WorldWideScience

Sample records for spatial-temporal gene-expression information

  1. Predicting spatial and temporal gene expression using an integrative model of transcription factor occupancy and chromatin state.

    Directory of Open Access Journals (Sweden)

    Bartek Wilczynski

    Full Text Available Precise patterns of spatial and temporal gene expression are central to metazoan complexity and act as a driving force for embryonic development. While there has been substantial progress in dissecting and predicting cis-regulatory activity, our understanding of how information from multiple enhancer elements converge to regulate a gene's expression remains elusive. This is in large part due to the number of different biological processes involved in mediating regulation as well as limited availability of experimental measurements for many of them. Here, we used a Bayesian approach to model diverse experimental regulatory data, leading to accurate predictions of both spatial and temporal aspects of gene expression. We integrated whole-embryo information on transcription factor recruitment to multiple cis-regulatory modules, insulator binding and histone modification status in the vicinity of individual gene loci, at a genome-wide scale during Drosophila development. The model uses Bayesian networks to represent the relation between transcription factor occupancy and enhancer activity in specific tissues and stages. All parameters are optimized in an Expectation Maximization procedure providing a model capable of predicting tissue- and stage-specific activity of new, previously unassayed genes. Performing the optimization with subsets of input data demonstrated that neither enhancer occupancy nor chromatin state alone can explain all gene expression patterns, but taken together allow for accurate predictions of spatio-temporal activity. Model predictions were validated using the expression patterns of more than 600 genes recently made available by the BDGP consortium, demonstrating an average 15-fold enrichment of genes expressed in the predicted tissue over a naïve model. We further validated the model by experimentally testing the expression of 20 predicted target genes of unknown expression, resulting in an accuracy of 95% for temporal

  2. Analysis of Temporal-spatial Co-variation within Gene Expression Microarray Data in an Organogenesis Model

    Science.gov (United States)

    Ehler, Martin; Rajapakse, Vinodh; Zeeberg, Barry; Brooks, Brian; Brown, Jacob; Czaja, Wojciech; Bonner, Robert F.

    The gene networks underlying closure of the optic fissure during vertebrate eye development are poorly understood. We used a novel clustering method based on Laplacian Eigenmaps, a nonlinear dimension reduction method, to analyze microarray data from laser capture microdissected (LCM) cells at the site and developmental stages (days 10.5 to 12.5) of optic fissure closure. Our new method provided greater biological specificity than classical clustering algorithms in terms of identifying more biological processes and functions related to eye development as defined by Gene Ontology at lower false discovery rates. This new methodology builds on the advantages of LCM to isolate pure phenotypic populations within complex tissues and allows improved ability to identify critical gene products expressed at lower copy number. The combination of LCM of embryonic organs, gene expression microarrays, and extracting spatial and temporal co-variations appear to be a powerful approach to understanding the gene regulatory networks that specify mammalian organogenesis.

  3. Two-Component Signal Transduction Systems That Regulate the Temporal and Spatial Expression of Myxococcus xanthus Sporulation Genes.

    Science.gov (United States)

    Sarwar, Zaara; Garza, Anthony G

    2016-02-01

    When starved for nutrients, Myxococcus xanthus produces a biofilm that contains a mat of rod-shaped cells, known as peripheral rods, and aerial structures called fruiting bodies, which house thousands of dormant and stress-resistant spherical spores. Because rod-shaped cells differentiate into spherical, stress-resistant spores and spore differentiation occurs only in nascent fruiting bodies, many genes and multiple levels of regulation are required. Over the past 2 decades, many regulators of the temporal and spatial expression of M. xanthus sporulation genes have been uncovered. Of these sporulation gene regulators, two-component signal transduction circuits, which typically contain a histidine kinase sensor protein and a transcriptional regulator known as response regulator, are among the best characterized. In this review, we discuss prototypical two-component systems (Nla6S/Nla6 and Nla28S/Nla28) that regulate an early, preaggregation phase of sporulation gene expression during fruiting body development. We also discuss orphan response regulators (ActB and FruA) that regulate a later phase of sporulation gene expression, which begins during the aggregation stage of fruiting body development. In addition, we summarize the research on a complex two-component system (Esp) that is important for the spatial regulation of sporulation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Genome-wide transcriptome study in wheat identified candidate genes related to processing quality, majority of them showing interaction (quality x development) and having temporal and spatial distributions

    Science.gov (United States)

    2014-01-01

    -PCR. Therefore, this study identified several quality related key genes including many other genes, their interactions (quality x development) and temporal and spatial distributions. Conclusions The candidate genes identified for processing quality and information on temporal and spatial distributions of their expressions would be useful for designing wheat improvement programs for processing quality either by changing their expression or development of single nucleotide polymorphisms (SNPs) markers. PMID:24433256

  5. Genome-wide transcriptome study in wheat identified candidate genes related to processing quality, majority of them showing interaction (quality x development) and having temporal and spatial distributions.

    Science.gov (United States)

    Singh, Anuradha; Mantri, Shrikant; Sharma, Monica; Chaudhury, Ashok; Tuli, Rakesh; Roy, Joy

    2014-01-16

    identified several quality related key genes including many other genes, their interactions (quality x development) and temporal and spatial distributions. The candidate genes identified for processing quality and information on temporal and spatial distributions of their expressions would be useful for designing wheat improvement programs for processing quality either by changing their expression or development of single nucleotide polymorphisms (SNPs) markers.

  6. Bayesian median regression for temporal gene expression data

    Science.gov (United States)

    Yu, Keming; Vinciotti, Veronica; Liu, Xiaohui; 't Hoen, Peter A. C.

    2007-09-01

    Most of the existing methods for the identification of biologically interesting genes in a temporal expression profiling dataset do not fully exploit the temporal ordering in the dataset and are based on normality assumptions for the gene expression. In this paper, we introduce a Bayesian median regression model to detect genes whose temporal profile is significantly different across a number of biological conditions. The regression model is defined by a polynomial function where both time and condition effects as well as interactions between the two are included. MCMC-based inference returns the posterior distribution of the polynomial coefficients. From this a simple Bayes factor test is proposed to test for significance. The estimation of the median rather than the mean, and within a Bayesian framework, increases the robustness of the method compared to a Hotelling T2-test previously suggested. This is shown on simulated data and on muscular dystrophy gene expression data.

  7. Spatio-Temporal Expression Patterns of Arabidopsis thaliana and Medicago truncatula Defensin-Like Genes

    Science.gov (United States)

    Nallu, Sumitha; Wang, Lin; Botanga, Christopher J.; Gomez, S. Karen; Costa, Liliana M.; Harrison, Maria J.; Samac, Deborah A.; Glazebrook, Jane; Katagiri, Fumiaki; Gutierrez-Marcos, Jose F.; VandenBosch, Kathryn A.

    2013-01-01

    Plant genomes contain several hundred defensin-like (DEFL) genes that encode short cysteine-rich proteins resembling defensins, which are well known antimicrobial polypeptides. Little is known about the expression patterns or functions of many DEFLs because most were discovered recently and hence are not well represented on standard microarrays. We designed a custom Affymetrix chip consisting of probe sets for 317 and 684 DEFLs from Arabidopsis thaliana and Medicago truncatula, respectively for cataloging DEFL expression in a variety of plant organs at different developmental stages and during symbiotic and pathogenic associations. The microarray analysis provided evidence for the transcription of 71% and 90% of the DEFLs identified in Arabidopsis and Medicago, respectively, including many of the recently annotated DEFL genes that previously lacked expression information. Both model plants contain a subset of DEFLs specifically expressed in seeds or fruits. A few DEFLs, including some plant defensins, were significantly up-regulated in Arabidopsis leaves inoculated with Alternaria brassicicola or Pseudomonas syringae pathogens. Among these, some were dependent on jasmonic acid signaling or were associated with specific types of immune responses. There were notable differences in DEFL gene expression patterns between Arabidopsis and Medicago, as the majority of Arabidopsis DEFLs were expressed in inflorescences, while only a few exhibited root-enhanced expression. By contrast, Medicago DEFLs were most prominently expressed in nitrogen-fixing root nodules. Thus, our data document salient differences in DEFL temporal and spatial expression between Arabidopsis and Medicago, suggesting distinct signaling routes and distinct roles for these proteins in the two plant species. PMID:23527067

  8. Spatio-temporal expression patterns of Arabidopsis thaliana and Medicago truncatula defensin-like genes.

    Directory of Open Access Journals (Sweden)

    Mesfin Tesfaye

    Full Text Available Plant genomes contain several hundred defensin-like (DEFL genes that encode short cysteine-rich proteins resembling defensins, which are well known antimicrobial polypeptides. Little is known about the expression patterns or functions of many DEFLs because most were discovered recently and hence are not well represented on standard microarrays. We designed a custom Affymetrix chip consisting of probe sets for 317 and 684 DEFLs from Arabidopsis thaliana and Medicago truncatula, respectively for cataloging DEFL expression in a variety of plant organs at different developmental stages and during symbiotic and pathogenic associations. The microarray analysis provided evidence for the transcription of 71% and 90% of the DEFLs identified in Arabidopsis and Medicago, respectively, including many of the recently annotated DEFL genes that previously lacked expression information. Both model plants contain a subset of DEFLs specifically expressed in seeds or fruits. A few DEFLs, including some plant defensins, were significantly up-regulated in Arabidopsis leaves inoculated with Alternaria brassicicola or Pseudomonas syringae pathogens. Among these, some were dependent on jasmonic acid signaling or were associated with specific types of immune responses. There were notable differences in DEFL gene expression patterns between Arabidopsis and Medicago, as the majority of Arabidopsis DEFLs were expressed in inflorescences, while only a few exhibited root-enhanced expression. By contrast, Medicago DEFLs were most prominently expressed in nitrogen-fixing root nodules. Thus, our data document salient differences in DEFL temporal and spatial expression between Arabidopsis and Medicago, suggesting distinct signaling routes and distinct roles for these proteins in the two plant species.

  9. Spatial reconstruction of single-cell gene expression data.

    Science.gov (United States)

    Satija, Rahul; Farrell, Jeffrey A; Gennert, David; Schier, Alexander F; Regev, Aviv

    2015-05-01

    Spatial localization is a key determinant of cellular fate and behavior, but methods for spatially resolved, transcriptome-wide gene expression profiling across complex tissues are lacking. RNA staining methods assay only a small number of transcripts, whereas single-cell RNA-seq, which measures global gene expression, separates cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos and generated a transcriptome-wide map of spatial patterning. We confirmed Seurat's accuracy using several experimental approaches, then used the strategy to identify a set of archetypal expression patterns and spatial markers. Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems.

  10. Coordinated Regulation of Anthocyanin Biosynthesis Genes Confers Varied Phenotypic and Spatial-Temporal Anthocyanin Accumulation in Radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Everlyne M'mbone Muleke

    2017-07-01

    Full Text Available Anthocyanins are natural pigments that have important functions in plant growth and development. Radish taproots are rich in anthocyanins which confer different taproot colors and are potentially beneficial to human health. The crop differentially accumulates anthocyanin during various stages of growth, yet molecular mechanisms underlying this differential anthocyanin accumulation remains unknown. In the present study, transcriptome analysis was used to concisely identify putative genes involved in anthocyanin biosynthesis in radish. Spatial-temporal transcript expressions were then profiled in four color variant radish cultivars. From the total transcript sequences obtained through illumina sequencing, 102 assembled unigenes, and 20 candidate genes were identified to be involved in anthocyanin biosynthesis. Fifteen genomic sequences were isolated and sequenced from radish taproot. The length of these sequences was between 900 and 1,579 bp, and the unigene coverage to all of the corresponding cloned sequences was more than 93%. Gene structure analysis revealed that RsF3′H is intronless and anthocyanin biosynthesis genes (ABGs bear asymmetrical exons, except RsSAM. Anthocyanin accumulation showed a gradual increase in the leaf of the red radish and the taproot of colored cultivars during development, with a rapid increase at 30 days after sowing (DAS, and the highest content at maturity. Spatial-temporal transcriptional analysis of 14 genes revealed detectable expressions of 12 ABGs in various tissues at different growth levels. The investigation of anthocyanin accumulation and gene expression in four color variant radish cultivars, at different stages of development, indicated that total anthocyanin correlated with transcript levels of ABGs, particularly RsUFGT, RsF3H, RsANS, RsCHS3 and RsF3′H1. Our results suggest that these candidate genes play key roles in phenotypic and spatial-temporal anthocyanin accumulation in radish through

  11. Regional and temporal differences in gene expression of LH(BETA)T(AG) retinoblastoma tumors.

    Science.gov (United States)

    Houston, Samuel K; Pina, Yolanda; Clarke, Jennifer; Koru-Sengul, Tulay; Scott, William K; Nathanson, Lubov; Schefler, Amy C; Murray, Timothy G

    2011-07-23

    The purpose of this study was to evaluate by microarray the hypothesis that LH(BETA)T(AG) retinoblastoma tumors exhibit regional and temporal variations in gene expression. LH(BETA)T(AG) mice aged 12, 16, and 20 weeks were euthanatized (n = 9). Specimens were taken from five tumor areas (apex, anterior lateral, center, base, and posterior lateral). Samples were hybridized to gene microarrays. The data were preprocessed and analyzed, and genes with a P 2.5 were considered to be differentially expressed. Differentially expressed genes were analyzed for overlap with known networks by using pathway analysis tools. There were significant temporal (P regional differences in gene expression for LH(BETA)T(AG) retinoblastoma tumors. At P 2.5, there were significant changes in gene expression of 190 genes apically, 84 genes anterolaterally, 126 genes posteriorly, 56 genes centrally, and 134 genes at the base. Differentially expressed genes overlapped with known networks, with significant involvement in regulation of cellular proliferation and growth, response to oxygen levels and hypoxia, regulation of cellular processes, cellular signaling cascades, and angiogenesis. There are significant temporal and regional variations in the LH(BETA)T(AG) retinoblastoma model. Differentially expressed genes overlap with key pathways that may play pivotal roles in murine retinoblastoma development. These findings suggest the mechanisms involved in tumor growth and progression in murine retinoblastoma tumors and identify pathways for analysis at a functional level, to determine significance in human retinoblastoma. Microarray analysis of LH(BETA)T(AG) retinal tumors showed significant regional and temporal variations in gene expression, including dysregulation of genes involved in hypoxic responses and angiogenesis.

  12. Research on spatio-temporal database techniques for spatial information service

    Science.gov (United States)

    Zhao, Rong; Wang, Liang; Li, Yuxiang; Fan, Rongshuang; Liu, Ping; Li, Qingyuan

    2007-06-01

    Geographic data should be described by spatial, temporal and attribute components, but the spatio-temporal queries are difficult to be answered within current GIS. This paper describes research into the development and application of spatio-temporal data management system based upon GeoWindows GIS software platform which was developed by Chinese Academy of Surveying and Mapping (CASM). Faced the current and practical requirements of spatial information application, and based on existing GIS platform, one kind of spatio-temporal data model which integrates vector and grid data together was established firstly. Secondly, we solved out the key technique of building temporal data topology, successfully developed a suit of spatio-temporal database management system adopting object-oriented methods. The system provides the temporal data collection, data storage, data management and data display and query functions. Finally, as a case study, we explored the application of spatio-temporal data management system with the administrative region data of multi-history periods of China as the basic data. With all the efforts above, the GIS capacity of management and manipulation in aspect of time and attribute of GIS has been enhanced, and technical reference has been provided for the further development of temporal geographic information system (TGIS).

  13. Temporal and spatial expression of Drosophila DLGS97 during neural development.

    Science.gov (United States)

    Albornoz, Valeria; Mendoza-Topaz, Carolina; Oliva, Carlos; Tello, Judith; Olguín, Patricio; Sierralta, Jimena

    2008-07-01

    The products of the Drosophila discs-large (dlg) gene are members of the MAGUK family of proteins, a group of proteins involved in localization, transport and recycling of receptors and channels in cell junctions, including the synapse. In vertebrates, four genes with multiple splice variants homologous to dlg are described. dlg originates two main proteins, DLGA, similar to the vertebrate neuronal protein PSD95, and DLGS97, similar to the vertebrate neuronal and epithelial protein SAP97. DLGA is expressed in epithelia, neural tissue and muscle. DLGS97 is expressed in neural tissue and muscle but not in epithelia. The distinctive difference between them is the presence in DLGS97 of an L27 domain. The differential expression between these variants makes the study of DLGS97 of key relevance to understand the in vivo role of synaptic MAGUKs in neurons. Here we present the temporal and spatial expression pattern of DLGS97 during embryonic and larval nervous system development, during eye development and in adult brain. Our results show that DLGS97 is expressed zygotically, in neurons in the embryo, larvae and adult, and is absent at all stages in glial cells. During eye development DLGS97 starts to be expressed in photoreceptor cells at early stages of differentiation and localizes basal to the basolateral junctions. In the brain, DLGS97 is expressed in the mushroom bodies and optic lobes at larval and adult stages; and in the antennal lobe in the adult stage. In addition we show that both, dlgS97 and dlgA transcripts, express during development multiple splice variants with differences in the use of exons in two sites.

  14. Spatial reconstruction of single-cell gene expression

    Science.gov (United States)

    Satija, Rahul; Farrell, Jeffrey A.; Gennert, David; Schier, Alexander F.; Regev, Aviv

    2015-01-01

    Spatial localization is a key determinant of cellular fate and behavior, but spatial RNA assays traditionally rely on staining for a limited number of RNA species. In contrast, single-cell RNA-seq allows for deep profiling of cellular gene expression, but established methods separate cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos, inferring a transcriptome-wide map of spatial patterning. We confirmed Seurat’s accuracy using several experimental approaches, and used it to identify a set of archetypal expression patterns and spatial markers. Additionally, Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems. PMID:25867923

  15. Identification of sparsely distributed clusters of cis-regulatory elements in sets of co-expressed genes

    OpenAIRE

    Kreiman, Gabriel

    2004-01-01

    Sequence information and high‐throughput methods to measure gene expression levels open the door to explore transcriptional regulation using computational tools. Combinatorial regulation and sparseness of regulatory elements throughout the genome allow organisms to control the spatial and temporal patterns of gene expression. Here we study the organization of cis‐regulatory elements in sets of co‐regulated genes. We build an algorithm to search for combinations of transcription factor binding...

  16. Profiling Gene Expression in Germinating Brassica Roots.

    Science.gov (United States)

    Park, Myoung Ryoul; Wang, Yi-Hong; Hasenstein, Karl H

    2014-01-01

    Based on previously developed solid-phase gene extraction (SPGE) we examined the mRNA profile in primary roots of Brassica rapa seedlings for highly expressed genes like ACT7 (actin7), TUB (tubulin1), UBQ (ubiquitin), and low expressed GLK (glucokinase) during the first day post-germination. The assessment was based on the mRNA load of the SPGE probe of about 2.1 ng. The number of copies of the investigated genes changed spatially along the length of primary roots. The expression level of all genes differed significantly at each sample position. Among the examined genes ACT7 expression was most even along the root. UBQ was highest at the tip and root-shoot junction (RS). TUB and GLK showed a basipetal gradient. The temporal expression of UBQ was highest in the MZ 9 h after primary root emergence and higher than at any other sample position. Expressions of GLK in EZ and RS increased gradually over time. SPGE extraction is the result of oligo-dT and oligo-dA hybridization and the results illustrate that SPGE can be used for gene expression profiling at high spatial and temporal resolution. SPGE needles can be used within two weeks when stored at 4 °C. Our data indicate that gene expression studies that are based on the entire root miss important differences in gene expression that SPGE is able to resolve for example growth adjustments during gravitropism.

  17. A MARKOV RANDOM FIELD-BASED APPROACH TO CHARACTERIZING HUMAN BRAIN DEVELOPMENT USING SPATIAL-TEMPORAL TRANSCRIPTOME DATA.

    Science.gov (United States)

    Lin, Zhixiang; Sanders, Stephan J; Li, Mingfeng; Sestan, Nenad; State, Matthew W; Zhao, Hongyu

    2015-03-01

    Human neurodevelopment is a highly regulated biological process. In this article, we study the dynamic changes of neurodevelopment through the analysis of human brain microarray data, sampled from 16 brain regions in 15 time periods of neurodevelopment. We develop a two-step inferential procedure to identify expressed and unexpressed genes and to detect differentially expressed genes between adjacent time periods. Markov Random Field (MRF) models are used to efficiently utilize the information embedded in brain region similarity and temporal dependency in our approach. We develop and implement a Monte Carlo expectation-maximization (MCEM) algorithm to estimate the model parameters. Simulation studies suggest that our approach achieves lower misclassification error and potential gain in power compared with models not incorporating spatial similarity and temporal dependency.

  18. Unique Temporal Expression of Triplicated Long-Wavelength Opsins in Developing Butterfly Eyes

    Directory of Open Access Journals (Sweden)

    Kentaro Arikawa

    2017-11-01

    Full Text Available Following gene duplication events, the expression patterns of the resulting gene copies can often diverge both spatially and temporally. Here we report on gene duplicates that are expressed in distinct but overlapping patterns, and which exhibit temporally divergent expression. Butterflies have sophisticated color vision and spectrally complex eyes, typically with three types of heterogeneous ommatidia. The eyes of the butterfly Papilio xuthus express two green- and one red-absorbing visual pigment, which came about via gene duplication events, in addition to one ultraviolet (UV- and one blue-absorbing visual pigment. We localized mRNAs encoding opsins of these visual pigments in developing eye disks throughout the pupal stage. The mRNAs of the UV and blue opsin are expressed early in pupal development (pd, specifying the type of the ommatidium in which they appear. Red sensitive photoreceptors first express a green opsin mRNA, which is replaced later by the red opsin mRNA. Broadband photoreceptors (that coexpress the green and red opsins first express the green opsin mRNA, later change to red opsin mRNA and finally re-express the green opsin mRNA in addition to the red mRNA. Such a unique temporal and spatial expression pattern of opsin mRNAs may reflect the evolution of visual pigments and provide clues toward understanding how the spectrally complex eyes of butterflies evolved.

  19. Distinct brain mechanisms support spatial vs temporal filtering of nociceptive information.

    Science.gov (United States)

    Nahman-Averbuch, Hadas; Martucci, Katherine T; Granovsky, Yelena; Weissman-Fogel, Irit; Yarnitsky, David; Coghill, Robert C

    2014-12-01

    The role of endogenous analgesic mechanisms has largely been viewed in the context of gain modulation during nociceptive processing. However, these analgesic mechanisms may play critical roles in the extraction and subsequent utilization of information related to spatial and temporal features of nociceptive input. To date, it remains unknown if spatial and temporal filtering of nociceptive information is supported by similar analgesic mechanisms. To address this question, human volunteers were recruited to assess brain activation with functional magnetic resonance imaging during conditioned pain modulation (CPM) and offset analgesia (OA). CPM provides one paradigm for assessing spatial filtering of nociceptive information while OA provides a paradigm for assessing temporal filtering of nociceptive information. CPM and OA both produced statistically significant reductions in pain intensity. However, the magnitude of pain reduction elicited by CPM was not correlated with that elicited by OA across different individuals. Different patterns of brain activation were consistent with the psychophysical findings. CPM elicited widespread reductions in regions engaged in nociceptive processing such as the thalamus, insula, and secondary somatosensory cortex. OA produced reduced activity in the primary somatosensory cortex but was associated with greater activation in the anterior insula, dorsolateral prefrontal cortex, intraparietal sulcus, and inferior parietal lobule relative to CPM. In the brain stem, CPM consistently produced reductions in activity, while OA produced increases in activity. Conjunction analysis confirmed that CPM-related activity did not overlap with that of OA. Thus, dissociable mechanisms support inhibitory processes engaged during spatial vs temporal filtering of nociceptive information. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  20. Experimental and Modeling Approaches for Understanding the Effect of Gene Expression Noise in Biological Development

    Directory of Open Access Journals (Sweden)

    David M. Holloway

    2018-04-01

    Full Text Available Biological development involves numerous chemical and physical processes which must act in concert to reliably produce a cell, a tissue, or a body. To be successful, the developing organism must be robust to variability at many levels, such as the environment (e.g., temperature, moisture, upstream information (such as long-range positional information gradients, or intrinsic noise due to the stochastic nature of low concentration chemical kinetics. The latter is especially relevant to the regulation of gene expression in cell differentiation. The temporal stochasticity of gene expression has been studied in single celled organisms for nearly two decades, but only recently have techniques become available to gather temporally-resolved data across spatially-distributed gene expression patterns in developing multicellular organisms. These demonstrate temporal noisy “bursting” in the number of gene transcripts per cell, raising the question of how the transcript number defining a particular cell type is produced, such that one cell type can reliably be distinguished from a neighboring cell of different type along a tissue boundary. Stochastic spatio-temporal modeling of tissue-wide expression patterns can identify signatures for specific types of gene regulation, which can be used to extract regulatory mechanism information from experimental time series. This Perspective focuses on using this type of approach to study gene expression noise during the anterior-posterior segmentation of the fruit fly embryo. Advances in experimental and theoretical techniques will lead to an increasing quantification of expression noise that can be used to understand how regulatory mechanisms contribute to embryonic robustness across a range of developmental processes.

  1. Spatial expression of Hox cluster genes in the ontogeny of a sea urchin

    Science.gov (United States)

    Arenas-Mena, C.; Cameron, A. R.; Davidson, E. H.

    2000-01-01

    The Hox cluster of the sea urchin Strongylocentrous purpuratus contains ten genes in a 500 kb span of the genome. Only two of these genes are expressed during embryogenesis, while all of eight genes tested are expressed during development of the adult body plan in the larval stage. We report the spatial expression during larval development of the five 'posterior' genes of the cluster: SpHox7, SpHox8, SpHox9/10, SpHox11/13a and SpHox11/13b. The five genes exhibit a dynamic, largely mesodermal program of expression. Only SpHox7 displays extensive expression within the pentameral rudiment itself. A spatially sequential and colinear arrangement of expression domains is found in the somatocoels, the paired posterior mesodermal structures that will become the adult perivisceral coeloms. No such sequential expression pattern is observed in endodermal, epidermal or neural tissues of either the larva or the presumptive juvenile sea urchin. The spatial expression patterns of the Hox genes illuminate the evolutionary process by which the pentameral echinoderm body plan emerged from a bilateral ancestor.

  2. Heart morphogenesis gene regulatory networks revealed by temporal expression analysis.

    Science.gov (United States)

    Hill, Jonathon T; Demarest, Bradley; Gorsi, Bushra; Smith, Megan; Yost, H Joseph

    2017-10-01

    During embryogenesis the heart forms as a linear tube that then undergoes multiple simultaneous morphogenetic events to obtain its mature shape. To understand the gene regulatory networks (GRNs) driving this phase of heart development, during which many congenital heart disease malformations likely arise, we conducted an RNA-seq timecourse in zebrafish from 30 hpf to 72 hpf and identified 5861 genes with altered expression. We clustered the genes by temporal expression pattern, identified transcription factor binding motifs enriched in each cluster, and generated a model GRN for the major gene batteries in heart morphogenesis. This approach predicted hundreds of regulatory interactions and found batteries enriched in specific cell and tissue types, indicating that the approach can be used to narrow the search for novel genetic markers and regulatory interactions. Subsequent analyses confirmed the GRN using two mutants, Tbx5 and nkx2-5 , and identified sets of duplicated zebrafish genes that do not show temporal subfunctionalization. This dataset provides an essential resource for future studies on the genetic/epigenetic pathways implicated in congenital heart defects and the mechanisms of cardiac transcriptional regulation. © 2017. Published by The Company of Biologists Ltd.

  3. Temporal gene expression variation associated with eyespot size plasticity in Bicyclus anynana.

    Directory of Open Access Journals (Sweden)

    Jeffrey C Oliver

    Full Text Available Seasonal polyphenism demonstrates an organism's ability to respond to predictable environmental variation with alternative phenotypes, each presumably better suited to its respective environment. However, the molecular mechanisms linking environmental variation to alternative phenotypes via shifts in development remain relatively unknown. Here we investigate temporal gene expression variation in the seasonally polyphenic butterfly Bicyclus anynana. This species shows drastic changes in eyespot size depending on the temperature experienced during larval development. The wet season form (larvae reared over 24°C has large ventral wing eyespots while the dry season form (larvae reared under 19°C has much smaller eyespots. We compared the expression of three proteins, Notch, Engrailed, and Distal-less, in the future eyespot centers of the two forms to determine if eyespot size variation is associated with heterochronic shifts in the onset of their expression. For two of these proteins, Notch and Engrailed, expression in eyespot centers occurred earlier in dry season than in wet season larvae, while Distal-less showed no temporal difference between the two forms. These results suggest that differences between dry and wet season adult wings could be due to a delay in the onset of expression of these eyespot-associated genes. Early in eyespot development, Notch and Engrailed may be functioning as repressors rather than activators of the eyespot gene network. Alternatively, temporal variation in the onset of early expressed genes between forms may have no functional consequences to eyespot size regulation and may indicate the presence of an 'hourglass' model of development in butterfly eyespots.

  4. The identification of functional motifs in temporal gene expression analysis

    Directory of Open Access Journals (Sweden)

    Michael G. Surette

    2005-01-01

    Full Text Available The identification of transcription factor binding sites is essential to the understanding of the regulation of gene expression and the reconstruction of genetic regulatory networks. The in silico identification of cis-regulatory motifs is challenging due to sequence variability and lack of sufficient data to generate consensus motifs that are of quantitative or even qualitative predictive value. To determine functional motifs in gene expression, we propose a strategy to adopt false discovery rate (FDR and estimate motif effects to evaluate combinatorial analysis of motif candidates and temporal gene expression data. The method decreases the number of predicted motifs, which can then be confirmed by genetic analysis. To assess the method we used simulated motif/expression data to evaluate parameters. We applied this approach to experimental data for a group of iron responsive genes in Salmonella typhimurium 14028S. The method identified known and potentially new ferric-uptake regulator (Fur binding sites. In addition, we identified uncharacterized functional motif candidates that correlated with specific patterns of expression. A SAS code for the simulation and analysis gene expression data is available from the first author upon request.

  5. Moving target detection based on temporal-spatial information fusion for infrared image sequences

    Science.gov (United States)

    Toing, Wu-qin; Xiong, Jin-yu; Zeng, An-jun; Wu, Xiao-ping; Xu, Hao-peng

    2009-07-01

    Moving target detection and localization is one of the most fundamental tasks in visual surveillance. In this paper, through analyzing the advantages and disadvantages of the traditional approaches about moving target detection, a novel approach based on temporal-spatial information fusion is proposed for moving target detection. The proposed method combines the spatial feature in single frame and the temporal properties within multiple frames of an image sequence of moving target. First, the method uses the spatial image segmentation for target separation from background and uses the local temporal variance for extracting targets and wiping off the trail artifact. Second, the logical "and" operator is used to fuse the temporal and spatial information. In the end, to the fusion image sequence, the morphological filtering and blob analysis are used to acquire exact moving target. The algorithm not only requires minimal computation and memory but also quickly adapts to the change of background and environment. Comparing with other methods, such as the KDE, the Mixture of K Gaussians, etc., the simulation results show the proposed method has better validity and higher adaptive for moving target detection, especially in infrared image sequences with complex illumination change, noise change, and so on.

  6. Time warping of evolutionary distant temporal gene expression data based on noise suppression

    Directory of Open Access Journals (Sweden)

    Papatsenko Dmitri

    2009-10-01

    Full Text Available Abstract Background Comparative analysis of genome wide temporal gene expression data has a broad potential area of application, including evolutionary biology, developmental biology, and medicine. However, at large evolutionary distances, the construction of global alignments and the consequent comparison of the time-series data are difficult. The main reason is the accumulation of variability in expression profiles of orthologous genes, in the course of evolution. Results We applied Pearson distance matrices, in combination with other noise-suppression techniques and data filtering to improve alignments. This novel framework enhanced the capacity to capture the similarities between the temporal gene expression datasets separated by large evolutionary distances. We aligned and compared the temporal gene expression data in budding (Saccharomyces cerevisiae and fission (Schizosaccharomyces pombe yeast, which are separated by more then ~400 myr of evolution. We found that the global alignment (time warping properly matched the duration of cell cycle phases in these distant organisms, which was measured in prior studies. At the same time, when applied to individual ortholog pairs, this alignment procedure revealed groups of genes with distinct alignments, different from the global alignment. Conclusion Our alignment-based predictions of differences in the cell cycle phases between the two yeast species were in a good agreement with the existing data, thus supporting the computational strategy adopted in this study. We propose that the existence of the alternative alignments, specific to distinct groups of genes, suggests presence of different synchronization modes between the two organisms and possible functional decoupling of particular physiological gene networks in the course of evolution.

  7. Visualization of spatial-temporal data based on 3D virtual scene

    Science.gov (United States)

    Wang, Xianghong; Liu, Jiping; Wang, Yong; Bi, Junfang

    2009-10-01

    The main purpose of this paper is to realize the expression of the three-dimensional dynamic visualization of spatialtemporal data based on three-dimensional virtual scene, using three-dimensional visualization technology, and combining with GIS so that the people's abilities of cognizing time and space are enhanced and improved by designing dynamic symbol and interactive expression. Using particle systems, three-dimensional simulation, virtual reality and other visual means, we can simulate the situations produced by changing the spatial location and property information of geographical entities over time, then explore and analyze its movement and transformation rules by changing the interactive manner, and also replay history and forecast of future. In this paper, the main research object is the vehicle track and the typhoon path and spatial-temporal data, through three-dimensional dynamic simulation of its track, and realize its timely monitoring its trends and historical track replaying; according to visualization techniques of spatialtemporal data in Three-dimensional virtual scene, providing us with excellent spatial-temporal information cognitive instrument not only can add clarity to show spatial-temporal information of the changes and developments in the situation, but also be used for future development and changes in the prediction and deduction.

  8. Spatially and Temporally Regulated NRF2 Gene Therapy Using Mcp-1 Promoter in Retinal Ganglion Cell Injury

    Directory of Open Access Journals (Sweden)

    Kosuke Fujita

    2017-06-01

    Full Text Available Retinal ganglion cell degeneration triggered by axonal injury is believed to underlie many ocular diseases, including glaucoma and optic neuritis. In these diseases, retinal ganglion cells are affected unevenly, both spatially and temporally, such that healthy and unhealthy cells coexist in different patterns at different time points. Herein, we describe a temporally and spatially regulated adeno-associated virus gene therapy aiming to reduce undesired off-target effects on healthy retinal neurons. The Mcp-1 promoter previously shown to be activated in stressed retinal ganglion cells following murine optic nerve injury was combined with the neuroprotective intracellular transcription factor Nrf2. In this model, Mcp-1 promoter-driven NRF2 expression targeting only stressed retinal ganglion cells showed efficacy equivalent to non-selective cytomegalovirus promoter-driven therapy for preventing cell death. However, cytomegalovirus promoter-mediated NRF2 transcription induced cellular stress responses and death of Brn3A-positive uninjured retinal ganglion cells. Such undesired effects were reduced substantially by adopting the Mcp-1 promoter. Combining a stress-responsive promoter and intracellular therapeutic gene is a versatile approach for specifically targeting cells at risk of degeneration. This strategy may be applicable to numerous chronic ocular and non-ocular conditions.

  9. Temporal dynamics and transcriptional control using single-cell gene expression analysis.

    Science.gov (United States)

    Kouno, Tsukasa; de Hoon, Michiel; Mar, Jessica C; Tomaru, Yasuhiro; Kawano, Mitsuoki; Carninci, Piero; Suzuki, Harukazu; Hayashizaki, Yoshihide; Shin, Jay W

    2013-01-01

    Changes in environmental conditions lead to expression variation that manifest at the level of gene regulatory networks. Despite a strong understanding of the role noise plays in synthetic biological systems, it remains unclear how propagation of expression heterogeneity in an endogenous regulatory network is distributed and utilized by cells transitioning through a key developmental event. Here we investigate the temporal dynamics of a single-cell transcriptional network of 45 transcription factors in THP-1 human myeloid monocytic leukemia cells undergoing differentiation to macrophages. We systematically measure temporal regulation of expression and variation by profiling 120 single cells at eight distinct time points, and infer highly controlled regulatory modules through which signaling operates with stochastic effects. This reveals dynamic and specific rewiring as a cellular strategy for differentiation. The integration of both positive and negative co-expression networks further identifies the proto-oncogene MYB as a network hinge to modulate both the pro- and anti-differentiation pathways. Compared to averaged cell populations, temporal single-cell expression profiling provides a much more powerful technique to probe for mechanistic insights underlying cellular differentiation. We believe that our approach will form the basis of novel strategies to study the regulation of transcription at a single-cell level.

  10. Facial Expression Recognition from Video Sequences Based on Spatial-Temporal Motion Local Binary Pattern and Gabor Multiorientation Fusion Histogram

    Directory of Open Access Journals (Sweden)

    Lei Zhao

    2017-01-01

    Full Text Available This paper proposes novel framework for facial expressions analysis using dynamic and static information in video sequences. First, based on incremental formulation, discriminative deformable face alignment method is adapted to locate facial points to correct in-plane head rotation and break up facial region from background. Then, spatial-temporal motion local binary pattern (LBP feature is extracted and integrated with Gabor multiorientation fusion histogram to give descriptors, which reflect static and dynamic texture information of facial expressions. Finally, a one-versus-one strategy based multiclass support vector machine (SVM classifier is applied to classify facial expressions. Experiments on Cohn-Kanade (CK + facial expression dataset illustrate that integrated framework outperforms methods using single descriptors. Compared with other state-of-the-art methods on CK+, MMI, and Oulu-CASIA VIS datasets, our proposed framework performs better.

  11. Effect of Batroxobin on Expression of Neural Cell Adhesion Molecule in Temporal Infarction Rats and Spatial Learning and Memory Disorder

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of Batroxobin expression of neural cell adhesion molecule (NCAM) in left temporal ischemic rats with spatial memory disorder was investigated by means of Morri's water maze and immunohistochemical methods. The results showed that the mean reaction time and distance of temporal ischemic rats for searching a goal were significantly longer than those of sham-operated rats and at the same time NCAM expression of left temporal ischemic region was significantly increased. However, the mean reaction time and distance of Batroxobin-treated rats were shorter and they used normal strategies more often and earlier than those of ischemic rats. The number of NCAM immune reactive cells of Batroxobin-treated rats was more than that of ischemic group. In conclusion, Batroxobin can improve spatial memory disorder of temporal ischemic rats and the regulation of the expression of NCAM is probably related to the neuroprotective mechanism.

  12. Temporal expression pattern of genes during the period of sex differentiation in human embryonic gonads

    DEFF Research Database (Denmark)

    Mamsen, Linn S; Ernst, Emil H; Borup, Rehannah

    2017-01-01

    The precise timing and sequence of changes in expression of key genes and proteins during human sex-differentiation and onset of steroidogenesis was evaluated by whole-genome expression in 67 first trimester human embryonic and fetal ovaries and testis and confirmed by qPCR and immunohistochemistry...... (IHC). SRY/SOX9 expression initiated in testis around day 40 pc, followed by initiation of AMH and steroidogenic genes required for androgen production at day 53 pc. In ovaries, gene expression of RSPO1, LIN28, FOXL2, WNT2B, and ETV5, were significantly higher than in testis, whereas GLI1...... was significantly higher in testis than ovaries. Gene expression was confirmed by IHC for GAGE, SOX9, AMH, CYP17A1, LIN28, WNT2B, ETV5 and GLI1. Gene expression was not associated with the maternal smoking habits. Collectively, a precise temporal determination of changes in expression of key genes involved in human...

  13. Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling

    Directory of Open Access Journals (Sweden)

    Guo Zheng

    2006-01-01

    Full Text Available Abstract Background It is one of the ultimate goals for modern biological research to fully elucidate the intricate interplays and the regulations of the molecular determinants that propel and characterize the progression of versatile life phenomena, to name a few, cell cycling, developmental biology, aging, and the progressive and recurrent pathogenesis of complex diseases. The vast amount of large-scale and genome-wide time-resolved data is becoming increasing available, which provides the golden opportunity to unravel the challenging reverse-engineering problem of time-delayed gene regulatory networks. Results In particular, this methodological paper aims to reconstruct regulatory networks from temporal gene expression data by using delayed correlations between genes, i.e., pairwise overlaps of expression levels shifted in time relative each other. We have thus developed a novel model-free computational toolbox termed TdGRN (Time-delayed Gene Regulatory Network to address the underlying regulations of genes that can span any unit(s of time intervals. This bioinformatics toolbox has provided a unified approach to uncovering time trends of gene regulations through decision analysis of the newly designed time-delayed gene expression matrix. We have applied the proposed method to yeast cell cycling and human HeLa cell cycling and have discovered most of the underlying time-delayed regulations that are supported by multiple lines of experimental evidence and that are remarkably consistent with the current knowledge on phase characteristics for the cell cyclings. Conclusion We established a usable and powerful model-free approach to dissecting high-order dynamic trends of gene-gene interactions. We have carefully validated the proposed algorithm by applying it to two publicly available cell cycling datasets. In addition to uncovering the time trends of gene regulations for cell cycling, this unified approach can also be used to study the complex

  14. Spatial information is preferentially processed by the distal part of CA3: implication for memory retrieval.

    Science.gov (United States)

    Flasbeck, Vera; Atucha, Erika; Nakamura, Nozomu H; Yoshida, Motoharu; Sauvage, Magdalena M

    2018-07-16

    For the past decades, CA3 was considered as a single functional entity. However, strong differences between the proximal (close to the dentate gyrus) and the distal (close to CA2) parts of CA3 in terms of connectivity patterns, gene expression and electrophysiological properties suggest that it is not the case. We recently showed that proximal CA3 (together with distal CA1) preferentially deals with non-spatial information [1]. In contrast to proximal CA3, distal CA3 mainly receives and predominantly projects to spatially tuned areas. Here, we tested if distal CA3 preferentially processes spatial information, which would suggest a segregation of the spatial information along the proximodistal axis of CA3. We used a high-resolution imaging technique based on the detection of the expression of the immediate-early gene Arc, commonly used to map activity in the medial temporal lobe. We showed that distal CA3 is strongly recruited in a newly designed delayed nonmatching-to-location task with high memory demands in rats, while proximal CA3 is not. These results indicate a functional segregation of CA3 that mirrors the one reported in CA1, and suggest the existence of a distal CA3- proximal CA1 spatial subnetwork. These findings bring further evidence for the existence of 'specialized' spatial and non-spatial subnetworks segregated along the proximodistal axis of the hippocampus and put forward the 'segregated' view of information processing in the hippocampus as a reasonable alternative to the well-accepted 'integrated' view, according to which spatial and non-spatial information are systematically integrated in the hippocampus to form episodic memory. Copyright © 2018. Published by Elsevier B.V.

  15. Spatial gene expression quantification: a tool for analysis of in situ hybridizations in sea anemone Nematostella vectensis

    Directory of Open Access Journals (Sweden)

    Botman Daniel

    2012-10-01

    Full Text Available Abstract Background Spatial gene expression quantification is required for modeling gene regulation in developing organisms. The fruit fly Drosophila melanogaster is the model system most widely applied for spatial gene expression analysis due to its unique embryonic properties: the shape does not change significantly during its early cleavage cycles and most genes are differentially expressed along a straight axis. This system of development is quite exceptional in the animal kingdom. In the sea anemone Nematostella vectensis the embryo changes its shape during early development; there are cell divisions and cell movement, like in most other metazoans. Nematostella is an attractive case study for spatial gene expression since its transparent body wall makes it accessible to various imaging techniques. Findings Our new quantification method produces standardized gene expression profiles from raw or annotated Nematostella in situ hybridizations by measuring the expression intensity along its cell layer. The procedure is based on digital morphologies derived from high-resolution fluorescence pictures. Additionally, complete descriptions of nonsymmetric expression patterns have been constructed by transforming the gene expression images into a three-dimensional representation. Conclusions We created a standard format for gene expression data, which enables quantitative analysis of in situ hybridizations from embryos with various shapes in different developmental stages. The obtained expression profiles are suitable as input for optimization of gene regulatory network models, and for correlation analysis of genes from dissimilar Nematostella morphologies. This approach is potentially applicable to many other metazoan model organisms and may also be suitable for processing data from three-dimensional imaging techniques.

  16. Spatial and temporal relations in conditioned reinforcement and observing behavior.

    Science.gov (United States)

    Bowe, C A; Dinsmoor, J A

    1983-03-01

    In Experiment 1, depressing one perch produced stimuli indicating which of two keys, if pecked, could produce food (spatial information) and depressing the other perch produced stimuli indicating whether a variable-interval or an extinction schedule was operating (temporal information). The pigeons increased the time they spent depressing the perch that produced the temporal information but did not increase the time they spent depressing the perch that produced the spatial information. In Experiment 2, pigeons that were allowed to produce combined spatial and temporal information did not acquire the perch pressing any faster or maintain it at a higher level than pigeons allowed to produce only temporal information. Later, when perching produced only spatial information, the time spent depressing the perch eventually declined. The results are not those implied by the statement that information concerning biologically important events is reinforcing but are consistent with an interpretation in terms of the acquisition of reinforcing properties by a stimulus associated with a higher density of primary reinforcement.

  17. Exploiting the full power of temporal gene expression profiling through a new statistical test: Application to the analysis of muscular dystrophy data

    Directory of Open Access Journals (Sweden)

    Turk Rolf

    2006-04-01

    Full Text Available Abstract Background The identification of biologically interesting genes in a temporal expression profiling dataset is challenging and complicated by high levels of experimental noise. Most statistical methods used in the literature do not fully exploit the temporal ordering in the dataset and are not suited to the case where temporal profiles are measured for a number of different biological conditions. We present a statistical test that makes explicit use of the temporal order in the data by fitting polynomial functions to the temporal profile of each gene and for each biological condition. A Hotelling T2-statistic is derived to detect the genes for which the parameters of these polynomials are significantly different from each other. Results We validate the temporal Hotelling T2-test on muscular gene expression data from four mouse strains which were profiled at different ages: dystrophin-, beta-sarcoglycan and gamma-sarcoglycan deficient mice, and wild-type mice. The first three are animal models for different muscular dystrophies. Extensive biological validation shows that the method is capable of finding genes with temporal profiles significantly different across the four strains, as well as identifying potential biomarkers for each form of the disease. The added value of the temporal test compared to an identical test which does not make use of temporal ordering is demonstrated via a simulation study, and through confirmation of the expression profiles from selected genes by quantitative PCR experiments. The proposed method maximises the detection of the biologically interesting genes, whilst minimising false detections. Conclusion The temporal Hotelling T2-test is capable of finding relatively small and robust sets of genes that display different temporal profiles between the conditions of interest. The test is simple, it can be used on gene expression data generated from any experimental design and for any number of conditions, and it

  18. Improved Side Information Generation for Distributed Video Coding by Exploiting Spatial and Temporal Correlations

    Directory of Open Access Journals (Sweden)

    Ye Shuiming

    2009-01-01

    Full Text Available Distributed video coding (DVC is a video coding paradigm allowing low complexity encoding for emerging applications such as wireless video surveillance. Side information (SI generation is a key function in the DVC decoder, and plays a key-role in determining the performance of the codec. This paper proposes an improved SI generation for DVC, which exploits both spatial and temporal correlations in the sequences. Partially decoded Wyner-Ziv (WZ frames, based on initial SI by motion compensated temporal interpolation, are exploited to improve the performance of the whole SI generation. More specifically, an enhanced temporal frame interpolation is proposed, including motion vector refinement and smoothing, optimal compensation mode selection, and a new matching criterion for motion estimation. The improved SI technique is also applied to a new hybrid spatial and temporal error concealment scheme to conceal errors in WZ frames. Simulation results show that the proposed scheme can achieve up to 1.0 dB improvement in rate distortion performance in WZ frames for video with high motion, when compared to state-of-the-art DVC. In addition, both the objective and perceptual qualities of the corrupted sequences are significantly improved by the proposed hybrid error concealment scheme, outperforming both spatial and temporal concealments alone.

