station data. Compared to the findings from Daymet, preliminary results using this method show fewer small daily footprint sizes over the US while large footprints are of similar number and magnitude to Daymet. Overall, defining the spatial characteristics of extreme rainfall as well as observed and expected changes in these characteristics allows us to better understand the hydrologic response to extreme rainfall and how to better characterize flood

  17. A Spatial Model of the Mere Exposure Effect.

    Science.gov (United States)

    Fink, Edward L.; And Others

    1989-01-01

    Uses a spatial model to examine the relationship between stimulus exposure, cognition, and affect. Notes that this model accounts for cognitive changes that a stimulus may acquire as a result of exposure. Concludes that the spatial model is useful for evaluating the mere exposure effect and that affective change does not require cognitive change.…

  18. High precision micro-scale Hall Effect characterization method using in-line micro four-point probes

    DEFF Research Database (Denmark)

    Petersen, Dirch Hjorth; Hansen, Ole; Lin, Rong

    2008-01-01

    Accurate characterization of ultra shallow junctions (USJ) is important in order to understand the principles of junction formation and to develop the appropriate implant and annealing technologies. We investigate the capabilities of a new micro-scale Hall effect measurement method where Hall...... effect is measured with collinear micro four-point probes (M4PP). We derive the sensitivity to electrode position errors and describe a position error suppression method to enable rapid reliable Hall effect measurements with just two measurement points. We show with both Monte Carlo simulations...... and experimental measurements, that the repeatability of a micro-scale Hall effect measurement is better than 1 %. We demonstrate the ability to spatially resolve Hall effect on micro-scale by characterization of an USJ with a single laser stripe anneal. The micro sheet resistance variations resulting from...

  19. A novel mobile monitoring approach to characterize spatial and temporal variation in traffic-related air pollutants in an urban community

    Science.gov (United States)

    Yu, Chang Ho; Fan, Zhihua; Lioy, Paul J.; Baptista, Ana; Greenberg, Molly; Laumbach, Robert J.

    2016-09-01

    Air concentrations of traffic-related air pollutants (TRAPs) vary in space and time within urban communities, presenting challenges for estimating human exposure and potential health effects. Conventional stationary monitoring stations/networks cannot effectively capture spatial characteristics. Alternatively, mobile monitoring approaches became popular to measure TRAPs along roadways or roadsides. However, these linear mobile monitoring approaches cannot thoroughly distinguish spatial variability from temporal variations in monitored TRAP concentrations. In this study, we used a novel mobile monitoring approach to simultaneously characterize spatial/temporal variations in roadside concentrations of TRAPs in urban settings. We evaluated the effectiveness of this mobile monitoring approach by performing concurrent measurements along two parallel paths perpendicular to a major roadway and/or along heavily trafficked roads at very narrow scale (one block away each other) within short time period (monitors, including battery-operated PM2.5 monitor (SidePak), condensation particle counter (CPC 3007), black carbon (BC) monitor (Micro-Aethalometer), carbon monoxide (CO) monitor (Langan T15), and portable temperature/humidity data logger (HOBO U12), and a GPS-based tracker (Trackstick). Sampling was conducted for ∼3 h in the morning (7:30-10:30) in 7 separate days in March/April and 6 days in May/June 2012. Two simultaneous samplings were made at 5 spatially-distributed locations on parallel roads, usually distant one block each other, in each neighborhood. The 5-min averaged BC concentrations (AVG ± SD, [range]) were 2.53 ± 2.47 [0.09-16.3] μg/m3, particle number concentrations (PNC) were 33,330 ± 23,451 [2512-159,130] particles/cm3, PM2.5 mass concentrations were 8.87 ± 7.65 [0.27-46.5] μg/m3, and CO concentrations were 1.22 ± 0.60 [0.22-6.29] ppm in the community. The traffic-related air pollutants, BC and PNC, but not PM2.5 or CO, varied spatially depending on

  20. Theoretical characterization of the spatial resolution intra-operative probes; Caracterizacion teorica de la resolucion espacial de sondas intraoperatorias

    Energy Technology Data Exchange (ETDEWEB)

    Agramunt Chaler, S.; Jurado Bruggeman, D.; Munoz Montplet, C.

    2013-07-01

    This work intends to check that the characterization of the spatial profiles obtained by a an intraoperative probe in the presence of a point source is possible enough making use only of the parameters down time sensitivity and opening of the collimator. (Author)

  1. Pointing Hand Stimuli Induce Spatial Compatibility Effects and Effector Priming

    Directory of Open Access Journals (Sweden)

    Akio eNishimura

    2013-04-01

    Full Text Available The present study investigated the automatic influence of perceiving a picture that indicates other’s action on one’s own task performance in terms of spatial compatibility and effector priming. Participants pressed left and right buttons with their left and right hands respectively, depending on the color of a central dot target. Preceding the target, a left or right hand stimulus (pointing either to the left or right with the index or little finger was presented. In Experiment 1, with brief presentation of the pointing hand, a spatial compatibility effect was observed: Responses were faster when the direction of the pointed finger and the response position were spatially congruent than when incongruent. The spatial compatibility effect was larger for the pointing index finger stimulus compared to the pointing little finger stimulus. Experiment 2 employed longer duration of the pointing hand stimuli. In addition to the spatial compatibility effect for the pointing index finger, the effector priming effect was observed: Responses were faster when the anatomical left/right identity of the pointing and response hands matched than when the pointing and response hands differed in left/right identity. The results indicate that with sufficient processing time, both spatial/symbolic and anatomical features of a static body part implying another’s action simultaneously influence different aspects of the perceiver’s own action. Hierarchical coding, according to which an anatomical code is used only when a spatial code is unavailable, may not be applicable if stimuli as well as responses contain anatomical features.

  2. Emotional cues enhance the attentional effects on spatial and temporal resolution.

    Science.gov (United States)

    Bocanegra, Bruno R; Zeelenberg, René

    2011-12-01

    In the present study, we demonstrated that the emotional significance of a spatial cue enhances the effect of covert attention on spatial and temporal resolution (i.e., our ability to discriminate small spatial details and fast temporal flicker). Our results indicated that fearful face cues, as compared with neutral face cues, enhanced the attentional benefits in spatial resolution but also enhanced the attentional deficits in temporal resolution. Furthermore, we observed that the overall magnitudes of individuals' attentional effects correlated strongly with the magnitude of the emotion × attention interaction effect. Combined, these findings provide strong support for the idea that emotion enhances the strength of a cue's attentional response.

  3. The effects of spatial autoregressive dependencies on inference in ordinary least squares: a geometric approach

    Science.gov (United States)

    Smith, Tony E.; Lee, Ka Lok

    2012-01-01

    There is a common belief that the presence of residual spatial autocorrelation in ordinary least squares (OLS) regression leads to inflated significance levels in beta coefficients and, in particular, inflated levels relative to the more efficient spatial error model (SEM). However, our simulations show that this is not always the case. Hence, the purpose of this paper is to examine this question from a geometric viewpoint. The key idea is to characterize the OLS test statistic in terms of angle cosines and examine the geometric implications of this characterization. Our first result is to show that if the explanatory variables in the regression exhibit no spatial autocorrelation, then the distribution of test statistics for individual beta coefficients in OLS is independent of any spatial autocorrelation in the error term. Hence, inferences about betas exhibit all the optimality properties of the classic uncorrelated error case. However, a second more important series of results show that if spatial autocorrelation is present in both the dependent and explanatory variables, then the conventional wisdom is correct. In particular, even when an explanatory variable is statistically independent of the dependent variable, such joint spatial dependencies tend to produce "spurious correlation" that results in over-rejection of the null hypothesis. The underlying geometric nature of this problem is clarified by illustrative examples. The paper concludes with a brief discussion of some possible remedies for this problem.

  4. Spatial characterization of long-term hydrological change in the Arkavathy watershed adjacent to Bangalore, India

    Science.gov (United States)

    Penny, Gopal; Srinivasan, Veena; Dronova, Iryna; Lele, Sharachchandra; Thompson, Sally

    2018-01-01

    The complexity and heterogeneity of human water use over large spatial areas and decadal timescales can impede the understanding of hydrological change, particularly in regions with sparse monitoring of the water cycle. In the Arkavathy watershed in southern India, surface water inflows to major reservoirs decreased over a 40-year period during which urbanization, groundwater depletion, modification of the river network, and changes in agricultural practices also occurred. These multiple, interacting drivers combined with limited hydrological monitoring make attribution of the causes of diminishing water resources in the watershed challenging and impede effective policy responses. To mitigate these challenges, we developed a novel, spatially distributed dataset to understand hydrological change by characterizing the residual trends in surface water extent that remain after controlling for precipitation variations and comparing the trends with historical land use maps to assess human drivers of change. Using an automated classification approach with subpixel unmixing, we classified water extent in nearly 1700 man-made lakes, or tanks, in Landsat images from 1973 to 2010. The classification results compared well with a reference dataset of water extent of tanks (R2 = 0.95). We modeled the water extent of 42 clusters of tanks in a multiple regression on simple hydrological covariates (including precipitation) and time. Inter-annual variability in precipitation accounted for 63 % of the predicted variability in water extent. However, precipitation did not exhibit statistically significant trends in any part of the watershed. After controlling for precipitation variability, we found statistically significant temporal trends in water extent, both positive and negative, in 13 of the clusters. Based on a water balance argument, we inferred that these trends likely reflect a non-stationary relationship between precipitation and watershed runoff. Independently of

  5. Accounting for spatial effects in land use regression for urban air pollution modeling.

    Science.gov (United States)

    Bertazzon, Stefania; Johnson, Markey; Eccles, Kristin; Kaplan, Gilaad G

    2015-01-01

    In order to accurately assess air pollution risks, health studies require spatially resolved pollution concentrations. Land-use regression (LUR) models estimate ambient concentrations at a fine spatial scale. However, spatial effects such as spatial non-stationarity and spatial autocorrelation can reduce the accuracy of LUR estimates by increasing regression errors and uncertainty; and statistical methods for resolving these effects--e.g., spatially autoregressive (SAR) and geographically weighted regression (GWR) models--may be difficult to apply simultaneously. We used an alternate approach to address spatial non-stationarity and spatial autocorrelation in LUR models for nitrogen dioxide. Traditional models were re-specified to include a variable capturing wind speed and direction, and re-fit as GWR models. Mean R(2) values for the resulting GWR-wind models (summer: 0.86, winter: 0.73) showed a 10-20% improvement over traditional LUR models. GWR-wind models effectively addressed both spatial effects and produced meaningful predictive models. These results suggest a useful method for improving spatially explicit models. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. A diagnostic imaging approach for online characterization of multi-impact in aircraft composite structures based on a scanning spatial-wavenumber filter of guided wave

    Science.gov (United States)

    Ren, Yuanqiang; Qiu, Lei; Yuan, Shenfang; Su, Zhongqing

    2017-06-01

    Monitoring of impact and multi-impact in particular in aircraft composite structures has been an intensive research topic in the field of guided-wave-based structural health monitoring (SHM). Compared with the majority of existing methods such as those using signal features in the time-, frequency- or joint time-frequency domain, the approach based on spatial-wavenumber filter of guided wave shows superb advantage in effectively distinguishing particular wave modes and identifying their propagation direction relative to the sensor array. However, there exist two major issues when conducting online characterization of multi-impact event. Firstly, the spatial-wavenumber filter should be realized in the situation that the wavenumber of high spatial resolution of the complicated multi-impact signal cannot be measured or modeled. Secondly, it's difficult to identify the multiple impacts and realize multi-impact localization due to the overlapping of wavenumbers. To address these issues, a scanning spatial-wavenumber filter based diagnostic imaging method for online characterization of multi-impact event is proposed to conduct multi-impact imaging and localization in this paper. The principle of the scanning filter for multi-impact is developed first to conduct spatial-wavenumber filtering and to achieve wavenumber-time imaging of the multiple impacts. Then, a feature identification method of multi-impact based on eigenvalue decomposition and wavenumber searching is presented to estimate the number of impacts and calculate the wavenumber of the multi-impact signal, and an image mapping method is proposed as well to convert the wavenumber-time image to an angle-distance image to distinguish and locate the multiple impacts. A series of multi-impact events are applied to a carbon fiber laminate plate to validate the proposed methods. The validation results show that the localization of the multiple impacts are well achieved.

  7. Characterizing spatial heterogeneity based on the b-value and fractal analyses of the 2015 Nepal earthquake sequence

    Science.gov (United States)

    Nampally, Subhadra; Padhy, Simanchal; Dimri, Vijay P.

    2018-01-01

    The nature of spatial distribution of heterogeneities in the source area of the 2015 Nepal earthquake is characterized based on the seismic b-value and fractal analysis of its aftershocks. The earthquake size distribution of aftershocks gives a b-value of 1.11 ± 0.08, possibly representing the highly heterogeneous and low stress state of the region. The aftershocks exhibit a fractal structure characterized by a spectrum of generalized dimensions, Dq varying from D2 = 1.66 to D22 = 0.11. The existence of a fractal structure suggests that the spatial distribution of aftershocks is not a random phenomenon, but it self-organizes into a critical state, exhibiting a scale-independent structure governed by a power-law scaling, where a small perturbation in stress is sufficient enough to trigger aftershocks. In order to obtain the bias in fractal dimensions resulting from finite data size, we compared the multifractal spectrum for the real data and random simulations. On comparison, we found that the lower limit of bias in D2 is 0.44. The similarity in their multifractal spectra suggests the lack of long-range correlation in the data, with an only weakly multifractal or a monofractal with a single correlation dimension D2 characterizing the data. The minimum number of events required for a multifractal process with an acceptable error is discussed. We also tested for a possible correlation between changes in D2 and energy released during the earthquakes. The values of D2 rise during the two largest earthquakes (M > 7.0) in the sequence. The b- and D2 values are related by D2 = 1.45 b that corresponds to the intermediate to large earthquakes. Our results provide useful constraints on the spatial distribution of b- and D2-values, which are useful for seismic hazard assessment in the aftershock area of a large earthquake.

  8. On the spatial specificity of audiovisual crossmodal exogenous cuing effects.

    Science.gov (United States)

    Lee, Jae; Spence, Charles

    2017-06-01

    It is generally-accepted that the presentation of an auditory cue will direct an observer's spatial attention to the region of space from where it originates and therefore facilitate responses to visual targets presented there rather than from a different position within the cued hemifield. However, to date, there has been surprisingly limited evidence published in support of such within-hemifield crossmodal exogenous spatial cuing effects. Here, we report two experiments designed to investigate within- and between-hemifield spatial cuing effects in the case of audiovisual exogenous covert orienting. Auditory cues were presented from one of four frontal loudspeakers (two on either side of central fixation). There were eight possible visual target locations (one above and another below each of the loudspeakers). The auditory cues were evenly separated laterally by 30° in Experiment 1, and by 10° in Experiment 2. The potential cue and target locations were separated vertically by approximately 19° in Experiment 1, and by 4° in Experiment 2. On each trial, the participants made a speeded elevation (i.e., up vs. down) discrimination response to the visual target following the presentation of a spatially-nonpredictive auditory cue. Within-hemifield spatial cuing effects were observed only when the auditory cues were presented from the inner locations. Between-hemifield spatial cuing effects were observed in both experiments. Taken together, these results demonstrate that crossmodal exogenous shifts of spatial attention depend on the eccentricity of both the cue and target in a way that has not been made explicit by previous research. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The effects of environmental variability and spatial sampling on the three-dimensional inversion problem.

    Science.gov (United States)

    Bender, Christopher M; Ballard, Megan S; Wilson, Preston S

    2014-06-01

    The overall goal of this work is to quantify the effects of environmental variability and spatial sampling on the accuracy and uncertainty of estimates of the three-dimensional ocean sound-speed field. In this work, ocean sound speed estimates are obtained with acoustic data measured by a sparse autonomous observing system using a perturbative inversion scheme [Rajan, Lynch, and Frisk, J. Acoust. Soc. Am. 82, 998-1017 (1987)]. The vertical and horizontal resolution of the solution depends on the bandwidth of acoustic data and on the quantity of sources and receivers, respectively. Thus, for a simple, range-independent ocean sound speed profile, a single source-receiver pair is sufficient to estimate the water-column sound-speed field. On the other hand, an environment with significant variability may not be fully characterized by a large number of sources and receivers, resulting in uncertainty in the solution. This work explores the interrelated effects of environmental variability and spatial sampling on the accuracy and uncertainty of the inversion solution though a set of case studies. Synthetic data representative of the ocean variability on the New Jersey shelf are used.

  10. Spatial Learning: Conditions and Basic Effects

    Directory of Open Access Journals (Sweden)

    Victoria D. Chamizo

    2002-01-01

    Full Text Available A growing body of evidence suggests that the spatial and the temporal domains seem to share the same or similar conditions, basic effects, and mechanisms. The blocking, unblocking and overshadowing experiments (and also those of latent inhibition and perceptual learning reviewed by Prados and Redhead in this issue show that to exclude associative learning as a basic mechanism responsible for spatial learning is quite inappropriate. All these results, especially those obtained with strictly spatial tasks, seem inconsistent with O’Keefe and Nadel’s account of true spatial learning or locale learning. Their theory claims that this kind of learning is fundamentally different and develops with total independence from other ways of learning (like classical and instrumental conditioning -taxon learning. In fact, the results reviewed can be explained appealing on to a sophisticated guidance system, like for example the one proposed by Leonard and McNaughton (1990; see also McNaughton and cols, 1996. Such a system would allow that an animal generates new space information: given the distance and address from of A to B and from A to C, being able to infer the distance and the address from B to C, even when C is invisible from B (see Chapuis and Varlet, 1987 -the contribution by McLaren in this issue constitutes a good example of a sophisticated guidance system.

  11. The influence of sampling unit size and spatial arrangement patterns on neighborhood-based spatial structure analyses of forest stands

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Zhang, G.; Hui, G.; Li, Y.; Hu, Y.; Zhao, Z.

    2016-07-01

    Aim of study: Neighborhood-based stand spatial structure parameters can quantify and characterize forest spatial structure effectively. How these neighborhood-based structure parameters are influenced by the selection of different numbers of nearest-neighbor trees is unclear, and there is some disagreement in the literature regarding the appropriate number of nearest-neighbor trees to sample around reference trees. Understanding how to efficiently characterize forest structure is critical for forest management. Area of study: Multi-species uneven-aged forests of Northern China. Material and methods: We simulated stands with different spatial structural characteristics and systematically compared their structure parameters when two to eight neighboring trees were selected. Main results: Results showed that values of uniform angle index calculated in the same stand were different with different sizes of structure unit. When tree species and sizes were completely randomly interspersed, different numbers of neighbors had little influence on mingling and dominance indices. Changes of mingling or dominance indices caused by different numbers of neighbors occurred when the tree species or size classes were not randomly interspersed and their changing characteristics can be detected according to the spatial arrangement patterns of tree species and sizes. Research highlights: The number of neighboring trees selected for analyzing stand spatial structure parameters should be fixed. We proposed that the four-tree structure unit is the best compromise between sampling accuracy and costs for practical forest management. (Author)

  12. Employment effects of spatial dispersal of refugees

    DEFF Research Database (Denmark)

    Damm, Anna Piil; Rosholm, Michael

    2010-01-01

    Refugees subjected to a spatial dispersal tend to be assigned to a location outside the immigrant-dense cities. We argue that such locations are associated with low place utility. Our partial equilibrium search model with simultaneous job and residential location search predicts that the reservat......Refugees subjected to a spatial dispersal tend to be assigned to a location outside the immigrant-dense cities. We argue that such locations are associated with low place utility. Our partial equilibrium search model with simultaneous job and residential location search predicts...... that the reservation wage for local jobs decreases with place utility. We test the theoretical prediction by estimating the effects of characteristics of the location of assignment on the transition rate into the first job. Our sample is male refugees aged 30-59 who were subjected to the Danish spatial dispersal...

  13. Differential Age Effects on Spatial and Visual Working Memory

    Science.gov (United States)

    Oosterman, Joukje M.; Morel, Sascha; Meijer, Lisette; Buvens, Cleo; Kessels, Roy P. C.; Postma, Albert

    2011-01-01

    The present study was intended to compare age effects on visual and spatial working memory by using two versions of the same task that differed only in presentation mode. The working memory task contained both a simultaneous and a sequential presentation mode condition, reflecting, respectively, visual and spatial working memory processes. Young…

  14. Thematic and spatial resolutions affect model-based predictions of tree species distribution.

    Science.gov (United States)

    Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.

  15. Dissociations of spatial congruence effects across response measures: an examination of delta plots.

    Science.gov (United States)

    Miller, Jeff; Roüast, Nora M

    2016-09-01

    Spatial congruence ("Simon") effects on reaction time (RT) and response force (RF) were studied in two experiments requiring speeded choice responses to the color of a stimulus located irrelevantly to the left or right of fixation. In Experiment 1 with unimanual responses, both RT and incorrect-hand RF were sensitive to spatial congruence, and both showed larger Simon effects following a congruent trial than following an incongruent one. RT and incorrect-hand RF were dissociated in distributional (i.e., delta plot) analyses, however. As in previous studies, the Simon effect on RT was largest for the fastest responses and diminished as RT increased (i.e., decreasing delta plot). In contrast, Simon effects on RF did not decrease for slower responses; if anything, they increased slightly. In Experiment 2 participants made bimanual responses, allowing measurement of the spatial congruence effect for each trial. Responses were both faster and more forceful with the spatially congruent hand than with the spatially incongruent one, but neither of these effects decreased for slower responses. Overall, the results demonstrate that at least some motor-level effects of irrelevant spatial location persist for slower responses.

  16. Spatial characterization of long-term hydrological change in the Arkavathy watershed adjacent to Bangalore, India

    Directory of Open Access Journals (Sweden)

    G. Penny

    2018-01-01

    Full Text Available The complexity and heterogeneity of human water use over large spatial areas and decadal timescales can impede the understanding of hydrological change, particularly in regions with sparse monitoring of the water cycle. In the Arkavathy watershed in southern India, surface water inflows to major reservoirs decreased over a 40-year period during which urbanization, groundwater depletion, modification of the river network, and changes in agricultural practices also occurred. These multiple, interacting drivers combined with limited hydrological monitoring make attribution of the causes of diminishing water resources in the watershed challenging and impede effective policy responses. To mitigate these challenges, we developed a novel, spatially distributed dataset to understand hydrological change by characterizing the residual trends in surface water extent that remain after controlling for precipitation variations and comparing the trends with historical land use maps to assess human drivers of change. Using an automated classification approach with subpixel unmixing, we classified water extent in nearly 1700 man-made lakes, or tanks, in Landsat images from 1973 to 2010. The classification results compared well with a reference dataset of water extent of tanks (R2  =  0.95. We modeled the water extent of 42 clusters of tanks in a multiple regression on simple hydrological covariates (including precipitation and time. Inter-annual variability in precipitation accounted for 63 % of the predicted variability in water extent. However, precipitation did not exhibit statistically significant trends in any part of the watershed. After controlling for precipitation variability, we found statistically significant temporal trends in water extent, both positive and negative, in 13 of the clusters. Based on a water balance argument, we inferred that these trends likely reflect a non-stationary relationship between precipitation and watershed

  17. Stage effects of negative emotion on spatial and verbal working memory

    Directory of Open Access Journals (Sweden)

    Chan Raymond CK

    2010-05-01

    Full Text Available Abstract Background The effects of negative emotion on different processing periods in spatial and verbal working memory (WM and the possible brain mechanism of the interaction between negative emotion and WM were explored using a high-time resolution event-related potential (ERP technique and time-locked delayed matching-to-sample task (DMST. Results Early P3b and late P3b were reduced in the negative emotion condition for both the spatial and verbal tasks at encoding. At retention, the sustained negative slow wave (NSW showed a significant interaction between emotional state and task type. Spatial trials in the negative emotion condition elicited a more negative deflection than they did in the neutral emotion condition. However, no such effect was observed for the verbal tasks. At retrieval, early P3b and late P3b were markedly more attenuated in the negative emotion condition than in the neutral emotion condition for both the spatial and verbal tasks. Conclusions The results indicate that the differential effects of negative emotion on spatial and verbal WM mainly take place during information maintenance processing, which implies that there is a systematic association between specific affects (e.g., negative emotion and certain cognitive processes (e.g., spatial retention.

  18. EFFECTS OF HETEROGENIETY ON SPATIAL PATTERN ANALYSIS OF WILD PISTACHIO TREES IN ZAGROS WOODLANDS, IRAN

    Directory of Open Access Journals (Sweden)

    Y. Erfanifard

    2014-10-01

    Full Text Available Vegetation heterogeneity biases second-order summary statistics, e.g., Ripley's K-function, applied for spatial pattern analysis in ecology. Second-order investigation based on Ripley's K-function and related statistics (i.e., L- and pair correlation function g is widely used in ecology to develop hypothesis on underlying processes by characterizing spatial patterns of vegetation. The aim of this study was to demonstrate effects of underlying heterogeneity of wild pistachio (Pistacia atlantica Desf. trees on the second-order summary statistics of point pattern analysis in a part of Zagros woodlands, Iran. The spatial distribution of 431 wild pistachio trees was accurately mapped in a 40 ha stand in the Wild Pistachio & Almond Research Site, Fars province, Iran. Three commonly used second-order summary statistics (i.e., K-, L-, and g-functions were applied to analyse their spatial pattern. The two-sample Kolmogorov-Smirnov goodness-of-fit test showed that the observed pattern significantly followed an inhomogeneous Poisson process null model in the study region. The results also showed that heterogeneous pattern of wild pistachio trees biased the homogeneous form of K-, L-, and g-functions, demonstrating a stronger aggregation of the trees at the scales of 0–50 m than actually existed and an aggregation at scales of 150–200 m, while regularly distributed. Consequently, we showed that heterogeneity of point patterns may bias the results of homogeneous second-order summary statistics and we also suggested applying inhomogeneous summary statistics with related null models for spatial pattern analysis of heterogeneous vegetations.

  19. Effects of Heterogeniety on Spatial Pattern Analysis of Wild Pistachio Trees in Zagros Woodlands, Iran

    Science.gov (United States)

    Erfanifard, Y.; Rezayan, F.

    2014-10-01

    Vegetation heterogeneity biases second-order summary statistics, e.g., Ripley's K-function, applied for spatial pattern analysis in ecology. Second-order investigation based on Ripley's K-function and related statistics (i.e., L- and pair correlation function g) is widely used in ecology to develop hypothesis on underlying processes by characterizing spatial patterns of vegetation. The aim of this study was to demonstrate effects of underlying heterogeneity of wild pistachio (Pistacia atlantica Desf.) trees on the second-order summary statistics of point pattern analysis in a part of Zagros woodlands, Iran. The spatial distribution of 431 wild pistachio trees was accurately mapped in a 40 ha stand in the Wild Pistachio & Almond Research Site, Fars province, Iran. Three commonly used second-order summary statistics (i.e., K-, L-, and g-functions) were applied to analyse their spatial pattern. The two-sample Kolmogorov-Smirnov goodness-of-fit test showed that the observed pattern significantly followed an inhomogeneous Poisson process null model in the study region. The results also showed that heterogeneous pattern of wild pistachio trees biased the homogeneous form of K-, L-, and g-functions, demonstrating a stronger aggregation of the trees at the scales of 0-50 m than actually existed and an aggregation at scales of 150-200 m, while regularly distributed. Consequently, we showed that heterogeneity of point patterns may bias the results of homogeneous second-order summary statistics and we also suggested applying inhomogeneous summary statistics with related null models for spatial pattern analysis of heterogeneous vegetations.

  20. Characterization of a synthetic single crystal diamond detector for dosimetry in spatially fractionated synchrotron x-ray fields

    Energy Technology Data Exchange (ETDEWEB)

    Livingstone, Jayde, E-mail: Jayde.Livingstone@synchrotron.org.au; Häusermann, Daniel [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168 (Australia); Stevenson, Andrew W. [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and CSIRO Manufacturing, Clayton South, Victoria 3169 (Australia); Butler, Duncan J. [Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria 3085 (Australia); Adam, Jean-François [Equipe d’accueil Rayonnement Synchrotron et Recherche Médicale, Université Grenoble Alpes, European Synchrotron Radiation Facility - ID17, Grenoble 38043, France and Centre Hospitalier Universitaire de Grenoble, Grenoble 38043 (France)

    2016-07-15

    Purpose: Modern radiotherapy modalities often use small or nonstandard fields to ensure highly localized and precise dose delivery, challenging conventional clinical dosimetry protocols. The emergence of preclinical spatially fractionated synchrotron radiotherapies with high dose-rate, sub-millimetric parallel kilovoltage x-ray beams, has pushed clinical dosimetry to its limit. A commercially available synthetic single crystal diamond detector designed for small field dosimetry has been characterized to assess its potential as a dosimeter for synchrotron microbeam and minibeam radiotherapy. Methods: Experiments were carried out using a synthetic diamond detector on the imaging and medical beamline (IMBL) at the Australian Synchrotron. The energy dependence of the detector was characterized by cross-referencing with a calibrated ionization chamber in monoenergetic beams in the energy range 30–120 keV. The dose-rate dependence was measured in the range 1–700 Gy/s. Dosimetric quantities were measured in filtered white beams, with a weighted mean energy of 95 keV, in broadbeam and spatially fractionated geometries, and compared to reference dosimeters. Results: The detector exhibits an energy dependence; however, beam quality correction factors (k{sub Q}) have been measured for energies in the range 30–120 keV. The k{sub Q} factor for the weighted mean energy of the IMBL radiotherapy spectrum, 95 keV, is 1.05 ± 0.09. The detector response is independent of dose-rate in the range 1–700 Gy/s. The percentage depth dose curves measured by the diamond detector were compared to ionization chambers and agreed to within 2%. Profile measurements of microbeam and minibeam arrays were performed. The beams are well resolved and the full width at halfmaximum agrees with the nominal width of the beams. The peak to valley dose ratio (PVDR) calculated from the profiles at various depths in water agrees within experimental error with PVDR calculations from Gafchromic film data

  1. Spatial Correlation Of Streamflows: An Analytical Approach

    Science.gov (United States)

    Betterle, A.; Schirmer, M.; Botter, G.

    2016-12-01

    The interwoven space and time variability of climate and landscape properties results in complex and non-linear hydrological response of streamflow dynamics. Understanding how meteorologic and morphological characteristics of catchments affect similarity/dissimilarity of streamflow timeseries at their outlets represents a scientific challenge with application in water resources management, ecological studies and regionalization approaches aimed to predict streamflows in ungauged areas. In this study, we establish an analytical approach to estimate the spatial correlation of daily streamflows in two arbitrary locations within a given hydrologic district or river basin at seasonal and annual time scales. The method is based on a stochastic description of the coupled streamflow dynamics at the outlet of two catchments. The framework aims to express the correlation of daily streamflows at two locations along a river network as a function of a limited number of physical parameters characterizing the main underlying hydrological drivers, that include climate conditions, precipitation regime and catchment drainage rates. The proposed method portrays how heterogeneity of climate and landscape features affect the spatial variability of flow regimes along river systems. In particular, we show that frequency and intensity of synchronous effective rainfall events in the relevant contributing catchments are the main driver of the spatial correlation of daily discharge, whereas only pronounced differences in the drainage rate of the two basins bear a significant effect on the streamflow correlation. The topological arrangement of the two outlets also influences the underlying streamflow correlation, as we show that nested catchments tend to maximize the spatial correlation of flow regimes. The application of the method to a set of catchments in the South-Eastern US suggests the potential of the proposed tool for the characterization of spatial connections of flow regimes in the

  2. A new characterization procedure for computed radiography performance levels based on EPS, SNR and basic spatial resolution measurements

    International Nuclear Information System (INIS)

    Ewert, Uwe; Zscherpel, Uwe; Baer, Sylke

    2016-01-01

    The standards EN 14784-1:2005 and ISO 16371-1:2011 describe the classification of Computed Radiography systems for industrial applications. After 10 years of classification experience, it can be concluded that all certified NDT CR systems achieve the best classification result: IP 1. The measured basic spatial resolution is different depending on the manufacturer's brand and the IP used. Therefore, a revision was recommended to obtain a better gradation for the different brands. Users in USA and Europe classify the CR systems based on different parameters. Consequently, a new revision of ASTM E 2446-15 was finalized in 2015, which describes the characterization of CR systems based on CR performance levels. The key parameters are the normalized Signal to Noise Ratio (SNRN), the interpolated basic spatial resolution (iSR b detector ) and the achieved equivalent penetrameter sensitivity (aEPS). A series of further tests is required for complete characterization by manufacturers or certifying laboratories. This includes e.g.: geometric distortion, laser jitter, PMT non-linearity, scanner slippage, shading or banding, erasure, burn-In, spatial linearity, artefacts, imaging plate response variation and imaging plate fading. ASTM E 2445-15 describes several tests, for users to perform periodic quality assurance. The measurement procedures are described and the resulting values as CR speed, achieved contrast sensitivity and efficiency are discussed. The results will be presented graphically in a spider net graph in the qualification/certification statement. A revision of the related CEN and ISO standards is discussed.

  3. Spatially distributed characterization of hyporheic solute transport during baseflow recession in a headwater mountain stream using electrical geophysical imaging

    Science.gov (United States)

    Adam S. Ward; Michael N. Gooseff; Michael Fitzgerald; Thomas J. Voltz; Kamini Singha

    2014-01-01

    The transport of solutes along hyporheic flowpaths is recognized as central to numerous biogeochemical cycles, yet our understanding of how this transport changes with baseflow recession, particularly in a spatially distributed manner, is limited. We conducted four steady-state solute tracer injections and collected electrical resistivity data to characterize hyporheic...

  4. Exogenous and endogenous spatial attention effects on visuospatial working memory.

    Science.gov (United States)

    Botta, Fabiano; Santangelo, Valerio; Raffone, Antonino; Lupiáñez, Juan; Belardinelli, Marta Olivetti

    2010-08-01

    In this study, we investigate how exogenous and endogenous orienting of spatial attention affect visuospatial working memory (VSWM). Specifically, we focused on two attentional effects and their consequences on storage in VSWM, when exogenous (Experiment 1) or endogenous (Experiment 2) orienting cues were used. The first effect, known as the meridian effect, is given by a decrement in behavioural performance when spatial cues and targets are presented in locations separated by vertical and/or horizontal meridians. The second effect, known as the distance effect, is given by a decrement in the orienting effects as a function of the spatial distance between cues and targets. Our results revealed a dissociation between exogenous and endogenous orienting mechanisms in terms of both meridian and distance effects. We found that meridian crossing affects performance only when endogenous cues were used. Specifically, VSWM performance with endogenous cueing depended more on the number of meridian crossings than on distance between cue and target. By contrast, a U-shaped distance dependency was observed using exogenous cues. Our findings therefore suggest that exogenous and endogenous orienting mechanisms lead to different forms of attentional bias for storage in VSWM.

  5. Deadlines in space: Selective effects of coordinate spatial processing in multitasking.

    Science.gov (United States)

    Todorov, Ivo; Del Missier, Fabio; Konke, Linn Andersson; Mäntylä, Timo

    2015-11-01

    Many everyday activities require coordination and monitoring of multiple deadlines. One way to handle these temporal demands might be to represent future goals and deadlines as a pattern of spatial relations. We examined the hypothesis that spatial ability, in addition to executive functioning, contributes to individual differences in multitasking. In two studies, participants completed a multitasking session in which they monitored four digital clocks running at different rates. In Study 1, we found that individual differences in spatial ability and executive functions were independent predictors of multiple-task performance. In Study 2, we found that individual differences in specific spatial abilities were selectively related to multiple-task performance, as only coordinate spatial processing, but not categorical, predicted multitasking, even beyond executive functioning and numeracy. In both studies, males outperformed females in spatial ability and multitasking and in Study 2 these sex differences generalized to a simulation of everyday multitasking. Menstrual changes moderated the effects on multitasking, in that sex differences in coordinate spatial processing and multitasking were observed between males and females in the luteal phase of the menstrual cycle, but not between males and females at menses. Overall, these findings suggest that multiple-task performance reflects independent contributions of spatial ability and executive functioning. Furthermore, our results support the distinction of categorical versus coordinate spatial processing, and suggest that these two basic relational processes are selectively affected by female sex hormones and differentially effective in transforming and handling temporal patterns as spatial relations in the context of multitasking.

  6. Effective spatial database support for acquiring spatial information from remote sensing images

    Science.gov (United States)

    Jin, Peiquan; Wan, Shouhong; Yue, Lihua

    2009-12-01

    In this paper, a new approach to maintain spatial information acquiring from remote-sensing images is presented, which is based on Object-Relational DBMS. According to this approach, the detected and recognized results of targets are stored and able to be further accessed in an ORDBMS-based spatial database system, and users can access the spatial information using the standard SQL interface. This approach is different from the traditional ArcSDE-based method, because the spatial information management module is totally integrated into the DBMS and becomes one of the core modules in the DBMS. We focus on three issues, namely the general framework for the ORDBMS-based spatial database system, the definitions of the add-in spatial data types and operators, and the process to develop a spatial Datablade on Informix. The results show that the ORDBMS-based spatial database support for image-based target detecting and recognition is easy and practical to be implemented.

  7. The importance of spatial accuracy in characterizing stand types ...

    African Journals Online (AJOL)

    This study assessed the potential use of Landsat 7 ETM+ (15 and 30 m spatial resolutions) images to estimate forest stand attributes such as development stages, crown closure and stand types. The study evaluates the performance of spatial and image classification accuracies between Landsat images (15 and 30 m ...

  8. High-level context effects on spatial displacement: the effects of body orientation and language on memory.

    Science.gov (United States)

    Vinson, David W; Abney, Drew H; Dale, Rick; Matlock, Teenie

    2014-01-01

    Three decades of research suggests that cognitive simulation of motion is involved in the comprehension of object location, bodily configuration, and linguistic meaning. For example, the remembered location of an object associated with actual or implied motion is typically displaced in the direction of motion. In this paper, two experiments explore context effects in spatial displacement. They provide a novel approach to estimating the remembered location of an implied motion image by employing a cursor-positioning task. Both experiments examine how the remembered spatial location of a person is influenced by subtle differences in implied motion, specifically, by shifting the orientation of the person's body to face upward or downward, and by pairing the image with motion language that differed on intentionality, fell versus jumped. The results of Experiment 1, a survey-based experiment, suggest that language and body orientation influenced vertical spatial displacement. Results of Experiment 2, a task that used Adobe Flash and Amazon Mechanical Turk, showed consistent effects of body orientation on vertical spatial displacement but no effect of language. Our findings are in line with previous work on spatial displacement that uses a cursor-positioning task with implied motion stimuli. We discuss how different ways of simulating motion can influence spatial memory.

  9. High-level context effects on spatial displacement: The effects of body orientation and language on memory

    Directory of Open Access Journals (Sweden)

    David W Vinson

    2014-07-01

    Full Text Available Three decades of research suggests that cognitive simulation of motion is involved in the comprehension of object location, bodily configuration, and linguistic meaning. For example, the remembered location of an object associated with actual or implied motion is typically displaced in the direction of motion. In this paper, two experiments explore context effects in spatial displacement. They provide a novel approach to estimating the remembered location of an implied motion image by employing a cursor-positioning task. Both experiments examine how the remembered spatial location of a person is influenced by subtle differences in implied motion, specifically, by shifting the orientation of the person’s body to face upward or downward, and by pairing the image with motion language that differed on intentionality, fell versus jumped. The results of Experiment 1, a survey-based experiment, suggest that language and body orientation influenced vertical spatial displacement. Results of Experiment 2, a task that used Adobe Flash and Amazon Mechanical Turk, showed consistent effects of body orientation on vertical spatial displacement but no effect of language. Our findings replicate are in line with previous work on spatial displacement task that used a cursor-positioning task with implied motion stimuli. We discuss how different ways of simulating motion can influence spatial memory.

  10. The Spatial Scaffold: The Effects of Spatial Context on Memory for Events

    Science.gov (United States)

    Robin, Jessica; Wynn, Jordana; Moscovitch, Morris

    2016-01-01

    Events always unfold in a spatial context, leading to the claim that it serves as a scaffold for encoding and retrieving episodic memories. The ubiquitous co-occurrence of spatial context with events may induce participants to generate a spatial context when hearing scenarios of events in which it is absent. Spatial context should also serve as an…

  11. Stochastic Spatial Models in Ecology: A Statistical Physics Approach

    Science.gov (United States)

    Pigolotti, Simone; Cencini, Massimo; Molina, Daniel; Muñoz, Miguel A.

    2017-11-01

    Ecosystems display a complex spatial organization. Ecologists have long tried to characterize them by looking at how different measures of biodiversity change across spatial scales. Ecological neutral theory has provided simple predictions accounting for general empirical patterns in communities of competing species. However, while neutral theory in well-mixed ecosystems is mathematically well understood, spatial models still present several open problems, limiting the quantitative understanding of spatial biodiversity. In this review, we discuss the state of the art in spatial neutral theory. We emphasize the connection between spatial ecological models and the physics of non-equilibrium phase transitions and how concepts developed in statistical physics translate in population dynamics, and vice versa. We focus on non-trivial scaling laws arising at the critical dimension D = 2 of spatial neutral models, and their relevance for biological populations inhabiting two-dimensional environments. We conclude by discussing models incorporating non-neutral effects in the form of spatial and temporal disorder, and analyze how their predictions deviate from those of purely neutral theories.

  12. Spatial Frequency Discrimination: Effects of Age, Reward, and Practice.

    Directory of Open Access Journals (Sweden)

    Carlijn van den Boomen

    Full Text Available Social interaction starts with perception of the world around you. This study investigated two fundamental issues regarding the development of discrimination of higher spatial frequencies, which are important building blocks of perception. Firstly, it mapped the typical developmental trajectory of higher spatial frequency discrimination. Secondly, it developed and validated a novel design that could be applied to improve atypically developed vision. Specifically, this study examined the effect of age and reward on task performance, practice effects, and motivation (i.e., number of trials completed in a higher spatial frequency (reference frequency: 6 cycles per degree discrimination task. We measured discrimination thresholds in children aged between 7 to 12 years and adults (N = 135. Reward was manipulated by presenting either positive reinforcement or punishment. Results showed a decrease in discrimination thresholds with age, thus revealing that higher spatial frequency discrimination continues to develop after 12 years of age. This development continues longer than previously shown for discrimination of lower spatial frequencies. Moreover, thresholds decreased during the run, indicating that discrimination abilities improved. Reward did not affect performance or improvement. However, in an additional group of 5-6 year-olds (N = 28 punishments resulted in the completion of fewer trials compared to reinforcements. In both reward conditions children aged 5-6 years completed only a fourth or half of the run (64 to 128 out of 254 trials and were not motivated to continue. The design thus needs further adaptation before it can be applied to this age group. Children aged 7-12 years and adults completed the run, suggesting that the design is successful and motivating for children aged 7-12 years. This study thus presents developmental differences in higher spatial frequency discrimination thresholds. Furthermore, it presents a design that can be

  13. Spatial Frequency Discrimination: Effects of Age, Reward, and Practice.

    Science.gov (United States)

    van den Boomen, Carlijn; Peters, Judith Carolien

    2017-01-01

    Social interaction starts with perception of the world around you. This study investigated two fundamental issues regarding the development of discrimination of higher spatial frequencies, which are important building blocks of perception. Firstly, it mapped the typical developmental trajectory of higher spatial frequency discrimination. Secondly, it developed and validated a novel design that could be applied to improve atypically developed vision. Specifically, this study examined the effect of age and reward on task performance, practice effects, and motivation (i.e., number of trials completed) in a higher spatial frequency (reference frequency: 6 cycles per degree) discrimination task. We measured discrimination thresholds in children aged between 7 to 12 years and adults (N = 135). Reward was manipulated by presenting either positive reinforcement or punishment. Results showed a decrease in discrimination thresholds with age, thus revealing that higher spatial frequency discrimination continues to develop after 12 years of age. This development continues longer than previously shown for discrimination of lower spatial frequencies. Moreover, thresholds decreased during the run, indicating that discrimination abilities improved. Reward did not affect performance or improvement. However, in an additional group of 5-6 year-olds (N = 28) punishments resulted in the completion of fewer trials compared to reinforcements. In both reward conditions children aged 5-6 years completed only a fourth or half of the run (64 to 128 out of 254 trials) and were not motivated to continue. The design thus needs further adaptation before it can be applied to this age group. Children aged 7-12 years and adults completed the run, suggesting that the design is successful and motivating for children aged 7-12 years. This study thus presents developmental differences in higher spatial frequency discrimination thresholds. Furthermore, it presents a design that can be used in future

  14. A spatial error model with continuous random effects and an application to growth convergence

    Science.gov (United States)

    Laurini, Márcio Poletti

    2017-10-01

    We propose a spatial error model with continuous random effects based on Matérn covariance functions and apply this model for the analysis of income convergence processes (β -convergence). The use of a model with continuous random effects permits a clearer visualization and interpretation of the spatial dependency patterns, avoids the problems of defining neighborhoods in spatial econometrics models, and allows projecting the spatial effects for every possible location in the continuous space, circumventing the existing aggregations in discrete lattice representations. We apply this model approach to analyze the economic growth of Brazilian municipalities between 1991 and 2010 using unconditional and conditional formulations and a spatiotemporal model of convergence. The results indicate that the estimated spatial random effects are consistent with the existence of income convergence clubs for Brazilian municipalities in this period.

  15. A spatial model to assess the effects of hydropower operations on Columbia River fall Chinook Salmon spawning habitat

    Science.gov (United States)

    Hatten, James R.; Tiffan, Kenneth F.; Anglin, Donald R.; Haeseker, Steven L.; Skalicky, Joseph J.; Schaller, Howard

    2009-01-01

    Priest Rapids Dam on the Columbia River produces large daily and hourly streamflow fluctuations throughout the Hanford Reach during the period when fall Chinook salmon Oncorhynchus tshawytscha are selecting spawning habitat, constructing redds, and actively engaged in spawning. Concern over the detrimental effects of these fluctuations prompted us to quantify the effects of variable flows on the amount and persistence of fall Chinook salmon spawning habitat in the Hanford Reach. Specifically, our goal was to develop a management tool capable of quantifying the effects of current and alternative hydrographs on predicted spawning habitat in a spatially explicit manner. Toward this goal, we modeled the water velocities and depths that fall Chinook salmon experienced during the 2004 spawning season, plus what they would probably have experienced under several alternative (i.e., synthetic) hydrographs, using both one- and two-dimensional hydrodynamic models. To estimate spawning habitat under existing or alternative hydrographs, we used cell-based modeling and logistic regression to construct and compare numerous spatial habitat models. We found that fall Chinook salmon were more likely to spawn at locations where velocities were persistently greater than 1 m/s and in areas where fluctuating water velocities were reduced. Simulations of alternative dam operations indicate that the quantity of spawning habitat is expected to increase as streamflow fluctuations are reduced during the spawning season. The spatial habitat models that we developed provide management agencies with a quantitative tool for predicting, in a spatially explicit manner, the effects of different flow regimes on fall Chinook salmon spawning habitat in the Hanford Reach. In addition to characterizing temporally varying habitat conditions, our research describes an analytical approach that could be applied in other highly variable aquatic systems.

  16. Simultaneous characterization of elemental segregation and cementite networks in high carbon steel products by spatially-resolved laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Boué-Bigne, Fabienne, E-mail: fabienne.boue-bigne@tatasteel.com

    2014-06-01

    The reliable characterization of the level of elemental segregation and of the extent of grain-boundary cementite networks in high carbon steel products is a prerequisite for checking product quality, for the purpose of product release to customers, and to investigate the presence of defects that may have led to mechanical property failure of the product. Current methods for the characterization of segregation and cementite networks rely on two different methods of sample etching followed by visual observation, where quality scores are given based on human perception and judgment. With the continuous demand on increasing quality, some of the conventional characterization methods and their associated scoring boards have lost relevance for the precision of characterization that is required today to distinguish between a product that will perform well and one that will not. In order to move away from a qualitative, human perception based situation for the scoring of the severity of segregation and cementite networks, a new method of data evaluation based on spatially-resolved LIBS measurements was developed to provide quantitative and simultaneous characterization of both types of defects. The quantitative assessment of segregation and cementite networks is based on the acquisition of carbon concentration maps. The ability to produce rapid scanning measurements of micro and macro-scale features with adequate spatial resolution makes LIBS the measurement method of preference for this purpose. The characterization of both different defects is extracted simultaneously and from the same carbon concentration map following a series of statistical treatment and data extraction rules. LIBS results were validated against recognized methods and were applied to a significant number of routine samples. The new LIBS method offers a step change improvement in reliability for the characterization of segregation and cementite networks in steel products over the conventional methods

  17. Characterizing the spatial distribution of giant pandas (Ailuropoda melanoleuca) in fragmented forest landscapes

    NARCIS (Netherlands)

    Wang, T.; Ye, X.P.; Skidmore, A.K.; Toxopeus, A.G.

    2010-01-01

    Aim. To examine the effects of forest fragmentation on the distribution of the entire wild giant panda (Ailuropoda melanoleuca) population, and to propose a modelling approach for monitoring the spatial distribution and habitat of pandas at the landscape scale using Moderate Resolution Imaging

  18. Dissociation of spatial memory systems in Williams syndrome.

    Science.gov (United States)

    Bostelmann, Mathilde; Fragnière, Emilie; Costanzo, Floriana; Di Vara, Silvia; Menghini, Deny; Vicari, Stefano; Lavenex, Pierre; Lavenex, Pamela Banta

    2017-11-01

    Williams syndrome (WS), a genetic deletion syndrome, is characterized by severe visuospatial deficits affecting performance on both tabletop spatial tasks and on tasks which assess orientation and navigation. Nevertheless, previous studies of WS spatial capacities have ignored the fact that two different spatial memory systems are believed to contribute parallel spatial representations supporting navigation. The place learning system depends on the hippocampal formation and creates flexible relational representations of the environment, also known as cognitive maps. The spatial response learning system depends on the striatum and creates fixed stimulus-response representations, also known as habits. Indeed, no study assessing WS spatial competence has used tasks which selectively target these two spatial memory systems. Here, we report that individuals with WS exhibit a dissociation in their spatial abilities subserved by these two memory systems. As compared to typically developing (TD) children in the same mental age range, place learning performance was impaired in individuals with WS. In contrast, their spatial response learning performance was facilitated. Our findings in individuals with WS and TD children suggest that place learning and response learning interact competitively to control the behavioral strategies normally used to support human spatial navigation. Our findings further suggest that the neural pathways supporting place learning may be affected by the genetic deletion that characterizes WS, whereas those supporting response learning may be relatively preserved. The dissociation observed between these two spatial memory systems provides a coherent theoretical framework to characterize the spatial abilities of individuals with WS, and may lead to the development of new learning strategies based on their facilitated response learning abilities. © 2017 Wiley Periodicals, Inc.

  19. Phylogeography of the Microcoleus vaginatus (Cyanobacteria from three continents--a spatial and temporal characterization.

    Directory of Open Access Journals (Sweden)

    Petr Dvořák

    Full Text Available It has long been assumed that cyanobacteria have, as with other free-living microorganisms, a ubiquitous occurrence. Neither the geographical dispersal barriers nor allopatric speciation has been taken into account. We endeavoured to examine the spatial and temporal patterns of global distribution within populations of the cyanobacterium Microcoleus vaginatus, originated from three continents, and to evaluate the role of dispersal barriers in the evolution of free-living cyanobacteria. Complex phylogeographical approach was applied to assess the dispersal and evolutionary patterns in the cyanobacterium Microcoleus vaginatus (Oscillatoriales. We compared the 16S rRNA and 16S-23S ITS sequences of strains which had originated from three continents (North America, Europe, and Asia. The spatial distribution was investigated using a phylogenetic tree, network, as well as principal coordinate analysis (PCoA. A temporal characterization was inferred using molecular clocks, calibrated from fossil DNA. Data analysis revealed broad genetic diversity within M. vaginatus. Based on the phylogenetic tree, network, and PCoA analysis, the strains isolated in Europe were spatially separated from those which originated from Asia and North America. A chronogram showed a temporal limitation of dispersal barriers on the continental scale. Dispersal barriers and allopatric speciation had an important role in the evolution of M. vaginatus. However, these dispersal barriers did not have a permanent character; therefore, the genetic flow among populations on a continental scale was only temporarily present. Furthermore, M. vaginatus is a recently evolved species, which has been going through substantial evolutionary changes.

  20. Spatial effects, sampling errors, and task specialization in the honey bee.

    Science.gov (United States)

    Johnson, B R

    2010-05-01

    Task allocation patterns should depend on the spatial distribution of work within the nest, variation in task demand, and the movement patterns of workers, however, relatively little research has focused on these topics. This study uses a spatially explicit agent based model to determine whether such factors alone can generate biases in task performance at the individual level in the honey bees, Apis mellifera. Specialization (bias in task performance) is shown to result from strong sampling error due to localized task demand, relatively slow moving workers relative to nest size, and strong spatial variation in task demand. To date, specialization has been primarily interpreted with the response threshold concept, which is focused on intrinsic (typically genotypic) differences between workers. Response threshold variation and sampling error due to spatial effects are not mutually exclusive, however, and this study suggests that both contribute to patterns of task bias at the individual level. While spatial effects are strong enough to explain some documented cases of specialization; they are relatively short term and not explanatory for long term cases of specialization. In general, this study suggests that the spatial layout of tasks and fluctuations in their demand must be explicitly controlled for in studies focused on identifying genotypic specialists.

  1. The Effect Of Omitted Spatial Effects And Social Dependence In The Modelling Of Household Expenditure For Fruits And Vegetables

    Directory of Open Access Journals (Sweden)

    Łaszkiewicz Edyta

    2014-12-01

    Full Text Available As is well known, ignoring spatial heterogeneity leads to biased parameter estimates, while omitting the spatial lag of a dependent variable results in biasness and inconsistency (Anselin, 1988. However, the common approach to analysing households’ expenditures is to ignore the potential spatial effects and social dependence. In light of this, the aim of this paper is to examine the consequences of omitting the spatial effects as well as social dependence in households’ expenditures.

  2. Stochastic dynamics of spatial effects in fragmentation of clusters

    International Nuclear Information System (INIS)

    Salinas-Rodriguez, E.; Rodriguez, R.F.; Zamora, J.M.

    1991-01-01

    We use a stochastic approach to study the effects of spatial in homogeneities in the kinetics of a fragmentation model which occurs in cluster breakup and polymer degradation. The analytical form of the cluster size distribution function is obtained for both the discrete and continuous limits. From it we calculate numerically the average size and volume of the clusters, their total concentration and the total scattering of the dispersion in both limits. The influence of spatial effects is explicitly shown in the last two quantities. From our description the equations for the equal-time and the two times density correlation functions are also derived in the continuous limit. Finally, the perspectives and limitations of our approach are discussed (Author)

  3. Exploring the effects of spatial autocorrelation when identifying key drivers of wildlife crop-raiding.

    Science.gov (United States)

    Songhurst, Anna; Coulson, Tim

    2014-03-01

    Few universal trends in spatial patterns of wildlife crop-raiding have been found. Variations in wildlife ecology and movements, and human spatial use have been identified as causes of this apparent unpredictability. However, varying spatial patterns of spatial autocorrelation (SA) in human-wildlife conflict (HWC) data could also contribute. We explicitly explore the effects of SA on wildlife crop-raiding data in order to facilitate the design of future HWC studies. We conducted a comparative survey of raided and nonraided fields to determine key drivers of crop-raiding. Data were subsampled at different spatial scales to select independent raiding data points. The model derived from all data was fitted to subsample data sets. Model parameters from these models were compared to determine the effect of SA. Most methods used to account for SA in data attempt to correct for the change in P-values; yet, by subsampling data at broader spatial scales, we identified changes in regression estimates. We consequently advocate reporting both model parameters across a range of spatial scales to help biological interpretation. Patterns of SA vary spatially in our crop-raiding data. Spatial distribution of fields should therefore be considered when choosing the spatial scale for analyses of HWC studies. Robust key drivers of elephant crop-raiding included raiding history of a field and distance of field to a main elephant pathway. Understanding spatial patterns and determining reliable socio-ecological drivers of wildlife crop-raiding is paramount for designing mitigation and land-use planning strategies to reduce HWC. Spatial patterns of HWC are complex, determined by multiple factors acting at more than one scale; therefore, studies need to be designed with an understanding of the effects of SA. Our methods are accessible to a variety of practitioners to assess the effects of SA, thereby improving the reliability of conservation management actions.

  4. The Effect of Spatial Working Memory Deterioration on Strategic Visuomotor Learning across Aging.

    Science.gov (United States)

    Uresti-Cabrera, Luis A; Diaz, Rosalinda; Vaca-Palomares, Israel; Fernandez-Ruiz, Juan

    2015-01-01

    To evaluate the effect of age-related cognitive changes in a visuomotor learning task that depends on strategic control and contrast it with the effect in a task principally depending on visuomotor recalibration. Participants performed a ball throwing task while donning either a reversing dove prism or a displacement wedge prism, which mainly depend on strategic control or visuomotor recalibration, respectively. Visuomotor performance was then analysed in relation to rule acquisition and reversal, recognition memory, visual memory, spatial planning, and spatial working memory with tasks from the Cambridge Neuropsychological Test Automated Battery (CANTAB). The results confirmed previous works showing a detrimental effect of age on visuomotor learning. The analyses of the cognitive changes observed across age showed that both strategic control and visuomotor recalibration had significant negative correlations only with the number of errors in the spatial working memory task. However, when the effect of aging was controlled, the only significant correlation remaining was between the reversal adaptation magnitude and spatial working memory. These results suggest that spatial working memory decline across aging could contribute to age-dependent deterioration in both visuomotor learning processes. However, spatial working memory integrity seems to affect strategic learning decline even after controlling for aging.

  5. The Effect of Spatial Working Memory Deterioration on Strategic Visuomotor Learning across Aging

    Directory of Open Access Journals (Sweden)

    Luis A. Uresti-Cabrera

    2015-01-01

    Full Text Available Objective. To evaluate the effect of age-related cognitive changes in a visuomotor learning task that depends on strategic control and contrast it with the effect in a task principally depending on visuomotor recalibration. Methods. Participants performed a ball throwing task while donning either a reversing dove prism or a displacement wedge prism, which mainly depend on strategic control or visuomotor recalibration, respectively. Visuomotor performance was then analysed in relation to rule acquisition and reversal, recognition memory, visual memory, spatial planning, and spatial working memory with tasks from the Cambridge Neuropsychological Test Automated Battery (CANTAB. Results. The results confirmed previous works showing a detrimental effect of age on visuomotor learning. The analyses of the cognitive changes observed across age showed that both strategic control and visuomotor recalibration had significant negative correlations only with the number of errors in the spatial working memory task. However, when the effect of aging was controlled, the only significant correlation remaining was between the reversal adaptation magnitude and spatial working memory. Discussion. These results suggest that spatial working memory decline across aging could contribute to age-dependent deterioration in both visuomotor learning processes. However, spatial working memory integrity seems to affect strategic learning decline even after controlling for aging.

  6. Characterization results and Markov chain Monte Carlo algorithms including exact simulation for some spatial point processes

    DEFF Research Database (Denmark)

    Häggström, Olle; Lieshout, Marie-Colette van; Møller, Jesper

    1999-01-01

    The area-interaction process and the continuum random-cluster model are characterized in terms of certain functional forms of their respective conditional intensities. In certain cases, these two point process models can be derived from a bivariate point process model which in many respects...... is simpler to analyse and simulate. Using this correspondence we devise a two-component Gibbs sampler, which can be used for fast and exact simulation by extending the recent ideas of Propp and Wilson. We further introduce a Swendsen-Wang type algorithm. The relevance of the results within spatial statistics...

  7. Spatial and radiometric characterization of multi-spectrum satellite images through multi-fractal analysis

    Science.gov (United States)

    Alonso, Carmelo; Tarquis, Ana M.; Zúñiga, Ignacio; Benito, Rosa M.

    2017-03-01

    Several studies have shown that vegetation indexes can be used to estimate root zone soil moisture. Earth surface images, obtained by high-resolution satellites, presently give a lot of information on these indexes, based on the data of several wavelengths. Because of the potential capacity for systematic observations at various scales, remote sensing technology extends the possible data archives from the present time to several decades back. Because of this advantage, enormous efforts have been made by researchers and application specialists to delineate vegetation indexes from local scale to global scale by applying remote sensing imagery. In this work, four band images have been considered, which are involved in these vegetation indexes, and were taken by satellites Ikonos-2 and Landsat-7 of the same geographic location, to study the effect of both spatial (pixel size) and radiometric (number of bits coding the image) resolution on these wavelength bands as well as two vegetation indexes: the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI). In order to do so, a multi-fractal analysis of these multi-spectral images was applied in each of these bands and the two indexes derived. The results showed that spatial resolution has a similar scaling effect in the four bands, but radiometric resolution has a larger influence in blue and green bands than in red and near-infrared bands. The NDVI showed a higher sensitivity to the radiometric resolution than EVI. Both were equally affected by the spatial resolution. From both factors, the spatial resolution has a major impact in the multi-fractal spectrum for all the bands and the vegetation indexes. This information should be taken in to account when vegetation indexes based on different satellite sensors are obtained.

  8. Awareness as a foundation for developing effective spatial data infrastructures

    DEFF Research Database (Denmark)

    Clausen, Christian Bech; Rajabifard, Abbas; Enemark, Stig

    2006-01-01

    data. But what makes collaboration effective and successful? For example people often resist sharing data across organizational boundaries due to loss of control, power and independency. In the spatial community, the term awareness is often used when discussing issues concerned with inter-organizational...... addresses the problems spatial organizations currently encounter. As a result, the focus of this paper is on the nature and role of awareness. It explores why and how awareness plays a fundamental role in overcoming organizational constraints and in developing collaboration between organizations. The paper...... discusses the concept of awareness in the area of organizational collaboration in the spatial community, explains the important role awareness plays in the development of spatial data infrastructures, and introduces a methodology to promote awareness. Furthermore, the paper aims to make people...

  9. Research on spatial Model and analysis algorithm for nuclear weapons' damage effects

    International Nuclear Information System (INIS)

    Liu Xiaohong; Meng Tao; Du Maohua; Wang Weili; Ji Wanfeng

    2011-01-01

    In order to realize the three dimension visualization of nuclear weapons' damage effects. Aiming at the characteristics of the damage effects data, a new model-MRPCT model is proposed, and this model can carry out the modeling of the three dimension spatial data of the nuclear weapons' damage effects. For the sake of saving on the memory, linear coding method is used to store the MRPCT model. On the basis of Morton code, spatial analysis of the damage effects is completed. (authors)

  10. Nuclear waste repository characterization: a spatial estimation/identification approach

    International Nuclear Information System (INIS)

    Candy, J.V.; Mao, N.

    1981-03-01

    This paper considers the application of spatial estimation techniques to a groundwater aquifer and geological borehole data. It investigates the adequacy of these techniques to reliably develop contour maps from various data sets. The practice of spatial estimation is discussed and the estimator is then applied to a groundwater aquifer system and a deep geological formation. It is shown that the various statistical models must first be identified from the data and evaluated before reasonable results can be expected

  11. Monitoring eye movements to investigate the picture superiority effect in spatial memory.

    Science.gov (United States)

    Cattaneo, Zaira; Rosen, Mitchell; Vecchi, Tomaso; Pelz, Jeff B

    2008-01-01

    Spatial memory is usually better for iconic than for verbal material. Our aim was to assess whether such effect is related to the way iconic and verbal targets are viewed when people have to memorize their locations. Eye movements were recorded while participants memorized the locations of images or words. Images received fewer, but longer, gazes than words. Longer gazes on images might reflect greater attention devoted to images due to their higher sensorial distinctiveness and/or generation with images of an additional phonological code beyond the visual code immediately available. We found that words were scanned mainly from left to right while a more heterogeneous scanning strategy characterized encoding of images. This suggests that iconic configurations tend to be maintained as global integrated representations in which all the item/location pairs are simultaneously present whilst verbal configurations are maintained through more sequential processes.

  12. Paradoxical effect of spatially homogenous transparent fields on simultaneous contrast illusions.

    Science.gov (United States)

    Dixon, Erica; Shapiro, Arthur G

    2014-04-01

    In simultaneous brightness contrast (SBC) demonstrations, identical mid-luminance disks appear different from each other when one is placed on a black background while the other is placed on a white background. The strength of SBC effects can be enhanced by placing a semi-transparent layer on top of the display (Meyer's effect). Here, we try to separate the causes of Meyer's effect by placing a spatially homogenous transparent layer over a standard SBC display, and systematically varying the transmission level (alpha=0, clear; alpha=1, opaque) and color (black, gray, white) of the semi-transparent layer. Spatially homogenous transparent layers, which lack spatial cues, cannot be unambiguously interpreted as transparent fields. We measure SBC strength with both matching and ranking procedures. Paradoxically, with black layers, increasing alpha level weakens SBC when measured with a ranking procedure (no Meyer's effect) and strengthens SBC when measured with a matching procedure (Meyer's effect). With white and gray layers, neither procedure produces Meyer's effect. We account for the differences between white and black layers by positing that the visual system separates luminance from contrast. The results suggest that observers attend to different information in the matching and ranking procedures.

  13. System Consolidation of Spatial Memories in Mice: Effects of Enriched Environment

    Directory of Open Access Journals (Sweden)

    Joyce Bonaccorsi

    2013-01-01

    Full Text Available Environmental enrichment (EE is known to enhance learning and memory. Declarative memories are thought to undergo a first rapid and local consolidation process, followed by a prolonged process of system consolidation, which consist in a time-dependent gradual reorganization of brain regions supporting remote memory storage and crucial for the formation of enduring memories. At present, it is not known whether EE can affect the process of declarative memory system consolidation. We characterized the time course of hippocampal and cortical activation following recall of progressively more remote spatial memories. Wild-type mice either exposed to EE for 40 days or left in standard environment were subjected to spatial learning in the Morris water maze and to the probe test 1, 10, 20, 30, and 50 days after learning. Following the probe test, regional expression of the inducible immediate early gene c-Fos was mapped by immunohistochemistry, as an indicator of neuronal activity. We found that activation of the medial prefrontal cortex (mPFC, suggested to have a privileged role in processing remote spatial memories, was evident at shorter time intervals after learning in EE mice; in addition, EE induced the progressive activation of a distributed cortical network not activated in non-EE mice. This suggests that EE not only accelerates the process of mPFC recruitment but also recruits additional cortical areas into the network supporting remote spatial memories.

  14. Characterizing China's energy consumption with selective economic factors and energy-resource endowment: a spatial econometric approach

    Science.gov (United States)

    Jiang, Lei; Ji, Minhe; Bai, Ling

    2015-06-01

    Coupled with intricate regional interactions, the provincial disparity of energy-resource endowment and other economic conditions in China have created spatially complex energy consumption patterns that require analyses beyond the traditional ones. To distill the spatial effect out of the resource and economic factors on China's energy consumption, this study recast the traditional econometric model in a spatial context. Several analytic steps were taken to reveal different aspects of the issue. Per capita energy consumption (AVEC) at the provincial level was first mapped to reveal spatial clusters of high energy consumption being located in either well developed or energy resourceful regions. This visual spatial autocorrelation pattern of AVEC was quantitatively tested to confirm its existence among Chinese provinces. A Moran scatterplot was employed to further display a relatively centralized trend occurring in those provinces that had parallel AVEC, revealing a spatial structure with attraction among high-high or low-low regions and repellency among high-low or low-high regions. By a comparison between the ordinary least square (OLS) model and its spatial econometric counterparts, a spatial error model (SEM) was selected to analyze the impact of major economic determinants on AVEC. While the analytic results revealed a significant positive correlation between AVEC and economic development, other determinants showed some intricate influential patterns. The provinces endowed with rich energy reserves were inclined to consume much more energy than those otherwise, whereas changing the economic structure by increasing the proportion of secondary and tertiary industries also tended to consume more energy. Both situations seem to underpin the fact that these provinces were largely trapped in the economies that were supported by technologies of low energy efficiency during the period, while other parts of the country were rapidly modernized by adopting advanced

  15. High Incidence of Breast Cancer in Light-Polluted Areas with Spatial Effects in Korea.

    Science.gov (United States)

    Kim, Yun Jeong; Park, Man Sik; Lee, Eunil; Choi, Jae Wook

    2016-01-01

    We have reported a high prevalence of breast cancer in light-polluted areas in Korea. However, it is necessary to analyze the spatial effects of light polluted areas on breast cancer because light pollution levels are correlated with region proximity to central urbanized areas in studied cities. In this study, we applied a spatial regression method (an intrinsic conditional autoregressive [iCAR] model) to analyze the relationship between the incidence of breast cancer and artificial light at night (ALAN) levels in 25 regions including central city, urbanized, and rural areas. By Poisson regression analysis, there was a significant correlation between ALAN, alcohol consumption rates, and the incidence of breast cancer. We also found significant spatial effects between ALAN and the incidence of breast cancer, with an increase in the deviance information criterion (DIC) from 374.3 to 348.6 and an increase in R2 from 0.574 to 0.667. Therefore, spatial analysis (an iCAR model) is more appropriate for assessing ALAN effects on breast cancer. To our knowledge, this study is the first to show spatial effects of light pollution on breast cancer, despite the limitations of an ecological study. We suggest that a decrease in ALAN could reduce breast cancer more than expected because of spatial effects.

  16. The Simultaneous Effects of Spatial and Social Networks on Cholera Transmission

    Directory of Open Access Journals (Sweden)

    Sophia Giebultowicz

    2011-01-01

    Full Text Available This study uses social network and spatial analytical methods simultaneously to understand cholera transmission in rural Bangladesh. Both have been used separately to incorporate context into health studies, but using them together is a new and recent approach. Data include a spatially referenced longitudinal demographic database consisting of approximately 200,000 people and a database of all laboratory-confirmed cholera cases from 1983 to 2003. A complete kinship-based network linking households is created, and distance matrices are also constructed to model spatial relationships. A spatial error-social effects model tested for cholera clustering in socially linked households while accounting for spatial factors. Results show that there was social clustering in five out of twenty-one years while accounting for both known and unknown environmental variables. This suggests that environmental cholera transmission is significant and social networks also influence transmission, but not as consistently. Simultaneous spatial and social network analysis may improve understanding of disease transmission.

  17. Time takes space: selective effects of multitasking on concurrent spatial processing.

    Science.gov (United States)

    Mäntylä, Timo; Coni, Valentina; Kubik, Veit; Todorov, Ivo; Del Missier, Fabio

    2017-08-01

    Many everyday activities require coordination and monitoring of complex relations of future goals and deadlines. Cognitive offloading may provide an efficient strategy for reducing control demands by representing future goals and deadlines as a pattern of spatial relations. We tested the hypothesis that multiple-task monitoring involves time-to-space transformational processes, and that these spatial effects are selective with greater demands on coordinate (metric) than categorical (nonmetric) spatial relation processing. Participants completed a multitasking session in which they monitored four series of deadlines, running on different time scales, while making concurrent coordinate or categorical spatial judgments. We expected and found that multitasking taxes concurrent coordinate, but not categorical, spatial processing. Furthermore, males showed a better multitasking performance than females. These findings provide novel experimental evidence for the hypothesis that efficient multitasking involves metric relational processing.

  18. Biphasic effect of citral, a flavoring and scenting agent, on spatial learning and memory in rats.

    Science.gov (United States)

    Yang, Zheqiong; Xi, Jinlei; Li, Jihong; Qu, Wen

    2009-10-01

    Although some central effects of citral have been reported, cognitive effects on spatial memory have not been investigated. The evidence showed that citral can regulate the synthesis of retinoic acid (RA), which exerts a vital function in the development and maintenance of spatial memory. In this study, we applied Morris water maze to test the effect of citral on animals' spatial learning and memory. To elucidate the mechanism of this effect, we also measured the retinoic acid concentration in rats' hippocampus by high performance liquid chromatography (HPLC). Our data implied biphasic effects of citral. The low dose (0.1 mg/kg) of citral improved the spatial learning capability, and enhanced the spatial reference memory of rats, whereas the high dose (1.0 mg/kg) was like to produce the opposite effects. Meanwhile, the low dose of citral increased the hippocampal retinoic acid concentration, while the high dose decreased it. Due to the quick elimination and non-bioaccumulation in the body, effects of citral on spatial memory in this study seemed to be indirect actions. The change in hippocampal retinoic acid concentration induced by different doses of citral might be responsible for the biphasic effect of citral on spatial learning and memory.

  19. Effects of Hand Proximity and Movement Direction in Spatial and Temporal Gap Discrimination.

    Science.gov (United States)

    Wiemers, Michael; Fischer, Martin H

    2016-01-01

    Previous research on the interplay between static manual postures and visual attention revealed enhanced visual selection near the hands (near-hand effect). During active movements there is also superior visual performance when moving toward compared to away from the stimulus (direction effect). The "modulated visual pathways" hypothesis argues that differential involvement of magno- and parvocellular visual processing streams causes the near-hand effect. The key finding supporting this hypothesis is an increase in temporal and a reduction in spatial processing in near-hand space (Gozli et al., 2012). Since this hypothesis has, so far, only been tested with static hand postures, we provide a conceptual replication of Gozli et al.'s (2012) result with moving hands, thus also probing the generality of the direction effect. Participants performed temporal or spatial gap discriminations while their right hand was moving below the display. In contrast to Gozli et al. (2012), temporal gap discrimination was superior at intermediate and not near hand proximity. In spatial gap discrimination, a direction effect without hand proximity effect suggests that pragmatic attentional maps overshadowed temporal/spatial processing biases for far/near-hand space.

  20. [Effect of object consistency in a spatial contextual cueing paradigm].

    Science.gov (United States)

    Takeda, Yuji

    2008-04-01

    Previous studies demonstrated that attention can be quickly guided to a target location in a visual search task when the spatial configurations of search items and/or the object identities were repeated in the previous trials. This phenomenon is termed contextual cueing. Recently, it was reported that spatial configuration learning and object identity learning occurred independently, when novel contours were used as search items. The present study examined whether this learning occurred independently even when the search items were meaningful. The results showed that the contextual cueing effect was observed even if the relationships between the spatial locations and object identities were jumbled (Experiment 1). However, it disappeared when the search items were changed into geometric patterns (Experiment 2). These results suggest that the spatial configuration can be learned independent of the object identities; however, the use of the learned configuration is restricted by the learning situations.

  1. GeoSpark SQL: An Effective Framework Enabling Spatial Queries on Spark

    Directory of Open Access Journals (Sweden)

    Zhou Huang

    2017-09-01

    Full Text Available In the era of big data, Internet-based geospatial information services such as various LBS apps are deployed everywhere, followed by an increasing number of queries against the massive spatial data. As a result, the traditional relational spatial database (e.g., PostgreSQL with PostGIS and Oracle Spatial cannot adapt well to the needs of large-scale spatial query processing. Spark is an emerging outstanding distributed computing framework in the Hadoop ecosystem. This paper aims to address the increasingly large-scale spatial query-processing requirement in the era of big data, and proposes an effective framework GeoSpark SQL, which enables spatial queries on Spark. On the one hand, GeoSpark SQL provides a convenient SQL interface; on the other hand, GeoSpark SQL achieves both efficient storage management and high-performance parallel computing through integrating Hive and Spark. In this study, the following key issues are discussed and addressed: (1 storage management methods under the GeoSpark SQL framework, (2 the spatial operator implementation approach in the Spark environment, and (3 spatial query optimization methods under Spark. Experimental evaluation is also performed and the results show that GeoSpark SQL is able to achieve real-time query processing. It should be noted that Spark is not a panacea. It is observed that the traditional spatial database PostGIS/PostgreSQL performs better than GeoSpark SQL in some query scenarios, especially for the spatial queries with high selectivity, such as the point query and the window query. In general, GeoSpark SQL performs better when dealing with compute-intensive spatial queries such as the kNN query and the spatial join query.

  2. Macular pigment spatial distribution effects on glare disability.

    Science.gov (United States)

    Putnam, Christopher M; Bassi, Carl J

    2015-01-01

    This project explored the relationship of the macular pigment optical density (MPOD) spatial profile with measures of glare disability (GD) across the macula. A novel device was used to measure MPOD across the central 16° of retina along four radii using customized heterochromatic flicker photometry (cHFP)at eccentricities of 0°, 2°, 4°, 6° and 8°. MPOD was measured as discrete and integrated values at all measured retinal loci. GD was calculated as a difference in contrast sensitivity (CS) between no glare and glare conditions using identical stimuli presented at the same eccentricities. GD was defined as [(CSNo Glare-CSGlare)/CSNo Glare] in order to isolate the glare attenuation effects of MPOD by controlling for CS variability among the subject sample. Correlations of the discrete and integrated MPOD with GD were compared. The cHFP identified reliable MPOD spatial distribution maps demonstrating a 1st-order exponential decay as a function of increasing eccentricity. There was a significant negative correlation between both measures of foveal MPOD and GD using 6 cycles per degree (cpd) and 9 cpd stimuli. Significant correlations were found between corresponding parafoveal MPOD measures and GD at 2 and 4° of eccentricity using 9 cpd stimuli with greater MPOD associated with less glare disability. These results are consistent with the glare attenuation effects of MP at higher spatial frequencies and support the hypothesis that discrete and integrated measures of MPOD have similar correlations with glare attenuation effects across the macula. Additionally, peak foveal MPOD appears to influence GD across the macula. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  3. Fused Adaptive Lasso for Spatial and Temporal Quantile Function Estimation

    KAUST Repository

    Sun, Ying

    2015-09-01

    Quantile functions are important in characterizing the entire probability distribution of a random variable, especially when the tail of a skewed distribution is of interest. This article introduces new quantile function estimators for spatial and temporal data with a fused adaptive Lasso penalty to accommodate the dependence in space and time. This method penalizes the difference among neighboring quantiles, hence it is desirable for applications with features ordered in time or space without replicated observations. The theoretical properties are investigated and the performances of the proposed methods are evaluated by simulations. The proposed method is applied to particulate matter (PM) data from the Community Multiscale Air Quality (CMAQ) model to characterize the upper quantiles, which are crucial for studying spatial association between PM concentrations and adverse human health effects. © 2016 American Statistical Association and the American Society for Quality.

  4. Nonlinear propagation of a spatially incoherent laser beam: self-induced smoothing and reduction of scattering instabilities

    International Nuclear Information System (INIS)

    Maximov, A.V.; Ourdev, I.G.; Rozmus, W.; Capjack, C.E.; Mounaix, Ph.; Huller, S.; Pesme, D.; Tikhonchuk, V.T.; Divol, L.

    2000-01-01

    It is shown that plasma-induced angular spreading and spectral broadening of a spatially incoherent laser beam correspond to increased spatial and temporal incoherence of the laser light. The spatial incoherence is characterized by an effective beam f-number, decreasing in space along the direction of light propagation. Plasma-induced beam smoothing can influence laser-plasma interaction physics. In particular, decreasing the correlation time of the propagating laser light may dramatically reduce the levels of backward stimulated Brillouin and Raman scattering inside the plasma. Also, the decrease of the laser beam effective f-number reduces the reflectivity of backward stimulated Brillouin scattering. (authors)

  5. Characterizing spatial and seasonal variability of carbon dioxide ...

    Indian Academy of Sciences (India)

    Day time fluxes were higher during March and October, while in August and January the magnitudes ... and night time water vapour fluxes, but no spatial variation was observed. 1. ..... density with the formation of new leaves after the.

  6. The effect of sodium salicylate injection on spatial learning and memory of rat

    Directory of Open Access Journals (Sweden)

    Leila Azimi

    2011-11-01

    Full Text Available Background: Cyclooxygenase (COX enzyme known as a regulatory factor in synaptic plasticity. It has been reported that synaptic plasticity is one of the mechanisms involved in learning and memory processes. In the current study peripheral injection's effects of sodium salicylate (as a non selective COX inhibitor on spatial learning and memory have been investigated.Methods: Four groups of male rats received different doses of sodium salicylate (0, 200, 300, 400 mg/kg; i.p.. Studies were performed using Morris Water Maze (MWM. Spatial learning and memory parameters were subjected to the one- and two-way analyses of variance (ANOVAs followed by Tukey’s post hoc test.Results: Data showed that intraperitoneal injection of sodium salicylate had not significant effect on spatial learning parameters (including escape latency and traveled distance to hidden platform in training days; but administration of high dose of the drug (400 mg/kg significantly increased the percentage of time that animals spent in the target quadrant in probe trial testing. Conclusion: Peripheral injection of the COX inhibitor has no significant effect on spatial learning; but potentiates spatial memory consolidation using MWM.

  7. Disease spread across multiple scales in a spatial hierarchy: effect of host spatial structure and of inoculum quantity and distribution.

    Science.gov (United States)

    Gosme, Marie; Lucas, Philippe

    2009-07-01

    Spatial patterns of both the host and the disease influence disease spread and crop losses. Therefore, the manipulation of these patterns might help improve control strategies. Considering disease spread across multiple scales in a spatial hierarchy allows one to capture important features of epidemics developing in space without using explicitly spatialized variables. Thus, if the system under study is composed of roots, plants, and planting hills, the effect of host spatial pattern can be studied by varying the number of plants per planting hill. A simulation model based on hierarchy theory was used to simulate the effects of large versus small planting hills, low versus high level of initial infections, and aggregated versus uniform distribution of initial infections. The results showed that aggregating the initially infected plants always resulted in slower epidemics than spreading out the initial infections uniformly. Simulation results also showed that, in most cases, disease epidemics were slower in the case of large host aggregates (100 plants/hill) than with smaller aggregates (25 plants/hill), except when the initially infected plants were both numerous and spread out uniformly. The optimal strategy for disease control depends on several factors, including initial conditions. More importantly, the model offers a framework to account for the interplay between the spatial characteristics of the system, rates of infection, and aggregation of the disease.

  8. Spatial parameters at the basis of social transfer of learning.

    Science.gov (United States)

    Lugli, Luisa; Iani, Cristina; Milanese, Nadia; Sebanz, Natalie; Rubichi, Sandro

    2015-06-01

    Recent research indicates that practicing on a joint spatial compatibility task with an incompatible stimulus-response mapping affects subsequent joint Simon task performance, eliminating the social Simon effect. It has been well established that in individual contexts, for transfer of learning to occur, participants need to practice an incompatible association between stimulus and response positions. The mechanisms underlying transfer of learning in joint task performance are, however, less well understood. The present study was aimed at assessing the relative contribution of 3 different spatial relations characterizing the joint practice context: stimulus-response, stimulus-participant, and participant-response relations. In 3 experiments, the authors manipulated the stimulus-response, stimulus-participant, and response-participant associations. We found that learning from the practice task did not transfer to the subsequent task when during practice stimulus-response associations were spatially incompatible and stimulus-participant associations were compatible (Experiment 1). However, a transfer of learning was evident when stimulus-participant associations were spatially incompatible. This occurred both when response-participant associations were incompatible (Experiment 2) and when they were compatible (Experiment 3). These results seem to support an agent corepresentation account of correspondence effects emerging in joint settings since they suggest that, in social contexts, critical to obtain transfer-of-learning effects is the spatial relation between stimulus and participant positions while the spatial relation between stimulus and response positions is irrelevant. (c) 2015 APA, all rights reserved).

  9. Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas – a review

    OpenAIRE

    E. Cristiano; M.-C. ten Veldhuis; N. van de Giesen

    2017-01-01

    In urban areas, hydrological processes are characterized by high variability in space and time, making them sensitive to small-scale temporal and spatial rainfall variability. In the last decades new instruments, techniques, and methods have been developed to capture rainfall and hydrological processes at high resolution. Weather radars have been introduced to estimate high spatial and temporal rainfall variability. At the same time, new models have been proposed to reproduce hydrological res...

  10. Nonlocal homogenization theory in metamaterials: Effective electromagnetic spatial dispersion and artificial chirality

    Science.gov (United States)

    Ciattoni, Alessandro; Rizza, Carlo

    2015-05-01

    We develop, from first principles, a general and compact formalism for predicting the electromagnetic response of a metamaterial with nonmagnetic inclusions in the long-wavelength limit, including spatial dispersion up to the second order. Specifically, by resorting to a suitable multiscale technique, we show that the effective medium permittivity tensor and the first- and second-order tensors describing spatial dispersion can be evaluated by averaging suitable spatially rapidly varying fields, each satisfying electrostatic-like equations within the metamaterial unit cell. For metamaterials with negligible second-order spatial dispersion, we exploit the equivalence of first-order spatial dispersion and reciprocal bianisotropic electromagnetic response to deduce a simple expression for the metamaterial chirality tensor. Such an expression allows us to systematically analyze the effect of the composite spatial symmetry properties on electromagnetic chirality. We find that even if a metamaterial is geometrically achiral, i.e., it is indistinguishable from its mirror image, it shows pseudo-chiral-omega electromagnetic chirality if the rotation needed to restore the dielectric profile after the reflection is either a 0∘ or 90∘ rotation around an axis orthogonal to the reflection plane. These two symmetric situations encompass two-dimensional and one-dimensional metamaterials with chiral response. As an example admitting full analytical description, we discuss one-dimensional metamaterials whose single chirality parameter is shown to be directly related to the metamaterial dielectric profile by quadratures.

  11. Development and testing of an assessment to measure spatial thinking about enhanced greenhouse effect

    Science.gov (United States)

    Skaza, Heather Jean

    Americans, in general, do not behave in environmentally sustainable ways. We drive cars and fly in planes that emit planet-warming carbon. We purchase food in nearly indestructible packaging that is not recycled or repurposed. We do not consider the environmental impact of the "stuff" stuffed into our grocery and department stores, most of which is made of materials that had to be dug out of the ground, leaving rivers and skies full of pollution in its place. Citizens have a responsibility to understand complex global and local environmental problems. A person's ability to think about the way that an environmental problem they are tasked with understanding changes over time and space can better prepare them to make sustainable decisions in the face of this complexity. Spatial thinking serves the learner's ability to understand the impact of environmental actions and should be given a consistent place in environmental education. Teaching practices and pedagogies that focus on spatial thinking are necessary to learners' success. In order to know if these strategies are successful, educators need an assessment tool that targets the spatial thinking skills necessary to understanding environmental problems. This dissertation project used a models and modeling theoretical framework to develop and test an assessment of students' spatial thinking abilities related to the environmental problem of enhanced greenhouse effect. This assessment was developed from a review of existing spatial thinking literature, research on existing assessments of spatial thinking abilities, and existing assessment of enhanced greenhouse effect. In addition, I interviewed and surveyed experts in science, math, and environmental education to elicit their perspectives on the spatial thinking skills necessary for learners to understand enhanced greenhouse effect. All of this information was synthesized into 14 Central Concepts of spatial thinking for enhanced greenhouse effect. The assessment was

  12. Finite spatial-volume effect for π-N sigma term in lattice QCD

    International Nuclear Information System (INIS)

    Fukushima, M.; Chiba, S.; Tanigawa, T.

    2003-01-01

    We report on a finite spatial-volume effect for the pion-nucleon sigma term σ πN for quenched Wilson fermion on 8 3 x 20 and 16 3 x 20 lattices at β = 5.7 with the spatial lattice size of La∼1.12fm and La∼2.24fm, respectively. It is found that the spatial size dependence of the connected part of σ πN con is significant small. We observed the magnitude of finite size effect for the disconnected part of σ πN dis is much larger than for to connected one and an almost drastic decrease of σ πN dis amounting to 50% between La∼2.24fm to the smaller lattice size of La∼1.12fm. (author)

  13. Prediction of spatially variable unsaturated hydraulic conductivity using scaled particle-size distribution functions

    NARCIS (Netherlands)

    Nasta, P.; Romano, N.; Assouline, S; Vrugt, J.A.; Hopmans, J.W.

    2013-01-01

    Simultaneous scaling of soil water retention and hydraulic conductivity functions provides an effective means to characterize the heterogeneity and spatial variability of soil hydraulic properties in a given study area. The statistical significance of this approach largely depends on the number of

  14. Modeling spatial effects of PM{sub 2.5} on term low birth weight in Los Angeles County

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Eric, E-mail: cokerer@onid.orst.edu [College of Public Health and Human Sciences, Oregon State University, Corvallis, OR (United States); Ghosh, Jokay [School of Public Health, University of California, Los Angeles, Los Angeles, CA (United States); Jerrett, Michael [School of Public Health, University of California, Berkeley, Berkeley, CA (United States); Gomez-Rubio, Virgilio [Department of Mathematics, Universidad De Castilla-La Mancha, Albacete (Spain); Beckerman, Bernardo [School of Public Health, University of California, Berkeley, Berkeley, CA (United States); Cockburn, Myles [Preventive Medicine and Spatial Sciences, University of Southern California, Los Angeles, CA (United States); Liverani, Silvia [Department of Mathematics, Brunel University, London (United Kingdom); Su, Jason [School of Public Health, University of California, Berkeley, Berkeley, CA (United States); Li, Arthur [Department of Information Science, City of Hope National Cancer Center, Duarte, CA (United States); Kile, Molly L [College of Public Health and Human Sciences, Oregon State University, Corvallis, OR (United States); Ritz, Beate [School of Public Health, University of California, Los Angeles, Los Angeles, CA (United States); Molitor, John [College of Public Health and Human Sciences, Oregon State University, Corvallis, OR (United States)

    2015-10-15

    Air pollution epidemiological studies suggest that elevated exposure to fine particulate matter (PM{sub 2.5}) is associated with higher prevalence of term low birth weight (TLBW). Previous studies have generally assumed the exposure–response of PM{sub 2.5} on TLBW to be the same throughout a large geographical area. Health effects related to PM{sub 2.5} exposures, however, may not be uniformly distributed spatially, creating a need for studies that explicitly investigate the spatial distribution of the exposure–response relationship between individual-level exposure to PM{sub 2.5} and TLBW. Here, we examine the overall and spatially varying exposure–response relationship between PM{sub 2.5} and TLBW throughout urban Los Angeles (LA) County, California. We estimated PM{sub 2.5} from a combination of land use regression (LUR), aerosol optical depth from remote sensing, and atmospheric modeling techniques. Exposures were assigned to LA County individual pregnancies identified from electronic birth certificates between the years 1995-2006 (N=1,359,284) provided by the California Department of Public Health. We used a single pollutant multivariate logistic regression model, with multilevel spatially structured and unstructured random effects set in a Bayesian framework to estimate global and spatially varying pollutant effects on TLBW at the census tract level. Overall, increased PM{sub 2.5} level was associated with higher prevalence of TLBW county-wide. The spatial random effects model, however, demonstrated that the exposure–response for PM{sub 2.5} and TLBW was not uniform across urban LA County. Rather, the magnitude and certainty of the exposure–response estimates for PM{sub 2.5} on log odds of TLBW were greatest in the urban core of Central and Southern LA County census tracts. These results suggest that the effects may be spatially patterned, and that simply estimating global pollutant effects obscures disparities suggested by spatial patterns of

  15. Characterizing Spatial and Temporal Patterns of Thermal Environment and Air Quality in Taipei Metropolitan Area

    Science.gov (United States)

    Juang, J. Y.; Sun, C. H.; Jiang, J. A.; Wen, T. H.

    2017-12-01

    The urban heat island effect (UHI) caused by the regional-to-global environmental changes, dramatic urbanization, and shifting in land-use compositions has becoming an important environmental issue in recent years. In the past century, the coverage of urban area in Taipei Basin has dramatically increasing by ten folds. The strengthen of UHI effect significantly enhances the frequency of warm-night effect, and strongly influences the thermal environment of the residents in the Greater Taipei Metropolitan. In addition, the urban expansions due to dramatic increasing in urban populations and traffic loading significantly impacts the air quality and causes health issue in Taipei. In this study, the main objective is to quantify and characterize the temporal and spatial distributions of thermal environmental and air quality in the Greater Taipei Metropolitan Area by using monitoring data from Central Weather Bureau, Environmental Protection Administration. In addition, in this study, we conduct the analysis on the distribution of physiological equivalent temperature in the micro scale in the metropolitan area by using the observation data and quantitative simulation to investigate how the thermal environment is influenced under different conditions. Furthermore, we establish a real-time mobile monitoring system by using wireless sensor network to investigate the correlation between the thermal environment, air quality and other environmental factors, and propose to develop the early warning system for heat stress and air quality in the metropolitan area. The results from this study can be integrated into the management and planning system, and provide sufficient and important background information for the development of smart city in the metropolitan area in the future.

  16. Chew on this: No support for facilitating effects of gum on spatial task performance.

    Science.gov (United States)

    Nader, Ingo W; Gittler, Georg; Waldherr, Karin; Pietschnig, Jakob

    2010-09-01

    To determine whether chewing of gum facilitates spatial task performance in healthy participants, two behavioral experiments were performed. In the first experiment, spatial task performance of 349 men and women preceding and after treatment administration (saccharated chewing gum, sugar-free chewing gum, no chewing gum) was assessed using effect modeling by means of Item Response Theory. In the second experiment, another 100 participants were either administered sugar-free chewing gum or no chewing gum during spatial task performance. Effects of gum in the second study were assessed by standard means of data analysis. Results indicated no significant effects of either chewing gum or sugar on spatial task performance in either experiment. Our findings are consistent with recent studies investigating the influences of chewing gum on various memory functions, extending them by another measure of cognitive ability. Thus, further doubt is cast on enhancing effects of chewing gum on cognitive task performance. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Characterizing the effects of feature salience and top-down attention in the early visual system.

    Science.gov (United States)

    Poltoratski, Sonia; Ling, Sam; McCormack, Devin; Tong, Frank

    2017-07-01

    The visual system employs a sophisticated balance of attentional mechanisms: salient stimuli are prioritized for visual processing, yet observers can also ignore such stimuli when their goals require directing attention elsewhere. A powerful determinant of visual salience is local feature contrast: if a local region differs from its immediate surround along one or more feature dimensions, it will appear more salient. We used high-resolution functional MRI (fMRI) at 7T to characterize the modulatory effects of bottom-up salience and top-down voluntary attention within multiple sites along the early visual pathway, including visual areas V1-V4 and the lateral geniculate nucleus (LGN). Observers viewed arrays of spatially distributed gratings, where one of the gratings immediately to the left or right of fixation differed from all other items in orientation or motion direction, making it salient. To investigate the effects of directed attention, observers were cued to attend to the grating to the left or right of fixation, which was either salient or nonsalient. Results revealed reliable additive effects of top-down attention and stimulus-driven salience throughout visual areas V1-hV4. In comparison, the LGN exhibited significant attentional enhancement but was not reliably modulated by orientation- or motion-defined salience. Our findings indicate that top-down effects of spatial attention can influence visual processing at the earliest possible site along the visual pathway, including the LGN, whereas the processing of orientation- and motion-driven salience primarily involves feature-selective interactions that take place in early cortical visual areas. NEW & NOTEWORTHY While spatial attention allows for specific, goal-driven enhancement of stimuli, salient items outside of the current focus of attention must also be prioritized. We used 7T fMRI to compare salience and spatial attentional enhancement along the early visual hierarchy. We report additive effects of

  18. Multiscale imaging and characterization of the effect of mixing temperature on asphalt concrete containing recycled components.

    Science.gov (United States)

    Cavalli, M C; Griffa, M; Bressi, S; Partl, M N; Tebaldi, G; Poulikakos, L D

    2016-10-01

    When producing asphalt concrete mixture with high amounts of reclaimed asphalt pavement (RAP), the mixing temperature plays a significant role in the resulting spatial distribution of the components as well as on the quality of the resulting mixture, in terms of workability during mixing and compaction as well as in service mechanical properties. Asphalt concrete containing 50% RAP was investigated at mixing temperatures of 140, 160 and 180°C, using a multiscale approach. At the microscale, using energy dispersive X-ray spectroscopy the RAP binder film thickness was visualized and measured. It was shown that at higher mixing temperatures this film thickness was reduced. The reduction in film thickness can be attributed to the loss of volatiles as well as the mixing of RAP binder with virgin binder at higher temperatures. X-ray computer tomography was used to characterize statistically the distribution of the RAP and virgin aggregates geometric features: volume, width and shape anisotropy. In addition using X-ray computer tomography, the packing and spatial distribution of the RAP and virgin aggregates was characterized using the nearest neighbour metric. It was shown that mixing temperature may have a positive effect on the spatial distribution of the aggregates but did not affect the packing. The study shows a tendency for the RAP aggregates to be more likely distributed in clusters at lower mixing temperatures. At higher temperatures, they were more homogeneously distributed. This indicates a higher degree of blending both at microscale (binder film) and macroscale (spatial distribution) between RAP and virgin aggregates as a result of increasing mixing temperatures and the ability to quantify this using various imaging techniques. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  19. Spatial and spectral effects in subcritical system pulsed experiments

    International Nuclear Information System (INIS)

    Dulla, S.; Nervo, M.; Ravetto, P.; Carta, M.

    2013-01-01

    Accurate neutronic models are needed for the interpretation of pulsed experiments in subcritical systems. In this work, the extent of spatial and spectral effects in the pulse propagation phenomena is investigated and the analysis is applied to the GUINEVERE experiment. The multigroup cross section data is generated by the Monte Carlo SERPENT code and the neutronic evolution following the source pulse is simulated by a kinetic diffusion code. The results presented show that important spatial and spectral aspects need to be properly accounted for and that a detailed energy approach may be needed to adequately capture the physical features of the system to the pulse injection. (authors)

  20. Macroecological factors shape local-scale spatial patterns in agriculturalist settlements.

    Science.gov (United States)

    Tao, Tingting; Abades, Sebastián; Teng, Shuqing; Huang, Zheng Y X; Reino, Luís; Chen, Bin J W; Zhang, Yong; Xu, Chi; Svenning, Jens-Christian

    2017-11-15

    Macro-scale patterns of human systems ranging from population distribution to linguistic diversity have attracted recent attention, giving rise to the suggestion that macroecological rules shape the assembly of human societies. However, in which aspects the geography of our own species is shaped by macroecological factors remains poorly understood. Here, we provide a first demonstration that macroecological factors shape strong local-scale spatial patterns in human settlement systems, through an analysis of spatial patterns in agriculturalist settlements in eastern mainland China based on high-resolution Google Earth images. We used spatial point pattern analysis to show that settlement spatial patterns are characterized by over-dispersion at fine spatial scales (0.05-1.4 km), consistent with territory segregation, and clumping at coarser spatial scales beyond the over-dispersion signals, indicating territorial clustering. Statistical modelling shows that, at macroscales, potential evapotranspiration and topographic heterogeneity have negative effects on territory size, but positive effects on territorial clustering. These relationships are in line with predictions from territory theory for hunter-gatherers as well as for many animal species. Our results help to disentangle the complex interactions between intrinsic spatial processes in agriculturalist societies and external forcing by macroecological factors. While one may speculate that humans can escape ecological constraints because of unique abilities for environmental modification and globalized resource transportation, our work highlights that universal macroecological principles still shape the geography of current human agricultural societies. © 2017 The Author(s).

  1. Determinants of the distribution and concentration of biogas production in Germany. A spatial econometric analysis

    International Nuclear Information System (INIS)

    Scholz, Lukas

    2015-01-01

    The biogas production in Germany is characterized by a heterogeneous distribution and the formation of regional centers. In the present study the determinants of the spatial distribution and concentration are analyzed with methods of spatial statistics and spatial econometrics. In addition to the consideration of ''classic'' site factors of agricultural production, the analysis here focuses on the possible relevance of agglomeration effects. The results of the work contribute to a better understanding of the regional distribution and concentration of the biogas production in Germany. [de

  2. The spatial dynamics of dengue virus in Kamphaeng Phet, Thailand.

    Directory of Open Access Journals (Sweden)

    Piraya Bhoomiboonchoo

    2014-09-01

    Full Text Available Dengue is endemic to the rural province of Kamphaeng Phet, Northern Thailand. A decade of prospective cohort studies has provided important insights into the dengue viruses and their generated disease. However, as elsewhere, spatial dynamics of the pathogen remain poorly understood. In particular, the spatial scale of transmission and the scale of clustering are poorly characterized. This information is critical for effective deployment of spatially targeted interventions and for understanding the mechanisms that drive the dispersal of the virus.We geocoded the home locations of 4,768 confirmed dengue cases admitted to the main hospital in Kamphaeng Phet province between 1994 and 2008. We used the phi clustering statistic to characterize short-term spatial dependence between cases. Further, to see if clustering of cases led to similar temporal patterns of disease across villages, we calculated the correlation in the long-term epidemic curves between communities. We found that cases were 2.9 times (95% confidence interval 2.7-3.2 more likely to live in the same village and be infected within the same month than expected given the underlying spatial and temporal distribution of cases. This fell to 1.4 times (1.2-1.7 for individuals living in villages 1 km apart. Significant clustering was observed up to 5 km. We found a steadily decreasing trend in the correlation in epidemics curves by distance: communities separated by up to 5 km had a mean correlation of 0.28 falling to 0.16 for communities separated between 20 km and 25 km. A potential explanation for these patterns is a role for human movement in spreading the pathogen between communities. Gravity style models, which attempt to capture population movement, outperformed competing models in describing the observed correlations.There exists significant short-term clustering of cases within individual villages. Effective spatially and temporally targeted interventions deployed within villages may

  3. Effects of dynamic range compression on spatial selective auditory attention in normal-hearing listeners.

    Science.gov (United States)

    Schwartz, Andrew H; Shinn-Cunningham, Barbara G

    2013-04-01

    Many hearing aids introduce compressive gain to accommodate the reduced dynamic range that often accompanies hearing loss. However, natural sounds produce complicated temporal dynamics in hearing aid compression, as gain is driven by whichever source dominates at a given moment. Moreover, independent compression at the two ears can introduce fluctuations in interaural level differences (ILDs) important for spatial perception. While independent compression can interfere with spatial perception of sound, it does not always interfere with localization accuracy or speech identification. Here, normal-hearing listeners reported a target message played simultaneously with two spatially separated masker messages. We measured the amount of spatial separation required between the target and maskers for subjects to perform at threshold in this task. Fast, syllabic compression that was independent at the two ears increased the required spatial separation, but linking the compressors to provide identical gain to both ears (preserving ILDs) restored much of the deficit caused by fast, independent compression. Effects were less clear for slower compression. Percent-correct performance was lower with independent compression, but only for small spatial separations. These results may help explain differences in previous reports of the effect of compression on spatial perception of sound.

  4. Can Competition Keep the Restrooms Clean? Price, Quality and Spatial Competition

    OpenAIRE

    Pennerstorfer, Dieter

    2017-01-01

    This article investigates the influence of competition on price and product quality among Austrian camping sites, a market characterized by both horizontal (spatial) and vertical product differentiation. Theoretically, the effect of competition on quality is ambiguous and depends on the degree of cost substitutability between output and quality. Estimating a system of equations shows that intense competition has a positive impact on product quality and a negative effect on prices (conditional...

  5. Hierarchical spatial organization of geographical networks

    International Nuclear Information System (INIS)

    Travencolo, Bruno A N; Costa, Luciano da F

    2008-01-01

    In this work, we propose a hierarchical extension of the polygonality index as the means to characterize geographical planar networks. By considering successive neighborhoods around each node, it is possible to obtain more complete information about the spatial order of the network at progressive spatial scales. The potential of the methodology is illustrated with respect to synthetic and real geographical networks

  6. Abundant Topological Outliers in Social Media Data and Their Effect on Spatial Analysis.

    Science.gov (United States)

    Westerholt, Rene; Steiger, Enrico; Resch, Bernd; Zipf, Alexander

    2016-01-01

    Twitter and related social media feeds have become valuable data sources to many fields of research. Numerous researchers have thereby used social media posts for spatial analysis, since many of them contain explicit geographic locations. However, despite its widespread use within applied research, a thorough understanding of the underlying spatial characteristics of these data is still lacking. In this paper, we investigate how topological outliers influence the outcomes of spatial analyses of social media data. These outliers appear when different users contribute heterogeneous information about different phenomena simultaneously from similar locations. As a consequence, various messages representing different spatial phenomena are captured closely to each other, and are at risk to be falsely related in a spatial analysis. Our results reveal indications for corresponding spurious effects when analyzing Twitter data. Further, we show how the outliers distort the range of outcomes of spatial analysis methods. This has significant influence on the power of spatial inferential techniques, and, more generally, on the validity and interpretability of spatial analysis results. We further investigate how the issues caused by topological outliers are composed in detail. We unveil that multiple disturbing effects are acting simultaneously and that these are related to the geographic scales of the involved overlapping patterns. Our results show that at some scale configurations, the disturbances added through overlap are more severe than at others. Further, their behavior turns into a volatile and almost chaotic fluctuation when the scales of the involved patterns become too different. Overall, our results highlight the critical importance of thoroughly considering the specific characteristics of social media data when analyzing them spatially.

  7. Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas - A review

    NARCIS (Netherlands)

    Cristiano, E.; ten Veldhuis, J.A.E.; van de Giesen, N.C.

    2017-01-01

    In urban areas, hydrological processes are characterized by high variability in space and time, making them sensitive to small-scale temporal and spatial rainfall variability. In the last decades new instruments, techniques, and methods have been developed to capture rainfall and hydrological

  8. Experimental Effects and Individual Differences in Linear Mixed Models: Estimating the Relationship between Spatial, Object, and Attraction Effects in Visual Attention

    Science.gov (United States)

    Kliegl, Reinhold; Wei, Ping; Dambacher, Michael; Yan, Ming; Zhou, Xiaolin

    2011-01-01

    Linear mixed models (LMMs) provide a still underused methodological perspective on combining experimental and individual-differences research. Here we illustrate this approach with two-rectangle cueing in visual attention (Egly et al., 1994). We replicated previous experimental cue-validity effects relating to a spatial shift of attention within an object (spatial effect), to attention switch between objects (object effect), and to the attraction of attention toward the display centroid (attraction effect), also taking into account the design-inherent imbalance of valid and other trials. We simultaneously estimated variance/covariance components of subject-related random effects for these spatial, object, and attraction effects in addition to their mean reaction times (RTs). The spatial effect showed a strong positive correlation with mean RT and a strong negative correlation with the attraction effect. The analysis of individual differences suggests that slow subjects engage attention more strongly at the cued location than fast subjects. We compare this joint LMM analysis of experimental effects and associated subject-related variances and correlations with two frequently used alternative statistical procedures. PMID:21833292

  9. The Effects of Spatial Contextual Familiarity on Remembered Scenes, Episodic Memories, and Imagined Future Events

    Science.gov (United States)

    Robin, Jessica; Moscovitch, Morris

    2014-01-01

    Several recent studies have explored the effect of contextual familiarity on remembered and imagined events. The aim of this study was to examine the extent of this effect by comparing the effect of cuing spatial memories, episodic memories, and imagined future events with spatial contextual cues of varying levels of familiarity. We used…

  10. Multilevel Modelling with Spatial Interaction Effects with Application to an Emerging Land Market in Beijing, China.

    Directory of Open Access Journals (Sweden)

    Guanpeng Dong

    Full Text Available This paper develops a methodology for extending multilevel modelling to incorporate spatial interaction effects. The motivation is that classic multilevel models are not specifically spatial. Lower level units may be nested into higher level ones based on a geographical hierarchy (or a membership structure--for example, census zones into regions but the actual locations of the units and the distances between them are not directly considered: what matters is the groupings but not how close together any two units are within those groupings. As a consequence, spatial interaction effects are neither modelled nor measured, confounding group effects (understood as some sort of contextual effect that acts 'top down' upon members of a group with proximity effects (some sort of joint dependency that emerges between neighbours. To deal with this, we incorporate spatial simultaneous autoregressive processes into both the outcome variable and the higher level residuals. To assess the performance of the proposed method and the classic multilevel model, a series of Monte Carlo simulations are conducted. The results show that the proposed method performs well in retrieving the true model parameters whereas the classic multilevel model provides biased and inefficient parameter estimation in the presence of spatial interactions. An important implication of the study is to be cautious of an apparent neighbourhood effect in terms of both its magnitude and statistical significance if spatial interaction effects at a lower level are suspected. Applying the new approach to a two-level land price data set for Beijing, China, we find significant spatial interactions at both the land parcel and district levels.

  11. Overview of surface measurements and spatial characterization of submicrometer particulate matter during the DISCOVER-AQ 2013 campaign in Houston, TX.

    Science.gov (United States)

    Leong, Y J; Sanchez, N P; Wallace, H W; Karakurt Cevik, B; Hernandez, C S; Han, Y; Flynn, J H; Massoli, P; Floerchinger, C; Fortner, E C; Herndon, S; Bean, J K; Hildebrandt Ruiz, L; Jeon, W; Choi, Y; Lefer, B; Griffin, R J

    2017-08-01

    article describes an urban-scale mobile study to characterize spatial variations in submicrometer particulate matter (PM 1 ) in greater Houston. The data set indicates substantial spatial variations in PM 1 sources/chemistry and elucidates the importance of photochemistry and nighttime oxidant chemistry in producing secondary PM 1 . These results emphasize the potential benefits of effective control strategies throughout the region, not only to reduce primary emissions of PM 1 from automobiles and industry but also to reduce the emissions of important secondary PM 1 precursors, including sulfur oxides, nitrogen oxides, ammonia, and volatile organic compounds. Such efforts also could aid in efforts to reduce mixing ratios of ozone.

  12. Effects of harmane during treadmill exercise on spatial memory of restraint-stressed mice.

    Science.gov (United States)

    Nasehi, Mohammad; Shahini, Faezeh; Ebrahimi-Ghiri, Mohaddeseh; Azarbayjani, MohammadAli; Zarrindast, Mohammad-Reza

    2018-06-08

    Chronic stress induces hippocampal-dependent memory deficits, which can be counterbalanced with prolonged exercise. On the other hand, the β-carboline alkaloid harmane exerts potential in therapies for Alzheimer's and depression diseases and modulating neuronal responses to stress. The present study investigated the effect of chronic treatment of harmane alone or during treadmill running on spatial memory deficit in restraint-stressed mice. To examine spatial memory, adult male NMRI mice were subjected to the Y-maze. Intraperitoneal administration of harmane (0.6 mg/kg, once/ 48 h for 25 days) decreased the percentage of time in the novel arm and the number of novel arm visits, indicating a spatial memory deficit. A 9-day restraint stress (3 h/day) also produced spatial learning impairment. However, a 4-week regime of treadmill running (10 m/min for 30 min/day, 5 days/week) aggravated the stress impairing effect on spatial learning of 3-day stressed mice compared to exercise/non-stressed mice. Moreover, harmane (0.3 mg/kg) associated with exercise increased the number of novel arm visits in 9-day stressed mice compared to harmane/exercise/non-stressed or 9-day stressed group. It should be noted that none of these factors alone or in combination with each other had no effect on locomotor activity. Taken together, these data suggest that there is no interaction between harmane and exercise on spatial memory in stress condition. Copyright © 2018. Published by Elsevier Inc.

  13. Spatial analysis statistics, visualization, and computational methods

    CERN Document Server

    Oyana, Tonny J

    2015-01-01

    An introductory text for the next generation of geospatial analysts and data scientists, Spatial Analysis: Statistics, Visualization, and Computational Methods focuses on the fundamentals of spatial analysis using traditional, contemporary, and computational methods. Outlining both non-spatial and spatial statistical concepts, the authors present practical applications of geospatial data tools, techniques, and strategies in geographic studies. They offer a problem-based learning (PBL) approach to spatial analysis-containing hands-on problem-sets that can be worked out in MS Excel or ArcGIS-as well as detailed illustrations and numerous case studies. The book enables readers to: Identify types and characterize non-spatial and spatial data Demonstrate their competence to explore, visualize, summarize, analyze, optimize, and clearly present statistical data and results Construct testable hypotheses that require inferential statistical analysis Process spatial data, extract explanatory variables, conduct statisti...

  14. Multiple Spatial Coherence Resonances and Spatial Patterns in a Noise-Driven Heterogeneous Neuronal Network

    International Nuclear Information System (INIS)

    Li Yu-Ye; Ding Xue-Li

    2014-01-01

    Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris—Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns. (interdisciplinary physics and related areas of science and technology)

  15. Multiple Spatial Coherence Resonances and Spatial Patterns in a Noise-Driven Heterogeneous Neuronal Network

    Science.gov (United States)

    Li, Yu-Ye; Ding, Xue-Li

    2014-12-01

    Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris—Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns.

  16. Evidence of political yardstick competition in France using a two-regime spatial Durbin model with fixed effects

    NARCIS (Netherlands)

    Elhorst, J. Paul; Freret, Sandy

    2009-01-01

    This research proposes a two-regime spatial Durbin model with spatial and time-period fixed effects to test for political yardstick competition and exclude any other explanation that might produce spatial interaction effects among the dependent variable, the independent variables, or the error term.

  17. Effect of Soybean Population and Spatial Arrangement on Nutrient ...

    African Journals Online (AJOL)

    A field study was conducted in 2007 and 2008 cropping seasons at the research farm of the National Root Crops Research Institute, Umudike, Abia State, to determine the effect of soybean population and spatial arrangement on the productivity of ginger/soybean intercrop in South Eastern Nigeria. Treatments comprised ...

  18. Visualizing topography: Effects of presentation strategy, gender, and spatial ability

    Science.gov (United States)

    McAuliffe, Carla

    2003-10-01

    This study investigated the effect of different presentation strategies (2-D static visuals, 3-D animated visuals, and 3-D interactive, animated visuals) and gender on achievement, time-spent-on visual treatment, and attitude during a computer-based science lesson about reading and interpreting topographic maps. The study also examined the relationship of spatial ability and prior knowledge to gender, achievement, and time-spent-on visual treatment. Students enrolled in high school chemistry-physics were pretested and given two spatial ability tests. They were blocked by gender and randomly assigned to one of three levels of presentation strategy or the control group. After controlling for the effects of spatial ability and prior knowledge with analysis of covariance, three significant differences were found between the versions: (a) the 2-D static treatment group scored significantly higher on the posttest than the control group; (b) the 3-D animated treatment group scored significantly higher on the posttest than the control group; and (c) the 2-D static treatment group scored significantly higher on the posttest than the 3-D interactive animated treatment group. Furthermore, the 3-D interactive animated treatment group spent significantly more time on the visual screens than the 2-D static treatment group. Analyses of student attitudes revealed that most students felt the landform visuals in the computer-based program helped them learn, but not in a way they would describe as fun. Significant differences in attitude were found by treatment and by gender. In contrast to findings from other studies, no gender differences were found on either of the two spatial tests given in this study. Cognitive load, cognitive involvement, and solution strategy are offered as three key factors that may help explain the results of this study. Implications for instructional design include suggestions about the use of 2-D static, 3-D animated and 3-D interactive animations as well

  19. Characterization of a neutron imaging setup at the INES facility

    Energy Technology Data Exchange (ETDEWEB)

    Durisi, E.A., E-mail: elisabettaalessandra.durisi@unito.it [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Visca, L. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Albertin, F.; Brancaccio, R. [Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Corsi, J. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Dughera, G. [Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Ferrarese, W. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); Giovagnoli, A.; Grassi, N. [Fondazione Centro per la Conservazione ed il Restauro dei Beni Culturali “La Venaria Reale”, Piazza della Repubblica, 10078 Venaria Reale, Torino (Italy); Grazzi, F. [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Lo Giudice, A.; Mila, G. [Università di Torino, Dipartimento di Fisica, Via Pietro Giuria 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare—Sezione di Torino, Via Pietro Giuria 1, 10125 Torino (Italy); and others

    2013-10-21

    The Italian Neutron Experimental Station (INES) located at the ISIS pulsed neutron source (Didcot, United Kingdom) provides a thermal neutron beam mainly used for diffraction analysis. A neutron transmission imaging system was also developed for beam monitoring and for aligning the sample under investigation. Although the time-of-flight neutron diffraction is a consolidated technique, the neutron imaging setup is not yet completely characterized and optimized. In this paper the performance for neutron radiography and tomography at INES of two scintillator screens read out by two different commercial CCD cameras is compared in terms of linearity, signal-to-noise ratio, effective dynamic range and spatial resolution. In addition, the results of neutron radiographies and a tomography of metal alloy test structures are presented to better characterize the INES imaging capabilities of metal artifacts in the cultural heritage field. -- Highlights: A full characterization of the present INES imaging set-up was carried out. Two CCD cameras and two scintillators (ZnS/{sup 6}LiF) of different thicknesses were tested. Linearity, effective dynamic range and spatial resolution were determined. Radiographies of steep wedges were performed using the highest dynamic range setup. Tomography of a bronze cube was performed using the best spatial resolution setup.

  20. Characterization of a neutron imaging setup at the INES facility

    International Nuclear Information System (INIS)

    Durisi, E.A.; Visca, L.; Albertin, F.; Brancaccio, R.; Corsi, J.; Dughera, G.; Ferrarese, W.; Giovagnoli, A.; Grassi, N.; Grazzi, F.; Lo Giudice, A.; Mila, G.