  19. Selective 4D modelling framework for spatial-temporal land information management system

    Science.gov (United States)

    Doulamis, Anastasios; Soile, Sofia; Doulamis, Nikolaos; Chrisouli, Christina; Grammalidis, Nikos; Dimitropoulos, Kosmas; Manesis, Charalambos; Potsiou, Chryssy; Ioannidis, Charalabos

    2015-06-01

    This paper introduces a predictive (selective) 4D modelling framework where only the spatial 3D differences are modelled at the forthcoming time instances, while regions of no significant spatial-temporal alterations remain intact. To accomplish this, initially spatial-temporal analysis is applied between 3D digital models captured at different time instances. So, the creation of dynamic change history maps is made. Change history maps indicate spatial probabilities of regions needed further 3D modelling at forthcoming instances. Thus, change history maps are good examples for a predictive assessment, that is, to localize surfaces within the objects where a high accuracy reconstruction process needs to be activated at the forthcoming time instances. The proposed 4D Land Information Management System (LIMS) is implemented using open interoperable standards based on the CityGML framework. CityGML allows the description of the semantic metadata information and the rights of the land resources. Visualization aspects are also supported to allow easy manipulation, interaction and representation of the 4D LIMS digital parcels and the respective semantic information. The open source 3DCityDB incorporating a PostgreSQL geo-database is used to manage and manipulate 3D data and their semantics. An application is made to detect the change through time of a 3D block of plots in an urban area of Athens, Greece. Starting with an accurate 3D model of the buildings in 1983, a change history map is created using automated dense image matching on aerial photos of 2010. For both time instances meshes are created and through their comparison the changes are detected.

  20. Temporal course of gene expression during motor memory formation in primary motor cortex of rats.

    Science.gov (United States)

    Hertler, B; Buitrago, M M; Luft, A R; Hosp, J A

    2016-12-01

    Motor learning is associated with plastic reorganization of neural networks in primary motor cortex (M1) that depends on changes in gene expression. Here, we investigate the temporal profile of these changes during motor memory formation in response to a skilled reaching task in rats. mRNA-levels were measured 1h, 7h and 24h after the end of a training session using microarray technique. To assure learning specificity, trained animals were compared to a control group. In response to motor learning, genes are sequentially regulated with high time-point specificity and a shift from initial suppression to later activation. The majority of regulated genes can be linked to learning-related plasticity. In the gene-expression cascade following motor learning, three different steps can be defined: (1) an initial suppression of genes influencing gene transcription. (2) Expression of genes that support translation of mRNA in defined compartments. (3) Expression of genes that immediately mediates plastic changes. Gene expression peaks after 24h - this is a much slower time-course when compared to hippocampus-dependent learning, where peaks of gene-expression can be observed 6-12h after training ended. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Spatio Temporal Expression Pattern of an Insecticidal Gene (cry2A in Transgenic Cotton Lines

    Directory of Open Access Journals (Sweden)

    Allah BAKHSH

    2012-11-01

    Full Text Available The production of transgenic plants with stable, high-level transgene expression is important for the success of crop improvement programs based on genetic engineering. The present study was conducted to evaluate genomic integration and spatio temporal expression of an insecticidal gene (cry2A in pre-existing transgenic lines of cotton. Genomic integration of cry2A was evaluated using various molecular approaches. The expression levels of cry2A were determined at vegetative and reproductive stages of cotton at regular intervals. These lines showed a stable integration of insecticidal gene in advance lines of transgenic cotton whereas gene expression was found variable with at various growth stages as well as in different plant parts throughout the season. The leaves of transgenic cotton were found to have maximum expression of cry2A gene followed by squares, bolls, anthers and petals. The protein level in fruiting part was less as compared to other parts showing inconsistency in gene expression. It was concluded that for culturing of transgenic crops, strategies should be developed to ensure the foreign genes expression efficient, consistent and in a predictable manner.

  2. Temporal and spatial transcriptomic and microRNA dynamics of CAM photosynthesis in pineapple.

    Science.gov (United States)

    Wai, Ching M; VanBuren, Robert; Zhang, Jisen; Huang, Lixian; Miao, Wenjing; Edger, Patrick P; Yim, Won C; Priest, Henry D; Meyers, Blake C; Mockler, Todd; Smith, J Andrew C; Cushman, John C; Ming, Ray

    2017-10-01

    The altered carbon assimilation pathway of crassulacean acid metabolism (CAM) photosynthesis results in an up to 80% higher water-use efficiency than C 3 photosynthesis in plants making it a potentially useful pathway for engineering crop plants with improved drought tolerance. Here we surveyed detailed temporal (diel time course) and spatial (across a leaf gradient) gene and microRNA (miRNA) expression patterns in the obligate CAM plant pineapple [Ananas comosus (L.) Merr.]. The high-resolution transcriptome atlas allowed us to distinguish between CAM-related and non-CAM gene copies. A differential gene co-expression network across green and white leaf diel datasets identified genes with circadian oscillation, CAM-related functions, and source-sink relations. Gene co-expression clusters containing CAM pathway genes are enriched with clock-associated cis-elements, suggesting circadian regulation of CAM. About 20% of pineapple microRNAs have diel expression patterns, with several that target key CAM-related genes. Expression and physiology data provide a model for CAM-specific carbohydrate flux and long-distance hexose transport. Together these resources provide a list of candidate genes for targeted engineering of CAM into C 3 photosynthesis crop species. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  3. Genome-Wide Temporal Expression Profiling in Caenorhabditis elegans Identifies a Core Gene Set Related to Long-Term Memory.

    Science.gov (United States)

    Freytag, Virginie; Probst, Sabine; Hadziselimovic, Nils; Boglari, Csaba; Hauser, Yannick; Peter, Fabian; Gabor Fenyves, Bank; Milnik, Annette; Demougin, Philippe; Vukojevic, Vanja; de Quervain, Dominique J-F; Papassotiropoulos, Andreas; Stetak, Attila

    2017-07-12

    The identification of genes related to encoding, storage, and retrieval of memories is a major interest in neuroscience. In the current study, we analyzed the temporal gene expression changes in a neuronal mRNA pool during an olfactory long-term associative memory (LTAM) in Caenorhabditis elegans hermaphrodites. Here, we identified a core set of 712 (538 upregulated and 174 downregulated) genes that follows three distinct temporal peaks demonstrating multiple gene regulation waves in LTAM. Compared with the previously published positive LTAM gene set (Lakhina et al., 2015), 50% of the identified upregulated genes here overlap with the previous dataset, possibly representing stimulus-independent memory-related genes. On the other hand, the remaining genes were not previously identified in positive associative memory and may specifically regulate aversive LTAM. Our results suggest a multistep gene activation process during the formation and retrieval of long-term memory and define general memory-implicated genes as well as conditioning-type-dependent gene sets. SIGNIFICANCE STATEMENT The identification of genes regulating different steps of memory is of major interest in neuroscience. Identification of common memory genes across different learning paradigms and the temporal activation of the genes are poorly studied. Here, we investigated the temporal aspects of Caenorhabditis elegans gene expression changes using aversive olfactory associative long-term memory (LTAM) and identified three major gene activation waves. Like in previous studies, aversive LTAM is also CREB dependent, and CREB activity is necessary immediately after training. Finally, we define a list of memory paradigm-independent core gene sets as well as conditioning-dependent genes. Copyright © 2017 the authors 0270-6474/17/376661-12$15.00/0.

  4. Differential gene expression in dentate granule cells in mesial temporal lobe epilepsy with and without hippocampal sclerosis.

    Science.gov (United States)

    Griffin, Nicole G; Wang, Yu; Hulette, Christine M; Halvorsen, Matt; Cronin, Kenneth D; Walley, Nicole M; Haglund, Michael M; Radtke, Rodney A; Skene, J H Pate; Sinha, Saurabh R; Heinzen, Erin L

    2016-03-01

    Hippocampal sclerosis is the most common neuropathologic finding in cases of medically intractable mesial temporal lobe epilepsy. In this study, we analyzed the gene expression profiles of dentate granule cells of patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis to show that next-generation sequencing methods can produce interpretable genomic data from RNA collected from small homogenous cell populations, and to shed light on the transcriptional changes associated with hippocampal sclerosis. RNA was extracted, and complementary DNA (cDNA) was prepared and amplified from dentate granule cells that had been harvested by laser capture microdissection from surgically resected hippocampi from patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis. Sequencing libraries were sequenced, and the resulting sequencing reads were aligned to the reference genome. Differential expression analysis was used to ascertain expression differences between patients with and without hippocampal sclerosis. Greater than 90% of the RNA-Seq reads aligned to the reference. There was high concordance between transcriptional profiles obtained for duplicate samples. Principal component analysis revealed that the presence or absence of hippocampal sclerosis was the main determinant of the variance within the data. Among the genes up-regulated in the hippocampal sclerosis samples, there was significant enrichment for genes involved in oxidative phosphorylation. By analyzing the gene expression profiles of dentate granule cells from surgically resected hippocampal specimens from patients with mesial temporal lobe epilepsy with and without hippocampal sclerosis, we have demonstrated the utility of next-generation sequencing methods for producing biologically relevant results from small populations of homogeneous cells, and have provided insight on the transcriptional changes associated with this pathology. Wiley Periodicals, Inc. © 2016

  5. The Temporal Dynamics of Arc Expression Regulate Cognitive Flexibility.

    Science.gov (United States)

    Wall, Mark J; Collins, Dawn R; Chery, Samantha L; Allen, Zachary D; Pastuzyn, Elissa D; George, Arlene J; Nikolova, Viktoriya D; Moy, Sheryl S; Philpot, Benjamin D; Shepherd, Jason D; Müller, Jürgen; Ehlers, Michael D; Mabb, Angela M; Corrêa, Sonia A L

    2018-05-24

    Neuronal activity regulates the transcription and translation of the immediate-early gene Arc/Arg3.1, a key mediator of synaptic plasticity. Proteasome-dependent degradation of Arc tightly limits its temporal expression, yet the significance of this regulation remains unknown. We disrupted the temporal control of Arc degradation by creating an Arc knockin mouse (ArcKR) where the predominant Arc ubiquitination sites were mutated. ArcKR mice had intact spatial learning but showed specific deficits in selecting an optimal strategy during reversal learning. This cognitive inflexibility was coupled to changes in Arc mRNA and protein expression resulting in a reduced threshold to induce mGluR-LTD and enhanced mGluR-LTD amplitude. These findings show that the abnormal persistence of Arc protein limits the dynamic range of Arc signaling pathways specifically during reversal learning. Our work illuminates how the precise temporal control of activity-dependent molecules, such as Arc, regulates synaptic plasticity and is crucial for cognition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Reconstructing Generalized Logical Networks of Transcriptional Regulation in Mouse Brain from Temporal Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Song, Mingzhou (Joe) [New Mexico State University, Las Cruces; Lewis, Chris K. [New Mexico State University, Las Cruces; Lance, Eric [New Mexico State University, Las Cruces; Chesler, Elissa J [ORNL; Kirova, Roumyana [Bristol-Myers Squibb Pharmaceutical Research & Development, NJ; Langston, Michael A [University of Tennessee, Knoxville (UTK); Bergeson, Susan [Texas Tech University, Lubbock

    2009-01-01

    The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from high-throughput transcriptomic data is addressed. A network reconstruction algorithm was developed that uses the statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. Using temporal gene expression data collected from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol, this algorithm identified genes from a major neuronal pathway as putative components of the alcohol response mechanism. Three of these genes have known associations with alcohol in the literature. Several other potentially relevant genes, highlighted and agreeing with independent results from literature mining, may play a role in the response to alcohol. Additional, previously-unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.

  7. Linking Advanced Visualization and MATLAB for the Analysis of 3D Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Ruebel, Oliver; Keranen, Soile V.E.; Biggin, Mark; Knowles, David W.; Weber, Gunther H.; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

    2011-03-30

    Three-dimensional gene expression PointCloud data generated by the Berkeley Drosophila Transcription Network Project (BDTNP) provides quantitative information about the spatial and temporal expression of genes in early Drosophila embryos at cellular resolution. The BDTNP team visualizes and analyzes Point-Cloud data using the software application PointCloudXplore (PCX). To maximize the impact of novel, complex data sets, such as PointClouds, the data needs to be accessible to biologists and comprehensible to developers of analysis functions. We address this challenge by linking PCX and Matlab via a dedicated interface, thereby providing biologists seamless access to advanced data analysis functions and giving bioinformatics researchers the opportunity to integrate their analysis directly into the visualization application. To demonstrate the usefulness of this approach, we computationally model parts of the expression pattern of the gene even skipped using a genetic algorithm implemented in Matlab and integrated into PCX via our Matlab interface.

  8. Inferring gene expression dynamics via functional regression analysis

    Directory of Open Access Journals (Sweden)

    Leng Xiaoyan

    2008-01-01

    Full Text Available Abstract Background Temporal gene expression profiles characterize the time-dynamics of expression of specific genes and are increasingly collected in current gene expression experiments. In the analysis of experiments where gene expression is obtained over the life cycle, it is of interest to relate temporal patterns of gene expression associated with different developmental stages to each other to study patterns of long-term developmental gene regulation. We use tools from functional data analysis to study dynamic changes by relating temporal gene expression profiles of different developmental stages to each other. Results We demonstrate that functional regression methodology can pinpoint relationships that exist between temporary gene expression profiles for different life cycle phases and incorporates dimension reduction as needed for these high-dimensional data. By applying these tools, gene expression profiles for pupa and adult phases are found to be strongly related to the profiles of the same genes obtained during the embryo phase. Moreover, one can distinguish between gene groups that exhibit relationships with positive and others with negative associations between later life and embryonal expression profiles. Specifically, we find a positive relationship in expression for muscle development related genes, and a negative relationship for strictly maternal genes for Drosophila, using temporal gene expression profiles. Conclusion Our findings point to specific reactivation patterns of gene expression during the Drosophila life cycle which differ in characteristic ways between various gene groups. Functional regression emerges as a useful tool for relating gene expression patterns from different developmental stages, and avoids the problems with large numbers of parameters and multiple testing that affect alternative approaches.

  9. The COP9 signalosome converts temporal hormone signaling to spatial restriction on neural competence.

    Directory of Open Access Journals (Sweden)

    Yi-Chun Huang

    2014-11-01

    Full Text Available During development, neural competence is conferred and maintained by integrating spatial and temporal regulations. The Drosophila sensory bristles that detect mechanical and chemical stimulations are arranged in stereotypical positions. The anterior wing margin (AWM is arrayed with neuron-innervated sensory bristles, while posterior wing margin (PWM bristles are non-innervated. We found that the COP9 signalosome (CSN suppresses the neural competence of non-innervated bristles at the PWM. In CSN mutants, PWM bristles are transformed into neuron-innervated, which is attributed to sustained expression of the neural-determining factor Senseless (Sens. The CSN suppresses Sens through repression of the ecdysone signaling target gene broad (br that encodes the BR-Z1 transcription factor to activate sens expression. Strikingly, CSN suppression of BR-Z1 is initiated at the prepupa-to-pupa transition, leading to Sens downregulation, and termination of the neural competence of PWM bristles. The role of ecdysone signaling to repress br after the prepupa-to-pupa transition is distinct from its conventional role in activation, and requires CSN deneddylating activity and multiple cullins, the major substrates of deneddylation. Several CSN subunits physically associate with ecdysone receptors to represses br at the transcriptional level. We propose a model in which nuclear hormone receptors cooperate with the deneddylation machinery to temporally shutdown downstream target gene expression, conferring a spatial restriction on neural competence at the PWM.

  10. Increasing Power by Sharing Information from Genetic Background and Treatment in Clustering of Gene Expression Time Series

    Directory of Open Access Journals (Sweden)

    Sura Zaki Alrashid

    2018-02-01

    Full Text Available Clustering of gene expression time series gives insight into which genes may be co-regulated, allowing us to discern the activity of pathways in a given microarray experiment. Of particular interest is how a given group of genes varies with different conditions or genetic background. This paper develops
a new clustering method that allows each cluster to be parameterised according to whether the behaviour of the genes across conditions is correlated or anti-correlated. By specifying correlation between such genes,more information is gain within the cluster about how the genes interrelate. Amyotrophic lateral sclerosis (ALS is an irreversible neurodegenerative disorder that kills the motor neurons and results in death within 2 to 3 years from the symptom onset. Speed of progression for different patients are heterogeneous with significant variability. The SOD1G93A transgenic mice from different backgrounds (129Sv and C57 showed consistent phenotypic differences for disease progression. A hierarchy of Gaussian isused processes to model condition-specific and gene-specific temporal co-variances. This study demonstrated about finding some significant gene expression profiles and clusters of associated or co-regulated gene expressions together from four groups of data (SOD1G93A and Ntg from 129Sv and C57 backgrounds. Our study shows the effectiveness of sharing information between replicates and different model conditions when modelling gene expression time series. Further gene enrichment score analysis and ontology pathway analysis of some specified clusters for a particular group may lead toward identifying features underlying the differential speed of disease progression.

  11. Spatial and temporal relations in conditioned reinforcement and observing behavior

    OpenAIRE

    Bowe, Craig A.; Dinsmoor, James A.

    1983-01-01

    In Experiment 1, depressing one perch produced stimuli indicating which of two keys, if pecked, could produce food (spatial information) and depressing the other perch produced stimuli indicating whether a variable-interval or an extinction schedule was operating (temporal information). The pigeons increased the time they spent depressing the perch that produced the temporal information but did not increase the time they spent depressing the perch that produced the spatial information. In Exp...

  12. The prognostic value of temporal in vitro and in vivo derived hypoxia gene-expression signatures in breast cancer

    International Nuclear Information System (INIS)

    Starmans, Maud H.W.; Chu, Kenneth C.; Haider, Syed; Nguyen, Francis; Seigneuric, Renaud; Magagnin, Michael G.; Koritzinsky, Marianne; Kasprzyk, Arek; Boutros, Paul C.; Wouters, Bradly G.

    2012-01-01

    Background and purpose: Recent data suggest that in vitro and in vivo derived hypoxia gene-expression signatures have prognostic power in breast and possibly other cancers. However, both tumour hypoxia and the biological adaptation to this stress are highly dynamic. Assessment of time-dependent gene-expression changes in response to hypoxia may thus provide additional biological insights and assist in predicting the impact of hypoxia on patient prognosis. Materials and methods: Transcriptome profiling was performed for three cell lines derived from diverse tumour-types after hypoxic exposure at eight time-points, which include a normoxic time-point. Time-dependent sets of co-regulated genes were identified from these data. Subsequently, gene ontology (GO) and pathway analyses were performed. The prognostic power of these novel signatures was assessed in parallel with previous in vitro and in vivo derived hypoxia signatures in a large breast cancer microarray meta-dataset (n = 2312). Results: We identified seven recurrent temporal and two general hypoxia signatures. GO and pathway analyses revealed regulation of both common and unique underlying biological processes within these signatures. None of the new or previously published in vitro signatures consisting of hypoxia-induced genes were prognostic in the large breast cancer dataset. In contrast, signatures of repressed genes, as well as the in vivo derived signatures of hypoxia-induced genes showed clear prognostic power. Conclusions: Only a subset of hypoxia-induced genes in vitro demonstrates prognostic value when evaluated in a large clinical dataset. Despite clear evidence of temporal patterns of gene-expression in vitro, the subset of prognostic hypoxia regulated genes cannot be identified based on temporal pattern alone. In vivo derived signatures appear to identify the prognostic hypoxia induced genes. The prognostic value of hypoxia-repressed genes is likely a surrogate for the known importance of

  13. Temporal gene expression profiling reveals CEBPD as a candidate regulator of brain disease in prosaposin deficient mice

    Directory of Open Access Journals (Sweden)

    Ran Huimin

    2008-08-01

    Full Text Available Abstract Background Prosaposin encodes, in tandem, four small acidic activator proteins (saposins with specificities for glycosphingolipid (GSL hydrolases in lysosomes. Extensive GSL storage occurs in various central nervous system regions in mammalian prosaposin deficiencies. Results Our hypomorphic prosaposin deficient mouse, PS-NA, exhibited 45% WT levels of brain saposins and showed neuropathology that included neuronal GSL storage and Purkinje cell loss. Impairment of neuronal function was observed as early as 6 wks as demonstrated by the narrow bridges tests. Temporal transcriptome microarray analyses of brain tissues were conducted with mRNA from three prosaposin deficient mouse models: PS-NA, prosaposin null (PS-/- and a V394L/V394L glucocerebrosidase mutation combined with PS-NA (4L/PS-NA. Gene expression alterations in cerebrum and cerebellum were detectable at birth preceding the neuronal deficits. Differentially expressed genes encompassed a broad spectrum of cellular functions. The number of down-regulated genes was constant, but up-regulated gene numbers increased with age. CCAAT/enhancer-binding protein delta (CEBPD was the only up-regulated transcription factor in these two brain regions of all three models. Network analyses revealed that CEBPD has functional relationships with genes in transcription, pro-inflammation, cell death, binding, myelin and transport. Conclusion These results show that: 1 Regionally specific gene expression abnormalities precede the brain histological and neuronal function changes, 2 Temporal gene expression profiles provide insights into the molecular mechanism during the GSL storage disease course, and 3 CEBPD is a candidate regulator of brain disease in prosaposin deficiency to participate in modulating disease acceleration or progression.

  14. Gene expression signature is shared by patients with Alzheimer's disease and schizophrenia at the superior temporal gyrus.

    Science.gov (United States)

    Horesh, Y; Katsel, P; Haroutunian, V; Domany, E

    2011-03-01

    Alzheimer's disease and Schizophrenia are two common diseases of the brain with significant differences in neuropathology, etiology and symptoms. This dissimilarity in the two diseases makes a comparison of the two ideal for detecting molecular substrates that are common to brain disorders in general. In this study, we compared gene expression profiles across multiple brain areas, taken postmortem from patients with well-characterized Alzheimer's disease and Schizophrenia, and from cognitively normal control group with no neuro- or psychopathology. Although the totality of gene expression changes in the two diseases is dissimilar, a subset of genes appears to play a role in both diseases in specific brain regions. We find at Brodmann area 22, the superior temporal gyrus, a statistically significant number of genes with apparently disregulated expression in both diseases. Furthermore, we found genes that differentiate the two diseases from the control across multiple brain regions, and note that these genes were usually down-regulated. Brodmann area 8, part of the superior frontal cortex, is relatively abundant with them. We show overwhelming statistical evidence for Alzheimer's and Schizophrenia sharing a specific molecular background at the superior temporal gyrus. We suggest that impairment of the regulation of autophagy pathway is shared, in BA 22, by the two diseases. © 2010 The Author(s). European Journal of Neurology © 2010 EFNS.

  15. Object-location training elicits an overlapping but temporally distinct transcriptional profile from contextual fear conditioning.

    Science.gov (United States)

    Poplawski, Shane G; Schoch, Hannah; Wimmer, Mathieu; Hawk, Joshua D; Walsh, Jennifer L; Giese, Karl P; Abel, Ted

    2014-12-01

    Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Object-Location Training Elicits an Overlapping but Temporally Distinct Transcriptional Profile from Contextual Fear Conditioning

    Science.gov (United States)

    Wimmer, Mathieu; Hawk, Joshua D.; Walsh, Jennifer L.; Giese, Karl P.; Abel, Ted

    2014-01-01

    Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has received less attention. In this study, we used the object-location memory task and studied gene expression at two time points after learning in a high-throughput manner using a microfluidic qPCR approach. We found that expression of the classic immediate-early genes changes after object-location training in a fashion similar to that observed after contextual fear conditioning. However, the temporal dynamics of gene expression are different between the two tasks, with object-location memory producing gene expression changes that last at least 2 hours. Our findings indicate that different training paradigms may give rise to distinct temporal dynamics of gene expression after learning. PMID:25242102

  17. Temporal expression of wound healing-related genes in skin burn injury.

    Science.gov (United States)

    Kubo, Hidemichi; Hayashi, Takahito; Ago, Kazutoshi; Ago, Mihoko; Kanekura, Takuro; Ogata, Mamoru

    2014-01-01

    Determination of the age of burns, as well as of wounds induced mechanically, is essential in forensic practice, particularly in cases of suspected child abuse. Here, we investigated temporal changes in the expression of 13 genes during wound healing after a burn. The expression of cytokines (IL-1β, IL-6, IL-10, TNF-α, and IFN-γ), chemokines (KC, MCP-1), proliferative factors (TGF-β, VEGF), proteases (MMP-2, 9, 13) and type I collagen in murine skin was examined by real-time PCR at 3, 6, 9, and 12 h and 1, 2, 3, 5, 7, and 14 days after a burn. Based on macroscopic and histological appearance, the healing process of a burn consists of 3 phases: inflammatory (from 3 h to 1 day after the burn), proliferative (from 1 to 7 days), and maturation (from 7 to 14 days). Expression of IL-1β, IL-6, TNF-α, IFN-γ and KC increased significantly in a biphasic pattern from 3 or 6 h to 12 h or 1 day and from 3 or 5 days to 7 days. Expression of MCP-1 increased significantly from 6 h to 5 days. Expression of both IL-10 and TGF-β increased significantly from 12 h to 7 days. Expression of VEGF, MMP-2, MMP-13 and type I collagen increased significantly from 3 days to 7 or 14 days. Expression of MMP-9 increased significantly from 6 h to 14 days. Our results suggest that evaluating the expression of a combination of these genes would enable the exact estimation of the age of a burn. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Gene expression and gene therapy imaging

    International Nuclear Information System (INIS)

    Rome, Claire; Couillaud, Franck; Moonen, Chrit T.W.

    2007-01-01

    The fast growing field of molecular imaging has achieved major advances in imaging gene expression, an important element of gene therapy. Gene expression imaging is based on specific probes or contrast agents that allow either direct or indirect spatio-temporal evaluation of gene expression. Direct evaluation is possible with, for example, contrast agents that bind directly to a specific target (e.g., receptor). Indirect evaluation may be achieved by using specific substrate probes for a target enzyme. The use of marker genes, also called reporter genes, is an essential element of MI approaches for gene expression in gene therapy. The marker gene may not have a therapeutic role itself, but by coupling the marker gene to a therapeutic gene, expression of the marker gene reports on the expression of the therapeutic gene. Nuclear medicine and optical approaches are highly sensitive (detection of probes in the picomolar range), whereas MRI and ultrasound imaging are less sensitive and require amplification techniques and/or accumulation of contrast agents in enlarged contrast particles. Recently developed MI techniques are particularly relevant for gene therapy. Amongst these are the possibility to track gene therapy vectors such as stem cells, and the techniques that allow spatiotemporal control of gene expression by non-invasive heating (with MRI guided focused ultrasound) and the use of temperature sensitive promoters. (orig.)

  19. Action Recognition by Joint Spatial-Temporal Motion Feature

    Directory of Open Access Journals (Sweden)

    Weihua Zhang

    2013-01-01

    Full Text Available This paper introduces a method for human action recognition based on optical flow motion features extraction. Automatic spatial and temporal alignments are combined together in order to encourage the temporal consistence on each action by an enhanced dynamic time warping (DTW algorithm. At the same time, a fast method based on coarse-to-fine DTW constraint to improve computational performance without reducing accuracy is induced. The main contributions of this study include (1 a joint spatial-temporal multiresolution optical flow computation method which can keep encoding more informative motion information than recent proposed methods, (2 an enhanced DTW method to improve temporal consistence of motion in action recognition, and (3 coarse-to-fine DTW constraint on motion features pyramids to speed up recognition performance. Using this method, high recognition accuracy is achieved on different action databases like Weizmann database and KTH database.

  20. The role of spatial frequency information in the decoding of facial expressions of pain: a novel hybrid task.

    Science.gov (United States)

    Wang, Shan; Eccleston, Christopher; Keogh, Edmund

    2017-11-01

    Spatial frequency (SF) information contributes to the recognition of facial expressions, including pain. Low-SF encodes facial configuration and structure and often dominates over high-SF information, which encodes fine details in facial features. This low-SF preference has not been investigated within the context of pain. In this study, we investigated whether perpetual preference differences exist for low-SF and high-SF pain information. A novel hybrid expression paradigm was used in which 2 different expressions, one containing low-SF information and the other high-SF information, were combined in a facial hybrid. Participants are instructed to identify the core expression contained within the hybrid, allowing for the measurement of SF information preference. Three experiments were conducted (46 participants in each) that varied the expressions within the hybrid faces: respectively pain-neutral, pain-fear, and pain-happiness. In order to measure the temporal aspects of image processing, each hybrid image was presented for 33, 67, 150, and 300 ms. As expected, identification of pain and other expressions was dominated by low-SF information across the 3 experiments. The low-SF preference was largest when the presentation of hybrid faces was brief and reduced as the presentation duration increased. A sex difference was also found in experiment 1. For women, the low-SF preference was dampened by high-SF pain information, when viewing low-SF neutral expressions. These results not only confirm the role that SF information has in the recognition of pain in facial expressions but suggests that in some situations, there may be sex differences in how pain is communicated.

  1. Gene expression profile data for mouse facial development

    Directory of Open Access Journals (Sweden)

    Sonia M. Leach

    2017-08-01

    Full Text Available This article contains data related to the research articles "Spatial and Temporal Analysis of Gene Expression during Growth and Fusion of the Mouse Facial Prominences" (Feng et al., 2009 [1] and “Systems Biology of facial development: contributions of ectoderm and mesenchyme” (Hooper et al., 2017 In press [2]. Embryonic mammalian craniofacial development is a complex process involving the growth, morphogenesis, and fusion of distinct facial prominences into a functional whole. Aberrant gene regulation during this process can lead to severe craniofacial birth defects, including orofacial clefting. As a means to understand the genes involved in facial development, we had previously dissected the embryonic mouse face into distinct prominences: the mandibular, maxillary or nasal between E10.5 and E12.5. The prominences were then processed intact, or separated into ectoderm and mesenchyme layers, prior analysis of RNA expression using microarrays (Feng et al., 2009, Hooper et al., 2017 in press [1,2]. Here, individual gene expression profiles have been built from these datasets that illustrate the timing of gene expression in whole prominences or in the separated tissue layers. The data profiles are presented as an indexed and clickable list of the genes each linked to a graphical image of that gene׳s expression profile in the ectoderm, mesenchyme, or intact prominence. These data files will enable investigators to obtain a rapid assessment of the relative expression level of any gene on the array with respect to time, tissue, prominence, and expression trajectory.

  2. An Effective Tri-Clustering Algorithm Combining Expression Data with Gene Regulation Information

    Directory of Open Access Journals (Sweden)

    Ao Li

    2009-04-01

    Full Text Available Motivation: Bi-clustering algorithms aim to identify sets of genes sharing similar expression patterns across a subset of conditions. However direct interpretation or prediction of gene regulatory mechanisms may be difficult as only gene expression data is used. Information about gene regulators may also be available, most commonly about which transcription factors may bind to the promoter region and thus control the expression level of a gene. Thus a method to integrate gene expression and gene regulation information is desirable for clustering and analyzing. Methods: By incorporating gene regulatory information with gene expression data, we define regulated expression values (REV as indicators of how a gene is regulated by a specific factor. Existing bi-clustering methods are extended to a three dimensional data space by developing a heuristic TRI-Clustering algorithm. An additional approach named Automatic Boundary Searching algorithm (ABS is introduced to automatically determine the boundary threshold. Results: Results based on incorporating ChIP-chip data representing transcription factor-gene interactions show that the algorithms are efficient and robust for detecting tri-clusters. Detailed analysis of the tri-cluster extracted from yeast sporulation REV data shows genes in this cluster exhibited significant differences during the middle and late stages. The implicated regulatory network was then reconstructed for further study of defined regulatory mechanisms. Topological and statistical analysis of this network demonstrated evidence of significant changes of TF activities during the different stages of yeast sporulation, and suggests this approach might be a general way to study regulatory networks undergoing transformations.

  3. Molecular characterization of cDNAs encoding G protein alpha and beta subunits and study of their temporal and spatial expression patterns in Nicotiana plumbaginifolia Viv.

    Science.gov (United States)

    Kaydamov, C; Tewes, A; Adler, K; Manteuffel, R

    2000-04-25

    We have isolated cDNA sequences encoding alpha and beta subunits of potential G proteins from a cDNA library prepared from somatic embryos of Nicotiana plumbaginifolia Viv. at early developmental stages. The predicted NPGPA1 and NPGPB1 gene products are 75-98% identical to the known respective plant alpha and beta subunits. Southern hybridizations indicate that NPGPA1 is probably a single-copy gene, whereas at least two copies of NPGPB1 exist in the N. plumbaginifolia genome. Northern analyses reveal that both NPGPA1 and NPGPB1 mRNA are expressed in all embryogenic stages and plant tissues examined and their expression is obviously regulated by the plant hormone auxin. Immunohistological localization of NPGPalpha1 and NPGPbeta1 preferentially on plasma and endoplasmic reticulum membranes and their immunochemical detection exclusively in microsomal cell fractions implicate membrane association of both proteins. The temporal and spatial expression patterns of NPGPA1 and NPGPB1 show conformity as well as differences. This could account for not only cooperative, but also individual activities of both subunits during embryogenesis and plant development.

  4. Temporal and spatial variability in North Carolina piedmont stream temperature

    Science.gov (United States)

    J.L. Boggs; G. Sun; S.G. McNulty; W. Swartley; Treasure E.; W. Summer

    2009-01-01

    Understanding temporal and spatial patterns of in-stream temperature can provide useful information to managing future impacts of climate change on these systems. This study will compare temporal patterns and spatial variability of headwater in-stream temperature in six catchments in the piedmont of North Carolina in two different geological regions, Carolina slate...

  5. A transgenic approach to study argininosuccinate synthetase gene expression

    Science.gov (United States)

    2014-01-01

    Background Argininosuccinate synthetase (ASS) participates in urea, nitric oxide and arginine production. Besides transcriptional regulation, a post-transcriptional regulation affecting nuclear precursor RNA stability has been reported. To study whether such post-transcriptional regulation underlines particular temporal and spatial ASS expression, and to investigate how human ASS gene behaves in a mouse background, a transgenic mouse system using a modified bacterial artificial chromosome carrying the human ASS gene tagged with EGFP was employed. Results Two lines of ASS-EGFP transgenic mice were generated: one with EGFP under transcriptional control similar to that of the endogenous ASS gene, another with EGFP under both transcriptional and post-transcriptional regulation as that of the endogenous ASS mRNA. EGFP expression in the liver, the organ for urea production, and in the intestine and kidney that are responsible for arginine biosynthesis, was examined. Organs taken from embryos E14.5 stage to young adult were examined under a fluorescence microscope either directly or after cryosectioning. The levels of EGFP and endogenous mouse Ass mRNAs were also quantified by S1 nuclease mapping. EGFP fluorescence and EGFP mRNA levels in both the liver and kidney were found to increase progressively from embryonic stage toward birth. In contrast, EGFP expression in the intestine was higher in neonates and started to decline at about 3 weeks after birth. Comparison between the EGFP profiles of the two transgenic lines indicated the developmental and tissue-specific regulation was mainly controlled at the transcriptional level. The ASS transgene was of human origin. EGFP expression in the liver followed essentially the mouse Ass pattern as evidenced by zonation distribution of fluorescence and the level of EGFP mRNA at birth. However, in the small intestine, Ass mRNA level declined sharply at 3 week of age, and yet substantial EGFP mRNA was still detectable at this stage

  6. Differential expression pattern of UBX family genes in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Yamauchi, Seiji; Sasagawa, Yohei; Ogura, Teru; Yamanaka, Kunitoshi

    2007-01-01

    UBX (ubiquitin regulatory X)-containing proteins belong to an evolutionary conserved protein family and determine the specificity of p97/VCP/Cdc48p function by binding as its adaptors. Caenorhabditis elegans was found to possess six UBX-containing proteins, named UBXN-1 to -6. However, no general or specific function of them has been revealed. During the course of understanding not only their function but also specified function of p97, we investigated spatial and temporal expression patterns of six ubxn genes in this study. Transcript analyses showed that the expression pattern of each ubxn gene was different throughout worm's development and may show potential developmental dynamics in their function, especially ubxn-5 was expressed specifically in the spermatogenic germline, suggesting a crucial role in spermatogenesis. In addition, as ubxn-4 expression was induced by ER stress, it would function as an ERAD factor in C. elegans. In vivo expression analysis by using GFP translational fusion constructs revealed that six ubxn genes show distinct expression patterns. These results altogether demonstrate that the expression of all six ubxn genes of C. elegans is differently regulated

  7. Muscle wasting and the temporal gene expression pattern in a novel rat intensive care unit model

    Directory of Open Access Journals (Sweden)

    Llano-Diez Monica

    2011-12-01

    Full Text Available Abstract Background Acute quadriplegic myopathy (AQM or critical illness myopathy (CIM is frequently observed in intensive care unit (ICU patients. To elucidate duration-dependent effects of the ICU intervention on molecular and functional networks that control the muscle wasting and weakness associated with AQM, a gene expression profile was analyzed at time points varying from 6 hours to 14 days in a unique experimental rat model mimicking ICU conditions, i.e., post-synaptically paralyzed, mechanically ventilated and extensively monitored animals. Results During the observation period, 1583 genes were significantly up- or down-regulated by factors of two or greater. A significant temporal gene expression pattern was constructed at short (6 h-4 days, intermediate (5-8 days and long (9-14 days durations. A striking early and maintained up-regulation (6 h-14d of muscle atrogenes (muscle ring-finger 1/tripartite motif-containing 63 and F-box protein 32/atrogin-1 was observed, followed by an up-regulation of the proteolytic systems at intermediate and long durations (5-14d. Oxidative stress response genes and genes that take part in amino acid catabolism, cell cycle arrest, apoptosis, muscle development, and protein synthesis together with myogenic factors were significantly up-regulated from 5 to 14 days. At 9-14 d, genes involved in immune response and the caspase cascade were up-regulated. At 5-14d, genes related to contractile (myosin heavy chain and myosin binding protein C, regulatory (troponin, tropomyosin, developmental, caveolin-3, extracellular matrix, glycolysis/gluconeogenesis, cytoskeleton/sarcomere regulation and mitochondrial proteins were down-regulated. An activation of genes related to muscle growth and new muscle fiber formation (increase of myogenic factors and JunB and down-regulation of myostatin and up-regulation of genes that code protein synthesis and translation factors were found from 5 to 14 days. Conclusions Novel

  8. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Data Analysis and Visualization (IDAV) and the Department of Computer Science, University of California, Davis, One Shields Avenue, Davis CA 95616, USA,; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,' ' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; Genomics Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA,; Computer Science Division,University of California, Berkeley, CA, USA,; Computer Science Department, University of California, Irvine, CA, USA,; All authors are with the Berkeley Drosophila Transcription Network Project, Lawrence Berkeley National Laboratory,; Rubel, Oliver; Weber, Gunther H.; Huang, Min-Yu; Bethel, E. Wes; Biggin, Mark D.; Fowlkes, Charless C.; Hendriks, Cris L. Luengo; Keranen, Soile V. E.; Eisen, Michael B.; Knowles, David W.; Malik, Jitendra; Hagen, Hans; Hamann, Bernd

    2008-05-12

    The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii) evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.

  9. Dynamic CRM occupancy reflects a temporal map of developmental progression.

    Science.gov (United States)

    Wilczyński, Bartek; Furlong, Eileen E M

    2010-06-22

    Development is driven by tightly coordinated spatio-temporal patterns of gene expression, which are initiated through the action of transcription factors (TFs) binding to cis-regulatory modules (CRMs). Although many studies have investigated how spatial patterns arise, precise temporal control of gene expression is less well understood. Here, we show that dynamic changes in the timing of CRM occupancy is a prevalent feature common to all TFs examined in a developmental ChIP time course to date. CRMs exhibit complex binding patterns that cannot be explained by the sequence motifs or expression of the TFs themselves. The temporal changes in TF binding are highly correlated with dynamic patterns of target gene expression, which in turn reflect transitions in cellular function during different stages of development. Thus, it is not only the timing of a TF's expression, but also its temporal occupancy in refined time windows, which determines temporal gene expression. Systematic measurement of dynamic CRM occupancy may therefore serve as a powerful method to decode dynamic changes in gene expression driving developmental progression.

  10. Modeling spatial-temporal operations with context-dependent associative memories.

    Science.gov (United States)

    Mizraji, Eduardo; Lin, Juan

    2015-10-01

    We organize our behavior and store structured information with many procedures that require the coding of spatial and temporal order in specific neural modules. In the simplest cases, spatial and temporal relations are condensed in prepositions like "below" and "above", "behind" and "in front of", or "before" and "after", etc. Neural operators lie beneath these words, sharing some similarities with logical gates that compute spatial and temporal asymmetric relations. We show how these operators can be modeled by means of neural matrix memories acting on Kronecker tensor products of vectors. The complexity of these memories is further enhanced by their ability to store episodes unfolding in space and time. How does the brain scale up from the raw plasticity of contingent episodic memories to the apparent stable connectivity of large neural networks? We clarify this transition by analyzing a model that flexibly codes episodic spatial and temporal structures into contextual markers capable of linking different memory modules.

  11. Temporal expression-based analysis of metabolism.

    Directory of Open Access Journals (Sweden)

    Sara B Collins

    Full Text Available Metabolic flux is frequently rerouted through cellular metabolism in response to dynamic changes in the intra- and extra-cellular environment. Capturing the mechanisms underlying these metabolic transitions in quantitative and predictive models is a prominent challenge in systems biology. Progress in this regard has been made by integrating high-throughput gene expression data into genome-scale stoichiometric models of metabolism. Here, we extend previous approaches to perform a Temporal Expression-based Analysis of Metabolism (TEAM. We apply TEAM to understanding the complex metabolic dynamics of the respiratorily versatile bacterium Shewanella oneidensis grown under aerobic, lactate-limited conditions. TEAM predicts temporal metabolic flux distributions using time-series gene expression data. Increased predictive power is achieved by supplementing these data with a large reference compendium of gene expression, which allows us to take into account the unique character of the distribution of expression of each individual gene. We further propose a straightforward method for studying the sensitivity of TEAM to changes in its fundamental free threshold parameter θ, and reveal that discrete zones of distinct metabolic behavior arise as this parameter is changed. By comparing the qualitative characteristics of these zones to additional experimental data, we are able to constrain the range of θ to a small, well-defined interval. In parallel, the sensitivity analysis reveals the inherently difficult nature of dynamic metabolic flux modeling: small errors early in the simulation propagate to relatively large changes later in the simulation. We expect that handling such "history-dependent" sensitivities will be a major challenge in the future development of dynamic metabolic-modeling techniques.

  12. Integration of steady-state and temporal gene expression data for the inference of gene regulatory networks.

    Science.gov (United States)

    Wang, Yi Kan; Hurley, Daniel G; Schnell, Santiago; Print, Cristin G; Crampin, Edmund J

    2013-01-01

    We develop a new regression algorithm, cMIKANA, for inference of gene regulatory networks from combinations of steady-state and time-series gene expression data. Using simulated gene expression datasets to assess the accuracy of reconstructing gene regulatory networks, we show that steady-state and time-series data sets can successfully be combined to identify gene regulatory interactions using the new algorithm. Inferring gene networks from combined data sets was found to be advantageous when using noisy measurements collected with either lower sampling rates or a limited number of experimental replicates. We illustrate our method by applying it to a microarray gene expression dataset from human umbilical vein endothelial cells (HUVECs) which combines time series data from treatment with growth factor TNF and steady state data from siRNA knockdown treatments. Our results suggest that the combination of steady-state and time-series datasets may provide better prediction of RNA-to-RNA interactions, and may also reveal biological features that cannot be identified from dynamic or steady state information alone. Finally, we consider the experimental design of genomics experiments for gene regulatory network inference and show that network inference can be improved by incorporating steady-state measurements with time-series data.

  13. Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation

    Science.gov (United States)

    Song, Huihui

    Remote sensing provides good measurements for monitoring and further analyzing the climate change, dynamics of ecosystem, and human activities in global or regional scales. Over the past two decades, the number of launched satellite sensors has been increasing with the development of aerospace technologies and the growing requirements on remote sensing data in a vast amount of application fields. However, a key technological challenge confronting these sensors is that they tradeoff between spatial resolution and other properties, including temporal resolution, spectral resolution, swath width, etc., due to the limitations of hardware technology and budget constraints. To increase the spatial resolution of data with other good properties, one possible cost-effective solution is to explore data integration methods that can fuse multi-resolution data from multiple sensors, thereby enhancing the application capabilities of available remote sensing data. In this thesis, we propose to fuse the spatial resolution with temporal resolution and spectral resolution, respectively, based on sparse representation theory. Taking the study case of Landsat ETM+ (with spatial resolution of 30m and temporal resolution of 16 days) and MODIS (with spatial resolution of 250m ~ 1km and daily temporal resolution) reflectance, we propose two spatial-temporal fusion methods to combine the fine spatial information of Landsat image and the daily temporal resolution of MODIS image. Motivated by that the images from these two sensors are comparable on corresponding bands, we propose to link their spatial information on available Landsat- MODIS image pair (captured on prior date) and then predict the Landsat image from the MODIS counterpart on prediction date. To well-learn the spatial details from the prior images, we use a redundant dictionary to extract the basic representation atoms for both Landsat and MODIS images based on sparse representation. Under the scenario of two prior Landsat

  14. ‘Amygdala activation and GABAergic gene expression in hippocampal sub-regions at the interplay of stress and spatial learning

    Directory of Open Access Journals (Sweden)

    Osnat eHadad-Ophir

    2014-01-01

    Full Text Available Molecular processes in GABAergic local circuit neurons critically contribute to information processing in the hippocampus and to stress-induced activation of the amygdala. In the current study, we determined expression changes in GABA-related factors induced in subregions of the dorsal hippocampus as well as in the BLA of rats 5h after spatial learning in a Morris Water maze, using laser microdissection and quantitative real-time PCR. Spatial learning resulted in highly selective pattern of changes in hippocampal subregions: gene expression levels of neuropeptide Y were reduced in the hilus of the dentate gyrus, whereas somatostatin was increased in the stratum oriens of CA3. The GABA-synthesizing enzymes GAD65 and GAD67 as well as the neuropeptide cholecystokinin were reduced in stratum oriens of CA1. In the BLA, expression of GAD65 and GAD67 were reduced compared to a handled Control group. These expression patterns were further compared to alterations in a group of rats that have been exposed to the water maze but were not provided with an invisible escape platform. In this Water Exposure group, no expression changes were observed in any of the hippocampal subregions, but a differential regulation of all selected target genes was evident in the BLA. These findings suggest that expression changes of GABAergic factors in the hippocampus are associated with spatial learning, while additional stress effects modulate expression alterations in the BLA. Indeed, while in both experimental groups plasma corticosterone levels were enhanced, only Water Exposure stress activated the basolateral amygdala, as indicated by increased levels of phosphorylated ERK1/2. Altered GABAergic function in the BLA may thus contribute to memory consolidation in the hippocampus, in relation to levels of stress and emotionality associated with the experience.

  15. Making Temporal Search More Central in Spatial Data Infrastructures

    Science.gov (United States)

    Corti, P.; Lewis, B.

    2017-10-01

    A temporally enabled Spatial Data Infrastructure (SDI) is a framework of geospatial data, metadata, users, and tools intended to provide an efficient and flexible way to use spatial information which includes the historical dimension. One of the key software components of an SDI is the catalogue service which is needed to discover, query, and manage the metadata. A search engine is a software system capable of supporting fast and reliable search, which may use any means necessary to get users to the resources they need quickly and efficiently. These techniques may include features such as full text search, natural language processing, weighted results, temporal search based on enrichment, visualization of patterns in distributions of results in time and space using temporal and spatial faceting, and many others. In this paper we will focus on the temporal aspects of search which include temporal enrichment using a time miner - a software engine able to search for date components within a larger block of text, the storage of time ranges in the search engine, handling historical dates, and the use of temporal histograms in the user interface to display the temporal distribution of search results.