    2013-01-01

    The Italian Neutron Experimental Station (INES) located at the ISIS pulsed neutron source (Didcot, United Kingdom) provides a thermal neutron beam mainly used for diffraction analysis. A neutron transmission imaging system was also developed for beam monitoring and for aligning the sample under investigation. Although the time-of-flight neutron diffraction is a consolidated technique, the neutron imaging setup is not yet completely characterized and optimized. In this paper the performance for neutron radiography and tomography at INES of two scintillator screens read out by two different commercial CCD cameras is compared in terms of linearity, signal-to-noise ratio, effective dynamic range and spatial resolution. In addition, the results of neutron radiographies and a tomography of metal alloy test structures are presented to better characterize the INES imaging capabilities of metal artifacts in the cultural heritage field. -- Highlights: A full characterization of the present INES imaging set-up was carried out. Two CCD cameras and two scintillators (ZnS/ 6 LiF) of different thicknesses were tested. Linearity, effective dynamic range and spatial resolution were determined. Radiographies of steep wedges were performed using the highest dynamic range setup. Tomography of a bronze cube was performed using the best spatial resolution setup

  1. Transport of Aquatic Contaminant and Assessment of Radioecological Exposure with Spatial and Temporal Effects

    Science.gov (United States)

    Feng, Ying

    1995-01-01

    A comprehensive study of the radioecological exposure assessment for a contaminated aquatic ecosystem has been performed in this dissertation. The primary objectives of this research were to advance the understanding of radiation exposure in nature and to increase current capabilities for estimating aquatic radiation exposure with the consideration of spatial and temporal effect in nature. This was accomplished through the development of a two-dimensional aquatic exposure assessment framework and by applying the framework to the contaminated Chernobyl cooling lake (pond). This framework integrated spatial and temporal heterogeneity effects of contaminant concentration, abundance and distribution of ecosystem populations, spatial- and temporal-dependent (or density-dependent) radionuclide ingestion, and alternative food web structures. The exposure model was built on the population level to allow for the integration of density dependent population regulation into the exposure assessment. Plankton population dynamics have been integrated into the hydrodynamic-transport model to determine plankton biomass density changes and distributions. The distribution of contaminant in water was also calculated using a hydrodynamic-transport model. The significance of adding spatial and temporal effects, spatial and temporal related ecological functions, and hydrodynamics in the exposure assessment was illustrated through a series of case studies. The results suggested that the spatial and temporal heterogeneity effects of radioactive environments were substantial. Among the ecological functions considered, the food web structure was the most important contributor to the variations of fish exposure. The results obtained using a multiple prey food web structure differed by a factor of 20 from the equilibrium concentration, and by a factor of 2.5 from the concentration obtained using a single-prey food web. Impacts of changes in abundance and distribution of biomass on contaminant

  2. The effect of path length and display size on memory for spatial information.

    Science.gov (United States)

    Guérard, Katherine; Tremblay, Sébastien

    2012-01-01

    In serial memory for spatial information, some studies showed that recall performance suffers when the distance between successive locations increases relatively to the size of the display in which they are presented (the path length effect; e.g., Parmentier et al., 2005) but not when distance is increased by enlarging the size of the display (e.g., Smyth & Scholey, 1994). In the present study, we examined the effect of varying the absolute and relative distance between to-be-remembered items on memory for spatial information. We manipulated path length using small (15″) and large (64″) screens within the same design. In two experiments, we showed that distance was disruptive mainly when it is varied relatively to a fixed reference frame, though increasing the size of the display also had a small deleterious effect on recall. The insertion of a retention interval did not influence these effects, suggesting that rehearsal plays a minor role in mediating the effects of distance on serial spatial memory. We discuss the potential role of perceptual organization in light of the pattern of results.

  3. SPATIAL MODELLING FOR DESCRIBING SPATIAL VARIABILITY OF SOIL PHYSICAL PROPERTIES IN EASTERN CROATIA

    Directory of Open Access Journals (Sweden)

    Igor Bogunović

    2016-06-01

    Full Text Available The objectives of this study were to characterize the field-scale spatial variability and test several interpolation methods to identify the best spatial predictor of penetration resistance (PR, bulk density (BD and gravimetric water content (GWC in the silty loam soil in Eastern Croatia. The measurements were made on a 25 x 25-m grid which created 40 individual grid cells. Soil properties were measured at the center of the grid cell deep 0-10 cm and 10-20 cm. Results demonstrated that PR and GWC displayed strong spatial dependence at 0-10 cm BD, while there was moderate and weak spatial dependence of PR, BD and GWC at depth of 10-20 cm. Semi-variogram analysis suggests that future sampling intervals for investigated parameters can be increased to 35 m in order to reduce research costs. Additionally, interpolation models recorded similar root mean square values with high predictive accuracy. Results suggest that investigated properties do not have uniform interpolation method implying the need for spatial modelling in the evaluation of these soil properties in Eastern Croatia.

  4. Evaluating the effect of remote sensing image spatial resolution on soil exchangeable potassium prediction models in smallholder farm settings.

    Science.gov (United States)

    Xu, Yiming; Smith, Scot E; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P

    2017-09-15

    Major end users of Digital Soil Mapping (DSM) such as policy makers and agricultural extension workers are faced with choosing the appropriate remote sensing data. The objective of this research is to analyze the spatial resolution effects of different remote sensing images on soil prediction models in two smallholder farms in Southern India called Kothapally (Telangana State), and Masuti (Karnataka State), and provide empirical guidelines to choose the appropriate remote sensing images in DSM. Bayesian kriging (BK) was utilized to characterize the spatial pattern of exchangeable potassium (K ex ) in the topsoil (0-15 cm) at different spatial resolutions by incorporating spectral indices from Landsat 8 (30 m), RapidEye (5 m), and WorldView-2/GeoEye-1/Pleiades-1A images (2 m). Some spectral indices such as band reflectances, band ratios, Crust Index and Atmospherically Resistant Vegetation Index from multiple images showed relatively strong correlations with soil K ex in two study areas. The research also suggested that fine spatial resolution WorldView-2/GeoEye-1/Pleiades-1A-based and RapidEye-based soil prediction models would not necessarily have higher prediction performance than coarse spatial resolution Landsat 8-based soil prediction models. The end users of DSM in smallholder farm settings need select the appropriate spectral indices and consider different factors such as the spatial resolution, band width, spectral resolution, temporal frequency, cost, and processing time of different remote sensing images. Overall, remote sensing-based Digital Soil Mapping has potential to be promoted to smallholder farm settings all over the world and help smallholder farmers implement sustainable and field-specific soil nutrient management scheme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Multivariate and spatial statistical analysis of Callovo-Oxfordian physical properties from lab and borehole logs data: towards a characterization of lateral and vertical spatial trends in the Meuse/Haute-Marne transposition zone

    International Nuclear Information System (INIS)

    Garcia, M.H.; Rabaute, A.; Yven, B.; Guillemot, D.

    2010-01-01

    relevant information about the spatial continuity of rock properties as measured on cores in laboratory. To do so, multivariate statistical analysis methods, including principal component analysis based on linear or rank (Spearman) correlations, were carried out. They show that well-log compressive velocity ( V p) is well correlated to static Young modulus and compressive strength measured on cores, and that downhole bulk density and Total CMR porosity are well correlated to dynamic Young modulus, dynamic shear modulus and compressive velocity on cores. Studying the spatial continuity and trends of properties in argillaceous units was a primary objective of the study. To do so, the spatial analysis was first conducted on the well-log properties that proved to be well correlated to properties measured on cores, lab properties remaining the reference physical properties. Lateral and vertical spatial trends were observed and interpreted on the selected well-log properties. In order to confirm that these spatial trends were effective and could apply to physical properties measured on cores, the spatial continuity of some correlated lab properties was studied. Similar trends were found that validated the approach of using log properties for characterizing the spatial continuity of core physical properties. (authors)

  6. The processing of spatial information in short-term memory: insights from eye tracking the path length effect.

    Science.gov (United States)

    Guérard, Katherine; Tremblay, Sébastien; Saint-Aubin, Jean

    2009-10-01

    Serial memory for spatial locations increases as the distance between successive stimuli locations decreases. This effect, known as the path length effect [Parmentier, F. B. R., Elford, G., & Maybery, M. T. (2005). Transitional information in spatial serial memory: Path characteristics affect recall performance. Journal of Experimental Psychology: Learning, Memory & Cognition, 31, 412-427], was investigated in a systematic manner using eye tracking and interference procedures to explore the mechanisms responsible for the processing of spatial information. In Experiment 1, eye movements were monitored during a spatial serial recall task--in which the participants have to remember the location of spatially and temporally separated dots on the screen. In the experimental conditions, eye movements were suppressed by requiring participants to incessantly move their eyes between irrelevant locations. Ocular suppression abolished the path length effect whether eye movements were prevented during item presentation or during a 7s retention interval. In Experiment 2, articulatory suppression was combined with a spatial serial recall task. Although articulatory suppression impaired performance, it did not alter the path length effect. Our results suggest that rehearsal plays a key role in serial memory for spatial information, though the effect of path length seems to involve other processes located at encoding, such as the time spent fixating each location and perceptual organization.

  7. Investigating Effect of Origami-Based Instruction on Elementary Students' Spatial Skills and Perceptions

    Science.gov (United States)

    Cakmak, Sedanur; Isiksal, Mine; Koc, Yusuf

    2014-01-01

    The authors' purpose was to investigate the effect of origami-based instruction on elementary students' spatial ability. The students' self-reported perceptions related to the origami-based instruction were also examined. Data was collected via purposive sampling techniques from students enrolled in a private elementary school. A spatial ability…

  8. Characterization of Hall effect thruster propellant distributors with flame visualization

    Science.gov (United States)

    Langendorf, S.; Walker, M. L. R.

    2013-01-01

    A novel method for the characterization and qualification of Hall effect thruster propellant distributors is presented. A quantitative measurement of the azimuthal number density uniformity, a metric which impacts propellant utilization, is obtained from photographs of a premixed flame anchored on the exit plane of the propellant distributor. The technique is demonstrated for three propellant distributors using a propane-air mixture at reservoir pressure of 40 psi (gauge) (377 kPa) exhausting to atmosphere, with volumetric flow rates ranging from 15-145 cfh (7.2-68 l/min) with equivalence ratios from 1.2 to 2.1. The visualization is compared with in-vacuum pressure measurements 1 mm downstream of the distributor exit plane (chamber pressure held below 2.7 × 10-5 Torr-Xe at all flow rates). Both methods indicate a non-uniformity in line with the propellant inlet, supporting the validity of the technique of flow visualization with flame luminosity for propellant distributor characterization. The technique is applied to a propellant distributor with a manufacturing defect in a known location and is able to identify the defect and characterize its impact. The technique is also applied to a distributor with numerous small orifices at the exit plane and is able to resolve the resulting non-uniformity. Luminosity data are collected with a spatial resolution of 48.2-76.1 μm (pixel width). The azimuthal uniformity is characterized in the form of standard deviation of azimuthal luminosities, normalized by the mean azimuthal luminosity. The distributors investigated achieve standard deviations of 0.346 ± 0.0212, 0.108 ± 0.0178, and 0.708 ± 0.0230 mean-normalized luminosity units respectively, where a value of 0 corresponds to perfect uniformity and a value of 1 represents a standard deviation equivalent to the mean.

  9. Spatial Spillover Effects of Transport Infrastructure in Chinese New Silk Road Economic Belt

    Directory of Open Access Journals (Sweden)

    Jian Li

    2017-04-01

    Full Text Available Based on the inner-effect mechanism of transport infrastructure and regional economic growth, this paper builds a specialized spatial weight matrix by utilizing the panel data from 31 provinces in New Silk Road Economic Belt (NSREB and other areas from 2005 to 2014, and combines with the spatial panel model to analyze the spatial spillover effects of transport infrastructure. According to the analysis, the transport infrastructure plays an obvious lead role in regional economy growth alongside the NSREB, and the economic growth invigorates common development in surrounding regions. In addition, differences were observed among the different transport infrastructure with regard to their influences on regional economic development, as the highway transport affects regional economic growth to a larger degree than railway transport.

  10. Spatial Isotopic Characterization of Slovak Groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Povinec, P. P.; Sivo, A.; Breier, R.; Richtarikova, M. [Comenius University, Faculty of Mathematics, Physics and Informatics, Bratislava (Slovakia); Zenisova, Z. [Comenius University, Faculty of Natural Sciences, Bratislava (Slovakia); Aggarwal, P. K.; Araguas Araguas, L. [International Atomic Energy Agency, Isotope Hydrology Section, Vienna (Austria)

    2013-07-15

    Zitny ostrov (Rye Island) in the south west of Slovakia is the largest groundwater reservoir in Central Europe (about 10 Gm{sup 3}). Groundwater contamination with radionuclides, heavy metals and organic compounds from the Danube River and local industrial and agricultural activities has recently been of great concern. Geostatistical analysis of experimental isotope data has been carried out with the aim of better understanding groundwater dynamics. For this purpose, spatial variations in the distribution of water isotopes and radiocarbon in the groundwater of Zitny ostrov have been evaluated. Subsurface water profiles showed enriched {delta}{sup 18}O levels at around 20 m water depth, and depleted values below 30 m, which are similar to those observed in the Danube River. The core of the subsurface {sup 14}C profiles represents contemporary groundwater with {sup 14}C values above 80 pMc. (author)

  11. Spatial Solitons and Induced Kerr Effects in Quasi-Phase-Matched Quadratic Media

    DEFF Research Database (Denmark)

    Clausen, Carl A. Balslev; Bang, Ole; Kivshar, Yu.S.

    1997-01-01

    We show that the evolution of the average intensity of cw beams in a quasi-phase-matched quadratic (or chi((2))) medium is strongly influenced by induced Kerr effects, such as self- and cross-phase modulation. We prove the existence of rapidly oscillating solitary waves (a spatial analog of the g......We show that the evolution of the average intensity of cw beams in a quasi-phase-matched quadratic (or chi((2))) medium is strongly influenced by induced Kerr effects, such as self- and cross-phase modulation. We prove the existence of rapidly oscillating solitary waves (a spatial analog...

  12. Spatially distributed effects of mental exhaustion on resting-state FMRI networks.

    Science.gov (United States)

    Esposito, Fabrizio; Otto, Tobias; Zijlstra, Fred R H; Goebel, Rainer

    2014-01-01

    Brain activity during rest is spatially coherent over functional connectivity networks called resting-state networks. In resting-state functional magnetic resonance imaging, independent component analysis yields spatially distributed network representations reflecting distinct mental processes, such as intrinsic (default) or extrinsic (executive) attention, and sensory inhibition or excitation. These aspects can be related to different treatments or subjective experiences. Among these, exhaustion is a common psychological state induced by prolonged mental performance. Using repeated functional magnetic resonance imaging sessions and spatial independent component analysis, we explored the effect of several hours of sustained cognitive performances on the resting human brain. Resting-state functional magnetic resonance imaging was performed on the same healthy volunteers in two days, with and without, and before, during and after, an intensive psychological treatment (skill training and sustained practice with a flight simulator). After each scan, subjects rated their level of exhaustion and performed an N-back task to evaluate eventual decrease in cognitive performance. Spatial maps of selected resting-state network components were statistically evaluated across time points to detect possible changes induced by the sustained mental performance. The intensive treatment had a significant effect on exhaustion and effort ratings, but no effects on N-back performances. Significant changes in the most exhausted state were observed in the early visual processing and the anterior default mode networks (enhancement) and in the fronto-parietal executive networks (suppression), suggesting that mental exhaustion is associated with a more idling brain state and that internal attention processes are facilitated to the detriment of more extrinsic processes. The described application may inspire future indicators of the level of fatigue in the neural attention system.

  13. Spatial Spillover Effects of Environmental Pollution in China’s Central Plains Urban Agglomeration

    Directory of Open Access Journals (Sweden)

    Lichun Xiong

    2018-03-01

    Full Text Available Promoting the rise of Central China is one of the most important national strategies regarding the promotion of China’s economic development. However, the environmental issues in the central regions have become remarkably severe. It is therefore worthwhile exploring how economic development and environmental protection can be coordinated. Focusing on the 29 prefecture-level cities in the Central Plains Urban Agglomeration, the authors empirically analyze the relationship between the economy and the environment from 2004 to 2014. The combined methods of the spatial autocorrelation model, the environmental Kuznets curve, and the global spatial correlation test are systematically employed. The results show that: (1 a strong spatial correlation exists between industrial wastewater discharge, industrial sulfur dioxide, and dust emissions in the Central Plains Urban Agglomeration; (2 the relationship between the economy and the environment of this urban agglomeration reveals an inverted “U” curve, which confirms the classical environmental Kuznets curve hypothesis. Industrial dust emissions have surpassed the inflection point of the Kuznets curve, but its spatial spillover effect still remains strong. This is caused by an accumulation effect and a lag effect; (3 the proportion of the secondary industry and population has a strong positive effect on pollution discharge; investments in science and technology have a certain inhibitory effect on industrial sulfur dioxide emission. Moreover, an increase in the number of industrial enterprises has a negative effect on industrial wastewater emission. At the end, the authors put forward policy recommendations regarding the establishment of a joint supervisory department and unified environmental standards at the regional level to deal with the spillover effects of pollution.

  14. Effect of flux discontinuity on spatial approximations for discrete ordinates methods

    International Nuclear Information System (INIS)

    Duo, J.I.; Azmy, Y.Y.

    2005-01-01

    This work presents advances on error analysis of the spatial approximation of the discrete ordinates method for solving the neutron transport equation. Error norms for different non-collided flux problems over a two dimensional pure absorber medium are evaluated using three numerical methods. The problems are characterized by the incoming flux boundary conditions to obtain solutions with different level of differentiability. The three methods considered are the Diamond Difference (DD) method, the Arbitrarily High Order Transport method of the Nodal type (AHOT-N), and of the Characteristic type (AHOT-C). The last two methods are employed in constant, linear and quadratic orders of spatial approximation. The cell-wise error is computed as the difference between the cell-averaged flux computed by each method and the exact value, then the L 1 , L 2 , and L ∞ error norms are calculated. The results of this study demonstrate that the level of differentiability of the exact solution profoundly affects the rate of convergence of the numerical methods' solutions. Furthermore, in the case of discontinuous exact flux the methods fail to converge in the maximum error norm, or in the pointwise sense, in accordance with previous local error analysis. (authors)

  15. Smoothing effect for spatially distributed renewable resources and its impact on power grid robustness.

    Science.gov (United States)

    Nagata, Motoki; Hirata, Yoshito; Fujiwara, Naoya; Tanaka, Gouhei; Suzuki, Hideyuki; Aihara, Kazuyuki

    2017-03-01

    In this paper, we show that spatial correlation of renewable energy outputs greatly influences the robustness of the power grids against large fluctuations of the effective power. First, we evaluate the spatial correlation among renewable energy outputs. We find that the spatial correlation of renewable energy outputs depends on the locations, while the influence of the spatial correlation of renewable energy outputs on power grids is not well known. Thus, second, by employing the topology of the power grid in eastern Japan, we analyze the robustness of the power grid with spatial correlation of renewable energy outputs. The analysis is performed by using a realistic differential-algebraic equations model. The results show that the spatial correlation of the energy resources strongly degrades the robustness of the power grid. Our results suggest that we should consider the spatial correlation of the renewable energy outputs when estimating the stability of power grids.

  16. EEG-MEG Integration Enhances the Characterization of Functional and Effective Connectivity in the Resting State Network

    Science.gov (United States)

    Mideksa, Kidist Gebremariam; Anwar, Abdul Rauf; Stephani, Ulrich; Deuschl, Günther; Freitag, Christine M.; Siniatchkin, Michael

    2015-01-01

    At the sensor level many aspects, such as spectral power, functional and effective connectivity as well as relative-power-ratio ratio (RPR) and spatial resolution have been comprehensively investigated through both electroencephalography (EEG) and magnetoencephalography (MEG). Despite this, differences between both modalities have not yet been systematically studied by direct comparison. It remains an open question as to whether the integration of EEG and MEG data would improve the information obtained from the above mentioned parameters. Here, EEG (64-channel system) and MEG (275 sensor system) were recorded simultaneously in conditions with eyes open (EO) and eyes closed (EC) in 29 healthy adults. Spectral power, functional and effective connectivity, RPR, and spatial resolution were analyzed at five different frequency bands (delta, theta, alpha, beta and gamma). Networks of functional and effective connectivity were described using a spatial filter approach called the dynamic imaging of coherent sources (DICS) followed by the renormalized partial directed coherence (RPDC). Absolute mean power at the sensor level was significantly higher in EEG than in MEG data in both EO and EC conditions. At the source level, there was a trend towards a better performance of the combined EEG+MEG analysis compared with separate EEG or MEG analyses for the source mean power, functional correlation, effective connectivity for both EO and EC. The network of coherent sources and the spatial resolution were similar for both the EEG and MEG data if they were analyzed separately. Results indicate that the combined approach has several advantages over the separate analyses of both EEG and MEG. Moreover, by a direct comparison of EEG and MEG, EEG was characterized by significantly higher values in all measured parameters in both sensor and source level. All the above conclusions are specific to the resting state task and the specific analysis used in this study to have general

  17. Effects of improved spatial and temporal modeling of on-road vehicle emissions.

    Science.gov (United States)

    Lindhjem, Christian E; Pollack, Alison K; DenBleyker, Allison; Shaw, Stephanie L

    2012-04-01

    Numerous emission and air quality modeling studies have suggested the need to accurately characterize the spatial and temporal variations in on-road vehicle emissions. The purpose of this study was to quantify the impact that using detailed traffic activity data has on emission estimates used to model air quality impacts. The on-road vehicle emissions are estimated by multiplying the vehicle miles traveled (VMT) by the fleet-average emission factors determined by road link and hour of day. Changes in the fraction of VMT from heavy-duty diesel vehicles (HDDVs) can have a significant impact on estimated fleet-average emissions because the emission factors for HDDV nitrogen oxides (NOx) and particulate matter (PM) are much higher than those for light-duty gas vehicles (LDGVs). Through detailed road link-level on-road vehicle emission modeling, this work investigated two scenarios for better characterizing mobile source emissions: (1) improved spatial and temporal variation of vehicle type fractions, and (2) use of Motor Vehicle Emission Simulator (MOVES2010) instead of MOBILE6 exhaust emission factors. Emissions were estimated for the Detroit and Atlanta metropolitan areas for summer and winter episodes. The VMT mix scenario demonstrated the importance of better characterizing HDDV activity by time of day, day of week, and road type. More HDDV activity occurs on restricted access road types on weekdays and at nonpeak times, compared to light-duty vehicles, resulting in 5-15% higher NOx and PM emission rates during the weekdays and 15-40% lower rates on weekend days. Use of MOVES2010 exhaust emission factors resulted in increases of more than 50% in NOx and PM for both HDDVs and LDGVs, relative to MOBILE6. Because LDGV PM emissions have been shown to increase with lower temperatures, the most dramatic increase from MOBILE6 to MOVES2010 emission rates occurred for PM2.5 from LDGVs that increased 500% during colder wintertime conditions found in Detroit, the northernmost

  18. Lenses and effective spatial resolution in macroscopic optical mapping

    International Nuclear Information System (INIS)

    Bien, Harold; Parikh, Puja; Entcheva, Emilia

    2007-01-01

    Optical mapping of excitation dynamically tracks electrical waves travelling through cardiac or brain tissue by the use of fluorescent dyes. There are several characteristics that set optical mapping apart from other imaging modalities: dynamically changing signals requiring short exposure times, dim fluorescence demanding sensitive sensors and wide fields of view (low magnification) resulting in poor optical performance. These conditions necessitate the use of optics with good light gathering ability, i.e. lenses having high numerical aperture. Previous optical mapping studies often used sensor resolution to estimate the minimum spatial feature resolvable, assuming perfect optics and infinite contrast. We examine here the influence of finite contrast and real optics on the effective spatial resolution in optical mapping under broad-field illumination for both lateral (in-plane) resolution and axial (depth) resolution of collected fluorescence signals

  19. Effects of testosterone dose on spatial memory among castrated adult male rats.

    Science.gov (United States)

    Wagner, Benjamin A; Braddick, Valerie C; Batson, Christopher G; Cullen, Brendan H; Miller, L Erin; Spritzer, Mark D

    2018-03-01

    Previous research on the activational effects of testosterone on spatial memory has produced mixed results, possibly because such effects are dose-dependent. We tested a wide range of testosterone doses using two spatial memory tasks: a working-reference memory version of the radial-arm maze (RAM) and an object location memory task (OLMT). Adult male Sprague-Dawley rats were castrated or sham-castrated and given daily injections of drug vehicle (Oil Sham and Oil GDX) or one of four doses of testosterone propionate (0.125, 0.250, 0.500, and 1.000 mg T) beginning seven days before the first day of behavioral tests and continuing throughout testing. For the RAM, four arms of the maze were consistently baited on each day of testing. Testosterone had a significant effect on working memory on the RAM, with the Oil Sham, 0.125 mg T, and 0.500 mg T groups performing better than the Oil GDX group. In contrast, there was no significant effect of testosterone on spatial reference memory on the RAM. For the OLMT, we tested long-term memory using a 2 h inter-trial interval between first exposure to two identical objects and re-exposure after one object had been moved. Only the 0.125 and 0.500 mg T groups showed a significant increase in exploration of the moved object during the testing trials, indicating better memory than all other groups. Testosterone replacement restored spatial memory among castrated male rats on both behavioral tasks, but there was a complex dose-response relationship; therefore, the therapeutic value of testosterone is likely sensitive to dose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Reactivity effect of spent fuel due to spatial distributions for coolant temperature and burnup

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, T.; Yamane, Y. [Nagoya Univ., Dept. of Nuclear Engineering, Nagoya, Aichi (Japan); Suyama, K. [OECD/NEA, Paris (France); Mochizuki, H. [Japan Research Institute, Ltd., Tokyo (Japan)

    2002-03-01

    We investigated the reactivity effect of spent fuel caused by the spatial distributions of coolant temperature and burnup by using the integrated burnup calculation code system SWAT. The reactivity effect which arises from taking account of the spatial coolant temperature distribution increases as the average burnup increases, and reaches the maximum value of 0.69%{delta}k/k at 50 GWd/tU when the burnup distribution is concurrently considered. When the burnup distribution is ignored, the reactivity effect decreases by approximately one-third. (author)

  1. Early handling effect on female rat spatial and non-spatial learning and memory.

    Science.gov (United States)

    Plescia, Fulvio; Marino, Rosa A M; Navarra, Michele; Gambino, Giuditta; Brancato, Anna; Sardo, Pierangelo; Cannizzaro, Carla

    2014-03-01

    This study aims at providing an insight into early handling procedures on learning and memory performance in adult female rats. Early handling procedures were started on post-natal day 2 until 21, and consisted in 15 min, daily separations of the dams from their litters. Assessment of declarative memory was carried out in the novel-object recognition task; spatial learning, reference- and working memory were evaluated in the Morris water maze (MWM). Our results indicate that early handling induced an enhancement in: (1) declarative memory, in the object recognition task, both at 1h and 24h intervals; (2) reference memory in the probe test and working memory and behavioral flexibility in the "single-trial and four-trial place learning paradigm" of the MWM. Short-term separation by increasing maternal care causes a dampening in HPA axis response in the pups. A modulated activation of the stress response may help to protect brain structures, involved in cognitive function. In conclusion, this study shows the long-term effects of a brief maternal separation in enhancing object recognition-, spatial reference- and working memory in female rats, remarking the impact of early environmental experiences and the consequent maternal care on the behavioral adaptive mechanisms in adulthood. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Spatial scale effects in environmental risk-factor modelling for diseases

    Directory of Open Access Journals (Sweden)

    Ram K. Raghavan

    2013-05-01

    Full Text Available Studies attempting to identify environmental risk factors for diseases can be seen to extract candidate variables from remotely sensed datasets, using a single buffer-zone surrounding locations from where disease status are recorded. A retrospective case-control study using canine leptospirosis data was conducted to verify the effects of changing buffer-zones (spatial extents on the risk factors derived. The case-control study included 94 case dogs predominantly selected based on positive polymerase chain reaction (PCR test for leptospires in urine, and 185 control dogs based on negative PCR. Land cover features from National Land Cover Dataset (NLCD and Kansas Gap Analysis Program (KS GAP around geocoded addresses of cases/controls were extracted using multiple buffers at every 500 m up to 5,000 m, and multivariable logistic models were used to estimate the risk of different land cover variables to dogs. The types and statistical significance of risk factors identified changed with an increase in spatial extent in both datasets. Leptospirosis status in dogs was significantly associated with developed high-intensity areas in models that used variables extracted from spatial extents of 500-2000 m, developed medium-intensity areas beyond 2,000 m and up to 3,000 m, and evergreen forests beyond 3,500 m and up to 5,000 m in individual models in the NLCD. Significant associations were seen in urban areas in models that used variables extracted from spatial extents of 500-2,500 m and forest/woodland areas beyond 2,500 m and up to 5,000 m in individual models in Kansas gap analysis programme datasets. The use of ad hoc spatial extents can be misleading or wrong, and the determination of an appropriate spatial extent is critical when extracting environmental variables for studies. Potential work-arounds for this problem are discussed.

  3. Spatial effects on the fluctuations of a nuclear power reactor

    International Nuclear Information System (INIS)

    Salinas-Rodriguez, E.; Rodriguez, R.F.; Wio, H.S.

    1990-01-01

    The effects of spatial inhomogeneities in a nuclear system are studied by using the compounding moments method. In particular, the neutron density and temperature equilibrium correlation functions are explicitly calculated for a realistic linearized nuclear reactor model described in terms of a master equation. (author)

  4. Spot size characterization of focused non-Gaussian X-ray laser beams.

    Science.gov (United States)

    Chalupský, J; Krzywinski, J; Juha, L; Hájková, V; Cihelka, J; Burian, T; Vysín, L; Gaudin, J; Gleeson, A; Jurek, M; Khorsand, A R; Klinger, D; Wabnitz, H; Sobierajski, R; Störmer, M; Tiedtke, K; Toleikis, S

    2010-12-20

    We present a new technique for the characterization of non-Gaussian laser beams which cannot be described by an analytical formula. As a generalization of the beam spot area we apply and refine the definition of so called effective area (A(eff)) [1] in order to avoid using the full-width at half maximum (FWHM) parameter which is inappropriate for non-Gaussian beams. Furthermore, we demonstrate a practical utilization of our technique for a femtosecond soft X-ray free-electron laser. The ablative imprints in poly(methyl methacrylate) - PMMA and amorphous carbon (a-C) are used to characterize the spatial beam profile and to determine the effective area. Two procedures of the effective area determination are presented in this work. An F-scan method, newly developed in this paper, appears to be a good candidate for the spatial beam diagnostics applicable to lasers of various kinds.

  5. Effects of Piecewise Spatial Smoothing in 4-D SPECT Reconstruction

    Science.gov (United States)

    Qi, Wenyuan; Yang, Yongyi; King, Michael A.

    2014-02-01

    In nuclear medicine, cardiac gated SPECT images are known to suffer from significantly increased noise owing to limited data counts. Consequently, spatial (and temporal) smoothing has been indispensable for suppressing the noise artifacts in SPECT reconstruction. However, recently we demonstrated that the benefit of spatial processing in motion-compensated reconstruction of gated SPECT (aka 4-D) could be outweighed by its adverse effects on the myocardium, which included degraded wall motion and perfusion defect detectability. In this work, we investigate whether we can alleviate these adverse effects by exploiting an alternative spatial smoothing prior in 4-D based on image total variation (TV). TV based prior is known to induce piecewise smoothing which can preserve edge features (such as boundaries of the heart wall) in reconstruction. However, it is not clear whether such a property would necessarily be beneficial for improving the accuracy of the myocardium in 4-D reconstruction. In particular, it is unknown whether it would adversely affect the detectability of perfusion defects that are small in size or low in contrast. In our evaluation study, we first use Monte Carlo simulated imaging with 4-D NURBS-based cardiac-torso (NCAT) phantom wherein the ground truth is known for quantitative comparison. We evaluated the accuracy of the reconstructed myocardium using a number of metrics, including regional and overall accuracy of the myocardium, accuracy of the phase activity curve (PAC) of the LV wall for wall motion, uniformity and spatial resolution of the LV wall, and detectability of perfusion defects using a channelized Hotelling observer (CHO). For lesion detection, we simulated perfusion defects with different sizes and contrast levels with the focus being on perfusion defects that are subtle. As a preliminary demonstration, we also tested on three sets of clinical acquisitions. From the quantitative results, it was demonstrated that TV smoothing could

  6. Sex differences in stress effects on response and spatial memory formation.

    Science.gov (United States)

    Guenzel, Friederike M; Wolf, Oliver T; Schwabe, Lars

    2014-03-01

    Stress and stress hormones are known to affect learning and memory processes. However, although effects of stress on hippocampus-dependent declarative learning and memory are well-documented, relatively little attention has been paid to the impact of stress on striatum-dependent stimulus-response (S-R) learning and memory. Recent evidence indicates that glucocorticoid stress hormones shortly after learning enhance S-R memory consolidation, whereas stress prior to retention testing impairs S-R memory retrieval. Whether stress affects also the acquisition of S-R memories in humans remains unclear. For this reason, we examined here the effects of acute stress on S-R memory formation and contrasted these stress effects with those on hippocampus-dependent spatial memory. Healthy men and women underwent a stressor (socially evaluated cold pressor test, SECPT) or a control manipulation before they completed an S-R task and two spatial learning tasks. Memory was assessed one week later. Our data showed that stress impaired S-R memory performance in men but not in women. Conversely, spatial memory was impaired by stress in women but not in men. These findings provide further evidence that stress may alter learning and memory processes beyond the hippocampus. Moreover, our data underline that participants' sex may play a critical role in the impact of stress on multiple memory systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Chapter J: Issues and challenges in the application of geostatistics and spatial-data analysis to the characterization of sand-and-gravel resources

    Science.gov (United States)

    Hack, Daniel R.

    2005-01-01

    Sand-and-gravel (aggregate) resources are a critical component of the Nation's infrastructure, yet aggregate-mining technologies lag far behind those of metalliferous mining and other sectors. Deposit-evaluation and site-characterization methodologies are antiquated, and few serious studies of the potential applications of spatial-data analysis and geostatistics have been published. However, because of commodity usage and the necessary proximity of a mine to end use, aggregate-resource exploration and evaluation differ fundamentally from comparable activities for metalliferous ores. Acceptable practices, therefore, can reflect this cruder scale. The increasing use of computer technologies is colliding with the need for sand-and-gravel mines to modernize and improve their overall efficiency of exploration, mine planning, scheduling, automation, and other operations. The emergence of megaquarries in the 21st century will also be a contributing factor. Preliminary research into the practical applications of exploratory-data analysis (EDA) have been promising. For example, EDA was used to develop a linear-regression equation to forecast freeze-thaw durability from absorption values for Lower Paleozoic carbonate rocks mined for crushed aggregate from quarries in Oklahoma. Applications of EDA within a spatial context, a method of spatial-data analysis, have also been promising, as with the investigation of undeveloped sand-and-gravel resources in the sedimentary deposits of Pleistocene Lake Bonneville, Utah. Formal geostatistical investigations of sand-and-gravel deposits are quite rare, and the primary focus of those studies that have been completed is on the spatial characterization of deposit thickness and its subsequent effect on ore reserves. A thorough investigation of a gravel deposit in an active aggregate-mining area in central Essex, U.K., emphasized the problems inherent in the geostatistical characterization of particle-size-analysis data. Beyond such factors

  8. Spatial properties of a terahertz beam generated from a two-color air plasma

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Wang, Tianwu; Buron, Jonas Christian Due

    2013-01-01

    We present a spatial characterization of terahertz (THz) beams generated from a two-color air plasma under different conditions by measuring full 3D beam profiles using a commercial THz camera. We compare two THz beam profiles emitted from plasmas generated by 35 fs and 100 fs laser pulses...... that this reduces the beam waist, and that the beam spot shape changes from Lorentzian to Gaussian. Finally, we observe a forward-propagating Gaussian THz beam by spatially filtering away the conical off-axis radiation with a 1 cm aperture......., and show that the spatial properties of the two THz beams do not change significantly. For the THz beam profile generated by the 35 fs pulse, the spatial effect of eliminating the lower frequencies is investigated by implementing two crossed polarizers working as a high-pass filter. We show...

  9. HIGH SPATIAL-RESOLUTION IMAGING OF TE INCLUSIONS IN CZT MATERIAL

    International Nuclear Information System (INIS)

    CAMARDA, G.S.; BOLOTNIKOV, A.E.; CARINI, G.A.; CUI, Y.; KOHMAN, K.T.; LI, L.; JAMES, R.B.

    2006-01-01

    We present new results from our studies of defects in current single-crystal CdZnTe material. Our previous measurements, carried out on thin (∼1 mm) and long (>12 mm) CZT detectors, indicated that small (1-20 (micro)m) Te inclusions can significantly degrade the device's energy resolution and detection efficiency. We are conducting detailed studies of the effects of Te inclusions by employing different characterization techniques with better spatial resolution, such as quantitative fluorescence mapping, X-ray micro-diffraction, and TEM. Also, IR microscopy and gamma-mapping with pulse-shape analysis with higher spatial resolution generated more accurate results in the areas surrounding the micro-defects (Te inclusions). Our results reveal how the performance of CdZnTe detectors is influenced by Te inclusions, such as their spatial distribution, concentration, and size. We also discuss a model of charge transport through areas populated with Te inclusions

  10. Electroluminescence analysis for spatial characterization of parasitic optical losses in silicon heterojunction solar cells

    Science.gov (United States)

    Ahmed, Nuha; Zhang, Lei; Sriramagiri, Gowri; Das, Ujjwal; Hegedus, Steven

    2018-04-01

    Electroluminescence (EL) coupled with reflection measurements are used to spatially quantify optical losses in silicon heterojunction solar cells due to plasmonic absorption in the metal back contacts. The effect of indium tin oxide back reflector in decreasing this plasmonic absorption is found to increase the reflection from the back nickel (Ni)-aluminum (Al) and Al metals by ˜12% and ˜41%, respectively, in both bifacial and front junction silicon solar cells. Losses due to back reflection are calculated by comparison between the EL emission signals in high and low back reflection samples and are shown to be in agreement with standard reflection measurements. We conclude that the optical properties of the back contact can significantly influence the EL intensity which complicates the interpretation of EL as being primarily due to recombination especially when comparing two different devices with spatially varying back surface structures.

  11. The effects of spatial sampling choices on MR temperature measurements.

    Science.gov (United States)

    Todd, Nick; Vyas, Urvi; de Bever, Josh; Payne, Allison; Parker, Dennis L

    2011-02-01

    The purpose of this article is to quantify the effects that spatial sampling parameters have on the accuracy of magnetic resonance temperature measurements during high intensity focused ultrasound treatments. Spatial resolution and position of the sampling grid were considered using experimental and simulated data for two different types of high intensity focused ultrasound heating trajectories (a single point and a 4-mm circle) with maximum measured temperature and thermal dose volume as the metrics. It is demonstrated that measurement accuracy is related to the curvature of the temperature distribution, where regions with larger spatial second derivatives require higher resolution. The location of the sampling grid relative temperature distribution has a significant effect on the measured values. When imaging at 1.0 × 1.0 × 3.0 mm(3) resolution, the measured values for maximum temperature and volume dosed to 240 cumulative equivalent minutes (CEM) or greater varied by 17% and 33%, respectively, for the single-point heating case, and by 5% and 18%, respectively, for the 4-mm circle heating case. Accurate measurement of the maximum temperature required imaging at 1.0 × 1.0 × 3.0 mm(3) resolution for the single-point heating case and 2.0 × 2.0 × 5.0 mm(3) resolution for the 4-mm circle heating case. Copyright © 2010 Wiley-Liss, Inc.

  12. Preexposure effects in spatial learning: From gestaltic to associative and attentional cognitive maps

    Directory of Open Access Journals (Sweden)

    Edward S. Redhead

    2002-01-01

    Full Text Available In this paper a series of studies and theoretical proposals about how preexposure to environmental cues affects subsequent spatial learning are reviewed. Traditionally, spatial learning had been thought to depend on gestaltic non-associative processes, and well established phenomena such as latent learning or instantaneous transfer have been taken to provide evidence for this sort of cognitive mapping. However, reviewing the literature examining these effects reveals that there is no need to advocate for gestaltic processes since standard associative learning theory provides an adequate framework for accounting for navigation skills. Recent studies reveal that attentional processes play a role in spatial learning. The need for an integrated attentional and associative approach to explain spatial learning is discussed.

  13. Spatial analysis of weed patterns

    NARCIS (Netherlands)

    Heijting, S.

    2007-01-01

    Keywords: Spatial analysis, weed patterns, Mead’s test, space-time correlograms, 2-D correlograms, dispersal, Generalized Linear Models, heterogeneity, soil, Taylor’s power law. Weeds in agriculture occur in patches. This thesis is a contribution to the characterization of this patchiness, to its

  14. Spatial interactions database development for effective probabilistic risk assessment

    International Nuclear Information System (INIS)

    Liming, J. K.; Dunn, R. F.

    2008-01-01

    In preparation for a subsequent probabilistic risk assessment (PRA) fire risk analysis update, the STP Nuclear Operating Company (STPNOC) is updating its spatial interactions database (SID). This work is being performed to support updating the spatial interactions analysis (SIA) initially performed for the original South Texas Project Electric Generating Station (STPEGS) probabilistic safely assessment (PSA) and updated in the STPEGS Level 2 PSA and IPE Report. S/A is a large-scope screening analysis performed for nuclear power plant PRA that serves as a prerequisite basis for more detailed location-dependent, hazard-spec analyses in the PRA, such as fire risk analysis, flooding risk analysis, etc. SIA is required to support the 'completeness' argument for the PRA scope. The objectives of the current SID development effort are to update the spatial interactions analysis data, to the greatest degree practical, to be consistent with the following: the as-built plant as of December 31, 2007 the in-effect STPNOC STPEGS Units 1 and 2 PRA the current technology and intent of NUREG/CR-6850 guidance for lire risk analysis database support the requirements for PRA SIA, including fire and flooding risk analysis, established by NRC Regulatory Guide 1.200 and the ASME PRA Standard (ASME RA-S-2002 updated through ASME RA-Sc-2007,) This paper presents the approach and methodology for state-of-the-art SID development and applications, including an overview of the SIA process for nuclear power plant PRA. The paper shows how current relational database technology and existing, conventional station information sources can be employed to collect, process, and analyze spatial interactions data for the plant in an effective and efficient manner to meet the often challenging requirements of industry guidelines and standards such as NUREG/CR-6850, NRC Regulatory Guide 1.200, and ASME RA-S-2002 (updated through ASME RA-Sc 2007). This paper includes tables and figures illustrating how SIA

  15. What Contributes to the Split-Attention Effect? The Role of Text Segmentation, Picture Labelling, and Spatial Proximity

    Science.gov (United States)

    Florax, Mareike; Ploetzner, Rolf

    2010-01-01

    In the split-attention effect spatial proximity is frequently considered to be pivotal. The transition from a spatially separated to a spatially integrated format not only involves changes in spatial proximity, but commonly necessitates text segmentation and picture labelling as well. In an experimental study, we investigated the influence of…

  16. Characterization of solar cells. New techniques with high spatial resolution; Entwicklung neuer Verfahren zur raeumlich hochaufloesenden Charakterisierung von Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Schwalm, Michael

    2011-06-16

    Today's raising demand for energy relies to a degree of 85% on the consumption of fossil fuels. A change to regenerative forms of energy is an important and inevitable step in order to face the challenges of climate change and fading natural resources. Photovoltaic's (PV) plays a special role within the various forms of renewable energy since it converts sunlight, our most important and virtually endless energy source, directly into electricity. However, currently available PV-systems are still very expensive and, in combination with their relatively low performance, can hardly or cannot compete with conventional sources of energy from an economical point of view. One possibility to overcome this problem is the combination of highly efficient multi junction solar cells with cost-efficient concentrator optics that focus the incident sunlight to a small spot. The material system (GaIn)(NAs) is envisioned to play an important role in a future generation of multi junction solar cells for concentrator applications being a further development of existing device concepts. However, especially the carrier diffusion lengths in (GaIn)(NAs)-based solar cell layers are currently to low for the fabrication of highly efficient PV-structures. In this work, two novel techniques for the characterization of solar cells are developed and evaluated by experiments on test structures and numerical simulations. Both are based on the measurement of laser-induced currents. Spatially-resolved photocurrent spectroscopy (SRPS) allows a spatially-resolved determination of locally induced photocurrents at a fixed bias voltage while spatially-resolved IV-characteristics (SRIV) are measurements of local I-V-characteristics at a certain position. It is found that SRPS and SRIV allow for a reliable and meaningful characterization of solar cell prototypes with a high spatial resolution. Especially the local p-n-parameters of the sample become accessible. These are the short circuit current

  17. Bayesian Inference of Ecological Interactions from Spatial Data

    Directory of Open Access Journals (Sweden)

    Christopher R. Stephens

    2017-11-01

    Full Text Available The characterization and quantification of ecological interactions and the construction of species’ distributions and their associated ecological niches are of fundamental theoretical and practical importance. In this paper, we discuss a Bayesian inference framework, which, using spatial data, offers a general formalism within which ecological interactions may be characterized and quantified. Interactions are identified through deviations of the spatial distribution of co-occurrences of spatial variables relative to a benchmark for the non-interacting system and based on a statistical ensemble of spatial cells. The formalism allows for the integration of both biotic and abiotic factors of arbitrary resolution. We concentrate on the conceptual and mathematical underpinnings of the formalism, showing how, using the naive Bayes approximation, it can be used to not only compare and contrast the relative contribution from each variable, but also to construct species’ distributions and ecological niches based on an arbitrary variable type. We also show how non-linear interactions between distinct niche variables can be identified and the degree of confounding between variables accounted for.

  18. Topological Properties of Spatial Coherence Function

    International Nuclear Information System (INIS)

    Ji-Rong, Ren; Tao, Zhu; Yi-Shi, Duan

    2008-01-01

    The topological properties of the spatial coherence function are investigated rigorously. The phase singular structures (coherence vortices) of coherence function can be naturally deduced from the topological current, which is an abstract mathematical object studied previously. We find that coherence vortices are characterized by the Hopf index and Brouwer degree in topology. The coherence flux quantization and the linking of the closed coherence vortices are also studied from the topological properties of the spatial coherence function

  19. Spatial vision in Bombus terrestris

    Directory of Open Access Journals (Sweden)

    Aravin eChakravarthi

    2016-02-01

    Full Text Available Bombus terrestris is one of the most commonly used insect models to investigate visually guided behavior and spatial vision in particular. Two fundamental measures of spatial vision are spatial resolution and contrast sensitivity. In this study, we report the threshold of spatial resolution in B. terrestris and characterize the contrast sensitivity function of the bumblebee visual system for a dual choice discrimination task. We trained bumblebees in a Y-maze experimental set-up to associate a vertical sinusoidal grating with a sucrose reward, and a horizontal grating with absence of a reward. Using a logistic psychometric function, we estimated a resolution threshold of 0.21 cycles deg-1 of visual angle. This resolution is in the same range but slightly lower than that found in honeybees (Apis mellifera and A. cerana and another bumblebee species (B. impatiens. We also found that the contrast sensitivity of B. terrestris was 1.57 for the spatial frequency 0.09 cycles deg-1 and 1.26. for 0.18 cycles deg-1.

  20. Characterization of the spatial distribution of porosity in the eogenetic karst Miami Limestone using ground penetrating radar

    Science.gov (United States)

    Mount, G. J.; Comas, X.; Wright, W. J.; McClellan, M. D.

    2014-12-01

    Hydrogeologic characterization of karst limestone aquifers is difficult due to the variability in the spatial distribution of porosity and dissolution features. Typical methods for aquifer investigation, such as drilling and pump testing, are limited by the scale or spatial extent of the measurement. Hydrogeophysical techniques such as ground penetrating radar (GPR) can provide indirect measurements of aquifer properties and be expanded spatially beyond typical point measures. This investigation used a multiscale approach to identify and quantify porosity distribution in the Miami Limestone, the lithostratigraphic unit that composes the uppermost portions of the Biscayne Aquifer in Miami Dade County, Florida. At the meter scale, laboratory measures of porosity and dielectric permittivity were made on blocks of Miami Limestone using zero offset GPR, laboratory and digital image techniques. Results show good correspondence between GPR and analytical porosity estimates and show variability between 22 and 66 %. GPR measurements at the field scale 10-1000 m investigated the bulk porosity of the limestone based on the assumption that a directly measured water table would remain at a consistent depth in the GPR reflection record. Porosity variability determined from the changes in the depth to water table resulted in porosity values that ranged from 33 to 61 %, with the greatest porosity variability being attributed to the presence of dissolution features. At the larger field scales, 100 - 1000 m, fitting of hyperbolic diffractions in GPR common offsets determined the vertical and horizontal variability of porosity in the saturated subsurface. Results indicate that porosity can vary between 23 and 41 %, and delineate potential areas of enhanced recharge or groundwater / surface water interactions. This study shows porosity variability in the Miami Limestone can range from 22 to 66 % within 1.5 m distances, with areas of high macroporosity or karst dissolution features

  1. Effects of spatial and selective attention on basic multisensory integration

    DEFF Research Database (Denmark)

    Gondan, Matthias; Blurton, Steven Paul; Hughes, F.

    2011-01-01

    underlying the RSE. We investigated the role of spatial and selective attention on the RSE in audiovisual redundant signals tasks. In Experiment 1, stimuli were presented either centrally (narrow attentional focus) or at 1 of 3 unpredictable locations (wide focus). The RSE was accurately described...... task) or to central stimuli only (selective attention task). The RSE was consistent with task-specific coactivation models; accumulation of evidence, however, differed between the 2 tasks....... by a coactivation model assuming linear superposition of modality-specific activation. Effects of spatial attention were explained by a shift of the evidence criterion. In Experiment 2, stimuli were presented at 3 locations; participants had to respond either to all signals regardless of location (simple response...

  2. Does the edge effect impact on the measure of spatial accessibility to healthcare providers?

    Science.gov (United States)

    Gao, Fei; Kihal, Wahida; Le Meur, Nolwenn; Souris, Marc; Deguen, Séverine

    2017-12-11

    Spatial accessibility indices are increasingly applied when investigating inequalities in health. Although most studies are making mentions of potential errors caused by the edge effect, many acknowledge having neglected to consider this concern by establishing spatial analyses within a finite region, settling for hypothesizing that accessibility to facilities will be under-reported. Our study seeks to assess the effect of edge on the accuracy of defining healthcare provider access by comparing healthcare provider accessibility accounting or not for the edge effect, in a real-world application. This study was carried out in the department of Nord, France. The statistical unit we use is the French census block known as 'IRIS' (Ilot Regroupé pour l'Information Statistique), defined by the National Institute of Statistics and Economic Studies. The geographical accessibility indicator used is the "Index of Spatial Accessibility" (ISA), based on the E2SFCA algorithm. We calculated ISA for the pregnant women population by selecting three types of healthcare providers: general practitioners, gynecologists and midwives. We compared ISA variation when accounting or not edge effect in urban and rural zones. The GIS method was then employed to determine global and local autocorrelation. Lastly, we compared the relationship between socioeconomic distress index and ISA, when accounting or not for the edge effect, to fully evaluate its impact. The results revealed that on average ISA when offer and demand beyond the boundary were included is slightly below ISA when not accounting for the edge effect, and we found that the IRIS value was more likely to deteriorate than improve. Moreover, edge effect impact can vary widely by health provider type. There is greater variability within the rural IRIS group than within the urban IRIS group. We found a positive correlation between socioeconomic distress variables and composite ISA. Spatial analysis results (such as Moran's spatial

  3. PID temperature controller in pig nursery: spatial characterization of thermal environment

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar

    2018-05-01

    The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.

  4. PID temperature controller in pig nursery: spatial characterization of thermal environment

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar

    2017-11-01

    The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.

  5. PID temperature controller in pig nursery: spatial characterization of thermal environment.

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar

    2017-11-28

    The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.

  6. Effect of teaching mathematics using GeoGebra on students' with dissimilar spatial visualisation

    Science.gov (United States)

    Bakar, Kamariah Abu; Ayub, Ahmad Fauzi Mohd; Tarmizi, Rohani Ahmad; Luan, Wong Su

    2015-10-01

    This study examined the effects of GeoGebra on mathematics performance of students with different spatial visualization. A qusai-experimental, pretest-posttest control group design was conducted. A total of 71 students from two intact groups were involved in the study. They were in two groups and each group was randonly assigned to the experimental group (36 students) and control group (35 students). A spatial visual test to identify students with high or low visualization, and a mathematics performance pre-test were administered at the initial stage of this study. A post-test was administered after 12 weeks of treatment using GeoGebra. Analyses of Covarion (ANCOVA) was used to adjust for the pre-test score. Findings showed that the group with access to GeoGebra achieved significantly better test scores in the posttest as compared to the group which followed the traditional teaching method. A two-way ANCOVA used to analyse the effect of students' spatial visualization on post-test performance showed that there was no effect. The results from this study suggested that using GeoGebra had helped the students to score better in the posttest. However, there is no significance difference on mathematics performances on students with difference types of spatial visualisastion. This study indicates that GeoGebra is useful in enhancing the teaching and learning of mathematics.

  7. Spatial variability in floodplain sedimentation: the use of generalized linear mixed-effects models

    Directory of Open Access Journals (Sweden)

    A. Cabezas

    2010-08-01

    Full Text Available Sediment, Total Organic Carbon (TOC and total nitrogen (TN accumulation during one overbank flood (1.15 y return interval were examined at one reach of the Middle Ebro River (NE Spain for elucidating spatial patterns. To achieve this goal, four areas with different geomorphological features and located within the study reach were examined by using artificial grass mats. Within each area, 1 m2 study plots consisting of three pseudo-replicates were placed in a semi-regular grid oriented perpendicular to the main channel. TOC, TN and Particle-Size composition of deposited sediments were examined and accumulation rates estimated. Generalized linear mixed-effects models were used to analyze sedimentation patterns in order to handle clustered sampling units, specific-site effects and spatial self-correlation between observations. Our results confirm the importance of channel-floodplain morphology and site micro-topography in explaining sediment, TOC and TN deposition patterns, although the importance of other factors as vegetation pattern should be included in further studies to explain small-scale variability. Generalized linear mixed-effect models provide a good framework to deal with the high spatial heterogeneity of this phenomenon at different spatial scales, and should be further investigated in order to explore its validity when examining the importance of factors such as flood magnitude or suspended sediment concentration.

  8. The spatial impact of neighbouring on the exports activities of COMESA countries by using spatial panel models

    Science.gov (United States)

    Hamzalouh, L.; Ismail, M. T.; Rahman, R. A.

    2017-09-01

    In this paper, spatial panel models were used and the method for selecting the best model amongst the spatial fixed effects model and the spatial random effects model to estimate the fitting model by using the robust Hausman test for analysis of the exports pattern of the Common Market for Eastern and Southern African (COMESA) countries. And examine the effects of the interactions of the economic statistic of explanatory variables on the exports of the COMESA. Results indicated that the spatial Durbin model with fixed effects specification should be tested and considered in most cases of this study. After that, the direct and indirect effects among COMESA regions were assessed, and the role of indirect spatial effects in estimating exports was empirically demonstrated. Regarding originality and research value, and to the best of the authors’ knowledge, this is the first attempt to examine exports between COMESA and its member countries through spatial panel models using XSMLE, which is a new command for spatial analysis using STATA.

  9. Characterizing the Diurnal Cycle of Land Surface Temperature and Evapotranspiration at High Spatial Resolution Using Thermal Observations from sUAS.

    Science.gov (United States)

    Dutta, D.; Drewry, D.; Johnson, W. R.

    2017-12-01

    The surface temperature of plant canopies is an important indicator of the stomatal regulation of plant water use and the associated water flux from plants to atmosphere (evapotranspiration (ET)). Remotely sensed thermal observations using compact, low-cost, lightweight sensors from small unmanned aerial systems (sUAS) have the potential to provide surface temperature (ST) and ET estimates at unprecedented spatial and temporal resolutions, allowing us to characterize the intra-field diurnal variations in canopy ST and ET for a variety of vegetation systems. However, major challenges exist for obtaining accurate surface temperature estimates from low-cost uncooled microbolometer-type sensors. Here we describe the development of calibration methods using thermal chamber experiments, taking into account the ambient optics and sensor temperatures, and applying simple models of spatial non-uniformity correction to the sensor focal-plane-array. We present a framework that can be used to derive accurate surface temperatures using radiometric observations from low-cost sensors, and demonstrate this framework using a sUAS-mounted sensor across a diverse set of calibration and vegetation targets. Further, we demonstrate the use of the Surface Temperature Initiated Closure (STIC) model for computing spatially explicit, high spatial resolution ET estimates across several well-monitored agricultural systems, as driven by sUAS acquired surface temperatures. STIC provides a physically-based surface energy balance framework for the simultaneous retrieval of the surface and atmospheric vapor conductances and surface energy fluxes, by physically integrating radiometric surface temperature information into the Penman-Monteith equation. Results of our analysis over agricultural systems in Ames, IA and Davis, CA demonstrate the power of this approach for quantifying the intra-field spatial variability in the diurnal cycle of plant water use at sub-meter resolutions.

  10. The effect of perceptual load on tactile spatial attention: Evidence from event-related potentials.

    Science.gov (United States)

    Gherri, Elena; Berreby, Fiona

    2017-10-15

    To investigate whether tactile spatial attention is modulated by perceptual load, behavioural and electrophysiological measures were recorded during two spatial cuing tasks in which the difficulty of the target/non-target discrimination was varied (High and Low load tasks). Moreover, to study whether attentional modulations by load are sensitive to the availability of visual information, the High and Low load tasks were carried out under both illuminated and darkness conditions. ERPs to cued and uncued non-targets were compared as a function of task (High vs. Low load) and illumination condition (Light vs. Darkness). Results revealed that the locus of tactile spatial attention was determined by a complex interaction between perceptual load and illumination conditions during sensory-specific stages of processing. In the Darkness, earlier effects of attention were present in the High load than in the Low load task, while no difference between tasks emerged in the Light. By contrast, increased load was associated with stronger attention effects during later post-perceptual processing stages regardless of illumination conditions. These findings demonstrate that ERP correlates of tactile spatial attention are strongly affected by the perceptual load of the target/non-target discrimination. However, differences between illumination conditions show that the impact of load on tactile attention depends on the presence of visual information. Perceptual load is one of the many factors that contribute to determine the effects of spatial selectivity in touch. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Quantifying spatial heterogeneity from images

    International Nuclear Information System (INIS)

    Pomerantz, Andrew E; Song Yiqiao

    2008-01-01

    Visualization techniques are extremely useful for characterizing natural materials with complex spatial structure. Although many powerful imaging modalities exist, simple display of the images often does not convey the underlying spatial structure. Instead, quantitative image analysis can extract the most important features of the imaged object in a manner that is easier to comprehend and to compare from sample to sample. This paper describes the formulation of the heterogeneity spectrum to show the extent of spatial heterogeneity as a function of length scale for all length scales to which a particular measurement is sensitive. This technique is especially relevant for describing materials that simultaneously present spatial heterogeneity at multiple length scales. In this paper, the heterogeneity spectrum is applied for the first time to images from optical microscopy. The spectrum is measured for thin section images of complex carbonate rock cores showing heterogeneity at several length scales in the range 10-10 000 μm.

  12. Effects of cue types on sex differences in human spatial memory.

    Science.gov (United States)

    Chai, Xiaoqian J; Jacobs, Lucia F

    2010-04-02

    We examined the effects of cue types on human spatial memory in 3D virtual environments adapted from classical animal and human tasks. Two classes of cues of different functions were investigated: those that provide directional information, and those that provide positional information. Adding a directional cue (geographical slant) to the spatial delayed-match-to-sample task improved performance in males but not in females. When the slant directional cue was removed in a hidden-target location task, male performance was impaired but female performance was unaffected. The removal of positional cues, on the other hand, impaired female performance but not male performance. These results are consistent with results from laboratory rodents and thus support the hypothesis that sex differences in spatial memory arise from the dissociation between a preferential reliance on directional cues in males and on positional cues in females. Copyright 2009 Elsevier B.V. All rights reserved.

  13. Spatial and temporal variability across life's hierarchies in the terrestrial Antarctic

    OpenAIRE

    Chown, Steven L; Convey, Peter

    2007-01-01

    Antarctica and its surrounding islands lie at one extreme of global variation in diversity. Typically, these regions are characterized as being species poor and having simple food webs. Here, we show that terrestrial systems in the region are nonetheless characterized by substantial spatial and temporal variations at virtually all of the levels of the genealogical and ecological hierarchies which have been thoroughly investigated. Spatial variation at the individual and population levels has ...

  14. Characterization of stochastic spatially and spectrally partially coherent electromagnetic pulsed beams

    International Nuclear Information System (INIS)

    Ding Chaoliang; Lue Baida; Pan Liuzhan

    2009-01-01

    The unified theory of coherence and polarization proposed by Wolf is extended from stochastic stationary electromagnetic beams to stochastic spatially and spectrally partially coherent electromagnetic pulsed beams. Taking the stochastic electromagnetic Gaussian Schell-model pulsed (GSMP) beam as a typical example of stochastic spatially and spectrally partially coherent electromagnetic pulsed beams, the expressions for the spectral density, spectral degree of polarization and spectral degree of coherence of stochastic electromagnetic GSMP beams propagating in free space are derived. Some special cases are analyzed. The illustrative examples are given and the results are interpreted physically.

  15. Exploring the Structure of Spatial Representations

    Science.gov (United States)

    Madl, Tamas; Franklin, Stan; Chen, Ke; Trappl, Robert; Montaldi, Daniela

    2016-01-01

    It has been suggested that the map-like representations that support human spatial memory are fragmented into sub-maps with local reference frames, rather than being unitary and global. However, the principles underlying the structure of these ‘cognitive maps’ are not well understood. We propose that the structure of the representations of navigation space arises from clustering within individual psychological spaces, i.e. from a process that groups together objects that are close in these spaces. Building on the ideas of representational geometry and similarity-based representations in cognitive science, we formulate methods for learning dissimilarity functions (metrics) characterizing participants’ psychological spaces. We show that these learned metrics, together with a probabilistic model of clustering based on the Bayesian cognition paradigm, allow prediction of participants’ cognitive map structures in advance. Apart from insights into spatial representation learning in human cognition, these methods could facilitate novel computational tools capable of using human-like spatial concepts. We also compare several features influencing spatial memory structure, including spatial distance, visual similarity and functional similarity, and report strong correlations between these dimensions and the grouping probability in participants’ spatial representations, providing further support for clustering in spatial memory. PMID:27347681

  16. Spatial features register: toward standardization of spatial features

    Science.gov (United States)

    Cascio, Janette

    1994-01-01

    As the need to share spatial data increases, more than agreement on a common format is needed to ensure that the data is meaningful to both the importer and the exporter. Effective data transfer also requires common definitions of spatial features. To achieve this, part 2 of the Spatial Data Transfer Standard (SDTS) provides a model for a spatial features data content specification and a glossary of features and attributes that fit this model. The model provides a foundation for standardizing spatial features. The glossary now contains only a limited subset of hydrographic and topographic features. For it to be useful, terms and definitions must be included for other categories, such as base cartographic, bathymetric, cadastral, cultural and demographic, geodetic, geologic, ground transportation, international boundaries, soils, vegetation, water, and wetlands, and the set of hydrographic and topographic features must be expanded. This paper will review the philosophy of the SDTS part 2 and the current plans for creating a national spatial features register as one mechanism for maintaining part 2.

  17. The gravity of pollination: integrating at-site features into spatial analysis of contemporary pollen movement.

    Science.gov (United States)

    DiLeo, Michelle F; Siu, Jenna C; Rhodes, Matthew K; López-Villalobos, Adriana; Redwine, Angela; Ksiazek, Kelly; Dyer, Rodney J

    2014-08-01

    Pollen-mediated gene flow is a major driver of spatial genetic structure in plant populations. Both individual plant characteristics and site-specific features of the landscape can modify the perceived attractiveness of plants to their pollinators and thus play an important role in shaping spatial genetic variation. Most studies of landscape-level genetic connectivity in plants have focused on the effects of interindividual distance using spatial and increasingly ecological separation, yet have not incorporated individual plant characteristics or other at-site ecological variables. Using spatially explicit simulations, we first tested the extent to which the inclusion of at-site variables influencing local pollination success improved the statistical characterization of genetic connectivity based upon examination of pollen pool genetic structure. The addition of at-site characteristics provided better models than those that only considered interindividual spatial distance (e.g. IBD). Models parameterized using conditional genetic covariance (e.g. population graphs) also outperformed those assuming panmixia. In a natural population of Cornus florida L. (Cornaceae), we showed that the addition of at-site characteristics (clumping of primary canopy opening above each maternal tree and maternal tree floral output) provided significantly better models describing gene flow than models including only between-site spatial (IBD) and ecological (isolation by resistance) variables. Overall, our results show that including interindividual and local ecological variation greatly aids in characterizing landscape-level measures of contemporary gene flow. © 2014 John Wiley & Sons Ltd.

  18. Study on Spatial Spillover Effects of Logistics Industry Development for Economic Growth in the Yangtze River Delta City Cluster Based on Spatial Durbin Model.

    Science.gov (United States)

    Xu, Xinxing; Wang, Yuhong

    2017-12-04

    The overall entropy method is used to evaluate the development level of the logistics industry in the city based on a mechanism analysis of the spillover effect of the development of the logistics industry on economic growth, according to the panel data of 26 cities in the Yangtze River delta. On this basis, the paper uses the spatial durbin model to study the direct impact of the development of the logistics industry on economic growth and the spatial spillover effect. The results show that the direct impact coefficient of the development of the logistics industry in the Yangtze River Delta urban agglomeration on local economic growth is 0.092, and the significant spatial spillover effect on the economic growth in the surrounding area is 0.197. Compared with the labor force input, capital investment and the degree of opening to the world, and government functions, the logistics industry's direct impact coefficient is the largest, other than capital investment; the coefficient of the spillover effect is higher than other control variables, making it a "strong engine" of the Yangtze River Delta urban agglomeration economic growth.

  19. The impact of path crossing on visuo-spatial serial memory: encoding or rehearsal effect?

    Science.gov (United States)

    Parmentier, Fabrice B R; Andrés, Pilar

    2006-11-01

    The determinants of visuo-spatial serial memory have been the object of little research, despite early evidence that not all sequences are equally remembered. Recently, empirical evidence was reported indicating that the complexity of the path formed by the to-be-remembered locations impacted on recall performance, defined for example by the presence of crossings in the path formed by successive locations (Parmentier, Elford, & Maybery, 2005). In this study, we examined whether this effect reflects rehearsal or encoding processes. We examined the effect of a retention interval and spatial interference on the ordered recall of spatial sequences with and without path crossings. Path crossings decreased recall performance, as did a retention interval. In line with the encoding hypothesis, but in contrast with the rehearsal hypothesis, the effect of crossing was not affected by the retention interval nor by tapping. The possible nature of the impact of path crossing on encoding mechanisms is discussed.

  20. Effect of Variable Spatial Scales on USLE-GIS Computations

    Science.gov (United States)

    Patil, R. J.; Sharma, S. K.

    2017-12-01

    Use of appropriate spatial scale is very important in Universal Soil Loss Equation (USLE) based spatially distributed soil erosion modelling. This study aimed at assessment of annual rates of soil erosion at different spatial scales/grid sizes and analysing how changes in spatial scales affect USLE-GIS computations using simulation and statistical variabilities. Efforts have been made in this study to recommend an optimum spatial scale for further USLE-GIS computations for management and planning in the study area. The present research study was conducted in Shakkar River watershed, situated in Narsinghpur and Chhindwara districts of Madhya Pradesh, India. Remote Sensing and GIS techniques were integrated with Universal Soil Loss Equation (USLE) to predict spatial distribution of soil erosion in the study area at four different spatial scales viz; 30 m, 50 m, 100 m, and 200 m. Rainfall data, soil map, digital elevation model (DEM) and an executable C++ program, and satellite image of the area were used for preparation of the thematic maps for various USLE factors. Annual rates of soil erosion were estimated for 15 years (1992 to 2006) at four different grid sizes. The statistical analysis of four estimated datasets showed that sediment loss dataset at 30 m spatial scale has a minimum standard deviation (2.16), variance (4.68), percent deviation from observed values (2.68 - 18.91 %), and highest coefficient of determination (R2 = 0.874) among all the four datasets. Thus, it is recommended to adopt this spatial scale for USLE-GIS computations in the study area due to its minimum statistical variability and better agreement with the observed sediment loss data. This study also indicates large scope for use of finer spatial scales in spatially distributed soil erosion modelling.

  1. Effects of spatial aggregation on the multi-scale estimation of evapotranspiration

    KAUST Repository

    Ershadi, Ali; McCabe, Matthew; Evans, Jason P.; Walker, Jeffrey P.

    2013-01-01

    The influence of spatial resolution on the estimation of land surface heat fluxes from remote sensing is poorly understood. In this study, the effects of aggregation from fine (< 100 m) to medium (approx. 1. km) scales are investigated using high

  2. Characterization for capillary barriers effects in a sand box test using time-lapsed GPR measurements

    Science.gov (United States)

    Kuroda, S.; Ishii, N.; Morii, T.

    2017-12-01

    Capillary barriers have been known as the method to protect subsurface regions against infiltration from soil surface. It is caused by essentially heterogeneous structure in permeability or soil physical property and produce non-uniform infiltration process then, in order to estimate the actual situation of the capillary barrier effect, the site-characterization with imaging technique like geophysical prospecting is effective. In this study, we examine the applicability of GPR to characterization for capillary barriers. We built a sand box with 90x340x90cm in which a thin high-permeable gravel layer was embedded as a capillary barrier. We conducted an infiltration test in the sand box using porous tube array for irrigation. It is expected to lead to non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed common offset profiling (COP) with multi- frequency antenna and transmission measurements like cross-borehole radar. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur or not. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the

  3. Spatio-temporal structure, path characteristics and perceptual grouping in immediate serial spatial recall

    Directory of Open Access Journals (Sweden)

    Carlo De Lillo

    2016-11-01

    Full Text Available Immediate serial spatial recall measures the ability to retain sequences of locations in short-term memory and is considered the spatial equivalent of digit span. It is tested by requiring participants to reproduce sequences of movements performed by an experimenter or displayed on a monitor. Different organizational factors dramatically affect serial spatial recall but they are often confounded or underspecified. Untangling them is crucial for the characterization of working-memory models and for establishing the contribution of structure and memory capacity to spatial span. We report five experiments assessing the relative role and independence of factors that have been reported in the literature. Experiment 1 disentangled the effects of spatial clustering and path-length by manipulating the distance of items displayed on a touchscreen monitor. Long-path sequences segregated by spatial clusters were compared with short-path sequences not segregated by clusters. Recall was more accurate for sequences segregated by clusters independently from path-length. Experiment 2 featured conditions where temporal pauses were introduced between or within cluster boundaries during the presentation of sequences with the same paths. Thus, the temporal structure of the sequences was either consistent or inconsistent with a hierarchical representation based on segmentation by spatial clusters but the effect of structure could not be confounded with effects of path-characteristics. Pauses at cluster boundaries yielded more accurate recall, as predicted by a hierarchical model. In Experiment 3, the systematic manipulation of sequence structure, path-length and presence of path-crossings of sequences showed that structure explained most of the variance, followed by the presence/absence of path-crossings, and path-length. Experiments 4 and 5 replicated the results of the previous experiments in immersive virtual reality navigation tasks where the viewpoint of the

  4. Effects of spatial attention on motion discrimination are greater in the left than right visual field.

    Science.gov (United States)

    Bosworth, Rain G; Petrich, Jennifer A F; Dobkins, Karen R

    2012-01-01

    In order to investigate differences in the effects of spatial attention between the left visual field (LVF) and the right visual field (RVF), we employed a full/poor attention paradigm using stimuli presented in the LVF vs. RVF. In addition, to investigate differences in the effects of spatial attention between the dorsal and ventral processing streams, we obtained motion thresholds (motion coherence thresholds and fine direction discrimination thresholds) and orientation thresholds, respectively. The results of this study showed negligible effects of attention on the orientation task, in either the LVF or RVF. In contrast, for both motion tasks, there was a significant effect of attention in the LVF, but not in the RVF. These data provide psychophysical evidence for greater effects of spatial attention in the LVF/right hemisphere, specifically, for motion processing in the dorsal stream. Published by Elsevier Ltd.

  5. Mineralocorticoid receptor stimulation effects on spatial memory in healthy young adults: A study using the virtual Morris Water Maze task.

    Science.gov (United States)

    Piber, Dominique; Schultebraucks, Katharina; Mueller, Sven C; Deuter, Christian Eric; Wingenfeld, Katja; Otte, Christian

    2016-12-01

    Stress hormones such as cortisol are known to influence a wide range of cognitive functions, including hippocampal based spatial memory. In the brain, cortisol acts via two different receptors: the glucocorticoid (GR) and the mineralocorticoid receptor (MR). As the MR has a high density in the hippocampus, we examined the effects of pharmacological MR stimulation on spatial memory. Eighty healthy participants (40 women, 40 men, mean age=23.9years±SD=3.3) completed the virtual Morris Water Maze (vMWM) task to test spatial encoding and spatial memory retrieval after receiving 0.4mg fludrocortisone, a MR agonist, or placebo. There was no effect of MR stimulation on spatial encoding during the vMWM task. However, participants who received fludrocortisone exhibited improved spatial memory retrieval performance. There was neither a main effect of sex nor a sex-by-treatment interaction. In young healthy participants, MR stimulation improved hippocampal based spatial memory retrieval in a virtual Morris Water Maze task. Our study not only confirms the importance of MR function in spatial memory, but suggests beneficial effects of acute MR stimulation on spatial memory retrieval in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Geography literation to improve spatial intelligence of high school student

    Science.gov (United States)

    Utami, WS; Zain, IM

    2018-01-01

    Spatial intelligence is deeply related to success in the STEM disciplines (science,technology, engineering, and math). spatial intelligence as a transversal capacity which is useful for everyday life but which cannot be characterized in any specific and distinctive way, as are, for example, linguistic or mathematical ability. The ability of geographical literacy relates to spatial intelligence. test results prove that the ability of high-liter geography of high school students found in students who have a good spatial intelligence score

  7. Methods used to parameterize the spatially-explicit components of a state-and-transition simulation model

    Directory of Open Access Journals (Sweden)

    Rachel R. Sleeter

    2015-06-01

    Full Text Available Spatially-explicit state-and-transition simulation models of land use and land cover (LULC increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS, a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age, spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest. Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.

  8. Methods used to parameterize the spatially-explicit components of a state-and-transition simulation model

    Science.gov (United States)

    Sleeter, Rachel; Acevedo, William; Soulard, Christopher E.; Sleeter, Benjamin M.

    2015-01-01

    Spatially-explicit state-and-transition simulation models of land use and land cover (LULC) increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS), a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age), spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest). Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.

  9. Frame Rate versus Spatial Quality: Which Video Characteristics Do Matter?

    DEFF Research Database (Denmark)

    Korhonen, Jari; Reiter, Ulrich; Ukhanova, Ann

    2013-01-01

    and temporal quality levels. We also propose simple yet powerful metrics for characterizing spatial and temporal properties of a video sequence, and demonstrate how these metrics can be applied for evaluating the relative impact of spatial and temporal quality on the perceived overall quality....

  10. Spatial Abilities of High-School Students in the Perception of Geologic Structures.

    Science.gov (United States)

    Kali, Yael; Orion, Nir

    1996-01-01

    Characterizes specific spatial abilities required in geology studies through the examination of the performance of high school students in solving structural geology problems on the geologic spatial ability test (GeoSAT). Concludes that visual penetration ability and the ability to perceive the spatial configuration of the structure are…

  11. Effect of Action Video Games on the Spatial Distribution of Visuospatial Attention

    Science.gov (United States)

    Green, C. Shawn; Bavelier, Daphne

    2006-01-01

    The authors investigated the effect of action gaming on the spatial distribution of attention. The authors used the flanker compatibility effect to separately assess center and peripheral attentional resources in gamers versus nongamers. Gamers exhibited an enhancement in attentional resources compared with nongamers, not only in the periphery but…

  12. Improving visual spatial working memory in younger and older adults: effects of cross-modal cues.

    Science.gov (United States)

    Curtis, Ashley F; Turner, Gary R; Park, Norman W; Murtha, Susan J E

    2017-11-06

    Spatially informative auditory and vibrotactile (cross-modal) cues can facilitate attention but little is known about how similar cues influence visual spatial working memory (WM) across the adult lifespan. We investigated the effects of cues (spatially informative or alerting pre-cues vs. no cues), cue modality (auditory vs. vibrotactile vs. visual), memory array size (four vs. six items), and maintenance delay (900 vs. 1800 ms) on visual spatial location WM recognition accuracy in younger adults (YA) and older adults (OA). We observed a significant interaction between spatially informative pre-cue type, array size, and delay. OA and YA benefitted equally from spatially informative pre-cues, suggesting that attentional orienting prior to WM encoding, regardless of cue modality, is preserved with age.  Contrary to predictions, alerting pre-cues generally impaired performance in both age groups, suggesting that maintaining a vigilant state of arousal by facilitating the alerting attention system does not help visual spatial location WM.

  13. Aging Effect on Audiovisual Integrative Processing in Spatial Discrimination Task

    Directory of Open Access Journals (Sweden)

    Zhi Zou

    2017-11-01

    Full Text Available Multisensory integration is an essential process that people employ daily, from conversing in social gatherings to navigating the nearby environment. The aim of this study was to investigate the impact of aging on modulating multisensory integrative processes using event-related potential (ERP, and the validity of the study was improved by including “noise” in the contrast conditions. Older and younger participants were involved in perceiving visual and/or auditory stimuli that contained spatial information. The participants responded by indicating the spatial direction (far vs. near and left vs. right conveyed in the stimuli using different wrist movements. electroencephalograms (EEGs were captured in each task trial, along with the accuracy and reaction time of the participants’ motor responses. Older participants showed a greater extent of behavioral improvements in the multisensory (as opposed to unisensory condition compared to their younger counterparts. Older participants were found to have fronto-centrally distributed super-additive P2, which was not the case for the younger participants. The P2 amplitude difference between the multisensory condition and the sum of the unisensory conditions was found to correlate significantly with performance on spatial discrimination. The results indicated that the age-related effect modulated the integrative process in the perceptual and feedback stages, particularly the evaluation of auditory stimuli. Audiovisual (AV integration may also serve a functional role during spatial-discrimination processes to compensate for the compromised attention function caused by aging.

  14. Effect of gel texture and sucrose spatial distribution on sweetness perception

    NARCIS (Netherlands)

    Mosca, A.C.; Velde, van de F.; Bult, J.H.F.; Boekel, van M.A.J.S.; Stieger, M.A.

    2012-01-01

    Layered gels differing in mechanical and breakdown properties (soft, medium and hard gels) and in the distribution of sucrose in the matrix (homogeneous and inhomogeneous distributions) were used to investigate the effects of texture and spatial distribution of sucrose on sweetness perception.

  15. An Innovative Metric to Evaluate Satellite Precipitation's Spatial Distribution

    Science.gov (United States)

    Liu, H.; Chu, W.; Gao, X.; Sorooshian, S.

    2011-12-01

    Thanks to its capability to cover the mountains, where ground measurement instruments cannot reach, satellites provide a good means of estimating precipitation over mountainous regions. In regions with complex terrains, accurate information on high-resolution spatial distribution of precipitation is critical for many important issues, such as flood/landslide warning, reservoir operation, water system planning, etc. Therefore, in order to be useful in many practical applications, satellite precipitation products should possess high quality in characterizing spatial distribution. However, most existing validation metrics, which are based on point/grid comparison using simple statistics, cannot effectively measure satellite's skill of capturing the spatial patterns of precipitation fields. This deficiency results from the fact that point/grid-wised comparison does not take into account of the spatial coherence of precipitation fields. Furth more, another weakness of many metrics is that they can barely provide information on why satellite products perform well or poor. Motivated by our recent findings of the consistent spatial patterns of the precipitation field over the western U.S., we developed a new metric utilizing EOF analysis and Shannon entropy. The metric can be derived through two steps: 1) capture the dominant spatial patterns of precipitation fields from both satellite products and reference data through EOF analysis, and 2) compute the similarities between the corresponding dominant patterns using mutual information measurement defined with Shannon entropy. Instead of individual point/grid, the new metric treat the entire precipitation field simultaneously, naturally taking advantage of spatial dependence. Since the dominant spatial patterns are shaped by physical processes, the new metric can shed light on why satellite product can or cannot capture the spatial patterns. For demonstration, a experiment was carried out to evaluate a satellite

  16. Finite-volume effects due to spatially non-local operators arXiv

    CERN Document Server

    Briceño, Raúl A.; Hansen, Maxwell T.; Monahan, Christopher J.

    Spatially non-local matrix elements are useful lattice-QCD observables in a variety of contexts, for example in determining hadron structure. To quote credible estimates of the systematic uncertainties in these calculations, one must understand, among other things, the size of the finite-volume effects when such matrix elements are extracted from numerical lattice calculations. In this work, we estimate finite-volume effects for matrix elements of non-local operators, composed of two currents displaced in a spatial direction by a distance $\\xi$. We find that the finite-volume corrections depend on the details of the matrix element. If the external state is the lightest degree of freedom in the theory, e.g.~the pion in QCD, then the volume corrections scale as $ e^{-m_\\pi (L- \\xi)} $, where $m_\\pi$ is the mass of the light state. For heavier external states the usual $e^{- m_\\pi L}$ form is recovered, but with a polynomial prefactor of the form $L^m/|L - \\xi|^n$ that can lead to enhanced volume effects. These ...

  17. Spatial Tapping Interferes With the Processing of Linguistic Spatial Relations

    NARCIS (Netherlands)

    Noordzij, Matthijs Leendert; van der Lubbe, Robert Henricus Johannes; Neggers, Sebastiaan F.W.; Postma, Albert

    2004-01-01

    Simple spatial relations may be represented either in a propositional format that is dependent on verbal rehearsal or in a picture-like format that is maintained by visual-spatial rehearsal. In sentence-picture and picture-picture verification tasks, we examined the effect of an articulatory

  18. Spatial characterization of Bessel-like beams for strong-field physics.

    Science.gov (United States)

    Summers, Adam M; Yu, Xiaoming; Wang, Xinya; Raoul, Maxime; Nelson, Josh; Todd, Daniel; Zigo, Stefan; Lei, Shuting; Trallero-Herrero, Carlos A

    2017-02-06

    We present a compact, simple design for the generation and tuning of both the spot size and effective focal length of Bessel-like beams. In particular, this setup provides an important tool for the use of Bessel-like beams with high-power, femtosecond laser systems. Using a shallow angle axicon in conjunction with a spherical lens, we show that it is possible to focus Bessel-like modes to comparable focal spot sizes to sharp axicons while maintaining a long effective focal length. The resulting focal profiles are characterized in detail using an accurate high dynamic range imaging technique. Quantitatively, we introduce a metric (R0.8) which defines the spot-size containing 80% of the total energy. Our setup overcomes the typical compromise between long working distances and small spot sizes. This is particularly relevant for strong-field physics where most experiments must operate in vacuum.

  19. Multidimensional artificial field embedding with spatial sensitivity

    CSIR Research Space (South Africa)

    Lunga, D

    2013-06-01

    Full Text Available Multidimensional embedding is a technique useful for characterizing spectral signature relations in hyperspectral images. However, such images consist of disjoint similar spectral classes that are spatially sensitive, thus presenting challenges...

  20. Array-Enhanced Coherence Resonance: Nontrivial Effects of Heterogeneity and Spatial Independence of Noise

    International Nuclear Information System (INIS)

    Zhou, Changsong; Kurths, Juergen; Hu, Bambi

    2001-01-01

    We demonstrate the effect of coherence resonance in a heterogeneous array of coupled Fitz Hugh--Nagumo neurons. It is shown that coupling of such elements leads to a significantly stronger coherence compared to that of a single element. We report nontrivial effects of parameter heterogeneity and spatial independence of noise on array-enhanced coherence resonance; especially, we find that (i) the coherence increases as spatial correlation of the noise decreases, and (ii) inhomogeneity in the parameters of the array enhances the coherence. Our results have the implication that generic heterogeneity and background noise can play a constructive role to enhance the time precision of firing in neural systems

  1. Spatial Patterns of Development Drive Water Use

    Science.gov (United States)

    Sanchez, G. M.; Smith, J. W.; Terando, A.; Sun, G.; Meentemeyer, R. K.

    2018-03-01

    Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non-spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio-economic and environmental variables and two water use variables: a) domestic water use, and b) total development-related water use (a combination of public supply, domestic self-supply and industrial self-supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio-economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water-efficient land use planning.

  2. Spatial patterns of development drive water use

    Science.gov (United States)

    Sanchez, G.M.; Smith, J.W.; Terando, Adam J.; Sun, G.; Meentemeyer, R.K.

    2018-01-01

    Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non‐spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio‐economic and environmental variables and two water use variables: a) domestic water use, and b) total development‐related water use (a combination of public supply, domestic self‐supply and industrial self‐supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio‐economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water‐efficient land use planning.

  3. Effects of Thinning on the Spatial Structure of Larix principis-rupprechtii Plantation

    Directory of Open Access Journals (Sweden)

    Shengxing Ye

    2018-04-01

    Full Text Available Structure-based forest management is a scientific and easy-to-operate method for sustainable forest management. We analyzed the stand spatial structure of Larix principis-rupprechtii plantation under five reserve densities. The results indicated that with the decrease of densities after thinning, the average mingling degree and uniform angle index had an increasing tendency, but the amplitude was small. Most of the trees were in zero mix, and a few of them were in moderate, strong, and relatively strong mix; the horizontal distribution patterns were uniform or near-uniform random. The distribution of neighborhood comparison and opening degree changed with a fluctuant pattern, but thinning decreased the competitive intensities to some extent. A composite structure index (Ci was established, based on the relative importance of the above four indicators, to evaluate the overall effect of thinning on stand structure characteristics. The findings showed that Ci increased with the increase of thinning intensity, that is, the stand spatial structure became more complex. This indicated that Ci may be a simple and rapid indicator to evaluate the overall effect of thinning on stand spatial structure within densities after thinning.

  4. Spatial Characterization of Radio Propagation Channel in Urban Vehicle-to-Infrastructure Environments to Support WSNs Deployment

    Directory of Open Access Journals (Sweden)

    Fausto Granda

    2017-06-01

    Full Text Available Vehicular ad hoc Networks (VANETs enable vehicles to communicate with each other as well as with roadside units (RSUs. Although there is a significant research effort in radio channel modeling focused on vehicle-to-vehicle (V2V, not much work has been done for vehicle-to-infrastructure (V2I using 3D ray-tracing tools. This work evaluates some important parameters of a V2I wireless channel link such as large-scale path loss and multipath metrics in a typical urban scenario using a deterministic simulation model based on an in-house 3D Ray-Launching (3D-RL algorithm at 5.9 GHz. Results show the high impact that the spatial distance; link frequency; placement of RSUs; and factors such as roundabout, geometry and relative position of the obstacles have in V2I propagation channel. A detailed spatial path loss characterization of the V2I channel along the streets and avenues is presented. The 3D-RL results show high accuracy when compared with measurements, and represent more reliably the propagation phenomena when compared with analytical path loss models. Performance metrics for a real test scenario implemented with a VANET wireless sensor network implemented ad-hoc are also described. These results constitute a starting point in the design phase of Wireless Sensor Networks (WSNs radio-planning in the urban V2I deployment in terms of coverage.

  5. Effect of long-term mechanical perturbation on intertidal soft-bottom meiofaunal community spatial structure

    Science.gov (United States)

    Boldina, Inna; Beninger, Peter G.; Le Coz, Maïwen

    2014-01-01

    Situated at the interface of the microbial and macrofaunal compartments, soft-bottom meiofauna accomplish important ecological functions. However, little is known of their spatial distribution in the benthic environment. To assess the effects of long-term mechanical disturbance on soft-bottom meiofaunal spatial distribution, we compared a site subjected to long-term clam digging to a nearby site untouched by such activities, in Bourgneuf Bay, on the Atlantic coast of France. Six patterned replicate samples were taken at 3, 6, 9, 12, 15, 18, 21 and 24 cm lags, all sampling stations being separated by 5 m. A combined correlogram-variogram approach was used to enhance interpretation of the meiofaunal spatial distribution; in particular, the definition of autocorrelation strength and its statistical significance, as well as the detailed characteristics of the periodic spatial structure of nematode assemblages, and the determination of the maximum distance of their spatial autocorrelation. At both sites, nematodes and copepods clearly exhibited aggregated spatial structure at the meso scale; this structure was attenuated at the impacted site. The nematode spatial distribution showed periodicity at the non-impacted site, but not at the impacted site. This is the first explicit report of a periodic process in meiofaunal spatial distribution. No such cyclic spatial process was observed for the more motile copepods at either site. This first study to indicate the impacts of long-term anthropogenic mechanical perturbation on meiofaunal spatial structure opens the door to a new dimension of mudflat ecology. Since macrofaunal predator search behaviour is known to be strongly influenced by prey spatial structure, the alteration of this structure may have important consequences for ecosystem functioning.

  6. A Multi-Resolution Spatial Model for Large Datasets Based on the Skew-t Distribution

    KAUST Repository

    Tagle, Felipe

    2017-12-06

    Large, non-Gaussian spatial datasets pose a considerable modeling challenge as the dependence structure implied by the model needs to be captured at different scales, while retaining feasible inference. Skew-normal and skew-t distributions have only recently begun to appear in the spatial statistics literature, without much consideration, however, for the ability to capture dependence at multiple resolutions, and simultaneously achieve feasible inference for increasingly large data sets. This article presents the first multi-resolution spatial model inspired by the skew-t distribution, where a large-scale effect follows a multivariate normal distribution and the fine-scale effects follow a multivariate skew-normal distributions. The resulting marginal distribution for each region is skew-t, thereby allowing for greater flexibility in capturing skewness and heavy tails characterizing many environmental datasets. Likelihood-based inference is performed using a Monte Carlo EM algorithm. The model is applied as a stochastic generator of daily wind speeds over Saudi Arabia.

  7. Spatial arrangement of faults and opening-mode fractures

    Science.gov (United States)

    Laubach, S. E.; Lamarche, J.; Gauthier, B. D. M.; Dunne, W. M.; Sanderson, David J.

    2018-03-01

    Spatial arrangement is a fundamental characteristic of fracture arrays. The pattern of fault and opening-mode fracture positions in space defines structural heterogeneity and anisotropy in a rock volume, governs how faults and fractures affect fluid flow, and impacts our understanding of the initiation, propagation and interactions during the formation of fracture patterns. This special issue highlights recent progress with respect to characterizing and understanding the spatial arrangements of fault and fracture patterns, providing examples over a wide range of scales and structural settings. Five papers describe new methods and improvements of existing techniques to quantify spatial arrangement. One study unravels the time evolution of opening-mode fracture spatial arrangement, which are data needed to compare natural patterns with progressive fracture growth in kinematic and mechanical models. Three papers investigate the role of evolving diagenesis in localizing fractures by mechanical stratigraphy and nine discuss opening-mode fracture spatial arrangement. Two papers show the relevance of complex cluster patterns to unconventional reservoirs through examples of fractures in tight gas sandstone horizontal wells, and a study of fracture arrangement in shale. Four papers demonstrate the roles of folds in fracture localization and the development spatial patterns. One paper models along-fault friction and fluid pressure and their effects on fault-related fracture arrangement. Contributions address deformation band patterns in carbonate rocks and fault size and arrangement above a detachment fault. Three papers describe fault and fracture arrangements in basement terrains, and three document fracture patterns in shale. This collection of papers points toward improvement in field methods, continuing improvements in computer-based data analysis and creation of synthetic fracture patterns, and opportunities for further understanding fault and fracture attributes in

  8. Spatial dynamics of a nutrient-phytoplankton system with toxic effect on phytoplankton.

    Science.gov (United States)

    Chakraborty, Subhendu; Tiwari, P K; Misra, A K; Chattopadhyay, J

    2015-06-01

    The production of toxins by some species of phytoplankton is known to have several economic, ecological, and human health impacts. However, the role of toxins on the spatial distribution of phytoplankton is not well understood. In the present study, the spatial dynamics of a nutrient-phytoplankton system with toxic effect on phytoplankton is investigated. We analyze the linear stability of the system and obtain the condition for Turing instability. In the presence of toxic effect, we find that the distribution of nutrient and phytoplankton becomes inhomogeneous in space and results in different patterns, like stripes, spots, and the mixture of them depending on the toxicity level. We also observe that the distribution of nutrient and phytoplankton shows spatiotemporal oscillation for certain toxicity level. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Virtual Reality As A Spatial Experience For Architecture Design: A Study of Effectiveness for Architecture Students

    Directory of Open Access Journals (Sweden)

    Sapto Pamungkas Luhur

    2018-01-01

    Full Text Available Studios. This ability gained through visual design thinking. The spatial experience honed by three dimensional thinking from the medium diversity. The spatial experience learned through a room layout, proportion, and composition. This research used an experimental method and the primary data obtained by a “Likert” scale questionnaire. The Respondents are 50 students of the Architectural Design Studio. Moreover, the analysis focuses on the VR for spatial experience. The result was a descriptive explanation of the effectiveness of Virtual Reality for a spatial experience of architecture students at Technology University of Yogyakarta.

  10. Probability-based classifications for spatially characterizing the water temperatures and discharge rates of hot springs in the Tatun Volcanic Region, Taiwan.

    Science.gov (United States)

    Jang, Cheng-Shin

    2015-05-01

    Accurately classifying the spatial features of the water temperatures and discharge rates of hot springs is crucial for environmental resources use and management. This study spatially characterized classifications of the water temperatures and discharge rates of hot springs in the Tatun Volcanic Region of Northern Taiwan by using indicator kriging (IK). The water temperatures and discharge rates of the springs were first assigned to high, moderate, and low categories according to the two thresholds of the proposed spring classification criteria. IK was then used to model the occurrence probabilities of the water temperatures and discharge rates of the springs and probabilistically determine their categories. Finally, nine combinations were acquired from the probability-based classifications for the spatial features of the water temperatures and discharge rates of the springs. Moreover, various combinations of spring water features were examined according to seven subzones of spring use in the study region. The research results reveal that probability-based classifications using IK provide practicable insights related to propagating the uncertainty of classifications according to the spatial features of the water temperatures and discharge rates of the springs. The springs in the Beitou (BT), Xingyi Road (XYR), Zhongshanlou (ZSL), and Lengshuikeng (LSK) subzones are suitable for supplying tourism hotels with a sufficient quantity of spring water because they have high or moderate discharge rates. Furthermore, natural hot springs in riverbeds and valleys should be developed in the Dingbeitou (DBT), ZSL, Xiayoukeng (XYK), and Macao (MC) subzones because of low discharge rates and low or moderate water temperatures.

  11. Effects of hearing-aid dynamic range compression on spatial perception in a reverberant environment

    DEFF Research Database (Denmark)

    Hassager, Henrik Gert; Wiinberg, Alan; Dau, Torsten

    2017-01-01

    This study investigated the effects of fast-acting hearing-aid compression on normal-hearing and hearing-impaired listeners’ spatial perception in a reverberant environment. Three compression schemes—independent compression at each ear, linked compression between the two ears, and “spatially ideal......” compression operating solely on the dry source signal—were considered using virtualized speech and noise bursts. Listeners indicated the location and extent of their perceived sound images on the horizontal plane. Linear processing was considered as the reference condition. The results showed that both...... independent and linked compression resulted in more diffuse and broader sound images as well as internalization and image splits, whereby more image splits were reported for the noise bursts than for speech. Only the spatially ideal compression provided the listeners with a spatial percept similar...

  12. The effects of computer-aided design software on engineering students' spatial visualisation skills

    Science.gov (United States)

    Kösa, Temel; Karakuş, Fatih

    2018-03-01

    The purpose of this study was to determine the influence of computer-aided design (CAD) software-based instruction on the spatial visualisation skills of freshman engineering students in a computer-aided engineering drawing course. A quasi-experimental design was applied, using the Purdue Spatial Visualization Test-Visualization of Rotations (PSVT:R) for both the pre- and the post-test. The participants were 116 freshman students in the first year of their undergraduate programme in the Department of Mechanical Engineering at a university in Turkey. A total of 72 students comprised the experimental group; they were instructed with CAD-based activities in an engineering drawing course. The control group consisted of 44 students who did not attend this course. The results of the study showed that a CAD-based engineering drawing course had a positive effect on developing engineering students' spatial visualisation skills. Additionally, the results of the study showed that spatial visualisation skills can be a predictor for success in a computer-aided engineering drawing course.

  13. Quadratic spatial soliton interactions

    Science.gov (United States)

    Jankovic, Ladislav

    Quadratic spatial soliton interactions were investigated in this Dissertation. The first part deals with characterizing the principal features of multi-soliton generation and soliton self-reflection. The second deals with two beam processes leading to soliton interactions and collisions. These subjects were investigated both theoretically and experimentally. The experiments were performed by using potassium niobate (KNBO 3) and periodically poled potassium titanyl phosphate (KTP) crystals. These particular crystals were desirable for these experiments because of their large nonlinear coefficients and, more importantly, because the experiments could be performed under non-critical-phase-matching (NCPM) conditions. The single soliton generation measurements, performed on KNBO3 by launching the fundamental component only, showed a broad angular acceptance bandwidth which was important for the soliton collisions performed later. Furthermore, at high input intensities multi-soliton generation was observed for the first time. The influence on the multi-soliton patterns generated of the input intensity and beam symmetry was investigated. The combined experimental and theoretical efforts indicated that spatial and temporal noise on the input laser beam induced multi-soliton patterns. Another research direction pursued was intensity dependent soliton routing by using of a specially engineered quadratically nonlinear interface within a periodically poled KTP sample. This was the first time demonstration of the self-reflection phenomenon in a system with a quadratic nonlinearity. The feature investigated is believed to have a great potential for soliton routing and manipulation by engineered structures. A detailed investigation was conducted on two soliton interaction and collision processes. Birth of an additional soliton resulting from a two soliton collision was observed and characterized for the special case of a non-planar geometry. A small amount of spiraling, up to 30

  14. High-resolution digital dosimetric system for spatial characterization of radiation fields using a thermoluminescent CaF2:Dy crystal

    International Nuclear Information System (INIS)

    Atari, N.A.; Svensson, G.K.

    1986-01-01

    A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF2:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +/- 2 microns (1 sigma) corresponding to 16 +/- 1 line pairs/mm measured at the 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +/- 4 microns (1 sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields

  15. High-resolution digital dosimetric system for spatial characterization of radiation fields using a thermoluminescent CaF2:Dy crystal

    International Nuclear Information System (INIS)

    Atari, N.A.; Svensson, G.K.

    1986-01-01

    A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF 2 :Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +- 2 μm (1sigma) corresponding to 16 +- 1 line pair/mm measured at the 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +- 4 μm (1sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields

  16. Registered Replication Report: Testing Disruptive Effects of Irrelevant Speech on Visual-Spatial Working Memory

    Directory of Open Access Journals (Sweden)

    Tatiana Kvetnaya

    2018-04-01

    Full Text Available A Partial Replication of “Functional Equivalence of Verbal and Spatial Information in Serial Short-Term Memory (Jones, Farrand, Stuart, & Morris, 1995; Experiment 4” The irrelevant speech effect (ISE—the phenomenon that background speech impairs serial recall of visually presented material—has been widely used for examining the structure of short-term memory. In Experiment 4, Jones, Farrand, Stuart, and Morris (1995 employed the ISE to demonstrate that impairment of performance is determined by the changing-state characteristics of the material, rather than its modality of origin. The present study directly replicated the spatial condition of Experiment 4 with 'N' = 40 German participants. In contrast to the original findings, no main effect of sound type was observed, 'F'(2, 78 = 0.81, 'p' = .450, η2'p' = .02. The absence of an ISE in the spatial domain does not support the changing state hypothesis.

  17. The Effect of Restoration Treatments on the Spatial Variability of Soil Processes under Longleaf Pine Trees

    Directory of Open Access Journals (Sweden)

    John K. Hiers

    2012-08-01

    Full Text Available The objectives of this study were to (1 characterize tree-based spatial patterning of soil properties and understory vegetation in frequently burned (“reference state” and fire-suppressed longleaf pine forests; and (2 determine how restoration treatments affected patterning. To attain these objectives, we used an experimental manipulation of management types implemented 15 years ago in Florida. We randomly located six mature longleaf pine trees in one reference and four restoration treatments (i.e., burn, control, herbicide, and mechanical, for a total of 36 trees. In addition to the original treatments and as part of a monitoring program, all plots were subjected to several prescribed fires during these 15 years. Under each tree, we sampled mineral soil and understory vegetation at 1 m, 2 m, 3 m and 4 m (vegetation only away from the tree. At these sites, soil carbon and nitrogen were higher near the trunk while graminoids, forbs and saw palmetto covers showed an opposite trend. Our results confirmed that longleaf pine trees affect the spatial patterning of soil and understory vegetation, and this patterning was mostly limited to the restoration sites. We suggest frequent burning as a probable cause for a lack of spatial structure in the “reference state”. We attribute the presence of spatial patterning in the restoration sites to accumulation of organic materials near the base of mature trees.

  18. Employment Effects of Spatial Dispersal of Refugees

    OpenAIRE

    Damm, Anna Piil; Rosholm, Michael

    2005-01-01

    We argue that spatial dispersal influences labour market assimilation of refugees through two mechanisms: first, the local job offer arrival rate and, second, place utility. Our partial search model with simultaneous job and residential location search predicts that the reservation wage for local jobs decreases with place utility. We argue that spatial dispersal decreases average place utility of refugees which decreases the transition rate into first job due to large local reservation wages....

  19. Characterizing the multi–scale spatial structure of remotely sensed evapotranspiration with information theory

    Directory of Open Access Journals (Sweden)

    N. A. Brunsell

    2011-08-01

    Full Text Available A more thorough understanding of the multi-scale spatial structure of land surface heterogeneity will enhance understanding of the relationships and feedbacks between land surface conditions, mass and energy exchanges between the surface and the atmosphere, and regional meteorological and climatological conditions. The objectives of this study were to (1 quantify which spatial scales are dominant in determining the evapotranspiration flux between the surface and the atmosphere and (2 to quantify how different spatial scales of atmospheric and surface processes interact for different stages of the phenological cycle. We used the ALEXI/DisALEXI model for three days (DOY 181, 229 and 245 in 2002 over the Ft. Peck Ameriflux site to estimate the latent heat flux from Landsat, MODIS and GOES satellites. We then applied a multiresolution information theory methodology to quantify these interactions across different spatial scales and compared the dynamics across the different sensors and different periods. We note several important results: (1 spatial scaling characteristics vary with day, but are usually consistent for a given sensor, but (2 different sensors give different scalings, and (3 the different sensors exhibit different scaling relationships with driving variables such as fractional vegetation and near surface soil moisture. In addition, we note that while the dominant length scale of the vegetation index remains relatively constant across the dates, the contribution of the vegetation index to the derived latent heat flux varies with time. We also note that length scales determined from MODIS are consistently larger than those determined from Landsat, even at scales that should be detectable by MODIS. This may imply an inability of the MODIS sensor to accurately determine the fine scale spatial structure of the land surface. These results aid in identifying the dominant cross-scale nature of local to regional biosphere

  20. The effects of age and workload on 3D spatial attention in dual-task driving.

    Science.gov (United States)

    Pierce, Russell S; Andersen, George J

    2014-06-01

    In the present study we assessed whether the limits in visual-spatial attention associated with aging affect the spatial extent of attention in depth during driving performance. Drivers in the present study performed a car-following and light-detection task. To assess the extent of visual-spatial attention, we compared reaction times and accuracy to light change targets that varied in horizontal position and depth location. In addition, because workload has been identified as a factor that can change the horizontal and vertical extent of attention, we tested whether variability of the lead car speed influenced the extent of spatial attention for younger or older drivers. For younger drivers, reaction time (RT) to light-change targets varied as a function of distance and horizontal position. For older drivers RT varied only as a function of distance. There was a distance by horizontal position interaction for younger drivers but not for older drivers. Specifically, there was no effect of horizontal position at any given level of depth for older drivers. However, for younger drivers there was an effect of horizontal position for targets further in depth but not for targets nearer in depth. With regards to workload, we found no statistically reliable evidence that variability of the lead car speed had an effect on the spatial extent of attention for younger or older drivers. In a control experiment, we examined the effects of depth on light detection when the projected size and position of the targets was constant. Consistent with our previous results, we found that drivers' reaction time to light-change targets varied as a function of distance even when 2D position and size were controlled. Given that depth is an important dimension in driving performance, an important issue for assessing driving safety is to consider the limits of attention in the depth dimension. Therefore, we suggest that future research should consider the importance of depth as a dimension of

  1. The Effect of Virtual Reality Training on Unilateral Spatial Neglect in Stroke Patients

    OpenAIRE

    Kim, Yong Mi; Chun, Min Ho; Yun, Gi Jeong; Song, Young Jin; Young, Han Eun

    2011-01-01

    Objective To investigate the effect of virtual reality training on unilateral spatial neglect in stroke patients. Method Twenty-four stroke patients (14 males and 10 females, mean age=64.7) who had unilateral spatial neglect as a result of right hemisphere stroke were recruited. All patients were randomly assigned to either the virtual reality (VR) group (n=12) or the control group (n=12). The VR group received VR training, which stimulated the left side of their bodies. The control group rec...

  2. Guidance of Spatial Attention by Incidental Learning and Endogenous Cuing

    Science.gov (United States)

    Jiang, Yuhong V.; Swallow, Khena M.; Rosenbaum, Gail M.

    2013-01-01

    Our visual system is highly sensitive to regularities in the environment. Locations that were important in one's previous experience are often prioritized during search, even though observers may not be aware of the learning. In this study we characterized the guidance of spatial attention by incidental learning of a target's spatial probability,…

  3. EFFECTIVE MULTI-RESOLUTION TRANSFORM IDENTIFICATION FOR CHARACTERIZATION AND CLASSIFICATION OF TEXTURE GROUPS

    Directory of Open Access Journals (Sweden)

    S. Arivazhagan

    2011-11-01

    Full Text Available Texture classification is important in applications of computer image analysis for characterization or classification of images based on local spatial variations of intensity or color. Texture can be defined as consisting of mutually related elements. This paper proposes an experimental approach for identification of suitable multi-resolution transform for characterization and classification of different texture groups based on statistical and co-occurrence features derived from multi-resolution transformed sub bands. The statistical and co-occurrence feature sets are extracted for various multi-resolution transforms such as Discrete Wavelet Transform (DWT, Stationary Wavelet Transform (SWT, Double Density Wavelet Transform (DDWT and Dual Tree Complex Wavelet Transform (DTCWT and then, the transform that maximizes the texture classification performance for the particular texture group is identified.

  4. Detecting Temporal and Spatial Effects of Epithelial Cancers with Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Matthew D. Keller

    2008-01-01

    Full Text Available Epithelial cancers, including those of the skin and cervix, are the most common type of cancers in humans. Many recent studies have attempted to use Raman spectroscopy to diagnose these cancers. In this paper, Raman spectral markers related to the temporal and spatial effects of cervical and skin cancers are examined through four separate but related studies. Results from a clinical cervix study show that previous disease has a significant effect on the Raman signatures of the cervix, which allow for near 100% classification for discriminating previous disease versus a true normal. A Raman microspectroscopy study showed that Raman can detect changes due to adjacent regions of dysplasia or HPV that cannot be detected histologically, while a clinical skin study showed that Raman spectra may be detecting malignancy associated changes in tissues surrounding nonmelanoma skin cancers. Finally, results of an organotypic raft culture study provided support for both the skin and the in vitro cervix results. These studies add to the growing body of evidence that optical spectroscopy, in this case Raman spectral markers, can be used to detect subtle temporal and spatial effects in tissue near cancerous sites that go otherwise undetected by conventional histology.

  5. Changing spatial epidemiology of pertussis in continental USA.

    Science.gov (United States)

    Choisy, Marc; Rohani, Pejman

    2012-11-22

    Prediction and control of the geographical spread of emerging pathogens has become a central public health issue. Because these infectious diseases are by definition novel, there are few data to characterize their dynamics. One possible solution to this problem is to apply lessons learnt from analyses of historical data on familiar and epidemiologically similar pathogens. However, the portability of the spatial ecology of an infectious disease in a different epoch to other infections remains unexamined. Here, we study this issue by taking advantage of the recent re-emergence of pertussis in the United States to compare its spatial transmission dynamics throughout the 1950s with the past decade. We report 4-year waves, sweeping across the continent in the 1950s. These waves are shown to emanate from highly synchronous foci in the northwest and northeast coasts. In contrast, the recent resurgence of the disease is characterized by 5.5-year epidemics with no particular spatial structure. We interpret this to be the result of dramatic changes in patterns of human movement over the second half of the last century, together with changing age distribution of pertussis. We conclude that extrapolation regarding the spatial spread of contemporaneous pathogens based on analyses of historical incidence may be potentially very misleading.

  6. Employment Effects of Spatial Dispersal of Refugees

    OpenAIRE

    Anna Piil Damm; Michael Rosholm

    2006-01-01

    Spatial dispersal policies may influence labour market integration of refugees through two mechanisms. First, it may affect the local job offer arrival rate, and second, it may affect place utility. We investigate the second mechanism theoretically by formulating a partial search model in which an individual searches simultaneously for a job and for a new residential location. The model predicts that the reservation wage for local jobs is decreasing in place utility. We argue that spatial dis...

  7. Characterizing Time Irreversibility in Disordered Fermionic Systems by the Effect of Local Perturbations

    Science.gov (United States)

    Vardhan, Shreya; De Tomasi, Giuseppe; Heyl, Markus; Heller, Eric J.; Pollmann, Frank

    2017-07-01

    We study the effects of local perturbations on the dynamics of disordered fermionic systems in order to characterize time irreversibility. We focus on three different systems: the noninteracting Anderson and Aubry-André-Harper (AAH) models and the interacting spinless disordered t -V chain. First, we consider the effect on the full many-body wave functions by measuring the Loschmidt echo (LE). We show that in the extended or ergodic phase the LE decays exponentially fast with time, while in the localized phase the decay is algebraic. We demonstrate that the exponent of the decay of the LE in the localized phase diverges proportionally to the single-particle localization length as we approach the metal-insulator transition in the AAH model. Second, we probe different phases of disordered systems by studying the time expectation value of local observables evolved with two Hamiltonians that differ by a spatially local perturbation. Remarkably, we find that many-body localized systems could lose memory of the initial state in the long-time limit, in contrast to the noninteracting localized phase where some memory is always preserved.

  8. Investigation of Spatial Variation of Sea States Offshore of Humboldt Bay CA Using a Hindcast Model.

    Energy Technology Data Exchange (ETDEWEB)

    Dallman, Ann Renee; Neary, Vincent Sinclair

    2014-10-01

    Spatial variability of sea states is an important consideration when performing wave resource assessments and wave resource characterization studies for wave energy converter (WEC) test sites and commercial WEC deployments. This report examines the spatial variation of sea states offshore of Humboldt Bay, CA, using the wave model SWAN . The effect of depth and shoaling on bulk wave parameters is well resolved using the model SWAN with a 200 m grid. At this site, the degree of spatial variation of these bulk wave parameters, with shoaling generally perpendicular to the depth contours, is found to depend on the season. The variation in wave height , for example, was higher in the summer due to the wind and wave sheltering from the protruding land on the coastline north of the model domain. Ho wever, the spatial variation within an area of a potential Tier 1 WEC test site at 45 m depth and 1 square nautical mile is almost negligible; at most about 0.1 m in both winter and summer. The six wave characterization parameters recommended by the IEC 6 2600 - 101 TS were compared at several points along a line perpendicular to shore from the WEC test site . As expected, these parameters varied based on depth , but showed very similar seasonal trends.

  9. Input-output analysis of CO2 emissions embodied in trade. The effects of spatial aggregation

    International Nuclear Information System (INIS)

    Su, Bin; Ang, B.W.

    2010-01-01

    Energy-related CO 2 emissions embodied in international trade have been widely studied by researchers using the environmental input-output analysis framework. It is well known that both sector aggregation and spatial aggregation affect the results obtained in such studies. With regard to the latter, past studies are often conducted at the national level irrespective of country or economy size. For a large economy with the needed data, studies may be conducted at different levels of spatial aggregation. We examine this problem analytically by extending the work of Su et al. ([Su, B., Huang, H.C., Ang, B.W., Zhou, P., 2010. Input-output analysis of CO 2 emissions embodied in trade: The effects of sector aggregation. Energy Economics 32 (1), 166-175.]) on sector aggregation. We present a numerical example using the data of China and by dividing the country into eight regions. It is found that the results are highly dependent on spatial aggregation. Our study shows that for a large country like China it is meaningful to look into the effect of spatial aggregation. (author)

  10. Panel data models extended to spatial error autocorrelation or a spatially lagged dependent variable

    NARCIS (Netherlands)

    Elhorst, J. Paul

    2001-01-01

    This paper surveys panel data models extended to spatial error autocorrelation or a spatially lagged dependent variable. In particular, it focuses on the specification and estimation of four panel data models commonly used in applied research: the fixed effects model, the random effects model, the

  11. The effect of compressibility on the Alfven spatial resonance heating

    International Nuclear Information System (INIS)

    Azevedo, C.A.

    1984-01-01

    The effect of compressibility of magnetic field line on the damping rate of Alfven spatial resonance heating for a high beta plasma (Kinetic pressure/magnetic pressure) was analysed, using the ideal MHD (Magnetohydrodynamic) model in cylindrical geometry for a diffuse θ-pinch with conducting wall. The dispersion relation was obtained solving the equation of motion in the plasma and vacuum regions together with boundary conditions. (Author) [pt

  12. A critical look at spatial scale choices in satellite-based aerosol indirect effect studies

    Science.gov (United States)

    Grandey, B. S.; Stier, P.

    2010-12-01

    Analysing satellite datasets over large regions may introduce spurious relationships between aerosol and cloud properties due to spatial variations in aerosol type, cloud regime and synoptic regime climatologies. Using MODerate resolution Imaging Spectroradiometer data, we calculate relationships between aerosol optical depth τa derived liquid cloud droplet effective number concentration Ne and liquid cloud droplet effective radius re at different spatial scales. Generally, positive values of font-size: 10px; color: #000;">dlnNefont-size: 10px; color: #000;">dlnτa are found for ocean regions, whilst negative values occur for many land regions. The spatial distribution of font-size: 10px; color: #000;">dlnrefont-size: 10px; color: #000;">dlnτa shows approximately the opposite pattern, with generally postive values for land regions and negative values for ocean regions. We find that for region sizes larger than 4° × 4°, spurious spatial variations in retrieved cloud and aerosol properties can introduce widespread significant errors to calculations of font-size: 10px; color: #000;">dlnNefont-size: 10px; color: #000;">dlnτa and font-size: 10px; color: #000;">dlnrefont-size: 10px; color: #000;">dlnτa. For regions on the scale of 60° × 60°, these methodological errors may lead to an overestimate in global cloud albedo effect radiative forcing of order 80% relative to that calculated for regions on the scale of 1° × 1°.

  13. The (Spatial) Memory Game: Testing the Relationship Between Spatial Language, Object Knowledge, and Spatial Cognition.

    Science.gov (United States)

    Gudde, Harmen B; Griffiths, Debra; Coventry, Kenny R

    2018-02-19

    The memory game paradigm is a behavioral procedure to explore the relationship between language, spatial memory, and object knowledge. Using two different versions of the paradigm, spatial language use and memory for object location are tested under different, experimentally manipulated conditions. This allows us to tease apart proposed models explaining the influence of object knowledge on spatial language (e.g., spatial demonstratives), and spatial memory, as well as understanding the parameters that affect demonstrative choice and spatial memory more broadly. Key to the development of the method was the need to collect data on language use (e.g., spatial demonstratives: "this/that") and spatial memory data under strictly controlled conditions, while retaining a degree of ecological validity. The language version (section 3.1) of the memory game tests how conditions affect language use. Participants refer verbally to objects placed at different locations (e.g., using spatial demonstratives: "this/that red circle"). Different parameters can be experimentally manipulated: the distance from the participant, the position of a conspecific, and for example whether the participant owns, knows, or sees the object while referring to it. The same parameters can be manipulated in the memory version of the memory game (section 3.2). This version tests the effects of the different conditions on object-location memory. Following object placement, participants get 10 seconds to memorize the object's location. After the object and location cues are removed, participants verbally direct the experimenter to move a stick to indicate where the object was. The difference between the memorized and the actual location shows the direction and strength of the memory error, allowing comparisons between the influences of the respective parameters.