  16. Mutual repression enhances the steepness and precision of gene expression boundaries.

    Directory of Open Access Journals (Sweden)

    Thomas R Sokolowski

    Full Text Available Embryonic development is driven by spatial patterns of gene expression that determine the fate of each cell in the embryo. While gene expression is often highly erratic, embryonic development is usually exceedingly precise. In particular, gene expression boundaries are robust not only against intra-embryonic fluctuations such as noise in gene expression and protein diffusion, but also against embryo-to-embryo variations in the morphogen gradients, which provide positional information to the differentiating cells. How development is robust against intra- and inter-embryonic variations is not understood. A common motif in the gene regulation networks that control embryonic development is mutual repression between pairs of genes. To assess the role of mutual repression in the robust formation of gene expression patterns, we have performed large-scale stochastic simulations of a minimal model of two mutually repressing gap genes in Drosophila, hunchback (hb and knirps (kni. Our model includes not only mutual repression between hb and kni, but also the stochastic and cooperative activation of hb by the anterior morphogen Bicoid (Bcd and of kni by the posterior morphogen Caudal (Cad, as well as the diffusion of Hb and Kni between neighboring nuclei. Our analysis reveals that mutual repression can markedly increase the steepness and precision of the gap gene expression boundaries. In contrast to other mechanisms such as spatial averaging and cooperative gene activation, mutual repression thus allows for gene-expression boundaries that are both steep and precise. Moreover, mutual repression dramatically enhances their robustness against embryo-to-embryo variations in the morphogen levels. Finally, our simulations reveal that diffusion of the gap proteins plays a critical role not only in reducing the width of the gap gene expression boundaries via the mechanism of spatial averaging, but also in repairing patterning errors that could arise because of the

  17. AtchitIV gene expression is stimulated under abiotic stresses and is spatially and temporally regulated during embryo development

    Directory of Open Access Journals (Sweden)

    Liliane B. de A. Gerhardt

    2004-01-01

    Full Text Available The expression of AtchitIV gene was analysed in Arabidopsis plants submitted to abiotic stresses. Transcript accumulation was detected in leaves in response to UV light exposure, exogenous salicylic acid administration and wounding. Transgenic Arabidopsis plants carrying AtchitIV promoter::gus fusion also showed differential expression of the reporter gene in response to these treatments. The AtchitIV expression was also analysed during Arabidopsis embryo development. GUS assay demonstrated AtchitIV promoter activation in zygotic embryos from torpedo stage up to full maturation. Promoter deletion analysis indicated that all the 5' cis-acting elements responsible for the specific tissue expression are located in a region of 1083 bp, adjacent to the start of transcription. A negative regulatory region located between portions -1083 and -600 was also observed.

  18. Annotating temporal information in clinical narratives.

    Science.gov (United States)

    Sun, Weiyi; Rumshisky, Anna; Uzuner, Ozlem

    2013-12-01

    Temporal information in clinical narratives plays an important role in patients' diagnosis, treatment and prognosis. In order to represent narrative information accurately, medical natural language processing (MLP) systems need to correctly identify and interpret temporal information. To promote research in this area, the Informatics for Integrating Biology and the Bedside (i2b2) project developed a temporally annotated corpus of clinical narratives. This corpus contains 310 de-identified discharge summaries, with annotations of clinical events, temporal expressions and temporal relations. This paper describes the process followed for the development of this corpus and discusses annotation guideline development, annotation methodology, and corpus quality. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Object-oriented spatial-temporal association rules mining on ocean remote sensing imagery

    International Nuclear Information System (INIS)

    Xue, C J; Dong, Q; Ma, W X

    2014-01-01

    Using the long term marine remote sensing imagery, we develop an object-oriented spatial-temporal association rules mining framework to explore the association rules mining among marine environmental elements. Within the framework, two key issues are addressed. They are how to effectively deal with the related lattices and how to reduce the related dimensions? To deal with the first key issues, this paper develops an object-oriented method for abstracting marine sensitive objects from raster pixels and for representing them with a quadruple. To deal with the second key issues, by embedding the mutual information theory, we construct the direct association pattern tree to reduce the related elements at the first step, and then the Apriori algorithm is used to discover the spatio-temporal associated rules. Finally, Pacific Ocean is taken as a research area and multi- marine remote sensing imagery in recent three decades is used as a case study. The results show that the object-oriented spatio-temporal association rules mining can acquire the associated relationships not only among marine environmental elements in same region, also among the different regions. In addition, the information from association rules mining is much more expressive and informative in space and time than traditional spatio-temporal analysis

  20. Statistical, Spatial and Temporal Mapping of 911 Emergencies in Ecuador

    Directory of Open Access Journals (Sweden)

    Danilo Corral-De-Witt

    2018-01-01

    Full Text Available A public safety answering point (PSAP receives alerts and attends to emergencies that occur in its responsibility area. The analysis of the events related to a PSAP can give us relevant information in order to manage them and to improve the performance of the first response institutions (FRIs associated to every PSAP. However, current emergency systems are growing dramatically in terms of information heterogeneity and the volume of attended requests. In this work, we propose a system for statistical, spatial, and temporal analysis of incidences registered in a PSAP by using simple, yet robust and compact, event representations. The selected and designed temporal analysis tools include seasonal representations and nonparametric confidence intervals (CIs, which dissociate the main seasonal components and the transients. The spatial analysis tools include a straightforward event location over Google Maps and the detection of heat zones by means of bidimensional geographic Parzen windows with automatic width control in terms of the scales and the number of events in the region of interest. Finally, statistical representations are used for jointly analyzing temporal and spatial data in terms of the “time–space slices”. We analyzed the total number of emergencies that were attended during 2014 by seven FRIs articulated in a PSAP at the Ecuadorian 911 Integrated Security Service. Characteristic weekly patterns were observed in institutions such as the police, health, and transit services, whereas annual patterns were observed in firefighter events. Spatial and spatiotemporal analysis showed some expected patterns together with nontrivial differences among different services, to be taken into account for resource management. The proposed analysis allows for a flexible analysis by combining statistical, spatial and temporal information, and it provides 911 service managers with useful and operative information.

  1. Logistic regression for southern pine beetle outbreaks with spatial and temporal autocorrelation

    Science.gov (United States)

    M. L. Gumpertz; C.-T. Wu; John M. Pye

    2000-01-01

    Regional outbreaks of southern pine beetle (Dendroctonus frontalis Zimm.) show marked spatial and temporal patterns. While these patterns are of interest in themselves, we focus on statistical methods for estimating the effects of underlying environmental factors in the presence of spatial and temporal autocorrelation. The most comprehensive available information on...

  2. BiGGEsTS: integrated environment for biclustering analysis of time series gene expression data

    Directory of Open Access Journals (Sweden)

    Madeira Sara C

    2009-07-01

    Full Text Available Abstract Background The ability to monitor changes in expression patterns over time, and to observe the emergence of coherent temporal responses using expression time series, is critical to advance our understanding of complex biological processes. Biclustering has been recognized as an effective method for discovering local temporal expression patterns and unraveling potential regulatory mechanisms. The general biclustering problem is NP-hard. In the case of time series this problem is tractable, and efficient algorithms can be used. However, there is still a need for specialized applications able to take advantage of the temporal properties inherent to expression time series, both from a computational and a biological perspective. Findings BiGGEsTS makes available state-of-the-art biclustering algorithms for analyzing expression time series. Gene Ontology (GO annotations are used to assess the biological relevance of the biclusters. Methods for preprocessing expression time series and post-processing results are also included. The analysis is additionally supported by a visualization module capable of displaying informative representations of the data, including heatmaps, dendrograms, expression charts and graphs of enriched GO terms. Conclusion BiGGEsTS is a free open source graphical software tool for revealing local coexpression of genes in specific intervals of time, while integrating meaningful information on gene annotations. It is freely available at: http://kdbio.inesc-id.pt/software/biggests. We present a case study on the discovery of transcriptional regulatory modules in the response of Saccharomyces cerevisiae to heat stress.

  3. Spatial analysis of biomineralization associated gene expression from the mantle organ of the pearl oyster Pinctada maxima

    Science.gov (United States)

    2011-01-01

    Background Biomineralization is a process encompassing all mineral containing tissues produced within an organism. One of the most dynamic examples of this process is the formation of the mollusk shell, comprising a variety of crystal phases and microstructures. The organic component incorporated within the shell is said to dictate this architecture. However general understanding of how this process is achieved remains ambiguous. The mantle is a conserved organ involved in shell formation throughout molluscs. Specifically the mantle is thought to be responsible for secreting the protein component of the shell. This study employs molecular approaches to determine the spatial expression of genes within the mantle tissue to further the elucidation of the shell biomineralization. Results A microarray platform was custom generated (PmaxArray 1.0) from the pearl oyster Pinctada maxima. PmaxArray 1.0 consists of 4992 expressed sequence tags (ESTs) originating from mantle tissue. This microarray was used to analyze the spatial expression of ESTs throughout the mantle organ. The mantle was dissected into five discrete regions and analyzed for differential gene expression with PmaxArray 1.0. Over 2000 ESTs were determined to be differentially expressed among the tissue sections, identifying five major expression regions. In situ hybridization validated and further localized the expression for a subset of these ESTs. Comparative sequence similarity analysis of these ESTs revealed a number of the transcripts were novel while others showed significant sequence similarities to previously characterized shell related genes. Conclusions This investigation has mapped the spatial distribution for over 2000 ESTs present on PmaxArray 1.0 with reference to specific locations of the mantle. Expression profile clusters have indicated at least five unique functioning zones in the mantle. Three of these zones are likely involved in shell related activities including formation of nacre

  4. New spatial and temporal indices of Indian summer monsoon rainfall

    Science.gov (United States)

    Dwivedi, Sanjeev; Uma, R.; Lakshmi Kumar, T. V.; Narayanan, M. S.; Pokhrel, Samir; Kripalani, R. H.

    2018-02-01

    The overall yearly seasonal performance of Indian southwest monsoon rainfall (ISMR) for the whole Indian land mass is presently expressed by the India Meteorological Department (IMD) by a single number, the total quantum of rainfall. Any particular year is declared as excess/deficit or normal monsoon rainfall year on the basis of this single number. It is well known that monsoon rainfall also has high interannual variability in spatial and temporal scales. To account for these aspects in ISMR, we propose two new spatial and temporal indices. These indices have been calculated using the 115 years of IMD daily 0.25° × 0.25° gridded rainfall data. Both indices seem to go in tandem with the in vogue seasonal quantum index. The anomaly analysis indicates that the indices during excess monsoon years behave randomly, while for deficit monsoon years the phase of all the three indices is the same. Evaluation of these indices is also studied with respect to the existing dynamical indices based on large-scale circulation. It is found that the new temporal indices have better link with circulation indices as compared to the new spatial indices. El Nino and Southern Oscillation (ENSO) especially over the equatorial Pacific Ocean still have the largest influence in both the new indices. However, temporal indices have much better remote influence as compared to that of spatial indices. Linkages over the Indian Ocean regions are very different in both the spatial and temporal indices. Continuous wavelet transform (CWT) analysis indicates that the complete spectrum of oscillation of the QI is shared in the lower oscillation band by the spatial index and in the higher oscillation band by the temporal index. These new indices may give some extra dimension to study Indian summer monsoon variability.

  5. Temporal Changes in Cortical and Hippocampal Expression of Genes Important for Brain Glucose Metabolism Following Controlled Cortical Impact Injury in Mice

    Directory of Open Access Journals (Sweden)

    June Zhou

    2017-09-01

    Full Text Available Traumatic brain injury (TBI causes transient increases and subsequent decreases in brain glucose utilization. The underlying molecular pathways are orchestrated processes and poorly understood. In the current study, we determined temporal changes in cortical and hippocampal expression of genes important for brain glucose/lactate metabolism and the effect of a known neuroprotective drug telmisartan on the expression of these genes after experimental TBI. Adult male C57BL/6J mice (n = 6/group underwent sham or unilateral controlled cortical impact (CCI injury. Their ipsilateral and contralateral cortex and hippocampus were collected 6 h, 1, 3, 7, 14, 21, and 28 days after injury. Expressions of several genes important for brain glucose utilization were determined by qRT-PCR. In results, (1 mRNA levels of three key enzymes in glucose metabolism [hexo kinase (HK 1, pyruvate kinase, and pyruvate dehydrogenase (PDH] were all increased 6 h after injury in the contralateral cortex, followed by decreases at subsequent times in the ipsilateral cortex and hippocampus; (2 capillary glucose transporter Glut-1 mRNA increased, while neuronal glucose transporter Glut-3 mRNA decreased, at various times in the ipsilateral cortex and hippocampus; (3 astrocyte lactate transporter MCT-1 mRNA increased, whereas neuronal lactate transporter MCT-2 mRNA decreased in the ipsilateral cortex and hippocampus; (4 HK2 (an isoform of hexokinase expression increased at all time points in the ipsilateral cortex and hippocampus. GPR81 (lactate receptor mRNA increased at various time points in the ipsilateral cortex and hippocampus. These temporal alterations in gene expression corresponded closely to the patterns of impaired brain glucose utilization reported in both TBI patients and experimental TBI rodents. The observed changes in hippocampal gene expression were delayed and prolonged, when compared with those in the cortex. The patterns of alterations were specific

  6. Disentangling how landscape spatial and temporal heterogeneity affects Savanna birds.

    Directory of Open Access Journals (Sweden)

    Bronwyn Price

    Full Text Available In highly seasonal tropical environments, temporal changes in habitat and resources are a significant determinant of the spatial distribution of species. This study disentangles the effects of spatial and mid to long-term temporal heterogeneity in habitat on the diversity and abundance of savanna birds by testing four competing conceptual models of varying complexity. Focussing on sites in northeast Australia over a 20 year time period, we used ground cover and foliage projected cover surfaces derived from a time series of Landsat Thematic Mapper imagery, rainfall data and site-level vegetation surveys to derive measures of habitat structure at local (1-100 ha and landscape (100-1000s ha scales. We used generalised linear models and an information theoretic approach to test the independent effects of spatial and temporal influences on savanna bird diversity and the abundance of eight species with different life-history behaviours. Of four competing models defining influences on assemblages of savanna birds, the most parsimonious included temporal and spatial variability in vegetation cover and site-scale vegetation structure, suggesting savanna bird species respond to spatial and temporal habitat heterogeneity at both the broader landscape scale and at the fine-scale. The relative weight, strength and direction of the explanatory variables changed with each of the eight species, reflecting their different ecology and behavioural traits. This study demonstrates that variations in the spatial pattern of savanna vegetation over periods of 10 to 20 years at the local and landscape scale strongly affect bird diversity and abundance. Thus, it is essential to monitor and manage both spatial and temporal variability in avian habitat to achieve long-term biodiversity outcomes.

  7. Disentangling how landscape spatial and temporal heterogeneity affects Savanna birds.

    Science.gov (United States)

    Price, Bronwyn; McAlpine, Clive A; Kutt, Alex S; Ward, Doug; Phinn, Stuart R; Ludwig, John A

    2013-01-01

    In highly seasonal tropical environments, temporal changes in habitat and resources are a significant determinant of the spatial distribution of species. This study disentangles the effects of spatial and mid to long-term temporal heterogeneity in habitat on the diversity and abundance of savanna birds by testing four competing conceptual models of varying complexity. Focussing on sites in northeast Australia over a 20 year time period, we used ground cover and foliage projected cover surfaces derived from a time series of Landsat Thematic Mapper imagery, rainfall data and site-level vegetation surveys to derive measures of habitat structure at local (1-100 ha) and landscape (100-1000s ha) scales. We used generalised linear models and an information theoretic approach to test the independent effects of spatial and temporal influences on savanna bird diversity and the abundance of eight species with different life-history behaviours. Of four competing models defining influences on assemblages of savanna birds, the most parsimonious included temporal and spatial variability in vegetation cover and site-scale vegetation structure, suggesting savanna bird species respond to spatial and temporal habitat heterogeneity at both the broader landscape scale and at the fine-scale. The relative weight, strength and direction of the explanatory variables changed with each of the eight species, reflecting their different ecology and behavioural traits. This study demonstrates that variations in the spatial pattern of savanna vegetation over periods of 10 to 20 years at the local and landscape scale strongly affect bird diversity and abundance. Thus, it is essential to monitor and manage both spatial and temporal variability in avian habitat to achieve long-term biodiversity outcomes.

  8. Domestication-driven Gossypium profilin 1 (GhPRF1) gene transduces early flowering phenotype in tobacco by spatial alteration of apical/floral-meristem related gene expression.

    Science.gov (United States)

    Pandey, Dhananjay K; Chaudhary, Bhupendra

    2016-05-13

    Plant profilin genes encode core cell-wall structural proteins and are evidenced for their up-regulation under cotton domestication. Notwithstanding striking discoveries in the genetics of cell-wall organization in plants, little is explicit about the manner in which profilin-mediated molecular interplay and corresponding networks are altered, especially during cellular signalling of apical meristem determinacy and flower development. Here we show that the ectopic expression of GhPRF1 gene in tobacco resulted in the hyperactivation of apical meristem and early flowering phenotype with increased flower number in comparison to the control plants. Spatial expression alteration in CLV1, a key meristem-determinacy gene, is induced by the GhPRF1 overexpression in a WUS-dependent manner and mediates cell signalling to promote flowering. But no such expression alterations are recorded in the GhPRF1-RNAi lines. The GhPRF1 transduces key positive flowering regulator AP1 gene via coordinated expression of FT4, SOC1, FLC1 and FT1 genes involved in the apical-to-floral meristem signalling cascade which is consistent with our in silico profilin interaction data. Remarkably, these positive and negative flowering regulators are spatially controlled by the Actin-Related Protein (ARP) genes, specifically ARP4 and ARP6 in proximate association with profilins. This study provides a novel and systematic link between GhPRF1 gene expression and the flower primordium initiation via up-regulation of the ARP genes, and an insight into the functional characterization of GhPRF1 gene acting upstream to the flowering mechanism. Also, the transgenic plants expressing GhPRF1 gene show an increase in the plant height, internode length, leaf size and plant vigor. Overexpression of GhPRF1 gene induced early and increased flowering in tobacco with enhanced plant vigor. During apical meristem determinacy and flower development, the GhPRF1 gene directly influences key flowering regulators through ARP-genes

  9. Expression of Sox genes in tooth development.

    Science.gov (United States)

    Kawasaki, Katsushige; Kawasaki, Maiko; Watanabe, Momoko; Idrus, Erik; Nagai, Takahiro; Oommen, Shelly; Maeda, Takeyasu; Hagiwara, Nobuko; Que, Jianwen; Sharpe, Paul T; Ohazama, Atsushi

    2015-01-01

    Members of the Sox gene family play roles in many biological processes including organogenesis. We carried out comparative in situ hybridization analysis of seventeen sox genes (Sox1-14, 17, 18, 21) during murine odontogenesis from the epithelial thickening to the cytodifferentiation stages. Localized expression of five Sox genes (Sox6, 9, 13, 14 and 21) was observed in tooth bud epithelium. Sox13 showed restricted expression in the primary enamel knots. At the early bell stage, three Sox genes (Sox8, 11, 17 and 21) were expressed in pre-ameloblasts, whereas two others (Sox5 and 18) showed expression in odontoblasts. Sox genes thus showed a dynamic spatio-temporal expression during tooth development.

  10. A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates

    OpenAIRE

    Lindström, Johan; Szpiro, Adam A; Sampson, Paul D; Oron, Assaf P; Richards, Mark; Larson, Tim V; Sheppard, Lianne

    2013-01-01

    The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implem...

  11. Pitting temporal against spatial integration in schizophrenic patients.

    Science.gov (United States)

    Herzog, Michael H; Brand, Andreas

    2009-06-30

    Schizophrenic patients show strong impairments in visual backward masking possibly caused by deficits on the early stages of visual processing. The underlying aberrant mechanisms are not clearly understood. Spatial as well as temporal processing deficits have been proposed. Here, by combining a spatial with a temporal integration paradigm, we show further evidence that temporal but not spatial processing is impaired in schizophrenic patients. Eleven schizophrenic patients and ten healthy controls were presented with sequences composed of Vernier stimuli. Patients needed significantly longer presentation times for sequentially presented Vernier stimuli to reach a performance level comparable to that of healthy controls (temporal integration deficit). When we added spatial contextual elements to some of the Vernier stimuli, performance changed in a complex but comparable manner in patients and controls (intact spatial integration). Hence, temporal but not spatial processing seems to be deficient in schizophrenia.

  12. Optimal Quantum Spatial Search on Random Temporal Networks

    Science.gov (United States)

    Chakraborty, Shantanav; Novo, Leonardo; Di Giorgio, Serena; Omar, Yasser

    2017-12-01

    To investigate the performance of quantum information tasks on networks whose topology changes in time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of Erdös-Rényi random graphs G (n ,p ), where p is the probability that any two given nodes are connected: After every time interval τ , a new graph G (n ,p ) replaces the previous one. We prove analytically that, for any given p , there is always a range of values of τ for which the running time of the algorithm is optimal, i.e., O (√{n }), even when search on the individual static graphs constituting the temporal network is suboptimal. On the other hand, there are regimes of τ where the algorithm is suboptimal even when each of the underlying static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can exploit temporality to achieve optimal quantum information tasks on dynamical random networks.

  13. Optimal Quantum Spatial Search on Random Temporal Networks.

    Science.gov (United States)

    Chakraborty, Shantanav; Novo, Leonardo; Di Giorgio, Serena; Omar, Yasser

    2017-12-01

    To investigate the performance of quantum information tasks on networks whose topology changes in time, we study the spatial search algorithm by continuous time quantum walk to find a marked node on a random temporal network. We consider a network of n nodes constituted by a time-ordered sequence of Erdös-Rényi random graphs G(n,p), where p is the probability that any two given nodes are connected: After every time interval τ, a new graph G(n,p) replaces the previous one. We prove analytically that, for any given p, there is always a range of values of τ for which the running time of the algorithm is optimal, i.e., O(sqrt[n]), even when search on the individual static graphs constituting the temporal network is suboptimal. On the other hand, there are regimes of τ where the algorithm is suboptimal even when each of the underlying static graphs are sufficiently connected to perform optimal search on them. From this first study of quantum spatial search on a time-dependent network, it emerges that the nontrivial interplay between temporality and connectivity is key to the algorithmic performance. Moreover, our work can be extended to establish high-fidelity qubit transfer between any two nodes of the network. Overall, our findings show that one can exploit temporality to achieve optimal quantum information tasks on dynamical random networks.

  14. Temporal associations for spatial events: the role of the dentate gyrus.

    Science.gov (United States)

    Morris, Andrea M; Curtis, Brian J; Churchwell, John C; Maasberg, David W; Kesner, Raymond P

    2013-11-01

    Previous research suggests that the dorsal dentate gyrus (DG) hippocampal subregion mediates spatial processing functions. However, a novel role for the DG in temporal processing for spatial information has begun to emerge based on the development of a computational model of neurogenesis. According to this model, adult born granule cells in the DG contribute to a temporal associative integration process for events presented closer in time. Currently, there is a paucity of behavioral evidence to support the temporal integration theory. Therefore, we developed a novel behavioral paradigm to investigate the role of the dDG in temporal integration for proximal and distal spatial events. Male Long-Evans rats were randomly assigned to a control group or to receive bilateral intracranial infusions of colchicine into the dDG. Following recovery from surgery, each rat was tested on a cued-recall of sequence paradigm. In this task, animals were allowed to explore identical objects placed in designated spatial locations on a cheeseboard maze across 2 days (e.g., Day 1: A and B; Day 2: C and D). One week later, animals were given a brief cue (A or C) followed by a preference test between spatial location B and D. Control animals had a significant preference for the spatial location previously paired with the cue (the temporal associate) whereas dDG lesioned animals failed to show a preference. These findings suggest that selective colchicine-induced dDG lesions are capable of disrupting the formation of temporal associations between spatial events presented close in time. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. MedTime: a temporal information extraction system for clinical narratives.

    Science.gov (United States)

    Lin, Yu-Kai; Chen, Hsinchun; Brown, Randall A

    2013-12-01

    Temporal information extraction from clinical narratives is of critical importance to many clinical applications. We participated in the EVENT/TIMEX3 track of the 2012 i2b2 clinical temporal relations challenge, and presented our temporal information extraction system, MedTime. MedTime comprises a cascade of rule-based and machine-learning pattern recognition procedures. It achieved a micro-averaged f-measure of 0.88 in both the recognitions of clinical events and temporal expressions. We proposed and evaluated three time normalization strategies to normalize relative time expressions in clinical texts. The accuracy was 0.68 in normalizing temporal expressions of dates, times, durations, and frequencies. This study demonstrates and evaluates the integration of rule-based and machine-learning-based approaches for high performance temporal information extraction from clinical narratives. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Temporal scaling and spatial statistical analyses of groundwater level fluctuations

    Science.gov (United States)

    Sun, H.; Yuan, L., Sr.; Zhang, Y.

    2017-12-01

    Natural dynamics such as groundwater level fluctuations can exhibit multifractionality and/or multifractality due likely to multi-scale aquifer heterogeneity and controlling factors, whose statistics requires efficient quantification methods. This study explores multifractionality and non-Gaussian properties in groundwater dynamics expressed by time series of daily level fluctuation at three wells located in the lower Mississippi valley, after removing the seasonal cycle in the temporal scaling and spatial statistical analysis. First, using the time-scale multifractional analysis, a systematic statistical method is developed to analyze groundwater level fluctuations quantified by the time-scale local Hurst exponent (TS-LHE). Results show that the TS-LHE does not remain constant, implying the fractal-scaling behavior changing with time and location. Hence, we can distinguish the potentially location-dependent scaling feature, which may characterize the hydrology dynamic system. Second, spatial statistical analysis shows that the increment of groundwater level fluctuations exhibits a heavy tailed, non-Gaussian distribution, which can be better quantified by a Lévy stable distribution. Monte Carlo simulations of the fluctuation process also show that the linear fractional stable motion model can well depict the transient dynamics (i.e., fractal non-Gaussian property) of groundwater level, while fractional Brownian motion is inadequate to describe natural processes with anomalous dynamics. Analysis of temporal scaling and spatial statistics therefore may provide useful information and quantification to understand further the nature of complex dynamics in hydrology.

  17. Validation of suitable reference genes for expression studies in different pilocarpine-induced models of mesial temporal lobe epilepsy.

    Directory of Open Access Journals (Sweden)

    Thalita Ewellyn Batista Sales Marques

    Full Text Available It is well recognized that the reference gene in a RT-qPCR should be properly validated to ensure that gene expression is unaffected by the experimental condition. We investigated eight potential reference genes in two different pilocarpine PILO-models of mesial temporal lobe epilepsy (MTLE performing a stability expression analysis using geNorm, NormFinder and BestKepeer softwares. Then, as a validation strategy, we conducted a relative expression analysis of the Gfap gene. Our results indicate that in the systemic PILO-model Actb, Gapdh, Rplp1, Tubb2a and Polr1a mRNAs were highly stable in hippocampus of rats from all experimental and control groups, whereas Gusb revealed to be the most variable one. In fact, we observed that using Gusb for normalization, the relative mRNA levels of the Gfap gene differed from those obtained with stable genes. On the contrary, in the intrahippocampal PILO-model, all softwares included Gusb as a stable gene, whereas B2m was indicated as the worst candidate gene. The results obtained for the other reference genes were comparable to those observed for the systemic Pilo-model. The validation of these data by the analysis of the relative expression of Gfap showed that the upregulation of the Gfap gene in the hippocampus of rats sacrificed 24 hours after status epilepticus (SE was undetected only when B2m was used as the normalizer. These findings emphasize that a gene that is stable in one pathology model may not be stable in a different experimental condition related to the same pathology and therefore, the choice of reference genes depends on study design.

  18. Zebrafish Expression Ontology of Gene Sets (ZEOGS): A Tool to Analyze Enrichment of Zebrafish Anatomical Terms in Large Gene Sets

    Science.gov (United States)

    Marsico, Annalisa

    2013-01-01

    Abstract The zebrafish (Danio rerio) is an established model organism for developmental and biomedical research. It is frequently used for high-throughput functional genomics experiments, such as genome-wide gene expression measurements, to systematically analyze molecular mechanisms. However, the use of whole embryos or larvae in such experiments leads to a loss of the spatial information. To address this problem, we have developed a tool called Zebrafish Expression Ontology of Gene Sets (ZEOGS) to assess the enrichment of anatomical terms in large gene sets. ZEOGS uses gene expression pattern data from several sources: first, in situ hybridization experiments from the Zebrafish Model Organism Database (ZFIN); second, it uses the Zebrafish Anatomical Ontology, a controlled vocabulary that describes connected anatomical structures; and third, the available connections between expression patterns and anatomical terms contained in ZFIN. Upon input of a gene set, ZEOGS determines which anatomical structures are overrepresented in the input gene set. ZEOGS allows one for the first time to look at groups of genes and to describe them in terms of shared anatomical structures. To establish ZEOGS, we first tested it on random gene selections and on two public microarray datasets with known tissue-specific gene expression changes. These tests showed that ZEOGS could reliably identify the tissues affected, whereas only very few enriched terms to none were found in the random gene sets. Next we applied ZEOGS to microarray datasets of 24 and 72 h postfertilization zebrafish embryos treated with beclomethasone, a potent glucocorticoid. This analysis resulted in the identification of several anatomical terms related to glucocorticoid-responsive tissues, some of which were stage-specific. Our studies highlight the ability of ZEOGS to extract spatial information from datasets derived from whole embryos, indicating that ZEOGS could be a useful tool to automatically analyze gene

  19. Zebrafish Expression Ontology of Gene Sets (ZEOGS): a tool to analyze enrichment of zebrafish anatomical terms in large gene sets.

    Science.gov (United States)

    Prykhozhij, Sergey V; Marsico, Annalisa; Meijsing, Sebastiaan H

    2013-09-01

    The zebrafish (Danio rerio) is an established model organism for developmental and biomedical research. It is frequently used for high-throughput functional genomics experiments, such as genome-wide gene expression measurements, to systematically analyze molecular mechanisms. However, the use of whole embryos or larvae in such experiments leads to a loss of the spatial information. To address this problem, we have developed a tool called Zebrafish Expression Ontology of Gene Sets (ZEOGS) to assess the enrichment of anatomical terms in large gene sets. ZEOGS uses gene expression pattern data from several sources: first, in situ hybridization experiments from the Zebrafish Model Organism Database (ZFIN); second, it uses the Zebrafish Anatomical Ontology, a controlled vocabulary that describes connected anatomical structures; and third, the available connections between expression patterns and anatomical terms contained in ZFIN. Upon input of a gene set, ZEOGS determines which anatomical structures are overrepresented in the input gene set. ZEOGS allows one for the first time to look at groups of genes and to describe them in terms of shared anatomical structures. To establish ZEOGS, we first tested it on random gene selections and on two public microarray datasets with known tissue-specific gene expression changes. These tests showed that ZEOGS could reliably identify the tissues affected, whereas only very few enriched terms to none were found in the random gene sets. Next we applied ZEOGS to microarray datasets of 24 and 72 h postfertilization zebrafish embryos treated with beclomethasone, a potent glucocorticoid. This analysis resulted in the identification of several anatomical terms related to glucocorticoid-responsive tissues, some of which were stage-specific. Our studies highlight the ability of ZEOGS to extract spatial information from datasets derived from whole embryos, indicating that ZEOGS could be a useful tool to automatically analyze gene expression

  20. Spatial-temporal data model and fractal analysis of transportation network in GIS environment

    Science.gov (United States)

    Feng, Yongjiu; Tong, Xiaohua; Li, Yangdong

    2008-10-01

    How to organize transportation data characterized by multi-time, multi-scale, multi-resolution and multi-source is one of the fundamental problems of GIS-T development. A spatial-temporal data model for GIS-T is proposed based on Spatial-temporal- Object Model. Transportation network data is systemically managed using dynamic segmentation technologies. And then a spatial-temporal database is built to integrally store geographical data of multi-time for transportation. Based on the spatial-temporal database, functions of spatial analysis of GIS-T are substantively extended. Fractal module is developed to improve the analyzing in intensity, density, structure and connectivity of transportation network based on the validation and evaluation of topologic relation. Integrated fractal with GIS-T strengthens the functions of spatial analysis and enriches the approaches of data mining and knowledge discovery of transportation network. Finally, the feasibility of the model and methods are tested thorough Guangdong Geographical Information Platform for Highway Project.

  1. Spatial-temporal modeling of malware propagation in networks.

    Science.gov (United States)

    Chen, Zesheng; Ji, Chuanyi

    2005-09-01

    Network security is an important task of network management. One threat to network security is malware (malicious software) propagation. One type of malware is called topological scanning that spreads based on topology information. The focus of this work is on modeling the spread of topological malwares, which is important for understanding their potential damages, and for developing countermeasures to protect the network infrastructure. Our model is motivated by probabilistic graphs, which have been widely investigated in machine learning. We first use a graphical representation to abstract the propagation of malwares that employ different scanning methods. We then use a spatial-temporal random process to describe the statistical dependence of malware propagation in arbitrary topologies. As the spatial dependence is particularly difficult to characterize, the problem becomes how to use simple (i.e., biased) models to approximate the spatially dependent process. In particular, we propose the independent model and the Markov model as simple approximations. We conduct both theoretical analysis and extensive simulations on large networks using both real measurements and synthesized topologies to test the performance of the proposed models. Our results show that the independent model can capture temporal dependence and detailed topology information and, thus, outperforms the previous models, whereas the Markov model incorporates a certain spatial dependence and, thus, achieves a greater accuracy in characterizing both transient and equilibrium behaviors of malware propagation.

  2. Markup of temporal information in electronic health records.

    Science.gov (United States)

    Hyun, Sookyung; Bakken, Suzanne; Johnson, Stephen B

    2006-01-01

    Temporal information plays a critical role in the understanding of clinical narrative (i.e., free text). We developed a representation for marking up temporal information in a narrative, consisting of five elements: 1) reference point, 2) direction, 3) number, 4) time unit, and 5) pattern. We identified 254 temporal expressions from 50 discharge summaries and represented them using our scheme. The overall inter-rater reliability among raters applying the representation model was 75 percent agreement. The model can contribute to temporal reasoning in computer systems for decision support, data mining, and process and outcomes analyses by providing structured temporal information.

  3. Visual Statistical Learning Works after Binding the Temporal Sequences of Shapes and Spatial Positions

    Directory of Open Access Journals (Sweden)

    Osamu Watanabe

    2011-05-01

    Full Text Available The human visual system can acquire the statistical structures in temporal sequences of object feature changes, such as changes in shape, color, and its combination. Here we investigate whether the statistical learning for spatial position and shape changes operates separately or not. It is known that the visual system processes these two types of information separately; the spatial information is processed in the parietal cortex, whereas object shapes and colors are detected in the temporal pathway, and, after that, we perceive bound information in the two streams. We examined whether the statistical learning operates before or after binding the shape and the spatial information by using the “re-paired triplet” paradigm proposed by Turk-Browne, Isola, Scholl, and Treat (2008. The result showed that observers acquired combined sequences of shape and position changes, but no statistical information in individual sequence was obtained. This finding suggests that the visual statistical learning works after binding the temporal sequences of shapes and spatial structures and would operate in the higher-order visual system; this is consistent with recent ERP (Abla & Okanoya, 2009 and fMRI (Turk-Browne, Scholl, Chun, & Johnson, 2009 studies.

  4. A Spatial Control for Correct Timing of Gene Expression during the Escherichia coli Cell Cycle

    Directory of Open Access Journals (Sweden)

    Yuan Yao

    2016-12-01

    Full Text Available Temporal transcriptions of genes are achieved by different mechanisms such as dynamic interaction of activator and repressor proteins with promoters, and accumulation and/or degradation of key regulators as a function of cell cycle. We find that the TorR protein localizes to the old poles of the Escherichia coli cells, forming a functional focus. The TorR focus co-localizes with the nucleoid in a cell-cycle-dependent manner, and consequently regulates transcription of a number of genes. Formation of one TorR focus at the old poles of cells requires interaction with the MreB and DnaK proteins, and ATP, suggesting that TorR delivery requires cytoskeleton organization and ATP. Further, absence of the protein–protein interactions and ATP leads to loss in function of TorR as a transcription factor. We propose a mechanism for timing of cell-cycle-dependent gene transcription, where a transcription factor interacts with its target genes during a specific period of the cell cycle by limiting its own spatial distribution.

  5. Over-expression of Gene FaASR Promotes Strawberry Fruit Coloring

    Directory of Open Access Journals (Sweden)

    Liu Zhongjie

    2015-11-01

    Full Text Available Fruit development and ripening is a complicate process. Although much progress has been made on the ripenig process, the molecular mechamism of fruit development is not yet clear. In this study, we used ‘Sweet Charlie’ strawberry as test materials, based on cloning the strawberries ASR homologous gene, we carried out the bioinformatics and temporal expression analysis of FaASR, by manipulating ASR gene expression level in strawberry fruit, we tested the changes of physiological indicators, including sugar, ABA, pigments content, and fruit firmness, as well as phenotypic changes. In addition, we measured the expression changes of some anthocyanin-related gene, such as CHS and UFGT, by which we revealed the regulation mechanisms of ASR gene over strawberry fruit ripening. Strawberry ASR contained a typical domain of ABA/WDS that was related to fruit ripening and stress-resistance, and ASR gene over-expression could promote strawberry fruit coloring, endogenous ABA and sucrose accumulation, fruit softening, and induced the transcription levels of anthocyanin-related genes CHS and UFGT. The present study will further reveal the molecular mechanisms of information transmission in fruit development, and will also play an important foundation for future molecular improvement of strawberries breeding.

  6. Repetitive Imaging of Reporter Gene Expression in the Lung

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Richard

    2003-10-01

    Full Text Available Positron emission tomographic imaging is emerging as a powerful technology to monitor reporter transgene expression in the lungs and other organs. However, little information is available about its usefulness for studying gene expression over time. Therefore, we infected 20 rats with a replication-deficient adenovirus containing a fusion gene encoding for a mutant Herpes simplex virus type-1 thymidine kinase and an enhanced green fluorescent protein. Five additional rats were infected with a control virus. Pulmonary gene transfer was performed via intratracheal administration of vector using a surfactant-based method. Imaging was performed 4–6 hr, and 4, 7, and 10 days after gene transfer, using 9-(4-[18F]-fluoro-3-hydroxymethylbutylguanine, an imaging substrate for the mutant kinase. Lung tracer uptake assessed with imaging was moderately but significantly increased 4–6 hr after gene transfer, was maximal after 4 days, and was no longer detectable by 10 days. The temporal pattern of transgene expression measured ex vivo with in vitro assays of thymidine kinase activity and green fluorescent protein was similar to imaging. In conclusion, positron emission tomography is a reliable new tool to evaluate the onset and duration of reporter gene expression noninvasively in the lungs of intact animals.

  7. Light-regulated promoters for tunable, temporal, and affordable control of fungal gene expression.

    Science.gov (United States)

    Fuller, Kevin K; Dunlap, Jay C; Loros, Jennifer J

    2018-05-01

    Regulatable promoters are important genetic tools, particularly for assigning function to essential and redundant genes. They can also be used to control the expression of enzymes that influence metabolic flux or protein secretion, thereby optimizing product yield in bioindustry. This review will focus on regulatable systems for use in filamentous fungi, an important group of organisms whose members include key research models, devastating pathogens of plants and animals, and exploitable cell factories. Though we will begin by cataloging those promoters that are controlled by nutritional or chemical means, our primary focus will rest on those who can be controlled by a literal flip-of-the-switch: promoters of light-regulated genes. The vvd promoter of Neurospora will first serve as a paradigm for how light-driven systems can provide tight, robust, tunable, and temporal control of either autologous or heterologous fungal proteins. We will then discuss a theoretical approach to, and practical considerations for, the development of such promoters in other species. To this end, we have compiled genes from six previously published light-regulated transcriptomic studies to guide the search for suitable photoregulatable promoters in your fungus of interest.

  8. Spatial-Temporal Clustering of Tornadoes

    Science.gov (United States)

    Malamud, Bruce D.; Turcotte, Donald L.; Brooks, Harold E.

    2017-04-01

    The standard measure of the intensity of a tornado is the Enhanced Fujita scale, which is based qualitatively on the damage caused by a tornado. An alternative measure of tornado intensity is the tornado path length, L. Here we examine the spatial-temporal clustering of severe tornadoes, which we define as having path lengths L ≥ 10 km. Of particular concern are tornado outbreaks, when a large number of severe tornadoes occur in a day in a restricted region. We apply a spatial-temporal clustering analysis developed for earthquakes. We take all pairs of severe tornadoes in observed and modelled outbreaks, and for each pair plot the spatial lag (distance between touchdown points) against the temporal lag (time between touchdown points). We apply our spatial-temporal lag methodology to the intense tornado outbreaks in the central United States on 26 and 27 April 2011, which resulted in over 300 fatalities and produced 109 severe (L ≥ 10 km) tornadoes. The patterns of spatial-temporal lag correlations that we obtain for the 2 days are strikingly different. On 26 April 2011, there were 45 severe tornadoes and our clustering analysis is dominated by a complex sequence of linear features. We associate the linear patterns with the tornadoes generated in either a single cell thunderstorm or a closely spaced cluster of single cell thunderstorms moving at a near-constant velocity. Our study of a derecho tornado outbreak of six severe tornadoes on 4 April 2011 along with modelled outbreak scenarios confirms this association. On 27 April 2011, there were 64 severe tornadoes and our clustering analysis is predominantly random with virtually no embedded linear patterns. We associate this pattern with a large number of interacting supercell thunderstorms generating tornadoes randomly in space and time. In order to better understand these associations, we also applied our approach to the Great Plains tornado outbreak of 3 May 1999. Careful studies by others have associated

  9. Evaluation of gene-expression clustering via mutual information distance measure

    Directory of Open Access Journals (Sweden)

    Maimon Oded

    2007-03-01

    Full Text Available Abstract Background The definition of a distance measure plays a key role in the evaluation of different clustering solutions of gene expression profiles. In this empirical study we compare different clustering solutions when using the Mutual Information (MI measure versus the use of the well known Euclidean distance and Pearson correlation coefficient. Results Relying on several public gene expression datasets, we evaluate the homogeneity and separation scores of different clustering solutions. It was found that the use of the MI measure yields a more significant differentiation among erroneous clustering solutions. The proposed measure was also used to analyze the performance of several known clustering algorithms. A comparative study of these algorithms reveals that their "best solutions" are ranked almost oppositely when using different distance measures, despite the found correspondence between these measures when analysing the averaged scores of groups of solutions. Conclusion In view of the results, further attention should be paid to the selection of a proper distance measure for analyzing the clustering of gene expression data.

  10. Spatial-Temporal Event Detection from Geo-Tagged Tweets

    Directory of Open Access Journals (Sweden)

    Yuqian Huang

    2018-04-01

    Full Text Available As one of the most popular social networking services in the world, Twitter allows users to post messages along with their current geographic locations. Such georeferenced or geo-tagged Twitter datasets can benefit location-based services, targeted advertising and geosocial studies. Our study focused on the detection of small-scale spatial-temporal events and their textual content. First, we used Spatial-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN to spatially-temporally cluster the tweets. Then, the word frequencies were summarized for each cluster and the potential topics were modeled by the Latent Dirichlet Allocation (LDA algorithm. Using two years of Twitter data from four college cities in the U.S., we were able to determine the spatial-temporal patterns of two known events, two unknown events and one recurring event, which then were further explored and modeled to identify the semantic content about the events. This paper presents our process and recommendations for both finding event-related tweets as well as understanding the spatial-temporal behaviors and semantic natures of the detected events.

  11. Selective spatial enhancement: Attentional spotlight size impacts spatial but not temporal perception.

    Science.gov (United States)

    Goodhew, Stephanie C; Shen, Elizabeth; Edwards, Mark

    2016-08-01

    An important but often neglected aspect of attention is how changes in the attentional spotlight size impact perception. The zoom-lens model predicts that a small ("focal") attentional spotlight enhances all aspects of perception relative to a larger ("diffuse" spotlight). However, based on the physiological properties of the two major classes of visual cells (magnocellular and parvocellular neurons) we predicted trade-offs in spatial and temporal acuity as a function of spotlight size. Contrary to both of these accounts, however, across two experiments we found that attentional spotlight size affected spatial acuity, such that spatial acuity was enhanced for a focal relative to a diffuse spotlight, whereas the same modulations in spotlight size had no impact on temporal acuity. This likely reflects the function of attention: to induce the high spatial resolution of the fovea in periphery, where spatial resolution is poor but temporal resolution is good. It is adaptive, therefore, for the attentional spotlight to enhance spatial acuity, whereas enhancing temporal acuity does not confer the same benefit.

  12. Spatial and temporal analysis of mass movement using dendrochronology

    NARCIS (Netherlands)

    Braam, R.R.; Weiss, E.E.J.; Burrough, P.A.

    1987-01-01

    Tree growth and inclination on sloping land is affected by mass movement. Suitable analysis of tree growth and tree form can therefore provide considerable information on mass movement activity. This paper reports a new, automated method for studying the temporal and spatial aspects of mass

  13. MASTR: A Technique for Mosaic Mutant Analysis with Spatial and Temporal Control of Recombination Using Conditional Floxed Alleles in Mice

    Directory of Open Access Journals (Sweden)

    Zhimin Lao

    2012-08-01

    Full Text Available Mosaic mutant analysis, the study of cellular defects in scattered mutant cells in a wild-type environment, is a powerful approach for identifying critical functions of genes and has been applied extensively to invertebrate model organisms. A highly versatile technique has been developed in mouse: MASTR (mosaic mutant analysis with spatial and temporal control of recombination, which utilizes the increasing number of floxed alleles and simultaneously combines conditional gene mutagenesis and cell marking for fate analysis. A targeted allele (R26MASTR was engineered; the allele expresses a GFPcre fusion protein following FLP-mediated recombination, which serves the dual function of deleting floxed alleles and marking mutant cells with GFP. Within 24 hr of tamoxifen administration to R26MASTR mice carrying an inducible FlpoER transgene and a floxed allele, nearly all GFP-expressing cells have a mutant allele. The fate of single cells lacking FGF8 or SHH signaling in the developing hindbrain was analyzed using MASTR, and it was revealed that there is only a short time window when neural progenitors require FGFR1 for viability and that granule cell precursors differentiate rapidly when SMO is lost. MASTR is a powerful tool that provides cell-type-specific (spatial and temporal marking of mosaic mutant cells and is broadly applicable to developmental, cancer, and adult stem cell studies.

  14. Temporal and Spatial Categorization in Human and Non-Human Primates

    Directory of Open Access Journals (Sweden)

    Juan Carlos eMendez

    2011-09-01

    Full Text Available It has been proposed that a functional overlap exists in the brain for temporal and spatial information processing. To test this, we designed two relative categorization tasks in which human subjects and a Rhesus monkey had to assign time intervals or distances to a ‘short’ or ‘long’ category according to varying prototypes. The performance of both species was analyzed using psychometric techniques that showed that they may have similar perceptual, memory and/or decision mechanisms, specially for the estimation of time intervals. We also did a correlation analysis with human subjects’ psychometric thresholds and the results imply that indeed, temporal and spatial information categorization share neural substrates. However, not all of the tested distances and intervals correlated with each other, suggesting the existence of sub-circuits that process restricted ranges of distances and intervals. A different analysis was done on the monkey data, in which the influence of the previous categorical prototypes was measured on the task currently being performed. Again, we found a significant interaction between previous and current interval and distance categorization. Overall, the present paper points towards common or at least partially overlapped neural circuits for temporal and spatial categorization in primates.

  15. High-throughput Microarray Detection of Vomeronasal Receptor Gene Expression in Rodents

    Directory of Open Access Journals (Sweden)

    Xiaohong Zhang

    2010-11-01

    Full Text Available We performed comprehensive data mining to explore the vomeronasal receptor (V1R & V2R repertoires in mouse and rat using the mm5 and rn3 genome, respectively. This bioinformatic analysis was followed by investigation of gene expression using a custom designed high-density oligonucleotide array containing all of these receptors and other selected genes of interest. This array enabled us to detect the specific expression of V1R and V2Rs which were previously identified solely based on computational prediction from gene sequence data, thereby establishing that these genes are indeed part of the vomeronasal system, especially the V2Rs. 168 V1Rs and 98 V2Rs were detected to be highly enriched in mouse vomeronasal organ (VNO, and 108 V1Rs and 87 V2Rs in rat VNO. We monitored the expression profile of mouse VR genes in other non-VNO tissues with the result that some VR genes were re-designated as VR-like genes based on their non-olfactory expression pattern. Temporal expression profiles for mouse VR genes were characterized and their patterns were classified, revealing the developmental dynamics of these so-called pheromone receptors. We found numerous patterns of temporal expression which indicate possible behavior-related functions. The uneven composition of VR genes in certain patterns suggests a functional differentiation between the two types of VR genes. We found the coherence between VR genes and transcription factors in terms of their temporal expression patterns. In situ hybridization experiments were performed to evaluate the cell number change over time for selected receptor genes.