  14. Temporal and spatial patterns of micropollutants in urban receiving waters

    Energy Technology Data Exchange (ETDEWEB)

    Musolff, Andreas, E-mail: andreas.musolff@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Hydrogeology, Permoserstr. 15, 04318 Leipzig (Germany); Leschik, Sebastian, E-mail: sebastian.leschik@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Hydrogeology, Permoserstr. 15, 04318 Leipzig (Germany); Moeder, Monika, E-mail: monika.moeder@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstr. 15, 04318 Leipzig (Germany); Strauch, Gerhard, E-mail: gerhard.strauch@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Hydrogeology, Permoserstr. 15, 04318 Leipzig (Germany); Reinstorf, Frido, E-mail: frido.reinstorf@hs-magdeburg.d [University of Applied Sciences Magdeburg-Stendal, Department of Water and Waste Management, Breitscheidstr. 2, 39114 Magdeburg (Germany); Schirmer, Mario, E-mail: mario.schirmer@eawag.c [Eawag, The Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water, Ueberlandstr. 133, 8600 Duebendorf (Switzerland)

    2009-11-15

    Based on a monitoring program over the course of a year, we characterize the temporal and spatial distribution of selected micropollutants in an urban watershed within the city of Leipzig, Germany. Micropollutants revealed a ubiquitous presence in untreated and treated wastewater, surface water and groundwater. The loads of 4-nonylphenol in the effluents of the municipal wastewater treatment plant followed a seasonal trend, whereas the loads of all other micropollutants were highly variable and not correlated to seasons. In the surface water, load seasonality of caffeine, galaxolide and tonalide resulted from a rapid removal with increased water temperature. The loads of 4-nonylphenol and of caffeine in the colder months increased when rainfall occurred. In the groundwater, complex spatial and temporal patterns were apparent and were related to varying input, retardation and removal processes. As a consequence, an assessment of micropollutants in urban waters should consider different micropollutants' temporal and spatial variability. - Micropollutants in urban receiving waters are characterized by variable temporal and spatial concentration and load patterns that have to be considered in risk assessments.

  15. Spatial Attention Effects during Conscious and Nonconscious Processing of Visual Features and Objects

    Science.gov (United States)

    Tapia, Evelina; Breitmeyer, Bruno G.; Jacob, Jane; Broyles, Elizabeth C.

    2013-01-01

    Flanker congruency effects were measured in a masked flanker task to assess the properties of spatial attention during conscious and nonconscious processing of form, color, and conjunctions of these features. We found that (1) consciously and nonconsciously processed colored shape distractors (i.e., flankers) produce flanker congruency effects;…

  16. Adolescent binge drinking linked to abnormal spatial working memory brain activation: differential gender effects.

    Science.gov (United States)

    Squeglia, Lindsay M; Schweinsburg, Alecia Dager; Pulido, Carmen; Tapert, Susan F

    2011-10-01

    Binge drinking is prevalent during adolescence, and its effect on neurocognitive development is of concern. In adult and adolescent populations, heavy substance use has been associated with decrements in cognitive functioning, particularly on tasks of spatial working memory (SWM). Characterizing the gender-specific influences of heavy episodic drinking on SWM may help elucidate the early functional consequences of drinking on adolescent brain functioning. Forty binge drinkers (13 females, 27 males) and 55 controls (24 females, 31 males), aged 16 to 19 years, completed neuropsychological testing, substance use interviews, and an SWM task during functional magnetic resonance imaging. Significant binge drinking status × gender interactions were found (p working memory performances (p performance (p gender-specific differences in frontal, temporal, and cerebellar brain activation during an SWM task, which in turn relate to cognitive performance. Activation correlates with neuropsychological performance, strengthening the argument that blood oxygen level-dependent activation is affected by alcohol use and is an important indicator of behavioral functioning. Females may be more vulnerable to the neurotoxic effects of heavy alcohol use during adolescence, while males may be more resilient to the deleterious effects of binge drinking. Future longitudinal research will examine the significance of SWM brain activation as an early neurocognitive marker of alcohol impact to the brain on future behaviors, such as driving safety, academic performance, and neuropsychological performance. Copyright © 2011 by the Research Society on Alcoholism.

  17. Spatially varying cross-correlation coefficients in the presence of nugget effects

    KAUST Repository

    Kleiber, William; Genton, Marc G.

    2012-01-01

    We derive sufficient conditions for the cross-correlation coefficient of a multivariate spatial process to vary with location when the spatial model is augmented with nugget effects. The derived class is valid for any choice of covariance functions, and yields substantial flexibility between multiple processes. The key is to identify the cross-correlation coefficient matrix with a contraction matrix, which can be either diagonal, implying a parsimonious formulation, or a fully general contraction matrix, yielding greater flexibility but added model complexity. We illustrate the approach with a bivariate minimum and maximum temperature dataset in Colorado, allowing the two variables to be positively correlated at low elevations and nearly independent at high elevations, while still yielding a positive definite covariance matrix. © 2012 Biometrika Trust.

  18. Spatially varying cross-correlation coefficients in the presence of nugget effects

    KAUST Repository

    Kleiber, William

    2012-11-29

    We derive sufficient conditions for the cross-correlation coefficient of a multivariate spatial process to vary with location when the spatial model is augmented with nugget effects. The derived class is valid for any choice of covariance functions, and yields substantial flexibility between multiple processes. The key is to identify the cross-correlation coefficient matrix with a contraction matrix, which can be either diagonal, implying a parsimonious formulation, or a fully general contraction matrix, yielding greater flexibility but added model complexity. We illustrate the approach with a bivariate minimum and maximum temperature dataset in Colorado, allowing the two variables to be positively correlated at low elevations and nearly independent at high elevations, while still yielding a positive definite covariance matrix. © 2012 Biometrika Trust.

  19. Action potential influences spatial perception: Evidence for genuine top-down effects on perception.

    Science.gov (United States)

    Witt, Jessica K

    2017-08-01

    The action-specific account of spatial perception asserts that a perceiver's ability to perform an action, such as hitting a softball or walking up a hill, impacts the visual perception of the target object. Although much evidence is consistent with this claim, the evidence has been challenged as to whether perception is truly impacted, as opposed to the responses themselves. These challenges have recently been organized as six pitfalls that provide a framework with which to evaluate the empirical evidence. Four case studies of action-specific effects are offered as evidence that meets the framework's high bar, and thus that demonstrates genuine perceptual effects. That action influences spatial perception is evidence that perceptual and action-related processes are intricately and bidirectionally linked.

  20. Stimulus-dependent effects on tactile spatial acuity

    Directory of Open Access Journals (Sweden)

    Tommerdahl M

    2005-10-01

    Full Text Available Abstract Background Previous studies have shown that spatio-tactile acuity is influenced by the clarity of the cortical response in primary somatosensory cortex (SI. Stimulus characteristics such as frequency, amplitude, and location of tactile stimuli presented to the skin have been shown to have a significant effect on the response in SI. The present study observes the effect of changing stimulus parameters of 25 Hz sinusoidal vertical skin displacement stimulation ("flutter" on a human subject's ability to discriminate between two adjacent or near-adjacent skin sites. Based on results obtained from recent neurophysiological studies of the SI response to different conditions of vibrotactile stimulation, we predicted that the addition of 200 Hz vibration to the same site that a two-point flutter stimulus was delivered on the skin would improve a subject's spatio-tactile acuity over that measured with flutter alone. Additionally, similar neurophysiological studies predict that the presence of either a 25 Hz flutter or 200 Hz vibration stimulus on the unattended hand (on the opposite side of the body from the site of two-point limen testing – the condition of bilateral stimulation – which has been shown to evoke less SI cortical activity than the contralateral-only stimulus condition would decrease a subject's ability to discriminate between two points on the skin. Results A Bekesy tracking method was employed to track a subject's ability to discriminate between two-point stimuli delivered to the skin. The distance between the two points of stimulation was varied on a trial-by-trial basis, and several different stimulus conditions were examined: (1 The "control" condition, in which 25 Hz flutter stimuli were delivered simultaneously to the two points on the skin of the attended hand, (2 the "complex" condition, in which a combination of 25 Hz flutter and 200 Hz vibration stimuli were delivered to the two points on the attended hand, and (3 a

  1. Spatial Release From Masking in Children: Effects of Simulated Unilateral Hearing Loss.

    Science.gov (United States)

    Corbin, Nicole E; Buss, Emily; Leibold, Lori J

    The purpose of this study was twofold: (1) to determine the effect of an acute simulated unilateral hearing loss on children's spatial release from masking in two-talker speech and speech-shaped noise, and (2) to develop a procedure to be used in future studies that will assess spatial release from masking in children who have permanent unilateral hearing loss. There were three main predictions. First, spatial release from masking was expected to be larger in two-talker speech than in speech-shaped noise. Second, simulated unilateral hearing loss was expected to worsen performance in all listening conditions, but particularly in the spatially separated two-talker speech masker. Third, spatial release from masking was expected to be smaller for children than for adults in the two-talker masker. Participants were 12 children (8.7 to 10.9 years) and 11 adults (18.5 to 30.4 years) with normal bilateral hearing. Thresholds for 50%-correct recognition of Bamford-Kowal-Bench sentences were measured adaptively in continuous two-talker speech or speech-shaped noise. Target sentences were always presented from a loudspeaker at 0° azimuth. The masker stimulus was either co-located with the target or spatially separated to +90° or -90° azimuth. Spatial release from masking was quantified as the difference between thresholds obtained when the target and masker were co-located and thresholds obtained when the masker was presented from +90° or -90° azimuth. Testing was completed both with and without a moderate simulated unilateral hearing loss, created with a foam earplug and supra-aural earmuff. A repeated-measures design was used to compare performance between children and adults, and performance in the no-plug and simulated-unilateral-hearing-loss conditions. All listeners benefited from spatial separation of target and masker stimuli on the azimuth plane in the no-plug listening conditions; this benefit was larger in two-talker speech than in speech-shaped noise. In the

  2. Generating a taxonomy of spatially cued attention for visual discrimination: Effects of judgment precision and set size on attention

    Science.gov (United States)

    Hetley, Richard; Dosher, Barbara Anne; Lu, Zhong-Lin

    2014-01-01

    Attention precues improve the performance of perceptual tasks in many but not all circumstances. These spatial attention effects may depend upon display set size or workload, and have been variously attributed to external noise filtering, stimulus enhancement, contrast gain, or response gain, or to uncertainty or other decision effects. In this study, we document systematically different effects of spatial attention in low- and high-precision judgments, with and without external noise, and in different set sizes in order to contribute to the development of a taxonomy of spatial attention. An elaborated perceptual template model (ePTM) provides an integrated account of a complex set of effects of spatial attention with just two attention factors: a set-size dependent exclusion or filtering of external noise and a narrowing of the perceptual template to focus on the signal stimulus. These results are related to the previous literature by classifying the judgment precision and presence of external noise masks in those experiments, suggesting a taxonomy of spatially cued attention in discrimination accuracy. PMID:24939234

  3. Generating a taxonomy of spatially cued attention for visual discrimination: effects of judgment precision and set size on attention.

    Science.gov (United States)

    Hetley, Richard; Dosher, Barbara Anne; Lu, Zhong-Lin

    2014-11-01

    Attention precues improve the performance of perceptual tasks in many but not all circumstances. These spatial attention effects may depend upon display set size or workload, and have been variously attributed to external noise filtering, stimulus enhancement, contrast gain, or response gain, or to uncertainty or other decision effects. In this study, we document systematically different effects of spatial attention in low- and high-precision judgments, with and without external noise, and in different set sizes in order to contribute to the development of a taxonomy of spatial attention. An elaborated perceptual template model (ePTM) provides an integrated account of a complex set of effects of spatial attention with just two attention factors: a set-size dependent exclusion or filtering of external noise and a narrowing of the perceptual template to focus on the signal stimulus. These results are related to the previous literature by classifying the judgment precision and presence of external noise masks in those experiments, suggesting a taxonomy of spatially cued attention in discrimination accuracy.

  4. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    Science.gov (United States)

    Chen, J. M.; Chen, X.; Ju, W.

    2013-07-01

    Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modelled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI) and elevation have small and additive effects on improving the spatial scaling

  5. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    Directory of Open Access Journals (Sweden)

    J. M. Chen

    2013-07-01

    Full Text Available Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE in NPP modelled at the 1 km resolution is reduced from 14.8 g C m−2 yr−1 to 4.8 g C m−2 yr−1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m−2 yr−1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI and elevation have small and additive effects on improving

  6. The effects of incentives on visual-spatial working memory in children with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Shiels, Keri; Hawk, Larry W; Lysczek, Cynthia L; Tannock, Rosemary; Pelham, William E; Spencer, Sarah V; Gangloff, Brian P; Waschbusch, Daniel A

    2008-08-01

    Working memory is one of several putative core neurocognitive processes in attention-deficit/hyperactivity disorder (ADHD). The present work seeks to determine whether visual-spatial working memory is sensitive to motivational incentives, a laboratory analogue of behavioral treatment. Participants were 21 children (ages 7-10) with a diagnosis of ADHD-combined type. Participants completed a computerized spatial span task designed to assess storage of visual-spatial information (forward span) and manipulation of the stored information (backward span). The spatial span task was completed twice on the same day, once with a performance-based incentive (trial-wise feedback and points redeemable for prizes) and once without incentives. Participants performed significantly better on the backward span when rewarded for correct responses, compared to the no incentive condition. However, incentives had no effect on performance during the forward span. These findings may suggest the use of motivational incentives improved manipulation, but not storage, of visual-spatial information among children with ADHD. Possible explanations for the differential incentive effects are discussed, including the possibility that incentives prevented a vigilance decrement as task difficulty and time on task increased.

  7. A multi-scale spatial approach to address environmental effects of small hydropower development.

    Science.gov (United States)

    McManamay, Ryan A; Samu, Nicole; Kao, Shih-Chieh; Bevelhimer, Mark S; Hetrick, Shelaine C

    2015-01-01

    Hydropower development continues to grow worldwide in developed and developing countries. While the ecological and physical responses to dam construction have been well documented, translating this information into planning for hydropower development is extremely difficult. Very few studies have conducted environmental assessments to guide site-specific or widespread hydropower development. Herein, we propose a spatial approach for estimating environmental effects of hydropower development at multiple scales, as opposed to individual site-by-site assessments (e.g., environmental impact assessment). Because the complex, process-driven effects of future hydropower development may be uncertain or, at best, limited by available information, we invested considerable effort in describing novel approaches to represent environmental concerns using spatial data and in developing the spatial footprint of hydropower infrastructure. We then use two case studies in the US, one at the scale of the conterminous US and another within two adjoining rivers basins, to examine how environmental concerns can be identified and related to areas of varying energy capacity. We use combinations of reserve-design planning and multi-metric ranking to visualize tradeoffs among environmental concerns and potential energy capacity. Spatial frameworks, like the one presented, are not meant to replace more in-depth environmental assessments, but to identify information gaps and measure the sustainability of multi-development scenarios as to inform policy decisions at the basin or national level. Most importantly, the approach should foster discussions among environmental scientists and stakeholders regarding solutions to optimize energy development and environmental sustainability.

  8. Investigating Spatial Interdependence in E-Bike Choice Using Spatially Autoregressive Model

    Directory of Open Access Journals (Sweden)

    Chengcheng Xu

    2017-08-01

    Full Text Available Increased attention has been given to promoting e-bike usage in recent years. However, the research gap still exists in understanding the effects of spatial interdependence on e-bike choice. This study investigated how spatial interdependence affected the e-bike choice. The Moran’s I statistic test showed that spatial interdependence exists in e-bike choice at aggregated level. Bayesian spatial autoregressive logistic analyses were then used to investigate the spatial interdependence at individual level. Separate models were developed for commuting and non-commuting trips. The factors affecting e-bike choice are different between commuting and non-commuting trips. Spatial interdependence exists at both origin and destination sides of commuting and non-commuting trips. Travellers are more likely to choose e-bikes if their neighbours at the trip origin and destination also travel by e-bikes. And the magnitude of this spatial interdependence is different across various traffic analysis zones. The results suggest that, without considering spatial interdependence, the traditional methods may have biased estimation results and make systematic forecasting errors.

  9. Spatial and temporal characterizations of water quality in Kuwait Bay.

    Science.gov (United States)

    Al-Mutairi, N; Abahussain, A; El-Battay, A

    2014-06-15

    The spatial and temporal patterns of water quality in Kuwait Bay have been investigated using data from six stations between 2009 and 2011. The results showed that most of water quality parameters such as phosphorus (PO4), nitrate (NO3), dissolved oxygen (DO), and Total Suspended Solids (TSS) fluctuated over time and space. Based on Water Quality Index (WQI) data, six stations were significantly clustered into two main classes using cluster analysis, one group located in western side of the Bay, and other in eastern side. Three principal components are responsible for water quality variations in the Bay. The first component included DO and pH. The second included PO4, TSS and NO3, and the last component contained seawater temperature and turbidity. The spatial and temporal patterns of water quality in Kuwait Bay are mainly controlled by seasonal variations and discharges from point sources of pollution along Kuwait Bay's coast as well as from Shatt Al-Arab River. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The Effect of Acute Ethanol and Gabapentin Administration on Spatial Learning and Memory

    Directory of Open Access Journals (Sweden)

    Fahimeh Yeganeh

    2011-09-01

    Full Text Available  Introduction: Patients with epilepsy can have impaired cognitive abilities. Many factors contribute to this impairment, including the adverse effects of antiepileptic drugs like Gabapentin (GBP. Apart from anti-epilectic action, Gabapentin is used to relieve ethanol withdrawal syndrome. Because both GBP and ethanol act on GABA ergic system, the purpose of this study was to evaluate their effect and interaction on spatial learning and memory. Material and Methods: Male Sprague-Dawley rats were trained in the Morris water maze for 5 consecutive days. On the sixth day, a probe test was performed to assess the retention phase or spatial rats’ memory ability. Ethanol (1.5 g/kg i.p. and GBP (30 mg/kg i.p. was administered each day 30 and 40 minutes before testing respectively. Results: Acute ethanol administration selectively impaired spatial memory (p<0.05, yet it failed to impair the acquisition phase (learning. Contradictorily GBP selectively impaired learning on second and forth days. Conclusion: These findings demonstrate that GBP and acute ethanol impair different phases of learning probably by modifying different neuronal pathways in cognitive areas of the brain.

  11. Additive effects of emotional content and spatial selective attention on electrocortical facilitation.

    Science.gov (United States)

    Keil, Andreas; Moratti, Stephan; Sabatinelli, Dean; Bradley, Margaret M; Lang, Peter J

    2005-08-01

    Affectively arousing visual stimuli have been suggested to automatically attract attentional resources in order to optimize sensory processing. The present study crosses the factors of spatial selective attention and affective content, and examines the relationship between instructed (spatial) and automatic attention to affective stimuli. In addition to response times and error rate, electroencephalographic data from 129 electrodes were recorded during a covert spatial attention task. This task required silent counting of random-dot targets embedded in a 10 Hz flicker of colored pictures presented to both hemifields. Steady-state visual evoked potentials (ssVEPs) were obtained to determine amplitude and phase of electrocortical responses to pictures. An increase of ssVEP amplitude was observed as an additive function of spatial attention and emotional content. Statistical parametric mapping of this effect indicated occipito-temporal and parietal cortex activation contralateral to the attended visual hemifield in ssVEP amplitude modulation. This difference was most pronounced during selection of the left visual hemifield, at right temporal electrodes. In line with this finding, phase information revealed accelerated processing of aversive arousing, compared to affectively neutral pictures. The data suggest that affective stimulus properties modulate the spatiotemporal process along the ventral stream, encompassing amplitude amplification and timing changes of posterior and temporal cortex.

  12. Spatial reversal learning in preclinical scrapie-inoculated mice.

    Science.gov (United States)

    Lysons, A M; Woollard, S J

    1996-04-10

    Acquisition and reversal of a two-choice spatial discrimination were tested in scrapie-inoculated mice. Both acquisition and reversal were normal in mice tested 138 and 103 days prior to the onset of clinical symptoms. At 65 days before onset of clinical symptoms, scrapie-inoculated mice required more trails to criterion in reversal learning, but this effect was not significant in a second experiment (68 days preclinical) and was transient: no effect was seen 33 days before symptoms. However, the course of reversal learning was abnormal in all three late preclinical groups (68, 65 and 33 days before symptoms). Reversal learning in these three groups was characterized by a rapid extinction of the original discrimination, followed by a period, absent in controls, during which performance showed no further improvement. This effect corresponds in time of onset to the appearance of characteristic neuropathological features.

  13. Matlab Software for Spatial Panels

    NARCIS (Netherlands)

    Elhorst, J.Paul

    2014-01-01

    Elhorst provides Matlab routines to estimate spatial panel data models at his website. This article extends these routines to include the bias correction procedure proposed by Lee and Yu if the spatial panel data model contains spatial and/or time-period fixed effects, the direct and indirect

  14. Temporal and spatial variations in wildlife population fluctuations in Greenland; The effect of climate, environment and man

    DEFF Research Database (Denmark)

    Moshøj, Charlotte Margaret; Forchhammer, Mads C.; Forbes, Valery E.

    2009-01-01

    Temporal and spatial variations in wildlife population fluctuations in Greenland; The effect of climate, environment and man Moshøj, C.M, M.C.Forchhammer and V.E. Forbes Temporal and spatial variations in wildlife population fluctuations in Greenland; The effect of climate, environment and man...... and mammals display distinct population fluctuations of varying temporal and spatial scale. In Greenland, historical records, archaeological findings and oral accounts passed on from Inuit elders all document that the presence of wildlife species and their population sizes have undergone pronounced....... The results of this study will model future predictions of wildlife populations under changing climate variables and human hunting pressure....

  15. Fractional power-law spatial dispersion in electrodynamics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.; Trujillo, Juan J.

    2013-01-01

    Electric fields in non-local media with power-law spatial dispersion are discussed. Equations involving a fractional Laplacian in the Riesz form that describe the electric fields in such non-local media are studied. The generalizations of Coulomb’s law and Debye’s screening for power-law non-local media are characterized. We consider simple models with anomalous behavior of plasma-like media with power-law spatial dispersions. The suggested fractional differential models for these plasma-like media are discussed to describe non-local properties of power-law type. -- Highlights: •Plasma-like non-local media with power-law spatial dispersion. •Fractional differential equations for electric fields in the media. •The generalizations of Coulomb’s law and Debye’s screening for the media

  16. A spatially distributed model for assessment of the effects of changing land use and climate on urban stream quality: Development of a Spatially Distributed Urban Water Quality Model

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ning [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA; Pacific Northwest National Laboratory, Richland WA USA; Yearsley, John [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA; Baptiste, Marisa [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA; Cao, Qian [Department of Geography, University of California Los Angeles, Los Angeles CA USA; Lettenmaier, Dennis P. [Department of Geography, University of California Los Angeles, Los Angeles CA USA; Nijssen, Bart [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA

    2016-08-22

    While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modeling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid-based spatially distributed model, DHSVM-WQ, is an outgrowth of the Distributed Hydrology-Soil-Vegetation Model (DHSVM) that incorporates modules for assessing hydrology and water quality in urbanized watersheds at a high spatial and temporal resolution. DHSVM-WQ simulates surface runoff quality and in-stream processes that control the transport of nonpoint-source (NPS) pollutants into urban streams. We configure DHSVM-WQ for three partially urbanized catchments in the Puget Sound region to evaluate the water quality responses to current conditions and projected changes in climate and/or land use over the next century. Here we focus on total suspended solids (TSS) and total phosphorus (TP) from nonpoint sources (runoff), as well as stream temperature. The projection of future land use is characterized by a combination of densification in existing urban or partially urban areas, and expansion of the urban footprint. The climate change scenarios consist of individual and concurrent changes in temperature and precipitation. Future precipitation is projected to increase in winter and decrease in summer, while future temperature is projected to increase throughout the year. Our results show that urbanization has a much greater effect than climate change on both the magnitude and seasonal variability of streamflow, TSS and TP loads largely due to substantially increased streamflow, and particularly winter flow peaks. Water temperature is more sensitive to climate warming scenarios than to urbanization and precipitation changes. Future urbanization and

  17. Change of spatial information under rescaling: A case study using multi-resolution image series

    Science.gov (United States)

    Chen, Weirong; Henebry, Geoffrey M.

    Spatial structure in imagery depends on a complicated interaction between the observational regime and the types and arrangements of entities within the scene that the image portrays. Although block averaging of pixels has commonly been used to simulate coarser resolution imagery, relatively little attention has been focused on the effects of simple rescaling on spatial structure and the explanation and a possible solution to the problem. Yet, if there are significant differences in spatial variance between rescaled and observed images, it may affect the reliability of retrieved biogeophysical quantities. To investigate these issues, a nested series of high spatial resolution digital imagery was collected at a research site in eastern Nebraska in 2001. An airborne Kodak DCS420IR camera acquired imagery at three altitudes, yielding nominal spatial resolutions ranging from 0.187 m to 1 m. The red and near infrared (NIR) bands of the co-registered image series were normalized using pseudo-invariant features, and the normalized difference vegetation index (NDVI) was calculated. Plots of grain sorghum planted in orthogonal crop row orientations were extracted from the image series. The finest spatial resolution data were then rescaled by averaging blocks of pixels to produce a rescaled image series that closely matched the spatial resolution of the observed image series. Spatial structures of the observed and rescaled image series were characterized using semivariogram analysis. Results for NDVI and its component bands show, as expected, that decreasing spatial resolution leads to decreasing spatial variability and increasing spatial dependence. However, compared to the observed data, the rescaled images contain more persistent spatial structure that exhibits limited variation in both spatial dependence and spatial heterogeneity. Rescaling via simple block averaging fails to consider the effect of scene object shape and extent on spatial information. As the features

  18. Incorporating Human Movement Behavior into the Analysis of Spatially Distributed Infrastructure.

    Directory of Open Access Journals (Sweden)

    Lihua Wu

    Full Text Available For the first time in human history, the majority of the world's population resides in urban areas. Therefore, city managers are faced with new challenges related to the efficiency, equity and quality of the supply of resources, such as water, food and energy. Infrastructure in a city can be viewed as service points providing resources. These service points function together as a spatially collaborative system to serve an increasing population. To study the spatial collaboration among service points, we propose a shared network according to human's collective movement and resource usage based on data usage detail records (UDRs from the cellular network in a city in western China. This network is shown to be not scale-free, but exhibits an interesting triangular property governed by two types of nodes with very different link patterns. Surprisingly, this feature is consistent with the urban-rural dualistic context of the city. Another feature of the shared network is that it consists of several spatially separated communities that characterize local people's active zones but do not completely overlap with administrative areas. According to these features, we propose the incorporation of human movement into infrastructure classification. The presence of well-defined spatially separated clusters confirms the effectiveness of this approach. In this paper, our findings reveal the spatial structure inside a city, and the proposed approach provides a new perspective on integrating human movement into the study of a spatially distributed system.

  19. Incorporating Human Movement Behavior into the Analysis of Spatially Distributed Infrastructure.

    Science.gov (United States)

    Wu, Lihua; Leung, Henry; Jiang, Hao; Zheng, Hong; Ma, Li

    2016-01-01

    For the first time in human history, the majority of the world's population resides in urban areas. Therefore, city managers are faced with new challenges related to the efficiency, equity and quality of the supply of resources, such as water, food and energy. Infrastructure in a city can be viewed as service points providing resources. These service points function together as a spatially collaborative system to serve an increasing population. To study the spatial collaboration among service points, we propose a shared network according to human's collective movement and resource usage based on data usage detail records (UDRs) from the cellular network in a city in western China. This network is shown to be not scale-free, but exhibits an interesting triangular property governed by two types of nodes with very different link patterns. Surprisingly, this feature is consistent with the urban-rural dualistic context of the city. Another feature of the shared network is that it consists of several spatially separated communities that characterize local people's active zones but do not completely overlap with administrative areas. According to these features, we propose the incorporation of human movement into infrastructure classification. The presence of well-defined spatially separated clusters confirms the effectiveness of this approach. In this paper, our findings reveal the spatial structure inside a city, and the proposed approach provides a new perspective on integrating human movement into the study of a spatially distributed system.

  20. High-definition, single-scan 2D MRI in inhomogeneous fields using spatial encoding methods.

    Science.gov (United States)

    Ben-Eliezer, Noam; Shrot, Yoav; Frydman, Lucio

    2010-01-01

    An approach has been recently introduced for acquiring two-dimensional (2D) nuclear magnetic resonance images in a single scan, based on the spatial encoding of the spin interactions. This article explores the potential of integrating this spatial encoding together with conventional temporal encoding principles, to produce 2D single-shot images with moderate field of views. The resulting "hybrid" imaging scheme is shown to be superior to traditional schemes in non-homogeneous magnetic field environments. An enhancement of previously discussed pulse sequences is also proposed, whereby distortions affecting the image along the spatially encoded axis are eliminated. This new variant is also characterized by a refocusing of T(2)(*) effects, leading to a restoration of high-definition images for regions which would otherwise be highly dephased and thus not visible. These single-scan 2D images are characterized by improved signal-to-noise ratios and a genuine T(2) contrast, albeit not free from inhomogeneity distortions. Simple postprocessing algorithms relying on inhomogeneity phase maps of the imaged object can successfully remove most of these residual distortions. Initial results suggest that this acquisition scheme has the potential to overcome strong field inhomogeneities acting over extended acquisition durations, exceeding 100 ms for a single-shot image.

  1. Characterizing Spatial Neighborhoods of Refugia Following Large Fires in Northern New Mexico USA

    Directory of Open Access Journals (Sweden)

    Sandra L. Haire

    2017-03-01

    Full Text Available The spatial patterns resulting from large fires include refugial habitats that support surviving legacies and promote ecosystem recovery. To better understand the diverse ecological functions of refugia on burn mosaics, we used remotely sensed data to quantify neighborhood patterns of areas relatively unchanged following the 2011 Las Conchas fire. Spatial patterns of refugia measured within 10-ha moving windows varied across a gradient from areas of high density, clustered in space, to sparsely populated neighborhoods that occurred in the background matrix. The scaling of these patterns was related to the underlying structure of topography measured by slope, aspect and potential soil wetness, and spatially varying climate. Using a nonmetric multidimensional scaling analysis of species cover data collected post-Las Conchas, we found that trees and forest associates were present across the refugial gradient, but communities also exhibited a range of species compositions and potential functions. Spatial patterns of refugia quantified for three previous burns (La Mesa 1977, Dome 1996, Cerro Grande 2000 were dynamic between fire events, but most refugia persisted through at least two fires. Efforts to maintain burn heterogeneity and its ecological functions can begin with identifying where refugia are likely to occur, using terrain-based microclimate models, burn severity models and available field data.

  2. The effect of severe zinc deficiency and zinc supplement on spatial learning and memory.

    Science.gov (United States)

    Tahmasebi Boroujeni, S; Naghdi, N; Shahbazi, M; Farrokhi, A; Bagherzadeh, F; Kazemnejad, A; Javadian, M

    2009-07-01

    Zinc deficiency during pregnancy and during lactation has been shown to impair cognitive function and motor activity in offspring rats. In the present study, the effect of zinc deficiency and zinc supplement on spatial learning and memory in Morris Water Maze (MWM) and motor activity in open field were investigated. Pregnant rats after mating were divided to three groups. Control group fed a standard diet and a zinc deficient (ZnD) group fed a diet deficient in zinc (0.5-1.5 ppm) and a zinc supplement (ZnS) group fed a standard diet and enhanced zinc in the drinking water (10 ppm). All the diets were exposed during the last trisemester of pregnancy and during lactation. Rat's offspring in these groups were tested for spatial learning and memory in MWM at post natal day (PND) 56 and were tested for motor activity in open field at PND 66.The Escape Latency (EL) and Traveled Distance (TD) in the ZnD group were increased but Percentage of Time Spent in the target quadrant (PTS) was decreased compared to the control group. In addition, these were no significant differences in EL and TD, but PTS had significant increase in ZnS compared to the control group. In the open field, Total Distance Moved (TDM) and Time of Motor Activity (TMA) for the ZnD were decreased compared to the control group, but there were no significant differences in TDM and TMA between control and ZnS groups. These findings suggest that zinc deficiency during the last trimester of pregnancy and during lactation impaired spatial learning and memory in their offsprings and has also negative effect on motor activity. In addition, ZnS has a significant effect on spatial learning and memory but no effect on motor activity in their offsprings.

  3. Spatial-temporal modeling of malware propagation in networks.

    Science.gov (United States)

    Chen, Zesheng; Ji, Chuanyi

    2005-09-01

    Network security is an important task of network management. One threat to network security is malware (malicious software) propagation. One type of malware is called topological scanning that spreads based on topology information. The focus of this work is on modeling the spread of topological malwares, which is important for understanding their potential damages, and for developing countermeasures to protect the network infrastructure. Our model is motivated by probabilistic graphs, which have been widely investigated in machine learning. We first use a graphical representation to abstract the propagation of malwares that employ different scanning methods. We then use a spatial-temporal random process to describe the statistical dependence of malware propagation in arbitrary topologies. As the spatial dependence is particularly difficult to characterize, the problem becomes how to use simple (i.e., biased) models to approximate the spatially dependent process. In particular, we propose the independent model and the Markov model as simple approximations. We conduct both theoretical analysis and extensive simulations on large networks using both real measurements and synthesized topologies to test the performance of the proposed models. Our results show that the independent model can capture temporal dependence and detailed topology information and, thus, outperforms the previous models, whereas the Markov model incorporates a certain spatial dependence and, thus, achieves a greater accuracy in characterizing both transient and equilibrium behaviors of malware propagation.

  4. Spatial dependence of color assimilation by the watercolor effect.

    Science.gov (United States)

    Devinck, Frédéric; Delahunt, Peter B; Hardy, Joseph L; Spillmann, Lothar; Werner, John S

    2006-01-01

    Color assimilation with bichromatic contours was quantified for spatial extents ranging from von Bezold-type color assimilation to the watercolor effect. The magnitude and direction of assimilative hue change was measured as a function of the width of a rectangular stimulus. Assimilation was quantified by hue cancellation. Large hue shifts were required to null the color of stimuli < or = 9.3 min of arc in width, with an exponential decrease for stimuli increasing up to 7.4 deg. When stimuli were viewed through an achromatizing lens, the magnitude of the assimilation effect was reduced for narrow stimuli, but not for wide ones. These results demonstrate that chromatic aberration may account, in part, for color assimilation over small, but not large, surface areas.

  5. Reference-free determination of tissue absorption coefficient by modulation transfer function characterization in spatial frequency domain.

    Science.gov (United States)

    Chen, Weiting; Zhao, Huijuan; Li, Tongxin; Yan, Panpan; Zhao, Kuanxin; Qi, Caixia; Gao, Feng

    2017-08-08

    Spatial frequency domain (SFD) measurement allows rapid and non-contact wide-field imaging of the tissue optical properties, thus has become a potential tool for assessing physiological parameters and therapeutic responses during photodynamic therapy of skin diseases. The conventional SFD measurement requires a reference measurement within the same experimental scenario as that for a test one to calibrate mismatch between the real measurements and the model predictions. Due to the individual physical and geometrical differences among different tissues, organs and patients, an ideal reference measurement might be unavailable in clinical trials. To address this problem, we present a reference-free SFD determination of absorption coefficient that is based on the modulation transfer function (MTF) characterization. Instead of the absolute amplitude that is used in the conventional SFD approaches, we herein employ the MTF to characterize the propagation of the modulated lights in tissues. With such a dimensionless relative quantity, the measurements can be naturally corresponded to the model predictions without calibrating the illumination intensity. By constructing a three-dimensional database that portrays the MTF as a function of the optical properties (both the absorption coefficient μ a and the reduced scattering coefficient [Formula: see text]) and the spatial frequency, a look-up table approach or a least-square curve-fitting method is readily applied to recover the absorption coefficient from a single frequency or multiple frequencies, respectively. Simulation studies have verified the feasibility of the proposed reference-free method and evaluated its accuracy in the absorption recovery. Experimental validations have been performed on homogeneous tissue-mimicking phantoms with μ a ranging from 0.01 to 0.07 mm -1 and [Formula: see text] = 1.0 or 2.0 mm -1 . The results have shown maximum errors of 4.86 and 7% for [Formula: see text] = 1.0 mm -1 and

  6. Spatial effect on stochastic dynamics of bistable evolutionary games

    International Nuclear Information System (INIS)

    So, Kohaku H Z; Ohtsuki, Hisashi; Kato, Takeo

    2014-01-01

    We consider the lifetimes of metastable states in bistable evolutionary games (coordination games), and examine how they are affected by spatial structure. A semiclassical approximation based on a path integral method is applied to stochastic evolutionary game dynamics with and without spatial structure, and the lifetimes of the metastable states are evaluated. It is shown that the population dependence of the lifetimes is qualitatively different in these two models. Our result indicates that spatial structure can accelerate the transitions between metastable states. (paper)

  7. Analyzing the Effects of Spatial Interaction among City Clusters on Urban Growth—Case of Wuhan Urban Agglomeration

    Directory of Open Access Journals (Sweden)

    Ronghui Tan

    2016-08-01

    Full Text Available For the past two decades, China’s urbanization has attracted increasing attention from scholars around the world. Numerous insightful studies have attempted to determine the socioeconomic causes of the rapid urban growth in Chinese cities. However, most of these studies regarded each city as a single entity, with few considering inter-city relationships. The present study uses a gravity-based model to measure the spatial interaction among city clusters in the Wuhan urban agglomeration (WUA, which is one of China’s most rapidly urbanizing regions. The effects of spatial interaction on urban growth area were also analyzed. Empirical results indicate that, similar to urban population or employment in secondary and tertiary industries in the WUA from 2000 to 2005, the spatial interaction among city clusters is one of the main drivers of urban growth. In fact, this study finds the effects of spatial interaction as the only socioeconomic factor that affected the spatial expansion from 2005 to 2010. This finding suggests that population migration and information and commodity flows showed greater influence than the socioeconomic drivers of each city did on promoting urbanization in the WUA during this period. We thus argue that spatial interaction among city clusters should be a consideration in future regional planning.

  8. Development: Ages & Stages--Spatial Awareness

    Science.gov (United States)

    Poole, Carla; Miller, Susan A.; Church, Ellen Booth

    2006-01-01

    Spatial concepts such as a sense of distance are learned through movement and exploration which is the most effective way for children to gain body awareness and an understanding of spatial relationships. It simultaneously develops muscle strength, coordination, self-confidence, and thinking skills. Spatial awareness can be defined as "an…

  9. Disentangling environmental and spatial effects on phylogenetic structure of angiosperm tree communities in China.

    Science.gov (United States)

    Qian, Hong; Chen, Shengbin; Zhang, Jin-Long

    2017-07-17

    Niche-based and neutrality-based theories are two major classes of theories explaining the assembly mechanisms of local communities. Both theories have been frequently used to explain species diversity and composition in local communities but their relative importance remains unclear. Here, we analyzed 57 assemblages of angiosperm trees in 0.1-ha forest plots across China to examine the effects of environmental heterogeneity (relevant to niche-based processes) and spatial contingency (relevant to neutrality-based processes) on phylogenetic structure of angiosperm tree assemblages distributed across a wide range of environment and space. Phylogenetic structure was quantified with six phylogenetic metrics (i.e., phylogenetic diversity, mean pairwise distance, mean nearest taxon distance, and the standardized effect sizes of these three metrics), which emphasize on different depths of evolutionary histories and account for different degrees of species richness effects. Our results showed that the variation in phylogenetic metrics explained independently by environmental variables was on average much greater than that explained independently by spatial structure, and the vast majority of the variation in phylogenetic metrics was explained by spatially structured environmental variables. We conclude that niche-based processes have played a more important role than neutrality-based processes in driving phylogenetic structure of angiosperm tree species in forest communities in China.

  10. Anomalous transport in disordered fracture networks: Spatial Markov model for dispersion with variable injection modes

    Science.gov (United States)

    Kang, Peter K.; Dentz, Marco; Le Borgne, Tanguy; Lee, Seunghak; Juanes, Ruben

    2017-08-01

    We investigate tracer transport on random discrete fracture networks that are characterized by the statistics of the fracture geometry and hydraulic conductivity. While it is well known that tracer transport through fractured media can be anomalous and particle injection modes can have major impact on dispersion, the incorporation of injection modes into effective transport modeling has remained an open issue. The fundamental reason behind this challenge is that-even if the Eulerian fluid velocity is steady-the Lagrangian velocity distribution experienced by tracer particles evolves with time from its initial distribution, which is dictated by the injection mode, to a stationary velocity distribution. We quantify this evolution by a Markov model for particle velocities that are equidistantly sampled along trajectories. This stochastic approach allows for the systematic incorporation of the initial velocity distribution and quantifies the interplay between velocity distribution and spatial and temporal correlation. The proposed spatial Markov model is characterized by the initial velocity distribution, which is determined by the particle injection mode, the stationary Lagrangian velocity distribution, which is derived from the Eulerian velocity distribution, and the spatial velocity correlation length, which is related to the characteristic fracture length. This effective model leads to a time-domain random walk for the evolution of particle positions and velocities, whose joint distribution follows a Boltzmann equation. Finally, we demonstrate that the proposed model can successfully predict anomalous transport through discrete fracture networks with different levels of heterogeneity and arbitrary tracer injection modes.

  11. Spatial vulnerability assessments by regression kriging

    Science.gov (United States)

    Pásztor, László; Laborczi, Annamária; Takács, Katalin; Szatmári, Gábor

    2016-04-01

    Two fairly different complex environmental phenomena, causing natural hazard were mapped based on a combined spatial inference approach. The behaviour is related to various environmental factors and the applied approach enables the inclusion of several, spatially exhaustive auxiliary variables that are available for mapping. Inland excess water (IEW) is an interrelated natural and human induced phenomenon causes several problems in the flat-land regions of Hungary, which cover nearly half of the country. The term 'inland excess water' refers to the occurrence of inundations outside the flood levee that originate from sources differing from flood overflow, it is surplus surface water forming due to the lack of runoff, insufficient absorption capability of soil or the upwelling of groundwater. There is a multiplicity of definitions, which indicate the complexity of processes that govern this phenomenon. Most of the definitions have a common part, namely, that inland excess water is temporary water inundation that occurs in flat-lands due to both precipitation and groundwater emerging on the surface as substantial sources. Radon gas is produced in the radioactive decay chain of uranium, which is an element that is naturally present in soils. Radon is transported mainly by diffusion and convection mechanisms through the soil depending mainly on soil physical and meteorological parameters and can enter and accumulate in the buildings. Health risk originating from indoor radon concentration attributed to natural factors is characterized by geogenic radon potential (GRP). In addition to geology and meteorology, physical soil properties play significant role in the determination of GRP. Identification of areas with high risk requires spatial modelling, that is mapping of specific natural hazards. In both cases external environmental factors determine the behaviour of the target process (occurrence/frequncy of IEW and grade of GRP respectively). Spatial auxiliary

  12. The Spatial Politics of Spatial Representation

    DEFF Research Database (Denmark)

    Olesen, Kristian; Richardson, Tim

    2011-01-01

    spatial planning in Denmark reveals how fuzzy spatial representations and relational spatial concepts are being used to depoliticise strategic spatial planning processes and to camouflage spatial politics. The paper concludes that, while relational geography might play an important role in building......This paper explores the interplay between the spatial politics of new governance landscapes and innovations in the use of spatial representations in planning. The central premise is that planning experiments with new relational approaches become enmeshed in spatial politics. The case of strategic...

  13. Spatial-Simultaneous and Spatial-Sequential Working Memory in Individuals with Down Syndrome: The Effect of Configuration

    Science.gov (United States)

    Carretti, Barbara; Lanfranchi, Silvia; Mammarella, Irene C.

    2013-01-01

    Earlier research showed that visuospatial working memory (VSWM) is better preserved in Down syndrome (DS) than verbal WM. Some differences emerged, however, when VSWM performance was broken down into its various components, and more recent studies revealed that the spatial-simultaneous component of VSWM is more impaired than the spatial-sequential…

  14. Pyroelectric photovoltaic spatial solitons in unbiased photorefractive crystals

    International Nuclear Information System (INIS)

    Jiang, Qichang; Su, Yanli; Ji, Xuanmang

    2012-01-01

    A new type of spatial solitons i.e. pyroelectric photovoltaic spatial solitons based on the combination of pyroelectric and photovoltaic effect is predicted theoretically. It shows that bright, dark and grey spatial solitons can exist in unbiased photovoltaic photorefractive crystals with appreciable pyroelectric effect. Especially, the bright soliton can form in self-defocusing photovoltaic crystals if it gives larger self-focusing pyroelectric effect. -- Highlights: ► A new type of spatial soliton i.e. pyroelectric photovoltaic spatial soliton is predicted. ► The bright, dark and grey pyroelectric photovoltaic spatial soliton can form. ► The bright soliton can also exist in self-defocusing photovoltaic crystals.

  15. The Effect of Spatial Interference Correlation and Jamming on Secrecy in Cellular Networks

    KAUST Repository

    Ali, Konpal S.

    2017-06-02

    Recent studies on secure wireless communication have shed light on a scenario where interference has a desirable impact on network performance. Particularly, assuming independent interference-power fluctuations at the eavesdropper and the receiver, opportunistic secure-information transfer can occur on the legitimate-link. However, interference is spatially correlated due to the common set of interfering sources, which may diminish the opportunistic-secure-spectrum-access (OSSA) probability. We study and quantify the effect of spatial interference correlation on OSSA in cellular-networks and investigate the potential of full-duplex jamming (FDJ) solutions. The results highlight the scenarios where FDJ improves OSSA performance.

  16. The Effect of Spatial Interference Correlation and Jamming on Secrecy in Cellular Networks

    KAUST Repository

    Ali, Konpal S.; Elsawy, Hesham; Haenggi, Martin; Alouini, Mohamed-Slim

    2017-01-01

    Recent studies on secure wireless communication have shed light on a scenario where interference has a desirable impact on network performance. Particularly, assuming independent interference-power fluctuations at the eavesdropper and the receiver, opportunistic secure-information transfer can occur on the legitimate-link. However, interference is spatially correlated due to the common set of interfering sources, which may diminish the opportunistic-secure-spectrum-access (OSSA) probability. We study and quantify the effect of spatial interference correlation on OSSA in cellular-networks and investigate the potential of full-duplex jamming (FDJ) solutions. The results highlight the scenarios where FDJ improves OSSA performance.

  17. Effects of Spatial Gradients on Electron Runaway Acceleration

    Science.gov (United States)

    MacNeice, Peter; Ljepojevic, N. N.

    1996-01-01

    The runaway process is known to accelerate electrons in many laboratory plasmas and has been suggested as an acceleration mechanism in some astrophysical plasmas, including solar flares. Current calculations of the electron velocity distributions resulting from the runaway process are greatly restricted because they impose spatial homogeneity on the distribution. We have computed runaway distributions which include consistent development of spatial gradients in the energetic tail. Our solution for the electron velocity distribution is presented as a function of distance along a finite length acceleration region, and is compared with the equivalent distribution for the infinitely long homogenous system (i.e., no spatial gradients), as considered in the existing literature. All these results are for the weak field regime. We also discuss the severe restrictiveness of this weak field assumption.

  18. Acousto-Optic Tunable Filter Hyperspectral Microscope Imaging Method for Characterizing Spectra from Foodborne Pathogens.

    Science.gov (United States)

    Hyperspectral microscope imaging (HMI) method, which provides both spatial and spectral characteristics of samples, can be effective for foodborne pathogen detection. The acousto-optic tunable filter (AOTF)-based HMI method can be used to characterize spectral properties of biofilms formed by Salmon...

  19. The Effects of Spatial and Temporal Decisions on Orange Marketing in Babol County

    Directory of Open Access Journals (Sweden)

    H. Najafi Alamdarlo

    2016-10-01

    Full Text Available Introduction: Due to the fact that farmers are in the surrounding factors such as cultural, social and economic environment, these factors can influence the attitudes and decisions to accept or reject the innovation. Farmer`s opinion over time, also, have a significant role in making new decisions. Therefore, absent a model which would assess the temporal and spatial factors in the decision - making process by growing citrus is strongly needed. This study aims to identify and measure the factors affecting the sales channel chosen by farmers and considers the impact of neighboring on farmers’ decisions using the spatial probit model and finally provides some strategies to improve and increase the efficiency of distribution channels in the product market. One of the aims of this research is to assess the effects of accumulated decisions in the minds of farmers on the choosing of marketing channel. Another innovation of this study is evaluating the spatial factors on orange marketing which examines the effects of diffusive decisions in adjacent villages. Materials and Methods: The data used in this study were collected by questionnaire form 99 gardeners in 9 villages in Babol in 1391-92. In this paper, three distribution channels including retail, sales to middle man and sales to whole sale are evaluated at Babol County. For testing these three channels, probit panel data and spatial approach were used. Therefore, in this model the effects of age, experience, education, amount of sales, price, spatial and temporal effects variables have been modeled. To get the spatial effects, the weighted contiguity matrix was used. Results and Discussion: Age has a positive effect on wholesale approach. In sales to middleman approach, age has also positive effect, but its effect is more than wholesale and retail, because as the age increased, risk acceptance decreased. In retail, this variable (age has a negative effect. In this way, due to higher marketing

  20. A MongoDB-Based Management of Planar Spatial Data with a Flattened R-Tree

    Directory of Open Access Journals (Sweden)

    Longgang Xiang

    2016-07-01

    Full Text Available This paper addresses how to manage planar spatial data using MongoDB, a popular NoSQL database characterized as a document-oriented, rich query language and high availability. The core idea is to flatten a hierarchical R-tree structure into a tabular MongoDB collection, during which R-tree nodes are represented as collection documents and R-tree pointers are expressed as document identifiers. By following this strategy, a storage schema to support R-tree-based create, read, update, and delete (CRUD operations is designed and a module to manage planar spatial data by consuming and maintaining flattened R-tree structure is developed. The R-tree module is then seamlessly integrated into MongoDB, so that users could manipulate planar spatial data with existing command interfaces oriented to geodetic spatial data. The experimental evaluation, using real-world datasets with diverse coverage, types, and sizes, shows that planar spatial data can be effectively managed by MongoDB with our flattened R-tree and, therefore, the application extent of MongoDB will be greatly enlarged. Our work resulted in a MongoDB branch with R-tree support, which has been released on GitHub for open access.

  1. Characterization of a texture gradient in tantalum plate

    International Nuclear Information System (INIS)

    Wright, S.I.; Gray, G.T. III.

    1994-01-01

    Clark et al. have shown that significant texture gradients can be produced in rolled tantalum plate and that the strength of the gradient is dependent on the processing path. Texture gradients are often ignored because they are time consuming to characterize and add significant complexity to materials modeling. The variation in texture through the thickness of rolled materials is most commonly measured by sectioning samples to different depths through the thickness of the plate and then measuring the texture from these section planes by X-ray diffraction. A new technique based on automatic indexing of electron backscatter diffraction patterns in the scanning electron microscope enables spatially specific orientations to be measured in a practical manner. This technique allows spatial variations in texture to be measured directly enabling gradients in texture to be investigated in more detail than previously possible. This data can be used directly in coupled finite-element/polycrystal-plasticity models to simulate the effects of variations in texture on the plastic behavior of polycrystals. This work examines the variation in texture through the thickness of a tantalum plate and its resultant effect on the compressive deformation of samples prepared from the plate. The characterization of the texture gradient using the automatic point-by-point measurement technique mentioned above is described in detail. The effect of the gradient on the plastic response of through-thickness compression tests is also discussed

  2. The effect of the spatial positioning of items on the reliability of questionnaires measuring affect

    Directory of Open Access Journals (Sweden)

    Leigh Leo

    2016-08-01

    Full Text Available Orientation: Extant research has shown that the relationship between spatial location and affect may have pervasive effects on evaluation. In particular, experimental findings on embodied cognition indicate that a person is spatially orientated to position what is positive at the top and what is negative at the bottom (vertical spatial orientation, and to a lesser extent, to position what is positive on the left and what is negative on the right (horizontal spatial orientation. It is therefore hypothesised, that when there is congruence between a respondent’s spatial orientation (related to affect and the spatial positioning (layout of a questionnaire, the reliability will be higher than in the case of incongruence. Research purpose: The principal objective of the two studies reported here was to ascertain the extent to which congruence between a respondent’s spatial orientation (related to affect and the layout of the questionnaire (spatial positioning of questionnaire items may impact on the reliability of a questionnaire measuring affect. Motivation for the study: The spatial position of items on a questionnaire measuring affect may indirectly impact on the reliability of the questionnaire. Research approach, design and method: In both studies, a controlled experimental research design was conducted using a sample of university students (n = 1825. Major findings: In both experiments, evidence was found to support the hypothesis that greater congruence between a respondent’s spatial orientation (related to affect and the spatial positioning (layout of a questionnaire leads to higher reliability on a questionnaire measuring affect. Practical implications: These findings may serve to create awareness of the influence of the spatial positioning of items as a confounding variable in questionnaire design. Contribution/value-add: Overall, this research complements previous studies by confirming the metaphorical representation of affect and

  3. The effect of egocentric body movements on users' navigation performance and spatial memory in zoomable user interfaces

    OpenAIRE

    Rädle, Roman; Jetter, Hans-Christian; Butscher, Simon; Reiterer, Harald

    2013-01-01

    We present two experiments examining the impact of navigation techniques on users’ navigation performance and spatial memory in a zoomable user interface (ZUI). The first experiment with 24 participants compared the effect of egocentric body movements with traditional multi-touch navigation. The results indicate a 47% decrease in path lengths and a 34% decrease in task time in favor of egocentric navigation, but no significant effect on users’ spatial memory immediately after a navigation tas...

  4. Neural correlates of spatial navigation changes in mild cognitive impairment and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Kamil eVlček

    2014-03-01

    Full Text Available Although the memory impairment is a hallmark of Alzheimer’s disease (AD, AD has also been characterized by spatial disorientation, which is present from its early stages. Spatial disorientation in AD manifests itself in getting lost in familiar and unfamiliar places and have been characterized more specifically using spatial navigation tests in both real space and virtual environments as an impairment in multiple spatial abilities, including allocentric and egocentric navigation strategies, visuospatial perception or selection of relevant information for successful navigation. Patients suffering mild cognitive impairment (MCI, who are at a high risk of development of dementia, show impairment in a subset of these abilities, mainly connected with allocentric and egocentric processing. While spatial disorientation in typical AD patients probably reflects neurodegenerative changes in medial and posterior temporal, parietal and frontal lobes and retrosplenial cortex, the impairment of spatial navigation in MCI seem to be connected mainly with the medial temporal and also parietal brain changes. In this review we will summarize the signs of brain disease in most MCI and AD patients showing in various tasks of spatial memory and navigation.

  5. Integrating Spatial and Attribute Characteristics of Extended Voronoi Diagrams in Spatial Patterning Research: A Case Study of Wuhan City in China

    Directory of Open Access Journals (Sweden)

    Zuohua Miao

    2016-07-01

    Full Text Available Rapid urbanization has caused numerous problems, and the urban spatial structure has been a hot topic in sustainable development management. Urban spatial structure is affected by a series of factors. Thus, the research model should synthetically consider the spatial and non-spatial relationship of every element. Here, we propose an extended Voronoi diagram for exploring the urban land spatial pattern. In essence, we first used a principal component analysis method to construct attribute evaluation indicators and obtained the attribute distance for each indicator. Second, we integrated spatial and attribute distances to extend the comparison distance for Voronoi diagrams, and then, we constructed the Voronoi aggregative homogeneous map of the study area. Finally, we make a spatial autocorrelation analysis by using GeoDA and SPSS software. Results show that: (1 the residential land cover aggregation is not significant, but spatial diffusion is obvious; (2 the commercial land cover aggregation is considerable; and (3 the spatial agglomeration degree of the industrial land cover is increased and mainly located in urban fringes. According to the neo-Marxist theory, we briefly analyzed the driving forces for shaping the urban spatial structure. To summarize, our approach yields important insights into the urban spatial structure characterized by attribute similarity with geospatial proximity, which contributes to a better understanding of the urban growth mechanism. In addition, it explicitly identifies ongoing urban transformations, potentially supporting the planning for sustainable urban land use and protection.

  6. The effects of transient attention on spatial resolution and the size of the attentional cue.

    Science.gov (United States)

    Yeshurun, Yaffa; Carrasco, Marisa

    2008-01-01

    It has been shown that transient attention enhances spatial resolution, but is the effect of transient attention on spatial resolution modulated by the size of the attentional cue? Would a gradual increase in the size of the cue lead to a gradual decrement in spatial resolution? To test these hypotheses, we used a texture segmentation task in which performance depends on spatial resolution, and systematically manipulated the size of the attentional cue: A bar of different lengths (Experiment 1) or a frame of different sizes (Experiments 2-3) indicated the target region in a texture segmentation display. Observers indicated whether a target patch region (oriented line elements in a background of an orthogonal orientation), appearing at a range of eccentricities, was present in the first or the second interval. We replicated the attentional enhancement of spatial resolution found with small cues; attention improved performance at peripheral locations but impaired performance at central locations. However, there was no evidence of gradual resolution decrement with large cues. Transient attention enhanced spatial resolution at the attended location when it was attracted to that location by a small cue but did not affect resolution when it was attracted by a large cue. These results indicate that transient attention cannot adapt its operation on spatial resolution on the basis of the size of the attentional cue.

  7. Spatial diversity of spontaneous activity in the cortex

    Directory of Open Access Journals (Sweden)

    Andrew Yong-Yi Tan

    2015-09-01

    Full Text Available The neocortex is a layered sheet across which a basic organization is thought to widely apply. The variety of spontaneous activity patterns is similar throughout the cortex, consistent with the notion of a basic cortical organization. However, the basic organization is only an outline which needs adjustments and additions to account for the structural and functional diversity across cortical layers and areas. Such diversity suggests that spontaneous activity is spatially diverse in any particular behavioral state. Accordingly, this review summarizes the laminar and areal diversity in cortical activity during fixation and slow oscillations, and the effects of attention, anesthesia and plasticity on the cortical distribution of spontaneous activity. Among questions that remain open, characterizing the spatial diversity in spontaneous membrane potential may help elucidate how differences in circuitry among cortical regions supports their varied functions. More work is also needed to understand whether cortical spontaneous activity not only reflects cortical circuitry, but also contributes to determining the outcome of plasticity, so that it is itself a factor shaping the functional diversity of the cortex.

  8. Effect of electronic spatial extents (ESE) of ions on overpotential of lithium ion capacitors

    International Nuclear Information System (INIS)

    Xu, Fan; Lee, Chung ho; Koo, Chong Min; Jung, Cheolsoo

    2014-01-01

    Highlights: •Electronic spatial extent (ESE) of ion characterizes its electron density volume. •The ESE of ion proposes to assess overpotential of nanoporous capacitor. •Anion with low ESE shows low overpotential of the capacitor. •The ESE is more realistic to assess overpotential than conductivity or ion size. -- Abstract: The electronic spatial extent (ESE) of ions was defined as a major concept for assessing the cause of overpotential in the charging and discharging processes of a nanoporous activated carbon (AC) electrode. The performance degradation of AC/Li half-cells was caused by the overpotential, which was in discord with the electrolyte conductivity and ion size. Compared to the overpotential with the salt concentration, the AC/Li half-cell with a high concentration had a smaller overpotential, and its discharge patterns were similar to the curves obtained from the half-cells with a smaller ESE of BF 4 − ion. The ESE is a more realistic solution for determining the overpotential of the nanoporous capacitor, such as supercapacitor and Li ion capacitor, because its capacity is dependent on the electron density at the electric double layer of the capacitor electrode

  9. Extending the Effective Ranging Depth of Spectral Domain Optical Coherence Tomography by Spatial Frequency Domain Multiplexing

    Directory of Open Access Journals (Sweden)

    Tong Wu

    2016-11-01

    Full Text Available We present a spatial frequency domain multiplexing method for extending the imaging depth range of a spectral domain optical coherence tomography (SDOCT system without any expensive device. This method uses two galvo scanners with different pivot-offset distances in two independent reference arms for spatial frequency modulation and multiplexing. The spatial frequency contents corresponding to different depth regions of the sample can be shifted to different frequency bands. The spatial frequency domain multiplexing SDOCT system provides an approximately 1.9-fold increase in the effective ranging depth compared with that of a conventional full-range SDOCT system. The reconstructed images of phantom and biological tissue demonstrate the expected increase in ranging depth. The parameters choice criterion for this method is discussed.

  10. Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels.

    Science.gov (United States)

    Ren, Tiantian; Boutin, Stan; Humphries, Murray M; Dantzer, Ben; Gorrell, Jamieson C; Coltman, David W; McAdam, Andrew G; Wu, Martin

    2017-12-21

    Our understanding of gut microbiota has been limited primarily to findings from human and laboratory animals, but what shapes the gut microbiota in nature remains largely unknown. To fill this gap, we conducted a comprehensive study of gut microbiota of a well-studied North American red squirrel (Tamiasciurus hudsonicus) population. Red squirrels are territorial, solitary, and live in a highly seasonal environment and therefore represent a very attractive system to study factors that drive the temporal and spatial dynamics of gut microbiota. For the first time, this study revealed significant spatial patterns of gut microbiota within a host population, suggesting limited dispersal could play a role in shaping and maintaining the structure of gut microbial communities. We also found a remarkable seasonal rhythm in red squirrel's gut microbial composition manifested by a tradeoff between relative abundance of two genera Oscillospira and Corpococcus and clearly associated with seasonal variation in diet availability. Our results show that in nature, environmental factors exert a much stronger influence on gut microbiota than host-associated factors including age and sex. Despite strong environmental effects, we found clear evidence of individuality and maternal effects, but host genetics did not seem to be a significant driver of the gut microbial communities in red squirrels. Taken together, the results of this study emphasize the importance of external ecological factors rather than host attributes in driving temporal and spatial patterns of gut microbiota in natural environment.

  11. R-Modafinil exerts weak effects on spatial memory acquisition and dentate gyrus synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Bharanidharan Shanmugasundaram

    Full Text Available Modafinil is a wake promoting drug approved for clinical use and also has cognitive enhancing properties. Its enantiomer R-Modafinil (R-MO is not well studied in regard to cognitive enhancing properties. Hence we studied its effect in a spatial memory paradigm and its possible effects on dentate gyrus long-term potentiation (DG-LTP. Clinically relevant doses of R-MO, vehicle dimethyl sulfoxide (DMSO or saline were administered for three days during the hole-board test and in in vivo DG-LTP. Synaptic levels of dopamine receptors D1R, D2R, dopamine transporter (DAT, and its phosphorylated form (ph-DAT in DG tissue 4 h after LTP induction were quantified by western blot analysis. Monoamine reuptake and release assays were performed by using transfected HEK-293 cells. Possible neurotoxic side effects on general behaviour were also studied. R-MO at both doses significantly enhanced spatial reference memory during the last training session and during memory retrieval compared to DMSO vehicle but not when compared to saline treated rats. Similarly, R-MO rescues DG-LTP from impairing effects of DMSO. DMSO reduced memory performance and LTP magnitude when compared to saline treated groups. The synaptic DR1 levels in R-MO groups were significantly decreased compared to DMSO group but were comparable with saline treated animals. We found no effect of R-MO in neurotoxicity tests. Thus, our results support the notion that LTP-like synaptic plasticity processes could be one of the factors contributing to the cognitive enhancing effects of spatial memory traces. D1R may play an important regulatory role in these processes.

  12. Spatial modelling of malaria risk factors in Ruhuha sector in the east ...

    African Journals Online (AJOL)

    Spatial clusters of malaria occurrence were subsequently determined using Getis and Ord spatial statistics. This cluster analysis showed that malaria distribution is characterized by zones with high malaria risk, so called hot spots, zones with moderate malaria risk known as not significant spots and zones of low malaria risk ...

  13. Characterizing spatial and temporal variability in methane gas-flux dynamics of subtropical wetlands in the Big Cypress National Preserve, Florida

    Science.gov (United States)

    Sirianni, M.; Comas, X.; Shoemaker, B.

    2017-12-01

    hope to better understand the uncertainties associated with measuring wetland methane fluxes across different spatial and temporal scales. Our results have implications for characterizing and refining methane flux estimates in subtropical peat soils that could be used for climate models.

  14. Analysing earthquake slip models with the spatial prediction comparison test

    KAUST Repository

    Zhang, L.; Mai, Paul Martin; Thingbaijam, Kiran Kumar; Razafindrakoto, H. N. T.; Genton, Marc G.

    2014-01-01

    Earthquake rupture models inferred from inversions of geophysical and/or geodetic data exhibit remarkable variability due to uncertainties in modelling assumptions, the use of different inversion algorithms, or variations in data selection and data processing. A robust statistical comparison of different rupture models obtained for a single earthquake is needed to quantify the intra-event variability, both for benchmark exercises and for real earthquakes. The same approach may be useful to characterize (dis-)similarities in events that are typically grouped into a common class of events (e.g. moderate-size crustal strike-slip earthquakes or tsunamigenic large subduction earthquakes). For this purpose, we examine the performance of the spatial prediction comparison test (SPCT), a statistical test developed to compare spatial (random) fields by means of a chosen loss function that describes an error relation between a 2-D field (‘model’) and a reference model. We implement and calibrate the SPCT approach for a suite of synthetic 2-D slip distributions, generated as spatial random fields with various characteristics, and then apply the method to results of a benchmark inversion exercise with known solution. We find the SPCT to be sensitive to different spatial correlations lengths, and different heterogeneity levels of the slip distributions. The SPCT approach proves to be a simple and effective tool for ranking the slip models with respect to a reference model.

  15. Analysing earthquake slip models with the spatial prediction comparison test

    KAUST Repository

    Zhang, L.

    2014-11-10

    Earthquake rupture models inferred from inversions of geophysical and/or geodetic data exhibit remarkable variability due to uncertainties in modelling assumptions, the use of different inversion algorithms, or variations in data selection and data processing. A robust statistical comparison of different rupture models obtained for a single earthquake is needed to quantify the intra-event variability, both for benchmark exercises and for real earthquakes. The same approach may be useful to characterize (dis-)similarities in events that are typically grouped into a common class of events (e.g. moderate-size crustal strike-slip earthquakes or tsunamigenic large subduction earthquakes). For this purpose, we examine the performance of the spatial prediction comparison test (SPCT), a statistical test developed to compare spatial (random) fields by means of a chosen loss function that describes an error relation between a 2-D field (‘model’) and a reference model. We implement and calibrate the SPCT approach for a suite of synthetic 2-D slip distributions, generated as spatial random fields with various characteristics, and then apply the method to results of a benchmark inversion exercise with known solution. We find the SPCT to be sensitive to different spatial correlations lengths, and different heterogeneity levels of the slip distributions. The SPCT approach proves to be a simple and effective tool for ranking the slip models with respect to a reference model.

  16. Spatial modelling and ecology of Echinococcus multilocularis transmission in China.

    Science.gov (United States)

    Danson, F Mark; Giraudoux, Patrick; Craig, Philip S

    2006-01-01

    Recent research in central China has suggested that the most likely transmission mechanism for Echinococcus multilocularis to humans is via domestic dogs which are allowed to roam freely and hunt (infected) small mammals within areas close to villages or in areas of tented pasture. This assertion has led to the hypothesis that there is a landscape control on transmission risk since the proximity of suitable habitat for susceptible small mammals appears to be the key. We have tested this hypothesis in a number of endemic areas in China, notably south Gansu Province and the Tibetan region of western Sichuan Province. The fundamental landscape control is its effect at a regional scale on small mammal species assemblages (susceptible species are not ubiquitous) and, at a local scale, the spatial distributions of small mammal populations. To date the research has examined relationships between landscape composition and patterns of human infection, landscape and small mammal distributions and recently the relationships between landscape and dog infection rates. The key tool to characterize landscape is satellite remote sensing and these data are used as inputs to drive spatial models of transmission risk. This paper reviews the progress that has been made so far in spatial modeling of the ecology of E. multilocularis with particular reference to China, outlines current research issues, and describes a framework for building a spatial-temporal model of transmission ecology.

  17. Landscape generator : method to generate plausible landscape configurations for participatory spatial plan-making

    NARCIS (Netherlands)

    Slager, C.T.J.

    2011-01-01

    Contemporary regional spatial plan-making in the Netherlands is characterized as a complex process wherein multiple actors, with different levels of interests and demands, try to commonly develop a coherent and comprehensive set of future plan scenarios. The construction of the set of spatial plan

  18. Spatially resolved investigation of competing nanocluster emission in quantum-disks-in-nanowires structure characterized by nanoscale cathodoluminescence

    KAUST Repository

    Prabaswara, Aditya; Stowe, David J.; Janjua, Bilal; Ng, Tien Khee; Anjum, Dalaver H.; Longo, Paolo; Zhao, Chao; Elafandy, Rami T.; Li, Xiaohang; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2017-01-01

    We report on the study and characterization of nanoclusters-related recombination centers within quantum-disks-in-nanowires heterostructure by utilizing microphotoluminescence (mu-PL) and cathodoluminescence scanning transmission electron microscopy (CL-STEM). mu-PL measurement shows that the nanoclusters-related recombination center exhibits different temperature-dependent characteristics compared with the surrounding InGaN quantum-disksrelated recombination center. CL-STEM measurements reveal that these recombination centers mainly arise from irregularities within the quantum disks, with a strong, spatially localized emission when measured at low temperature. The spectra obtained from both CL-STEM and mu-PL correlate well with each other. Our work sheds light on the optical and structural properties of simultaneously coexisting recombination centers within nanowires heterostructures. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

  19. Spatially resolved investigation of competing nanocluster emission in quantum-disks-in-nanowires structure characterized by nanoscale cathodoluminescence

    KAUST Repository

    Prabaswara, Aditya

    2017-06-30

    We report on the study and characterization of nanoclusters-related recombination centers within quantum-disks-in-nanowires heterostructure by utilizing microphotoluminescence (mu-PL) and cathodoluminescence scanning transmission electron microscopy (CL-STEM). mu-PL measurement shows that the nanoclusters-related recombination center exhibits different temperature-dependent characteristics compared with the surrounding InGaN quantum-disksrelated recombination center. CL-STEM measurements reveal that these recombination centers mainly arise from irregularities within the quantum disks, with a strong, spatially localized emission when measured at low temperature. The spectra obtained from both CL-STEM and mu-PL correlate well with each other. Our work sheds light on the optical and structural properties of simultaneously coexisting recombination centers within nanowires heterostructures. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

  20. Disentangling the effects of spatial inconsistency of targets and distractors when searching in realistic scenes.

    Science.gov (United States)

    Spotorno, Sara; Malcolm, George L; Tatler, Benjamin W

    2015-02-10

    Previous research has suggested that correctly placed objects facilitate eye guidance, but also that objects violating spatial associations within scenes may be prioritized for selection and subsequent inspection. We analyzed the respective eye guidance of spatial expectations and target template (precise picture or verbal label) in visual search, while taking into account any impact of object spatial inconsistency on extrafoveal or foveal processing. Moreover, we isolated search disruption due to misleading spatial expectations about the target from the influence of spatial inconsistency within the scene upon search behavior. Reliable spatial expectations and precise target template improved oculomotor efficiency across all search phases. Spatial inconsistency resulted in preferential saccadic selection when guidance by template was insufficient to ensure effective search from the outset and the misplaced object was bigger than the objects consistently placed in the same scene region. This prioritization emerged principally during early inspection of the region, but the inconsistent object also tended to be preferentially fixated overall across region viewing. These results suggest that objects are first selected covertly on the basis of their relative size and that subsequent overt selection is made considering object-context associations processed in extrafoveal vision. Once the object was fixated, inconsistency resulted in longer first fixation duration and longer total dwell time. As a whole, our findings indicate that observed impairment of oculomotor behavior when searching for an implausibly placed target is the combined product of disruption due to unreliable spatial expectations and prioritization of inconsistent objects before and during object fixation. © 2015 ARVO.

  1. The effect of food quality during growth on spatial memory consolidation in adult pigeons.

    Science.gov (United States)

    Scriba, M F; Gasparini, J; Jacquin, L; Mettke-Hofmann, C; Rattenborg, N C; Roulin, A

    2017-02-15

    Poor environmental conditions experienced during early development can have negative long-term consequences on fitness. Animals can compensate for negative developmental effects through phenotypic plasticity by diverting resources from non-vital to vital traits such as spatial memory to enhance foraging efficiency. We tested in young feral pigeons ( Columba livia ) how diets of different nutritional value during development affect the capacity to retrieve food hidden in a spatially complex environment, a process we refer to as 'spatial memory'. Parents were fed with either high- or low-quality food from egg laying until young fledged, after which all young pigeons received the same high-quality diet until memory performance was tested at 6 months of age. The pigeons were trained to learn a food location out of 18 possible locations in one session, and then their memory of this location was tested 24 h later. Birds reared with the low-quality diet made fewer errors in the memory test. These results demonstrate that food quality during development has long-lasting effects on memory, with a moderate nutritional deficit improving spatial memory performance in a foraging context. It might be that under poor feeding conditions resources are redirected from non-vital to vital traits, or pigeons raised with low-quality food might be better in using environmental cues such as the position of the sun to find where food was hidden. © 2017. Published by The Company of Biologists Ltd.

  2. Spatial characterization of Leptospira spp. infection in equids from the Brejo Paraibano micro-region in Brazil

    Directory of Open Access Journals (Sweden)

    Ruy Brayner Oliveira Filho

    2014-05-01

    Full Text Available The present study, the first to spatially characterize Leptospira spp. infection among equids in the Brejo Paraibano micro-region of the Paraiba state in the northeast of Brazil, investigated 257 animals in 26 farms properties. Serum samples from 204 horses, 46 mules and seven donkeys were serologically diagnosed using the microscopic agglutination test (MAT. The distribution of Leptospira spp. was studied by employing specific antigens from 24 different Leptospira serovars. All farms were georeferenced and their distribution visualised on a map of the Brejo Paraibano micro-region. In addition, rainfall data were obtained from the same year, in which the sampling was performed. Among the 20 farms found to harbour animals with leptospirosis, 14 (70% exhibited low prevalence, five (25% medium prevalence and one (5%, high prevalence. Certain areas had a higher density of infected farms and required intervention to control the infection. Many serovars were widely distributed, while others were more common in particular areas. There was no significant association between the prevalence of Leptospira spp. infection and rainfall.

  3. Effects of spatial aggregation on the multi-scale estimation of evapotranspiration

    KAUST Repository

    Ershadi, Ali

    2013-04-01

    The influence of spatial resolution on the estimation of land surface heat fluxes from remote sensing is poorly understood. In this study, the effects of aggregation from fine (< 100 m) to medium (approx. 1. km) scales are investigated using high resolution Landsat 5 overpasses. A temporal sequence of satellite imagery and needed meteorological data were collected over an agricultural region, capturing distinct variations in crop stage and phenology. Here, we investigate both the impact of aggregating the input forcing and of aggregating the derived latent heat flux. In the input aggregation scenario, the resolution of the Landsat based radiance data was increased incrementally from 120. m to 960. m, with the land surface temperature calculated at each specific resolution. Reflectance based land surface parameters such as vegetation height and leaf area index were first calculated at the native 30. m Landsat resolution and then aggregated to multiple spatial scales. Using these data and associated meteorological forcing, surface heat fluxes were calculated at each distinct resolution using the Surface Energy Balance System (SEBS) model. Results indicate that aggregation of input forcing using a simple averaging method has limited effect on the land surface temperature and available energy, but can reduce evapotranspiration estimates at the image scale by up to 15%, and at the pixel scale by up to 50%. It was determined that the predominant reason for the latent heat flux reduction in SEBS was a decrease in the aerodynamic resistance at coarser resolutions, which originates from a change in the roughness length parameters of the land surface due to the aggregation. In addition, the magnitude of errors in surface heat flux estimation due to input aggregation was observed to be a function of the heterogeneity of the land surface and evaporative elements. In examining the response of flux aggregation, fine resolution (120. m) heat fluxes were aggregated to coarser

  4. Characterization of Spatial Variability of Hydrogeologic Properties for Unsaturated Flow in the Fractured Rocks at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Zhou, Quanlin; Bodvarsson, Gudmundur S.; Liu, Hui-Hai; Oldenburg, Curtis M.

    2002-01-01

    The spatial variability of layer-scale hydrogeologic properties of the unsaturated zone (UZ) at Yucca Mountain, Nevada, is investigated using inverse modeling. The thick UZ is grouped into five hydrostratigraphic units and further into 35 hydrogeologic layers. For each layer, lateral variability is represented by the variations in calibrated values of layer-scale properties at different individual deep boreholes. In the calibration model, matrix and fracture properties are calibrated for the one-dimensional vertical column at each individual borehole using the ITOUGH2 code. The objective function is the summation of the weighted misfits between the ambient unsaturated flow (represented by measured state variables: water saturation, water potential, and pneumatic pressure) and the simulated one in the one-dimensional flow system. The objective function also includes the weighted misfits between the calibrated properties and their prior information. Layer-scale state variables and prior rock properties are obtained from their core-scale measurements. Because of limited data, the lateral variability of three most sensitive properties (matrix permeability, matrix of the van Genuchten characterization, and fracture permeability) is calibrated, while all other properties are fixed at their calibrated layer-averaged values. Considerable lateral variability of hydrogeologic properties is obtained. For example, the lateral variability of is two to three orders of magnitude and that of and is one order of magnitude. The effect of lateral variability on site-scale flow and transport will be investigated in a future study

  5. Black Carbon, Dust and Organic Matter at South Cascade Glacier in Washington State, USA: A Comprehensive Characterization of Temporal (1865-2014) and Spatial Variability

    Science.gov (United States)

    Kaspari, S.; Pittenger, D.; Swick, M.; Skiles, M.; Perez, A.; Sethi, H.; Sevier, E.

    2017-12-01

    Rising temperatures are a widely recognized cause of glacial retreat in Washington, however light absorbing aerosols (LAA, including black carbon (BC), dust and organic matter) can also contribute to increased melt by reducing snow albedo. We present updated results of BC and dust variability at South Cascade (SOCAS) glacier spanning 1865-1994 using a 158 m ice core. Peak BC deposition occurred between 1940-1958, when median BC concentrations were 25 times higher than background levels. Post 1958 BC concentrations decrease, followed by an increase post 1980 associated with melt consolidation and/or trans-Pacific aerosol transport. Dust deposition at SOCAS is dominated by local sources. Albedo reductions from LAA are dominated by dust deposition, except during high BC deposition events from wildfires, and during the 1940-1958 period when BC contributes equally to albedo reductions. Results from a 2014 field campaign that included collection of 3 shallow ice cores, surface snow, and snow albedo measurements allow the 1865-1994 ice core record to be extended toward present, and spatial variability in LAA to be characterized. Snow albedo transects were measured using a spectrometer. BC concentrations were measured using a Single Particle Soot Photometer (SP2). Gravimetric filtration was used to determine the total LAA, and a thermal gravimetric technique was used to partition the LAA between dust and organic matter. The organic matter was partitioned into organic and elemental carbon using a thermal optical method. These methods allow LAA abundances be measured, but to partition the contribution of the LAA to albedo reductions requires characterization of LAA optical properties. This was accomplished using a Hyperspectral Imaging Microscope Spectrometer method that allows particle reflectance to be measured at 138 nm2 pixel resolution. By combining these methods, we provide a comprehensive characterization of spatial and temporal LAA variability at SOCAS.

  6. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment

    Science.gov (United States)

    Natalie A. Griffiths; Paul J. Hanson; Daniel M. Ricciuto; Colleen M. Iversen; Anna M. Jensen; Avni Malhotra; Karis J. McFarlane; Richard J. Norby; Khachik Sargsyan; Stephen D. Sebestyen; Xiaoying Shi; Anthony P. Walker; Eric J. Ward; Jeffrey M. Warren; David J. Weston

    2017-01-01

    We are conducting a large-scale, long-term climate change response experiment in an ombrotrophic peat bog in Minnesota to evaluate the effects of warming and elevated CO2 on ecosystem processes using empirical and modeling approaches. To better frame future assessments of peatland responses to climate change, we characterized and compared spatial...

  7. Spatial distribution measured by the modulation transfer function

    International Nuclear Information System (INIS)

    Rossi, P.; Brice, D.K.; Doyle, B.L.

    2003-01-01

    Spatial distributions in ion micro-beam and IBA experimental practice are regularly characterized through the parameters of FWHM and tail area percentage (TF, tail fraction). Linear and stationary transducer theory allows these distributions to be described in the Fourier-dual frequency space, and provides an indirect method to evaluate them through measurement of the modulation transfer function (MTF). We suggest direct measurement of MTF by employing bar pattern grids, similar to those used for calibration of radiological equipment. Assuming spatial distributions of the form exp(-(|αx|) η ), we are able to relate the MTF measurements to the more popular FWHM and TF. This new approach to determine spatial resolution can become a standard for use by the micro-beam community

  8. An improved public goods game model with reputation effect on the spatial lattices

    International Nuclear Information System (INIS)

    Zhou, Tianwei; Ding, Shuai; Fan, Wenjuan; Wang, Hao

    2016-01-01

    Highlights: • The reputation effect is added into the spatial public goods game model. • The individual utility is calculated as a combination of payoff and reputation. • The individual reputation will be adaptively modified as the system evolves. • The larger the reputation factor, the higher the cooperation level. - Abstract: How to model the evolution of cooperation within the population is an important and interdisciplinary issue across the academia. In this paper, we propose an improved public goods game model with reputation effect on spatial lattices to investigate the evolution of cooperation regarding the allocation of public resources. In our model, we modify the individual utility or fitness as a product of the present payoff and reputation-related power function, and strategy update adopts a Fermi-like probability function during the game evolution. Meanwhile, for an interaction between a pair of partners, the reputation of a cooperative agent will be accrued beyond two units, but the defective player will decrease his reputation by one unit. Extensive Monte Carlo numerical simulations indicate the introduction of reputation will foster the formation of cooperative clusters, and greatly enhance the level of public cooperation on the spatial lattices. The larger reputation factor leads to the higher cooperation level since the reputation effect will be enormously embedded into the utility evaluation under this scenario. The current results are vastly beneficial to understand the persistence and emergence of cooperation among many natural, social and synthetic systems, and also provide some useful suggestions to devise the feasible social governance measures and modes for the public resources or affairs.

  9. Spatial evolutionary epidemiology of spreading epidemics.

    Science.gov (United States)

    Lion, S; Gandon, S

    2016-10-26

    Most spatial models of host-parasite interactions either neglect the possibility of pathogen evolution or consider that this process is slow enough for epidemiological dynamics to reach an equilibrium on a fast timescale. Here, we propose a novel approach to jointly model the epidemiological and evolutionary dynamics of spatially structured host and pathogen populations. Starting from a multi-strain epidemiological model, we use a combination of spatial moment equations and quantitative genetics to analyse the dynamics of mean transmission and virulence in the population. A key insight of our approach is that, even in the absence of long-term evolutionary consequences, spatial structure can affect the short-term evolution of pathogens because of the build-up of spatial differentiation in mean virulence. We show that spatial differentiation is driven by a balance between epidemiological and genetic effects, and this quantity is related to the effect of kin competition discussed in previous studies of parasite evolution in spatially structured host populations. Our analysis can be used to understand and predict the transient evolutionary dynamics of pathogens and the emergence of spatial patterns of phenotypic variation. © 2016 The Author(s).

  10. A Comprehensive Assessment and Spatial Analysis of Vulnerability of China’s Provincial Economies

    Directory of Open Access Journals (Sweden)

    Chongqiang Ren

    2018-04-01

    Full Text Available Vulnerability theory is a fundamental scientific knowledge system in sustainable development, and vulnerability assessment is important in vulnerability studies. Economic vulnerability affects economic growth sustainability. Comprehensive assessment of economic vulnerability in the process of economic growth under the theoretical framework of vulnerability will provide a new perspective for vulnerability studies. Based on a vulnerability scoping diagram assessment model, this study selected 22 economic sensitivity indexes and 25 economic adaptability indexes from the economic, social, and nature–resource–environmental subsystems to comprehensively assess and spatially analyse the vulnerability of China’s provincial economies since the year 2000, while applying the entropy method, multilevel extension assessment, spatial measurement method, and geographic information system technology. The results showed the following: (1 There are great differences in the vulnerability of China’s provincial economies. Western China’s vulnerability is higher and the fluctuation range of economic vulnerability is larger. The vulnerability increased significantly based on spatial differential features; (2 Regional differences in economic vulnerability, mainly caused by differences within a region, increased gradually. Eastern and Western China showed the spatial pattern characteristics of prominent and reinforcing regional imbalance, while Central and Northeast China showed declining regional imbalance. The spatial structure evolution of economic vulnerability is characterized by a volatility curve, and regional separation and divergence are strengthened; (3 Growth of China’s provincial economies and economic vulnerability are related negatively. In Eastern, Central, and Northeast China, vulnerability of the provincial economies has a negative spillover effect on neighbouring provinces’ economic growth, while in Western China it has a slight positive

  11. Is attention based on spatial contextual memory preferentially guided by low spatial frequency signals?

    Science.gov (United States)

    Patai, Eva Zita; Buckley, Alice; Nobre, Anna Christina

    2013-01-01

    A popular model of visual perception states that coarse information (carried by low spatial frequencies) along the dorsal stream is rapidly transmitted to prefrontal and medial temporal areas, activating contextual information from memory, which can in turn constrain detailed input carried by high spatial frequencies arriving at a slower rate along the ventral visual stream, thus facilitating the processing of ambiguous visual stimuli. We were interested in testing whether this model contributes to memory-guided orienting of attention. In particular, we asked whether global, low-spatial frequency (LSF) inputs play a dominant role in triggering contextual memories in order to facilitate the processing of the upcoming target stimulus. We explored this question over four experiments. The first experiment replicated the LSF advantage reported in perceptual discrimination tasks by showing that participants were faster and more accurate at matching a low spatial frequency version of a scene, compared to a high spatial frequency version, to its original counterpart in a forced-choice task. The subsequent three experiments tested the relative contributions of low versus high spatial frequencies during memory-guided covert spatial attention orienting tasks. Replicating the effects of memory-guided attention, pre-exposure to scenes associated with specific spatial memories for target locations (memory cues) led to higher perceptual discrimination and faster response times to identify targets embedded in the scenes. However, either high or low spatial frequency cues were equally effective; LSF signals did not selectively or preferentially contribute to the memory-driven attention benefits to performance. Our results challenge a generalized model that LSFs activate contextual memories, which in turn bias attention and facilitate perception.

  12. Effect of acute pesticide exposure on bee spatial working memory using an analogue of the radial-arm maze

    Science.gov (United States)

    Samuelson, Elizabeth E. W.; Chen-Wishart, Zachary P.; Gill, Richard J.; Leadbeater, Ellouise

    2016-12-01

    Pesticides, including neonicotinoids, typically target pest insects by being neurotoxic. Inadvertent exposure to foraging insect pollinators is usually sub-lethal, but may affect cognition. One cognitive trait, spatial working memory, may be important in avoiding previously-visited flowers and other spatial tasks such as navigation. To test this, we investigated the effect of acute thiamethoxam exposure on spatial working memory in the bumblebee Bombus terrestris, using an adaptation of the radial-arm maze (RAM). We first demonstrated that bumblebees use spatial working memory to solve the RAM by showing that untreated bees performed significantly better than would be expected if choices were random or governed by stereotyped visitation rules. We then exposed bees to either a high sub-lethal positive control thiamethoxam dose (2.5 ng-1 bee), or one of two low doses (0.377 or 0.091 ng-1) based on estimated field-realistic exposure. The high dose caused bees to make more and earlier spatial memory errors and take longer to complete the task than unexposed bees. For the low doses, the negative effects were smaller but statistically significant, and dependent on bee size. The spatial working memory impairment shown here has the potential to harm bees exposed to thiamethoxam, through possible impacts on foraging efficiency or homing.

  13. Spatial Release from Masking in Adults with Bilateral Cochlear Implants: Effects of Distracter Azimuth and Microphone Location

    Science.gov (United States)

    Davis, Timothy J.; Gifford, René H.

    2018-01-01

    Purpose: The primary purpose of this study was to derive spatial release from masking (SRM) performance-azimuth functions for bilateral cochlear implant (CI) users to provide a thorough description of SRM as a function of target/distracter spatial configuration. The secondary purpose of this study was to investigate the effect of the microphone…

  14. Mapping spatial variability of soil salinity in a coastal paddy field based on electromagnetic sensors.

    Science.gov (United States)

    Guo, Yan; Huang, Jingyi; Shi, Zhou; Li, Hongyi

    2015-01-01

    In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9) allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be incorporated to conduct Quasi-3D inversions for deeper soil profiles.

  15. Mapping spatial variability of soil salinity in a coastal paddy field based on electromagnetic sensors.

    Directory of Open Access Journals (Sweden)

    Yan Guo

    Full Text Available In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9 allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v as well as other EMI instruments (e.g. DUALEM-421 can be incorporated to conduct Quasi-3D inversions for deeper soil profiles.

  16. Mapping Spatial Variability of Soil Salinity in a Coastal Paddy Field Based on Electromagnetic Sensors

    Science.gov (United States)

    Guo, Yan; Huang, Jingyi; Shi, Zhou; Li, Hongyi

    2015-01-01

    In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9) allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be incorporated to conduct Quasi-3D inversions for deeper soil profiles. PMID:26020969

  17. Effect of intranasal manganese administration on neurotransmission and spatial learning in rats

    Energy Technology Data Exchange (ETDEWEB)

    Blecharz-Klin, Kamilla; Piechal, Agnieszka; Joniec-Maciejak, Ilona; Pyrzanowska, Justyna; Widy-Tyszkiewicz, Ewa, E-mail: etyszkiewicz@wum.edu.pl

    2012-11-15

    The effect of intranasal manganese chloride (MnCl{sub 2}·4H{sub 2}O) exposure on spatial learning, memory and motor activity was estimated in Morris water maze task in adult rats. Three-month-old male Wistar rats received for 2 weeks MnCl{sub 2}·4H{sub 2}O at two doses the following: 0.2 mg/kg b.w. (Mn0.2) or 0.8 mg/kg b.w. (Mn0.8) per day. Control (Con) and manganese-exposed groups were observed for behavioral performance and learning in water maze. ANOVA for repeated measurements did not show any significant differences in acquisition in the water maze between the groups. However, the results of the probe trial on day 5, exhibited spatial memory deficits following manganese treatment. After completion of the behavioral experiment, the regional brain concentrations of neurotransmitters and their metabolites were determined via HPLC in selected brain regions, i.e. prefrontal cortex, hippocampus and striatum. ANOVA demonstrated significant differences in the content of monoamines and metabolites between the treatment groups compared to the controls. Negative correlations between platform crossings on the previous platform position in Southeast (SE) quadrant during the probe trial and neurotransmitter turnover suggest that impairment of spatial memory and cognitive performance after manganese (Mn) treatment is associated with modulation of the serotonergic, noradrenergic and dopaminergic neurotransmission in the brain. These findings show that intranasally applied Mn can impair spatial memory with significant changes in the tissue level and metabolism of monoamines in several brain regions. -- Highlights: ► Intranasal exposure to manganese in rats impairs spatial memory in the water maze. ► Regional changes in levels of neurotransmitters in the brain have been identified. ► Cognitive disorder correlates with modulation of 5-HT, NA and DA neurotransmission.

  18. Effect of intranasal manganese administration on neurotransmission and spatial learning in rats

    International Nuclear Information System (INIS)

    Blecharz-Klin, Kamilla; Piechal, Agnieszka; Joniec-Maciejak, Ilona; Pyrzanowska, Justyna; Widy-Tyszkiewicz, Ewa

    2012-01-01

    The effect of intranasal manganese chloride (MnCl 2 ·4H 2 O) exposure on spatial learning, memory and motor activity was estimated in Morris water maze task in adult rats. Three-month-old male Wistar rats received for 2 weeks MnCl 2 ·4H 2 O at two doses the following: 0.2 mg/kg b.w. (Mn0.2) or 0.8 mg/kg b.w. (Mn0.8) per day. Control (Con) and manganese-exposed groups were observed for behavioral performance and learning in water maze. ANOVA for repeated measurements did not show any significant differences in acquisition in the water maze between the groups. However, the results of the probe trial on day 5, exhibited spatial memory deficits following manganese treatment. After completion of the behavioral experiment, the regional brain concentrations of neurotransmitters and their metabolites were determined via HPLC in selected brain regions, i.e. prefrontal cortex, hippocampus and striatum. ANOVA demonstrated significant differences in the content of monoamines and metabolites between the treatment groups compared to the controls. Negative correlations between platform crossings on the previous platform position in Southeast (SE) quadrant during the probe trial and neurotransmitter turnover suggest that impairment of spatial memory and cognitive performance after manganese (Mn) treatment is associated with modulation of the serotonergic, noradrenergic and dopaminergic neurotransmission in the brain. These findings show that intranasally applied Mn can impair spatial memory with significant changes in the tissue level and metabolism of monoamines in several brain regions. -- Highlights: ► Intranasal exposure to manganese in rats impairs spatial memory in the water maze. ► Regional changes in levels of neurotransmitters in the brain have been identified. ► Cognitive disorder correlates with modulation of 5-HT, NA and DA neurotransmission.

  19. Modelling the effects of spatial variability on radionuclide migration

    International Nuclear Information System (INIS)

    1998-01-01

    The NEA workshop reflect the present status in national waste management program, specifically in spatial variability and performance assessment of geologic disposal sites for deed repository system the four sessions were: Spatial Variability: Its Definition and Significance to Performance Assessment and Site Characterisation; Experience with the Modelling of Radionuclide Migration in the Presence of Spatial Variability in Various Geological Environments; New Areas for Investigation: Two Personal Views; What is Wanted and What is Feasible: Views and Future Plans in Selected Waste Management Organisations. The 26 papers presented on the four oral sessions and on the poster session have been abstracted and indexed individually for the INIS database. (R.P.)

  20. Assessing the Effect of Spatial Proximity on Urban Growth

    Directory of Open Access Journals (Sweden)

    Eduardo Gomes

    2018-04-01

    Full Text Available Land-Use/Cover Change (LUCC reacts to demographic pressures, economic trends, or improved transport networks. Urban growth with implications on LUCC patterns can be measured using a diversity of methods. Our study derives from Tobler’s first law of geography: ‘everything is related to everything else, but near things are more related than distant ones’. We identified and measured the influence of neighbouring distance on urban growth from the edge of existing urban areas. For that, we have developed a method, built using the NetLogo software tool, which we called Land-use chAnge and Neighbouring Distance (LAND. We selected Torres Vedras (Portugal to conduct our case study due to its increasing urban development in the past few years. The periods of analysis were 1995–2010, 1995–2007, and 2007–2010. The results have shown the influence and the effect of strong spatial correlation between the proximity of existing artificial surfaces and the emergence of new ones. The understanding of the patterns of urban growth is helpful to plan forward land developments. This method can be used to write guidelines for decision makers to monitor urban expansion and define spatial planning priorities.

  1. Time-varying correlations in global real estate markets: A multivariate GARCH with spatial effects approach

    Science.gov (United States)

    Gu, Huaying; Liu, Zhixue; Weng, Yingliang

    2017-04-01

    The present study applies the multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) with spatial effects approach for the analysis of the time-varying conditional correlations and contagion effects among global real estate markets. A distinguishing feature of the proposed model is that it can simultaneously capture the spatial interactions and the dynamic conditional correlations compared with the traditional MGARCH models. Results reveal that the estimated dynamic conditional correlations have exhibited significant increases during the global financial crisis from 2007 to 2009, thereby suggesting contagion effects among global real estate markets. The analysis further indicates that the returns of the regional real estate markets that are in close geographic and economic proximities exhibit strong co-movement. In addition, evidence of significantly positive leverage effects in global real estate markets is also determined. The findings have significant implications on global portfolio diversification opportunities and risk management practices.

  2. Differential effects of non-informative vision and visual interference on haptic spatial processing

    NARCIS (Netherlands)

    Volcic, Robert; Van Rheede, Joram J.; Postma, Albert; Kappers, Astrid M L

    The primary purpose of this study was to examine the effects of non-informative vision and visual interference upon haptic spatial processing, which supposedly derives from an interaction between an allocentric and egocentric reference frame. To this end, a haptic parallelity task served as baseline

  3. The Effect of Spatial Heterogeneities on Nucleation Kinetics in Amorphous Aluminum Alloys

    Science.gov (United States)

    Shen, Ye

    The mechanical property of the Al based metallic glass could be enhanced significantly by introducing the high number density of Al-fcc nanocrystals (1021 ˜1023 m-3) to the amorphous matrix through annealing treatments, which motivates the study of the nucleation kinetics for the microstructure control. With the presence of a high number density (1025 m-3) of aluminum-like medium range order (MRO), the Al-Y-Fe metallic glass is considered to be spatially heterogeneous. Combining the classical nucleation theory with the structural configuration, a MRO seeded nucleation model has been proposed and yields theoretical steady state nucleation rates consistent with the experimental results. In addition, this model satisfies all the thermodynamic and kinetic constraints to be reasonable. Compared with the Al-Y-Fe system, the primary crystallization onset temperature decreases significantly and the transient delay time (tau) is shorter in the Al-Y-Fe-Pb(In) systems because the insoluble Pb and In nanoparticles in the amorphous matrix served as extrinsic spatial heterogeneity to provide the nucleation sites for Al-fcc precipitation and the high-resolution transmission electron microscopy (HRTEM) images of the Pb-Al interface revealed a good wetting behavior between the Al and Pb nanoparticles. The study of the transient delay time (tau) could provide insight on the transport behavior during the nucleation and a more convenient approach to evaluate the delay time has been developed by measuring the Al-Y-Fe amorphous alloy glass transition temperature (Tg) shift with the increasing annealing time (tannealing) in FlashDSC. The break point in the Tg vs. log(tannealing) plot has been identified to correspond to the delay time by the TEM characterization. FlashDSC tests with different heating rates and different compositions (Al-Y-Fe-Pb and Zn-Mg-Ca-Yb amorphous alloys) further confirmed the break point and delay time relationship. The amorphous matrix composition and the

  4. When do objects become landmarks? A VR study of the effect of task relevance on spatial memory.

    Directory of Open Access Journals (Sweden)

    Xue Han

    Full Text Available We investigated how objects come to serve as landmarks in spatial memory, and more specifically how they form part of an allocentric cognitive map. Participants performing a virtual driving task incidentally learned the layout of a virtual town and locations of objects in that town. They were subsequently tested on their spatial and recognition memory for the objects. To assess whether the objects were encoded allocentrically we examined pointing consistency across tested viewpoints. In three experiments, we found that spatial memory for objects at navigationally relevant locations was more consistent across tested viewpoints, particularly when participants had more limited experience of the environment. When participants' attention was focused on the appearance of objects, the navigational relevance effect was eliminated, whereas when their attention was focused on objects' locations, this effect was enhanced, supporting the hypothesis that when objects are processed in the service of navigation, rather than merely being viewed as objects, they engage qualitatively distinct attentional systems and are incorporated into an allocentric spatial representation. The results are consistent with evidence from the neuroimaging literature that when objects are relevant to navigation, they not only engage the ventral "object processing stream", but also the dorsal stream and medial temporal lobe memory system classically associated with allocentric spatial memory.

  5. Characterizing spatial variability of air pollution from vehicle traffic around the Houston Ship Channel area

    Science.gov (United States)

    Zhang, Xueying; Craft, Elena; Zhang, Kai

    2017-07-01

    Mobile emissions are a major source of urban air pollution and have been associated with a variety of adverse health outcomes. The Houston Ship Channel area is the home of a large number of diesel-powered vehicles emitting fine particulate matter (PM2.5; ≤2.5 μm in aerodynamic diameter) and nitrogen oxides (NOx). However, the spatial variability of traffic-related air pollutants in the Houston Ship Channel area has rarely been investigated. The objective of this study is to characterize spatial variability of PM2.5 and NOx concentrations attributable to on-road traffic in the Houston Ship Channel area in the year of 2011. We extracted the road network from the Texas Department of Transportation Road Inventory, and calculated emission rates using the Motor Vehicle Emission Simulator version 2014a (MOVES2014a). These parameters and preprocessed meteorological parameters were entered into a Research LINE-source Dispersion Model (RLINE) to conduct a simulation. Receptors were placed at 50 m resolution within 300 m to major roads and at 150 m resolution in the rest of the area. Our findings include that traffic-related PM2.5 were mainly emitted from trucks, while traffic-related NOx were emitted from both trucks and cars. The traffic contributed 0.90 μg/m3 PM2.5 and 29.23 μg/m3 NOx to the annual average mass concentrations of on-road air pollution, and the concentrations of the two pollutants decreased by nearly 40% within 500 m distance to major roads. The pollution level of traffic-related PM2.5 and NOx was higher in winter than those in the other three seasons. The Houston Ship Channel has earlier morning peak hours and relative late afternoon hours, which indicates the influence of goods movement from port activity. The varied near-road gradients illustrate that proximities to major roads are not an accurate surrogate of traffic-related air pollution.

  6. A Conceptual Framework for the Assessment of Cumulative Exposure to Air Pollution at a Fine Spatial Scale

    Directory of Open Access Journals (Sweden)

    Kihal-Talantikite Wahida

    2016-03-01

    Full Text Available Many epidemiological studies examining long-term health effects of exposure to air pollutants have characterized exposure by the outdoor air concentrations at sites that may be distant to subjects’ residences at different points in time. The temporal and spatial mobility of subjects and the spatial scale of exposure assessment could thus lead to misclassification in the cumulative exposure estimation. This paper attempts to fill the gap regarding cumulative exposure assessment to air pollution at a fine spatial scale in epidemiological studies investigating long-term health effects. We propose a conceptual framework showing how major difficulties in cumulative long-term exposure assessment could be surmounted. We then illustrate this conceptual model on the case of exposure to NO2 following two steps: (i retrospective reconstitution of NO2 concentrations at a fine spatial scale; and (ii a novel approach to assigning the time-relevant exposure estimates at the census block level, using all available data on residential mobility throughout a 10- to 20-year period prior to that for which the health events are to be detected. Our conceptual framework is both flexible and convenient for the needs of different epidemiological study designs.

  7. A Conceptual Framework for the Assessment of Cumulative Exposure to Air Pollution at a Fine Spatial Scale

    Science.gov (United States)

    Wahida, Kihal-Talantikite; Padilla, Cindy M.; Denis, Zmirou-Navier; Olivier, Blanchard; Géraldine, Le Nir; Philippe, Quenel; Séverine, Deguen

    2016-01-01

    Many epidemiological studies examining long-term health effects of exposure to air pollutants have characterized exposure by the outdoor air concentrations at sites that may be distant to subjects’ residences at different points in time. The temporal and spatial mobility of subjects and the spatial scale of exposure assessment could thus lead to misclassification in the cumulative exposure estimation. This paper attempts to fill the gap regarding cumulative exposure assessment to air pollution at a fine spatial scale in epidemiological studies investigating long-term health effects. We propose a conceptual framework showing how major difficulties in cumulative long-term exposure assessment could be surmounted. We then illustrate this conceptual model on the case of exposure to NO2 following two steps: (i) retrospective reconstitution of NO2 concentrations at a fine spatial scale; and (ii) a novel approach to assigning the time-relevant exposure estimates at the census block level, using all available data on residential mobility throughout a 10- to 20-year period prior to that for which the health events are to be detected. Our conceptual framework is both flexible and convenient for the needs of different epidemiological study designs. PMID:26999170

  8. Economic and Environmental Effects of Public Transport Subsidy Policies: a Spatial CGE Model of Beijing

    Directory of Open Access Journals (Sweden)

    Ping Xu

    2018-01-01

    Full Text Available Public transport plays an important role in the environment. This study established a Spatial Computable General Equilibrium (SCGE model to examine the economic and environmental effects of public transport subsidy policies. The model includes firms, consumers, and traffic modules in one framework. Statistical data from Beijing were used in calibration to obtain benchmark equilibrium. Based on the equilibrium, simulations compared citywide social welfare, jobs-housing spatial population distribution, and environmental outputs under four subsidy policies: fare subsidy, cash grants, road expansion, and public transport speedup. Based on the results regarding the effects of public transport policies, conclusions can be drawn about which policies will have greater overall social influence and should therefore be used.

  9. Characterization and spatial modeling of urban sprawl in the Wuhan Metropolitan Area, China

    Science.gov (United States)

    Zeng, Chen; Liu, Yaolin; Stein, Alfred; Jiao, Limin

    2015-02-01

    Urban sprawl has led to environmental problems and large losses of arable land in China. In this study, we monitor and model urban sprawl by means of a combination of remote sensing, geographical information system and spatial statistics. We use time-series data to explore the potential socio-economic driving forces behind urban sprawl, and spatial models in different scenarios to explore the spatio-temporal interactions. The methodology is applied to the city of Wuhan, China, for the period from 1990 to 2013. The results reveal that the built-up land has expanded and has dispersed in urban clusters. Population growth, and economic and transportation development are still the main causes of urban sprawl; however, when they have developed to certain levels, the area affected by construction in urban areas (Jian Cheng Qu (JCQ)) and the area of cultivated land (ACL) tend to be stable. Spatial regression models are shown to be superior to the traditional models. The interaction among districts with the same administrative status is stronger than if one of those neighbors is in the city center and the other in the suburban area. The expansion of urban built-up land is driven by the socio-economic development at the same period, and greatly influenced by its spatio-temporal neighbors. We conclude that the integration of remote sensing, a geographical information system, and spatial statistics offers an excellent opportunity to explore the spatio-temporal variation and interactions among the districts in the sprawling metropolitan areas. Relevant regulations to control the urban sprawl process are suggested accordingly.

  10. Using GPS TEC measurements to probe ionospheric spatial spectra at mid-latitudes

    Science.gov (United States)

    Lay, E. H.; Parker, P. A.; Light, M. E.; Carrano, C. S.; Debchoudhury, S.; Haaser, R. A.

    2017-12-01

    The physics of how random ionospheric structure causes signal degradation is well understood as weak forward scattering through an effective diffraction grating created by plasma irregularities in the ionosphere. However, the spatial scale spectrum of those irregularities required for input into scintillation models and models of traveling ionospheric disturbances is poorly characterized, particularly at the kilometer to tens of kilometer scale lengths important for very-high-frequency (VHF) scintillation prediction. Furthermore, the majority of characterization studies have been performed in low-latitude or high-latitude regions where geomagnetic activity dominates the physical processes. At mid-latitudes, tropospheric and geomagnetic phenomena compete in disturbing the ionosphere, and it is not well understood how these multiple sources affect the drivers that influence the spatial spectrum. In this study, we are interested in mid-latitude electron density irregularities on the order of 10s of kilometers that would affect VHF signals. Data from the GPS networks Japan GEONET and the Plate Boundary Observatory (PBO, UNAVCO) in the western United States were analyzed for this study. Japan GEONET is a dense network of GPS receivers (station spacing of tens of km), with fairly evenly spaced positions over all of Japan. The PBO, on the other hand, has several pockets of extremely dense coverage (station spacing within a few km), but is less dense on average. We analyze a day with a large solar storm (2015/03/17, St. Patrick's Day Storm) to allow high scintillation potential at mid-latitudes, a day with low geomagnetic activity and low thunderstorm activity (2016/01/31), and a day with low geomagnetic activity and high thunderstorm activity (2015/08/02). We then perform two-dimensional spatial analyses on the TEC data from these two networks on scale lengths of 20 to 200 km to infer the spatial scale spectra.

  11. Effects of spatial variation in cohesion over the concrete-rock interface on dam sliding stability

    Directory of Open Access Journals (Sweden)

    Alexandra Krounis

    2015-12-01

    Full Text Available The limit equilibrium method (LEM is widely used for sliding stability evaluation of concrete gravity dams. Failure is then commonly assumed to occur along the entire sliding surface simultaneously. However, the brittle behaviour of bonded concrete-rock contacts, in combination with the varying stress over the interface, implies that the failure of bonded dam-foundation interfaces occurs progressively. In addition, the spatial variation in cohesion may introduce weak spots where failure can be initiated. Nonetheless, the combined effect of brittle failure and spatial variation in cohesion on the overall shear strength of the interface has not been studied previously. In this paper, numerical analyses are used to investigate the effect of brittle failure in combination with spatial variation in cohesion that is taken into account by random fields with different correlation lengths. The study concludes that a possible existence of weak spots along the interface has to be considered since it significantly reduces the overall shear strength of the interface, and implications for doing so are discussed.

  12. Residual analysis for spatial point processes

    DEFF Research Database (Denmark)

    Baddeley, A.; Turner, R.; Møller, Jesper

    We define residuals for point process models fitted to spatial point pattern data, and propose diagnostic plots based on these residuals. The techniques apply to any Gibbs point process model, which may exhibit spatial heterogeneity, interpoint interaction and dependence on spatial covariates. Ou...... or covariate effects. Q-Q plots of the residuals are effective in diagnosing interpoint interaction. Some existing ad hoc statistics of point patterns (quadrat counts, scan statistic, kernel smoothed intensity, Berman's diagnostic) are recovered as special cases....

  13. A full Bayes before-after study accounting for temporal and spatial effects: Evaluating the safety impact of new signal installations.

    Science.gov (United States)

    Sacchi, Emanuele; Sayed, Tarek; El-Basyouny, Karim

    2016-09-01

    Recently, important advances in road safety statistics have been brought about by methods able to address issues other than the choice of the best error structure for modeling crash data. In particular, accounting for spatial and temporal interdependence, i.e., the notion that the collision occurrence of a site or unit times depend on those of others, has become an important issue that needs further research. Overall, autoregressive models can be used for this purpose as they can specify that the output variable depends on its own previous values and on a stochastic term. Spatial effects have been investigated and applied mostly in the context of developing safety performance functions (SPFs) to relate crash occurrence to highway characteristics. Hence, there is a need for studies that attempt to estimate the effectiveness of safety countermeasures by including the spatial interdependence of road sites within the context of an observational before-after (BA) study. Moreover, the combination of temporal dynamics and spatial effects on crash frequency has not been explored in depth for SPF development. Therefore, the main goal of this research was to carry out a BA study accounting for spatial effects and temporal dynamics in evaluating the effectiveness of a road safety treatment. The countermeasure analyzed was the installation of traffic signals at unsignalized urban/suburban intersections in British Columbia (Canada). The full Bayes approach was selected as the statistical framework to develop the models. The results demonstrated that zone variation was a major component of total crash variability and that spatial effects were alleviated by clustering intersections together. Finally, the methodology used also allowed estimation of the treatment's effectiveness in the form of crash modification factors and functions with time trends. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Physically-based modeling of topographic effects on spatial evapotranspiration and soil moisture patterns through radiation and wind

    Directory of Open Access Journals (Sweden)

    M. Liu

    2012-02-01

    Full Text Available In this paper, simulations with the Soil Water Atmosphere Plant (SWAP model are performed to quantify the spatial variability of both potential and actual evapotranspiration (ET, and soil moisture content (SMC caused by topography-induced spatial wind and radiation differences. To obtain the spatially distributed ET/SMC patterns, the field scale SWAP model is applied in a distributed way for both pointwise and catchment wide simulations. An adapted radiation model from r.sun and the physically-based meso-scale wind model METRAS PC are applied to obtain the spatial radiation and wind patterns respectively, which show significant spatial variation and correlation with aspect and elevation respectively. Such topographic dependences and spatial variations further propagate to ET/SMC. A strong spatial, seasonal-dependent, scale-relevant intra-catchment variability in daily/annual ET and less variability in SMC can be observed from the numerical experiments. The study concludes that topography has a significant effect on ET/SMC in the humid region where ET is a energy limited rather than water availability limited process. It affects the spatial runoff generation through spatial radiation and wind, therefore should be applied to inform hydrological model development. In addition, the methodology used in the study can serve as a general method for physically-based ET estimation for data sparse regions.

  15. Spatial correlations, clustering and percolation-like transitions in homicide crimes

    Science.gov (United States)

    Alves, L. G. A.; Lenzi, E. K.; Mendes, R. S.; Ribeiro, H. V.

    2015-07-01

    The spatial dynamics of criminal activities has been recently studied through statistical physics methods; however, models and results have been focusing on local scales (city level) and much less is known about these patterns at larger scales, e.g. at a country level. Here we report on a characterization of the spatial dynamics of the homicide crimes along the Brazilian territory using data from all cities (˜5000) in a period of more than thirty years. Our results show that the spatial correlation function in the per capita homicides decays exponentially with the distance between cities and that the characteristic correlation length displays an acute increasing trend in the latest years. We also investigate the formation of spatial clusters of cities via a percolation-like analysis, where clustering of cities and a phase-transition-like behavior describing the size of the largest cluster as a function of a homicide threshold are observed. This transition-like behavior presents evolutive features characterized by an increasing in the homicide threshold (where the transitions occur) and by a decreasing in the transition magnitudes (length of the jumps in the cluster size). We believe that our work sheds new light on the spatial patterns of criminal activities at large scales, which may contribute for better political decisions and resources allocation as well as opens new possibilities for modeling criminal activities by setting up fundamental empirical patterns at large scales.

  16. Uncertainty in spatial planning proceedings

    Directory of Open Access Journals (Sweden)

    Aleš Mlakar

    2009-01-01

    Full Text Available Uncertainty is distinctive of spatial planning as it arises from the necessity to co-ordinate the various interests within the area, from the urgency of adopting spatial planning decisions, the complexity of the environment, physical space and society, addressing the uncertainty of the future and from the uncertainty of actually making the right decision. Response to uncertainty is a series of measures that mitigate the effects of uncertainty itself. These measures are based on two fundamental principles – standardization and optimization. The measures are related to knowledge enhancement and spatial planning comprehension, in the legal regulation of changes, in the existence of spatial planning as a means of different interests co-ordination, in the active planning and the constructive resolution of current spatial problems, in the integration of spatial planning and the environmental protection process, in the implementation of the analysis as the foundation of spatial planners activities, in the methods of thinking outside the parameters, in forming clear spatial concepts and in creating a transparent management spatial system and also in the enforcement the participatory processes.

  17. Spatial Correlation Characterization of a Full Dimension Massive MIMO System

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2017-02-07

    Elevation beamforming and Full Dimension MIMO (FD-MIMO) are currently active areas of research and standardization in 3GPP LTE-Advanced. FD-MIMO utilizes an active antenna array system (AAS), that provides the ability of adaptive electronic beam control over the elevation dimension, resulting in a better system performance as compared to the conventional 2D MIMO systems. FD-MIMO is more advantageous when amalgamated with massive MIMO systems, in that it exploits the additional degrees of freedom offered by a large number of antennas in the elevation. To facilitate the evaluation of these systems, a large effort in 3D channel modeling is needed. This paper aims at providing a summary of the recent 3GPP activity around 3D channel modeling. The 3GPP proposed approach to model antenna radiation pattern is compared with the ITU approach. A closed-form expression is then worked out for the spatial correlation function (SCF) for channels constituted by individual antenna elements in the array by exploiting results on spherical harmonics and Legendre polynomials. The proposed expression can be used to obtain correlation coefficients for any arbitrary 3D propagation environment. Simulation results corroborate and study the derived spatial correlation expression. The results are directly applicable to the analysis of future 5G 3D massive MIMO systems.

  18. Transmit/Receive Spatial Smoothing with Improved Effective Array Aperture for Angle and Mutual Coupling Estimation in Bistatic MIMO Radar

    Directory of Open Access Journals (Sweden)

    Haomiao Liu

    2016-01-01

    Full Text Available We proposed a transmit/receive spatial smoothing with improved effective aperture approach for angle and mutual coupling estimation in bistatic MIMO radar. Firstly, the noise in each channel is restrained, by exploiting its independency, in both the spatial domain and temporal domain. Then the augmented transmit and receive spatial smoothing matrices with improved effective aperture are obtained, by exploiting the Vandermonde structure of steering vector with uniform linear array. The DOD and DOA can be estimated by utilizing the unitary ESPRIT algorithm. Finally, the mutual coupling coefficients of both the transmitter and the receiver can be figured out with the estimated angles of DOD and DOA. Numerical examples are presented to verify the effectiveness of the proposed method.

  19. Dietary polyphenol supplementation prevents alterations of spatial navigation in middle-aged mice

    Directory of Open Access Journals (Sweden)

    Julien eBensalem

    2016-02-01

    Full Text Available Spatial learning and memory deficits associated with hippocampal synaptic plasticity impairments are commonly observed during aging. Besides, the beneficial role of dietary polyphenols has been suggested as potential functional food candidates to prevent this memory decline. Indeed, polyphenols could potentiate the signaling pathways of synaptic plasticity underlying learning and memory. In this study, spatial learning deficits of middle-aged mice were first highlighted and characterized according to navigation patterns in the Morris water maze task. An eight-week polyphenol-enriched diet, containing a polyphenol-rich extract from grape and blueberry (PEGB (from the Neurophenols Consortium with high contents of flavonoids, stilbenes and phenolic acids, was then successful in reversing these age-induced effects. The use of spatial strategies was indeed delayed with aging whereas a polyphenol supplementation could promote the occurrence of spatial strategies. These behavioral results were associated with neurobiological changes: while the expression of hippocampal CaMKII mRNA levels was reduced in middle-aged animals, the polyphenol-enriched diet could rescue them. Besides, an increased expression of NGF mRNA levels was also observed in supplemented adult and middle-aged mice. Thus these data suggest that supplementation with polyphenols could be an efficient nutritional way to prevent age-induced cognitive decline.

  20. Analysing spatially extended high-dimensional dynamics by recurrence plots

    Energy Technology Data Exchange (ETDEWEB)

    Marwan, Norbert, E-mail: marwan@pik-potsdam.de [Potsdam Institute for Climate Impact Research, 14412 Potsdam (Germany); Kurths, Jürgen [Potsdam Institute for Climate Impact Research, 14412 Potsdam (Germany); Humboldt Universität zu Berlin, Institut für Physik (Germany); Nizhny Novgorod State University, Department of Control Theory, Nizhny Novgorod (Russian Federation); Foerster, Saskia [GFZ German Research Centre for Geosciences, Section 1.4 Remote Sensing, Telegrafenberg, 14473 Potsdam (Germany)

    2015-05-08

    Recurrence plot based measures of complexity are capable tools for characterizing complex dynamics. In this letter we show the potential of selected recurrence plot measures for the investigation of even high-dimensional dynamics. We apply this method on spatially extended chaos, such as derived from the Lorenz96 model and show that the recurrence plot based measures can qualitatively characterize typical dynamical properties such as chaotic or periodic dynamics. Moreover, we demonstrate its power by analysing satellite image time series of vegetation cover with contrasting dynamics as a spatially extended and potentially high-dimensional example from the real world. - Highlights: • We use recurrence plots for analysing partially extended dynamics. • We investigate the high-dimensional chaos of the Lorenz96 model. • The approach distinguishes different spatio-temporal dynamics. • We use the method for studying vegetation cover time series.