  16. Functional Brachyury binding sites establish a temporal read-out of gene expression in the Ciona notochord.

    Directory of Open Access Journals (Sweden)

    Lavanya Katikala

    2013-10-01

    Full Text Available The appearance of the notochord represented a milestone in Deuterostome evolution. The notochord is necessary for the development of the chordate body plan and for the formation of the vertebral column and numerous organs. It is known that the transcription factor Brachyury is required for notochord formation in all chordates, and that it controls transcription of a large number of target genes. However, studies of the structure of the cis-regulatory modules (CRMs through which this control is exerted are complicated in vertebrates by the genomic complexity and the pan-mesodermal expression territory of Brachyury. We used the ascidian Ciona, in which the single-copy Brachyury is notochord-specific and CRMs are easily identifiable, to carry out a systematic characterization of Brachyury-downstream notochord CRMs. We found that Ciona Brachyury (Ci-Bra controls most of its targets directly, through non-palindromic binding sites that function either synergistically or individually to activate early- and middle-onset genes, respectively, while late-onset target CRMs are controlled indirectly, via transcriptional intermediaries. These results illustrate how a transcriptional regulator can efficiently shape a shallow gene regulatory network into a multi-tiered transcriptional output, and provide insights into the mechanisms that establish temporal read-outs of gene expression in a fast-developing chordate embryo.

  17. Functional Brachyury binding sites establish a temporal read-out of gene expression in the Ciona notochord.

    Science.gov (United States)

    Katikala, Lavanya; Aihara, Hitoshi; Passamaneck, Yale J; Gazdoiu, Stefan; José-Edwards, Diana S; Kugler, Jamie E; Oda-Ishii, Izumi; Imai, Janice H; Nibu, Yutaka; Di Gregorio, Anna

    2013-10-01

    The appearance of the notochord represented a milestone in Deuterostome evolution. The notochord is necessary for the development of the chordate body plan and for the formation of the vertebral column and numerous organs. It is known that the transcription factor Brachyury is required for notochord formation in all chordates, and that it controls transcription of a large number of target genes. However, studies of the structure of the cis-regulatory modules (CRMs) through which this control is exerted are complicated in vertebrates by the genomic complexity and the pan-mesodermal expression territory of Brachyury. We used the ascidian Ciona, in which the single-copy Brachyury is notochord-specific and CRMs are easily identifiable, to carry out a systematic characterization of Brachyury-downstream notochord CRMs. We found that Ciona Brachyury (Ci-Bra) controls most of its targets directly, through non-palindromic binding sites that function either synergistically or individually to activate early- and middle-onset genes, respectively, while late-onset target CRMs are controlled indirectly, via transcriptional intermediaries. These results illustrate how a transcriptional regulator can efficiently shape a shallow gene regulatory network into a multi-tiered transcriptional output, and provide insights into the mechanisms that establish temporal read-outs of gene expression in a fast-developing chordate embryo.

  18. G-NEST: A gene neighborhood scoring tool to identify co-conserved, co-expressed genes

    Science.gov (United States)

    In previous studies, gene neighborhoods--spatial clusters of co-expressed genes in the genome--have been defined using arbitrary rules such as requiring adjacency, a minimum number of genes, a fixed window size, or a minimum expression level. In the current study, we developed a Gene Neighborhood Sc...

  19. A model relating Eulerian spatial and temporal velocity correlations

    Science.gov (United States)

    Cholemari, Murali R.; Arakeri, Jaywant H.

    2006-03-01

    In this paper we propose a model to relate Eulerian spatial and temporal velocity autocorrelations in homogeneous, isotropic and stationary turbulence. We model the decorrelation as the eddies of various scales becoming decorrelated. This enables us to connect the spatial and temporal separations required for a certain decorrelation through the ‘eddy scale’. Given either the spatial or the temporal velocity correlation, we obtain the ‘eddy scale’ and the rate at which the decorrelation proceeds. This leads to a spatial separation from the temporal correlation and a temporal separation from the spatial correlation, at any given value of the correlation relating the two correlations. We test the model using experimental data from a stationary axisymmetric turbulent flow with homogeneity along the axis.

  20. Conditional gene expression in the mouse using a Sleeping Beauty gene-trap transposon

    Directory of Open Access Journals (Sweden)

    Hackett Perry B

    2006-06-01

    Full Text Available Abstract Background Insertional mutagenesis techniques with transposable elements have been popular among geneticists studying model organisms from E. coli to Drosophila and, more recently, the mouse. One such element is the Sleeping Beauty (SB transposon that has been shown in several studies to be an effective insertional mutagen in the mouse germline. SB transposon vector studies have employed different functional elements and reporter molecules to disrupt and report the expression of endogenous mouse genes. We sought to generate a transposon system that would be capable of reporting the expression pattern of a mouse gene while allowing for conditional expression of a gene of interest in a tissue- or temporal-specific pattern. Results Here we report the systematic development and testing of a transposon-based gene-trap system incorporating the doxycycline-repressible Tet-Off (tTA system that is capable of activating the expression of genes under control of a Tet response element (TRE promoter. We demonstrate that the gene trap system is fully functional in vitro by introducing the "gene-trap tTA" vector into human cells by transposition and identifying clones that activate expression of a TRE-luciferase transgene in a doxycycline-dependent manner. In transgenic mice, we mobilize gene-trap tTA vectors, discover parameters that can affect germline mobilization rates, and identify candidate gene insertions to demonstrate the in vivo functionality of the vector system. We further demonstrate that the gene-trap can act as a reporter of endogenous gene expression and it can be coupled with bioluminescent imaging to identify genes with tissue-specific expression patterns. Conclusion Akin to the GAL4/UAS system used in the fly, we have made progress developing a tool for mutating and revealing the expression of mouse genes by generating the tTA transactivator in the presence of a secondary TRE-regulated reporter molecule. A vector like the gene

  1. The use of a priori information in ICA-based techniques for real-time fMRI: an evaluation of static/dynamic and spatial/temporal characteristics

    Directory of Open Access Journals (Sweden)

    Nicola eSoldati

    2013-03-01

    Full Text Available Real-time brain functional MRI (rt-fMRI allows in-vivo non-invasive monitoring of neural networks. The use of multivariate data-driven analysis methods such as independent component analysis (ICA offers an attractive trade-off between data interpretability and information extraction, and can be used during both task-based and rest experiments. The purpose of this study was to assess the effectiveness of different ICA-based procedures to monitor in real-time a target IC defined from a functional localizer which also used ICA. Four novel methods were implemented to monitor ongoing brain activity in a sliding window approach. The methods differed in the ways in which a priori information, derived from ICA algorithms, was used to monitora target independent component (IC. We implemented four different algorithms, all based on ICA. One Back-projection method used ICA to derive static spatial information from the functional localizer, off line, which was then back-projected dynamically during the real-time acquisition. The other three methods used real-time ICA algorithms that dynamically exploited temporal, spatial, or spatial-temporal priors during the real-time acquisition. The methods were evaluated by simulating a rt-fMRI experiment that used real fMRI data. The performance of each method was characterized by the spatial and/or temporal correlation with the target IC component monitored, computation time and intrinsic stochastic variability of the algorithms. In this study the Back-projection method, which could monitor more than one IC of interest, outperformed the other methods. These results are consistent with a functional task that gives stable target ICs over time. The dynamic adaptation possibilities offered by the other ICA methods proposed may offer better performance than the Back-projection in conditions where the functional activation shows higher spatial and/or temporal variability.

  2. Quantifying Temporal Autocorrelations for the Expression of Geobacter species mRNA Gene Transcripts at Variable Ammonium Levels during in situ U(VI) Bioremediation

    Science.gov (United States)

    Mouser, P. J.

    2010-12-01

    In order to develop decision-making tools for the prediction and optimization of subsurface bioremediation strategies, we must be able to link the molecular-scale activity of microorganisms involved in remediation processes with biogeochemical processes observed at the field-scale. This requires the ability to quantify changes in the in situ metabolic condition of dominant microbes and associate these changes to fluctuations in nutrient levels throughout the bioremediation process. It also necessitates a need to understand the spatiotemporal variability of the molecular-scale information to develop meaningful parameters and constraint ranges in complex bio-physio-chemical models. The expression of three Geobacter species genes (ammonium transporter (amtB), nitrogen fixation (nifD), and a housekeeping gene (recA)) were tracked at two monitoring locations that differed significantly in ammonium (NH4+) concentrations during a field-scale experiment where acetate was injected into the subsurface to simulate Geobacteraceae in a uranium-contaminated aquifer. Analysis of amtB and nifD mRNA transcript levels indicated that NH4+ was the primary form of fixed nitrogen during bioremediation. Overall expression levels of amtB were on average 8-fold higher at NH4+ concentrations of 300 μM or more than at lower NH4+ levels (average 60 μM). The degree of temporal correlation in Geobacter species mRNA expression levels was calculated at both locations using autocorrelation methods that describe the relationship between sample semi-variance and time lag. At the monitoring location with lower NH4+, a temporal correlation lag of 8 days was observed for both amtB and nifD transcript patterns. At the location where higher NH4+ levels were observed, no discernable temporal correlation lag above the sampling frequency (approximately every 2 days) was observed for amtB or nifD transcript fluctuations. Autocorrelation trends in recA expression levels at both locations indicated that

  3. Temporal changes in rat liver gene expression after acute cadmium and chromium exposure.

    Directory of Open Access Journals (Sweden)

    Michael S Madejczyk

    Full Text Available U.S. Service Members and civilians are at risk of exposure to a variety of environmental health hazards throughout their normal duty activities and in industrial occupations. Metals are widely used in large quantities in a number of industrial processes and are a common environmental toxicant, which increases the possibility of being exposed at toxic levels. While metal toxicity has been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify candidate biomarkers, rats were exposed via a single intraperitoneal injection to three concentrations of CdCl2 and Na(2Cr(2O(7, with livers harvested at 1, 3, or 7 days after exposure. Cd and Cr accumulated in the liver at 1 day post exposure. Cd levels remained elevated over the length of the experiment, while Cr levels declined. Metal exposures induced ROS, including hydroxyl radical (•OH, resulting in DNA strand breaks and lipid peroxidation. Interestingly, ROS and cellular damage appeared to increase with time post-exposure in both metals, despite declines in Cr levels. Differentially expressed genes were identified via microarray analysis. Both metals perturbed gene expression in pathways related to oxidative stress, metabolism, DNA damage, cell cycle, and inflammatory response. This work provides insight into the temporal effects and mechanistic pathways involved in acute metal intoxication, leading to the identification of candidate biomarkers.

  4. Melatonin-Induced Temporal Up-Regulation of Gene Expression Related to Ubiquitin/Proteasome System (UPS in the Human Malaria Parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Fernanda C. Koyama

    2014-12-01

    Full Text Available There is an increasing understanding that melatonin and the ubiquitin/ proteasome system (UPS interact to regulate multiple cellular functions. Post-translational modifications such as ubiquitination are important modulators of signaling processes, cell cycle and many other cellular functions. Previously, we reported a melatonin-induced upregulation of gene expression related to ubiquitin/proteasome system (UPS in Plasmodium falciparum, the human malaria parasite, and that P. falciparum protein kinase 7 influences this process. This implies a role of melatonin, an indolamine, in modulating intraerythrocytic development of the parasite. In this report we demonstrate by qPCR analysis, that melatonin induces gene upregulation in nine out of fourteen genes of the UPS, consisting of the same set of genes previously reported, between 4 to 5 h after melatonin treatment. We demonstrate that melatonin causes a temporally controlled gene expression of UPS members.

  5. Dose and temporal effects on gene expression profiles of urothelial cells from rats exposed to diuron

    International Nuclear Information System (INIS)

    Ihlaseh-Catalano, Shadia M.; Bailey, Kathryn A.; Cardoso, Ana Paula F.; Ren, Hongzu; Fry, Rebecca C.; Camargo, João Lauro V.de; Wolf, Douglas C.

    2014-01-01

    Diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) is a substituted urea herbicide that at high dietary levels (2500 ppm) induces rat urinary bladder hyperplasia after 20 weeks of exposure and neoplasia after 2 years. The effects on the urothelium after short-term exposure have not been described. The present 7-day study evaluated the dose-dependency of urothelial alterations in the urinary bladder using light microscopy, scanning electron microscopy, and genome-wide transcriptional profiling. Male Wistar rats were fed 0, 125, 500, 2500 ppm diuron for 7 days. The urinary bladder and isolated urothelial cells of these animals were processed for microscopic examination and gene expression profiling, respectively. No significant treatment-related morphologic effects were observed. The number of differentially expressed genes (DEGs) in the exposed groups increased with diuron levels. Diuron-altered genes involved in cell-to-cell interactions and tissue organization were identified in all treatment groups. After 7 days of diuron exposure, transcriptional responses were observed in the urothelium in the absence of clear morphologic changes. These morphological findings are different from those observed in a previous study in which 20 weeks of diuron exposure was associated with simple hyperplasia secondary to the persistent cytotoxicity and necrosis associated with continuous cellular regeneration. Comparison of the gene expression profiles of rats exposed to the 2500 ppm carcinogenic diuron dose for 7 days versus 20 weeks revealed few similarities between these two time points at the gene or pathway level. Taken together, these data provide insight into the dose- and temporal-dependent morphological and transcriptional changes associated with diuron exposure that may lead to the development of tumors in the rat urinary bladder

  6. Divergent and nonuniform gene expression patterns in mouse brain

    Science.gov (United States)

    Morris, John A.; Royall, Joshua J.; Bertagnolli, Darren; Boe, Andrew F.; Burnell, Josh J.; Byrnes, Emi J.; Copeland, Cathy; Desta, Tsega; Fischer, Shanna R.; Goldy, Jeff; Glattfelder, Katie J.; Kidney, Jolene M.; Lemon, Tracy; Orta, Geralyn J.; Parry, Sheana E.; Pathak, Sayan D.; Pearson, Owen C.; Reding, Melissa; Shapouri, Sheila; Smith, Kimberly A.; Soden, Chad; Solan, Beth M.; Weller, John; Takahashi, Joseph S.; Overly, Caroline C.; Lein, Ed S.; Hawrylycz, Michael J.; Hohmann, John G.; Jones, Allan R.

    2010-01-01

    Considerable progress has been made in understanding variations in gene sequence and expression level associated with phenotype, yet how genetic diversity translates into complex phenotypic differences remains poorly understood. Here, we examine the relationship between genetic background and spatial patterns of gene expression across seven strains of mice, providing the most extensive cellular-resolution comparative analysis of gene expression in the mammalian brain to date. Using comprehensive brainwide anatomic coverage (more than 200 brain regions), we applied in situ hybridization to analyze the spatial expression patterns of 49 genes encoding well-known pharmaceutical drug targets. Remarkably, over 50% of the genes examined showed interstrain expression variation. In addition, the variability was nonuniformly distributed across strain and neuroanatomic region, suggesting certain organizing principles. First, the degree of expression variance among strains mirrors genealogic relationships. Second, expression pattern differences were concentrated in higher-order brain regions such as the cortex and hippocampus. Divergence in gene expression patterns across the brain could contribute significantly to variations in behavior and responses to neuroactive drugs in laboratory mouse strains and may help to explain individual differences in human responsiveness to neuroactive drugs. PMID:20956311

  7. Retinal Expression of the Drosophila eyes absent Gene Is Controlled by Several Cooperatively Acting Cis-regulatory Elements

    Science.gov (United States)

    Neuman, Sarah D.; Bashirullah, Arash; Kumar, Justin P.

    2016-01-01

    The eyes absent (eya) gene of the fruit fly, Drosophila melanogaster, is a member of an evolutionarily conserved gene regulatory network that controls eye formation in all seeing animals. The loss of eya leads to the complete elimination of the compound eye while forced expression of eya in non-retinal tissues is sufficient to induce ectopic eye formation. Within the developing retina eya is expressed in a dynamic pattern and is involved in tissue specification/determination, cell proliferation, apoptosis, and cell fate choice. In this report we explore the mechanisms by which eya expression is spatially and temporally governed in the developing eye. We demonstrate that multiple cis-regulatory elements function cooperatively to control eya transcription and that spacing between a pair of enhancer elements is important for maintaining correct gene expression. Lastly, we show that the loss of eya expression in sine oculis (so) mutants is the result of massive cell death and a progressive homeotic transformation of retinal progenitor cells into head epidermis. PMID:27930646

  8. Spatial and Temporal Flood Risk Assessment for Decision Making Approach

    Science.gov (United States)

    Azizat, Nazirah; Omar, Wan-Mohd-Sabki Wan

    2018-03-01

    Heavy rainfall, adversely impacting inundation areas, depends on the magnitude of the flood. Significantly, location of settlements, infrastructure and facilities in floodplains result in many regions facing flooding risks. A problem faced by the decision maker in an assessment of flood vulnerability and evaluation of adaptation measures is recurrent flooding in the same areas. Identification of recurrent flooding areas and frequency of floods should be priorities for flood risk management. However, spatial and temporal variability become major factors of uncertainty in flood risk management. Therefore, dynamic and spatial characteristics of these changes in flood impact assessment are important in making decisions about the future of infrastructure development and community life. System dynamics (SD) simulation and hydrodynamic modelling are presented as tools for modelling the dynamic characteristics of flood risk and spatial variability. This paper discusses the integration between spatial and temporal information that is required by the decision maker for the identification of multi-criteria decision problems involving multiple stakeholders.

  9. General theory for integrated analysis of growth, gene, and protein expression in biofilms.

    Science.gov (United States)

    Zhang, Tianyu; Pabst, Breana; Klapper, Isaac; Stewart, Philip S

    2013-01-01

    A theory for analysis and prediction of spatial and temporal patterns of gene and protein expression within microbial biofilms is derived. The theory integrates phenomena of solute reaction and diffusion, microbial growth, mRNA or protein synthesis, biomass advection, and gene transcript or protein turnover. Case studies illustrate the capacity of the theory to simulate heterogeneous spatial patterns and predict microbial activities in biofilms that are qualitatively different from those of planktonic cells. Specific scenarios analyzed include an inducible GFP or fluorescent protein reporter, a denitrification gene repressed by oxygen, an acid stress response gene, and a quorum sensing circuit. It is shown that the patterns of activity revealed by inducible stable fluorescent proteins or reporter unstable proteins overestimate the region of activity. This is due to advective spreading and finite protein turnover rates. In the cases of a gene induced by either limitation for a metabolic substrate or accumulation of a metabolic product, maximal expression is predicted in an internal stratum of the biofilm. A quorum sensing system that includes an oxygen-responsive negative regulator exhibits behavior that is distinct from any stage of a batch planktonic culture. Though here the analyses have been limited to simultaneous interactions of up to two substrates and two genes, the framework applies to arbitrarily large networks of genes and metabolites. Extension of reaction-diffusion modeling in biofilms to the analysis of individual genes and gene networks is an important advance that dovetails with the growing toolkit of molecular and genetic experimental techniques.

  10. Gene expression in cortex and hippocampus during acute pneumococcal meningitis

    Directory of Open Access Journals (Sweden)

    Wittwer Matthias

    2006-06-01

    Full Text Available Abstract Background Pneumococcal meningitis is associated with high mortality (~30% and morbidity. Up to 50% of survivors are affected by neurological sequelae due to a wide spectrum of brain injury mainly affecting the cortex and hippocampus. Despite this significant disease burden, the genetic program that regulates the host response leading to brain damage as a consequence of bacterial meningitis is largely unknown. We used an infant rat model of pneumococcal meningitis to assess gene expression profiles in cortex and hippocampus at 22 and 44 hours after infection and in controls at 22 h after mock-infection with saline. To analyze the biological significance of the data generated by Affymetrix DNA microarrays, a bioinformatics pipeline was used combining (i a literature-profiling algorithm to cluster genes based on the vocabulary of abstracts indexed in MEDLINE (NCBI and (ii the self-organizing map (SOM, a clustering technique based on covariance in gene expression kinetics. Results Among 598 genes differentially regulated (change factor ≥ 1.5; p ≤ 0.05, 77% were automatically assigned to one of 11 functional groups with 94% accuracy. SOM disclosed six patterns of expression kinetics. Genes associated with growth control/neuroplasticity, signal transduction, cell death/survival, cytoskeleton, and immunity were generally upregulated. In contrast, genes related to neurotransmission and lipid metabolism were transiently downregulated on the whole. The majority of the genes associated with ionic homeostasis, neurotransmission, signal transduction and lipid metabolism were differentially regulated specifically in the hippocampus. Of the cell death/survival genes found to be continuously upregulated only in hippocampus, the majority are pro-apoptotic, while those continuously upregulated only in cortex are anti-apoptotic. Conclusion Temporal and spatial analysis of gene expression in experimental pneumococcal meningitis identified potential

  11. Spatial differentiation of gene expression in Aspergillus niger colony grown for sugar beet pulp utilization

    OpenAIRE

    Benoit, Isabelle; Zhou, Miaomiao; Duarte, Alexandra Vivas; Downes, Damien J.; Todd, Richard B.; Kloezen, Wendy; Post, Harm; Heck, Albert J. R.; Altelaar, A. F. Maarten; de Vries, Ronald P.

    2015-01-01

    Degradation of plant biomass to fermentable sugars is of critical importance for the use of plant materials for biofuels. Filamentous fungi are ubiquitous organisms and major plant biomass degraders. Single colonies of some fungal species can colonize massive areas as large as five soccer stadia. During growth, the mycelium encounters heterogeneous carbon sources. Here we assessed whether substrate heterogeneity is a major determinant of spatial gene expression in colonies of Aspergillus nige...

  12. Impaired temporal, not just spatial, resolution in amblyopia.

    Science.gov (United States)

    Spang, Karoline; Fahle, Manfred

    2009-11-01

    In amblyopia, neuronal deficits deteriorate spatial vision including visual acuity, possibly because of a lack of use-dependent fine-tuning of afferents to the visual cortex during infancy; but temporal processing may deteriorate as well. Temporal, rather than spatial, resolution was investigated in patients with amblyopia by means of a task based on time-defined figure-ground segregation. Patients had to indicate the quadrant of the visual field where a purely time-defined square appeared. The results showed a clear decrease in temporal resolution of patients' amblyopic eyes compared with the dominant eyes in this task. The extent of this decrease in figure-ground segregation based on time of motion onset only loosely correlated with the decrease in spatial resolution and spanned a smaller range than did the spatial loss. Control experiments with artificially induced blur in normal observers confirmed that the decrease in temporal resolution was not simply due to the acuity loss. Amblyopia not only decreases spatial resolution, but also temporal factors such as time-based figure-ground segregation, even at high stimulus contrasts. This finding suggests that the realm of neuronal processes that may be disturbed in amblyopia is larger than originally thought.

  13. Spatial and temporal dynamics of the genetic organization of small mammal populations

    International Nuclear Information System (INIS)

    Smith, M.H.; Manlove, M.N.; Joule, J.

    1978-01-01

    A functional population is a group of organisms and their offspring that contributes to a common gene pool within a certain area and time period. It is also the unit of evolution and should be viewed both in quantitative and qualitative terms. Selection, drift, dispersal, and mutation can alter the composition of populations. Spatial heterogeneity in allele frequencies argues for a conceptual model that has a series of relatively small populations semi-isolated from one another. Because of the relatively high levels of genetic variability characteristic of most mammalian species, significant amounts of gene flow between these spatially subdivided populations must occur when longer time periods are considered. Fluctuations in the genetic structure of populations seem to be important in altering the fitness of the individuals within the populations. The interaction of populations through gene flow is important in changing the levels of intrapopulational genetic variability. Populations can be characterized as existing on a continuum from relatively stable to unstable numbers and by other associated changes in their characteristics. Temporal changes in allele frequency occur in a variety of mammals. Conceptually, a species can be viewed as a series of dynamic populations that vary in numbers and quality in both a spatial and temporal context even over short distances and time periods. Short term changes in the quality of individuals in a population can be important in altering the short term dynamics of a population

  14. Interactions between Bmp-4 and Msx-1 act to restrict gene expression to odontogenic mesenchyme.

    Science.gov (United States)

    Tucker, A S; Al Khamis, A; Sharpe, P T

    1998-08-01

    Tooth development is regulated by a reciprocal series of epithelial-mesenchymal interactions. Bmp4 has been identified as a candidate signalling molecule in these interactions, initially as an epithelial signal and then later at the bud stage as a mesenchymal signal (Vainio et al. [1993] Cell 75:45-58). A target gene for Bmp4 signalling is the homeobox gene Msx-1, identified by the ability of recombinant Bmp4 protein to induce expression in mesenchyme. There is, however, no evidence that Bmp4 is the endogenous inducer of Msx-1 expression. Msx-1 and Bmp-4 show dynamic, interactive patterns of expression in oral epithelium and ectomesenchyme during the early stages of tooth development. In this study, we compare the temporal and spatial expression of these two genes to determine whether the changing expression patterns of these genes are consistent with interactions between the two molecules. We show that changes in Bmp-4 expression precede changes in Msx-1 expression. At embryonic day (E)10.5-E11.0, expression patterns are consistent with BMP4 from the epithelium, inducing or maintaining Msx-1 in underlying mesenchyme. At E11.5, Bmp-4 expression shifts from epithelium to mesenchyme and is rapidly followed by localised up-regulation of Msx-1 expression at the sites of Bmp-4 expression. Using cultured explants of developing mandibles, we confirm that exogenous BMP4 is capable of replacing the endogenous source in epithelium and inducing Msx-1 gene expression in mesenchyme. By using noggin, a BMP inhibitor, we show that endogenous Msx-1 expression can be inhibited at E10.5 and E11.5, providing the first evidence that endogenous Bmp-4 from the epithelium is responsible for regulating the early spatial expression of Msx-1. We also show that the mesenchymal shift in Bmp-4 is responsible for up-regulating Msx-1 specifically at the sites of future tooth formation. Thus, we establish that a reciprocal series of interactions act to restrict expression of both genes to future

  15. Using temporal information to construct, update, and retrieve situation models of narratives

    NARCIS (Netherlands)

    Rinck, M.; Hähnel, A.; Becker, G.

    2001-01-01

    Four experiments explored how readers use temporal information to construct and update situation models and retrieve them from memory. In Experiment 1, readers spontaneously constructed temporal and spatial situation models of single sentences. In Experiment 2, temporal inconsistencies caused

  16. Deep convolutional neural networks for annotating gene expression patterns in the mouse brain.

    Science.gov (United States)

    Zeng, Tao; Li, Rongjian; Mukkamala, Ravi; Ye, Jieping; Ji, Shuiwang

    2015-05-07

    Profiling gene expression in brain structures at various spatial and temporal scales is essential to understanding how genes regulate the development of brain structures. The Allen Developing Mouse Brain Atlas provides high-resolution 3-D in situ hybridization (ISH) gene expression patterns in multiple developing stages of the mouse brain. Currently, the ISH images are annotated with anatomical terms manually. In this paper, we propose a computational approach to annotate gene expression pattern images in the mouse brain at various structural levels over the course of development. We applied deep convolutional neural network that was trained on a large set of natural images to extract features from the ISH images of developing mouse brain. As a baseline representation, we applied invariant image feature descriptors to capture local statistics from ISH images and used the bag-of-words approach to build image-level representations. Both types of features from multiple ISH image sections of the entire brain were then combined to build 3-D, brain-wide gene expression representations. We employed regularized learning methods for discriminating gene expression patterns in different brain structures. Results show that our approach of using convolutional model as feature extractors achieved superior performance in annotating gene expression patterns at multiple levels of brain structures throughout four developing ages. Overall, we achieved average AUC of 0.894 ± 0.014, as compared with 0.820 ± 0.046 yielded by the bag-of-words approach. Deep convolutional neural network model trained on natural image sets and applied to gene expression pattern annotation tasks yielded superior performance, demonstrating its transfer learning property is applicable to such biological image sets.

  17. Robust Nonnegative Matrix Factorization via Joint Graph Laplacian and Discriminative Information for Identifying Differentially Expressed Genes

    Directory of Open Access Journals (Sweden)

    Ling-Yun Dai

    2017-01-01

    Full Text Available Differential expression plays an important role in cancer diagnosis and classification. In recent years, many methods have been used to identify differentially expressed genes. However, the recognition rate and reliability of gene selection still need to be improved. In this paper, a novel constrained method named robust nonnegative matrix factorization via joint graph Laplacian and discriminative information (GLD-RNMF is proposed for identifying differentially expressed genes, in which manifold learning and the discriminative label information are incorporated into the traditional nonnegative matrix factorization model to train the objective matrix. Specifically, L2,1-norm minimization is enforced on both the error function and the regularization term which is robust to outliers and noise in gene data. Furthermore, the multiplicative update rules and the details of convergence proof are shown for the new model. The experimental results on two publicly available cancer datasets demonstrate that GLD-RNMF is an effective method for identifying differentially expressed genes.

  18. Multiscale spatial and temporal estimation of the b-value

    Science.gov (United States)

    García-Hernández, R.; D'Auria, L.; Barrancos, J.; Padilla, G.

    2017-12-01

    The estimation of the spatial and temporal variations of the Gutenberg-Richter b-value is of great importance in different seismological applications. One of the problems affecting its estimation is the heterogeneous distribution of the seismicity which makes its estimate strongly dependent upon the selected spatial and/or temporal scale. This is especially important in volcanoes where dense clusters of earthquakes often overlap the background seismicity. Proposed solutions for estimating temporal variations of the b-value include considering equally spaced time intervals or variable intervals having an equal number of earthquakes. Similar approaches have been proposed to image the spatial variations of this parameter as well.We propose a novel multiscale approach, based on the method of Ogata and Katsura (1993), allowing a consistent estimation of the b-value regardless of the considered spatial and/or temporal scales. Our method, named MUST-B (MUltiscale Spatial and Temporal characterization of the B-value), basically consists in computing estimates of the b-value at multiple temporal and spatial scales, extracting for a give spatio-temporal point a statistical estimator of the value, as well as and indication of the characteristic spatio-temporal scale. This approach includes also a consistent estimation of the completeness magnitude (Mc) and of the uncertainties over both b and Mc.We applied this method to example datasets for volcanic (Tenerife, El Hierro) and tectonic areas (Central Italy) as well as an example application at global scale.

  19. Dose and temporal effects on gene expression profiles of urothelial cells from rats exposed to diuron.

    Science.gov (United States)

    Ihlaseh-Catalano, Shadia M; Bailey, Kathryn A; Cardoso, Ana Paula F; Ren, Hongzu; Fry, Rebecca C; de Camargo, João Lauro V; Wolf, Douglas C

    2014-11-05

    Diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) is a substituted urea herbicide that at high dietary levels (2500 ppm) induces rat urinary bladder hyperplasia after 20 weeks of exposure and neoplasia after 2 years. The effects on the urothelium after short-term exposure have not been described. The present 7-day study evaluated the dose-dependency of urothelial alterations in the urinary bladder using light microscopy, scanning electron microscopy, and genome-wide transcriptional profiling. Male Wistar rats were fed 0, 125, 500, 2500 ppm diuron for 7 days. The urinary bladder and isolated urothelial cells of these animals were processed for microscopic examination and gene expression profiling, respectively. No significant treatment-related morphologic effects were observed. The number of differentially expressed genes (DEGs) in the exposed groups increased with diuron levels. Diuron-altered genes involved in cell-to-cell interactions and tissue organization were identified in all treatment groups. After 7 days of diuron exposure, transcriptional responses were observed in the urothelium in the absence of clear morphologic changes. These morphological findings are different from those observed in a previous study in which 20 weeks of diuron exposure was associated with simple hyperplasia secondary to the persistent cytotoxicity and necrosis associated with continuous cellular regeneration. Comparison of the gene expression profiles of rats exposed to the 2500 ppm carcinogenic diuron dose for 7 days versus 20 weeks revealed few similarities between these two time points at the gene or pathway level. Taken together, these data provide insight into the dose- and temporal-dependent morphological and transcriptional changes associated with diuron exposure that may lead to the development of tumors in the rat urinary bladder. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Social Content Recommendation Based on Spatial-Temporal Aware Diffusion Modeling in Social Networks

    Directory of Open Access Journals (Sweden)

    Farman Ullah

    2016-09-01

    Full Text Available User interactions in online social networks (OSNs enable the spread of information and enhance the information dissemination process, but at the same time they exacerbate the information overload problem. In this paper, we propose a social content recommendation method based on spatial-temporal aware controlled information diffusion modeling in OSNs. Users interact more frequently when they are close to each other geographically, have similar behaviors, and fall into similar demographic categories. Considering these facts, we propose multicriteria-based social ties relationship and temporal-aware probabilistic information diffusion modeling for controlled information spread maximization in OSNs. The proposed social ties relationship modeling takes into account user spatial information, content trust, opinion similarity, and demographics. We suggest a ranking algorithm that considers the user ties strength with friends and friends-of-friends to rank users in OSNs and select highly influential injection nodes. These nodes are able to improve social content recommendations, minimize information diffusion time, and maximize information spread. Furthermore, the proposed temporal-aware probabilistic diffusion process categorizes the nodes and diffuses the recommended content to only those users who are highly influential and can enhance information dissemination. The experimental results show the effectiveness of the proposed scheme.

  1. Integrating cross-scale analysis in the spatial and temporal domains for classification of behavioral movement

    Directory of Open Access Journals (Sweden)

    Ali Soleymani

    2014-06-01

    Full Text Available Since various behavioral movement patterns are likely to be valid within different, unique ranges of spatial and temporal scales (e.g., instantaneous, diurnal, or seasonal with the corresponding spatial extents, a cross-scale approach is needed for accurate classification of behaviors expressed in movement. Here, we introduce a methodology for the characterization and classification of behavioral movement data that relies on computing and analyzing movement features jointly in both the spatial and temporal domains. The proposed methodology consists of three stages. In the first stage, focusing on the spatial domain, the underlying movement space is partitioned into several zonings that correspond to different spatial scales, and features related to movement are computed for each partitioning level. In the second stage, concentrating on the temporal domain, several movement parameters are computed from trajectories across a series of temporal windows of increasing sizes, yielding another set of input features for the classification. For both the spatial and the temporal domains, the ``reliable scale'' is determined by an automated procedure. This is the scale at which the best classification accuracy is achieved, using only spatial or temporal input features, respectively. The third stage takes the measures from the spatial and temporal domains of movement, computed at the corresponding reliable scales, as input features for behavioral classification. With a feature selection procedure, the most relevant features contributing to known behavioral states are extracted and used to learn a classification model. The potential of the proposed approach is demonstrated on a dataset of adult zebrafish (Danio rerio swimming movements in testing tanks, following exposure to different drug treatments. Our results show that behavioral classification accuracy greatly increases when firstly cross-scale analysis is used to determine the best analysis scale, and

  2. How does the sparse memory "engram" neurons encode the memory of a spatial-temporal event?

    Directory of Open Access Journals (Sweden)

    Ji-Song Guan

    2016-08-01

    Full Text Available Episodic memory in human brain is not a fixed 2-D picture but a highly dynamic movie serial, integrating information at both the temporal and the spatial domains. Recent studies in neuroscience reveal that memory storage and recall are closely related to the activities in discrete memory engram (trace neurons within the dentate gyrus region of hippocampus and the layer 2/3 of neocortex. More strikingly, optogenetic reactivation of those memory trace neurons is able to trigger the recall of naturally encoded memory. It is still unknown how the discrete memory traces encode and reactivate the memory. Considering a particular memory normally represents a natural event, which consists of information at both the temporal and spatial domains, it is unknown how the discrete trace neurons could reconstitute such enriched information in the brain. Furthermore, as the optogenetic-stimuli induced recall of memory did not depend on firing pattern of the memory traces, it is most likely that the spatial activation pattern, but not the temporal activation pattern of the discrete memory trace neurons encodes the memory in the brain. How does the neural circuit convert the activities in the spatial domain into the temporal domain to reconstitute memory of a natural event? By reviewing the literature, here we present how the memory engram (trace neurons are selected and consolidated in the brain. Then, we will discuss the main challenges in the memory trace theory. In the end, we will provide a plausible model of memory trace cell network, underlying the conversion of neural activities between the spatial domain and the temporal domain. We will also discuss on how the activation of sparse memory trace neurons might trigger the replay of neural activities in specific temporal patterns.

  3. Identification of highly synchronized subnetworks from gene expression data.

    Science.gov (United States)

    Gao, Shouguo; Wang, Xujing

    2013-01-01

    There has been a growing interest in identifying context-specific active protein-protein interaction (PPI) subnetworks through integration of PPI and time course gene expression data. However the interaction dynamics during the biological process under study has not been sufficiently considered previously. Here we propose a topology-phase locking (TopoPL) based scoring metric for identifying active PPI subnetworks from time series expression data. First the temporal coordination in gene expression changes is evaluated through phase locking analysis; The results are subsequently integrated with PPI to define an activity score for each PPI subnetwork, based on individual member expression, as well topological characteristics of the PPI network and of the expression temporal coordination network; Lastly, the subnetworks with the top scores in the whole PPI network are identified through simulated annealing search. Application of TopoPL to simulated data and to the yeast cell cycle data showed that it can more sensitively identify biologically meaningful subnetworks than the method that only utilizes the static PPI topology, or the additive scoring method. Using TopoPL we identified a core subnetwork with 49 genes important to yeast cell cycle. Interestingly, this core contains a protein complex known to be related to arrangement of ribosome subunits that exhibit extremely high gene expression synchronization. Inclusion of interaction dynamics is important to the identification of relevant gene networks.

  4. Imaging gene expression in gene therapy

    International Nuclear Information System (INIS)

    Wiebe, Leonard I.

    1997-01-01

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on 'suicide gene therapy' of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k + ) has been use for 'suicide' in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k + gene expression where the H S V-1 t k + gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([ 18 F]F H P G; [ 18 F]-A C V), and pyrimidine- ([ 123 / 131 I]I V R F U; [ 124 / 131I ]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [ 123 / 131I ]I V R F U imaging with the H S V-1 t k + reporter gene will be presented

  5. Spatial factors as contextual qualifiers of information seeking

    Directory of Open Access Journals (Sweden)

    R. Savolainen

    2006-01-01

    Full Text Available Introduction. This paper investigates the ways in which spatial factors have been approached in information seeking studies. The main attention was focused on studies discussing information seeking on the level of source selection and use. Method. Conceptual analysis of about 100 articles and books thematizing spatial issues of information seeking. Due to research economy, the main attention was paid to studies on everyday life information seeking. Results. Three major viewpoints were identified with regard to the degree of objectivity of spatial factors. The objectifying approach conceives of spatial factors as external and entity-like qualifiers that primarly constrain information seeking. The realistic-pragmatic approach emphasizes the ways in which the availabilty of information sources in different places such as daily work environments orient information seeking. The perspectivist approach focuses on how people subjectively assess the significance of various sources by means of spatial constructs such as information horizons. Conclusion. Spatial factors are centrally important contextual qualifiers of information seeking. There is a need to further explore the potential of the above viewpoints by relating the spatial and temporal factors of information seeking.

  6. Inferring gene dependency network specific to phenotypic alteration based on gene expression data and clinical information of breast cancer.

    Science.gov (United States)

    Zhou, Xionghui; Liu, Juan

    2014-01-01

    Although many methods have been proposed to reconstruct gene regulatory network, most of them, when applied in the sample-based data, can not reveal the gene regulatory relations underlying the phenotypic change (e.g. normal versus cancer). In this paper, we adopt phenotype as a variable when constructing the gene regulatory network, while former researches either neglected it or only used it to select the differentially expressed genes as the inputs to construct the gene regulatory network. To be specific, we integrate phenotype information with gene expression data to identify the gene dependency pairs by using the method of conditional mutual information. A gene dependency pair (A,B) means that the influence of gene A on the phenotype depends on gene B. All identified gene dependency pairs constitute a directed network underlying the phenotype, namely gene dependency network. By this way, we have constructed gene dependency network of breast cancer from gene expression data along with two different phenotype states (metastasis and non-metastasis). Moreover, we have found the network scale free, indicating that its hub genes with high out-degrees may play critical roles in the network. After functional investigation, these hub genes are found to be biologically significant and specially related to breast cancer, which suggests that our gene dependency network is meaningful. The validity has also been justified by literature investigation. From the network, we have selected 43 discriminative hubs as signature to build the classification model for distinguishing the distant metastasis risks of breast cancer patients, and the result outperforms those classification models with published signatures. In conclusion, we have proposed a promising way to construct the gene regulatory network by using sample-based data, which has been shown to be effective and accurate in uncovering the hidden mechanism of the biological process and identifying the gene signature for

  7. Occlusion-Aware Fragment-Based Tracking With Spatial-Temporal Consistency.

    Science.gov (United States)

    Sun, Chong; Wang, Dong; Lu, Huchuan

    2016-08-01

    In this paper, we present a robust tracking method by exploiting a fragment-based appearance model with consideration of both temporal continuity and discontinuity information. From the perspective of probability theory, the proposed tracking algorithm can be viewed as a two-stage optimization problem. In the first stage, by adopting the estimated occlusion state as a prior, the optimal state of the tracked object can be obtained by solving an optimization problem, where the objective function is designed based on the classification score, occlusion prior, and temporal continuity information. In the second stage, we propose a discriminative occlusion model, which exploits both foreground and background information to detect the possible occlusion, and also models the consistency of occlusion labels among different frames. In addition, a simple yet effective training strategy is introduced during the model training (and updating) process, with which the effects of spatial-temporal consistency are properly weighted. The proposed tracker is evaluated by using the recent benchmark data set, on which the results demonstrate that our tracker performs favorably against other state-of-the-art tracking algorithms.

  8. Temporal and spatial scaling impacts on extreme precipitation

    Science.gov (United States)

    Eggert, B.; Berg, P.; Haerter, J. O.; Jacob, D.; Moseley, C.

    2015-01-01

    Both in the current climate and in the light of climate change, understanding of the causes and risk of precipitation extremes is essential for protection of human life and adequate design of infrastructure. Precipitation extreme events depend qualitatively on the temporal and spatial scales at which they are measured, in part due to the distinct types of rain formation processes that dominate extremes at different scales. To capture these differences, we first filter large datasets of high-resolution radar measurements over Germany (5 min temporally and 1 km spatially) using synoptic cloud observations, to distinguish convective and stratiform rain events. In a second step, for each precipitation type, the observed data are aggregated over a sequence of time intervals and spatial areas. The resulting matrix allows a detailed investigation of the resolutions at which convective or stratiform events are expected to contribute most to the extremes. We analyze where the statistics of the two types differ and discuss at which resolutions transitions occur between dominance of either of the two precipitation types. We characterize the scales at which the convective or stratiform events will dominate the statistics. For both types, we further develop a mapping between pairs of spatially and temporally aggregated statistics. The resulting curve is relevant when deciding on data resolutions where statistical information in space and time is balanced. Our study may hence also serve as a practical guide for modelers, and for planning the space-time layout of measurement campaigns. We also describe a mapping between different pairs of resolutions, possibly relevant when working with mismatched model and observational resolutions, such as in statistical bias correction.

  9. Enhanced Deforestation Mapping in North Korea using Spatial-temporal Image Fusion Method and Phenology-based Index

    Science.gov (United States)

    Jin, Y.; Lee, D.

    2017-12-01

    North Korea (the Democratic People's Republic of Korea, DPRK) is known to have some of the most degraded forest in the world. The characteristics of forest landscape in North Korea is complex and heterogeneous, the major vegetation cover types in the forest are hillside farm, unstocked forest, natural forest, and plateau vegetation. Better classification of types in high spatial resolution of deforested areas could provide essential information for decisions about forest management priorities and restoration of deforested areas. For mapping heterogeneous vegetation covers, the phenology-based indices are helpful to overcome the reflectance value confusion that occurs when using one season images. Coarse spatial resolution images may be acquired with a high repetition rate and it is useful for analyzing phenology characteristics, but may not capture the spatial detail of the land cover mosaic of the region of interest. Previous spatial-temporal fusion methods were only capture the temporal change, or focused on both temporal change and spatial change but with low accuracy in heterogeneous landscapes and small patches. In this study, a new concept for spatial-temporal image fusion method focus on heterogeneous landscape was proposed to produce fine resolution images at both fine spatial and temporal resolution. We classified the three types of pixels between the base image and target image, the first type is only reflectance changed caused by phenology, this type of pixels supply the reflectance, shape and texture information; the second type is both reflectance and spectrum changed in some bands caused by phenology like rice paddy or farmland, this type of pixels only supply shape and texture information; the third type is reflectance and spectrum changed caused by land cover type change, this type of pixels don't provide any information because we can't know how land cover changed in target image; and each type of pixels were applied different prediction methods

  10. Dissociable spatial and temporal effects of inhibition of return.

    Directory of Open Access Journals (Sweden)

    Zhiguo Wang

    Full Text Available Inhibition of return (IOR refers to the relative suppression of processing at locations that have recently been attended. It is frequently explored using a spatial cueing paradigm and is characterized by slower responses to cued than to uncued locations. The current study investigates the impact of IOR on overt visual orienting involving saccadic eye movements. Using a spatial cueing paradigm, our experiments have demonstrated that at a cue-target onset asynchrony (CTOA of 400 ms saccades to the vicinity of cued locations are not only delayed (temporal cost but also biased away (spatial effect. Both of these effects are basically no longer present at a CTOA of 1200 ms. At a shorter 200 ms CTOA, the spatial effect becomes stronger while the temporal cost is replaced by a temporal benefit. These findings suggest that IOR has a spatial effect that is dissociable from its temporal effect. Simulations using a neural field model of the superior colliculus (SC revealed that a theory relying on short-term depression (STD of the input pathway can explain most, but not all, temporal and spatial effects of IOR.

  11. Spatial attention does improve temporal discrimination.

    Science.gov (United States)

    Chica, Ana B; Christie, John

    2009-02-01

    It has recently been stated that exogenous attention impairs temporal-resolution tasks (Hein, Rolke, & Ulrich, 2006; Rolke, Dinkelbach, Hein, & Ulrich, 2008; Yeshurun, 2004; Yeshurun & Levy, 2003). In comparisons of performance on spatially cued trials versus neutral cued trials, the results have suggested that spatial attention decreases temporal resolution. However, when performance on cued and uncued trials has been compared in order to equate for cue salience, typically speed-accuracy trade-offs (SATs) have been observed, making the interpretation of the results difficult. In the present experiments, we aimed at studying the effect of spatial attention in temporal resolution while using a procedure to control for SATs. We controlled reaction times (RTs) by constraining the time to respond, so that response decisions would be made within comparable time windows. The results revealed that when RT was controlled, performance was impaired for cued trials as compared with neutral trials, replicating previous findings. However, when cued and uncued trials were compared, performance was actually improved for cued trials as compared with uncued trials. These results suggest that SAT effects may have played an important role in the previous studies, because when they were controlled and measured, the results reversed, revealing that exogenous attention does improve performance on temporal-resolution tasks.

  12. A network-based gene expression signature informs prognosis and treatment for colorectal cancer patients.

    Directory of Open Access Journals (Sweden)

    Mingguang Shi

    Full Text Available Several studies have reported gene expression signatures that predict recurrence risk in stage II and III colorectal cancer (CRC patients with minimal gene membership overlap and undefined biological relevance. The goal of this study was to investigate biological themes underlying these signatures, to infer genes of potential mechanistic importance to the CRC recurrence phenotype and to test whether accurate prognostic models can be developed using mechanistically important genes.We investigated eight published CRC gene expression signatures and found no functional convergence in Gene Ontology enrichment analysis. Using a random walk-based approach, we integrated these signatures and publicly available somatic mutation data on a protein-protein interaction network and inferred 487 genes that were plausible candidate molecular underpinnings for the CRC recurrence phenotype. We named the list of 487 genes a NEM signature because it integrated information from Network, Expression, and Mutation. The signature showed significant enrichment in four biological processes closely related to cancer pathophysiology and provided good coverage of known oncogenes, tumor suppressors, and CRC-related signaling pathways. A NEM signature-based Survival Support Vector Machine prognostic model was trained using a microarray gene expression dataset and tested on an independent dataset. The model-based scores showed a 75.7% concordance with the real survival data and separated patients into two groups with significantly different relapse-free survival (p = 0.002. Similar results were obtained with reversed training and testing datasets (p = 0.007. Furthermore, adjuvant chemotherapy was significantly associated with prolonged survival of the high-risk patients (p = 0.006, but not beneficial to the low-risk patients (p = 0.491.The NEM signature not only reflects CRC biology but also informs patient prognosis and treatment response. Thus, the network

  13. Small regulatory RNAs may sharpen spatial expression patterns.

    Directory of Open Access Journals (Sweden)

    Erel Levine

    2007-11-01

    Full Text Available The precise establishment of gene expression patterns is a crucial step in development. Formation of a sharp boundary between high and low spatial expression domains requires a genetic mechanism that exhibits sensitivity, yet is robust to fluctuations, a demand that may not be easily achieved by morphogens alone. Recently, it has been demonstrated that small RNAs (and, in particular, microRNAs play many roles in embryonic development. Whereas some RNAs are essential for embryogenesis, others are limited to fine-tuning a predetermined gene expression pattern. Here, we explore the possibility that small RNAs participate in sharpening a gene expression profile that was crudely established by a morphogen. To this end, we study a model in which small RNAs interact with a target gene and diffusively move from cell to cell. Though diffusion generally smoothens spatial expression patterns, we find that intercellular mobility of small RNAs is actually critical in sharpening the interface between target expression domains in a robust manner. This sharpening occurs as small RNAs diffuse into regions of low mRNA expression and eliminate target molecules therein, but cannot affect regions of high mRNA levels. We discuss the applicability of our results, as examples, to the case of leaf polarity establishment in maize and Hox patterning in the early Drosophila embryo. Our findings point out the functional significance of some mechanistic properties, such as mobility of small RNAs and the irreversibility of their interactions. These properties are yet to be established directly for most classes of small RNAs. An indirect yet simple experimental test of the proposed mechanism is suggested in some detail.

  14. Temporal instability of viscous liquid microjets with spatially varying surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Furlani, E P [Integrated Materials and Microstructures Laboratory, Electronic Imaging Products, Eastman Kodak Company, Rochester, NY 14650-2121 (United States)

    2005-01-07

    A linear theory is developed for the temporal instability of a viscous liquid microjet of Newtonian fluid with a spatially periodic variation of surface tension imposed along its length. The variation of surface tension induces Marangoni flow within the jet that leads to breakup and drop formation. An analytical expression is derived for the behaviour of the free surface of the microjet. This expression is useful for parametric analysis of jet instability and breakup as a function of jet radius, wavelength and fluid properties.

  15. Temporal instability of viscous liquid microjets with spatially varying surface tension

    International Nuclear Information System (INIS)

    Furlani, E P

    2005-01-01

    A linear theory is developed for the temporal instability of a viscous liquid microjet of Newtonian fluid with a spatially periodic variation of surface tension imposed along its length. The variation of surface tension induces Marangoni flow within the jet that leads to breakup and drop formation. An analytical expression is derived for the behaviour of the free surface of the microjet. This expression is useful for parametric analysis of jet instability and breakup as a function of jet radius, wavelength and fluid properties

  16. Automated discovery of functional generality of human gene expression programs.

    Directory of Open Access Journals (Sweden)

    Georg K Gerber

    2007-08-01

    Full Text Available An important research problem in computational biology is the identification of expression programs, sets of co-expressed genes orchestrating normal or pathological processes, and the characterization of the functional breadth of these programs. The use of human expression data compendia for discovery of such programs presents several challenges including cellular inhomogeneity within samples, genetic and environmental variation across samples, uncertainty in the numbers of programs and sample populations, and temporal behavior. We developed GeneProgram, a new unsupervised computational framework based on Hierarchical Dirichlet Processes that addresses each of the above challenges. GeneProgram uses expression data to simultaneously organize tissues into groups and genes into overlapping programs with consistent temporal behavior, to produce maps of expression programs, which are sorted by generality scores that exploit the automatically learned groupings. Using synthetic and real gene expression data, we showed that GeneProgram outperformed several popular expression analysis methods. We applied GeneProgram to a compendium of 62 short time-series gene expression datasets exploring the responses of human cells to infectious agents and immune-modulating molecules. GeneProgram produced a map of 104 expression programs, a substantial number of which were significantly enriched for genes involved in key signaling pathways and/or bound by NF-kappaB transcription factors in genome-wide experiments. Further, GeneProgram discovered expression programs that appear to implicate surprising signaling pathways or receptor types in the response to infection, including Wnt signaling and neurotransmitter receptors. We believe the discovered map of expression programs involved in the response to infection will be useful for guiding future biological experiments; genes from programs with low generality scores might serve as new drug targets that exhibit minimal

  17. A genome-wide study of DNA methylation patterns and gene expression levels in multiple human and chimpanzee tissues.

    Directory of Open Access Journals (Sweden)

    Athma A Pai

    2011-02-01

    Full Text Available The modification of DNA by methylation is an important epigenetic mechanism that affects the spatial and temporal regulation of gene expression. Methylation patterns have been described in many contexts within and across a range of species. However, the extent to which changes in methylation might underlie inter-species differences in gene regulation, in particular between humans and other primates, has not yet been studied. To this end, we studied DNA methylation patterns in livers, hearts, and kidneys from multiple humans and chimpanzees, using tissue samples for which genome-wide gene expression data were also available. Using the multi-species gene expression and methylation data for 7,723 genes, we were able to study the role of promoter DNA methylation in the evolution of gene regulation across tissues and species. We found that inter-tissue methylation patterns are often conserved between humans and chimpanzees. However, we also found a large number of gene expression differences between species that might be explained, at least in part, by corresponding differences in methylation levels. In particular, we estimate that, in the tissues we studied, inter-species differences in promoter methylation might underlie as much as 12%-18% of differences in gene expression levels between humans and chimpanzees.

  18. Spatial But Not Oculomotor Information Biases Perceptual Memory: Evidence From Face Perception and Cognitive Modeling.

    Science.gov (United States)

    Wantz, Andrea L; Lobmaier, Janek S; Mast, Fred W; Senn, Walter

    2017-08-01

    Recent research put forward the hypothesis that eye movements are integrated in memory representations and are reactivated when later recalled. However, "looking back to nothing" during recall might be a consequence of spatial memory retrieval. Here, we aimed at distinguishing between the effect of spatial and oculomotor information on perceptual memory. Participants' task was to judge whether a morph looked rather like the first or second previously presented face. Crucially, faces and morphs were presented in a way that the morph reactivated oculomotor and/or spatial information associated with one of the previously encoded faces. Perceptual face memory was largely influenced by these manipulations. We considered a simple computational model with an excellent match (4.3% error) that expresses these biases as a linear combination of recency, saccade, and location. Surprisingly, saccades did not play a role. The results suggest that spatial and temporal rather than oculomotor information biases perceptual face memory. Copyright © 2016 Cognitive Science Society, Inc.

  19. Imaging gene expression in gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wiebe, Leonard I. [Alberta Univ., Edmonton (Canada). Noujaim Institute for Pharmaceutical Oncology Research

    1997-12-31

    Full text. Gene therapy can be used to introduce new genes, or to supplement the function of indigenous genes. At the present time, however, there is non-invasive test to demonstrate efficacy of the gene transfer and expression processes. It has been postulated that scintigraphic imaging can offer unique information on both the site at which the transferred gene is expressed, and the degree of expression, both of which are critical issue for safety and clinical efficacy. Many current studies are based on `suicide gene therapy` of cancer. Cells modified to express these genes commit metabolic suicide in the presence of an enzyme encoded by the transferred gene and a specifically-convertible pro drug. Pro drug metabolism can lead to selective metabolic trapping, required for scintigraphy. Herpes simplex virus type-1 thymidine kinase (H S V-1 t k{sup +}) has been use for `suicide` in vivo tumor gene therapy. It has been proposed that radiolabelled nucleosides can be used as radiopharmaceuticals to detect H S V-1 t k{sup +} gene expression where the H S V-1 t k{sup +} gene serves a reporter or therapeutic function. Animal gene therapy models have been studied using purine-([{sup 18} F]F H P G; [{sup 18} F]-A C V), and pyrimidine- ([{sup 123}/{sup 131} I]I V R F U; [{sup 124}/{sup 131I}]) antiviral nucleosides. Principles of gene therapy and gene therapy imaging will be reviewed and experimental data for [{sup 123}/{sup 131I}]I V R F U imaging with the H S V-1 t k{sup +} reporter gene will be presented

  20. Spatial and temporal variability of winds in the Northern European Seas

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Badger, Merete; Hahmann, Andrea N.

    2013-01-01

    the spatial and temporal variability of the near-surface wind field, including the inter- and intra-annual variability for resource assessment purposes. This study demonstrates the applicability of satellite observations as the means to provide information useful for selecting areas to perform higher...

  1. Diurnal oscillation of SBE expression in sorghum endosperm

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Chuanxin; Mutisya, J.; Rosenquist, S.; Baguma, Y.; Jansson, C.

    2009-01-15

    Spatial and temporal expression patterns of the sorghum SBEI, SBEIIA and SBEIIB genes, encoding, respectively, starch branching enzyme (SBE) I, IIA and IIB, in the developing endosperm of sorghum (Sorghum bicolor) were studied. Full-length genomic and cDNA clones for sorghum was cloned and the SBEIIA cDNA was used together with gene-specific probes for sorghum SBEIIB and SBEI. In contrast to sorghum SBEIIB, which was expressed primarily in endosperm and embryo, SBEIIA was expressed also in vegetative tissues. All three genes shared a similar temporal expression profile during endosperm development, with a maximum activity at 15-24 days after pollination. This is different from barley and maize where SBEI gene activity showed a significantly later onset compared to that of SBEIIA and SBEIIB. Expression of the three SBE genes in the sorghum endosperm exhibited a diurnal rhythm during a 24-h cycle.

  2. Genomic organization and the tissue distribution of alternatively spliced isoforms of the mouse Spatial gene

    Directory of Open Access Journals (Sweden)

    Mattei Marie-Geneviève

    2004-07-01

    Full Text Available Abstract Background The stromal component of the thymic microenvironment is critical for T lymphocyte generation. Thymocyte differentiation involves a cascade of coordinated stromal genes controlling thymocyte survival, lineage commitment and selection. The "Stromal Protein Associated with Thymii And Lymph-node" (Spatial gene encodes a putative transcription factor which may be involved in T-cell development. In the testis, the Spatial gene is also expressed by round spermatids during spermatogenesis. Results The Spatial gene maps to the B3-B4 region of murine chromosome 10 corresponding to the human syntenic region 10q22.1. The mouse Spatial genomic DNA is organised into 10 exons and is alternatively spliced to generate two short isoforms (Spatial-α and -γ and two other long isoforms (Spatial-δ and -ε comprising 5 additional exons on the 3' site. Here, we report the cloning of a new short isoform, Spatial-β, which differs from other isoforms by an additional alternative exon of 69 bases. This new exon encodes an interesting proline-rich signature that could confer to the 34 kDa Spatial-β protein a particular function. By quantitative TaqMan RT-PCR, we have shown that the short isoforms are highly expressed in the thymus while the long isoforms are highly expressed in the testis. We further examined the inter-species conservation of Spatial between several mammals and identified that the protein which is rich in proline and positive amino acids, is highly conserved. Conclusions The Spatial gene generates at least five alternative spliced variants: three short isoforms (Spatial-α, -β and -γ highly expressed in the thymus and two long isoforms (Spatial-δ and -ε highly expressed in the testis. These alternative spliced variants could have a tissue specific function.

  3. Expression Analysis of Interferon-Stimulated Gene 15 in the Rock Bream Oplegnathus fasciatus against Rock Bream Iridovirus (RSIV) Challenge.

    Science.gov (United States)

    Kim, Kyung-Hee; Yang, In Jung; Kim, Woo-Jin; Park, Choul-Ji; Park, Jong-Won; Noh, Gyeong Eon; Lee, Seunghyung; Lee, Young Mee; Hwang, Hyung Kyu; Kim, Hyun Chul

    2017-12-01

    Interferon-stimulated gene 15 (ISG15) is known to interfere with viral replication and infection by limiting the viral infection of cells. Interferon-stimulated gene 15 (ISG15) interferes with viral replication and infectivity by limiting viral infection in cells. It also plays an important role in the immune response. In this study, tissue-specific expression of ISG15 in healthy rock bream samples and spatial and temporal expression analysis of rock bream ISG15 (RbISG15) were performed following rock bream iridovirus (RSIV) infection. RbISG15 expression was significantly higher in the eye, gill, intestine, kidney, liver, muscle, spleen, and stomach, but low in the brain. There were particularly high levels of expression in the liver and muscle. RbISG15 expression was also examined in several tissues and at various times following RSIV infection. ISG15 expression increased within 3 h in the whole body and decreased at 24 h after infection. In addition, temporal expression of several tissues following RSIV infection showed a similar pattern in the muscle, kidney, and spleen, increasing at 3 h and decreasing at 72 h. These results suggest that ISG15 plays an important role in the immune response of rock bream. Overall, this study characterizes the response of RbISG15 following RSIV infection.

  4. Classification of early-stage non-small cell lung cancer by weighing gene expression profiles with connectivity information.

    Science.gov (United States)

    Zhang, Ao; Tian, Suyan

    2018-05-01

    Pathway-based feature selection algorithms, which utilize biological information contained in pathways to guide which features/genes should be selected, have evolved quickly and become widespread in the field of bioinformatics. Based on how the pathway information is incorporated, we classify pathway-based feature selection algorithms into three major categories-penalty, stepwise forward, and weighting. Compared to the first two categories, the weighting methods have been underutilized even though they are usually the simplest ones. In this article, we constructed three different genes' connectivity information-based weights for each gene and then conducted feature selection upon the resulting weighted gene expression profiles. Using both simulations and a real-world application, we have demonstrated that when the data-driven connectivity information constructed from the data of specific disease under study is considered, the resulting weighted gene expression profiles slightly outperform the original expression profiles. In summary, a big challenge faced by the weighting method is how to estimate pathway knowledge-based weights more accurately and precisely. Only until the issue is conquered successfully will wide utilization of the weighting methods be impossible. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Isolating Barley ( Hordeum vulgare L.) B1 Hordein Gene Promoter ...

    African Journals Online (AJOL)

    Promoters play the most important role in determining the temporal and spatial expression pattern and transcript level of a gene. Some strong constitutive promoters, such as cauliflower mosaic virus 35s promoter, are widely used in plant genetic engineering research. However, the expression levels of the foreign genes in ...

  6. Developing a spatial-temporal method for the geographic investigation of shoeprint evidence.

    Science.gov (United States)

    Lin, Ge; Elmes, Gregory; Walnoha, Mike; Chen, Xiannian

    2009-01-01

    This article examines the potential of a spatial-temporal method for analysis of forensic shoeprint data. The large volume of shoeprint evidence recovered at crime scenes results in varied success in matching a print to a known shoe type and subsequently linking sets of matched prints to suspected offenders. Unlike DNA and fingerprint data, a major challenge is to reduce the uncertainty in linking sets of matched shoeprints to a suspected serial offender. Shoeprint data for 2004 were imported from the Greater London Metropolitan Area Bigfoot database into a geographic information system, and a spatial-temporal algorithm developed for this project. The results show that by using distance and time constraints interactively, the number of candidate shoeprints that can implicate one or few suspects can be substantially reduced. It concludes that the use of space-time and other ancillary information within a geographic information system can be quite helpful for forensic investigation.

  7. Recognising and Interpreting Named Temporal Expressions

    DEFF Research Database (Denmark)

    Brucato, Matteo; Derczynski, Leon; Llorens, Hectjor

    2013-01-01

    This paper introduces a new class of temporal expression – named temporal expressions – and methods for recognising and interpreting its members. The commonest temporal expressions typically contain date and time words, like April or hours. Research into recognising and interpreting these typical...... expressions is mature in many languages. However, there is a class of expressions that are less typical, very varied, and difficult to automatically interpret. These indicate dates and times, but are harder to detect because they often do not contain time words and are not used frequently enough to appear...

  8. A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila

    Science.gov (United States)

    Nagarkar-Jaiswal, Sonal; Lee, Pei-Tseng; Campbell, Megan E; Chen, Kuchuan; Anguiano-Zarate, Stephanie; Cantu Gutierrez, Manuel; Busby, Theodore; Lin, Wen-Wen; He, Yuchun; Schulze, Karen L; Booth, Benjamin W; Evans-Holm, Martha; Venken, Koen JT; Levis, Robert W; Spradling, Allan C; Hoskins, Roger A; Bellen, Hugo J

    2015-01-01

    Here, we document a collection of ∼7434 MiMIC (Minos Mediated Integration Cassette) insertions of which 2854 are inserted in coding introns. They allowed us to create a library of 400 GFP-tagged genes. We show that 72% of internally tagged proteins are functional, and that more than 90% can be imaged in unfixed tissues. Moreover, the tagged mRNAs can be knocked down by RNAi against GFP (iGFPi), and the tagged proteins can be efficiently knocked down by deGradFP technology. The phenotypes associated with RNA and protein knockdown typically correspond to severe loss of function or null mutant phenotypes. Finally, we demonstrate reversible, spatial, and temporal knockdown of tagged proteins in larvae and adult flies. This new strategy and collection of strains allows unprecedented in vivo manipulations in flies for many genes. These strategies will likely extend to vertebrates. DOI: http://dx.doi.org/10.7554/eLife.05338.001 PMID:25824290

  9. A novel mutual information-based Boolean network inference method from time-series gene expression data.

    Directory of Open Access Journals (Sweden)

    Shohag Barman

    Full Text Available Inferring a gene regulatory network from time-series gene expression data in systems biology is a challenging problem. Many methods have been suggested, most of which have a scalability limitation due to the combinatorial cost of searching a regulatory set of genes. In addition, they have focused on the accurate inference of a network structure only. Therefore, there is a pressing need to develop a network inference method to search regulatory genes efficiently and to predict the network dynamics accurately.In this study, we employed a Boolean network model with a restricted update rule scheme to capture coarse-grained dynamics, and propose a novel mutual information-based Boolean network inference (MIBNI method. Given time-series gene expression data as an input, the method first identifies a set of initial regulatory genes using mutual information-based feature selection, and then improves the dynamics prediction accuracy by iteratively swapping a pair of genes between sets of the selected regulatory genes and the other genes. Through extensive simulations with artificial datasets, MIBNI showed consistently better performance than six well-known existing methods, REVEAL, Best-Fit, RelNet, CST, CLR, and BIBN in terms of both structural and dynamics prediction accuracy. We further tested the proposed method with two real gene expression datasets for an Escherichia coli gene regulatory network and a fission yeast cell cycle network, and also observed better results using MIBNI compared to the six other methods.Taken together, MIBNI is a promising tool for predicting both the structure and the dynamics of a gene regulatory network.

  10. Identify Dynamic Network Modules with Temporal and Spatial Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Jin, R; McCallen, S; Liu, C; Almaas, E; Zhou, X J

    2007-09-24

    Despite the rapid accumulation of systems-level biological data, understanding the dynamic nature of cellular activity remains a difficult task. The reason is that most biological data are static, or only correspond to snapshots of cellular activity. In this study, we explicitly attempt to detangle the temporal complexity of biological networks by using compilations of time-series gene expression profiling data.We define a dynamic network module to be a set of proteins satisfying two conditions: (1) they form a connected component in the protein-protein interaction (PPI) network; and (2) their expression profiles form certain structures in the temporal domain. We develop the first efficient mining algorithm to discover dynamic modules in a temporal network, as well as frequently occurring dynamic modules across many temporal networks. Using yeast as a model system, we demonstrate that the majority of the identified dynamic modules are functionally homogeneous. Additionally, many of them provide insight into the sequential ordering of molecular events in cellular systems. We further demonstrate that identifying frequent dynamic network modules can significantly increase the signal to noise separation, despite the fact that most dynamic network modules are highly condition-specific. Finally, we note that the applicability of our algorithm is not limited to the study of PPI systems, instead it is generally applicable to the combination of any type of network and time-series data.

  11. Coregulated expression of loline alkaloid-biosynthesis genes in Neotyphodium uncinatum cultures.

    Science.gov (United States)

    Zhang, Dong-Xiu; Stromberg, Arnold J; Spiering, Martin J; Schardl, Christopher L

    2009-08-01

    Epichloë endophytes (holomorphic Epichloë spp. and anamorphic Neotyphodium spp.) are systemic, often heritable symbionts of cool-season grasses (subfamily Pooideae). Many epichloae provide protection to their hosts by producing anti-insect compounds. Among these are the loline alkaloids (LA), which are toxic and deterrent to a broad range of herbivorous insects but not to mammalian herbivores. LOL, a gene cluster containing nine genes, is associated with LA biosynthesis. We investigated coordinate regulation between LOL-gene expression and LA production in minimal medium (MM) cultures of Neotyphodium uncinatum. Expression of all LOL genes significantly fit temporal quadratic patterns during LA production. LOL-gene expression started before LA were detectable, and increased while LA accumulated. The highest gene expression level was reached at close to the time of most rapid LA accumulation, and gene expression declined to a very low level as amounts of LA plateaued. Temporal expression profiles of the nine LOL genes were tightly correlated with each other, but not as tightly correlated with proC and metE (genes for biosynthesis of precursor amino acids). Furthermore, the start days and peak days of expression significantly correlated with the order of the LOL-cluster genes in the genome. Hierarchical cluster analysis indicated three pairs of genes-lolA and lolC, lolO and lolD, and lolT and lolE-expression of which was especially tightly correlated. Of these, lolA and lolC tended to be expressed early, and lolT and lolE tended to be expressed late, in keeping with the putative roles of the respective gene products in the LA-biosynthesis pathway. Several common transcriptional binding sites were discovered in the LOL upstream regions. However, low expression of P(lolC2)uidA and P(lolA2)uidA in N. uncinatum transformants suggested induced expression of LOL genes might be subject to position effect at the LOL locus.

  12. Sea urchin neural alpha2 tubulin gene: isolation and promoter analysis.

    Science.gov (United States)

    Costa, S; Ragusa, M A; Drago, G; Casano, C; Alaimo, G; Guida, N; Gianguzza, F

    2004-04-02

    Expression of Talpha2 gene, during sea urchin Paracentrotus lividus development, is spatially and temporally regulated. In order to characterize this gene, we isolated the relevant genomic sequences and scanned the isolated 5'-flanking region in searching for cis-regulatory elements required for proper expression. Gel mobility shift and footprinting assays, as well as reporter gene (CAT and beta-gal) expression assays, were used to address cis-regulatory elements involved in regulation. Here we report that an upstream 5'-flanking fragment of PlTalpha2 gene drives temporal expression of reporter genes congruent with that of endogenous Talpha2 gene. The fragment contains cis-elements able to bind nuclear proteins from the gastrula stage (at which the Talpha2 gene is expressed) whose sequences could be consistent with the consensus sequences for transcription factors present in data bank.

  13. The spatial expression and regulation of transcription factors IDEF1 and IDEF2

    Science.gov (United States)

    Kobayashi, Takanori; Ogo, Yuko; Aung, May Sann; Nozoye, Tomoko; Itai, Reiko Nakanishi; Nakanishi, Hiromi; Yamakawa, Takashi; Nishizawa, Naoko K.

    2010-01-01

    Background and Aims Under conditions of low iron availability, rice plants induce genes involved in iron uptake and utilization. The iron deficiency-responsive cis-acting element binding factors 1 and 2 (IDEF1 and IDEF2) regulate transcriptional response to iron deficiency in rice roots. Clarification of the functions of IDEF1 and IDEF2 could uncover the gene regulation mechanism. Methods Spatial patterns of IDEF1 and IDEF2 expression were analysed by histochemical staining of IDEF1 and IDEF2 promoter-GUS transgenic rice lines. Expression patterns of the target genes of IDEF1 and IDEF2 were analysed using transformants with induced or repressed expression of IDEF1 or IDEF2 grown in iron-rich or in iron-deficient solutions for 1 d. Key Results IDEF1 and IDEF2 were highly expressed in the basal parts of the lateral roots and vascular bundles. IDEF1 and IDEF2 expression was dominant in leaf mesophyll and vascular cells, respectively. These expression patterns were similar under both iron-deficient and iron-sufficient conditions. IDEF1 was strongly expressed in pollen, ovaries, the aleurone layer and embryo. IDEF2 was expressed in pollen, ovaries and the dorsal vascular region of the endosperm. During seed germination, IDEF1 and IDEF2 were expressed in the endosperm and embryo. Expression of IDEF1 target genes was regulated in iron-rich roots similar to early iron-deficiency stages. In addition, the expression patterns of IDEF2 target genes were similar between iron-rich conditions and early or subsequent iron deficiency. Conclusions IDEF1 and IDEF2 are constitutively expressed during both vegetative and reproductive stages. The spatial expression patterns of IDEF1 and IDEF2 overlap with their target genes in restricted cell types, but not in all cells. The spatial expression patterns and gene regulation of IDEF1 and IDEF2 in roots are generally conserved under conditions of iron sufficiency and deficiency, suggesting complicated interactions with unknown factors for

  14. Temporal changes in gene expression in the liver of male plaice (Pleuronectes platessa) in response to exposure to ethynyl oestradiol analysed by macroarray and Real-Time PCR

    International Nuclear Information System (INIS)

    Brown, Margaret; Robinson, Craig; Davies, Ian M.; Moffat, Colin F.; Redshaw, John; Craft, John A.

    2004-01-01

    Suppression subtractive hybridisation (SSH) was used to generate cDNA libraries representing genes differentially-expressed in liver from male plaice (Pleuronectes platessa) exposed to ethynyl oestradiol (EE2). BLAST analysis and alignments of the clones with database sequence suggested at least three vitellogenin (VTG) genes and three zona radiata protein (ZRP) genes were represented. Clones with unique sequence (62 up-, 13 down-regulated) were arrayed as probes on nylon membranes to investigate temporal expression of oestrogen-responsive genes in experimental animals. Arrays were hybridised with radiolabelled cDNAs prepared from hepatic mRNA from animals treated with EE2 for various times upto 21 days and from treated animals transferred to clean water for upto a further 31 days. By day 21 of treatment 11 out of 17 probes from unidentified genes, 21/22 VTG, 13/14 ZRP, 2/2 liver aspartic proteinase (LAP) and 8/10 other gene sequences were induced by EE2 exposure. Of the down-regulated sequences, only three showed significant, decreased expression and these encode cytochrome b and two with cryptic functions. Based on the pattern of temporal response the up-regulated probes fell into two classes. Pattern A reached maximum expression by day 16 of exposure and then declined prior to removal of EE2 at 21 days. Pattern B genes reached maximal expression between day 16 and 22, declining only after removal of EE2. Independent investigation of the expression patterns of selected probes using quantitative Real-Time PCR reproduced the distinctive patterns. The results indicate a previously unrecognised mechanism for oestrogenic toxicity in which there is a selective down-regulation of some egg proteins, potentially diminishing the quality of eggs and this may contribute to reproductive failure described elsewhere

  15. Characterization of the bovine pregnancy-associated glycoprotein gene family – analysis of gene sequences, regulatory regions within the promoter and expression of selected genes

    Directory of Open Access Journals (Sweden)

    Walker Angela M

    2009-04-01

    differences in spatial and temporal expression. We also discovered that boPAG-2 is the most abundant of all boPAG transcripts and provided evidence for the role of ETS and DDVL TFs in its regulation. These experiments mark the crucial first step in discerning the complex transcriptional regulation operating within the boPAG gene family.

  16. Selection of reference genes in different myocardial regions of an in vivo ischemia/reperfusion rat model for normalization of antioxidant gene expression

    Directory of Open Access Journals (Sweden)

    Vesentini Nicoletta

    2012-02-01

    Full Text Available Abstract Background Changes in cardiac gene expression due to myocardial injury are usually assessed in whole heart tissue. However, as the heart is a heterogeneous system, spatial and temporal heterogeneity is expected in gene expression. Results In an ischemia/reperfusion (I/R rat model we evaluated gene expression of mitochondrial and cytoplasmatic superoxide dismutase (MnSod, Cu-ZnSod and thioredoxin reductase (trxr1 upon short (4 h and long (72 h reperfusion times in the right ventricle (RV, and in the ischemic/reperfused (IRR and the remote region (RR of the left ventricle. Gene expression was assessed by Real-time reverse-transcription quantitative PCR (RT-qPCR. In order to select most stable reference genes suitable for normalization purposes, in each myocardial region we tested nine putative reference genes by geNorm analysis. The genes investigated were: Actin beta (actb, Glyceraldehyde-3-P-dehydrogenase (gapdh, Ribosomal protein L13A (rpl13a, Tyrosine 3-monooxygenase (ywhaz, Beta-glucuronidase (gusb, Hypoxanthine guanine Phosphoribosyltransferase 1 (hprt, TATA binding box protein (tbp, Hydroxymethylbilane synthase (hmbs, Polyadenylate-binding protein 1 (papbn1. According to our findings, most stable reference genes in the RV and RR were hmbs/hprt and hmbs/tbp/hprt respectively. In the IRR, six reference genes were recommended for normalization purposes; however, in view of experimental feasibility limitations, target gene expression could be normalized against the three most stable reference genes (ywhaz/pabp/hmbs without loss of sensitivity. In all cases MnSod and Cu-ZnSod expression decreased upon long reperfusion, the former in all myocardial regions and the latter in IRR alone. trxr1 expression did not vary. Conclusions This study provides a validation of reference genes in the RV and in the anterior and posterior wall of the LV of cardiac ischemia/reperfusion model and shows that gene expression should be assessed separately in

  17. Organization of Mitochondrial Gene Expression in Two Distinct Ribosome-Containing Assemblies

    Directory of Open Access Journals (Sweden)

    Kirsten Kehrein

    2015-02-01

    Full Text Available Mitochondria contain their own genetic system that provides subunits of the complexes driving oxidative phosphorylation. A quarter of the mitochondrial proteome participates in gene expression, but how all these factors are orchestrated and spatially organized is currently unknown. Here, we established a method to purify and analyze native and intact complexes of mitochondrial ribosomes. Quantitative mass spectrometry revealed extensive interactions of ribosomes with factors involved in all the steps of posttranscriptional gene expression. These interactions result in large expressosome-like assemblies that we termed mitochondrial organization of gene expression (MIOREX complexes. Superresolution microscopy revealed that most MIOREX complexes are evenly distributed throughout the mitochondrial network, whereas a subset is present as nucleoid-MIOREX complexes that unite the whole spectrum of organellar gene expression. Our work therefore provides a conceptual framework for the spatial organization of mitochondrial protein synthesis that likely developed to facilitate gene expression in the organelle.

  18. Temporal and Spatial Patterns of Neural Activity Associated with Information Selection in Open-ended Creativity.

    Science.gov (United States)

    Zhou, Siyuan; Chen, Shi; Wang, Shuang; Zhao, Qingbai; Zhou, Zhijin; Lu, Chunming

    2018-02-10

    Novel information selection is a crucial process in creativity and was found to be associated with frontal-temporal functional connectivity in the right brain in closed-ended creativity. Since it has distinct cognitive processing from closed-ended creativity, the information selection in open-ended creativity might be underlain by different neural activity. To address this issue, a creative generation task of Chinese two-part allegorical sayings was adopted, and the trials were classified into novel and normal solutions according to participants' self-ratings. The results showed that (1) novel solutions induced a higher lower alpha power in the temporal area, which might be associated with the automatic, unconscious mental process of retrieving extensive semantic information, and (2) upper alpha power in both frontal and temporal areas and frontal-temporal alpha coherence were higher in novel solutions than in normal solutions, which might reflect the selective inhibition of semantic information. Furthermore, lower alpha power in the temporal area showed a reduction with time, while the frontal-temporal and temporal-temporal coherence in the upper alpha band appeared to increase from the early to the middle phase. These dynamic changes in neural activity might reflect the transformation from divergent thinking to convergent thinking in the creative progress. The advantage of the right brain in frontal-temporal connectivity was not found in the present work, which might result from the diversity of solutions in open-ended creativity. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Spatial and temporal expression of the Grainyhead-like transcription factor family during murine development.

    Science.gov (United States)

    Auden, Alana; Caddy, Jacinta; Wilanowski, Tomasz; Ting, Stephen B; Cunningham, John M; Jane, Stephen M

    2006-10-01

    The Drosophila transcription factor Grainyhead (grh) is expressed in ectoderm-derived tissues where it regulates several key developmental events including cuticle formation, tracheal elongation and dorsal closure. Our laboratory has recently identified three novel mammalian homologues of the grh gene, Grainyhead-like 1, -2 and -3 (Grhl1-3) that rewrite the phylogeny of this family. Using gene targeting in mice, we have shown that Grhl3 is essential for neural tube closure, skin barrier formation and wound healing. Despite their extensive sequence homology, Grhl1 and Grhl2 are unable to compensate for loss of Grhl3 in these developmental processes. To explore this lack of redundancy, and to gain further insights into the functions of this gene family in mammalian development we have performed an extensive in situ hybridisation analysis. We demonstrate that, although all three Grhl genes are highly expressed in the developing epidermis, they display subtle differences in the timing and level of expression. Surprisingly, we also demonstrate differential expression patterns in non-ectoderm-derived tissues, including the heart, the lung, and the metanephric kidney. These findings expand our understanding of the unique role of Grhl3 in neurulation and epidermal morphogenesis, and provide a focus for further functional analysis of the Grhl genes during mouse embryogenesis.

  20. Gene expression in cardiac tissues from infants with idiopathic conotruncal defects

    Directory of Open Access Journals (Sweden)

    Lofland Gary K

    2011-01-01

    Full Text Available Abstract Background Tetralogy of Fallot (TOF is the most commonly observed conotruncal congenital heart defect. Treatment of these patients has evolved dramatically in the last few decades, yet a genetic explanation is lacking for the failure of cardiac development for the majority of children with TOF. Our goal was to perform genome wide analyses and characterize expression patterns in cardiovascular tissue (right ventricle, pulmonary valve and pulmonary artery obtained at the time of reconstructive surgery from 19 children with tetralogy of Fallot. Methods We employed genome wide gene expression microarrays to characterize cardiovascular tissue (right ventricle, pulmonary valve and pulmonary artery obtained at the time of reconstructive surgery from 19 children with TOF (16 idiopathic and three with 22q11.2 deletions and compared gene expression patterns to normally developing subjects. Results We detected a signal from approximately 26,000 probes reflecting expression from about half of all genes, ranging from 35% to 49% of array probes in the three tissues. More than 1,000 genes had a 2-fold change in expression in the right ventricle (RV of children with TOF as compared to the RV from matched control infants. Most of these genes were involved in compensatory functions (e.g., hypertrophy, cardiac fibrosis and cardiac dilation. However, two canonical pathways involved in spatial and temporal cell differentiation (WNT, p = 0.017 and Notch, p = 0.003 appeared to be generally suppressed. Conclusions The suppression of developmental networks may represent a remnant of a broad malfunction of regulatory pathways leading to inaccurate boundary formation and improper structural development in the embryonic heart. We suggest that small tissue specific genomic and/or epigenetic fluctuations could be cumulative, leading to regulatory network disruption and failure of proper cardiac development.

  1. Data on characterizing the gene expression patterns of neuronal ceroid lipofuscinosis genes: CLN1, CLN2, CLN3, CLN5 and their association to interneuron and neurotransmission markers: Parvalbumin and Somatostatin

    Directory of Open Access Journals (Sweden)

    Helena M. Minye

    2016-09-01

    Full Text Available The article contains raw and analyzed data related to the research article “Neuronal ceroid lipofuscinosis genes, CLN2, CLN3, CLN5 are spatially and temporally co-expressed in a developing mouse brain” (Fabritius et al., 2014 [1]. The processed data gives an understanding of the development of the cell types that are mostly affected by defective function of CLN proteins, timing of expression of CLN1, CLN2, CLN3 and CLN5 genes in a murine model. The data shows relationship between the expression pattern of these genes during neural development. Immunohistochemistry was used to identify known interneuronal markers for neurotransmission and cell proliferation: parvalbumin, somatostatin subpopulations of interneurons. Non-radioactive in-situ hybridization detected CLN5 mRNA in the hippocampus. Throughout the development strong expression of CLN genes were identified in the germinal epithelium and in ventricle regions, cortex, hippocampus, and cerebellum. This provides supportive evidence that CLN1, CLN2, CLN3 and CLN5 genes may be involved in synaptic pruning.

  2. Spatial-Temporal Correlation Properties of the 3GPP Spatial Channel Model and the Kronecker MIMO Channel Model

    Directory of Open Access Journals (Sweden)

    Cheng-Xiang Wang

    2007-02-01

    Full Text Available The performance of multiple-input multiple-output (MIMO systems is greatly influenced by the spatial-temporal correlation properties of the underlying MIMO channels. This paper investigates the spatial-temporal correlation characteristics of the spatial channel model (SCM in the Third Generation Partnership Project (3GPP and the Kronecker-based stochastic model (KBSM at three levels, namely, the cluster level, link level, and system level. The KBSM has both the spatial separability and spatial-temporal separability at all the three levels. The spatial-temporal separability is observed for the SCM only at the system level, but not at the cluster and link levels. The SCM shows the spatial separability at the link and system levels, but not at the cluster level since its spatial correlation is related to the joint distribution of the angle of arrival (AoA and angle of departure (AoD. The KBSM with the Gaussian-shaped power azimuth spectrum (PAS is found to fit best the 3GPP SCM in terms of the spatial correlations. Despite its simplicity and analytical tractability, the KBSM is restricted to model only the average spatial-temporal behavior of MIMO channels. The SCM provides more insights of the variations of different MIMO channel realizations, but the implementation complexity is relatively high.

  3. The Spatial and Temporal Layers of Global History

    DEFF Research Database (Denmark)

    Schulz-Forberg, Hagen

    2013-01-01

    Recent debates on global history have challenged the understanding of history beyond the nation-state. Simultaneously, they search for non-Eurocentric approaches. This has repercussions on the relation between historical space and time in both historical interpretation and in research design....... This article reflects on the possibilities of a global conceptual history by expanding Reinhart Koselleck’s theory of temporal layers (Zeitschichten) into global spaces. To this end, it introduces the notion of spatial layers (Raumschichten). First, historicisation and its relation to and interaction...... with spatialisation and temporalisation is pondered; then, the impact of global spatial and temporal complexities on comparative and conceptual history is considered, before, thirdly, a framework of three tensions of global history – normative, temporal and spatial – is introduced as a way to concretely unfold...

  4. Does Mandarin spatial metaphor for time influence Chinese deaf signers’ spatio-temporal reasoning?

    NARCIS (Netherlands)

    Gu, Yan; Zheng, Yeqiu; Swerts, Marc; Gunzelmann, G.; Howes, A.; Tenbrink, T.; Davelaar, E. J.

    2017-01-01

    In Mandarin Chinese, the space-time word “前/qian” is used to express both the spatial concept of front/forward and the temporal concept of early/before (e.g., “前天/qian-tian”, literally front day, meaning the day before yesterday). This is consistent with the fact that Mandarin speakers can gesture

  5. Spatial-Temporal Similarity Correlation between Public Transit Passengers Using Smart Card Data

    Directory of Open Access Journals (Sweden)

    Hamed Faroqi

    2017-01-01

    Full Text Available The increasing availability of public transit smart card data has enabled several studies to focus on identifying passengers with similar spatial and/or temporal trip characteristics. However, this paper goes one step further by investigating the relationship between passengers’ spatial and temporal characteristics. For the first time, this paper investigates the correlation of the spatial similarity with the temporal similarity between public transit passengers by developing spatial similarity and temporal similarity measures for the public transit network with a novel passenger-based perspective. The perspective considers the passengers as agents who can make multiple trips in the network. The spatial similarity measure takes into account direction as well as the distance between the trips of the passengers. The temporal similarity measure considers both the boarding and alighting time in a continuous linear space. The spatial-temporal similarity correlation between passengers is analysed using histograms, Pearson correlation coefficients, and hexagonal binning. Also, relations between the spatial and temporal similarity values with the trip time and length are examined. The proposed methodology is implemented for four-day smart card data including 80,000 passengers in Brisbane, Australia. The results show a nonlinear spatial-temporal similarity correlation among the passengers.

  6. Molecular Imaging of Gene Expression and Efficacy following Adenoviral-Mediated Brain Tumor Gene Therapy

    Directory of Open Access Journals (Sweden)

    Alnawaz Rehemtulla

    2002-01-01

    Full Text Available Cancer gene therapy is an active area of research relying upon the transfer and subsequent expression of a therapeutic transgene into tumor cells in order to provide for therapeutic selectivity. Noninvasive assessment of therapeutic response and correlation of the location, magnitude, and duration of transgene expression in vivo would be particularly useful in the development of cancer gene therapy protocols by facilitating optimization of gene transfer protocols, vector development, and prodrug dosing schedules. In this study, we developed an adenoviral vector containing both the therapeutic transgene yeast cytosine deaminase (yCD along with an optical reporter gene (luciferase. Following intratumoral injection of the vector into orthotopic 9L gliomas, anatomical and diffusion-weighted MR images were obtained over time in order to provide for quantitative assessment of overall therapeutic efficacy and spatial heterogeneity of cell kill, respectively. In addition, bioluminescence images were acquired to assess the duration and magnitude of gene expression. MR images revealed significant reduction in tumor growth rates associated with yCD/5-fluorocytosine (5FC gene therapy. Significant increases in mean tumor diffusion values were also observed during treatment with 5FC. Moreover, spatial heterogeneity in tumor diffusion changes were also observed revealing that diffusion magnetic resonance imaging could detect regional therapeutic effects due to the nonuniform delivery and/or expression of the therapeutic yCD transgene within the tumor mass. In addition, in vivo bioluminescence imaging detected luciferase gene expression, which was found to decrease over time during administration of the prodrug providing a noninvasive surrogate marker for monitoring gene expression. These results demonstrate the efficacy of the yCD/5FC strategy for the treatment of brain tumors and reveal the feasibility of using multimodality molecular and functional imaging

  7. Spatial interpolation of climate variables in Northern Germany—Influence of temporal resolution and network density

    Directory of Open Access Journals (Sweden)

    C. Berndt

    2018-02-01

    New hydrological insights: Geostatistical techniques provide a better performance for all climate variables compared to simple methods Radar data improves the estimation of rainfall with hourly temporal resolution, while topography is useful for weekly to yearly values and temperature in general. No helpful information was found for cloudiness, sunshine duration, and wind speed, while interpolation of humidity benefitted from additional temperature data. The influences of temporal resolution, spatial variability, and additional information appear to be stronger than station density effects. High spatial variability of hourly precipitation causes the highest error, followed by wind speed, cloud coverage and sunshine duration. Lowest errors occur for temperature and humidity.

  8. Gene expression analyses of the spatio-temporal relationships of human medulloblastoma subgroups during early human neurogenesis.

    Directory of Open Access Journals (Sweden)

    Cornelia M Hooper

    Full Text Available Medulloblastoma is the most common form of malignant paediatric brain tumour and is the leading cause of childhood cancer related mortality. The four molecular subgroups of medulloblastoma that have been identified - WNT, SHH, Group 3 and Group 4 - have molecular and topographical characteristics suggestive of different cells of origin. Definitive identification of the cell(s of origin of the medulloblastoma subgroups, particularly the poorer prognosis Group 3 and Group 4 medulloblastoma, is critical to understand the pathogenesis of the disease, and ultimately for the development of more effective treatment options. To address this issue, the gene expression profiles of normal human neural tissues and cell types representing a broad neuro-developmental continuum, were compared to those of two independent cohorts of primary human medulloblastoma specimens. Clustering, co-expression network, and gene expression analyses revealed that WNT and SHH medulloblastoma may be derived from distinct neural stem cell populations during early embryonic development, while the transcriptional profiles of Group 3 and Group 4 medulloblastoma resemble cerebellar granule neuron precursors at weeks 10-15 and 20-30 of embryogenesis, respectively. Our data indicate that Group 3 medulloblastoma may arise through abnormal neuronal differentiation, whereas deregulation of synaptic pruning-associated apoptosis may be driving Group 4 tumorigenesis. Overall, these data provide significant new insight into the spatio-temporal relationships and molecular pathogenesis of the human medulloblastoma subgroups, and provide an important framework for the development of more refined model systems, and ultimately improved therapeutic strategies.

  9. Cerebro-cerebellar interactions underlying temporal information processing.

    Science.gov (United States)

    Aso, Kenji; Hanakawa, Takashi; Aso, Toshihiko; Fukuyama, Hidenao

    2010-12-01

    The neural basis of temporal information processing remains unclear, but it is proposed that the cerebellum plays an important role through its internal clock or feed-forward computation functions. In this study, fMRI was used to investigate the brain networks engaged in perceptual and motor aspects of subsecond temporal processing without accompanying coprocessing of spatial information. Direct comparison between perceptual and motor aspects of time processing was made with a categorical-design analysis. The right lateral cerebellum (lobule VI) was active during a time discrimination task, whereas the left cerebellar lobule VI was activated during a timed movement generation task. These findings were consistent with the idea that the cerebellum contributed to subsecond time processing in both perceptual and motor aspects. The feed-forward computational theory of the cerebellum predicted increased cerebro-cerebellar interactions during time information processing. In fact, a psychophysiological interaction analysis identified the supplementary motor and dorsal premotor areas, which had a significant functional connectivity with the right cerebellar region during a time discrimination task and with the left lateral cerebellum during a timed movement generation task. The involvement of cerebro-cerebellar interactions may provide supportive evidence that temporal information processing relies on the simulation of timing information through feed-forward computation in the cerebellum.

  10. The tailless ortholog nhr-67 regulates patterning of gene expression and morphogenesis in the C. elegans vulva.

    Directory of Open Access Journals (Sweden)

    Jolene S Fernandes

    2007-04-01

    Full Text Available Regulation of spatio-temporal gene expression in diverse cell and tissue types is a critical aspect of development. Progression through Caenorhabditis elegans vulval development leads to the generation of seven distinct vulval cell types (vulA, vulB1, vulB2, vulC, vulD, vulE, and vulF, each with its own unique gene expression profile. The mechanisms that establish the precise spatial patterning of these mature cell types are largely unknown. Dissection of the gene regulatory networks involved in vulval patterning and differentiation would help us understand how cells generate a spatially defined pattern of cell fates during organogenesis. We disrupted the activity of 508 transcription factors via RNAi and assayed the expression of ceh-2, a marker for vulB fate during the L4 stage. From this screen, we identified the tailless ortholog nhr-67 as a novel regulator of gene expression in multiple vulval cell types. We find that one way in which nhr-67 maintains cell identity is by restricting inappropriate cell fusion events in specific vulval cells, namely vulE and vulF. nhr-67 exhibits a dynamic expression pattern in the vulval cells and interacts with three other transcriptional regulators cog-1 (Nkx6.1/6.2, lin-11 (LIM, and egl-38 (Pax2/5/8 to generate the composite expression patterns of their downstream targets. We provide evidence that egl-38 regulates gene expression in vulB1, vulC, vulD, vulE, as well as vulF cells. We demonstrate that the pairwise interactions between these regulatory genes are complex and vary among the seven cell types. We also discovered a striking regulatory circuit that affects a subset of the vulval lineages: cog-1 and nhr-67 inhibit both one another and themselves. We postulate that the differential levels and combinatorial patterns of lin-11, cog-1, and nhr-67 expression are a part of a regulatory code for the mature vulval cell types.

  11. Temporal and spatial influences incur reconfiguration of Arctic heathland soil bacterial community structure.

    Science.gov (United States)

    Hill, Richard; Saetnan, Eli R; Scullion, John; Gwynn-Jones, Dylan; Ostle, Nick; Edwards, Arwyn

    2016-06-01

    Microbial responses to Arctic climate change could radically alter the stability of major stores of soil carbon. However, the sensitivity of plot-scale experiments simulating climate change effects on Arctic heathland soils to potential confounding effects of spatial and temporal changes in soil microbial communities is unknown. Here, the variation in heathland soil bacterial communities at two survey sites in Sweden between spring and summer 2013 and at scales between 0-1 m and, 1-100 m and between sites (> 100 m) were investigated in parallel using 16S rRNA gene T-RFLP and amplicon sequencing. T-RFLP did not reveal spatial structuring of communities at scales structuring effects may not confound comparison between plot-scale treatments, temporal change is a significant influence. Moreover, the prominence of two temporally exclusive keystone taxa suggests that the stability of Arctic heathland soil bacterial communities could be disproportionally influenced by seasonal perturbations affecting individual taxa. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. The geovisualisation window of the temporal and spatial variability for Volunteered Geographic Information activities

    Science.gov (United States)

    Medynska-Gulij, Beata; Myszczuk, Miłosz

    2012-11-01

    This study presents an attempt to design geographical visualisation tools that allow to tackle the immensity of spatial data provided by Volunteered Geographic Information (VGI), both in terms of temporal and spatial aspects. In accordance with the assumptions made at the conceptual stage, the final action was the implementation of the window entitled ‘Geovisualisation of the Panoramio.com Activities in District of Poznan 2011’ into the web browser. The concept has been based on a division of the geovisualisation window into three panels, of which the most important - in order to capture spatial variability - have statistical maps at the general level (dot map and choropleth map), while at the detailed level - a dot map on a topographic reference map or tourist map. For two ranges, temporal variability is presented by graphs, while a review of attributes of individual activities of the social website in question is set forward in the table panel. The element that visually interlinks all of the panels is the emphasised individual activity. Problemem podjetym w tych badaniach stało sie wykorzystanie metod z nurtu geograficznej wizualizacji do wskazania cech fenomenu VGI w zakresie zmiennosci czasowo-przestrzennej. Zgodnie z załozeniami poczynionymi w etapie koncepcyjnym finalnym działaniem stało sie zaimplementowanie do przegladarki internetowej okna pod tytułem: ”Geowizualizacja aktywnosci społecznosci Panoramio.com w powiecie poznanskim w 2011 roku”. Koncepcja została oparta na podziale okna geowizualizacji na trzy panele, z których najwazniejsze znaczenie dla uchwycenia zmiennosci przestrzennej na poziomie ogólnym ma kartogram, natomiast na poziomie szczegółowym mapa kropkowa wyswietlana na podkładzie mapy topograficznej lub turystycznej. Zmiennosc czasowa w dwóch zakresach prezentuja wykresy, a przeglad atrybutów poszczególnych aktywnosci prezentowanego portalu społecznosciowego zapewnia tabela. Elementem spajajacym wizualnie wszystkie

  13. Dialectics of nature: Temporal and spatial regulation in material sciences

    Institute of Scientific and Technical Information of China (English)

    Jianlong Xia; Lei Jiang

    2017-01-01

    The cooperative interaction distance measure has been proposed as a novel law pertaining to dialectics of nature,and has been extensively carried out in the design of functional nanomaterials.However,the temporal and spatial dimensions are akin to yin and yang,and thus temporal regulation needs to be accounted for when implementing the above-mentioned principle.Here,we summarize recent advances in temporally and spatially regulated materials and devices.We showcase the temporal regulation of organic semiconductors for organic photovoltaics (OPVs) using the example of exciton lifetime manipulation.As an example of spatial regulation,we consider the distribution of charge carriers in core-shell quantum dot (QD) nanocrystals for modulating their optical properties.Long exciton lifetime can in principle increase the exciton diffussion length,which is desiable for high-efficiency large-area OPV devices.Spatially regulated QDs are highly valuable emitters for light-emitting applications.We aim to show that cooperative spatio-temporal regulation of nanomaterils is of vital importance to the development of functional devices.