  1. Metaoptics for Spectral and Spatial Beam Manipulation

    Science.gov (United States)

    Raghu Srimathi, Indumathi

    has been utilized to create metal-oxide nano-hair structures that are compatible with high power laser systems. These devices are multifunctional--acting as resonant structures for one wavelength regime and as effective index structures in a different wavelength regime. Discrete and continuous phase functions have been realized with this controlled fabrication process. The design, simulation, fabrication and experimental characterization of these optical elements are presented.

  2. Descriptive statistics and spatial distributions of geochemical variables associated with manganese oxide-rich phases in the northern Pacific

    Science.gov (United States)

    Botbol, Joseph Moses; Evenden, Gerald Ian

    1989-01-01

    Tables, graphs, and maps are used to portray the frequency characteristics and spatial distribution of manganese oxide-rich phase geochemical data, to characterize the northern Pacific in terms of publicly available nodule geochemical data, and to develop data portrayal methods that will facilitate data analysis. Source data are a subset of the Scripps Institute of Oceanography's Sediment Data Bank. The study area is bounded by 0° N., 40° N., 120° E., and 100° W. and is arbitrarily subdivided into 14-20°x20° geographic subregions. Frequency distributions of trace metals characterized in the original raw data are graphed as ogives, and salient parameters are tabulated. All variables are transformed to enrichment values relative to median concentration within their host subregions. Scatter plots of all pairs of original variables and their enrichment transforms are provided as an aid to the interpretation of correlations between variables. Gridded spatial distributions of all variables are portrayed as gray-scale maps. The use of tables and graphs to portray frequency statistics and gray-scale maps to portray spatial distributions is an effective way to prepare for and facilitate multivariate data analysis.

  3. Improving spatial-simultaneous working memory in Down syndrome: effect of a training program led by parents instead of an expert

    Directory of Open Access Journals (Sweden)

    Francesca ePulina

    2015-08-01

    Full Text Available Recent studies have suggested that the visuospatial component of working memory (WM is selectively impaired in individuals with Down syndrome (DS, the deficit relating specifically to the spatial-simultaneous component, which is involved when stimuli are presented simultaneously. The present study aimed to analyze the effects of a computer-based program for training the spatial-simultaneous component of WM in terms of: specific effects (on spatial-simultaneous WM tasks; near and far transfer effects (on spatial-sequential and visuospatial abilities, and everyday memory tasks; and maintenance effects (one month after the training. A comparison was drawn between the results obtained when the training was led by parents at home as opposed to an expert in psychology.Thirty-nine children and adolescents with DS were allocated to one of two groups: the training was administered by an expert in one, and by appropriately-instructed parents in the other. The training was administered individually twice a week for a month, in 8 sessions lasting approximately 30 minutes each. Our participants’ performance improved after the training, and these results were maintained a month later in both groups. Overall, our findings suggest that spatial-simultaneous WM performance can be improved, obtaining specific and transfer gains; above all, it seems that, with adequate support, parents could effectively administer a WM training to their child.

  4. Spatial distribution of vehicle emission inventories in the Federal District, Brazil

    Science.gov (United States)

    Réquia, Weeberb João; Koutrakis, Petros; Roig, Henrique Llacer

    2015-07-01

    Air pollution poses an important public health risk, especially in large urban areas. Information about the spatial distribution of air pollutants can be used as a tool for developing public policies to reduce source emissions. Air pollution monitoring networks provide information about pollutant concentrations; however, they are not available in every urban area. Among the 5570 cities in Brazil, for example, only 1.7% of them have air pollution monitoring networks. In this study we assess vehicle emissions for main traffic routes of the Federal District (state of Brazil) and characterize their spatial patterns. Toward this end, we used a bottom-up method to predict emissions and to characterize their spatial patterns using Global Moran's (Spatial autocorrelation analysis) and Getis-Ord General G (High/Low cluster analysis). Our findings suggested that light duty vehicles are primarily responsible for the vehicular emissions of CO (68.9%), CH4 (93.6%), and CO2 (57.9%), whereas heavy duty vehicles are primarily responsible for the vehicular emissions of NMHC (92.9%), NOx (90.7%), and PM (97.4%). Furthermore, CO2 is the pollutant with the highest emissions, over 30 million tons/year. In the spatial autocorrelation analysis was identified cluster (p < 0.01) for all types of vehicles and for all pollutants. However, we identified high cluster only for the light vehicles.

  5. The highs and lows of object impossibility: effects of spatial frequency on holistic processing of impossible objects.

    Science.gov (United States)

    Freud, Erez; Avidan, Galia; Ganel, Tzvi

    2015-02-01

    Holistic processing, the decoding of a stimulus as a unified whole, is a basic characteristic of object perception. Recent research using Garner's speeded classification task has shown that this processing style is utilized even for impossible objects that contain an inherent spatial ambiguity. In particular, similar Garner interference effects were found for possible and impossible objects, indicating similar holistic processing styles for the two object categories. In the present study, we further investigated the perceptual mechanisms that mediate such holistic representation of impossible objects. We relied on the notion that, whereas information embedded in the high-spatial-frequency (HSF) content supports fine-detailed processing of object features, the information conveyed by low spatial frequencies (LSF) is more crucial for the emergence of a holistic shape representation. To test the effects of image frequency on the holistic processing of impossible objects, participants performed the Garner speeded classification task on images of possible and impossible cubes filtered for their LSF and HSF information. For images containing only LSF, similar interference effects were observed for possible and impossible objects, indicating that the two object categories were processed in a holistic manner. In contrast, for the HSF images, Garner interference was obtained only for possible, but not for impossible objects. Importantly, we provided evidence to show that this effect could not be attributed to a lack of sensitivity to object possibility in the LSF images. Particularly, even for full-spectrum images, Garner interference was still observed for both possible and impossible objects. Additionally, performance in an object classification task revealed high sensitivity to object possibility, even for LSF images. Taken together, these findings suggest that the visual system can tolerate the spatial ambiguity typical to impossible objects by relying on information

  6. Spatial waves of advance with bistable dynamics: cytoplasmic and genetic analogues of Allee effects.

    Science.gov (United States)

    Barton, N H; Turelli, Michael

    2011-09-01

    Unlike unconditionally advantageous "Fisherian" variants that tend to spread throughout a species range once introduced anywhere, "bistable" variants, such as chromosome translocations, have two alternative stable frequencies, absence and (near) fixation. Analogous to populations with Allee effects, bistable variants tend to increase locally only once they become sufficiently common, and their spread depends on their rate of increase averaged over all frequencies. Several proposed manipulations of insect populations, such as using Wolbachia or "engineered underdominance" to suppress vector-borne diseases, produce bistable rather than Fisherian dynamics. We synthesize and extend theoretical analyses concerning three features of their spatial behavior: rate of spread, conditions to initiate spread from a localized introduction, and wave stopping caused by variation in population densities or dispersal rates. Unlike Fisherian variants, bistable variants tend to spread spatially only for particular parameter combinations and initial conditions. Wave initiation requires introduction over an extended region, while subsequent spatial spread is slower than for Fisherian waves and can easily be halted by local spatial inhomogeneities. We present several new results, including robust sufficient conditions to initiate (and stop) spread, using a one-parameter cubic approximation applicable to several models. The results have both basic and applied implications.

  7. Effect of spatially correlated noise on coherence resonance in a network of excitable cells

    International Nuclear Information System (INIS)

    Kwon, Okyu; Jo, Hang-Hyun; Moon, Hie-Tae

    2005-01-01

    We study the effect of spatially correlated noise on coherence resonance (CR) in a Watts-Strogatz small-world network of Fitz Hugh-Nagumo neurons, where the noise correlation decays exponentially with distance between neurons. It is found that CR is considerably improved just by a small fraction of long-range connections for an intermediate coupling strength. For other coupling strengths, an abrupt change in CR occurs following the drastic fracture of the clustered structures in the network. Our study shows that spatially correlated noise plays a significant role in the phenomenon of CR reinforcing the role of the clustered structure of the system

  8. Effect of Non-specific HCN1 Blocker CsCl on Spatial Learning and Memory in Mouse

    Institute of Scientific and Technical Information of China (English)

    YU Xin; GUO Lianjun; YIN Guangfu; ZONG Xiangang; AI Yongxun

    2006-01-01

    It has been suggested that HCN1 is primarily expressed in hippocampus, however little is known about its effects on spatial learning and memory. In the present study, we investigated the effects of non-specific HCN1 blocker CsCl on spatial learning and memory by using Morris water maze and in situ hybridization in mice. The results showed CsCl 160 mg/kg ip for 4 days, and the mean escape latency was 34 s longer than that of normal control (P<0.01). In hippocampal tissues, staining for the HCN1 mRNA was stronger in the DG and CA1 region of the hippocampus (P <0.05, P<0.05, when CsCl-administration group was compared with normal group). Our results suggested that CsCl could significantly affect the spatial learning and memory in mice, and HCN channel is involved in the process of learning and memory.

  9. Characterizing heterogeneity of disease incidence in a spatial hierarchy: a case study from a decade of observations of fusarium head blight of wheat.

    Science.gov (United States)

    Kriss, A B; Paul, P A; Madden, L V

    2012-09-01

    A multilevel analysis of heterogeneity of disease incidence was conducted based on observations of Fusarium head blight (caused by Fusarium graminearum) in Ohio during the 2002-11 growing seasons. Sampling consisted of counting the number of diseased and healthy wheat spikes per 0.3 m of row at 10 sites (about 30 m apart) in a total of 67 to 159 sampled fields in 12 to 32 sampled counties per year. Incidence was then determined as the proportion of diseased spikes at each site. Spatial heterogeneity of incidence among counties, fields within counties, and sites within fields and counties was characterized by fitting a generalized linear mixed model to the data, using a complementary log-log link function, with the assumption that the disease status of spikes was binomially distributed conditional on the effects of county, field, and site. Based on the estimated variance terms, there was highly significant spatial heterogeneity among counties and among fields within counties each year; magnitude of the estimated variances was similar for counties and fields. The lowest level of heterogeneity was among sites within fields, and the site variance was either 0 or not significantly greater than 0 in 3 of the 10 years. Based on the variances, the intracluster correlation of disease status of spikes within sites indicated that spikes from the same site were somewhat more likely to share the same disease status relative to spikes from other sites, fields, or counties. The estimated best linear unbiased predictor (EBLUP) for each county was determined, showing large differences across the state in disease incidence (as represented by the link function of the estimated probability that a spike was diseased) but no consistency between years for the different counties. The effects of geographical location, corn and wheat acreage per county, and environmental conditions on the EBLUP for each county were not significant in the majority of years.

  10. Contextual Cueing Effect in Spatial Layout Defined by Binocular Disparity

    Science.gov (United States)

    Zhao, Guang; Zhuang, Qian; Ma, Jie; Tu, Shen; Liu, Qiang; Sun, Hong-jin

    2017-01-01

    Repeated visual context induces higher search efficiency, revealing a contextual cueing effect, which depends on the association between the target and its visual context. In this study, participants performed a visual search task where search items were presented with depth information defined by binocular disparity. When the 3-dimensional (3D) configurations were repeated over blocks, the contextual cueing effect was obtained (Experiment 1). When depth information was in chaos over repeated configurations, visual search was not facilitated and the contextual cueing effect largely crippled (Experiment 2). However, when we made the search items within a tiny random displacement in the 2-dimentional (2D) plane but maintained the depth information constant, the contextual cueing was preserved (Experiment 3). We concluded that the contextual cueing effect was robust in the context provided by 3D space with stereoscopic information, and more importantly, the visual system prioritized stereoscopic information in learning of spatial information when depth information was available. PMID:28912739

  11. Spatial channel interactions in cochlear implants

    Science.gov (United States)

    Tang, Qing; Benítez, Raul; Zeng, Fan-Gang

    2011-08-01

    The modern multi-channel cochlear implant is widely considered to be the most successful neural prosthesis owing to its ability to restore partial hearing to post-lingually deafened adults and to allow essentially normal language development in pre-lingually deafened children. However, the implant performance varies greatly in individuals and is still limited in background noise, tonal language understanding, and music perception. One main cause for the individual variability and the limited performance in cochlear implants is spatial channel interaction from the stimulating electrodes to the auditory nerve and brain. Here we systematically examined spatial channel interactions at the physical, physiological, and perceptual levels in the same five modern cochlear implant subjects. The physical interaction was examined using an electric field imaging technique, which measured the voltage distribution as a function of the electrode position in the cochlea in response to the stimulation of a single electrode. The physiological interaction was examined by recording electrically evoked compound action potentials as a function of the electrode position in response to the stimulation of the same single electrode position. The perceptual interactions were characterized by changes in detection threshold as well as loudness summation in response to in-phase or out-of-phase dual-electrode stimulation. To minimize potentially confounding effects of temporal factors on spatial channel interactions, stimulus rates were limited to 100 Hz or less in all measurements. Several quantitative channel interaction indexes were developed to define and compare the width, slope and symmetry of the spatial excitation patterns derived from these physical, physiological and perceptual measures. The electric field imaging data revealed a broad but uniformly asymmetrical intracochlear electric field pattern, with the apical side producing a wider half-width and shallower slope than the basal

  12. Impact of Spatial and Verbal Short-Term Memory Load on Auditory Spatial Attention Gradients.

    Science.gov (United States)

    Golob, Edward J; Winston, Jenna; Mock, Jeffrey R

    2017-01-01

    Short-term memory load can impair attentional control, but prior work shows that the extent of the effect ranges from being very general to very specific. One factor for the mixed results may be reliance on point estimates of memory load effects on attention. Here we used auditory attention gradients as an analog measure to map-out the impact of short-term memory load over space. Verbal or spatial information was maintained during an auditory spatial attention task and compared to no-load. Stimuli were presented from five virtual locations in the frontal azimuth plane, and subjects focused on the midline. Reaction times progressively increased for lateral stimuli, indicating an attention gradient. Spatial load further slowed responses at lateral locations, particularly in the left hemispace, but had little effect at midline. Verbal memory load had no (Experiment 1), or a minimal (Experiment 2) influence on reaction times. Spatial and verbal load increased switch costs between memory encoding and attention tasks relative to the no load condition. The findings show that short-term memory influences the distribution of auditory attention over space; and that the specific pattern depends on the type of information in short-term memory.

  13. Impact of Spatial and Verbal Short-Term Memory Load on Auditory Spatial Attention Gradients

    Directory of Open Access Journals (Sweden)

    Edward J. Golob

    2017-11-01

    Full Text Available Short-term memory load can impair attentional control, but prior work shows that the extent of the effect ranges from being very general to very specific. One factor for the mixed results may be reliance on point estimates of memory load effects on attention. Here we used auditory attention gradients as an analog measure to map-out the impact of short-term memory load over space. Verbal or spatial information was maintained during an auditory spatial attention task and compared to no-load. Stimuli were presented from five virtual locations in the frontal azimuth plane, and subjects focused on the midline. Reaction times progressively increased for lateral stimuli, indicating an attention gradient. Spatial load further slowed responses at lateral locations, particularly in the left hemispace, but had little effect at midline. Verbal memory load had no (Experiment 1, or a minimal (Experiment 2 influence on reaction times. Spatial and verbal load increased switch costs between memory encoding and attention tasks relative to the no load condition. The findings show that short-term memory influences the distribution of auditory attention over space; and that the specific pattern depends on the type of information in short-term memory.

  14. Mapping and spatial-temporal modeling of Bromus tectorum invasion in central Utah

    Science.gov (United States)

    Jin, Zhenyu

    Cheatgrass, or Downy Brome, is an exotic winter annual weed native to the Mediterranean region. Since its introduction to the U.S., it has become a significant weed and aggressive invader of sagebrush, pinion-juniper, and other shrub communities, where it can completely out-compete native grasses and shrubs. In this research, remotely sensed data combined with field collected data are used to investigate the distribution of the cheatgrass in Central Utah, to characterize the trend of the NDVI time-series of cheatgrass, and to construct a spatially explicit population-based model to simulate the spatial-temporal dynamics of the cheatgrass. This research proposes a method for mapping the canopy closure of invasive species using remotely sensed data acquired at different dates. Different invasive species have their own distinguished phenologies and the satellite images in different dates could be used to capture the phenology. The results of cheatgrass abundance prediction have a good fit with the field data for both linear regression and regression tree models, although the regression tree model has better performance than the linear regression model. To characterize the trend of NDVI time-series of cheatgrass, a novel smoothing algorithm named RMMEH is presented in this research to overcome some drawbacks of many other algorithms. By comparing the performance of RMMEH in smoothing a 16-day composite of the MODIS NDVI time-series with that of two other methods, which are the 4253EH, twice and the MVI, we have found that RMMEH not only keeps the original valid NDVI points, but also effectively removes the spurious spikes. The reconstructed NDVI time-series of different land covers are of higher quality and have smoother temporal trend. To simulate the spatial-temporal dynamics of cheatgrass, a spatially explicit population-based model is built applying remotely sensed data. The comparison between the model output and the ground truth of cheatgrass closure demonstrates

  15. Seasonal and spatial variation of trace elements and metals in quasi-ultrafine (PM0.25) particles in the Los Angeles metropolitan area and characterization of their sources

    International Nuclear Information System (INIS)

    Saffari, Arian; Daher, Nancy; Shafer, Martin M.; Schauer, James J.; Sioutas, Constantinos

    2013-01-01

    Year-long sampling campaign of quasi-ultrafine particles (PM 0.25 ) was conducted at 10 distinct locations across the Los Angeles south coast air basin and concentrations of trace elements and metals were quantified at each site using high-resolution inductively coupled plasma sector field mass spectrometry. In order to characterize sources of trace elements and metals, principal component analysis (PCA) was applied to the dataset. The major sources were identified as road dust (influenced by vehicular emissions as well as re-suspended soil), vehicular abrasion, residual oil combustion, cadmium sources and metal plating. These sources altogether accounted for approximately 85% of the total variance of quasi-ultrafine elemental content. The concentrations of elements originating from source and urban locations generally displayed a decline as we proceeded from the coast to the inland. Occasional concentration peaks in the rural receptor sites were also observed, driven by the dominant westerly/southwesterly wind transporting the particles to the receptor areas. -- Highlights: •We collected quasi-ultrafine samples at 10 locations across the Los Angeles Basin. •The concentration of trace elements and metals at each site were quantified. •Distinct temporal and spatial variability was observed across the basin. •Principal component analysis was applied to the data to characterize the sources. •Five major sources were identified for quasi-ultrafine elemental content. -- Characterization of sources of trace elements and metals in quasi-ultrafine particles in the Los Angeles south coast air basin and explaining their seasonal and spatial variability

  16. Expedited Site Characterization: A rapid, cost-effective process for preremedial site characterization

    International Nuclear Information System (INIS)

    Burton, J.C.; Walker, J.L.; Jennings, T.V.; Aggarwal, P.K.; Hastings, B.; Meyer, W.T.; Rose, C.M.; Rosignolo, C.L.

    1993-01-01

    Argonne National Laboratory has developed a unique, cost- and time-effective, technically innovative process for preremedial site characterization, referred to as Expedited Site Characterization (ESC). The cost of the ESC field sampling process ranges from 1/10 to 1/5 of the cost of traditional site characterization. The time required for this ESC field activity is approximately 1/30 of that for current methods. Argonne's preremedial site investigations based on this approach have been accepted by the appropriate regulatory agencies. The ESC process is flexible and neither site nor contaminant dependent. The process has been successfully tested and applied in site investigations of multiple contaminated landfills in New Mexico (for the US Department of the Interior's Bureau of Land Management [BLM]) and at former grain storage facilities in Nebraska and Kansas, contaminated with carbon tetrachloride (for the Department of Agriculture's Commodity Credit Corporation [CCC/USDA]). A working demonstration of this process was sponsored by the US Department of Energy (DOE) Office of Technology Development as a model of the methodology needed to accelerate site characterizations at DOE facilities. This report describes the application of the process in New Mexico, Nebraska and Kansas

  17. The effect of spatial confinement on the noble-gas HArF molecule: structure and electric properties

    International Nuclear Information System (INIS)

    Kozłowska, Justyna; Bartkowiak, Wojciech

    2014-01-01

    Highlights: • The structure and electrical properties of HArF in spatial confinement are analyzed. • Orbital compression leads to decrease of bond lengths in the HArF molecule. • Spatial restriction causes a drop of the molecular (hyper)polarizabilities. • Spatial confinement reduces the electron correlation contribution to μ, α and β. - Abstract: A systematic study on the dipole moment and (hyper)polarizabilities of argon fluorohydride under spatial restriction was performed. Detailed analysis of the confinement induced changes in the structure of HArF is also presented. In order to render the influence of chemical compression on the properties in question a two-dimensional harmonic oscillator potential, mimicking a cylindrical confinement, was applied. Through the comparison of the results obtained for HArF with those of HF the effect of Ar insertion on the above properties was discussed. A hierarchy of ab initio methods including HF, MP2, CCSD and CCSD(T), has been employed to investigate the effect of orbital compression on the electron correlation contribution to the studied electric properties. It was observed that the external confining potential modifies the electronic contributions to the dipole moment and (hyper)polarizabilities of HArF. In particular, the first hyperpolarizability of HArF is remarkably smaller than that of the unconfined HArF molecule

  18. The effect of spatial confinement on the noble-gas HArF molecule: structure and electric properties

    Energy Technology Data Exchange (ETDEWEB)

    Kozłowska, Justyna; Bartkowiak, Wojciech, E-mail: wojciech.bartkowiak@pwr.edu.pl

    2014-09-30

    Highlights: • The structure and electrical properties of HArF in spatial confinement are analyzed. • Orbital compression leads to decrease of bond lengths in the HArF molecule. • Spatial restriction causes a drop of the molecular (hyper)polarizabilities. • Spatial confinement reduces the electron correlation contribution to μ, α and β. - Abstract: A systematic study on the dipole moment and (hyper)polarizabilities of argon fluorohydride under spatial restriction was performed. Detailed analysis of the confinement induced changes in the structure of HArF is also presented. In order to render the influence of chemical compression on the properties in question a two-dimensional harmonic oscillator potential, mimicking a cylindrical confinement, was applied. Through the comparison of the results obtained for HArF with those of HF the effect of Ar insertion on the above properties was discussed. A hierarchy of ab initio methods including HF, MP2, CCSD and CCSD(T), has been employed to investigate the effect of orbital compression on the electron correlation contribution to the studied electric properties. It was observed that the external confining potential modifies the electronic contributions to the dipole moment and (hyper)polarizabilities of HArF. In particular, the first hyperpolarizability of HArF is remarkably smaller than that of the unconfined HArF molecule.

  19. Characterization of a desert soil sequence at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Guertal, W.R.; Hofmann, L.L. Hudson, D.B.; Flint, A.L.

    1994-01-01

    Yucca Mountain, Nevada, is currently being evaluated as a potential site for a geologic repository for high level radioactive waste. Hydrologic evaluation of the unsaturated zone of Yucca Mountain is being conducted as an integrated set of surface and subsurface-based activities with a common objective to characterize the temporal and spatial distribution of water flux through the potential repository. Yucca Mountain is covered with a thin to thick layer of colluvial/alluvial materials, where there are not bedrock outcrops. It is across this surface boundary that all infiltration and all exfiltration occurs. This surface boundary effects water movement through the unsaturated zone. Characterization of the hydrologic properties of surficial materials is then a necessary step for short term characterization goals and for long term modeling

  20. Ecological and evolutionary consequences of tri-trophic interactions: Spatial variation and effects of plant density.

    Science.gov (United States)

    Abdala-Roberts, Luis; Parra-Tabla, Víctor; Moreira, Xoaquín; Ramos-Zapata, José

    2017-02-01

    The factors driving variation in species interactions are often unknown, and few studies have made a link between changes in interactions and the strength of selection. We report on spatial variation in functional responses by a seed predator (SP) and its parasitic wasps associated with the herb Ruellia nudiflora . We assessed the influence of plant density on consumer responses and determined whether density effects and spatial variation in functional responses altered natural selection by these consumers on the plant. We established common gardens at two sites in Yucatan, Mexico, and planted R. nudiflora at two densities in each garden. We recorded fruit output and SP and parasitoid attack; calculated relative fitness (seed number) under scenarios of three trophic levels (accounting for SP and parasitoid effects), two trophic levels (accounting for SP but not parasitoid effects), and one trophic level (no consumer effects); and compared selection strength on fruit number under these scenarios across sites and densities. There was spatial variation in SP recruitment, whereby the SP functional response was negatively density-dependent at one site but density-independent at the other; parasitoid responses were density-independent and invariant across sites. Site variation in SP attack led, in turn, to differences in SP selection on fruit output, and parasitoids did not alter SP selection. There were no significant effects of density at either site. Our results provide a link between consumer functional responses and consumer selection on plants, which deepens our understanding of geographic variation in the evolutionary outcomes of multitrophic interactions. © 2017 Botanical Society of America.

  1. Neural correlates of reward-based spatial learning in persons with cocaine dependence.

    Science.gov (United States)

    Tau, Gregory Z; Marsh, Rachel; Wang, Zhishun; Torres-Sanchez, Tania; Graniello, Barbara; Hao, Xuejun; Xu, Dongrong; Packard, Mark G; Duan, Yunsuo; Kangarlu, Alayar; Martinez, Diana; Peterson, Bradley S

    2014-02-01

    Dysfunctional learning systems are thought to be central to the pathogenesis of and impair recovery from addictions. The functioning of the brain circuits for episodic memory or learning that support goal-directed behavior has not been studied previously in persons with cocaine dependence (CD). Thirteen abstinent CD and 13 healthy participants underwent MRI scanning while performing a task that requires the use of spatial cues to navigate a virtual-reality environment and find monetary rewards, allowing the functional assessment of the brain systems for spatial learning, a form of episodic memory. Whereas both groups performed similarly on the reward-based spatial learning task, we identified disturbances in brain regions involved in learning and reward in CD participants. In particular, CD was associated with impaired functioning of medial temporal lobe (MTL), a brain region that is crucial for spatial learning (and episodic memory) with concomitant recruitment of striatum (which normally participates in stimulus-response, or habit, learning), and prefrontal cortex. CD was also associated with enhanced sensitivity of the ventral striatum to unexpected rewards but not to expected rewards earned during spatial learning. We provide evidence that spatial learning in CD is characterized by disturbances in functioning of an MTL-based system for episodic memory and a striatum-based system for stimulus-response learning and reward. We have found additional abnormalities in distributed cortical regions. Consistent with findings from animal studies, we provide the first evidence in humans describing the disruptive effects of cocaine on the coordinated functioning of multiple neural systems for learning and memory.

  2. Spatial cluster detection using dynamic programming

    Directory of Open Access Journals (Sweden)

    Sverchkov Yuriy

    2012-03-01

    Full Text Available Abstract Background The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. Methods We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. Results When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. Conclusions We conclude that the dynamic

  3. Spatially coupled LDPC coding in cooperative wireless networks

    NARCIS (Netherlands)

    Jayakody, D.N.K.; Skachek, V.; Chen, B.

    2016-01-01

    This paper proposes a novel technique of spatially coupled low-density parity-check (SC-LDPC) code-based soft forwarding relaying scheme for a two-way relay system. We introduce an array-based optimized SC-LDPC codes in relay channels. A more precise model is proposed to characterize the residual

  4. Complex temporal and spatial patterns in nonequilibrium processes

    International Nuclear Information System (INIS)

    Swinney, H.L.

    1992-01-01

    We have used dynamical systems methods to study and characterize bifurcations and pattern formation in a variety of nonequilibrium systems. In this paper we describe our work on dynamical systems, chemical oscillations and chaos, chemical spatial patterns, instabilities in fluid dynamics, electrodeposition clusters, the ballast resistor, and crack propagation

  5. Road infrastructure, spatial spillover and county economic growth

    Science.gov (United States)

    Hu, Zhenhua; Luo, Shuang

    2017-09-01

    This paper analyzes the spatial spillover effect of road infrastructure on the economic growth of poverty-stricken counties, based on the spatial Durbin model, by using the panel data of 37 poor counties in Hunan province from 2006 to 2015. The results showed that there is a significant spatial dependence of economic growth in Poor Counties. Road infrastructure has a positive impact on economic growth, and the results will be overestimated without considering spatial factors. Considering the spatial factors, the road infrastructure will promote the economic growth of the surrounding areas through the spillover effect, but the spillover effect is restricted by the distance factor. Capital investment is the biggest factor of economic growth in poor counties, followed by urbanization, labor force and regional openness.

  6. Effects of Artificial Gravity and Bed Rest on Spatial Orientation and Balance Control

    Science.gov (United States)

    Paloski, William H.; Moore, S. T.; Feiveson, A. H.; Taylor, L. C.

    2007-01-01

    While the vestibular system should be well-adapted to bed rest (a condition it experiences approximately 8/24 hrs each day), questions remain regarding the degree to which repeated exposures to the unusual gravito-inertial force environment of a short-radius centrifuge might affect central processing of vestibular information used in spatial orientation and balance control. Should these functions be impaired by intermittent AG, its feasibility as a counter-measure would be diminished. We, therefore, examined the effects of AG on spatial orientation and balance control in 15 male volunteers before and after 21 days of 6 HDT bed rest (BR). Eight of the subjects were treated with daily 1hr AG exposures (2.5g at the feet; 1.0g at the heart) aboard a short radius (3m) centrifuge, while the other seven served as controls (C). Spatial orientation was assessed by measures of ocular counter-rolling (OCR; rotation of the eye about the line of sight, an otolith-mediated reflex) and subjective visual vertical (SVV; perception of the spatial upright). Both OCR and SVV measurements were made with the subject upright, lying on their left sides, and lying on their right sides. OCR was measured from binocular eye orientation recordings made while the subjects fixated for 10s on a point target directly in front of the face at a distance of 1 m. SVV was assessed by asking subjects (in the dark) to adjust to upright (using a handheld controller) the orientation of a luminous bar randomly perturbed (15) to either side of the vertical meridian. Balance control performance was assessed using a computerized dynamic posturography (CDP) protocol similar to that currently required for all returning crew members. During each session, the subjects completed a combination of trials of sensory organization test (SOT) 2 (eyes closed, fixed platform) and SOT 5 (eyes closed, sway-referenced platform) with and without static and dynamic pitch plane head movements (plus or minus 20 deg., dynamic

  7. Influence of backscattering on the spatial resolution of semiconductor X-ray detectors

    International Nuclear Information System (INIS)

    Hoheisel, M.; Korn, A.; Giersch, J.

    2005-01-01

    Pixelated X-ray detectors using semiconductor layers or scintillators as absorbers are widely used in high-energy physics, medical diagnosis, or non-destructive testing. Their good spatial resolution performance makes them particularly suitable for applications where fine details have to be resolved. Intrinsic limitations of the spatial resolution have been studied in previous simulations. These simulations focused on interactions inside the conversion layer. Transmitted photons were treated as a loss. In this work, we also implemented the structure behind the conversion layer to investigate the impact of backscattering inside the detector setup. We performed Monte Carlo simulations with the program ROSI (Roentgen Simulation) which is based on the well-established EGS4 algorithm. Line-spread functions of different fully implemented detectors were simulated. In order to characterize the detectors' spatial resolution, the modulation transfer functions (MTF) were calculated. The additional broadening of the line-spread function by carrier transport has been ignored in this work. We investigated two different detector types: a directly absorbing pixel detector where a semiconductor slab is bump-bonded to a readout ASIC such as the Medipix-2 setup with Si or GaAs as an absorbing semiconductor layer, and flat-panel detectors with a Se or a CsI converter. We found a significant degradation of the MTF compared to the case without backscattering. At energies above the K-edge of the backscattering material the spatial resolution drops and can account for the observed low-frequency drop of the MTF. Ignoring this backscatter effect might lead to misinterpretations of the charge sharing effect in counting pixel detectors

  8. Beyond time and space: The effect of a lateralized sustained attention task and brain stimulation on spatial and selective attention.

    Science.gov (United States)

    Shalev, Nir; De Wandel, Linde; Dockree, Paul; Demeyere, Nele; Chechlacz, Magdalena

    2017-10-03

    The Theory of Visual Attention (TVA) provides a mathematical formalisation of the "biased competition" account of visual attention. Applying this model to individual performance in a free recall task allows the estimation of 5 independent attentional parameters: visual short-term memory (VSTM) capacity, speed of information processing, perceptual threshold of visual detection; attentional weights representing spatial distribution of attention (spatial bias), and the top-down selectivity index. While the TVA focuses on selection in space, complementary accounts of attention describe how attention is maintained over time, and how temporal processes interact with selection. A growing body of evidence indicates that different facets of attention interact and share common neural substrates. The aim of the current study was to modulate a spatial attentional bias via transfer effects, based on a mechanistic understanding of the interplay between spatial, selective and temporal aspects of attention. Specifically, we examined here: (i) whether a single administration of a lateralized sustained attention task could prime spatial orienting and lead to transferable changes in attentional weights (assigned to the left vs right hemi-field) and/or other attentional parameters assessed within the framework of TVA (Experiment 1); (ii) whether the effects of such spatial-priming on TVA parameters could be further enhanced by bi-parietal high frequency transcranial random noise stimulation (tRNS) (Experiment 2). Our results demonstrate that spatial attentional bias, as assessed within the TVA framework, was primed by sustaining attention towards the right hemi-field, but this spatial-priming effect did not occur when sustaining attention towards the left. Furthermore, we show that bi-parietal high-frequency tRNS combined with the rightward spatial-priming resulted in an increased attentional selectivity. To conclude, we present a novel, theory-driven method for attentional modulation

  9. Acoustic Characterization of Mesoscale Objects

    Energy Technology Data Exchange (ETDEWEB)

    Chinn, D; Huber, R; Chambers, D; Cole, G; Balogun, O; Spicer, J; Murray, T

    2007-03-13

    This report describes the science and engineering performed to provide state-of-the-art acoustic capabilities for nondestructively characterizing mesoscale (millimeter-sized) objects--allowing micrometer resolution over the objects entire volume. Materials and structures used in mesoscale objects necessitate the use of (1) GHz acoustic frequencies and (2) non-contacting laser generation and detection of acoustic waves. This effort demonstrated that acoustic methods at gigahertz frequencies have the necessary penetration depth and spatial resolution to effectively detect density discontinuities, gaps, and delaminations. A prototype laser-based ultrasonic system was designed and built. The system uses a micro-chip laser for excitation of broadband ultrasonic waves with frequency components reaching 1.0 GHz, and a path-stabilized Michelson interferometer for detection. The proof-of-concept for mesoscale characterization is demonstrated by imaging a micro-fabricated etched pattern in a 70 {micro}m thick silicon wafer.

  10. Effects of 1.8 GHz Radiofrequency Fields on the Emotional Behavior and Spatial Memory of Adolescent Mice

    Directory of Open Access Journals (Sweden)

    Jun-Ping Zhang

    2017-11-01

    Full Text Available The increasing use of mobile phones by teenagers has raised concern about the cognitive effects of radiofrequency (RF fields. In this study, we investigated the effects of 4-week exposure to a 1.8 GHz RF field on the emotional behavior and spatial memory of adolescent male mice. Anxiety-like behavior was evaluated by open field test (OFT and elevated plus maze (EPM test, while depression-like behavior was evaluated by sucrose preference test (SPT, tail suspension test (TST and forced swim test (FST. The spatial learning and memory ability were evaluated by Morris water maze (MWM experiments. The levels of amino acid neurotransmitters were determined by liquid chromatography-mass spectrometry (LC-MS. The histology of the brain was examined by hematoxylin-eosin (HE staining. It was found that the depression-like behavior, spatial memory ability and histology of the brain did not change obviously after RF exposure. However, the anxiety-like behavior increased in mice, while, the levels of γ-aminobutyric acid (GABA and aspartic acid (Asp in cortex and hippocampus significantly decreased after RF exposure. These data suggested that RF exposure under these conditions do not affect the depression-like behavior, spatial memory and brain histology in adolescent male mice, but it may however increase the level of anxiety, and GABA and Asp were probably involved in this effect.

  11. Experimental investigation on spontaneously active hippocampal cultures recorded by means of high-density MEAs: analysis of the spatial resolution effects

    Directory of Open Access Journals (Sweden)

    Alessandro Maccione

    2010-05-01

    Full Text Available Based on experiments performed with high-resolution Active Pixel Sensor microelectrode arrays (APS-MEAs coupled with spontaneously active hippocampal cultures, this work investigates the spatial resolution effects of the neuroelectronic interface on the analysis of the recorded electrophysiological signals. The adopted methodology consists, first, in recording the spontaneous activity at the highest spatial resolution (inter-electrode separation of 21 µm from the whole array of 4096 microelectrodes. Then, the full resolution dataset is spatially down sampled in order to evaluate the effects on raster plot representation, array-wide spike rate (AWSR, mean firing rate (MFR and mean bursting rate (MBR. Furthermore, the effects of the array-to-network relative position are evaluated by shifting a subset of equally spaced electrodes on the entire recorded area. Results highlight that MFR and MBR are particularly influenced by the spatial resolution provided by the neuroelectronic interface. On high-resolution large MEAs, such analysis better represent the time-based parameterization of the network dynamics. Finally, this work suggest interesting capabilities of high-resolution MEAs for spatial-based analysis in dense and low-dense neuronal preparation for investigating signalling at both local and global neuronal circuitries.

  12. Demand prediction model for regional railway services considering spatial effects between stations

    Energy Technology Data Exchange (ETDEWEB)

    Cordera Piñera, R.; Sañudo, R.; Olio, L. Dell' ; Ibeas, A.

    2016-07-01

    The railways are a priority transport mode for the European Union given their safety record and environmental sustainability. Therefore it is important to have quantitative models available which allow passenger demand for rail travel to be simulated for planning purposes and to evaluate different policies. The aim of this article is to specify and estimate trip distribution models between railway stations by considering the most influential demand variables. Two types of models were estimated: Poisson regression and gravity. The input data were the ticket sales on a regional line in Cantabria (Spain) which were provided by the Spanish railway infrastructure administrator (ADIF – RAM). The models have also considered the possible existence of spatial effects between train stations. The results show that the models have a good fit to the available data, especial the gravity models constrained by origins and destinations. Furthermore, the gravity models which considered the existence of spatial effects between stations had a significantly better fit than the Poisson models and the gravity models that did not consider this phenomenon. The proposed models have therefore been shown to be good support tools for decision making in the field of railway planning. (Author)

  13. Vibrations and spatial patterns in biomimetic surfaces: using the shark-skin effect to control blood clotting.

    Science.gov (United States)

    Ramachandran, Rahul; Maani, Nazanin; Rayz, Vitaliy L; Nosonovsky, Michael

    2016-08-06

    We study the effect of small-amplitude fast vibrations and small-amplitude spatial patterns on various systems involving wetting and liquid flow, such as superhydrophobic surfaces, membranes and flow pipes. First, we introduce a mathematical method of averaging the effect of small spatial and temporal patterns and substituting them with an effective force. Such an effective force can change the equilibrium state of a system as well as a phase state, leading to surface texture-induced and vibration-induced phase control. Vibration and patterns can effectively jam holes in vessels with liquid, separate multi-phase flow, change membrane properties, result in propulsion and locomotion and lead to many other multi-scale, nonlinear effects including the shark-skin effect. We discuss the application of such effects to blood flow for novel biomedical 'haemophobic' applications which can prevent blood clotting and thrombosis by controlling the surface pattern at a wall of a vessel (e.g. a catheter or stent).This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  14. Acute Effects of Nitrogen Dioxide on Cardiovascular Mortality in Beijing: An Exploration of Spatial Heterogeneity and the District-specific Predictors

    Science.gov (United States)

    Luo, Kai; Li, Runkui; Li, Wenjing; Wang, Zongshuang; Ma, Xinming; Zhang, Ruiming; Fang, Xin; Wu, Zhenglai; Cao, Yang; Xu, Qun

    2016-12-01

    The exploration of spatial variation and predictors of the effects of nitrogen dioxide (NO2) on fatal health outcomes is still sparse. In a multilevel case-crossover study in Beijing, China, we used mixed Cox proportional hazard model to examine the citywide effects and conditional logistic regression to evaluate the district-specific effects of NO2 on cardiovascular mortality. District-specific predictors that could be related to the spatial pattern of NO2 effects were examined by robust regression models. We found that a 10 μg/m3 increase in daily mean NO2 concentration was associated with a 1.89% [95% confidence interval (CI): 1.33-2.45%], 2.07% (95% CI: 1.23-2.91%) and 1.95% (95% CI: 1.16-2.72%) increase in daily total cardiovascular (lag03), cerebrovascular (lag03) and ischemic heart disease (lag02) mortality, respectively. For spatial variation of NO2 effects across 16 districts, significant effects were only observed in 5, 4 and 2 districts for the above three outcomes, respectively. Generally, NO2 was likely having greater adverse effects on districts with larger population, higher consumption of coal and more civilian vehicles. Our results suggested independent and spatially varied effects of NO2 on total and subcategory cardiovascular mortalities. The identification of districts with higher risk can provide important insights for reducing NO2 related health hazards.

  15. Spatial Frequency Discrimination : Effects of Age, Reward, and Practice

    OpenAIRE

    van den Boomen, Carlijn; Peters, Judith Carolien

    2017-01-01

    Social interaction starts with perception of the world around you. This study investigated two fundamental issues regarding the development of discrimination of higher spatial frequencies, which are important building blocks of perception. Firstly, it mapped the typical developmental trajectory of higher spatial frequency discrimination. Secondly, it developed and validated a novel design that could be applied to improve atypically developed vision. Specifically, this study examined the effec...

  16. Effect of land use on the spatial variability of organic matter and nutrient status in an Oxisol

    Science.gov (United States)

    Paz-Ferreiro, Jorge; Alves, Marlene Cristina; Vidal Vázquez, Eva

    2013-04-01

    Heterogeneity is now considered as an inherent soil property. Spatial variability of soil attributes in natural landscapes results mainly from soil formation factors. In cultivated soils much heterogeneity can additionally occur as a result of land use, agricultural systems and management practices. Organic matter content (OMC) and nutrients associated to soil exchange complex are key attribute in the maintenance of a high quality soil. Neglecting spatial heterogeneity in soil OMC and nutrient status at the field scale might result in reduced yield and in environmental damage. We analyzed the impact of land use on the pattern of spatial variability of OMC and soil macronutrients at the stand scale. The study was conducted in São Paulo state, Brazil. Land uses were pasture, mango orchard and corn field. Soil samples were taken at 0-10 cm and 10-20 cm depth in 84 points, within 100 m x 100 m plots. Texture, pH, OMC, cation exchange capacity (CEC), exchangeable cations (Ca, Mg, K, H, Al) and resin extractable phosphorus were analyzed.. Statistical variability was found to be higher in parameters defining the soil nutrient status (resin extractable P, K, Ca and Mg) than in general soil properties (OMC, CEC, base saturation and pH). Geostatistical analysis showed contrasting patterns of spatial dependence for the different soil uses, sampling depths and studied properties. Most of the studied data sets collected at two different depths exhibited spatial dependence at the sampled scale and their semivariograms were modeled by a nugget effect plus a structure. The pattern of soil spatial variability was found to be different between the three study soil uses and at the two sampling depths, as far as model type, nugget effect or ranges of spatial dependence were concerned. Both statistical and geostatistical results pointed out the importance of OMC as a driver responsible for the spatial variability of soil nutrient status.

  17. Spatial Exploration and Characterization of Endozoicomonas spp. Bacteria in Stylophora pistillata Using Fluorescence In Situ Hybridization

    KAUST Repository

    Alsheikh-­Hussain, Areej

    2011-12-12

    Studies of coral-­associated bacterial communities have repeatedly demonstrated that the microbial assemblages of the coral host are highly specific and complex. In particular, bacterial community surveys of scleractinian and soft corals from geographically diverse reefs continually uncover a high abundance of sequences affiliated with the Gammaproteobacteria genus Endozoicomonas. The role of these bacteria within the complex coral holobiont is currently unknown. In order to localize these cells and gain an understanding of their potential interactions within the coral, we developed a fluorescence in situ hybridization(FISH) approach for reef-­building coral tissues. Using a custom small-­subunit ribosomal RNA gene database, we developed two Endozoicomonas-­specific probes that cover almost all known coral-­associated Endozoicomonas sequences. Probe hybridization conditions were quantitatively evaluated against target and non-­target bacterial cultures using fluorescence microscopy. Using these experimentally tested conditions, probes were then hybridized to the branching coral Stylophora pistillata, obtained from the Red Sea, using whole mount and paraffin embedding techniques. This study allowed preliminary spatial exploration and characterization of Endozoicomonas in coral, which has provided insight into their functional role and interactions within the coral holobiont.

  18. Microstructural characterization of radiation effects in nuclear materials

    CERN Document Server

    2017-01-01

    Microstructural Characterization of Radiation Effects in Nuclear Materials provides an overview into experimental techniques that can be used to examine those effects (both neutron and charged particle) and can be used by researchers, technicians or students as a tool to introduce them to the various techniques. The need to examine the effect of radiation on materials is becoming increasingly important as nuclear energy is emerging as a growing source of renewable energy. The book opens with a discussion of why it is important to study the effects of radiation on materials and looks at current and future reactor designs and the various constraints faced by materials as a result of those designs. The book also includes an overview of the radiation damage mechanisms. The next section explores the various methods for characterizing damage including transmission electron microscopy, scanning transmission electron microscopy, analytical electron microscopy, electron backscatter diffraction, atom probe tomography,...

  19. A composite likelihood approach for spatially correlated survival data

    Science.gov (United States)

    Paik, Jane; Ying, Zhiliang

    2013-01-01

    The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory. PMID:24223450

  20. A composite likelihood approach for spatially correlated survival data.

    Science.gov (United States)

    Paik, Jane; Ying, Zhiliang

    2013-01-01

    The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory.

  1. Near or far: The effect of spatial distance and vocabulary knowledge on word learning.

    Science.gov (United States)

    Axelsson, Emma L; Perry, Lynn K; Scott, Emilly J; Horst, Jessica S

    2016-01-01

    The current study investigated the role of spatial distance in word learning. Two-year-old children saw three novel objects named while the objects were either in close proximity to each other or spatially separated. Children were then tested on their retention for the name-object associations. Keeping the objects spatially separated from each other during naming was associated with increased retention for children with larger vocabularies. Children with a lower vocabulary size demonstrated better retention if they saw objects in close proximity to each other during naming. This demonstrates that keeping a clear view of objects during naming improves word learning for children who have already learned many words, but keeping objects within close proximal range is better for children at earlier stages of vocabulary acquisition. The effect of distance is therefore not equal across varying vocabulary sizes. The influences of visual crowding, cognitive load, and vocabulary size on word learning are discussed. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Microstructure characterization of multi-phase composites and utilization of phase change materials and recycled rubbers in cementitious materials

    Science.gov (United States)

    Meshgin, Pania

    2011-12-01

    This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.

  3. Assessing the spatial distribution of coral bleaching using small unmanned aerial systems

    Science.gov (United States)

    Levy, Joshua; Hunter, Cynthia; Lukacazyk, Trent; Franklin, Erik C.

    2018-06-01

    Small unmanned aerial systems (sUAS) are an affordable, effective complement to existing coral reef monitoring and assessment tools. sUAS provide repeatable low-altitude, high-resolution photogrammetry to address fundamental questions of spatial ecology and community dynamics for shallow coral reef ecosystems. Here, we qualitatively describe the use of sUAS to survey the spatial characteristics of coral cover and the distribution of coral bleaching across patch reefs in Kānéohe Bay, Hawaii, and address limitations and anticipated technology advancements within the field of UAS. Overlapping sub-decimeter low-altitude aerial reef imagery collected during the 2015 coral bleaching event was used to construct high-resolution reef image mosaics of coral bleaching responses on four Kānéohe Bay patch reefs, totaling 60,000 m2. Using sUAS imagery, we determined that paled, bleached and healthy corals on all four reefs were spatially clustered. Comparative analyses of data from sUAS imagery and in situ diver surveys found as much as 14% difference in coral cover values between survey methods, depending on the size of the reef and area surveyed. When comparing the abundance of unhealthy coral (paled and bleached) between sUAS and in situ diver surveys, we found differences in cover from 1 to 49%, depending on the depth of in situ surveys, the percent of reef area covered with sUAS surveys and patchiness of the bleaching response. This study demonstrates the effective use of sUAS surveys for assessing the spatial dynamics of coral bleaching at colony-scale resolutions across entire patch reefs and evaluates the complementarity of data from both sUAS and in situ diver surveys to more accurately characterize the spatial ecology of coral communities on reef flats and slopes.

  4. Morningness/eveningness and the synchrony effect for spatial attention.

    Science.gov (United States)

    Dorrian, Jillian; McLean, Benjamin; Banks, Siobhan; Loetscher, Tobias

    2017-02-01

    There is evidence that a decrease in alertness is associated with a rightward shift of attention. Alertness fluctuates throughout the day and peak times differ between individuals. Some individuals feel most alert in the morning; others in the evening. Our aim was to investigate the influence of morningness/eveningness and time of testing on spatial attention. It was predicted that attention would shift rightwards when individuals were tested at their non-optimal time as compared to tests at peak times. A crowdsourcing internet marketplace, Amazon Mechanical Turk (AMT) was used to collect data. Given questions surrounding the quality of data drawn from such virtual environments, this study also investigated the sensitivity of data to demonstrate known effects from the literature. Five-hundred and thirty right-handed participants took part between 6 am and 11 pm. Participants answered demographic questions, completed a question from the Horne and Östberg Morningness/Eveningness Scale, and performed a spatial attentional task (landmark task). For the landmark task, participants indicated whether the left or right segment of each of 72 pre-bisected lines was longer (longer side counterbalanced). Response bias was calculated by subtracting the 'number of left responses' from the 'number of right responses', and dividing by the number of trials. Negative values indicate a leftward attentional bias, and positive values a rightward bias. Well-supported relationships between variables were reflected in the dataset. Controlling for age, there was a significant interaction between morningness/eveningness and time of testing (morning=6 am-2.30 pm, evening=2.30 pm-11 pm) (pattention from peak to off-peak times of testing for those identifying as morning types, but not evening types. Findings support the utility of crowdsourcing internet marketplaces as data collection vehicles for research. Results also suggest that the deployment of spatial attention is modulated by an

  5. High-resolution Fracture Characterization Using Elastic Full-waveform Inversion

    KAUST Repository

    Zhang, Z.; Tsvankin, I.; Alkhalifah, Tariq Ali

    2017-01-01

    Current methodologies to characterize fractures at the reservoir scale have serious limitations in spatial resolution. Here, we propose to estimate both the spatial distribution and physical properties of fractures using full waveform inversion (FWI) of multicomponent surface seismic data. An effective orthorhombic medium with five clusters of vertical fractures distributed in a checkboard fashion is used to test the algorithm. To better understand the inversion results, we analyze the FWI radiation patterns of the fracture weaknesses. A shape regularization term is added to the objective function to improve the inversion for the horizontal weakness, which is otherwise poorly constrained. Alternatively, a simplified model of penny-shaped cracks is used to reduce the nonuniqueness in the inverted weaknesses and achieve a faster convergence.

  6. High-resolution Fracture Characterization Using Elastic Full-waveform Inversion

    KAUST Repository

    Zhang, Z.

    2017-05-26

    Current methodologies to characterize fractures at the reservoir scale have serious limitations in spatial resolution. Here, we propose to estimate both the spatial distribution and physical properties of fractures using full waveform inversion (FWI) of multicomponent surface seismic data. An effective orthorhombic medium with five clusters of vertical fractures distributed in a checkboard fashion is used to test the algorithm. To better understand the inversion results, we analyze the FWI radiation patterns of the fracture weaknesses. A shape regularization term is added to the objective function to improve the inversion for the horizontal weakness, which is otherwise poorly constrained. Alternatively, a simplified model of penny-shaped cracks is used to reduce the nonuniqueness in the inverted weaknesses and achieve a faster convergence.

  7. Effect of harmonicity on the detection of a signal in a complex masker and on spatial release from masking.

    Directory of Open Access Journals (Sweden)

    Astrid Klinge

    Full Text Available The amount of masking of sounds from one source (signals by sounds from a competing source (maskers heavily depends on the sound characteristics of the masker and the signal and on their relative spatial location. Numerous studies investigated the ability to detect a signal in a speech or a noise masker or the effect of spatial separation of signal and masker on the amount of masking, but there is a lack of studies investigating the combined effects of many cues on the masking as is typical for natural listening situations. The current study using free-field listening systematically evaluates the combined effects of harmonicity and inharmonicity cues in multi-tone maskers and cues resulting from spatial separation of target signal and masker on the detection of a pure tone in a multi-tone or a noise masker. A linear binaural processing model was implemented to predict the masked thresholds in order to estimate whether the observed thresholds can be accounted for by energetic masking in the auditory periphery or whether other effects are involved. Thresholds were determined for combinations of two target frequencies (1 and 8 kHz, two spatial configurations (masker and target either co-located or spatially separated by 90 degrees azimuth, and five different masker types (four complex multi-tone stimuli, one noise masker. A spatial separation of target and masker resulted in a release from masking for all masker types. The amount of masking significantly depended on the masker type and frequency range. The various harmonic and inharmonic relations between target and masker or between components of the masker resulted in a complex pattern of increased or decreased masked thresholds in comparison to the predicted energetic masking. The results indicate that harmonicity cues affect the detectability of a tonal target in a complex masker.

  8. Environmental, biological and anthropogenic effects on grizzly bear body size: temporal and spatial considerations.

    Science.gov (United States)

    Nielsen, Scott E; Cattet, Marc R L; Boulanger, John; Cranston, Jerome; McDermid, Greg J; Shafer, Aaron B A; Stenhouse, Gordon B

    2013-09-08

    Individual body growth is controlled in large part by the spatial and temporal heterogeneity of, and competition for, resources. Grizzly bears (Ursus arctos L.) are an excellent species for studying the effects of resource heterogeneity and maternal effects (i.e. silver spoon) on life history traits such as body size because their habitats are highly variable in space and time. Here, we evaluated influences on body size of grizzly bears in Alberta, Canada by testing six factors that accounted for spatial and temporal heterogeneity in environments during maternal, natal and 'capture' (recent) environments. After accounting for intrinsic biological factors (age, sex), we examined how body size, measured in mass, length and body condition, was influenced by: (a) population density; (b) regional habitat productivity; (c) inter-annual variability in productivity (including silver spoon effects); (d) local habitat quality; (e) human footprint (disturbances); and (f) landscape change. We found sex and age explained the most variance in body mass, condition and length (R(2) from 0.48-0.64). Inter-annual variability in climate the year before and of birth (silver spoon effects) had detectable effects on the three-body size metrics (R(2) from 0.04-0.07); both maternal (year before birth) and natal (year of birth) effects of precipitation and temperature were related with body size. Local heterogeneity in habitat quality also explained variance in body mass and condition (R(2) from 0.01-0.08), while annual rate of landscape change explained additional variance in body length (R(2) of 0.03). Human footprint and population density had no observed effect on body size. These results illustrated that body size patterns of grizzly bears, while largely affected by basic biological characteristics (age and sex), were also influenced by regional environmental gradients the year before, and of, the individual's birth thus illustrating silver spoon effects. The magnitude of the silver

  9. Spatial heterogeneity analysis of brain activation in fMRI

    Directory of Open Access Journals (Sweden)

    Lalit Gupta

    2014-01-01

    Full Text Available In many brain diseases it can be qualitatively observed that spatial patterns in blood oxygenation level dependent (BOLD activation maps appear more (diffusively distributed than in healthy controls. However, measures that can quantitatively characterize this spatial distributiveness in individual subjects are lacking. In this study, we propose a number of spatial heterogeneity measures to characterize brain activation maps. The proposed methods focus on different aspects of heterogeneity, including the shape (compactness, complexity in the distribution of activated regions (fractal dimension and co-occurrence matrix, and gappiness between activated regions (lacunarity. To this end, functional MRI derived activation maps of a language and a motor task were obtained in language impaired children with (Rolandic epilepsy and compared to age-matched healthy controls. Group analysis of the activation maps revealed no significant differences between patients and controls for both tasks. However, for the language task the activation maps in patients appeared more heterogeneous than in controls. Lacunarity was the best measure to discriminate activation patterns of patients from controls (sensitivity 74%, specificity 70% and illustrates the increased irregularity of gaps between activated regions in patients. The combination of heterogeneity measures and a support vector machine approach yielded further increase in sensitivity and specificity to 78% and 80%, respectively. This illustrates that activation distributions in impaired brains can be complex and more heterogeneous than in normal brains and cannot be captured fully by a single quantity. In conclusion, heterogeneity analysis has potential to robustly characterize the increased distributiveness of brain activation in individual patients.

  10. Assimilation of remote sensing observations into a sediment transport model of China's largest freshwater lake: spatial and temporal effects.

    Science.gov (United States)

    Zhang, Peng; Chen, Xiaoling; Lu, Jianzhong; Zhang, Wei

    2015-12-01

    Numerical models are important tools that are used in studies of sediment dynamics in inland and coastal waters, and these models can now benefit from the use of integrated remote sensing observations. This study explores a scheme for assimilating remotely sensed suspended sediment (from charge-coupled device (CCD) images obtained from the Huanjing (HJ) satellite) into a two-dimensional sediment transport model of Poyang Lake, the largest freshwater lake in China. Optimal interpolation is used as the assimilation method, and model predictions are obtained by combining four remote sensing images. The parameters for optimal interpolation are determined through a series of assimilation experiments evaluating the sediment predictions based on field measurements. The model with assimilation of remotely sensed sediment reduces the root-mean-square error of the predicted sediment concentrations by 39.4% relative to the model without assimilation, demonstrating the effectiveness of the assimilation scheme. The spatial effect of assimilation is explored by comparing model predictions with remotely sensed sediment, revealing that the model with assimilation generates reasonable spatial distribution patterns of suspended sediment. The temporal effect of assimilation on the model's predictive capabilities varies spatially, with an average temporal effect of approximately 10.8 days. The current velocities which dominate the rate and direction of sediment transport most likely result in spatial differences in the temporal effect of assimilation on model predictions.