  14. An Interactive Database of Cocaine-Responsive Gene Expression

    Directory of Open Access Journals (Sweden)

    Willard M. Freeman

    2002-01-01

    Full Text Available The postgenomic era of large-scale gene expression studies is inundating drug abuse researchers and many other scientists with findings related to gene expression. This information is distributed across many different journals, and requires laborious literature searches. Here, we present an interactive database that combines existing information related to cocaine-mediated changes in gene expression in an easy-to-use format. The database is limited to statistically significant changes in mRNA or protein expression after cocaine administration. The Flash-based program is integrated into a Web page, and organizes changes in gene expression based on neuroanatomical region, general function, and gene name. Accompanying each gene is a description of the gene, links to the original publications, and a link to the appropriate OMIM (Online Mendelian Inheritance in Man entry. The nature of this review allows for timely modifications and rapid inclusion of new publications, and should help researchers build second-generation hypotheses on the role of gene expression changes in the physiology and behavior of cocaine abuse. Furthermore, this method of organizing large volumes of scientific information can easily be adapted to assist researchers in fields outside of drug abuse.

  15. Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series.

    Science.gov (United States)

    Rubiolo, Mariano; Milone, Diego H; Stegmayer, Georgina

    2015-01-01

    Discovering gene regulatory networks from data is one of the most studied topics in recent years. Neural networks can be successfully used to infer an underlying gene network by modeling expression profiles as times series. This work proposes a novel method based on a pool of neural networks for obtaining a gene regulatory network from a gene expression dataset. They are used for modeling each possible interaction between pairs of genes in the dataset, and a set of mining rules is applied to accurately detect the subjacent relations among genes. The results obtained on artificial and real datasets confirm the method effectiveness for discovering regulatory networks from a proper modeling of the temporal dynamics of gene expression profiles.

  16. Combining Temporal and Spectral Information with Spatial Mapping to Identify Differences between Phonological and Semantic Networks: A Magnetoencephalographic Approach.

    Science.gov (United States)

    McNab, Fiona; Hillebrand, Arjan; Swithenby, Stephen J; Rippon, Gina

    2012-01-01

    Early, lesion-based models of language processing suggested that semantic and phonological processes are associated with distinct temporal and parietal regions respectively, with frontal areas more indirectly involved. Contemporary spatial brain mapping techniques have not supported such clear-cut segregation, with strong evidence of activation in left temporal areas by both processes and disputed evidence of involvement of frontal areas in both processes. We suggest that combining spatial information with temporal and spectral data may allow a closer scrutiny of the differential involvement of closely overlapping cortical areas in language processing. Using beamforming techniques to analyze magnetoencephalography data, we localized the neuronal substrates underlying primed responses to nouns requiring either phonological or semantic processing, and examined the associated measures of time and frequency in those areas where activation was common to both tasks. Power changes in the beta (14-30 Hz) and gamma (30-50 Hz) frequency bands were analyzed in pre-selected time windows of 350-550 and 500-700 ms In left temporal regions, both tasks elicited power changes in the same time window (350-550 ms), but with different spectral characteristics, low beta (14-20 Hz) for the phonological task and high beta (20-30 Hz) for the semantic task. In frontal areas (BA10), both tasks elicited power changes in the gamma band (30-50 Hz), but in different time windows, 500-700 ms for the phonological task and 350-550 ms for the semantic task. In the left inferior parietal area (BA40), both tasks elicited changes in the 20-30 Hz beta frequency band but in different time windows, 350-550 ms for the phonological task and 500-700 ms for the semantic task. Our findings suggest that, where spatial measures may indicate overlapping areas of involvement, additional beamforming techniques can demonstrate differential activation in time and frequency domains.

  17. Mining biological information from 3D short time-series gene expression data: the OPTricluster algorithm.

    Science.gov (United States)

    Tchagang, Alain B; Phan, Sieu; Famili, Fazel; Shearer, Heather; Fobert, Pierre; Huang, Yi; Zou, Jitao; Huang, Daiqing; Cutler, Adrian; Liu, Ziying; Pan, Youlian

    2012-04-04

    Nowadays, it is possible to collect expression levels of a set of genes from a set of biological samples during a series of time points. Such data have three dimensions: gene-sample-time (GST). Thus they are called 3D microarray gene expression data. To take advantage of the 3D data collected, and to fully understand the biological knowledge hidden in the GST data, novel subspace clustering algorithms have to be developed to effectively address the biological problem in the corresponding space. We developed a subspace clustering algorithm called Order Preserving Triclustering (OPTricluster), for 3D short time-series data mining. OPTricluster is able to identify 3D clusters with coherent evolution from a given 3D dataset using a combinatorial approach on the sample dimension, and the order preserving (OP) concept on the time dimension. The fusion of the two methodologies allows one to study similarities and differences between samples in terms of their temporal expression profile. OPTricluster has been successfully applied to four case studies: immune response in mice infected by malaria (Plasmodium chabaudi), systemic acquired resistance in Arabidopsis thaliana, similarities and differences between inner and outer cotyledon in Brassica napus during seed development, and to Brassica napus whole seed development. These studies showed that OPTricluster is robust to noise and is able to detect the similarities and differences between biological samples. Our analysis showed that OPTricluster generally outperforms other well known clustering algorithms such as the TRICLUSTER, gTRICLUSTER and K-means; it is robust to noise and can effectively mine the biological knowledge hidden in the 3D short time-series gene expression data.

  18. Early, but not late visual distractors affect movement synchronization to a temporal-spatial visual cue

    Directory of Open Access Journals (Sweden)

    Ashley J Booth

    2015-06-01

    Full Text Available The ease of synchronising movements to a rhythmic cue is dependent on the modality of the cue presentation: timing accuracy is much higher when synchronising with discrete auditory rhythms than an equivalent visual stimulus presented through flashes. However, timing accuracy is improved if the visual cue presents spatial as well as temporal information (e.g. a dot following an oscillatory trajectory. Similarly, when synchronising with an auditory target metronome in the presence of a second visual distracting metronome, the distraction is stronger when the visual cue contains spatial-temporal information rather than temporal only. The present study investigates individuals’ ability to synchronise movements to a temporal-spatial visual cue in the presence of same-modality temporal-spatial distractors. Moreover, we investigated how increasing the number of distractor stimuli impacted on maintaining synchrony with the target cue. Participants made oscillatory vertical arm movements in time with a vertically oscillating white target dot centred on a large projection screen. The target dot was surrounded by 2, 8 or 14 distractor dots, which had an identical trajectory to the target but at a phase lead or lag of 0, 100 or 200ms. We found participants’ timing performance was only affected in the phase-lead conditions and when there were large numbers of distractors present (8 and 14. This asymmetry suggests participants still rely on salient events in the stimulus trajectory to synchronise movements. Subsequently, distractions occurring in the window of attention surrounding those events have the maximum impact on timing performance.

  19. Spatial and temporal vision of macaques after central retinal lesions

    International Nuclear Information System (INIS)

    Merigan, W.H.; Pasternak, T.; Zehl, D.

    1981-01-01

    Spatial contrast and temporal modulation sensitivity of two macaque monkeys were measured at three luminance levels before and after binocular laser coagulation of the fovea. The radius of the lesions ranged from 1.6 to 2.2 degree from the center of the fovea. After placement of the lesions, the visibility of high spatial frequencies was greatly reduced, although sensitivity at middle and low spatial frequencies was unaffected. No loss of spatial resolution was found at the lowest luminance tested. When temporal modulation sensitivity was tested with 4 deg targets, foveal lesions had no effect at any temporal frequency or luminance. However, with a 0.57 degree target, sensitivity to lower temporal frequencies was impaired. Thus visual loss after destruction of the fovea is limited to high luminance, small targets, and the resolution of fine detail

  20. Spatial and temporal patterns of land surface fluxes from remotely sensed surface temperatures within an uncertainty modelling framework

    Directory of Open Access Journals (Sweden)

    M. F. McCabe

    2005-01-01

    Full Text Available Characterising the development of evapotranspiration through time is a difficult task, particularly when utilising remote sensing data, because retrieved information is often spatially dense, but temporally sparse. Techniques to expand these essentially instantaneous measures are not only limited, they are restricted by the general paucity of information describing the spatial distribution and temporal evolution of evaporative patterns. In a novel approach, temporal changes in land surface temperatures, derived from NOAA-AVHRR imagery and a generalised split-window algorithm, are used as a calibration variable in a simple land surface scheme (TOPUP and combined within the Generalised Likelihood Uncertainty Estimation (GLUE methodology to provide estimates of areal evapotranspiration at the pixel scale. Such an approach offers an innovative means of transcending the patch or landscape scale of SVAT type models, to spatially distributed estimates of model output. The resulting spatial and temporal patterns of land surface fluxes and surface resistance are used to more fully understand the hydro-ecological trends observed across a study catchment in eastern Australia. The modelling approach is assessed by comparing predicted cumulative evapotranspiration values with surface fluxes determined from Bowen ratio systems and using auxiliary information such as in-situ soil moisture measurements and depth to groundwater to corroborate observed responses.

  1. Spatial and temporal dynamics of the microbial community in the Hanford unconfined aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xueju; McKinley, James P.; Resch, Charles T.; Kaluzny, Rachael M.; Lauber, C.; Fredrickson, Jim K.; Knight, Robbie C.; Konopka, Allan

    2012-03-29

    Pyrosequencing analysis of 16S rRNA genes was used to study temporal dynamics of groundwater Bacteria and Archaea over 10 months within 3 well clusters separated by ~30 m and located 250 m from the Columbia River on the Hanford Site, WA. Each cluster contained 3 wells screened at different depths ranging from 10 to 17 m that differed in hydraulic conductivities. Representative samples were selected for analyses of prokaryotic 16S and eukaryotic 18S rRNA gene copy numbers. Temporal changes in community composition occurred in all 9 wells over the 10 month sampling period. However, there were particularly strong effects near the top of the water table when the seasonal rise in the Columbia River caused river water intrusion at the top of the aquifer. The occurrence and disappearance of some microbial assemblages (such as Actinobacteria ACK-M1) were correlated to river water intrusion. This seasonal impact on microbial community structure was greater in the shallow saturated zone than deeper in the aquifer. Spatial and temporal patterns for several 16S rRNA gene operational taxonomic units associated with particular physiological functions (e.g.methane oxidizers and metal reducers) suggests dynamic changes in fluxes of electron donors and acceptors over an annual cycle. In addition, temporal dynamics in eukaryotic 18S rRNA gene copies and the dominance of protozoa in 18S clone libraries suggest that bacterial community dynamics could be affected not only by the physical and chemical environment, but also by top-down biological control.

  2. Temporal profile of estrogen-dependent gene expression in LHRH-producing GT1-7 cells.

    Science.gov (United States)

    Varju, Patricia; Chang, Ken C; Hrabovszky, Erik; Merchenthaler, István; Liposits, Zsolt

    2009-02-01

    The long-term cellular effects of estrogens are mediated by nuclear estrogen receptors which act as transcription factors to regulate gene expression. Hypothalamic targets of estrogen action include luteinizing hormone-releasing hormone-secreting neurons controlling reproduction in vertebrates. Microarray analysis and qRT-PCR studies were performed on GT1-7, immortalized LHRH neurons after 17beta-estradiol treatment to reveal the nature of estrogen-regulated genes and the time course of changes in their expression profile. More than 1000 transcripts showed robust responses to estrogen treatment and the majority of responding genes were up-regulated. Early-responding genes showed altered expression 0.5-2h after estrogen exposure, whereas late-responding genes changed after 24-48h treatment. Up-regulated genes encoded transcription factors, molecules involved in cellular movement, cell death, immune response, neurotransmitter and neuropeptide receptors, ion channels and transporters. The 17beta-estradiol modulation of 12 genes - representing characteristic gene clusters - has been confirmed by qRT-PCR. Our studies highlighted diverse gene networks, cell regulatory mechanisms and metabolic pathways through which estrogen may alter gene expression in immortalized LHRH neurons. The findings also support the notion that genomic effects of estrogen targeting in vivo directly the LHRH neuronal network of mammals play an important role in the central feedback regulation of the reproductive axis by estrogen.

  3. Genome-Wide Identification, Characterization and Expression Analysis of the Solute Carrier 6 Gene Family in Silkworm (Bombyx mori).

    Science.gov (United States)

    Tang, Xin; Liu, Huawei; Chen, Quanmei; Wang, Xin; Xiong, Ying; Zhao, Ping

    2016-10-03

    The solute carrier 6 (SLC6) gene family, initially known as the neurotransmitter transporters, plays vital roles in the regulation of neurotransmitter signaling, nutrient absorption and motor behavior. In this study, a total of 16 candidate genes were identified as SLC6 family gene homologs in the silkworm (Bombyx mori) genome. Spatio-temporal expression patterns of silkworm SLC6 gene transcripts indicated that these genes were highly and specifically expressed in midgut, brain and gonads; moreover, these genes were expressed primarily at the feeding stage or adult stage. Levels of expression for most midgut-specific and midgut-enriched gene transcripts were down-regulated after starvation but up-regulated after re-feeding. In addition, we observed that expression levels of these genes except for BmSLC6-15 and BmGT1 were markedly up-regulated by a juvenile hormone analog. Moreover, brain-enriched genes showed differential expression patterns during wandering and mating processes, suggesting that these genes may be involved in modulating wandering and mating behaviors. Our results improve our understanding of the expression patterns and potential physiological functions of the SLC6 gene family, and provide valuable information for the comprehensive functional analysis of the SLC6 gene family.

  4. Quantifying spatial and temporal patterns of flow intermittency using spatially contiguous runoff data

    Science.gov (United States)

    Yu (于松延), Songyan; Bond, Nick R.; Bunn, Stuart E.; Xu, Zongxue; Kennard, Mark J.

    2018-04-01

    River channel drying caused by intermittent stream flow is a widely-recognized factor shaping stream ecosystems. There is a strong need to quantify the distribution of intermittent streams across catchments to inform management. However, observational gauge networks provide only point estimates of streamflow variation. Increasingly, this limitation is being overcome through the use of spatially contiguous estimates of the terrestrial water-balance, which can also assist in estimating runoff and streamflow at large-spatial scales. Here we proposed an approach to quantifying spatial and temporal variation in monthly flow intermittency throughout river networks in eastern Australia. We aggregated gridded (5 × 5 km) monthly water-balance data with a hierarchically nested catchment dataset to simulate catchment runoff accumulation throughout river networks from 1900 to 2016. We also predicted zero flow duration for the entire river network by developing a robust predictive model relating measured zero flow duration (% months) to environmental predictor variables (based on 43 stream gauges). We then combined these datasets by using the predicted zero flow duration from the regression model to determine appropriate 'zero' flow thresholds for the modelled discharge data, which varied spatially across the catchments examined. Finally, based on modelled discharge data and identified actual zero flow thresholds, we derived summary metrics describing flow intermittency across the catchment (mean flow duration and coefficient-of-variation in flow permanence from 1900 to 2016). We also classified the relative degree of flow intermittency annually to characterise temporal variation in flow intermittency. Results showed that the degree of flow intermittency varied substantially across streams in eastern Australia, ranging from perennial streams flowing permanently (11-12 months) to strongly intermittent streams flowing 4 months or less of year. Results also showed that the

  5. Neuromorphic infrared focal plane performs sensor fusion on-plane local-contrast-enhancement spatial and temporal filtering

    Science.gov (United States)

    Massie, Mark A.; Woolaway, James T., II; Curzan, Jon P.; McCarley, Paul L.

    1993-08-01

    An infrared focal plane has been simulated, designed and fabricated which mimics the form and function of the vertebrate retina. The `Neuromorphic' focal plane has the capability of performing pixel-based sensor fusion and real-time local contrast enhancement, much like the response of the human eye. The device makes use of an indium antimonide detector array with a 3 - 5 micrometers spectral response, and a switched capacitor resistive network to compute a real-time 2D spatial average. This device permits the summation of other sensor outputs to be combined on-chip with the infrared detections of the focal plane itself. The resulting real-time analog processed information thus represents the combined information of many sensors with the advantage that analog spatial and temporal signal processing is performed at the focal plane. A Gaussian subtraction method is used to produce the pixel output which when displayed produces an image with enhanced edges, representing spatial and temporal derivatives in the scene. The spatial and temporal responses of the device are tunable during operation, permitting the operator to `peak up' the response of the array to spatial and temporally varying signals. Such an array adapts to ambient illumination conditions without loss of detection performance. This paper reviews the Neuromorphic infrared focal plane from initial operational simulations to detailed design characteristics, and concludes with a presentation of preliminary operational data for the device as well as videotaped imagery.

  6. Different Temporal Effects of Ebola Virus VP35 and VP24 Proteins on Global Gene Expression in Human Dendritic Cells.

    Science.gov (United States)

    Ilinykh, Philipp A; Lubaki, Ndongala M; Widen, Steven G; Renn, Lynnsey A; Theisen, Terence C; Rabin, Ronald L; Wood, Thomas G; Bukreyev, Alexander

    2015-08-01

    Ebola virus (EBOV) causes a severe hemorrhagic fever with a deficient immune response, lymphopenia, and lymphocyte apoptosis. Dendritic cells (DC), which trigger the adaptive response, do not mature despite EBOV infection. We recently demonstrated that DC maturation is unblocked by disabling the innate response antagonizing domains (IRADs) in EBOV VP35 and VP24 by the mutations R312A and K142A, respectively. Here we analyzed the effects of VP35 and VP24 with the IRADs disabled on global gene expression in human DC. Human monocyte-derived DC were infected by wild-type (wt) EBOV or EBOVs carrying the mutation in VP35 (EBOV/VP35m), VP24 (EBOV/VP24m), or both (EBOV/VP35m/VP24m). Global gene expression at 8 and 24 h was analyzed by deep sequencing, and the expression of interferon (IFN) subtypes up to 5 days postinfection was analyzed by quantitative reverse transcription-PCR (qRT-PCR). wt EBOV induced a weak global gene expression response, including markers of DC maturation, cytokines, chemokines, chemokine receptors, and multiple IFNs. The VP35 mutation unblocked the expression, resulting in a dramatic increase in expression of these transcripts at 8 and 24 h. Surprisingly, DC infected with EBOV/VP24m expressed lower levels of many of these transcripts at 8 h after infection, compared to wt EBOV. In contrast, at 24 h, expression of the transcripts increased in DC infected with any of the three mutants, compared to wt EBOV. Moreover, sets of genes affected by the two mutations only partially overlapped. Pathway analysis demonstrated that the VP35 mutation unblocked pathways involved in antigen processing and presentation and IFN signaling. These data suggest that EBOV IRADs have profound effects on the host adaptive immune response through massive transcriptional downregulation of DC. This study shows that infection of DC with EBOV, but not its mutant forms with the VP35 IRAD and/or VP24 IRAD disabled, causes a global block in expression of host genes. The temporal

  7. Positional information generated by spatially distributed signaling cascades.

    Directory of Open Access Journals (Sweden)

    Javier Muñoz-García

    2009-03-01

    Full Text Available The temporal and stationary behavior of protein modification cascades has been extensively studied, yet little is known about the spatial aspects of signal propagation. We have previously shown that the spatial separation of opposing enzymes, such as a kinase and a phosphatase, creates signaling activity gradients. Here we show under what conditions signals stall in the space or robustly propagate through spatially distributed signaling cascades. Robust signal propagation results in activity gradients with long plateaus, which abruptly decay at successive spatial locations. We derive an approximate analytical solution that relates the maximal amplitude and propagation length of each activation profile with the cascade level, protein diffusivity, and the ratio of the opposing enzyme activities. The control of the spatial signal propagation appears to be very different from the control of transient temporal responses for spatially homogenous cascades. For spatially distributed cascades where activating and deactivating enzymes operate far from saturation, the ratio of the opposing enzyme activities is shown to be a key parameter controlling signal propagation. The signaling gradients characteristic for robust signal propagation exemplify a pattern formation mechanism that generates precise spatial guidance for multiple cellular processes and conveys information about the cell size to the nucleus.

  8. Characterization of differentially expressed genes using high-dimensional co-expression networks

    DEFF Research Database (Denmark)

    Coelho Goncalves de Abreu, Gabriel; Labouriau, Rodrigo S.

    2010-01-01

    We present a technique to characterize differentially expressed genes in terms of their position in a high-dimensional co-expression network. The set-up of Gaussian graphical models is used to construct representations of the co-expression network in such a way that redundancy and the propagation...... that allow to make effective inference in problems with high degree of complexity (e.g. several thousands of genes) and small number of observations (e.g. 10-100) as typically occurs in high throughput gene expression studies. Taking advantage of the internal structure of decomposable graphical models, we...... construct a compact representation of the co-expression network that allows to identify the regions with high concentration of differentially expressed genes. It is argued that differentially expressed genes located in highly interconnected regions of the co-expression network are less informative than...

  9. Temporal gene expression profiling of the rat knee joint capsule during immobilization-induced joint contractures.

    Science.gov (United States)

    Wong, Kayleigh; Sun, Fangui; Trudel, Guy; Sebastiani, Paola; Laneuville, Odette

    2015-05-26

    Contractures of the knee joint cause disability and handicap. Recovering range of motion is recognized by arthritic patients as their preference for improved health outcome secondary only to pain management. Clinical and experimental studies provide evidence that the posterior knee capsule prevents the knee from achieving full extension. This study was undertaken to investigate the dynamic changes of the joint capsule transcriptome during the progression of knee joint contractures induced by immobilization. We performed a microarray analysis of genes expressed in the posterior knee joint capsule following induction of a flexion contracture by rigidly immobilizing the rat knee joint over a time-course of 16 weeks. Fold changes of expression values were measured and co-expressed genes were identified by clustering based on time-series analysis. Genes associated with immobilization were further analyzed to reveal pathways and biological significance and validated by immunohistochemistry on sagittal sections of knee joints. Changes in expression with a minimum of 1.5 fold changes were dominated by a decrease in expression for 7732 probe sets occurring at week 8 while the expression of 2251 probe sets increased. Clusters of genes with similar profiles of expression included a total of 162 genes displaying at least a 2 fold change compared to week 1. Functional analysis revealed ontology categories corresponding to triglyceride metabolism, extracellular matrix and muscle contraction. The altered expression of selected genes involved in the triglyceride biosynthesis pathway; AGPAT-9, and of the genes P4HB and HSP47, both involved in collagen synthesis, was confirmed by immunohistochemistry. Gene expression in the knee joint capsule was sensitive to joint immobility and provided insights into molecular mechanisms relevant to the pathophysiology of knee flexion contractures. Capsule responses to immobilization was dynamic and characterized by modulation of at least three

  10. Bayesian models and meta analysis for multiple tissue gene expression data following corticosteroid administration

    Directory of Open Access Journals (Sweden)

    Kelemen Arpad

    2008-08-01

    Full Text Available Abstract Background This paper addresses key biological problems and statistical issues in the analysis of large gene expression data sets that describe systemic temporal response cascades to therapeutic doses in multiple tissues such as liver, skeletal muscle, and kidney from the same animals. Affymetrix time course gene expression data U34A are obtained from three different tissues including kidney, liver and muscle. Our goal is not only to find the concordance of gene in different tissues, identify the common differentially expressed genes over time and also examine the reproducibility of the findings by integrating the results through meta analysis from multiple tissues in order to gain a significant increase in the power of detecting differentially expressed genes over time and to find the differential differences of three tissues responding to the drug. Results and conclusion Bayesian categorical model for estimating the proportion of the 'call' are used for pre-screening genes. Hierarchical Bayesian Mixture Model is further developed for the identifications of differentially expressed genes across time and dynamic clusters. Deviance information criterion is applied to determine the number of components for model comparisons and selections. Bayesian mixture model produces the gene-specific posterior probability of differential/non-differential expression and the 95% credible interval, which is the basis for our further Bayesian meta-inference. Meta-analysis is performed in order to identify commonly expressed genes from multiple tissues that may serve as ideal targets for novel treatment strategies and to integrate the results across separate studies. We have found the common expressed genes in the three tissues. However, the up/down/no regulations of these common genes are different at different time points. Moreover, the most differentially expressed genes were found in the liver, then in kidney, and then in muscle.

  11. Temporal and spatial transcriptional fingerprints by antipsychotic or propsychotic drugs in mouse brain.

    Directory of Open Access Journals (Sweden)

    Kensuke Sakuma

    Full Text Available Various types of antipsychotics have been developed for the treatment of schizophrenia since the accidental discovery of the antipsychotic activity of chlorpromazine. Although all clinically effective antipsychotic agents have common properties to interact with the dopamine D2 receptor (D2R activation, their precise mechanisms of action remain elusive. Antipsychotics are well known to induce transcriptional changes of immediate early genes (IEGs, raising the possibility that gene expressions play an essential role to improve psychiatric symptoms. Here, we report that while different classes of antipsychotics have complex pharmacological profiles against D2R, they share common transcriptome fingerprint (TFP profile of IEGs in the murine brain in vivo by quantitative real-time PCR (qPCR. Our data showed that various types of antipsychotics with a profound interaction of D2R including haloperidol (antagonist, olanzapine (antagonist, and aripiprazole (partial agonist all share common spatial TFPs closely homologous to those of D2R antagonist sulpiride, and elicited greater transcriptional responses in the striatum than in the nucleus accumbens. Meanwhile, D2R agonist quinpirole and propsychotic NMDA antagonists such as MK-801 and phencyclidine (PCP exhibited the contrasting TFP profiles. Clozapine and propsychotic drug methamphetamine (MAP displayed peculiar TFPs that reflect their unique pharmacological property. Our results suggest that transcriptional responses are conserved across various types of antipsychotics clinically effective in positive symptoms of schizophrenia and also show that temporal and spatial TFPs may reflect the pharmacological features of the drugs. Thus, we propose that a TFP approach is beneficial to evaluate novel drug candidates for antipsychotic development.

  12. Spatial and Temporal Stress Drop Variations of the 2011 Tohoku Earthquake Sequence

    Science.gov (United States)

    Miyake, H.

    2013-12-01

    The 2011 Tohoku earthquake sequence consists of foreshocks, mainshock, aftershocks, and repeating earthquakes. To quantify spatial and temporal stress drop variations is important for understanding M9-class megathrust earthquakes. Variability and spatial and temporal pattern of stress drop is a basic information for rupture dynamics as well as useful to source modeling. As pointed in the ground motion prediction equations by Campbell and Bozorgnia [2008, Earthquake Spectra], mainshock-aftershock pairs often provide significant decrease of stress drop. We here focus strong motion records before and after the Tohoku earthquake, and analyze source spectral ratios considering azimuth- and distance dependency [Miyake et al., 2001, GRL]. Due to the limitation of station locations on land, spatial and temporal stress drop variations are estimated by adjusting shifts from the omega-squared source spectral model. The adjustment is based on the stochastic Green's function simulations of source spectra considering azimuth- and distance dependency. We assumed the same Green's functions for event pairs for each station, both the propagation path and site amplification effects are cancelled out. Precise studies of spatial and temporal stress drop variations have been performed [e.g., Allmann and Shearer, 2007, JGR], this study targets the relations between stress drop vs. progression of slow slip prior to the Tohoku earthquake by Kato et al. [2012, Science] and plate structures. Acknowledgement: This study is partly supported by ERI Joint Research (2013-B-05). We used the JMA unified earthquake catalogue and K-NET, KiK-net, and F-net data provided by NIED.

  13. Dynamic expression of ancient and novel molluscan shell genes during ecological transitions

    Directory of Open Access Journals (Sweden)

    Wörheide Gert

    2007-09-01

    Full Text Available Abstract Background The Mollusca constitute one of the most morphologically and ecologically diverse metazoan phyla, occupying a wide range of marine, terrestrial and freshwater habitats. The evolutionary success of the molluscs can in part be attributed to the evolvability of the external shell. Typically, the shell first forms during embryonic and larval development, changing dramatically in shape, colour and mineralogical composition as development and maturation proceeds. Major developmental transitions in shell morphology often correlate with ecological transitions (e.g. from a planktonic to benthic existence at metamorphosis. While the genes involved in molluscan biomineralisation are beginning to be identified, there is little understanding of how these are developmentally regulated, or if the same genes are operational at different stages of the mollusc's life. Results Here we relate the developmental expression of nine genes in the tissue responsible for shell production – the mantle – to ecological transitions that occur during the lifetime of the tropical abalone Haliotis asinina (Vetigastropoda. Four of these genes encode evolutionarily ancient proteins, while four others encode secreted proteins with little or no identity to known proteins. Another gene has been previously described from the mantle of another haliotid vetigastropod. All nine genes display dynamic spatial and temporal expression profiles within the larval shell field and juvenile mantle. Conclusion These expression data reflect the regulatory complexity that underlies molluscan shell construction from larval stages to adulthood, and serves to highlight the different ecological demands placed on each stage. The use of both ancient and novel genes in all stages of shell construction also suggest that a core set of shell-making genes was provided by a shared metazoan ancestor, which has been elaborated upon to produce the range of molluscan shell types we see today.

  14. Spatio-Temporal Gene Expression Profiling during In Vivo Early Ovarian Folliculogenesis: Integrated Transcriptomic Study and Molecular Signature of Early Follicular Growth.

    Directory of Open Access Journals (Sweden)

    Agnes Bonnet

    Full Text Available The successful achievement of early ovarian folliculogenesis is important for fertility and reproductive life span. This complex biological process requires the appropriate expression of numerous genes at each developmental stage, in each follicular compartment. Relatively little is known at present about the molecular mechanisms that drive this process, and most gene expression studies have been performed in rodents and without considering the different follicular compartments.We used RNA-seq technology to explore the sheep transcriptome during early ovarian follicular development in the two main compartments: oocytes and granulosa cells. We documented the differential expression of 3,015 genes during this phase and described the gene expression dynamic specific to these compartments. We showed that important steps occurred during primary/secondary transition in sheep. We also described the in vivo molecular course of a number of pathways. In oocytes, these pathways documented the chronology of the acquisition of meiotic competence, migration and cellular organization, while in granulosa cells they concerned adhesion, the formation of cytoplasmic projections and steroid synthesis. This study proposes the involvement in this process of several members of the integrin and BMP families. The expression of genes such as Kruppel-like factor 9 (KLF9 and BMP binding endothelial regulator (BMPER was highlighted for the first time during early follicular development, and their proteins were also predicted to be involved in gene regulation. Finally, we selected a data set of 24 biomarkers that enabled the discrimination of early follicular stages and thus offer a molecular signature of early follicular growth. This set of biomarkers includes known genes such as SPO11 meiotic protein covalently bound to DSB (SPO11, bone morphogenetic protein 15 (BMP15 and WEE1 homolog 2 (S. pombe(WEE2 which play critical roles in follicular development but other biomarkers

  15. Snowpack spatial and temporal variability assessment using SMP high-resolution penetrometer

    Science.gov (United States)

    Komarov, Anton; Seliverstov, Yuriy; Sokratov, Sergey; Grebennikov, Pavel

    2017-04-01

    This research is focused on study of spatial and temporal variability of structure and characteristics of snowpack, quick identification of layers based on hardness and dispersion values received from snow micro penetrometer (SMP). We also discuss the detection of weak layers and definition of their parameters in non-alpine terrain. As long as it is the first SMP tool available in Russia, our intent is to test it in different climate and weather conditions. During two separate snowpack studies in plain and mountain landscapes, we derived density and grain size profiles by comparing snow density and grain size from snowpits and SMP measurements. The first case study was MSU meteorological observatory test site in Moscow. SMP data was obtained by 6 consecutive measurements along 10 m transects with a horizontal resolution of approximately 50 cm. The detailed description of snowpack structure, density, grain size, air and snow temperature was also performed. By comparing this information, the detailed scheme of snowpack evolution was created. The second case study was in Khibiny mountains. One 10-meter-long transect was made. SMP, density, grain size and snow temperature data was obtained with horizontal resolution of approximately 50 cm. The high-definition profile of snowpack density variation was acquired using received data. The analysis of data reveals high spatial and temporal variability in snow density and layer structure in both horizontal and vertical dimensions. It indicates that the spatial variability is exhibiting similar spatial patterns as surface topology. This suggests a strong influence from such factors as wind and liquid water pressure on the temporal and spatial evolution of snow structure. It was also defined, that spatial variation of snowpack characteristics is substantial even within homogeneous plain landscape, while in high-latitude mountain regions it grows significantly.

  16. Spatial and temporal variations in shallow wetland groundwater quality

    Science.gov (United States)

    Schot, Paul P.; Pieber, Simone M.

    2012-02-01

    SummaryWetlands worldwide are threatened by environmental change. Differences in groundwater composition is one of the factors affecting wetland terrestrial floristic biodiversity. However, few studies discuss variations in wetland groundwater composition. This study presents an analysis of local-scale spatial and short-term temporal variations in 15 groundwater composition parameters of the 7 km2 Naardermeer wetland nature reserve in The Netherlands. Data is available from a network of 35 groundwater wells with 2-4 filters each, at depths between 50 and 800 cm, which were sampled about monthly over a 1-year period, totalling 1042 chemical analysis from 103 filter screens. Relative standard deviations indicate large differences in variation between parameters. Largest spatial and temporal variations were found for nutrients (NO3-, PO43-, NH4+) and redox sensitive parameters (Fe, Mn), and lowest variations for macroions and SiO2. A horizontal zonation in groundwater concentrations has been found related to soil type and soil wetness, with largest horizontal decrease in NO3- and SO42-, and largest increase in Fe and SiO2, going in the groundwater flow direction from dry sandy soils to wet peat/clay soils. No clear horizontal patterns have been found for the macroions. Spatial zonations in the north-south direction and with depth are absent for all parameters. Spatial and temporal variations were found to be related. 3D-maps indicate highest temporal fluctuations at filter screens with lowest median concentrations for NO3-, SO42- and Fe, but the reverse pattern for SiO2. High temporal variations of nutrients and redox sensitive parameters could not be traced back to a seasonal trend. The spatial and temporal variability of groundwater quality parameters as presented in this study, together with their reported effects on different vegetation types, may be used to design efficient monitoring schemes by nature managers having set specific vegetation development targets

  17. Stochastic fluctuations and distributed control of gene expression impact cellular memory.

    Directory of Open Access Journals (Sweden)

    Guillaume Corre

    Full Text Available Despite the stochastic noise that characterizes all cellular processes the cells are able to maintain and transmit to their daughter cells the stable level of gene expression. In order to better understand this phenomenon, we investigated the temporal dynamics of gene expression variation using a double reporter gene model. We compared cell clones with transgenes coding for highly stable mRNA and fluorescent proteins with clones expressing destabilized mRNA-s and proteins. Both types of clones displayed strong heterogeneity of reporter gene expression levels. However, cells expressing stable gene products produced daughter cells with similar level of reporter proteins, while in cell clones with short mRNA and protein half-lives the epigenetic memory of the gene expression level was completely suppressed. Computer simulations also confirmed the role of mRNA and protein stability in the conservation of constant gene expression levels over several cell generations. These data indicate that the conservation of a stable phenotype in a cellular lineage may largely depend on the slow turnover of mRNA-s and proteins.

  18. Deep Spatial-Temporal Joint Feature Representation for Video Object Detection.

    Science.gov (United States)

    Zhao, Baojun; Zhao, Boya; Tang, Linbo; Han, Yuqi; Wang, Wenzheng

    2018-03-04

    With the development of deep neural networks, many object detection frameworks have shown great success in the fields of smart surveillance, self-driving cars, and facial recognition. However, the data sources are usually videos, and the object detection frameworks are mostly established on still images and only use the spatial information, which means that the feature consistency cannot be ensured because the training procedure loses temporal information. To address these problems, we propose a single, fully-convolutional neural network-based object detection framework that involves temporal information by using Siamese networks. In the training procedure, first, the prediction network combines the multiscale feature map to handle objects of various sizes. Second, we introduce a correlation loss by using the Siamese network, which provides neighboring frame features. This correlation loss represents object co-occurrences across time to aid the consistent feature generation. Since the correlation loss should use the information of the track ID and detection label, our video object detection network has been evaluated on the large-scale ImageNet VID dataset where it achieves a 69.5% mean average precision (mAP).

  19. Regional differences in gene expression and promoter usage in aged human brains

    KAUST Repository

    Pardo, Luba M.

    2013-02-19

    To characterize the promoterome of caudate and putamen regions (striatum), frontal and temporal cortices, and hippocampi from aged human brains, we used high-throughput cap analysis of gene expression to profile the transcription start sites and to quantify the differences in gene expression across the 5 brain regions. We also analyzed the extent to which methylation influenced the observed expression profiles. We sequenced more than 71 million cap analysis of gene expression tags corresponding to 70,202 promoter regions and 16,888 genes. More than 7000 transcripts were differentially expressed, mainly because of differential alternative promoter usage. Unexpectedly, 7% of differentially expressed genes were neurodevelopmental transcription factors. Functional pathway analysis on the differentially expressed genes revealed an overrepresentation of several signaling pathways (e.g., fibroblast growth factor and wnt signaling) in hippocampus and striatum. We also found that although 73% of methylation signals mapped within genes, the influence of methylation on the expression profile was small. Our study underscores alternative promoter usage as an important mechanism for determining the regional differences in gene expression at old age.

  20. What Is Spatio-Temporal Data Warehousing?

    Science.gov (United States)

    Vaisman, Alejandro; Zimányi, Esteban

    In the last years, extending OLAP (On-Line Analytical Processing) systems with spatial and temporal features has attracted the attention of the GIS (Geographic Information Systems) and database communities. However, there is no a commonly agreed definition of what is a spatio-temporal data warehouse and what functionality such a data warehouse should support. Further, the solutions proposed in the literature vary considerably in the kind of data that can be represented as well as the kind of queries that can be expressed. In this paper we present a conceptual framework for defining spatio-temporal data warehouses using an extensible data type system. We also define a taxonomy of different classes of queries of increasing expressive power, and show how to express such queries using an extension of the tuple relational calculus with aggregated functions.

  1. Figure/ground segregation from temporal delay is best at high spatial frequencies.

    Science.gov (United States)

    Kojima, H

    1998-12-01

    Two experiments investigated the role of spatial frequency in performance of a figure/ground segregation task based on temporal cues. Figure orientation was much easier to judge when figure and ground portions of the target were defined exclusively by random texture composed entirely of high spatial frequencies. When target components were defined by low spatial frequencies only, the task was nearly impossible except with long temporal delay between figure and ground. These results are inconsistent with the hypothesis that M-cell activity is primarily responsible for figure/ground segregation from temporal delay. Instead, these results point to a distinction between temporal integration and temporal differentiation. Additionally, the present results can be related to recent work on the binding of spatial features over time.

  2. Resolution of spatial and temporal visual attention in infants with fragile X syndrome

    OpenAIRE

    Farzin, Faraz; Rivera, Susan M.; Whitney, David

    2011-01-01

    Fragile X syndrome is the most common cause of inherited intellectual impairment and the most common single-gene cause of autism. Individuals with fragile X syndrome present with a neurobehavioural phenotype that includes selective deficits in spatiotemporal visual perception associated with neural processing in frontal–parietal networks of the brain. The goal of the current study was to examine whether reduced resolution of spatial and/or temporal visual attention may underlie perceptual def...

  3. In vivo characterization of a reporter gene system for imaging hypoxia-induced gene expression.

    Science.gov (United States)

    Carlin, Sean; Pugachev, Andrei; Sun, Xiaorong; Burke, Sean; Claus, Filip; O'Donoghue, Joseph; Ling, C Clifton; Humm, John L

    2009-10-01

    To characterize a tumor model containing a hypoxia-inducible reporter gene and to demonstrate utility by comparison of reporter gene expression to the uptake and distribution of the hypoxia tracer (18)F-fluoromisonidazole ((18)F-FMISO). Three tumors derived from the rat prostate cancer cell line R3327-AT were grown in each of two rats as follows: (1) parental R3327-AT, (2) positive control R3327-AT/PC in which the HSV1-tkeGFP fusion reporter gene was expressed constitutively, (3) R3327-AT/HRE in which the reporter gene was placed under the control of a hypoxia-inducible factor-responsive promoter sequence (HRE). Animals were coadministered a hypoxia-specific marker (pimonidazole) and the reporter gene probe (124)I-2'-fluoro-2'-deoxy-1-beta-d-arabinofuranosyl-5-iodouracil ((124)I-FIAU) 3 h prior to sacrifice. Statistical analysis of the spatial association between (124)I-FIAU uptake and pimonidazole fluorescent staining intensity was then performed on a pixel-by-pixel basis. Utility of this system was demonstrated by assessment of reporter gene expression versus the exogenous hypoxia probe (18)F-FMISO. Two rats, each bearing a single R3327-AT/HRE tumor, were injected with (124)I-FIAU (3 h before sacrifice) and (18)F-FMISO (2 h before sacrifice). Statistical analysis of the spatial association between (18)F-FMISO and (124)I-FIAU on a pixel-by-pixel basis was performed. Correlation coefficients between (124)I-FIAU uptake and pimonidazole staining intensity were: 0.11 in R3327-AT tumors, -0.66 in R3327-AT/PC and 0.76 in R3327-AT/HRE, confirming that only in the R3327-AT/HRE tumor was HSV1-tkeGFP gene expression associated with hypoxia. Correlation coefficients between (18)F-FMISO and (124)I-FIAU uptakes in R3327-AT/HRE tumors were r=0.56, demonstrating good spatial correspondence between the two tracers. We have confirmed hypoxia-specific expression of the HSV1-tkeGFP fusion gene in the R3327-AT/HRE tumor model and demonstrated the utility of this model for the

  4. In vivo characterization of a reporter gene system for imaging hypoxia-induced gene expression

    International Nuclear Information System (INIS)

    Carlin, Sean; Pugachev, Andrei; Sun Xiaorong; Burke, Sean; Claus, Filip; O'Donoghue, Joseph; Ling, C. Clifton; Humm, John L.

    2009-01-01

    Purpose: To characterize a tumor model containing a hypoxia-inducible reporter gene and to demonstrate utility by comparison of reporter gene expression to the uptake and distribution of the hypoxia tracer 18 F-fluoromisonidazole ( 18 F-FMISO). Methods: Three tumors derived from the rat prostate cancer cell line R3327-AT were grown in each of two rats as follows: (1) parental R3327-AT, (2) positive control R3327-AT/PC in which the HSV1-tkeGFP fusion reporter gene was expressed constitutively, (3) R3327-AT/HRE in which the reporter gene was placed under the control of a hypoxia-inducible factor-responsive promoter sequence (HRE). Animals were coadministered a hypoxia-specific marker (pimonidazole) and the reporter gene probe 124 I-2'-fluoro-2'-deoxy-1-β-D-arabinofuranosyl-5-iodouracil ( 124 I-FIAU) 3 h prior to sacrifice. Statistical analysis of the spatial association between 124 I-FIAU uptake and pimonidazole fluorescent staining intensity was then performed on a pixel-by-pixel basis. Utility of this system was demonstrated by assessment of reporter gene expression versus the exogenous hypoxia probe 18 F-FMISO. Two rats, each bearing a single R3327-AT/HRE tumor, were injected with 124 I-FIAU (3 h before sacrifice) and 18 F-FMISO (2 h before sacrifice). Statistical analysis of the spatial association between 18 F-FMISO and 124 I-FIAU on a pixel-by-pixel basis was performed. Results: Correlation coefficients between 124 I-FIAU uptake and pimonidazole staining intensity were: 0.11 in R3327-AT tumors, -0.66 in R3327-AT/PC and 0.76 in R3327-AT/HRE, confirming that only in the R3327-AT/HRE tumor was HSV1-tkeGFP gene expression associated with hypoxia. Correlation coefficients between 18 F-FMISO and 124 I-FIAU uptakes in R3327-AT/HRE tumors were r=0.56, demonstrating good spatial correspondence between the two tracers. Conclusions: We have confirmed hypoxia-specific expression of the HSV1-tkeGFP fusion gene in the R3327-AT/HRE tumor model and demonstrated the utility of

  5. Cloning and Expression Analysis of an AP2/ERF Gene and Its Responses to Phytohormones and Abiotic Stresses in Rice

    Directory of Open Access Journals (Sweden)

    Hao-li MA

    2010-03-01

    Full Text Available Ethylene response factors (ERFs play important roles in response to plant biotic and abiotic stresses. In this study, a gene encoding a putative AP2/ERF domain-containing protein was isolated by screening a SSH cDNA library from rice and designated as Oryza sativa AP2/ERF-like protein (OsAP2LP gene. OsAP2LP is 1491 bp in length, interrupted by seven introns, and encodes a putative protein of 348 amino acids. Temporal and spatial expression analysis showed that the OsAP2LP gene was preferentially expressed in roots, panicles, mature embryos and seeds in rice. Real-time quantitative PCR analysis indicated that the expression levels of the OsAP2LP gene were increased under the treatments of drought and gibberellin but decreased under the treatments of low temperature, salt, abscisic acid (ABA and zeatin. Taken together, these results suggest that OsAP2LP might be involved in stress responses, and probably plays roles as a transcription regulator when plants response to cold, salt and drought stresses through ABA and gibberellin pathways.

  6. Means of temporal expressions in newspaper news and press report

    Directory of Open Access Journals (Sweden)

    Čutura Ilijana R.

    2016-01-01

    Full Text Available This paper analyses most frequent linguistic means for expressing the temporal frame in the printed news and press reports. With structuralism as a chosen theoretical framework, the approach of the research is qualitative and stylistic. Since the study belongs to the field of functional stylistics, the primary methods used in the study were functional-stylistic and linguistic-stylistic ones. As the study focuses on two newspaper genres, comparative-stylistic method was used as well. The analysis has been conducted on concrete linguistic excerpts from Serbian daily newspapers published throughout Serbia from 2008 to 2015. The aims of the paper are to show model of expressing temporal frame in contemporary Serbian newspapers. This paper provides an overview of the characteristics of model and the types of temporal expression as well as their variations in contemporal Serbian newspapers. The paper also aims to determine the differencies between printed news and press reports by the choice of temporal expressions. It is shown that there is a tendency of changing schematized structure of these informative genres and some innovation in relation to the choice of linguistic means for expessing the meaning of temporally close events. The research is a contribution to journalism stylistics, more precisely to the Serbian language newspaper stylistics, and also contributes to the study of linguistic and stylistic characteristics of non-literary texts. The study is also relevant because it describes the use of adverbs and adverbial expressions in the journalistic style.

  7. Temporal dynamics of divided spatial attention.

    Science.gov (United States)

    Itthipuripat, Sirawaj; Garcia, Javier O; Serences, John T

    2013-05-01

    In naturalistic settings, observers often have to monitor multiple objects dispersed throughout the visual scene. However, the degree to which spatial attention can be divided across spatially noncontiguous objects has long been debated, particularly when those objects are in close proximity. Moreover, the temporal dynamics of divided attention are unclear: is the process of dividing spatial attention gradual and continuous, or does it onset in a discrete manner? To address these issues, we recorded steady-state visual evoked potentials (SSVEPs) as subjects covertly monitored two flickering targets while ignoring an intervening distractor that flickered at a different frequency. All three stimuli were clustered within either the lower left or the lower right quadrant, and our dependent measure was SSVEP power at the target and distractor frequencies measured over time. In two experiments, we observed a temporally discrete increase in power for target- vs. distractor-evoked SSVEPs extending from ∼350 to 150 ms prior to correct (but not incorrect) responses. The divergence in SSVEP power immediately prior to a correct response suggests that spatial attention can be divided across noncontiguous locations, even when the targets are closely spaced within a single quadrant. In addition, the division of spatial attention appears to be relatively discrete, as opposed to slow and continuous. Finally, the predictive relationship between SSVEP power and behavior demonstrates that these neurophysiological measures of divided attention are meaningfully related to cognitive function.

  8. Missing value imputation for microarray gene expression data using histone acetylation information

    Directory of Open Access Journals (Sweden)

    Feng Jihua

    2008-05-01

    Full Text Available Abstract Background It is an important pre-processing step to accurately estimate missing values in microarray data, because complete datasets are required in numerous expression profile analysis in bioinformatics. Although several methods have been suggested, their performances are not satisfactory for datasets with high missing percentages. Results The paper explores the feasibility of doing missing value imputation with the help of gene regulatory mechanism. An imputation framework called histone acetylation information aided imputation method (HAIimpute method is presented. It incorporates the histone acetylation information into the conventional KNN(k-nearest neighbor and LLS(local least square imputation algorithms for final prediction of the missing values. The experimental results indicated that the use of acetylation information can provide significant improvements in microarray imputation accuracy. The HAIimpute methods consistently improve the widely used methods such as KNN and LLS in terms of normalized root mean squared error (NRMSE. Meanwhile, the genes imputed by HAIimpute methods are more correlated with the original complete genes in terms of Pearson correlation coefficients. Furthermore, the proposed methods also outperform GOimpute, which is one of the existing related methods that use the functional similarity as the external information. Conclusion We demonstrated that the using of histone acetylation information could greatly improve the performance of the imputation especially at high missing percentages. This idea can be generalized to various imputation methods to facilitate the performance. Moreover, with more knowledge accumulated on gene regulatory mechanism in addition to histone acetylation, the performance of our approach can be further improved and verified.

  9. EEG/MEG Source Reconstruction with Spatial-Temporal Two-Way Regularized Regression

    KAUST Repository

    Tian, Tian Siva

    2013-07-11

    In this work, we propose a spatial-temporal two-way regularized regression method for reconstructing neural source signals from EEG/MEG time course measurements. The proposed method estimates the dipole locations and amplitudes simultaneously through minimizing a single penalized least squares criterion. The novelty of our methodology is the simultaneous consideration of three desirable properties of the reconstructed source signals, that is, spatial focality, spatial smoothness, and temporal smoothness. The desirable properties are achieved by using three separate penalty functions in the penalized regression framework. Specifically, we impose a roughness penalty in the temporal domain for temporal smoothness, and a sparsity-inducing penalty and a graph Laplacian penalty in the spatial domain for spatial focality and smoothness. We develop a computational efficient multilevel block coordinate descent algorithm to implement the method. Using a simulation study with several settings of different spatial complexity and two real MEG examples, we show that the proposed method outperforms existing methods that use only a subset of the three penalty functions. © 2013 Springer Science+Business Media New York.

  10. Tactile feedback display with spatial and temporal resolutions.

    Science.gov (United States)

    Vishniakou, Siarhei; Lewis, Brian W; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-01-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.

  11. Tactile Feedback Display with Spatial and Temporal Resolutions

    Science.gov (United States)

    Vishniakou, Siarhei; Lewis, Brian W.; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-08-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.

  12. Surveying and Mapping Geographical Information from the Perspective of Geography

    Directory of Open Access Journals (Sweden)

    LÜ Guonian

    2017-10-01

    Full Text Available It briefly reviewed the history of geographic information content development since the existence of geographic information system. It pointed out that the current definition of geographic information is always the extension from the "spatial+ attributes" basic mapping framework of geographic information. It is increasingly difficult to adapt to the analysis and application of spatial-temporal big data. From the perspective of geography research subject and content, it summarized systematically that the content and extension of the "geographic information" that geography needs. It put forward that a six-element expression model of geographic information, including spatial location, semantic description, attribute characteristics, geometric form, evolution process, and objects relationship.Under the guidance of the laws of geography, for geographical phenomenon of spatial distribution, temporal pattern and evolution process, the interaction mechanism of the integrated expression, system analysis and efficient management, it designed that a unified GIS data model which is expressed by six basic elements, a new GIS data structure driven by geographical rules and interaction, and key technologies of unstructured spatio-temporal data organization and storage. It provided that a theoretical basis and technical support for the shift from the surveying and mapping geographic information to the scientific geographic information, and it can help improving the organization, management, analysis and expression ability of the GIS of the geographical laws such as geographical pattern, evolution process, and interaction between elements.

  13. Emotional cues enhance the attentional effects on spatial and temporal resolution.

    Science.gov (United States)

    Bocanegra, Bruno R; Zeelenberg, René

    2011-12-01

    In the present study, we demonstrated that the emotional significance of a spatial cue enhances the effect of covert attention on spatial and temporal resolution (i.e., our ability to discriminate small spatial details and fast temporal flicker). Our results indicated that fearful face cues, as compared with neutral face cues, enhanced the attentional benefits in spatial resolution but also enhanced the attentional deficits in temporal resolution. Furthermore, we observed that the overall magnitudes of individuals' attentional effects correlated strongly with the magnitude of the emotion × attention interaction effect. Combined, these findings provide strong support for the idea that emotion enhances the strength of a cue's attentional response.

  14. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy

    Science.gov (United States)

    Miller-Delaney, Suzanne F.C.; Bryan, Kenneth; Das, Sudipto; McKiernan, Ross C.; Bray, Isabella M.; Reynolds, James P.; Gwinn, Ryder; Stallings, Raymond L.

    2015-01-01

    Temporal lobe epilepsy is associated with large-scale, wide-ranging changes in gene expression in the hippocampus. Epigenetic changes to DNA are attractive mechanisms to explain the sustained hyperexcitability of chronic epilepsy. Here, through methylation analysis of all annotated C-phosphate-G islands and promoter regions in the human genome, we report a pilot study of the methylation profiles of temporal lobe epilepsy with or without hippocampal sclerosis. Furthermore, by comparative analysis of expression and promoter methylation, we identify methylation sensitive non-coding RNA in human temporal lobe epilepsy. A total of 146 protein-coding genes exhibited altered DNA methylation in temporal lobe epilepsy hippocampus (n = 9) when compared to control (n = 5), with 81.5% of the promoters of these genes displaying hypermethylation. Unique methylation profiles were evident in temporal lobe epilepsy with or without hippocampal sclerosis, in addition to a common methylation profile regardless of pathology grade. Gene ontology terms associated with development, neuron remodelling and neuron maturation were over-represented in the methylation profile of Watson Grade 1 samples (mild hippocampal sclerosis). In addition to genes associated with neuronal, neurotransmitter/synaptic transmission and cell death functions, differential hypermethylation of genes associated with transcriptional regulation was evident in temporal lobe epilepsy, but overall few genes previously associated with epilepsy were among the differentially methylated. Finally, a panel of 13, methylation-sensitive microRNA were identified in temporal lobe epilepsy including MIR27A, miR-193a-5p (MIR193A) and miR-876-3p (MIR876), and the differential methylation of long non-coding RNA documented for the first time. The present study therefore reports select, genome-wide DNA methylation changes in human temporal lobe epilepsy that may contribute to the molecular architecture of the epileptic brain. PMID

  15. Vulnerability assessment of archaeological sites to earthquake hazard: An indicator based method integrating spatial and temporal aspects

    Directory of Open Access Journals (Sweden)

    Despina Minos-Minopoulos

    2017-07-01

    Full Text Available Across the world, numerous sites of cultural heritage value are at risk from a variety of human-induced and natural hazards such as war and earthquakes. Here we present and test a novel indicator-based method for assessing the vulnerability of archaeological sites to earthquakes. Vulnerability is approached as a dynamic element assessed through a combination of spatial and temporal parameters. The spatial parameters examine the susceptibility of the sites to the secondary Earthquake Environmental Effects of ground liquefaction, landslides and tsunami and are expressed through the Spatial Susceptibility Index (SSi. Parameters of physical vulnerability, economic importance and visitors density examine the temporal vulnerability of the sites expressed through the Temporal Vulnerability Index (TVi. The equally weighted sum of the spatial and temporal indexes represents the total Archaeological Site Vulnerability Index (A.S.V.I.. The A.S.V.I method is applied at 16 archaeological sites across Greece, allowing an assessment of their vulnerability. This then allows the establishment of a regional and national priority list for considering future risk mitigation. Results indicate that i the majority of the sites have low to moderate vulnerability to earthquake hazard, ii Neratzia Fortress on Kos and Heraion on Samos are characterised as highly vulnerable and should be prioritised for further studies and mitigation measures, and iii the majority of the sites are susceptible to at least one Earthquake Environmental Effect and present relatively high physical vulnerability attributed to the existing limited conservation works. This approach highlights the necessity for an effective vulnerability assessment methodology within the existing framework of disaster risk management for cultural heritage.

  16. Land Cover Classification Using Integrated Spectral, Temporal, and Spatial Features Derived from Remotely Sensed Images

    Directory of Open Access Journals (Sweden)

    Yongguang Zhai

    2018-03-01

    Full Text Available Obtaining accurate and timely land cover information is an important topic in many remote sensing applications. Using satellite image time series data should achieve high-accuracy land cover classification. However, most satellite image time-series classification methods do not fully exploit the available data for mining the effective features to identify different land cover types. Therefore, a classification method that can take full advantage of the rich information provided by time-series data to improve the accuracy of land cover classification is needed. In this paper, a novel method for time-series land cover classification using spectral, temporal, and spatial information at an annual scale was introduced. Based on all the available data from time-series remote sensing images, a refined nonlinear dimensionality reduction method was used to extract the spectral and temporal features, and a modified graph segmentation method was used to extract the spatial features. The proposed classification method was applied in three study areas with land cover complexity, including Illinois, South Dakota, and Texas. All the Landsat time series data in 2014 were used, and different study areas have different amounts of invalid data. A series of comparative experiments were conducted on the annual time-series images using training data generated from Cropland Data Layer. The results demonstrated higher overall and per-class classification accuracies and kappa index values using the proposed spectral-temporal-spatial method compared to spectral-temporal classification methods. We also discuss the implications of this study and possibilities for future applications and developments of the method.

  17. Inferring gene networks from discrete expression data

    KAUST Repository

    Zhang, L.

    2013-07-18

    The modeling of gene networks from transcriptional expression data is an important tool in biomedical research to reveal signaling pathways and to identify treatment targets. Current gene network modeling is primarily based on the use of Gaussian graphical models applied to continuous data, which give a closedformmarginal likelihood. In this paper,we extend network modeling to discrete data, specifically data from serial analysis of gene expression, and RNA-sequencing experiments, both of which generate counts of mRNAtranscripts in cell samples.We propose a generalized linear model to fit the discrete gene expression data and assume that the log ratios of the mean expression levels follow a Gaussian distribution.We restrict the gene network structures to decomposable graphs and derive the graphs by selecting the covariance matrix of the Gaussian distribution with the hyper-inverse Wishart priors. Furthermore, we incorporate prior network models based on gene ontology information, which avails existing biological information on the genes of interest. We conduct simulation studies to examine the performance of our discrete graphical model and apply the method to two real datasets for gene network inference. © The Author 2013. Published by Oxford University Press. All rights reserved.

  18. Gated myocardial SPECT using spatial and temporal filtering

    International Nuclear Information System (INIS)

    Hatton, R.L.; Hutton, B.F.; Kyme, A.Z.; Larcos, G.

    2002-01-01

    Full text: Standard protocols for examining myocardial perfusion and motion defects involve the use of gated SPECT images, and a composite of the gated frames. This study examines the usefulness of extracting one or a combination of frames from the gated image to assess perfusion, and whether the addition of a temporal filter to the gated image improves signal to noise. Choice of the most appropriate frame was also considered. Sixteen and eight frame gated SPECT studies were simulated using the dynamic NURBS-based cardiac torso (NCAT) phantom. Variously sized perfusion defects were included in the inferior wall to assess contrast to normal tissue. Scatter and attenuation were not included. Butterworth spatial cutoff frequencies were varied to establish the most appropriate combination of temporal/spatial filters to reduce noise and retain contrast in the images. The 16 frame data produced higher ejection fraction across all spatial filter cutoffs, and generally was unaffected by temporal filtering. Temporal filtering reduced the noise in a uniform liver region in the gated images to within 25% of the composite image noise. The lesion extent and contrast were greater in the end-diastolic frames compared to end-systolic and mid-cycle frames. In conclusion, by using a temporally filtered end-diastolic image from the gated sequence, a favourable balance between noise and contrast can be achieved. Work is progress to confirm these findings in the clinical situation. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  19. Temporal and spatial patterns of micropollutants in urban receiving waters

    Energy Technology Data Exchange (ETDEWEB)

    Musolff, Andreas, E-mail: andreas.musolff@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Hydrogeology, Permoserstr. 15, 04318 Leipzig (Germany); Leschik, Sebastian, E-mail: sebastian.leschik@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Hydrogeology, Permoserstr. 15, 04318 Leipzig (Germany); Moeder, Monika, E-mail: monika.moeder@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstr. 15, 04318 Leipzig (Germany); Strauch, Gerhard, E-mail: gerhard.strauch@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Hydrogeology, Permoserstr. 15, 04318 Leipzig (Germany); Reinstorf, Frido, E-mail: frido.reinstorf@hs-magdeburg.d [University of Applied Sciences Magdeburg-Stendal, Department of Water and Waste Management, Breitscheidstr. 2, 39114 Magdeburg (Germany); Schirmer, Mario, E-mail: mario.schirmer@eawag.c [Eawag, The Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water, Ueberlandstr. 133, 8600 Duebendorf (Switzerland)

    2009-11-15

    Based on a monitoring program over the course of a year, we characterize the temporal and spatial distribution of selected micropollutants in an urban watershed within the city of Leipzig, Germany. Micropollutants revealed a ubiquitous presence in untreated and treated wastewater, surface water and groundwater. The loads of 4-nonylphenol in the effluents of the municipal wastewater treatment plant followed a seasonal trend, whereas the loads of all other micropollutants were highly variable and not correlated to seasons. In the surface water, load seasonality of caffeine, galaxolide and tonalide resulted from a rapid removal with increased water temperature. The loads of 4-nonylphenol and of caffeine in the colder months increased when rainfall occurred. In the groundwater, complex spatial and temporal patterns were apparent and were related to varying input, retardation and removal processes. As a consequence, an assessment of micropollutants in urban waters should consider different micropollutants' temporal and spatial variability. - Micropollutants in urban receiving waters are characterized by variable temporal and spatial concentration and load patterns that have to be considered in risk assessments.

  20. Transport and transformation of genetic information in the critical zone: The case of antibiotic resistance genes

    Science.gov (United States)

    Zhu, Y. G.

    2015-12-01

    In addition to material and energy flows, the dynamics and functions of the Earth's critical zone are intensively mediated by biological actions performed by diverse organisms. These biological actions are modulated by the expression of functional genes and their translation into enzymes that catalyze geochemical reactions, such as nutrient turnover and pollutant biodegradation. Although geobiology, as an interdisciplinary research area, is playing and vital role in linking biological and geochemical processes at different temporal and spatial scales, the distribution and transport of functional genes have rarely been investigated from the Earth's critical zone perspectives. To illustrate the framework of studies on the transport and transformation of genetic information in the critical zone, antibiotic resistance is taken as an example. Antibiotic resistance genes are considered as a group of emerging contaminants, and their emergence and spread within the critical zone on one hand are induced by anthropogenic activities, and on other hand are threatening human health worldwide. The transport and transformation of antibiotic resistance genes are controlled by both horizontal gene transfer between bacterial cells and the movement of bacteria harboring antibiotic resistance genes. In this paper, the fate and behavior of antibiotic resistance genes will be discussed in the following aspects: 1) general overview of environmental antibiotic resistance; 2) high through quantification of the resistome in various environmental media; 3) pathways of resistance gene flow within the critical zone; and 4) potential strategies in mitigating antibiotic resistance, particularly from the critical zone perspectives.

  1. Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization. | Office of Cancer Genomics

    Science.gov (United States)

    The CRISPR/Cas9 system is a powerful tool for studying gene function. Here, we describe a method that allows temporal control of CRISPR/Cas9 activity based on conditional Cas9 destabilization. We demonstrate that fusing an FKBP12-derived destabilizing domain to Cas9 (DD-Cas9) enables conditional Cas9 expression and temporal control of gene editing in the presence of an FKBP12 synthetic ligand. This system can be easily adapted to co-express, from the same promoter, DD-Cas9 with any other gene of interest without co-modulation of the latter.

  2. Interactions between the spatial and temporal stimulus factors that influence multisensory integration in human performance.

    Science.gov (United States)

    Stevenson, Ryan A; Fister, Juliane Krueger; Barnett, Zachary P; Nidiffer, Aaron R; Wallace, Mark T

    2012-05-01

    In natural environments, human sensory systems work in a coordinated and integrated manner to perceive and respond to external events. Previous research has shown that the spatial and temporal relationships of sensory signals are paramount in determining how information is integrated across sensory modalities, but in ecologically plausible settings, these factors are not independent. In the current study, we provide a novel exploration of the impact on behavioral performance for systematic manipulations of the spatial location and temporal synchrony of a visual-auditory stimulus pair. Simple auditory and visual stimuli were presented across a range of spatial locations and stimulus onset asynchronies (SOAs), and participants performed both a spatial localization and simultaneity judgment task. Response times in localizing paired visual-auditory stimuli were slower in the periphery and at larger SOAs, but most importantly, an interaction was found between the two factors, in which the effect of SOA was greater in peripheral as opposed to central locations. Simultaneity judgments also revealed a novel interaction between space and time: individuals were more likely to judge stimuli as synchronous when occurring in the periphery at large SOAs. The results of this study provide novel insights into (a) how the speed of spatial localization of an audiovisual stimulus is affected by location and temporal coincidence and the interaction between these two factors and (b) how the location of a multisensory stimulus impacts judgments concerning the temporal relationship of the paired stimuli. These findings provide strong evidence for a complex interdependency between spatial location and temporal structure in determining the ultimate behavioral and perceptual outcome associated with a paired multisensory (i.e., visual-auditory) stimulus.

  3. Spatially generalizable representations of facial expressions: Decoding across partial face samples.

    Science.gov (United States)

    Greening, Steven G; Mitchell, Derek G V; Smith, Fraser W

    2018-04-01

    A network of cortical and sub-cortical regions is known to be important in the processing of facial expression. However, to date no study has investigated whether representations of facial expressions present in this network permit generalization across independent samples of face information (e.g., eye region vs mouth region). We presented participants with partial face samples of five expression categories in a rapid event-related fMRI experiment. We reveal a network of face-sensitive regions that contain information about facial expression categories regardless of which part of the face is presented. We further reveal that the neural information present in a subset of these regions: dorsal prefrontal cortex (dPFC), superior temporal sulcus (STS), lateral occipital and ventral temporal cortex, and even early visual cortex, enables reliable generalization across independent visual inputs (faces depicting the 'eyes only' vs 'eyes removed'). Furthermore, classification performance was correlated to behavioral performance in STS and dPFC. Our results demonstrate that both higher (e.g., STS, dPFC) and lower level cortical regions contain information useful for facial expression decoding that go beyond the visual information presented, and implicate a key role for contextual mechanisms such as cortical feedback in facial expression perception under challenging conditions of visual occlusion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Identification of a spatially specific enhancer element in the chicken Msx-2 gene that regulates its expression in the apical ectodermal ridge of the developing limb buds of transgenic mice.

    Science.gov (United States)

    Sumoy, L; Wang, C K; Lichtler, A C; Pierro, L J; Kosher, R A; Upholt, W B

    1995-07-01

    Msx-2 is a member of the Msx family of homeobox-containing genes expressed in a variety of embryonic tissues involved in epithelial-mesenchymal interactions and pattern formation. In the developing chick limb bud, Msx-2 is expressed in the apical ectodermal ridge, which plays a crucial role in directing the growth and patterning of limb mesoderm. In addition, Msx-2 is expressed in the anterior nonskeletal-forming mesoderm of the limb bud, in the posterior necrotic zone, and in the interdigital mesenchyme. Studies of the altered expression patterns of Msx-2 in amelic and polydactylous mutant chick limbs have suggested that the apical ectodermal ridge and mesodermal domains of Msx-2 expression are independently regulated and that there might be separate cis-regulatory elements in the Msx-2 gene controlling its spatially distinct domains of expression. To test this hypothesis, we have isolated the chicken Msx-2 gene and have tested the ability of various regions of the gene to target expression of LacZ reporter gene to specific regions of the limbs of transgenic mice. A variety of these constructs are consistently expressed only in the apical ectodermal ridge and the ectoderm of the genital tubercle and are not expressed in the mesoderm of the limb bud or in other regions of the embryo where the endogenous Msx-2 gene is expressed. These results suggest the presence of spatially specific cis-regulatory elements in the Msx-2 gene. We identified a 348-bp region in the 5' flanking region of the Msx-2 gene which can act as an apical ectodermal ridge enhancer element when placed in reverse orientation in front of the reporter gene with transcription initiation directed by the minimal hsp68 promoter.

  5. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    Science.gov (United States)

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  6. Yolk proteins in the male reproductive system of the fruit fly Drosophila melanogaster: spatial and temporal patterns of expression.

    Science.gov (United States)

    Majewska, Magdalena M; Suszczynska, Agnieszka; Kotwica-Rolinska, Joanna; Czerwik, Tomasz; Paterczyk, Bohdan; Polanska, Marta A; Bernatowicz, Piotr; Bebas, Piotr

    2014-04-01

    In insects, spermatozoa develop in the testes as clones of single spermatogonia covered by specialized somatic cyst cells (cc). Upon completion of spermatogenesis, spermatozoa are released to the vas deferens, while the cc remain in the testes and die. In the fruit fly Drosophila melanogaster, the released spermatozoa first reach the seminal vesicles (SV), the organ where post-testicular maturation begins. Here, we demonstrate the temporal (restricted to the evening and early night hours) accumulation of membranous vesicles containing proteins in the SV lumen of D. melanogaster. When SV vesicles were isolated from the semen and co-incubated with testis-derived spermatozoa in vitro, their contents bound to the spermatozoa along their tails. The proteins of the SV vesicles were then characterized using 2-D electrophoresis. We identified a prominent protein spot of around 45-47 kDa, which disappears from the SV vesicles in the night, i.e. shortly after they appear in the SV lumen. Sequencing of peptides derived from this spot by mass spectrometry revealed identity with three yolk proteins (YP1-3). This unexpected result was confirmed by western blotting, which demonstrated that SV vesicles contain proteins that are immunoreactive with an antibody against D. melanogaster YP1-3. The expression of all yp genes was shown to be a unique feature of testis tissues. Using RNA probes we found that their transcripts localize exclusively to the cc that cover fully developed spermatozoa in the distal part of each testis. Temporally, the expression of yp genes was found to be restricted to a short period during the day and is followed by the evening accumulation of YP proteins in the cc. Immunohistochemical staining confirmed that cc are the source of SV vesicles containing YPs that are released into the SV lumen. These vesicles interact with spermatozoa and as a result, YPs become extrinsic proteins of the sperm membrane. Thus, we describe for the first time the expression of

  7. Corticostriatal Divergent Function in Determining the Temporal and Spatial Properties of Motor Tics.

    Science.gov (United States)

    Israelashvili, Michal; Bar-Gad, Izhar

    2015-12-16

    Striatal disinhibition leads to the formation of motor tics resembling those expressed during Tourette syndrome and other tic disorders. The spatial properties of these tics are dependent on the location of the focal disinhibition within the striatum; however, the factors affecting the temporal properties of tic expression are still unknown. Here, we used microstimulation within the motor cortex of freely behaving rats before and after striatal disinhibition to explore the factors underlying the timing of individual tics. Cortical activation determined the timing of individual tics via an accumulation process of inputs that was dependent on the frequency and amplitude of the inputs. The resulting tics and their neuronal representation within the striatum were highly stereotypic and independent of the cortical activity properties. The generation of tics was limited by absolute and relative tic refractory periods that were derived from an internal striatal state. Thus, the precise time of the tic expression depends on the interaction between the summation of incoming excitatory inputs to the striatum and the timing of the previous tic. A data-driven computational model of corticostriatal function closely replicated the temporal properties of tic generation and enabled the prediction of tic timing based on incoming cortical activity and tic history. These converging experimental and computational findings suggest a clear functional dichotomy within the corticostriatal network, pointing to disparate temporal (cortical) versus spatial (striatal) encoding. Thus, the abnormal striatal inhibition typical of Tourette syndrome and other tic disorders results in tics due to cortical activation of the abnormal striatal network. The factors underlying the temporal properties of tics expressed in Tourette syndrome and other tic disorders have eluded clinicians and scientists for decades. In this study, we highlight the key role of corticostriatal activity in determining the

  8. Temporal and spatial distribution characteristics in the natural plague foci of Chinese Mongolian gerbils based on spatial autocorrelation.

    Science.gov (United States)

    Du, Hai-Wen; Wang, Yong; Zhuang, Da-Fang; Jiang, Xiao-San

    2017-08-07

    The nest flea index of Meriones unguiculatus is a critical indicator for the prevention and control of plague, which can be used not only to detect the spatial and temporal distributions of Meriones unguiculatus, but also to reveal its cluster rule. This research detected the temporal and spatial distribution characteristics of the plague natural foci of Mongolian gerbils by body flea index from 2005 to 2014, in order to predict plague outbreaks. Global spatial autocorrelation was used to describe the entire spatial distribution pattern of the body flea index in the natural plague foci of typical Chinese Mongolian gerbils. Cluster and outlier analysis and hot spot analysis were also used to detect the intensity of clusters based on geographic information system methods. The quantity of M. unguiculatus nest fleas in the sentinel surveillance sites from 2005 to 2014 and host density data of the study area from 2005 to 2010 used in this study were provided by Chinese Center for Disease Control and Prevention. The epidemic focus regions of the Mongolian gerbils remain the same as the hot spot regions relating to the body flea index. High clustering areas possess a similar pattern as the distribution pattern of the body flea index indicating that the transmission risk of plague is relatively high. In terms of time series, the area of the epidemic focus gradually increased from 2005 to 2007, declined rapidly in 2008 and 2009, and then decreased slowly and began trending towards stability from 2009 to 2014. For the spatial change, the epidemic focus regions began moving northward from the southwest epidemic focus of the Mongolian gerbils from 2005 to 2007, and then moved from north to south in 2007 and 2008. The body flea index of Chinese gerbil foci reveals significant spatial and temporal aggregation characteristics through the employing of spatial autocorrelation. The diversity of temporary and spatial distribution is mainly affected by seasonal variation, the human

  9. Method and means for a spatial and temporal probe for laser-generated plumes based on density gradients

    Science.gov (United States)

    Yeung, E.S.; Chen, G.

    1990-05-01

    A method and means are disclosed for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived. 15 figs.

  10. Data Integration for Spatio-Temporal Patterns of Gene Expression of Zebrafish development: the GEMS database

    Directory of Open Access Journals (Sweden)

    Belmamoune Mounia

    2008-06-01

    Full Text Available The Gene Expression Management System (GEMS is a database system for patterns of gene expression. These patterns result from systematic whole-mount fluorescent in situ hybridization studies on zebrafish embryos. GEMS is an integrative platform that addresses one of the important challenges of developmental biology: how to integrate genetic data that underpin morphological changes during embryogenesis. Our motivation to build this system was by the need to be able to organize and compare multiple patterns of gene expression at tissue level. Integration with other developmental and biomolecular databases will further support our understanding of development. The GEMS operates in concert with a database containing a digital atlas of zebrafish embryo; this digital atlas of zebrafish development has been conceived prior to the expansion of the GEMS. The atlas contains 3D volume models of canonical stages of zebrafish development in which in each volume model element is annotated with an anatomical term. These terms are extracted from a formal anatomical ontology, i.e. the Developmental Anatomy Ontology of Zebrafish (DAOZ. In the GEMS, anatomical terms from this ontology together with terms from the Gene Ontology (GO are also used to annotate patterns of gene expression and in this manner providing mechanisms for integration and retrieval . The annotations are the glue for integration of patterns of gene expression in GEMS as well as in other biomolecular databases. At the one hand, zebrafish anatomy terminology allows gene expression data within GEMS to be integrated with phenotypical data in the 3D atlas of zebrafish development. At the other hand, GO terms extend GEMS expression patterns integration to a wide range of bioinformatics resources.

  11. Evolution-development congruence in pattern formation dynamics: Bifurcations in gene expression and regulation of networks structures.

    Science.gov (United States)

    Kohsokabe, Takahiro; Kaneko, Kunihiko

    2016-01-01

    Search for possible relationships between phylogeny and ontogeny is important in evolutionary-developmental biology. Here we uncover such relationships by numerical evolution and unveil their origin in terms of dynamical systems theory. By representing developmental dynamics of spatially located cells with gene expression dynamics with cell-to-cell interaction under external morphogen gradient, gene regulation networks are evolved under mutation and selection with the fitness to approach a prescribed spatial pattern of expressed genes. For most numerical evolution experiments, evolution of pattern over generations and development of pattern by an evolved network exhibit remarkable congruence. Both in the evolution and development pattern changes consist of several epochs where stripes are formed in a short time, while for other temporal regimes, pattern hardly changes. In evolution, these quasi-stationary regimes are generations needed to hit relevant mutations, while in development, they are due to some gene expression that varies slowly and controls the pattern change. The morphogenesis is regulated by combinations of feedback or feedforward regulations, where the upstream feedforward network reads the external morphogen gradient, and generates a pattern used as a boundary condition for the later patterns. The ordering from up to downstream is common in evolution and development, while the successive epochal changes in development and evolution are represented as common bifurcations in dynamical-systems theory, which lead to the evolution-development congruence. Mechanism of exceptional violation of the congruence is also unveiled. Our results provide a new look on developmental stages, punctuated equilibrium, developmental bottlenecks, and evolutionary acquisition of novelty in morphogenesis. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution Published by Wiley Periodicals, Inc.

  12. Models of neural networks temporal aspects of coding and information processing in biological systems

    CERN Document Server

    Hemmen, J; Schulten, Klaus

    1994-01-01

    Since the appearance of Vol. 1 of Models of Neural Networks in 1991, the theory of neural nets has focused on two paradigms: information coding through coherent firing of the neurons and functional feedback. Information coding through coherent neuronal firing exploits time as a cardinal degree of freedom. This capacity of a neural network rests on the fact that the neuronal action potential is a short, say 1 ms, spike, localized in space and time. Spatial as well as temporal correlations of activity may represent different states of a network. In particular, temporal correlations of activity may express that neurons process the same "object" of, for example, a visual scene by spiking at the very same time. The traditional description of a neural network through a firing rate, the famous S-shaped curve, presupposes a wide time window of, say, at least 100 ms. It thus fails to exploit the capacity to "bind" sets of coherently firing neurons for the purpose of both scene segmentation and figure-ground segregatio...

  13. Genome-wide analysis of drought induced gene expression changes in flax (Linum usitatissimum).

    Science.gov (United States)

    Dash, Prasanta K; Cao, Yongguo; Jailani, Abdul K; Gupta, Payal; Venglat, Prakash; Xiang, Daoquan; Rai, Rhitu; Sharma, Rinku; Thirunavukkarasu, Nepolean; Abdin, Malik Z; Yadava, Devendra K; Singh, Nagendra K; Singh, Jas; Selvaraj, Gopalan; Deyholos, Mike; Kumar, Polumetla Ananda; Datla, Raju

    2014-01-01

    A robust phenotypic plasticity to ward off adverse environmental conditions determines performance and productivity in crop plants. Flax (linseed), is an important cash crop produced for natural textile fiber (linen) or oilseed with many health promoting products. This crop is prone to drought stress and yield losses in many parts of the world. Despite recent advances in drought research in a number of important crops, related progress in flax is very limited. Since, response of this plant to drought stress has not been addressed at the molecular level; we conducted microarray analysis to capture transcriptome associated with induced drought in flax. This study identified 183 differentially expressed genes (DEGs) associated with diverse cellular, biophysical and metabolic programs in flax. The analysis also revealed especially the altered regulation of cellular and metabolic pathways governing photosynthesis. Additionally, comparative transcriptome analysis identified a plethora of genes that displayed differential regulation both spatially and temporally. These results revealed co-regulated expression of 26 genes in both shoot and root tissues with implications for drought stress response. Furthermore, the data also showed that more genes are upregulated in roots compared to shoots, suggesting that roots may play important and additional roles in response to drought in flax. With prolonged drought treatment, the number of DEGs increased in both tissue types. Differential expression of selected genes was confirmed by qRT-PCR, thus supporting the suggested functional association of these intrinsic genes in maintaining growth and homeostasis in response to imminent drought stress in flax. Together the present study has developed foundational and new transcriptome data sets for drought stress in flax.

  14. Blood-informative transcripts define nine common axes of peripheral blood gene expression.

    Directory of Open Access Journals (Sweden)

    Marcela Preininger

    Full Text Available We describe a novel approach to capturing the covariance structure of peripheral blood gene expression that relies on the identification of highly conserved Axes of variation. Starting with a comparison of microarray transcriptome profiles for a new dataset of 189 healthy adult participants in the Emory-Georgia Tech Center for Health Discovery and Well-Being (CHDWB cohort, with a previously published study of 208 adult Moroccans, we identify nine Axes each with between 99 and 1,028 strongly co-regulated transcripts in common. Each axis is enriched for gene ontology categories related to sub-classes of blood and immune function, including T-cell and B-cell physiology and innate, adaptive, and anti-viral responses. Conservation of the Axes is demonstrated in each of five additional population-based gene expression profiling studies, one of which is robustly associated with Body Mass Index in the CHDWB as well as Finnish and Australian cohorts. Furthermore, ten tightly co-regulated genes can be used to define each Axis as "Blood Informative Transcripts" (BITs, generating scores that define an individual with respect to the represented immune activity and blood physiology. We show that environmental factors, including lifestyle differences in Morocco and infection leading to active or latent tuberculosis, significantly impact specific axes, but that there is also significant heritability for the Axis scores. In the context of personalized medicine, reanalysis of the longitudinal profile of one individual during and after infection with two respiratory viruses demonstrates that specific axes also characterize clinical incidents. This mode of analysis suggests the view that, rather than unique subsets of genes marking each class of disease, differential expression reflects movement along the major normal Axes in response to environmental and genetic stimuli.

  15. Blood-informative transcripts define nine common axes of peripheral blood gene expression.

    Science.gov (United States)

    Preininger, Marcela; Arafat, Dalia; Kim, Jinhee; Nath, Artika P; Idaghdour, Youssef; Brigham, Kenneth L; Gibson, Greg

    2013-01-01

    We describe a novel approach to capturing the covariance structure of peripheral blood gene expression that relies on the identification of highly conserved Axes of variation. Starting with a comparison of microarray transcriptome profiles for a new dataset of 189 healthy adult participants in the Emory-Georgia Tech Center for Health Discovery and Well-Being (CHDWB) cohort, with a previously published study of 208 adult Moroccans, we identify nine Axes each with between 99 and 1,028 strongly co-regulated transcripts in common. Each axis is enriched for gene ontology categories related to sub-classes of blood and immune function, including T-cell and B-cell physiology and innate, adaptive, and anti-viral responses. Conservation of the Axes is demonstrated in each of five additional population-based gene expression profiling studies, one of which is robustly associated with Body Mass Index in the CHDWB as well as Finnish and Australian cohorts. Furthermore, ten tightly co-regulated genes can be used to define each Axis as "Blood Informative Transcripts" (BITs), generating scores that define an individual with respect to the represented immune activity and blood physiology. We show that environmental factors, including lifestyle differences in Morocco and infection leading to active or latent tuberculosis, significantly impact specific axes, but that there is also significant heritability for the Axis scores. In the context of personalized medicine, reanalysis of the longitudinal profile of one individual during and after infection with two respiratory viruses demonstrates that specific axes also characterize clinical incidents. This mode of analysis suggests the view that, rather than unique subsets of genes marking each class of disease, differential expression reflects movement along the major normal Axes in response to environmental and genetic stimuli.

  16. Evaluating spatial and temporal variability in growth and mortality for recreational fisheries with limited catch data

    Science.gov (United States)

    Li, Yan; Wagner, Tyler; Jiao, Yan; Lorantas, Robert M.; Murphy, Cheryl

    2018-01-01

    Understanding the spatial and temporal variability in life-history traits among populations is essential for the management of recreational fisheries. However, valuable freshwater recreational fish species often suffer from a lack of catch information. In this study, we demonstrated the use of an approach to estimate the spatial and temporal variability in growth and mortality in the absence of catch data and apply the method to riverine smallmouth bass (Micropterus dolomieu) populations in Pennsylvania, USA. Our approach included a growth analysis and a length-based analysis that estimates mortality. Using a hierarchical Bayesian approach, we examined spatial variability in growth and mortality by assuming parameters vary spatially but remain constant over time and temporal variability by assuming parameters vary spatially and temporally. The estimated growth and mortality of smallmouth bass showed substantial variability over time and across rivers. We explored the relationships of the estimated growth and mortality with spring water temperature and spring flow. Growth rate was likely to be positively correlated with these two factors, while young mortality was likely to be positively correlated with spring flow. The spatially and temporally varying growth and mortality suggest that smallmouth bass populations across rivers may respond differently to management plans and disturbance such as environmental contamination and land-use change. The analytical approach can be extended to other freshwater recreational species that also lack of catch data. The approach could also be useful in developing population assessments with erroneous catch data or be used as a model sensitivity scenario to verify traditional models even when catch data are available.

  17. Mechanisms of gap gene expression canalization in the Drosophila blastoderm

    Directory of Open Access Journals (Sweden)

    Samsonova Maria G

    2011-07-01

    Full Text Available Abstract Background Extensive variation in early gap gene expression in the Drosophila blastoderm is reduced over time because of gap gene cross regulation. This phenomenon is a manifestation of canalization, the ability of an organism to produce a consistent phenotype despite variations in genotype or environment. The canalization of gap gene expression can be understood as arising from the actions of attractors in the gap gene dynamical system. Results In order to better understand the processes of developmental robustness and canalization in the early Drosophila embryo, we investigated the dynamical effects of varying spatial profiles of Bicoid protein concentration on the formation of the expression border of the gap gene hunchback. At several positions on the anterior-posterior axis of the embryo, we analyzed attractors and their basins of attraction in a dynamical model describing expression of four gap genes with the Bicoid concentration profile accounted as a given input in the model equations. This model was tested against a family of Bicoid gradients obtained from individual embryos. These gradients were normalized by two independent methods, which are based on distinct biological hypotheses and provide different magnitudes for Bicoid spatial variability. We showed how the border formation is dictated by the biological initial conditions (the concentration gradient of maternal Hunchback protein being attracted to specific attracting sets in a local vicinity of the border. Different types of these attracting sets (point attractors or one dimensional attracting manifolds define several possible mechanisms of border formation. The hunchback border formation is associated with intersection of the spatial gradient of the maternal Hunchback protein and a boundary between the attraction basins of two different point attractors. We demonstrated how the positional variability for hunchback is related to the corresponding variability of the

  18. Finding gene regulatory network candidates using the gene expression knowledge base.

    Science.gov (United States)

    Venkatesan, Aravind; Tripathi, Sushil; Sanz de Galdeano, Alejandro; Blondé, Ward; Lægreid, Astrid; Mironov, Vladimir; Kuiper, Martin

    2014-12-10

    Network-based approaches for the analysis of large-scale genomics data have become well established. Biological networks provide a knowledge scaffold against which the patterns and dynamics of 'omics' data can be interpreted. The background information required for the construction of such networks is often dispersed across a multitude of knowledge bases in a variety of formats. The seamless integration of this information is one of the main challenges in bioinformatics. The Semantic Web offers powerful technologies for the assembly of integrated knowledge bases that are computationally comprehensible, thereby providing a potentially powerful resource for constructing biological networks and network-based analysis. We have developed the Gene eXpression Knowledge Base (GeXKB), a semantic web technology based resource that contains integrated knowledge about gene expression regulation. To affirm the utility of GeXKB we demonstrate how this resource can be exploited for the identification of candidate regulatory network proteins. We present four use cases that were designed from a biological perspective in order to find candidate members relevant for the gastrin hormone signaling network model. We show how a combination of specific query definitions and additional selection criteria derived from gene expression data and prior knowledge concerning candidate proteins can be used to retrieve a set of proteins that constitute valid candidates for regulatory network extensions. Semantic web technologies provide the means for processing and integrating various heterogeneous information sources. The GeXKB offers biologists such an integrated knowledge resource, allowing them to address complex biological questions pertaining to gene expression. This work illustrates how GeXKB can be used in combination with gene expression results and literature information to identify new potential candidates that may be considered for extending a gene regulatory network.

  19. Low-Cost Ultra-High Spatial and Temporal Resolution Mapping of Intertidal Rock Platforms

    Science.gov (United States)

    Bryson, M.; Johnson-Roberson, M.; Murphy, R.

    2012-07-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time which could compliment field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at relatively course, sub-meter resolutions or with limited temporal resolutions and relatively high costs for small-scale environmental science and ecology studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric pipeline that was developed for constructing highresolution, 3D, photo-realistic terrain models of intertidal rocky shores. The processing pipeline uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine colour and topographic information at sub-centimeter resolutions over an area of approximately 100m, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rock platform at Cape Banks, Sydney, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.

  20. Temporal and spatial foliations of spacetimes.

    Science.gov (United States)

    Herold, H.

    For the solution of initial-value problems in numerical relativity usually the (3+1) splitting of Einstein's equations is employed. An important part of this splitting is the choice of the temporal gauge condition. In order to estimate the quality of time-evolution schemes, different time slicings of given well-known spherically symmetric spacetimes have been studied. Besides the maximal slicing condition the harmonic slicing prescription has been used to calculate temporal foliations of the Schwarzschild and the Oppenheimer-Snyder spacetime. Additionally, the author has studied a recently proposed, geometrically motivated spatial gauge condition, which is defined by considering the foliations of the three-dimensional space-like hypersurfaces by 2-surfaces of constant mean extrinsic curvature. Apart from the equations for the shift vector, which can be derived for this gauge condition, he has investigated such spatial foliations for well-known stationary axially symmetric spacetimes, namely for the Kerr metric and for numerically determined solutions for rapidly rotating neutron stars.

  1. Deep Spatial-Temporal Joint Feature Representation for Video Object Detection

    Directory of Open Access Journals (Sweden)

    Baojun Zhao

    2018-03-01

    Full Text Available With the development of deep neural networks, many object detection frameworks have shown great success in the fields of smart surveillance, self-driving cars, and facial recognition. However, the data sources are usually videos, and the object detection frameworks are mostly established on still images and only use the spatial information, which means that the feature consistency cannot be ensured because the training procedure loses temporal information. To address these problems, we propose a single, fully-convolutional neural network-based object detection framework that involves temporal information by using Siamese networks. In the training procedure, first, the prediction network combines the multiscale feature map to handle objects of various sizes. Second, we introduce a correlation loss by using the Siamese network, which provides neighboring frame features. This correlation loss represents object co-occurrences across time to aid the consistent feature generation. Since the correlation loss should use the information of the track ID and detection label, our video object detection network has been evaluated on the large-scale ImageNet VID dataset where it achieves a 69.5% mean average precision (mAP.

  2. Spatial-temporal migration laws of Cd in Jiaozhou Bay

    Science.gov (United States)

    Yang, Dongfang; Li, Haixia; Zhang, Xiaolong; Wang, Qi; Miao, Zhenqing

    2018-02-01

    Many marine bays have been polluted by various pollutants, and understanding the migration laws is essential to scientific research and pollution control. This paper analyzed the spatial and temporal migration laws of Cd in waters in Jiaozhou Bay during 1979—1983. Results showed that there were twenty spatial-temporal migration law for the migration processes of Cd. These laws were helpful for better understanding the migration of Cd in marine bay, providing basis for scientific research and pollution control.

  3. Regulatory patterns of a large family of defensin-like genes expressed in nodules of Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Sumitha Nallu

    Full Text Available Root nodules are the symbiotic organ of legumes that house nitrogen-fixing bacteria. Many genes are specifically induced in nodules during the interactions between the host plant and symbiotic rhizobia. Information regarding the regulation of expression for most of these genes is lacking. One of the largest gene families expressed in the nodules of the model legume Medicago truncatula is the nodule cysteine-rich (NCR group of defensin-like (DEFL genes. We used a custom Affymetrix microarray to catalog the expression changes of 566 NCRs at different stages of nodule development. Additionally, bacterial mutants were used to understand the importance of the rhizobial partners in induction of NCRs. Expression of early NCRs was detected during the initial infection of rhizobia in nodules and expression continued as nodules became mature. Late NCRs were induced concomitantly with bacteroid development in the nodules. The induction of early and late NCRs was correlated with the number and morphology of rhizobia in the nodule. Conserved 41 to 50 bp motifs identified in the upstream 1,000 bp promoter regions of NCRs were required for promoter activity. These cis-element motifs were found to be unique to the NCR family among all annotated genes in the M. truncatula genome, although they contain sub-regions with clear similarity to known regulatory motifs involved in nodule-specific expression and temporal gene regulation.

  4. Spatial and temporal aspects of navigation in two neurological patients.

    Science.gov (United States)

    van der Ham, Ineke J M; van Zandvoort, Martine J E; Meilinger, Tobias; Bosch, Sander E; Kant, Neeltje; Postma, Albert

    2010-07-14

    We present two cases (A.C. and W.J.) with navigation problems resulting from parieto-occipital right hemisphere damage. For both the cases, performance on the neuropsychological tests did not indicate specific impairments in spatial processing, despite severe subjective complaints of spatial disorientation. Various aspects of navigation were tested in a new virtual reality task, the Virtual Tübingen task. A double dissociation between spatial and temporal deficits was found; A.C. was impaired in route ordering, a temporal test, whereas W.J. was impaired in scene recognition and route continuation, which are spatial in nature. These findings offer important insights in the functional and neural architecture of navigation.

  5. Analysis of expression in the Anopheles gambiae developing testes reveals rapidly evolving lineage-specific genes in mosquitoes

    Directory of Open Access Journals (Sweden)

    Krzywinski Jaroslaw

    2009-07-01

    Full Text Available Abstract Background Male mosquitoes do not feed on blood and are not involved in delivery of pathogens to humans. Consequently, they are seldom the subjects of research, which results in a very poor understanding of their biology. To gain insights into male developmental processes we sought to identify genes transcribed exclusively in the reproductive tissues of male Anopheles gambiae pupae. Results Using a cDNA subtraction strategy, five male-specifically or highly male-biased expressed genes were isolated, four of which remain unannotated in the An. gambiae genome. Spatial and temporal expression patterns suggest that each of these genes is involved in the mid-late stages of spermatogenesis. Their sequences are rapidly evolving; however, two genes possess clear homologs in a wide range of taxa and one of these probably acts in a sperm motility control mechanism conserved in many organisms, including humans. The other three genes have no match to sequences from non-mosquito taxa, thus can be regarded as orphans. RNA in situ hybridization demonstrated that one of the orphans is transcribed in spermatids, which suggests its involvement in sperm maturation. Two other orphans have unknown functions. Expression analysis of orthologs of all five genes indicated that male-biased transcription was not conserved in the majority of cases in Aedes and Culex. Conclusion Discovery of testis-expressed orphan genes in mosquitoes opens new prospects for the development of innovative control methods. The orphan encoded proteins may represent unique targets of selective anti-mosquito sterilizing agents that will not affect non-target organisms.

  6. Analysis of expression in the Anopheles gambiae developing testes reveals rapidly evolving lineage-specific genes in mosquitoes.