  11. Effects of manual threshold setting on image analysis results of a sandstone sample structural characterization by X-ray microtomography

    International Nuclear Information System (INIS)

    Moreira, Anderson C.; Fernandes, Celso P.; Fernandes, Jaquiel S.; Marques, Leonardo C.; Appoloni, Carlos R.; Nagata, Rodrigo

    2009-01-01

    X-ray microtomography is a nondestructive nuclear technique widely applied for samples structural characterization. This methodology permits the investigation of materials porous phase, without special sample preparation, generating bidimensional images of the irradiated sample. The images are generated by the linear attenuation coefficient mapping of the sample. In order to do a quantitative characterization, the images have to be binarized, separating porous phase from the material matrix. The choice of the correct threshold in the grey level histogram is an important and discerning procedure for the binary images creation. Slight variations of the threshold level led to substantial variations in physical parameters determination, like porosity and pore size distribution values. The aim of this work is to evaluate these variations based on some manual threshold setting. Employing Imago image analysis software, four operators determined the porosity and pore size distribution of a sandstone sample by image analysis. The microtomography measurements were accomplished with the following scan conditions: 60 kV, 165 μA, 1 mm Al filter, 0.45 deg step size and 180.0 deg total rotation angle with and 3.8 μm and 11 μm spatial resolution. The global average porosity values, determined by the operators, range from 27.8 to 32.4 % for 3.8 μm spatial resolution and 12.3 to 28.3 % for 11 μm spatial resolution. Percentage differences among the pore size distributions were also found. For the same pore size range, 5.5 % and 17.1 %, for 3.8 μm and 11 μm spatial resolutions respectively, were noted. (author)

  12. Coupling effects of grey-grey separate spatial screening soliton pairs

    International Nuclear Information System (INIS)

    Jiang Qichang; Su Yanli; Ji Xuanmang

    2012-01-01

    The existence and coupling effects of grey-grey separate spatial soliton pairs in a biased series non-photovoltaic photorefractive crystal circuit are investigated in this paper. The numerical solution of grey-grey soliton pairs is derived. The coupling effects between two grey solitons resulting from the input optical intensity and crystal temperature are analyzed numerically. The results show that when the input optical intensity of one crystal changes, two grey solitons in a soliton pair will all change; that is, two grey solitons can affect each other by the light-induced current that flows from one crystal to another. When the temperature of one crystal increases, the intensity width of the grey soliton in this crystal first decreases and then increases. Simultaneously, the intensity width of another grey soliton increases monotonically.

  13. The grain of spatially referenced economic cost and biodiversity benefit data and the effectiveness of a cost targeting strategy.

    Science.gov (United States)

    Sutton, N J; Armsworth, P R

    2014-12-01

    Facing tight resource constraints, conservation organizations must allocate funds available for habitat protection as effectively as possible. Often, they combine spatially referenced economic and biodiversity data to prioritize land for protection. We tested how sensitive these prioritizations could be to differences in the spatial grain of these data by demonstrating how the conclusion of a classic debate in conservation planning between cost and benefit targeting was altered based on the available information. As a case study, we determined parcel-level acquisition costs and biodiversity benefits of land transactions recently undertaken by a nonprofit conservation organization that seeks to protect forests in the eastern United States. Then, we used hypothetical conservation plans to simulate the types of ex ante priorities that an organization could use to prioritize areas for protection. We found the apparent effectiveness of cost and benefit targeting depended on the spatial grain of the data used when prioritizing parcels based on local species richness. However, when accounting for complementarity, benefit targeting consistently was more efficient than a cost targeting strategy regardless of the spatial grain of the data involved. More pertinently for other studies, we found that combining data collected over different spatial grains inflated the apparent effectiveness of a cost targeting strategy and led to overestimation of the efficiency gain offered by adopting a more integrative return-on-investment approach. © 2014 Society for Conservation Biology.

  14. Airborne lead levels in the Korean peninsula: characterization of temporal and spatial patterns and cancer risk analysis.

    Science.gov (United States)

    Mutlu, Atilla; Lee, Byeong-Kyu

    2012-07-01

    This study collected long-term airborne lead concentrations in the Korean peninsula and analyzed their temporal, spatial, and cancer risk characterization. Approximately, 12,000 airborne samples of total suspended particulate (TSP) were collected from 30 ambient air monitoring stations in inland (Daegu, Daejeon, Gwangju, and Seoul) cities and portal cities (Incheon, Busan, and Ulsan) over a period of 7 years (2004-2010). High volume air samplers were employed to collect daily TSP samples during the second week of the consecutive months throughout the entire study period. The concentrations of Pb extracted from the TSP samples were analyzed using either inductively coupled plasma-atomic emission or flame atomic absorption spectrometry. The long-term high mean Pb concentrations were observed in the port cities including Incheon (88 ± 18 ng/m(3)), Ulsan (61 ± 7 ng/m(3)), and Busan (58 ± 6 ng/m(3)). In the temporal analysis, seasonal mean Pb levels were relatively higher in winter and spring than those in summer and fall. In the spatial analysis, the mean Pb levels in spring, winter, and fall from Incheon, which showed the highest seasonal concentrations except summer, were 110 ± 19, 101 ± 18, and 76 ± 23 ng/m(3), respectively. In summer, the highest seasonal mean Pb level was observed in the largest industrial city and the second port city, Ulsan (78 ± 15 ng/m(3)), followed by Incheon (65 ± 13 ng/m(3)). The estimated excess cancer risk analysis showed that inhalation of Pb could result in cancer for one or two persons per million of population in the Korean peninsula.

  15. Radiochromic film measurement of spatial uniformity for a laser generated x-ray environment

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, J. H.; Newlander, C. D.; Horton, R.; Fournier, K. B.; Emig, J.; Patterson, R.; Davis, J. F.; Seiler, S.; Jenkins, P. P.

    2012-10-01

    n existing x-ray source application (XRSA) test cassette was modified to hold multiple x-ray filter materials followed by two radiochromic film types (FWT-60 and HD-810 Gafchromic® film) to qualitatively characterize the spectral-spatial uniformity over the XRSA sample field of view. Multiple sets of film were examined and nominal set was determined. These initial, qualitative measurements suggest a low-energy regime (E < 3 keV) spatial anisotropy and spatial isotropy at higher energies (E > 3 keV).

  16. Spatially-resolved, three-dimensional spray characterization of impinging jets by digital in-line holography

    Science.gov (United States)

    Gao, Jian; Rodrigues, Neil; Sojka, Paul; Chen, Jun

    2014-11-01

    The impinging jet injector is a preferred method for the atomization of liquid rocket propellants. The majority of experimental studies in literature are not spatially-resolved due to the limitations of widely available point-wise and two-dimensional (2D) diagnostic techniques such as phase Doppler anemometry (PDA), which requires significant experimental repetitions to give spatially-resolved measurements. In the present study, digital in-line holography (DIH) is used to provide spatially-resolved, three-dimensional (3D) characteristics of impinging jet sprays. A double-exposure DIH setup is configured to measure droplet 3D, three-component velocity as well as the size distribution. The particle information is extracted by the hybrid method, which is recently proposed as a particle detection method. To enlarge the detection volume, two parallel, collimated laser beams are used to simultaneously probe the spray at two locations, and two identical cameras are used to record the corresponding holograms. Such a setup has a detection volume of approximately 20 cm by 3.6 cm by 4.8 cm. Sprays of both Newtonian and non-Newtonian liquids corresponding to regimes at relatively lower jet Reynolds and Weber numbers are investigated. Measurements from DIH are further verified by comparison with experimental data obtained from shadowgraph and PDA. It is revealed that DIH is particularly suitable to provide spatially-resolved, 3D measurements of impinging jet sprays that are not particularly dense.

  17. Low-level lead exposure effects on spatial reference memory and working memory in rats

    Institute of Scientific and Technical Information of China (English)

    Xinhua Yang; Ping Zhou; Yonghui Li

    2009-01-01

    BACKGROUND: Studies have demonstrated that lead exposure can result in cognitive dysfunction and behavior disorders. However, lead exposure impairments vary under different experimental conditions.OBJECTIVE: To detect changes in spatial learning and memory following low-level lead exposure in rats, in Morris water maze test under the same experimental condition used to analyze lead exposure effects on various memory types and learning processes.DESIGN AND SETTING: The experiment was conducted at the Animal Laboratory, Institute of Psychology, Chinese Academy of Science between February 2005 and March 2006. One-way analysis of variance (ANOVA) and behavioral observations were performed.MATERIALS: Sixteen male, healthy, adult, Sprague Dawley rats were randomized into normal control and lead exposure groups (n = 8).METHODS: Rats in the normal control group were fed distilled water, and those in the lead exposure group were fed 250 mL of 0.05% lead acetate once per day. At day 28, all rats performed the Morris water maze test, consisting of four phases: space navigation, probe test, working memory test, and visual cue test.MAIN OUTCOME MEASURES: Place navigation in the Morris water maze was used to evaluate spatial learning and memory, probe trials for spatial reference memory, working memory test for spatial working memory, and visual cue test for non-spatial cognitive function. Perkin-Elmer Model 300 Atomic Absorption Spectrometer was utilized to determine blood lead levels in rats.RESULTS: (1) In the working memory test, the time to reach the platform remained unchanged between the control and lead exposure groups (F(1,1) = 0.007, P = 0.935). A visible decrease in escape latencies was observed in each group (P = 0.028). However, there was no significant difference between the two groups (F(1,1) = 1.869, P = 0.193). The working memory probe test demonstrated no change between the two groups in the time spent in the target quadrant during the working memory probe test

  18. Spatial solitons in biased photovoltaic photorefractive materials with the pyroelectric effect

    Energy Technology Data Exchange (ETDEWEB)

    Katti, Aavishkar; Yadav, R.A., E-mail: rayadav@bhu.ac.in

    2017-01-23

    Spatial solitons in biased photorefractive media due to the photovoltaic effect and the pyroelectric effect are investigated. The pyroelectric field considered is induced due to the heating by the incident beam's energy. These solitons can be called screening photovoltaic pyroelectric solitons. It is shown that the solitons can exist in the bright and dark realizations. The conditions for formation of these solitons are discussed. Relevant example is considered to illustrate the self trapping of such solitons. The external electric field interacts with the photovoltaic field and the pyroelectric field to either support or oppose the self trapping. - Highlights: • Effect of pyroelectric field on screening photovoltaic solitons is studied. • Illumination induced pyroelectric field is considered for the first time. • Self trapping depends on external, pyroelectric and photovoltaic space charge field.

  19. Spatial network surrogates for disentangling complex system structure from spatial embedding of nodes

    Science.gov (United States)

    Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.

    2016-04-01

    Networks with nodes embedded in a metric space have gained increasing interest in recent years. The effects of spatial embedding on the networks' structural characteristics, however, are rarely taken into account when studying their macroscopic properties. Here, we propose a hierarchy of null models to generate random surrogates from a given spatially embedded network that can preserve certain global and local statistics associated with the nodes' embedding in a metric space. Comparing the original network's and the resulting surrogates' global characteristics allows one to quantify to what extent these characteristics are already predetermined by the spatial embedding of the nodes and links. We apply our framework to various real-world spatial networks and show that the proposed models capture macroscopic properties of the networks under study much better than standard random network models that do not account for the nodes' spatial embedding. Depending on the actual performance of the proposed null models, the networks are categorized into different classes. Since many real-world complex networks are in fact spatial networks, the proposed approach is relevant for disentangling the underlying complex system structure from spatial embedding of nodes in many fields, ranging from social systems over infrastructure and neurophysiology to climatology.

  20. Characterization of scintillator-based detectors for few-ten-keV high-spatial-resolution x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Jakob C., E-mail: jakob.larsson@biox.kth.se; Lundström, Ulf; Hertz, Hans M. [Biomedical and X-ray Physics, Department of Applied Physics, KTH Royal Institute of Technology/Albanova, Stockholm 10691 (Sweden)

    2016-06-15

    Purpose: High-spatial-resolution x-ray imaging in the few-ten-keV range is becoming increasingly important in several applications, such as small-animal imaging and phase-contrast imaging. The detector properties critically influence the quality of such imaging. Here the authors present a quantitative comparison of scintillator-based detectors for this energy range and at high spatial frequencies. Methods: The authors determine the modulation transfer function, noise power spectrum (NPS), and detective quantum efficiency for Gadox, needle CsI, and structured CsI scintillators of different thicknesses and at different photon energies. An extended analysis of the NPS allows for direct measurements of the scintillator effective absorption efficiency and effective light yield as well as providing an alternative method to assess the underlying factors behind the detector properties. Results: There is a substantial difference in performance between the scintillators depending on the imaging task but in general, the CsI based scintillators perform better than the Gadox scintillators. At low energies (16 keV), a thin needle CsI scintillator has the best performance at all frequencies. At higher energies (28–38 keV), the thicker needle CsI scintillators and the structured CsI scintillator all have very good performance. The needle CsI scintillators have higher absorption efficiencies but the structured CsI scintillator has higher resolution. Conclusions: The choice of scintillator is greatly dependent on the imaging task. The presented comparison and methodology will assist the imaging scientist in optimizing their high-resolution few-ten-keV imaging system for best performance.

  1. Collisions of Two Spatial Solitons in Inhomogeneous Nonlinear Media

    International Nuclear Information System (INIS)

    Zhong Weiping; Yi Lin; Yang Zhengping; Xie Ruihua; Milivoj, Belic; Chen Goong

    2008-01-01

    Collisions of spatial solitons occurring in the nonlinear Schroeinger equation with harmonic potential are studied, using conservation laws and the split-step Fourier method. We find an analytical solution for the separation distance between the spatial solitons in an inhomogeneous nonlinear medium when the light beam is self-trapped in the transverse dimension. In the self-focusing nonlinear media the spatial solitons can be transmitted stably, and the interaction between spatial solitons is enhanced due to the linear focusing effect (and also diminished for the linear defocusing effect). In the self-defocusing nonlinear media, in the absence of self-trapping or in the presence of linear self-defocusing, no transmission of stable spatial solitons is possible. However, in such media the linear focusing effect can be exactly compensated, and the spatial solitons can propagate through

  2. Spatial filtring and thermocouple spatial filter

    International Nuclear Information System (INIS)

    Han Bing; Tong Yunxian

    1989-12-01

    The design and study on thermocouple spatial filter have been conducted for the flow measurement of integrated reactor coolant. The fundamental principle of spatial filtring, mathematical descriptions and analyses of thermocouple spatial filter are given

  3. Spatial normalization of array-CGH data

    Directory of Open Access Journals (Sweden)

    Brennetot Caroline

    2006-05-01

    Full Text Available Abstract Background Array-based comparative genomic hybridization (array-CGH is a recently developed technique for analyzing changes in DNA copy number. As in all microarray analyses, normalization is required to correct for experimental artifacts while preserving the true biological signal. We investigated various sources of systematic variation in array-CGH data and identified two distinct types of spatial effect of no biological relevance as the predominant experimental artifacts: continuous spatial gradients and local spatial bias. Local spatial bias affects a large proportion of arrays, and has not previously been considered in array-CGH experiments. Results We show that existing normalization techniques do not correct these spatial effects properly. We therefore developed an automatic method for the spatial normalization of array-CGH data. This method makes it possible to delineate and to eliminate and/or correct areas affected by spatial bias. It is based on the combination of a spatial segmentation algorithm called NEM (Neighborhood Expectation Maximization and spatial trend estimation. We defined quality criteria for array-CGH data, demonstrating significant improvements in data quality with our method for three data sets coming from two different platforms (198, 175 and 26 BAC-arrays. Conclusion We have designed an automatic algorithm for the spatial normalization of BAC CGH-array data, preventing the misinterpretation of experimental artifacts as biologically relevant outliers in the genomic profile. This algorithm is implemented in the R package MANOR (Micro-Array NORmalization, which is described at http://bioinfo.curie.fr/projects/manor and available from the Bioconductor site http://www.bioconductor.org. It can also be tested on the CAPweb bioinformatics platform at http://bioinfo.curie.fr/CAPweb.

  4. Spatial characterization of catchment dispersion mechanisms in an urban context

    Science.gov (United States)

    Rossel, Florian; Gironás, Jorge; Mejía, Alfonso; Rinaldo, Andrea; Rodriguez, Fabrice

    2014-12-01

    Previous studies have examined in-depth the dispersion mechanisms in natural catchments. In contrast, these dispersion mechanisms have been studied little in urban catchments, where artificial transport elements and morphological arrangements are expected to modify travel times and mobilize excess rainfall from spatially distributed impervious sites. This has the ability to modify the variance of the catchment's travel times and hence the total dispersion. This work quantifies the dispersion mechanisms in an urban catchment using the theory of transport by travel times as represented by the Urban Morpho-climatic Instantaneous Unit Hydrograph (U-McIUH) model. The U-McIUH computes travel times based on kinematic wave theory and accounts explicitly for the path heterogeneities and altered connectivity patterns characteristic of an urban drainage network. The analysis is illustrated using the Aubinière urban catchment in France as a case study. We found that kinematic dispersion is dominant for small rainfall intensities, whereas geomorphologic dispersion becomes more dominant for larger intensities. The total dispersion scales with the drainage area in a power law fashion. The kinematic dispersion is dominant across spatial scales up to a threshold of approximately 2-3 km2, after which the geomorphologic dispersion becomes more dominant. Overall, overland flow is responsible for most of the dispersion in the catchment, while conduits tend to counteract the increase of the geomorphologic dispersion with a negative kinematic dispersion. Further study with other catchments is needed to asses if the latter is a general feature of urban drainage networks.

  5. Combined effects of spatially variable flow and mineralogy on the attenuation of acid mine drainage in groundwater

    International Nuclear Information System (INIS)

    Malmstroem, Maria E.; Berglund, Sten; Jarsjoe, Jerker

    2008-01-01

    Quantifications of the spreading of acid mine drainage (AMD) in groundwater are needed for risk assessments of mining sites. However, due to subsurface heterogeneity, available field data may prove insufficient for deterministic process descriptions, even at well-characterized sites. Here, the probabilistic LaSAR-PHREEQC model is used to consider multicomponent reactions and transport in heterogeneous (flow and geochemistry) groundwater surrounding a mine waste site, with specific focus on the spreading of Zn. Model results, using field data from a mill tailings impoundment in northern Sweden (including major component geochemistry), indicate that precipitation of smithsonite (ZnCO 3 ) may drastically delay the downstream arrival of Zn, but may also cause a peak concentration once the retained Zn is released. The amount of smithsonite formed is, however, minute and its spatial variation large, such that detection of smithsonite in soil samples may be difficult. Results further show that even a low degree of flow heterogeneity can effectively smooth otherwise distinctive temporal concentration changes attributed to the considered chemical reactions, and thereby mask the attenuation processes. By contrast, the existence of preferential flow paths can cause temporally separated concentration peaks in response to a single chemical reaction chain, even in a geochemically homogeneous domain, making the interpretation of the concentration curves non-trivial. The stochastic modelling results for Zn considering flow and/or mineralogical heterogeneity indicate a less efficient Zn attenuation than predicted by standard, deterministic reactive-transport models. In addition, in all considered probabilistic Zn and SO 4 2- scenarios, the spatial variability in downstream pollutant concentration was high, implying that a relatively large number of point samples are needed to determine field-scale mean concentrations

  6. Effects of nanoparticle zinc oxide on spatial cognition and synaptic plasticity in mice with depressive-like behaviors

    Directory of Open Access Journals (Sweden)

    Xie Yongling

    2012-02-01

    Full Text Available Abstract Background Nanomaterials, as a new kind of materials, have been greatly applied in different fields due to their special properties. With the industrialization of nanostructured materials and increasing public exposure, the biosafety and potential influences on central nervous system (CNS have received more attention. Nanosized zinc oxide (nanoZnO was suggested to up-regulate neuronal excitability and to induce glutamate release in vitro. Therefore, we hypothesized nanoparticles of nanoZnO may lead to changes in balance of neurotransmitter or neuronal excitability of CNS. This study was to investigate if there were effects of nanoZnO on animal model of depression. Methods Male Swiss mice were given lipopolysaccharides (LPS, 100 μg/kg, 100 μg/ml, every other day, 8 times, i.p. from weaning to induce depressive-like behaviors. NanoZnO (5.6 mg/kg, 5.6 mg/ml, every other day, 8 times, i.p. was given as the interaction. The mouse model was characterized using the methods of open field test, tail suspension test and forced swim test. Furthermore, the spatial memory was evaluated using Morris water maze (MWM and the synaptic plasticity was assessed by measuring the long-term potentiation (LTP in the perforant pathway (PP to dentate gyrus (DG in vivo. Results Results indicated that model mice showed disrupted spatial memory and LTP after LPS injections and the behavioral and electrophysiological improvements after nanoZnO treatment. Conclusion Data suggested that nanoZnO may play some roles in CNS of mental disorders, which could provide some useful direction on the new drug exploring and clinical researches.

  7. Beam-bending in spatially variant photonic crystals at telecommunications wavelengths

    Science.gov (United States)

    Digaum, Jennefir L.; Sharma, Rashi; Batista, Daniel; Pazos, Javier J.; Rumpf, Raymond C.; Kuebler, Stephen M.

    2016-03-01

    This work reports the fabrication of micron-scale spatially variant photonic crystals (SVPCs) and their use for steering light beams through turns with bending radius Rbend on the order of ten times the optical wavelength λ0. Devices based on conventional photonic crystals, metamaterials, plasmonics and transformation optics have all been explored for controlling light beams and steering them through tight turns. These devices offer promise for photonic interconnects, but they are based on exotic materials, including metals, that make them impractically lossy or difficult to fabricate. Waveguides can also be used to steer light using total internal reflection; however, Rbend of a waveguide must be hundreds of times λ0 to guide light efficiently, which limits their use in optical circuits. SVPCs are spatially variant 3D lattices which can be created in transparent, low-refractive-index media and used to control the propagation of light through the self-collimation effect. SVPCs were fabricated by multi-photon lithography using the commercially available photo-polymer IP-DIP. The SVPCs were structurally and optically characterized and found to be capable of bending light having λ0 = 1.55 μm through a 90-degree turn with Rbend = 10 μm. Curved waveguides with Rbend = 15 μm and 35 μm were also fabricated using IP-DIP and optically characterized. The SVPCs were able to steer the light beams through tighter turns than either waveguide and with higher efficiency.

  8. Design and characterization of 16-mode PANDA polarization-maintaining few-mode ring-core fiber for spatial division multiplexing

    Science.gov (United States)

    Cao, Yuan; Zhao, Yongli; Yu, Xiaosong; Han, Jiawei; Zhang, Jie

    2017-11-01

    A PANDA polarization-maintaining few-mode ring-core fiber (PM-FM-RCF) structure with two air holes around the ring core is proposed. The relative mode multiplicity factor (RMMF) is defined to evaluate the spatial efficiency of the designed PM-FM-RCF. The performance analysis and comparison of the proposed PANDA PM-FM-RCFs considering three different types of step-index profiles are detailed. Through modal characteristic analysis and numerical simulation, the PM-FM-RCF with a lower refractive index difference (Δnoi=1.5%) between the ring core and the inner central circle can support up to 16 polarization modes with large RMMF at C-band, which shows the optimum modal properties compared with the PM-FM-RCF with higher Δnoi. All the supported polarization modes are effectively separated from their adjacent polarization modes with effective refractive index differences (Δn) larger than 10-4, which also show relatively small chromatic dispersion (-20 to 25 ps/nm/km), low attenuation (<1.4 dB/km), and small bending radius (˜8 mm) over the C-band. The designed PM-FM-RCF can be compatible with standard single-mode fibers and applied in multiple-input multiple-output-free spatial division multiplexing optical networks for short-reach optical interconnection.

  9. Interpolation Approaches for Characterizing Spatial Variability of Soil Properties in Tuz Lake Basin of Turkey

    Science.gov (United States)

    Gorji, Taha; Sertel, Elif; Tanik, Aysegul

    2017-12-01

    Soil management is an essential concern in protecting soil properties, in enhancing appropriate soil quality for plant growth and agricultural productivity, and in preventing soil erosion. Soil scientists and decision makers require accurate and well-distributed spatially continuous soil data across a region for risk assessment and for effectively monitoring and managing soils. Recently, spatial interpolation approaches have been utilized in various disciplines including soil sciences for analysing, predicting and mapping distribution and surface modelling of environmental factors such as soil properties. The study area selected in this research is Tuz Lake Basin in Turkey bearing ecological and economic importance. Fertile soil plays a significant role in agricultural activities, which is one of the main industries having great impact on economy of the region. Loss of trees and bushes due to intense agricultural activities in some parts of the basin lead to soil erosion. Besides, soil salinization due to both human-induced activities and natural factors has exacerbated its condition regarding agricultural land development. This study aims to compare capability of Local Polynomial Interpolation (LPI) and Radial Basis Functions (RBF) as two interpolation methods for mapping spatial pattern of soil properties including organic matter, phosphorus, lime and boron. Both LPI and RBF methods demonstrated promising results for predicting lime, organic matter, phosphorous and boron. Soil samples collected in the field were used for interpolation analysis in which approximately 80% of data was used for interpolation modelling whereas the remaining for validation of the predicted results. Relationship between validation points and their corresponding estimated values in the same location is examined by conducting linear regression analysis. Eight prediction maps generated from two different interpolation methods for soil organic matter, phosphorus, lime and boron parameters

  10. Improving the spatial resolution in CZT detectors using charge sharing effect and transient signal analysis: Simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xiaoqing; Cheng, Zeng [Department of Electrical and Computer Engineering, McMaster University (Canada); Deen, M. Jamal, E-mail: jamal@mcmaster.ca [Department of Electrical and Computer Engineering, McMaster University (Canada); School of Biomedical Engineering, McMaster University (Canada); Peng, Hao, E-mail: penghao@mcmaster.ca [Department of Electrical and Computer Engineering, McMaster University (Canada); School of Biomedical Engineering, McMaster University (Canada); Department of Medical Physics, McMaster University, Ontario L8S 4K1, Hamilton (Canada)

    2016-02-01

    Cadmium Zinc Telluride (CZT) semiconductor detectors are capable of providing superior energy resolution and three-dimensional position information of gamma ray interactions in a large variety of fields, including nuclear physics, gamma-ray imaging and nuclear medicine. Some dedicated Positron Emission Tomography (PET) systems, for example, for breast cancer detection, require higher contrast recovery and more accurate event location compared with a whole-body PET system. The spatial resolution is currently limited by electrode pitch in CZT detectors. A straightforward approach to increase the spatial resolution is by decreasing the detector electrode pitch, but this leads to higher fabrication cost and a larger number of readout channels. In addition, inter-electrode charge spreading can negate any improvement in spatial resolution. In this work, we studied the feasibility of achieving sub-pitch spatial resolution in CZT detectors using two methods: charge sharing effect and transient signal analysis. We noted that their valid ranges of usage were complementary. The dependences of their corresponding valid ranges on electrode design, depth-of-interaction (DOI), voltage bias and signal triggering threshold were investigated. The implementation of these two methods in both pixelated and cross-strip configuration of CZT detectors were discussed. Our results show that the valid range of charge sharing effect increases as a function of DOI, but decreases with increasing gap width and bias voltage. For a CZT detector of 5 mm thickness, 100 µm gap and biased at 400 V, the valid range of charge sharing effect was found to be about 112.3 µm around the gap center. This result complements the valid range of the transient signal analysis within one electrode pitch. For a signal-to-noise ratio (SNR) of ~17 and preliminary measurements, the sub-pitch spatial resolution is expected to be ~30 µm and ~250 µm for the charge sharing and transient signal analysis methods

  11. ERP effects of spatial attention and display search with unilateral and bilateral stimulus displays

    NARCIS (Netherlands)

    Lange, J.J.; Wijers, A.A.; Mulder, L.J.M.; Mulder, G.

    Two experiments were performed in which the effects of selective spatial attention on the ERPs elicited by unilateral and bilateral stimulus arrays were compared. In Experiment 1, subjects received a series of grating patterns. In the unilateral condition these gratings were presented one at a time,

  12. Multisensory Integration Affects Visuo-Spatial Working Memory

    Science.gov (United States)

    Botta, Fabiano; Santangelo, Valerio; Raffone, Antonino; Sanabria, Daniel; Lupianez, Juan; Belardinelli, Marta Olivetti

    2011-01-01

    In the present study, we investigate how spatial attention, driven by unisensory and multisensory cues, can bias the access of information into visuo-spatial working memory (VSWM). In a series of four experiments, we compared the effectiveness of spatially-nonpredictive visual, auditory, or audiovisual cues in capturing participants' spatial…

  13. Spatially resolved Raman spectroscopy study of transformed zones in magnesia-partially-stabilized zirconia

    International Nuclear Information System (INIS)

    Davskardt, R.H.; Veirs, D.K.; Ritchie, R.O.

    1989-01-01

    Raman vibrational spectroscopy provides an effective phase characterization technique in materials systems containing particle dispersions of the tetragonal and monoclinic polymorphs of zirconia, each of which yields a unique Raman spectrum. An investigation is reported to assess a novel, spatially resolved Raman spectroscopy system in the study of transformed zones surrounding cracks in partially stabilized MgO-ZrO 2 (PSZ). The experimental arrangement uses an imaging (two-dimensional) photomultiplier tube to produce a one-dimensional Raman profile of phase compositions along a slitlike laser beam without translation of either the sample or the laser beam and without scanning the spectrometer. Results from phase characterization studies of the size, frontal morphology, and extent of transformation of transformation zones surrounding cracks produced under monotonic and cyclic loading conditions are presented

  14. The effect of handedness on spatial and motor representation of pitch patterns in pianists.

    Directory of Open Access Journals (Sweden)

    Eline Adrianne Smit

    Full Text Available This study investigated the effect of handedness on pianists' abilities to adjust their keyboard performance skills to new spatial and motor mappings. Left- and right-handed pianists practiced simple melodies on a regular MIDI piano keyboard (practice and were then asked to perform these with modified melodic contours (the same or reversed melodic contour causing a change of fingering and on a reversed MIDI piano keyboard (test. The difference of performance duration between the practice and the test phase as well as the amount of errors played were used as test measures. Overall, a stronger effect for modified melodic contours than for the reversed keyboard was observed. Furthermore, we observed a trend of left-handed pianists to be quicker and more accurate in playing melodies when reversing their fingering with reversed contours in their left-hand performances. This suggests that handedness may influence pianists' skill to adjust to new spatial and motor mappings.

  15. Stochastic population dynamics in spatially extended predator-prey systems

    Science.gov (United States)

    Dobramysl, Ulrich; Mobilia, Mauro; Pleimling, Michel; Täuber, Uwe C.

    2018-02-01

    Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in biological systems. Numerical and analytic tools from non-equilibrium statistical physics capture the stochastic kinetics of these complex interacting many-particle systems beyond rate equation approximations. Including spatial structure and stochastic noise in models for predator-prey competition invalidates the neutral Lotka-Volterra population cycles. Stochastic models yield long-lived erratic oscillations stemming from a resonant amplification mechanism. Spatially extended predator-prey systems display noise-stabilized activity fronts that generate persistent correlations. Fluctuation-induced renormalizations of the oscillation parameters can be analyzed perturbatively via a Doi-Peliti field theory mapping of the master equation; related tools allow detailed characterization of extinction pathways. The critical steady-state and non-equilibrium relaxation dynamics at the predator extinction threshold are governed by the directed percolation universality class. Spatial predation rate variability results in more localized clusters, enhancing both competing species’ population densities. Affixing variable interaction rates to individual particles and allowing for trait inheritance subject to mutations induces fast evolutionary dynamics for the rate distributions. Stochastic spatial variants of three-species competition with ‘rock-paper-scissors’ interactions metaphorically describe cyclic dominance. These models illustrate intimate connections between population dynamics and evolutionary game theory, underscore the role of fluctuations to drive populations toward extinction, and demonstrate how space can support species diversity. Two-dimensional cyclic three-species May-Leonard models are characterized by the emergence of spiraling patterns whose properties are elucidated by a mapping onto a complex

  16. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.

    Science.gov (United States)

    Wu, Wei; Wang, Jin

    2013-09-28

    We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is

  17. The nootropic and neuroprotective proline-containing dipeptide noopept restores spatial memory and increases immunoreactivity to amyloid in an Alzheimer's disease model.

    Science.gov (United States)

    Ostrovskaya, Rita U; Gruden, Marina A; Bobkova, Natalya A; Sewell, Robert D E; Gudasheva, Tatyana A; Samokhin, Alexander N; Seredinin, Sergey B; Noppe, Wim; Sherstnev, Vladimir V; Morozova-Roche, Ludmilla A

    2007-08-01

    The effects of the novel proline-containing nootropic and neuroprotective dipeptide, noopept (GVS-111, N-phenylacetyl-L-prolylglycine ethyl ester) were investigated in NMRI mice following olfactory bulbectomy. We have shown previously that these animals developed Alzheimer's disease (AD)-like behaviour, morphology and biochemistry including impairment of spatial memory, regional neuronal degeneration and elevated Abeta peptide brain levels. In the current investigation, spatial memory was assessed using the Morris water maze and serum antibodies to in vitro morphologically characterized amyloid structures of both Abeta((25-35)) peptide and equine lysozyme, as well as to neurotrophic glial factor S100b, were analyzed by enzyme-linked immunosorbent assay (ELISA). Noopept (administered at a dose of 0.01 mg/kg for a period of 21 days and during a further 5 days training) restored spatial memory and increased serum antibody levels to oligomers of Abeta((25-35)) peptide but not to equine lysozyme amyloid or S100b protein in bulbectomized animals. The positive immunotropic effect of noopept to Abeta((25-35)) peptide prefibrillar aggregates was more marked in sham-operated compared to the bulbectomized subjects which were characterized by an overall suppression of immunoreactivity. Enhancement of the immune response to Abeta((25-35)) peptide prefibrils caused by noopept may attenuate the neurotoxic consequences of amyloid fibrillization and also be associated with an improvement in spatial memory in bulbectomized mice. These actions of noopept, combined with its previously reported neuroprotective and cholinomimetic properties, suggests that this dipeptide may well be useful for improving cognitive deficits induced by neurodegenerative diseases.

  18. Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation

    Science.gov (United States)

    Song, Huihui

    Remote sensing provides good measurements for monitoring and further analyzing the climate change, dynamics of ecosystem, and human activities in global or regional scales. Over the past two decades, the number of launched satellite sensors has been increasing with the development of aerospace technologies and the growing requirements on remote sensing data in a vast amount of application fields. However, a key technological challenge confronting these sensors is that they tradeoff between spatial resolution and other properties, including temporal resolution, spectral resolution, swath width, etc., due to the limitations of hardware technology and budget constraints. To increase the spatial resolution of data with other good properties, one possible cost-effective solution is to explore data integration methods that can fuse multi-resolution data from multiple sensors, thereby enhancing the application capabilities of available remote sensing data. In this thesis, we propose to fuse the spatial resolution with temporal resolution and spectral resolution, respectively, based on sparse representation theory. Taking the study case of Landsat ETM+ (with spatial resolution of 30m and temporal resolution of 16 days) and MODIS (with spatial resolution of 250m ~ 1km and daily temporal resolution) reflectance, we propose two spatial-temporal fusion methods to combine the fine spatial information of Landsat image and the daily temporal resolution of MODIS image. Motivated by that the images from these two sensors are comparable on corresponding bands, we propose to link their spatial information on available Landsat- MODIS image pair (captured on prior date) and then predict the Landsat image from the MODIS counterpart on prediction date. To well-learn the spatial details from the prior images, we use a redundant dictionary to extract the basic representation atoms for both Landsat and MODIS images based on sparse representation. Under the scenario of two prior Landsat

  19. Geotechnical parameter spatial distribution stochastic analysis based on multi-precision information assimilation

    Science.gov (United States)

    Wang, C.; Rubin, Y.

    2014-12-01

    Spatial distribution of important geotechnical parameter named compression modulus Es contributes considerably to the understanding of the underlying geological processes and the adequate assessment of the Es mechanics effects for differential settlement of large continuous structure foundation. These analyses should be derived using an assimilating approach that combines in-situ static cone penetration test (CPT) with borehole experiments. To achieve such a task, the Es distribution of stratum of silty clay in region A of China Expo Center (Shanghai) is studied using the Bayesian-maximum entropy method. This method integrates rigorously and efficiently multi-precision of different geotechnical investigations and sources of uncertainty. Single CPT samplings were modeled as a rational probability density curve by maximum entropy theory. Spatial prior multivariate probability density function (PDF) and likelihood PDF of the CPT positions were built by borehole experiments and the potential value of the prediction point, then, preceding numerical integration on the CPT probability density curves, the posterior probability density curve of the prediction point would be calculated by the Bayesian reverse interpolation framework. The results were compared between Gaussian Sequential Stochastic Simulation and Bayesian methods. The differences were also discussed between single CPT samplings of normal distribution and simulated probability density curve based on maximum entropy theory. It is shown that the study of Es spatial distributions can be improved by properly incorporating CPT sampling variation into interpolation process, whereas more informative estimations are generated by considering CPT Uncertainty for the estimation points. Calculation illustrates the significance of stochastic Es characterization in a stratum, and identifies limitations associated with inadequate geostatistical interpolation techniques. This characterization results will provide a multi

  20. The floor effect: impoverished spatial memory for elevator buttons.

    Science.gov (United States)

    Vendetti, Michael; Castel, Alan D; Holyoak, Keith J

    2013-05-01

    People typically remember objects to which they have frequently been exposed, suggesting that memory is a by-product of perception. However, prior research has shown that people have exceptionally poor memory for the features of some objects (e.g., coins) to which they have been exposed over the course of many years. Here, we examined how people remember the spatial layout of the buttons on a frequently used elevator panel, to determine whether physical interaction (rather than simple exposure) would ensure the incidental encoding of spatial information. Participants who worked in an eight-story office building displayed very poor recall for the elevator panel but above-chance performance on a recognition test. Performance was related to how often and how recently the person had used the elevator. In contrast to their poor memory for the spatial layout of the elevator buttons, most people readily recalled small distinctive graffiti on the elevator walls. In a more implicit test, the majority were able to locate their office floor and the eighth floor button when asked to point toward these buttons when in the actual elevator, with the button labels covered. However, identification was very poor for other floors (including the first floor), suggesting that even frequent interaction with information does not always lead to accurate spatial memory. These findings have implications for understanding the complex relationships among attention, expertise, and memory.

  1. Spatial domain decomposition for neutron transport problems

    International Nuclear Information System (INIS)

    Yavuz, M.; Larsen, E.W.

    1989-01-01

    A spatial Domain Decomposition method is proposed for modifying the Source Iteration (SI) and Diffusion Synthetic Acceleration (DSA) algorithms for solving discrete ordinates problems. The method, which consists of subdividing the spatial domain of the problem and performing the transport sweeps independently on each subdomain, has the advantage of being parallelizable because the calculations in each subdomain can be performed on separate processors. In this paper we describe the details of this spatial decomposition and study, by numerical experimentation, the effect of this decomposition on the SI and DSA algorithms. Our results show that the spatial decomposition has little effect on the convergence rates until the subdomains become optically thin (less than about a mean free path in thickness)

  2. The ampakine, Org 26576, bolsters early spatial reference learning and retrieval in the Morris water maze: a subchronic, dose-ranging study in rats.

    Science.gov (United States)

    Hamlyn, Eugene; Brand, Linda; Shahid, Mohammed; Harvey, Brian H

    2009-10-01

    Ampakines have shown beneficial effects on cognition in selected animal models of learning. However, their ability to modify long-term spatial memory tasks has not been studied yet. This would lend credence to their possible value in treating disorders of cognition. We evaluated the actions of subchronic Org 26576 administration on spatial reference memory performance in the 5-day Morris water maze task in male Sprague-Dawley rats, at doses of 1, 3 and 10 mg/kg twice daily through intraperitoneal injection over 12 days. Org 26576 exerted a dose and time-dependent effect on spatial learning, with dosages of 3 and 10 mg/kg significantly enhancing acquisition on day 1. Globally, escape latency decreased significantly as the training days progressed in the saline and Org 26576-treated groups, indicating that significant and equal learning had taken place over the learning period. However, at the end of the learning period, all doses of Org 26576 significantly improved spatial memory storage/retrieval without confounding effects in the cued version of the task. Org 26576 offers early phase spatial memory benefits in rats, but particularly enhances search accuracy during reference memory retrieval. These results support its possible utility in treating disorders characterized by deficits in cognitive performance.

  3. Characterization of the spatial structure of local functional connectivity using multi-distance average correlation measures.

    Science.gov (United States)

    Macia, Didac; Pujol, Jesus; Blanco-Hinojo, Laura; Martínez-Vilavella, Gerard; Martín-Santos, Rocío; Deus, Joan

    2018-04-24

    There is ample evidence from basic research in neuroscience of the importance of local cortico-cortical networks. Millimetric resolution is achievable with current functional MRI (fMRI) scanners and sequences, and consequently a number of "local" activity similarity measures have been defined to describe patterns of segregation and integration at this spatial scale. We have introduced the use of Iso-Distant local Average Correlation (IDAC), easily defined as the average fMRI temporal correlation of a given voxel with other voxels placed at increasingly separated iso-distant intervals, to characterize the curve of local fMRI signal similarities. IDAC curves can be statistically compared using parametric multivariate statistics. Furthermore, by using RGB color-coding to display jointly IDAC values belonging to three different distance lags, IDAC curves can also be displayed as multi-distance IDAC maps. We applied IDAC analysis to a sample of 41 subjects scanned under two different conditions, a resting state and an auditory-visual continuous stimulation. Multi-distance IDAC mapping was able to discriminate between gross anatomo-functional cortical areas and, moreover, was sensitive to modulation between the two brain conditions in areas known to activate and de-activate during audio-visual tasks. Unlike previous fMRI local similarity measures already in use, our approach draws special attention to the continuous smooth pattern of local functional connectivity.

  4. Opto-nanomechanical spectroscopic material characterization

    Science.gov (United States)

    Tetard, L.; Passian, A.; Farahi, R. H.; Thundat, T.; Davison, B. H.

    2015-10-01

    The non-destructive, simultaneous chemical and physical characterization of materials at the nanoscale is an essential and highly sought-after capability. However, a combination of limitations imposed by Abbe diffraction, diffuse scattering, unknown subsurface, electromagnetic fluctuations and Brownian noise, for example, have made achieving this goal challenging. Here, we report a hybrid approach for nanoscale material characterization based on generalized nanomechanical force microscopy in conjunction with infrared photoacoustic spectroscopy. As an application, we tackle the outstanding problem of spatially and spectrally resolving plant cell walls. Nanoscale characterization of plant cell walls and the effect of complex phenotype treatments on biomass are challenging but necessary in the search for sustainable and renewable bioenergy. We present results that reveal both the morphological and compositional substructures of the cell walls. The measured biomolecular traits are in agreement with the lower-resolution chemical maps obtained with infrared and confocal Raman micro-spectroscopies of the same samples. These results should prove relevant in other fields such as cancer research, nanotoxicity, and energy storage and production, where morphological, chemical and subsurface studies of nanocomposites, nanoparticle uptake by cells and nanoscale quality control are in demand.

  5. Modeling the effect of urban infrastructure on hydrologic processes within i-Tree Hydro, a statistically and spatially distributed model

    Science.gov (United States)

    Taggart, T. P.; Endreny, T. A.; Nowak, D.

    2014-12-01

    Gray and green infrastructure in urban environments alters many natural hydrologic processes, creating an urban water balance unique to the developed environment. A common way to assess the consequences of impervious cover and grey infrastructure is by measuring runoff hydrographs. This focus on the watershed outlet masks the spatial variation of hydrologic process alterations across the urban environment in response to localized landscape characteristics. We attempt to represent this spatial variation in the urban environment using the statistically and spatially distributed i-Tree Hydro model, a scoping level urban forest effects water balance model. i-Tree Hydro has undergone expansion and modification to include the effect of green infrastructure processes, road network attributes, and urban pipe system leakages. These additions to the model are intended to increase the understanding of the altered urban hydrologic cycle by examining the effects of the location of these structures on the water balance. Specifically, the effect of these additional structures and functions on the spatially varying properties of interception, soil moisture and runoff generation. Differences in predicted properties and optimized parameter sets between the two models are examined and related to the recent landscape modifications. Datasets used in this study consist of watersheds and sewersheds within the Syracuse, NY metropolitan area, an urban area that has integrated green and gray infrastructure practices to alleviate stormwater problems.

  6. Is Social Categorization Spatially Organized in a "Mental Line"? Empirical Evidences for Spatial Bias in Intergroup Differentiation.

    Science.gov (United States)

    Presaghi, Fabio; Rullo, Marika

    2018-01-01

    Social categorization is the differentiation between the self and others and between one's own group and other groups and it is such a natural and spontaneous process that often we are not aware of it. The way in which the brain organizes social categorization remains an unresolved issue. We present three experiments investigating the hypothesis that social categories are mentally ordered from left to right on an ingroup-outgroup continuum when membership is salient. To substantiate our hypothesis, we consider empirical evidence from two areas of psychology: research on differences in processing of ingroups and outgroups and research on the effects of spatial biases on processing of quantitative information (e.g., time; numbers) which appears to be arranged from left to right on a small-large continuum, an effect known as the spatial-numerical association of response codes (SNARC). In Experiments 1 and 2 we tested the hypothesis that when membership of a social category is activated, people implicitly locate ingroup categories to the left of a mental line whereas outgroup categories are located on the far right of the same mental line. This spatial organization persists even when stimuli are presented on one of the two sides of the screen and their (explicit) position is spatially incompatible with the implicit mental spatial organization of social categories (Experiment 3). Overall the results indicate that ingroups and outgroups are processed differently. The results are discussed with respect to social categorization theory, spatial agency bias, i.e., the effect observed in Western cultures whereby the agent of an action is mentally represented on the left and the recipient on the right, and the SNARC effect.

  7. Efimov effect in D spatial dimensions in A A B systems

    Science.gov (United States)

    Rosa, D. S.; Frederico, T.; Krein, G.; Yamashita, M. T.

    2018-05-01

    The existence of the Efimov effect is drastically affected by the dimensionality of the space in which the system is embedded. The effective spatial dimension containing an atomic cloud can be continuously modified by compressing it in one or two directions. In the present Rapid Communication we determine the dimensionality D for which the Efimov effect can exist for different values of the mass ratio A =mB/mA for a general A A B system formed by two identical bosons A and a third particle B in the two-body unitary limit. In addition, we provide a prediction for the Efimov discrete scaling factor exp(π /s ) as a function of a wide range of values of A and D , which can be tested in experiments that can be realized with currently available technology.

  8. Spatial EPR entanglement in atomic vapor quantum memory

    Science.gov (United States)

    Parniak, Michal; Dabrowski, Michal; Wasilewski, Wojciech

    Spatially-structured quantum states of light are staring to play a key role in modern quantum science with the rapid development of single-photon sensitive cameras. In particular, spatial degree of freedom holds a promise to enhance continous-variable quantum memories. Here we present the first demonstration of spatial entanglement between an atomic spin-wave and a photon measured with an I-sCMOS camera. The system is realized in a warm atomic vapor quantum memory based on rubidium atoms immersed in inert buffer gas. In the experiment we create and characterize a 12-dimensional entangled state exhibiting quantum correlations between a photon and an atomic ensemble in position and momentum bases. This state allows us to demonstrate the Einstein-Podolsky-Rosen paradox in its original version, with an unprecedented delay time of 6 μs between generation of entanglement and detection of the atomic state.

  9. Effects of in-vehicle warning information displays with or without spatial compatibility on driving behaviors and response performance.

    Science.gov (United States)

    Liu, Yung-Ching; Jhuang, Jing-Wun

    2012-07-01

    A driving simulator study was conducted to evaluate the effects of five in-vehicle warning information displays upon drivers' emergent response and decision performance. These displays include visual display, auditory displays with and without spatial compatibility, hybrid displays in both visual and auditory format with and without spatial compatibility. Thirty volunteer drivers were recruited to perform various tasks that involved driving, stimulus-response, divided attention and stress rating. Results show that for displays of single-modality, drivers benefited more when coping with visual display of warning information than auditory display with or without spatial compatibility. However, auditory display with spatial compatibility significantly improved drivers' performance in reacting to the divided attention task and making accurate S-R task decision. Drivers' best performance results were obtained for hybrid display with spatial compatibility. Hybrid displays enabled drivers to respond the fastest and achieve the best accuracy in both S-R and divided attention tasks. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  10. Editorial: Spatial arrangement of faults and opening-mode fractures

    Science.gov (United States)

    Laubach, Stephen E.; Lamarche, Juliette; Gauthier, Bertand D. M.; Dunne, William M.

    2018-03-01

    This issue of the Journal of Structural Geology titled Spatial arrangement of faults and opening-mode fractures explores a fundamental characteristic of fault and fracture arrays. The pattern of fault and opening-mode fracture positions in space defines structural heterogeneity and anisotropy in a rock volume, governs how faults and fractures affect fluid flow, and impacts our understanding of the initiation, propagation and interactions during the formation of fracture patterns. This special issue highlights recent progress with respect to characterizing and understanding the spatial arrangements of fault and fracture patterns, providing examples over a wide range of scales and structural settings.

  11. Relations between Spatial Distribution, Social Affiliations and Dominance Hierarchy in a Semi-Free Mandrill Population.

    Science.gov (United States)

    Naud, Alexandre; Chailleux, Eloise; Kestens, Yan; Bret, Céline; Desjardins, Dominic; Petit, Odile; Ngoubangoye, Barthélémy; Sueur, Cédric

    2016-01-01

    Although there exist advantages to group-living in comparison to a solitary lifestyle, costs and gains of group-living may be unequally distributed among group members. Predation risk, vigilance levels and food intake may be unevenly distributed across group spatial geometry and certain within-group spatial positions may be more or less advantageous depending on the spatial distribution of these factors. In species characterized with dominance hierarchy, high-ranking individuals are commonly observed in advantageous spatial position. However, in complex social systems, individuals can develop affiliative relationships that may balance the effect of dominance relationships in individual's spatial distribution. The objective of the present study is to investigate how the group spatial distribution of a semi-free ranging colony of Mandrills relates to its social organization. Using spatial observations in an area surrounding the feeding zone, we tested the three following hypothesis: (1) does dominance hierarchy explain being observed in proximity or far from a food patch? (2) Do affiliative associations also explain being observed in proximity or far from a food patch? (3) Do the differences in rank in the group hierarchy explain being co-observed in proximity of a food patch? Our results showed that high-ranking individuals were more observed in proximity of the feeding zone while low-ranking individuals were more observed at the boundaries of the observation area. Furthermore, we observed that affiliative relationships were also associated with individual spatial distributions and explain more of the total variance of the spatial distribution in comparison with dominance hierarchy. Finally, we found that individuals observed at a same moment in proximity of the feeding zone were more likely to be distant in the hierarchy while controlling for maternal kinship, age and sex similarity. This study brings some elements about how affiliative networks and dominance

  12. Relations Between Spatial Distribution, Social Affiliations And Dominance Hierarchy In A Semi-Free Mandrill Population

    Directory of Open Access Journals (Sweden)

    Alexandre eNaud

    2016-05-01

    Full Text Available Although there exist advantages to group-living in comparison to a solitary lifestyle, costs and gains of group-living may be unequally distributed among group members. Predation risk, vigilance levels and food intake may be unevenly distributed across group spatial geometry and certain within-group spatial positions may be more or less advantageous depending on the spatial distribution of these factors. In species characterized with dominance hierarchy, high-ranking individuals are commonly observed in advantageous spatial position. However, in complex social systems, individuals can develop affiliative relationships that may balance the effect of dominance relationships in individual’s spatial distribution. The objective of the present study is to investigate how the group spatial distribution of a semi-free ranging colony of Mandrills relates to its social organization. Using spatial observations in an area surrounding the feeding zone, we tested the three following hypothesis: (1 does dominance hierarchy explain being observed in proximity or far from a food patch? (2 Do affiliative associations also explain being observed in proximity or far from a food patch? (3 Do the differences in rank in the group hierarchy explain being co-observed in proximity of a food patch? Our results showed that high-ranking individuals were more observed in proximity of the feeding zone while low-ranking individuals were more observed at the boundaries of the observation area. Furthermore, we observed that affiliative relationships were also associated with individual spatial distributions and explain more of the total variance of the spatial distribution in comparison with dominance hierarchy. Finally, we found that individuals observed at a same moment in proximity of the feeding zone were more likely to be distant in the hierarchy while controlling for maternal kinship, age and sex similarity. This study brings some elements about how affiliative networks

  13. Development and applications of coherent imaging with improved temporal and spatial resolution

    International Nuclear Information System (INIS)

    Mokso, Rajmund

    2006-01-01

    This work has 2 purposes: the improvement of both temporal and spatial resolution of X-ray tomography. The first part is devoted to the technical aspects of the tomographic technique, particularly at the ESRF (European Synchrotron Radiation Facility) beamline ID19, and the application of the new acquisition scheme to the imaging of liquid foams. We have improved the temporal resolution and field of view of the setup, which allowed to obtain for the first time experimental data with good statistics on three dimensional liquid foams. In the second part of the thesis we have described the Kirkpatrick-Baez focusing system and its first applications. In terms of stability and image quality the developments presented in this part of the thesis provide valuable evidence for the feasibility of phase contrast tomography in magnifying geometry. Since the ultimate goal of this research is to improve the spatial resolution in tomography for applications, four different contributions are important for the characterization of the imaging system: 1) the thermal stability and mechanical imperfections, 2) effects of distortion induced by mirror imperfections, 3) effects of refraction on sample borders, and 4) phase propagation effects with the influence of the magnification. Each of these factors has been studied

  14. Spatially varying small-strain stiffness in soils subjected to K0 loading

    KAUST Repository

    Kim, Hyun-Ki; Santamarina, Carlos

    2017-01-01

    Grain-scale characteristics and formation history determine spatial variability in granular masses. We investigate the effect of spatially varying stiffness on the load-deformation response under zero-lateral strain conditions using numerical simulations of correlated random fields, where the granular medium is represented by a non-linear stress-dependent meso-scale model. Results show that stiffness heterogeneity results in higher global compressibility as compared to the homogeneous medium with the same arithmetic mean stiffness. Furthermore, the non-homogeneous stress field that develops inside the granular mass is characterized by focused load transfer along columnar regions, higher stress anisotropy and lower horizontal-to-vertical stress ratio K0 than in a granular medium of homogenous stiffness. As the applied stress increases, the inherent stress-dependent response of the granular material leads to a more homogenous stress field. While greater variance in stiffness causes lower global stiffness, a longer correlation length results in greater variance in global mechanical response among multiple realizations.

  15. Spatially varying small-strain stiffness in soils subjected to K0 loading

    KAUST Repository

    Kim, Hyun-Ki

    2017-08-08

    Grain-scale characteristics and formation history determine spatial variability in granular masses. We investigate the effect of spatially varying stiffness on the load-deformation response under zero-lateral strain conditions using numerical simulations of correlated random fields, where the granular medium is represented by a non-linear stress-dependent meso-scale model. Results show that stiffness heterogeneity results in higher global compressibility as compared to the homogeneous medium with the same arithmetic mean stiffness. Furthermore, the non-homogeneous stress field that develops inside the granular mass is characterized by focused load transfer along columnar regions, higher stress anisotropy and lower horizontal-to-vertical stress ratio K0 than in a granular medium of homogenous stiffness. As the applied stress increases, the inherent stress-dependent response of the granular material leads to a more homogenous stress field. While greater variance in stiffness causes lower global stiffness, a longer correlation length results in greater variance in global mechanical response among multiple realizations.

  16. The effect of unemployment, aggregate wages, and spatial contiguity on local wages: An investigation with German district level data

    OpenAIRE

    Thiess Buettner

    1999-01-01

    Despite spatial rigidity of collectively negotiated wages the local unemployment rate is found to have a significant negative impact on wages. This impact is shown to be consistent with both the wage-curve hypothesis and modern Phillips-curve modelling. Spatial contiguity effects are found in wages and unemployment and their neglect leads to an underestimation of the effect of local unemployment. Yet, the impact of local unemployment on wages turns out to be quite low as compared to studies f...

  17. Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention

    Science.gov (United States)

    Won, Bo-Yeong; Jiang, Yuhong V.

    2014-01-01

    Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal that working memory is attention directed toward internal representations. Here we show that the close relationship between these two constructs is limited to some but not all forms of spatial attention. In five experiments, participants held color arrays, dot locations, or a sequence of dots in working memory. During the memory retention interval they performed a T-among-L visual search task. Crucially, the probable target location was cued either implicitly through location probability learning, or explicitly with a central arrow or verbal instruction. Our results showed that whereas imposing a visual working memory load diminished the effectiveness of explicit cuing, it did not interfere with probability cuing. We conclude that spatial working memory shares similar mechanisms with explicit, goal-driven attention but is dissociated from implicitly learned attention. PMID:25401460

  18. Spatially Resolved Characterization of Cellulose Nanocrystal-Polypropylene Composite by Confocal Raman Microscopy

    Science.gov (United States)

    Umesh P. Agarwal; Ronald Sabo; Richard S. Reiner; Craig M. Clemons; Alan W. Rudie

    2012-01-01

    Raman spectroscopy was used to analyze cellulose nanocrystal (CNC)–polypropylene (PP) composites and to investigate the spatial distribution of CNCs in extruded composite filaments. Three composites were made from two forms of nanocellulose (CNCs from wood pulp and the nanoscale fraction of microcrystalline cellulose) and two of the three composites investigated used...

  19. Simulation of spatially varying ground motions including incoherence, wave‐passage and differential site‐response effects

    DEFF Research Database (Denmark)

    Konakli, Katerina; Der Kiureghian, Armen

    2012-01-01

    A method is presented for simulating arrays of spatially varying ground motions, incorporating the effects of incoherence, wave passage, and differential site response. Non‐stationarity is accounted for by considering the motions as consisting of stationary segments. Two approaches are developed....

  20. Cooperation percolation in spatial prisoner's dilemma game

    International Nuclear Information System (INIS)

    Yang, Han-Xin; Rong, Zhihai; Wang, Wen-Xu

    2014-01-01

    The paradox of cooperation among selfish individuals still puzzles scientific communities. Although a large amount of evidence has demonstrated that the cooperator clusters in spatial games are effective in protecting the cooperators against the invasion of defectors, we continue to lack the condition for the formation of a giant cooperator cluster that ensures the prevalence of cooperation in a system. Here, we study the dynamical organization of the cooperator clusters in spatial prisoner's dilemma game to offer the condition for the dominance of cooperation, finding that a phase transition characterized by the emergence of a large spanning cooperator cluster occurs when the initial fraction of the cooperators exceeds a certain threshold. Interestingly, the phase transition belongs to different universality classes of percolation determined by the temptation to defect b. Specifically, on square lattices, 1 < b < 4/3 leads to a phase transition pertaining to the class of regular site percolation, whereas 3/2 < b < 2 gives rise to a phase transition subject to invasion percolation with trapping. Our findings offer a deeper understanding of cooperative behavior in nature and society. (paper)