    Science.gov (United States)

    Krzywinska, Elzbieta; Krzywinski, Jaroslaw

    2009-07-06

    Male mosquitoes do not feed on blood and are not involved in delivery of pathogens to humans. Consequently, they are seldom the subjects of research, which results in a very poor understanding of their biology. To gain insights into male developmental processes we sought to identify genes transcribed exclusively in the reproductive tissues of male Anopheles gambiae pupae. Using a cDNA subtraction strategy, five male-specifically or highly male-biased expressed genes were isolated, four of which remain unannotated in the An. gambiae genome. Spatial and temporal expression patterns suggest that each of these genes is involved in the mid-late stages of spermatogenesis. Their sequences are rapidly evolving; however, two genes possess clear homologs in a wide range of taxa and one of these probably acts in a sperm motility control mechanism conserved in many organisms, including humans. The other three genes have no match to sequences from non-mosquito taxa, thus can be regarded as orphans. RNA in situ hybridization demonstrated that one of the orphans is transcribed in spermatids, which suggests its involvement in sperm maturation. Two other orphans have unknown functions. Expression analysis of orthologs of all five genes indicated that male-biased transcription was not conserved in the majority of cases in Aedes and Culex. Discovery of testis-expressed orphan genes in mosquitoes opens new prospects for the development of innovative control methods. The orphan encoded proteins may represent unique targets of selective anti-mosquito sterilizing agents that will not affect non-target organisms.

  7. Evaluating spatial- and temporal-oriented multi-dimensional visualization techniques

    Directory of Open Access Journals (Sweden)

    Chong Ho Yu

    2003-07-01

    Full Text Available Visualization tools are said to be helpful for researchers to unveil hidden patterns and..relationships among variables, and also for teachers to present abstract statistical concepts and..complicated data structures in a concrete manner. However, higher-dimension visualization..techniques can be confusing and even misleading, especially when human-instrument interface..and cognitive issues are under-applied. In this article, the efficacy of function-based, datadriven,..spatial-oriented, and temporal-oriented visualization techniques are discussed based..upon extensive review. Readers can find practical implications for both research and..instructional practices. For research purposes, the spatial-based graphs, such as Trellis displays..in S-Plus, are preferable over the temporal-based displays, such as the 3D animated plot in..SAS/Insight. For teaching purposes, the temporal-based displays, such as the 3D animation plot..in Maple, seem to have advantages over the spatial-based graphs, such as the 3D triangular..coordinate plot in SyStat.

  8. Fractal Dimension analysis for seismicity spatial and temporal ...

    Indian Academy of Sciences (India)

    23

    The research can further promote the application of fractal theory in the study ... spatial-temporal propagation characteristics of seismic activities, fractal theory is not ... provide a theoretical basis for the prevention and control of earthquakes. 2. ... random self-similar structure of the earthquake in the time series and the spatial.

  9. Kinetic models of gene expression including non-coding RNAs

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, Vladimir P., E-mail: zhdanov@catalysis.r

    2011-03-15

    In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.

  10. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli.

    Science.gov (United States)

    Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael

    2008-04-16

    The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.

  11. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    Directory of Open Access Journals (Sweden)

    Andrade-Garda José

    2008-04-01

    Full Text Available Abstract Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.

  12. Gene expression analysis of flax seed development

    Science.gov (United States)

    2011-01-01

    even low-expressed genes such as those encoding transcription factors. This has allowed us to delineate the spatio-temporal aspects of gene expression underlying the biosynthesis of a number of important seed constituents in flax. Flax belongs to a taxonomic group of diverse plants and the large sequence database will allow for evolutionary studies as well. PMID:21529361

  13. Gene expression analysis of flax seed development

    Directory of Open Access Journals (Sweden)

    Sharpe Andrew

    2011-04-01

    clones that comprise even low-expressed genes such as those encoding transcription factors. This has allowed us to delineate the spatio-temporal aspects of gene expression underlying the biosynthesis of a number of important seed constituents in flax. Flax belongs to a taxonomic group of diverse plants and the large sequence database will allow for evolutionary studies as well.

  14. Hierarchical clustering of gene expression patterns in the Eomes + lineage of excitatory neurons during early neocortical development

    Directory of Open Access Journals (Sweden)

    Cameron David A

    2012-08-01

    Full Text Available Abstract Background Cortical neurons display dynamic patterns of gene expression during the coincident processes of differentiation and migration through the developing cerebrum. To identify genes selectively expressed by the Eomes + (Tbr2 lineage of excitatory cortical neurons, GFP-expressing cells from Tg(Eomes::eGFP Gsat embryos were isolated to > 99% purity and profiled. Results We report the identification, validation and spatial grouping of genes selectively expressed within the Eomes + cortical excitatory neuron lineage during early cortical development. In these neurons 475 genes were expressed ≥ 3-fold, and 534 genes ≤ 3-fold, compared to the reference population of neuronal precursors. Of the up-regulated genes, 328 were represented at the Genepaint in situ hybridization database and 317 (97% were validated as having spatial expression patterns consistent with the lineage of differentiating excitatory neurons. A novel approach for quantifying in situ hybridization patterns (QISP across the cerebral wall was developed that allowed the hierarchical clustering of genes into putative co-regulated groups. Forty four candidate genes were identified that show spatial expression with Intermediate Precursor Cells, 49 candidate genes show spatial expression with Multipolar Neurons, while the remaining 224 genes achieved peak expression in the developing cortical plate. Conclusions This analysis of differentiating excitatory neurons revealed the expression patterns of 37 transcription factors, many chemotropic signaling molecules (including the Semaphorin, Netrin and Slit signaling pathways, and unexpected evidence for non-canonical neurotransmitter signaling and changes in mechanisms of glucose metabolism. Over half of the 317 identified genes are associated with neuronal disease making these findings a valuable resource for studies of neurological development and disease.

  15. GSEH: A Novel Approach to Select Prostate Cancer-Associated Genes Using Gene Expression Heterogeneity.

    Science.gov (United States)

    Kim, Hyunjin; Choi, Sang-Min; Park, Sanghyun

    2018-01-01

    When a gene shows varying levels of expression among normal people but similar levels in disease patients or shows similar levels of expression among normal people but different levels in disease patients, we can assume that the gene is associated with the disease. By utilizing this gene expression heterogeneity, we can obtain additional information that abets discovery of disease-associated genes. In this study, we used collaborative filtering to calculate the degree of gene expression heterogeneity between classes and then scored the genes on the basis of the degree of gene expression heterogeneity to find "differentially predicted" genes. Through the proposed method, we discovered more prostate cancer-associated genes than 10 comparable methods. The genes prioritized by the proposed method are potentially significant to biological processes of a disease and can provide insight into them.

  16. Bayesian assignment of gene ontology terms to gene expression experiments

    Science.gov (United States)

    Sykacek, P.

    2012-01-01

    Motivation: Gene expression assays allow for genome scale analyses of molecular biological mechanisms. State-of-the-art data analysis provides lists of involved genes, either by calculating significance levels of mRNA abundance or by Bayesian assessments of gene activity. A common problem of such approaches is the difficulty of interpreting the biological implication of the resulting gene lists. This lead to an increased interest in methods for inferring high-level biological information. A common approach for representing high level information is by inferring gene ontology (GO) terms which may be attributed to the expression data experiment. Results: This article proposes a probabilistic model for GO term inference. Modelling assumes that gene annotations to GO terms are available and gene involvement in an experiment is represented by a posterior probabilities over gene-specific indicator variables. Such probability measures result from many Bayesian approaches for expression data analysis. The proposed model combines these indicator probabilities in a probabilistic fashion and provides a probabilistic GO term assignment as a result. Experiments on synthetic and microarray data suggest that advantages of the proposed probabilistic GO term inference over statistical test-based approaches are in particular evident for sparsely annotated GO terms and in situations of large uncertainty about gene activity. Provided that appropriate annotations exist, the proposed approach is easily applied to inferring other high level assignments like pathways. Availability: Source code under GPL license is available from the author. Contact: peter.sykacek@boku.ac.at PMID:22962488

  17. Bayesian assignment of gene ontology terms to gene expression experiments.

    Science.gov (United States)

    Sykacek, P

    2012-09-15

    Gene expression assays allow for genome scale analyses of molecular biological mechanisms. State-of-the-art data analysis provides lists of involved genes, either by calculating significance levels of mRNA abundance or by Bayesian assessments of gene activity. A common problem of such approaches is the difficulty of interpreting the biological implication of the resulting gene lists. This lead to an increased interest in methods for inferring high-level biological information. A common approach for representing high level information is by inferring gene ontology (GO) terms which may be attributed to the expression data experiment. This article proposes a probabilistic model for GO term inference. Modelling assumes that gene annotations to GO terms are available and gene involvement in an experiment is represented by a posterior probabilities over gene-specific indicator variables. Such probability measures result from many Bayesian approaches for expression data analysis. The proposed model combines these indicator probabilities in a probabilistic fashion and provides a probabilistic GO term assignment as a result. Experiments on synthetic and microarray data suggest that advantages of the proposed probabilistic GO term inference over statistical test-based approaches are in particular evident for sparsely annotated GO terms and in situations of large uncertainty about gene activity. Provided that appropriate annotations exist, the proposed approach is easily applied to inferring other high level assignments like pathways. Source code under GPL license is available from the author. peter.sykacek@boku.ac.at.

  18. Spatial and temporal variation in selection of genes associated with pearl millet varietal quantitative traits in situ

    Directory of Open Access Journals (Sweden)

    Cedric Mariac

    2016-07-01

    Full Text Available Ongoing global climate changes imply new challenges for agriculture. Whether plants and crops can adapt to such rapid changes is still a widely debated question. We previously showed adaptation in the form of earlier flowering in pearl millet at the scale of a whole country over three decades. However, this analysis did not deal with variability of year to year selection. To understand and possibly manage plant and crop adaptation, we need more knowledge of how selection acts in situ. Is selection gradual, abrupt, and does it vary in space and over time? In the present study, we tracked the evolution of allele frequency in two genes associated with pearl millet phenotypic variation in situ. We sampled 17 populations of cultivated pearl millet over a period of two years. We tracked changes in allele frequencies in these populations by genotyping more than seven thousand individuals. We demonstrate that several allele frequencies changes are compatible with selection, by correcting allele frequency changes associated with genetic drift. We found marked variation in allele frequencies from year to year, suggesting a variable selection effect in space and over time. We estimated the strength of selection associated with variations in allele frequency. Our results suggest that the polymorphism maintained at the genes we studied is partially explained by the spatial and temporal variability of selection. In response to environmental changes, traditional pearl millet varieties could rapidly adapt thanks to this available functional variability.

  19. Meaningful spatial and temporal sequences of activities in dwelling

    NARCIS (Netherlands)

    Hematalikeikha, M.A.; Coolen, H.C.C.H.; Pourdeihimi, S.

    2014-01-01

    Human activities based on human needs are affected by affordances and meanings that occur in the dwelling. Activities over time and space have meaningful sequences. The meaningfulness of activities in the cultural framework is conditioned by its special temporality and spatiality. Also, temporal or

  20. Analysis of multiplex gene expression maps obtained by voxelation

    Directory of Open Access Journals (Sweden)

    Smith Desmond J

    2009-04-01

    Full Text Available Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. Results To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in

  1. Analysis of multiplex gene expression maps obtained by voxelation.

    Science.gov (United States)

    An, Li; Xie, Hongbo; Chin, Mark H; Obradovic, Zoran; Smith, Desmond J; Megalooikonomou, Vasileios

    2009-04-29

    Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in cortex and corpus callosum. The experimental

  2. PKG in honey bees: spatial expression, Amfor gene expression, sucrose responsiveness, and division of labor.

    Science.gov (United States)

    Thamm, Markus; Scheiner, Ricarda

    2014-06-01

    Division of labor is a hallmark of social insects. In honey bees, division of labor involves transition of female workers from one task to the next. The most distinct tasks are nursing (providing food for the brood) and foraging (collecting pollen and nectar). The brain mechanisms regulating this form of behavioral plasticity have largely remained elusive. Recently, it was suggested that division of labor is based on nutrition-associated signaling pathways. One highly conserved gene associated with food-related behavior across species is the foraging gene, which encodes a cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG). Our analysis of this gene reveals the presence of alternative splicing in the honey bee. One isoform is expressed in the brain. Expression of this isoform is most pronounced in the mushroom bodies, the subesophageal ganglion, and the corpora allata. Division of labor and sucrose responsiveness in honey bees correlate significantly with foraging gene expression in distinct brain regions. Activating PKG selectively increases sucrose responsiveness in nurse bees to the level of foragers, whereas the same treatment does not affect responsiveness to light. These findings demonstrate a direct link between PKG signaling in distinct brain areas and division of labor. Furthermore, they demonstrate that the difference in sensory responsiveness between nurse bees and foragers can be compensated for by activating PKG. Our findings on the function of PKG in regulating specific sensory responsiveness and social organization offer valuable indications for the function of the cGMP/PKG pathway in many other insects and vertebrates. Copyright © 2013 Wiley Periodicals, Inc.

  3. Social Regulation of Gene Expression in Threespine Sticklebacks.

    Directory of Open Access Journals (Sweden)

    Anna K Greenwood

    Full Text Available Identifying genes that are differentially expressed in response to social interactions is informative for understanding the molecular basis of social behavior. To address this question, we described changes in gene expression as a result of differences in the extent of social interactions. We housed threespine stickleback (Gasterosteus aculeatus females in either group conditions or individually for one week, then measured levels of gene expression in three brain regions using RNA-sequencing. We found that numerous genes in the hindbrain/cerebellum had altered expression in response to group or individual housing. However, relatively few genes were differentially expressed in either the diencephalon or telencephalon. The list of genes upregulated in fish from social groups included many genes related to neural development and cell adhesion as well as genes with functions in sensory signaling, stress, and social and reproductive behavior. The list of genes expressed at higher levels in individually-housed fish included several genes previously identified as regulated by social interactions in other animals. The identified genes are interesting targets for future research on the molecular mechanisms of normal social interactions.

  4. Regulation of mitochondrial gene expression, the epigenetic enigma

    NARCIS (Netherlands)

    Mposhi, Archibold; van der Wijst, Monique G. P.; Faber, Klaas Nico; Rots, Marianne G.

    2017-01-01

    Epigenetics provides an important layer of information on top of the DNA sequence and is essential for establishing gene expression profiles. Extensive studies have shown that nuclear DNA methylation and histone modifications influence nuclear gene expression. However, it remains unclear whether

  5. Spatial and temporal patterns of locally-acquired dengue transmission in northern Queensland, Australia, 1993-2012.

    Science.gov (United States)

    Naish, Suchithra; Dale, Pat; Mackenzie, John S; McBride, John; Mengersen, Kerrie; Tong, Shilu

    2014-01-01

    Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992-1993. We explored spatio-temporal characteristics of locally-acquired dengue cases in northern tropical Queensland, Australia during the period 1993-2012. Locally-acquired notified cases of dengue were collected for northern tropical Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. 2,398 locally-acquired dengue cases were recorded in northern tropical Queensland during the study period. The areas affected by the dengue cases exhibited spatial and temporal variation over the study period. Notified cases of dengue occurred more frequently in autumn. Mapping of dengue by statistical local areas (census units) reveals the presence of substantial spatio-temporal variation over time and place. Statistically significant differences in dengue incidence rates among males and females (with more cases in females) (χ(2) = 15.17, d.f.  = 1, pQueensland. Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in northern tropical Queensland, Australia. Therefore, this study provides an impetus for further investigation of clusters and risk factors in these high-risk areas.

  6. Gene Network Construction from Microarray Data Identifies a Key Network Module and Several Candidate Hub Genes in Age-Associated Spatial Learning Impairment.

    Science.gov (United States)

    Uddin, Raihan; Singh, Shiva M

    2017-01-01

    As humans age many suffer from a decrease in normal brain functions including spatial learning impairments. This study aimed to better understand the molecular mechanisms in age-associated spatial learning impairment (ASLI). We used a mathematical modeling approach implemented in Weighted Gene Co-expression Network Analysis (WGCNA) to create and compare gene network models of young (learning unimpaired) and aged (predominantly learning impaired) brains from a set of exploratory datasets in rats in the context of ASLI. The major goal was to overcome some of the limitations previously observed in the traditional meta- and pathway analysis using these data, and identify novel ASLI related genes and their networks based on co-expression relationship of genes. This analysis identified a set of network modules in the young, each of which is highly enriched with genes functioning in broad but distinct GO functional categories or biological pathways. Interestingly, the analysis pointed to a single module that was highly enriched with genes functioning in "learning and memory" related functions and pathways. Subsequent differential network analysis of this "learning and memory" module in the aged (predominantly learning impaired) rats compared to the young learning unimpaired rats allowed us to identify a set of novel ASLI candidate hub genes. Some of these genes show significant repeatability in networks generated from independent young and aged validation datasets. These hub genes are highly co-expressed with other genes in the network, which not only show differential expression but also differential co-expression and differential connectivity across age and learning impairment. The known function of these hub genes indicate that they play key roles in critical pathways, including kinase and phosphatase signaling, in functions related to various ion channels, and in maintaining neuronal integrity relating to synaptic plasticity and memory formation. Taken together, they

  7. Tamoxifen-elicited uterotrophy: cross-species and cross-ligand analysis of the gene expression program

    Directory of Open Access Journals (Sweden)

    Forgacs Agnes L

    2009-04-01

    Full Text Available Abstract Background Tamoxifen (TAM is a well characterized breast cancer drug and selective estrogen receptor modulator (SERM which also has been associated with a small increase in risk for uterine cancers. TAM's partial agonist activation of estrogen receptor has been characterized for specific gene promoters but not at the genomic level in vivo.Furthermore, reducing uncertainties associated with cross-species extrapolations of pharmaco- and toxicogenomic data remains a formidable challenge. Results A comparative ligand and species analysis approach was conducted to systematically assess the physiological, morphological and uterine gene expression alterations elicited across time by TAM and ethynylestradiol (EE in immature ovariectomized Sprague-Dawley rats and C57BL/6 mice. Differential gene expression was evaluated using custom cDNA microarrays, and the data was compared to identify conserved and divergent responses. 902 genes were differentially regulated in all four studies, 398 of which exhibit identical temporal expression patterns. Conclusion Comparative analysis of EE and TAM differentially expressed gene lists suggest TAM regulates no unique uterine genes that are conserved in the rat and mouse. This demonstrates that the partial agonist activities of TAM extend to molecular targets in regulating only a subset of EE-responsive genes. Ligand-conserved, species-divergent expression of carbonic anhydrase 2 was observed in the microarray data and confirmed by real time PCR. The identification of comparable temporal phenotypic responses linked to related gene expression profiles demonstrates that systematic comparative genomic assessments can elucidate important conserved and divergent mechanisms in rodent estrogen signalling during uterine proliferation.

  8. Spatial and Temporal Changes of Sundarbans Reserve Forest in Bangladesh

    Directory of Open Access Journals (Sweden)

    Sanaul Haque Mondal

    2017-03-01

    Full Text Available Sundarbans, the largest mangrove chunk of the world is shared between Bangladesh (62% and India (38%. The objective of this paper was to examine the spatial and temporal changes in land cover (forest cover area of Sundarbans from 1973 to 2010 using remote sensing and geographic information system (GIS tool. Normal¬ized difference vegetation index (NDVI was applied to calculate the density of vegetation of Sundarbans reserved forest (SRF. This study found that there were no major changes in total areas of SRF in the last 37 years (from 1973 to 2010 albeit changes were detected within the four land cover categories-water body, mudflat, barren land and vegetated land. During 1973 to 2010, water bodies, mudflats and barren lands increased by 0.45%, 19.69% and 14.81%, respectively, while vegetated land decreased by 4.01% during the same period. This indicated that the density of evergreen vegetation and its canopy closure decreased in Sundarbans. It was thus recommended that GIS and remote sensing based real time monitoring system be developed to identify spatial and temporal changes of land cover classes of SRF.

  9. Evolution‐development congruence in pattern formation dynamics: Bifurcations in gene expression and regulation of networks structures

    Science.gov (United States)

    Kohsokabe, Takahiro

    2016-01-01

    ABSTRACT Search for possible relationships between phylogeny and ontogeny is important in evolutionary‐developmental biology. Here we uncover such relationships by numerical evolution and unveil their origin in terms of dynamical systems theory. By representing developmental dynamics of spatially located cells with gene expression dynamics with cell‐to‐cell interaction under external morphogen gradient, gene regulation networks are evolved under mutation and selection with the fitness to approach a prescribed spatial pattern of expressed genes. For most numerical evolution experiments, evolution of pattern over generations and development of pattern by an evolved network exhibit remarkable congruence. Both in the evolution and development pattern changes consist of several epochs where stripes are formed in a short time, while for other temporal regimes, pattern hardly changes. In evolution, these quasi‐stationary regimes are generations needed to hit relevant mutations, while in development, they are due to some gene expression that varies slowly and controls the pattern change. The morphogenesis is regulated by combinations of feedback or feedforward regulations, where the upstream feedforward network reads the external morphogen gradient, and generates a pattern used as a boundary condition for the later patterns. The ordering from up to downstream is common in evolution and development, while the successive epochal changes in development and evolution are represented as common bifurcations in dynamical‐systems theory, which lead to the evolution‐development congruence. Mechanism of exceptional violation of the congruence is also unveiled. Our results provide a new look on developmental stages, punctuated equilibrium, developmental bottlenecks, and evolutionary acquisition of novelty in morphogenesis. J. Exp. Zool. (Mol. Dev. Evol.) 326B:61–84, 2016. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution

  10. Gene expression profiling reveals distinct molecular signatures associated with the rupture of intracranial aneurysm.

    Science.gov (United States)

    Nakaoka, Hirofumi; Tajima, Atsushi; Yoneyama, Taku; Hosomichi, Kazuyoshi; Kasuya, Hidetoshi; Mizutani, Tohru; Inoue, Ituro

    2014-08-01

    The rupture of intracranial aneurysm (IA) causes subarachnoid hemorrhage associated with high morbidity and mortality. We compared gene expression profiles in aneurysmal domes between unruptured IAs and ruptured IAs (RIAs) to elucidate biological mechanisms predisposing to the rupture of IA. We determined gene expression levels of 8 RIAs, 5 unruptured IAs, and 10 superficial temporal arteries with the Agilent microarrays. To explore biological heterogeneity of IAs, we classified the samples into subgroups showing similar gene expression patterns, using clustering methods. The clustering analysis identified 4 groups: superficial temporal arteries and unruptured IAs were aggregated into their own clusters, whereas RIAs segregated into 2 distinct subgroups (early and late RIAs). Comparing gene expression levels between early RIAs and unruptured IAs, we identified 430 upregulated and 617 downregulated genes in early RIAs. The upregulated genes were associated with inflammatory and immune responses and phagocytosis including S100/calgranulin genes (S100A8, S100A9, and S100A12). The downregulated genes suggest mechanical weakness of aneurysm walls. The expressions of Krüppel-like family of transcription factors (KLF2, KLF12, and KLF15), which were anti-inflammatory regulators, and CDKN2A, which was located on chromosome 9p21 that was the most consistently replicated locus in genome-wide association studies of IA, were also downregulated. We demonstrate that gene expression patterns of RIAs were different according to the age of patients. The results suggest that macrophage-mediated inflammation is a key biological pathway for IA rupture. The identified genes can be good candidates for molecular markers of rupture-prone IAs and therapeutic targets. © 2014 American Heart Association, Inc.

  11. Temporal Changes in the Spatial Variability of Soil Nutrients

    Energy Technology Data Exchange (ETDEWEB)

    Hoskinson, Reed Louis; Hess, John Richard; Alessi, Randolph Samuel

    1999-07-01

    This paper reports the temporal changes in the spatial variability of soil nutrient concentrations across a field during the growing season, over a four-year period. This study is part of the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. Uniform fertilization did not produce a uniform increase in fertility. During the growing season, several of the nutrients and micronutrients showed increases in concentration although no additional fertilization had occurred. Potato plant uptake did not explain all of these changes. Some soil micronutrient concentrations increased above levels considered detrimental to potatoes, but the plants did not show the effects in reduced yield. All the nutrients measured changed between the last sampling in the fall and the first sampling the next spring prior to fertilization. The soil microbial community may play a major role in the temporal changes in the spatial variability of soil nutrient concentrations. These temporal changes suggest potential impact when determining fertilizer recommendations, and when evaluating the results of spatially varying fertilizer application.

  12. Gene expression

    International Nuclear Information System (INIS)

    Hildebrand, C.E.; Crawford, B.D.; Walters, R.A.; Enger, M.D.

    1983-01-01

    We prepared probes for isolating functional pieces of the metallothionein locus. The probes enabled a variety of experiments, eventually revealing two mechanisms for metallothionein gene expression, the order of the DNA coding units at the locus, and the location of the gene site in its chromosome. Once the switch regulating metallothionein synthesis was located, it could be joined by recombinant DNA methods to other, unrelated genes, then reintroduced into cells by gene-transfer techniques. The expression of these recombinant genes could then be induced by exposing the cells to Zn 2+ or Cd 2+ . We would thus take advantage of the clearly defined switching properties of the metallothionein gene to manipulate the expression of other, perhaps normally constitutive, genes. Already, despite an incomplete understanding of how the regulatory switch of the metallothionein locus operates, such experiments have been performed successfully

  13. Predictive spatio-temporal model for spatially sparse global solar radiation data

    International Nuclear Information System (INIS)

    André, Maïna; Dabo-Niang, Sophie; Soubdhan, Ted; Ould-Baba, Hanany

    2016-01-01

    This paper introduces a new approach for the forecasting of solar radiation series at a located station for very short time scale. We built a multivariate model in using few stations (3 stations) separated with irregular distances from 26 km to 56 km. The proposed model is a spatio temporal vector autoregressive VAR model specifically designed for the analysis of spatially sparse spatio-temporal data. This model differs from classic linear models in using spatial and temporal parameters where the available predictors are the lagged values at each station. A spatial structure of stations is defined by the sequential introduction of predictors in the model. Moreover, an iterative strategy in the process of our model will select the necessary stations removing the uninteresting predictors and also selecting the optimal p-order. We studied the performance of this model. The metric error, the relative root mean squared error (rRMSE), is presented at different short time scales. Moreover, we compared the results of our model to simple and well known persistence model and those found in literature. - Highlights: • A spatio-temporal VAR forecast model is used for spatially sparse data solar. • Lags and locations are selected by an optimization strategy. • Definition of spatial ordering of predictors influences forecasting results. • The model shows a better performance predictive at 30 min ahead in our context. • Benchmarking study shows a more accurate forecast at 1 h ahead with spatio-temporal VAR.

  14. Integrated olfactory receptor and microarray gene expression databases

    Directory of Open Access Journals (Sweden)

    Crasto Chiquito J

    2007-06-01

    Full Text Available Abstract Background Gene expression patterns of olfactory receptors (ORs are an important component of the signal encoding mechanism in the olfactory system since they determine the interactions between odorant ligands and sensory neurons. We have developed the Olfactory Receptor Microarray Database (ORMD to house OR gene expression data. ORMD is integrated with the Olfactory Receptor Database (ORDB, which is a key repository of OR gene information. Both databases aim to aid experimental research related to olfaction. Description ORMD is a Web-accessible database that provides a secure data repository for OR microarray experiments. It contains both publicly available and private data; accessing the latter requires authenticated login. The ORMD is designed to allow users to not only deposit gene expression data but also manage their projects/experiments. For example, contributors can choose whether to make their datasets public. For each experiment, users can download the raw data files and view and export the gene expression data. For each OR gene being probed in a microarray experiment, a hyperlink to that gene in ORDB provides access to genomic and proteomic information related to the corresponding olfactory receptor. Individual ORs archived in ORDB are also linked to ORMD, allowing users access to the related microarray gene expression data. Conclusion ORMD serves as a data repository and project management system. It facilitates the study of microarray experiments of gene expression in the olfactory system. In conjunction with ORDB, ORMD integrates gene expression data with the genomic and functional data of ORs, and is thus a useful resource for both olfactory researchers and the public.

  15. Differential DNA methylation may contribute to temporal and spatial regulation of gene expression and the development of mycelia and conidia in entomopathogenic fungus Metarhizium robertsii.

    Science.gov (United States)

    Li, Wanzhen; Wang, Yulong; Zhu, Jianyu; Wang, Zhangxun; Tang, Guiliang; Huang, Bo

    2017-03-01

    Conidia and mycelia are two important developmental stages in the asexual life cycle of entomopathogenic fungus Metarhizium. Despite the crucial role that DNA methylation plays in many biological processes, its role in regulation of gene expression and development in fungi is not yet fully understood. We performed genome-wide analysis of DNA methylation patterns of an M. robertsii strain with single base pair resolution. Specifically, we examined for changes in methylation patterns between the conidia and mycelia stages. The results showed that approximately 0.38 % of cytosines are methylated in conidia, which is lower than the DNA methylation level (0.42 %) in mycelia. We found that DNA methylation undergoes genome-wide reprogramming during fungal development in M. robertsii. 132 differentially methylated regions (DMRs), which were mostly distributed in gene regions, were identified. KEGG analysis revealed that the DMR-associated genes belong to metabolic pathways. Intriguingly, in contrast to most other eukaryotes, promoter activities in M. robertsii seemed differentially modulated by DNA methylation levels. We found that transcription tended to be enhanced in genes with moderate promoter methylation, while gene expression was decreased in genes with high or low promoter methylation. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  16. JC virus induces altered patterns of cellular gene expression: Interferon-inducible genes as major transcriptional targets

    International Nuclear Information System (INIS)

    Verma, Saguna; Ziegler, Katja; Ananthula, Praveen; Co, Juliene K.G.; Frisque, Richard J.; Yanagihara, Richard; Nerurkar, Vivek R.

    2006-01-01

    Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarray technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML

  17. Identification of unique cis-element pattern on simulated microgravity treated Arabidopsis by in silico and gene expression

    Science.gov (United States)

    Soh, Hyuncheol; Choi, Yongsang; Lee, Taek-Kyun; Yeo, Up-Dong; Han, Kyeongsik; Auh, Chungkyun; Lee, Sukchan

    2012-08-01

    Arabidopsis gene expression microarray (44 K) was used to detect genes highly induced under simulated microgravity stress (SMS). Ten SMS-inducible genes were selected from the microarray data and these 10 genes were found to be abundantly expressed in 3-week-old plants. Nine out of the 10 SMS-inducible genes were also expressed in response to the three abiotic stresses of drought, touch, and wounding in 3-week-old Arabidopsis plants respectively. However, WRKY46 was elevated only in response to SMS. Six other WRKY genes did not respond to SMS. To clarify the characteristics of the genes expressed at high levels in response to SMS, 20 cis-elements in the promoters of the 40 selected genes including the 10 SMS-inducible genes, the 6 WRKY genes, and abiotic stress-inducible genes were analyzed and their spatial positions on each promoter were determined. Four cis-elements (M/T-G-T-P from MYB1AT or TATABOX5, GT1CONSENSUS, TATABOX5, and POLASIG1) showed a unique spatial arrangement in most SMS-inducible genes including WRKY46. Therefore the M/T-G-T-P cis-element patterns identified in the promoter of WRKY46 may play important roles in regulating gene expression in response to SMS. The presences of the cis-element patterns suggest that the order or spatial positioning of certain groups of cis-elements is more important than the existence or numbers of specific cis-elements. Taken together, our data indicate that WRKY46 is a novel SMS inducible transcription factor and the unique spatial arrangement of cis-elements shown in WRKY46 promoter may play an important role for its response to SMS.

  18. Generating spatial precipitation ensembles: impact of temporal correlation structure

    Science.gov (United States)

    Rakovec, O.; Hazenberg, P.; Torfs, P. J. J. F.; Weerts, A. H.; Uijlenhoet, R.

    2012-09-01

    Sound spatially distributed rainfall fields including a proper spatial and temporal error structure are of key interest for hydrologists to force hydrological models and to identify uncertainties in the simulated and forecasted catchment response. The current paper presents a temporally coherent error identification method based on time-dependent multivariate spatial conditional simulations, which are conditioned on preceding simulations. A sensitivity analysis and real-world experiment are carried out within the hilly region of the Belgian Ardennes. Precipitation fields are simulated for pixels of 10 km × 10 km resolution. Uncertainty analyses in the simulated fields focus on (1) the number of previous simulation hours on which the new simulation is conditioned, (2) the advection speed of the rainfall event, (3) the size of the catchment considered, and (4) the rain gauge density within the catchment. The results for a sensitivity analysis show for typical advection speeds >20 km h-1, no uncertainty is added in terms of across ensemble spread when conditioned on more than one or two previous hourly simulations. However, for the real-world experiment, additional uncertainty can still be added when conditioning on a larger number of previous simulations. This is because for actual precipitation fields, the dynamics exhibit a larger spatial and temporal variability. Moreover, by thinning the observation network with 50%, the added uncertainty increases only slightly and the cross-validation shows that the simulations at the unobserved locations are unbiased. Finally, the first-order autocorrelation coefficients show clear temporal coherence in the time series of the areal precipitation using the time-dependent multivariate conditional simulations, which was not the case using the time-independent univariate conditional simulations. The presented work can be easily implemented within a hydrological calibration and data assimilation framework and can be used as an

  19. Multiple layers of temporal and spatial control regulate accumulation of the fruiting body-specific protein APP in Sordaria macrospora and Neurospora crassa.

    Science.gov (United States)

    Nowrousian, Minou; Piotrowski, Markus; Kück, Ulrich

    2007-07-01

    During fungal fruiting body development, specialized cell types differentiate from vegetative mycelium. We have isolated a protein from the ascomycete Sordaria macrospora that is not present during vegetative growth but accumulates in perithecia. The protein was sequenced by mass spectrometry and the corresponding gene was termed app (abundant perithecial protein). app transcript occurs only after the onset of sexual development; however, the formation of ascospores is not a prerequisite for APP accumulation. The transcript of the Neurospora crassa ortholog is present prior to fertilization, but the protein accumulates only after fertilization. In crosses of N. crassa Deltaapp strains with the wild type, APP accumulates when the wild type serves as female parent, but not in the reciprocal cross; thus, the presence of a functional female app allele is necessary and sufficient for APP accumulation. These findings highlight multiple layers of temporal and spatial control of gene expression during fungal development.

  20. LINE FUSION GENES: a database of LINE expression in human genes

    Directory of Open Access Journals (Sweden)

    Park Hong-Seog

    2006-06-01

    Full Text Available Abstract Background Long Interspersed Nuclear Elements (LINEs are the most abundant retrotransposons in humans. About 79% of human genes are estimated to contain at least one segment of LINE per transcription unit. Recent studies have shown that LINE elements can affect protein sequences, splicing patterns and expression of human genes. Description We have developed a database, LINE FUSION GENES, for elucidating LINE expression throughout the human gene database. We searched the 28,171 genes listed in the NCBI database for LINE elements and analyzed their structures and expression patterns. The results show that the mRNA sequences of 1,329 genes were affected by LINE expression. The LINE expression types were classified on the basis of LINEs in the 5' UTR, exon or 3' UTR sequences of the mRNAs. Our database provides further information, such as the tissue distribution and chromosomal location of the genes, and the domain structure that is changed by LINE integration. We have linked all the accession numbers to the NCBI data bank to provide mRNA sequences for subsequent users. Conclusion We believe that our work will interest genome scientists and might help them to gain insight into the implications of LINE expression for human evolution and disease. Availability http://www.primate.or.kr/line

  1. Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes

    Directory of Open Access Journals (Sweden)

    Paules Richard S

    2007-11-01

    biological processes affected by IR- and/or UV- induced DNA damage. Conclusion EPIG competed with CLICK and performed better than CAST in extracting patterns from simulated data. EPIG extracted more biological informative patterns and co-expressed genes from both C. elegans and IR/UV-treated human fibroblasts. Using Gene Ontology analysis of the genes in the patterns extracted by EPIG, several key biological categories related to p53-dependent cell cycle control were revealed from the IR/UV data. Among them were mitotic cell cycle, DNA replication, DNA repair, cell cycle checkpoint, and G0-like status transition. EPIG can be applied to data sets from a variety of experimental designs.

  2. The concentration, gene expression, and spatial distribution of aggrecan in canine articular cartilage, meniscus, and anterior and posterior cruciate ligaments: a new molecular distinction between hyaline cartilage and fibrocartilage in the knee joint.

    Science.gov (United States)

    Valiyaveettil, Manojkumar; Mort, John S; McDevitt, Cahir A

    2005-01-01

    The concentration, spatial distribution, and gene expression of aggrecan in meniscus, articular cartilage, and the anterior and posterior cruciate ligaments (ACL and PCL) was determined in the knee joints of five mature dogs. An anti-serum against peptide sequences specific to the G1 domain of aggrecan was employed in competitive-inhibition ELISA of guanidine HCl extracts and immunofluorescence microscopy. Gene expression was determined by Taqman real-time PCR. The concentration of aggrecan in articular cartilage (240.1 +/- 32 nMol/g dry weight) was higher than that in meniscus (medial meniscus: 33.4 +/- 4.3 nMol/g) and ligaments (ACL: 6.8 +/- 0.9 nMol/g). Aggrecan was more concentrated in the inner than the outer zone of the meniscus. Aggrecan in meniscus showed an organized, spatial network, in contrast to its diffuse distribution in articular cartilage. Thus, differences in the concentration, gene expression, and spatial distribution of aggrecan constitute another molecular distinction between hyaline cartilage and fibrocartilage of the knee.

  3. Identifying Regulatory Patterns at the 3'end Regions of Over-expressed and Under-expressed Genes

    KAUST Repository

    Othoum, Ghofran K

    2013-05-01

    Promoters, neighboring regulatory regions and those extending further upstream of the 5’end of genes, are considered one of the main components affecting the expression status of genes in a specific phenotype. More recently research by Chen et al. (2006, 2012) and Mapendano et al. (2010) demonstrated that the 3’end regulatory regions of genes also influence gene expression. However, the association between the regulatory regions surrounding 3’end of genes and their over- or under-expression status in a particular phenotype has not been systematically studied. The aim of this study is to ascertain if regulatory regions surrounding the 3’end of genes contain sufficient regulatory information to correlate genes with their expression status in a particular phenotype. Over- and under-expressed ovarian cancer (OC) genes were used as a model. Exploratory analysis of the 3’end regions were performed by transforming the annotated regions using principal component analysis (PCA), followed by clustering the transformed data thereby achieving a clear separation of genes with different expression status. Additionally, several classification algorithms such as Naïve Bayes, Random Forest and Support Vector Machine (SVM) were tested with different parameter settings to analyze the discriminatory capacity of the 3’end regions of genes related to their gene expression status. The best performance was achieved using the SVM classification model with 10-fold cross-validation that yielded an accuracy of 98.4%, sensitivity of 99.5% and specificity of 92.5%. For gene expression status for newly available instances, based on information derived from the 3’end regions, an SVM predictive model was developed with 10-fold cross-validation that yielded an accuracy of 67.0%, sensitivity of 73.2% and specificity of 61.0%. Moreover, building an SVM with polynomial kernel model to PCA transformed data yielded an accuracy of 83.1%, sensitivity of 92.5% and specificity of 74.8% using

  4. Identifying Regulatory Patterns at the 3'end Regions of Over-expressed and Under-expressed Genes

    KAUST Repository

    Othoum, Ghofran K

    2013-01-01

    Promoters, neighboring regulatory regions and those extending further upstream of the 5’end of genes, are considered one of the main components affecting the expression status of genes in a specific phenotype. More recently research by Chen et al. (2006, 2012) and Mapendano et al. (2010) demonstrated that the 3’end regulatory regions of genes also influence gene expression. However, the association between the regulatory regions surrounding 3’end of genes and their over- or under-expression status in a particular phenotype has not been systematically studied. The aim of this study is to ascertain if regulatory regions surrounding the 3’end of genes contain sufficient regulatory information to correlate genes with their expression status in a particular phenotype. Over- and under-expressed ovarian cancer (OC) genes were used as a model. Exploratory analysis of the 3’end regions were performed by transforming the annotated regions using principal component analysis (PCA), followed by clustering the transformed data thereby achieving a clear separation of genes with different expression status. Additionally, several classification algorithms such as Naïve Bayes, Random Forest and Support Vector Machine (SVM) were tested with different parameter settings to analyze the discriminatory capacity of the 3’end regions of genes related to their gene expression status. The best performance was achieved using the SVM classification model with 10-fold cross-validation that yielded an accuracy of 98.4%, sensitivity of 99.5% and specificity of 92.5%. For gene expression status for newly available instances, based on information derived from the 3’end regions, an SVM predictive model was developed with 10-fold cross-validation that yielded an accuracy of 67.0%, sensitivity of 73.2% and specificity of 61.0%. Moreover, building an SVM with polynomial kernel model to PCA transformed data yielded an accuracy of 83.1%, sensitivity of 92.5% and specificity of 74.8% using

  5. Spatial and spatio-temporal bayesian models with R - INLA

    CERN Document Server

    Blangiardo, Marta

    2015-01-01

    Dedication iiiPreface ix1 Introduction 11.1 Why spatial and spatio-temporal statistics? 11.2 Why do we use Bayesian methods for modelling spatial and spatio-temporal structures? 21.3 Why INLA? 31.4 Datasets 32 Introduction to 212.1 The language 212.2 objects 222.3 Data and session management 342.4 Packages 352.5 Programming in 362.6 Basic statistical analysis with 393 Introduction to Bayesian Methods 533.1 Bayesian Philosophy 533.2 Basic Probability Elements 573.3 Bayes Theorem 623.4 Prior and Posterior Distributions 643.5 Working with the Posterior Distribution 663.6 Choosing the Prior Distr

  6. G-NEST: a gene neighborhood scoring tool to identify co-conserved, co-expressed genes

    Directory of Open Access Journals (Sweden)

    Lemay Danielle G

    2012-09-01

    Full Text Available Abstract Background In previous studies, gene neighborhoods—spatial clusters of co-expressed genes in the genome—have been defined using arbitrary rules such as requiring adjacency, a minimum number of genes, a fixed window size, or a minimum expression level. In the current study, we developed a Gene Neighborhood Scoring Tool (G-NEST which combines genomic location, gene expression, and evolutionary sequence conservation data to score putative gene neighborhoods across all possible window sizes simultaneously. Results Using G-NEST on atlases of mouse and human tissue expression data, we found that large neighborhoods of ten or more genes are extremely rare in mammalian genomes. When they do occur, neighborhoods are typically composed of families of related genes. Both the highest scoring and the largest neighborhoods in mammalian genomes are formed by tandem gene duplication. Mammalian gene neighborhoods contain highly and variably expressed genes. Co-localized noisy gene pairs exhibit lower evolutionary conservation of their adjacent genome locations, suggesting that their shared transcriptional background may be disadvantageous. Genes that are essential to mammalian survival and reproduction are less likely to occur in neighborhoods, although neighborhoods are enriched with genes that function in mitosis. We also found that gene orientation and protein-protein interactions are partially responsible for maintenance of gene neighborhoods. Conclusions Our experiments using G-NEST confirm that tandem gene duplication is the primary driver of non-random gene order in mammalian genomes. Non-essentiality, co-functionality, gene orientation, and protein-protein interactions are additional forces that maintain gene neighborhoods, especially those formed by tandem duplicates. We expect G-NEST to be useful for other applications such as the identification of core regulatory modules, common transcriptional backgrounds, and chromatin domains. The

  7. Serial analysis of gene expression (SAGE) in rat liver regeneration

    International Nuclear Information System (INIS)

    Cimica, Velasco; Batusic, Danko; Haralanova-Ilieva, Borislava; Chen, Yonglong; Hollemann, Thomas; Pieler, Tomas; Ramadori, Giuliano

    2007-01-01

    We have applied serial analysis of gene expression for studying the molecular mechanism of the rat liver regeneration in the model of 70% partial hepatectomy. We generated three SAGE libraries from a normal control liver (NL library: 52,343 tags), from a sham control operated liver (Sham library: 51,028 tags), and from a regenerating liver (PH library: 53,061 tags). By SAGE bioinformatics analysis we identified 40 induced genes and 20 repressed genes during the liver regeneration. We verified temporal expression of such genes by real time PCR during the regeneration process and we characterized 13 induced genes and 3 repressed genes. We found connective tissue growth factor transcript and protein induced very early at 4 h after PH operation before hepatocytes proliferation is triggered. Our study suggests CTGF as a growth factor signaling mediator that could be involved directly in the mechanism of liver regeneration induction

  8. Influence of pedestrian age and gender on spatial and temporal distribution of pedestrian crashes.

    Science.gov (United States)

    Toran Pour, Alireza; Moridpour, Sara; Tay, Richard; Rajabifard, Abbas

    2018-01-02

    Every year, about 1.24 million people are killed in traffic crashes worldwide and more than 22% of these deaths are pedestrians. Therefore, pedestrian safety has become a significant traffic safety issue worldwide. In order to develop effective and targeted safety programs, the location- and time-specific influences on vehicle-pedestrian crashes must be assessed. The main purpose of this research is to explore the influence of pedestrian age and gender on the temporal and spatial distribution of vehicle-pedestrian crashes to identify the hotspots and hot times. Data for all vehicle-pedestrian crashes on public roadways in the Melbourne metropolitan area from 2004 to 2013 are used in this research. Spatial autocorrelation is applied in examining the vehicle-pedestrian crashes in geographic information systems (GIS) to identify any dependency between time and location of these crashes. Spider plots and kernel density estimation (KDE) are then used to determine the temporal and spatial patterns of vehicle-pedestrian crashes for different age groups and genders. Temporal analysis shows that pedestrian age has a significant influence on the temporal distribution of vehicle-pedestrian crashes. Furthermore, men and women have different crash patterns. In addition, results of the spatial analysis shows that areas with high risk of vehicle-pedestrian crashes can vary during different times of the day for different age groups and genders. For example, for those between ages 18 and 65, most vehicle-pedestrian crashes occur in the central business district (CBD) during the day, but between 7:00 p.m. and 6:00 a.m., crashes among this age group occur mostly around hotels, clubs, and bars. This research reveals that temporal and spatial distributions of vehicle-pedestrian crashes vary for different pedestrian age groups and genders. Therefore, specific safety measures should be in place during high crash times at different locations for different age groups and genders to

  9. Neighboring Genes Show Correlated Evolution in Gene Expression

    Science.gov (United States)

    Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2015-01-01

    When considering the evolution of a gene’s expression profile, we commonly assume that this is unaffected by its genomic neighborhood. This is, however, in contrast to what we know about the lack of autonomy between neighboring genes in gene expression profiles in extant taxa. Indeed, in all eukaryotic genomes genes of similar expression-profile tend to cluster, reflecting chromatin level dynamics. Does it follow that if a gene increases expression in a particular lineage then the genomic neighbors will also increase in their expression or is gene expression evolution autonomous? To address this here we consider evolution of human gene expression since the human-chimp common ancestor, allowing for both variation in estimation of current expression level and error in Bayesian estimation of the ancestral state. We find that in all tissues and both sexes, the change in gene expression of a focal gene on average predicts the change in gene expression of neighbors. The effect is highly pronounced in the immediate vicinity (genes increasing their expression in humans tend to avoid nuclear lamina domains and be enriched for the gene activator 5-hydroxymethylcytosine, we conclude that, most probably owing to chromatin level control of gene expression, a change in gene expression of one gene likely affects the expression evolution of neighbors, what we term expression piggybacking, an analog of hitchhiking. PMID:25743543

  10. NuChart: an R package to study gene spatial neighbourhoods with multi-omics annotations.

    Directory of Open Access Journals (Sweden)

    Ivan Merelli

    Full Text Available Long-range chromosomal associations between genomic regions, and their repositioning in the 3D space of the nucleus, are now considered to be key contributors to the regulation of gene expression and important links have been highlighted with other genomic features involved in DNA rearrangements. Recent Chromosome Conformation Capture (3C measurements performed with high throughput sequencing (Hi-C and molecular dynamics studies show that there is a large correlation between colocalization and coregulation of genes, but these important researches are hampered by the lack of biologists-friendly analysis and visualisation software. Here, we describe NuChart, an R package that allows the user to annotate and statistically analyse a list of input genes with information relying on Hi-C data, integrating knowledge about genomic features that are involved in the chromosome spatial organization. NuChart works directly with sequenced reads to identify the related Hi-C fragments, with the aim of creating gene-centric neighbourhood graphs on which multi-omics features can be mapped. Predictions about CTCF binding sites, isochores and cryptic Recombination Signal Sequences are provided directly with the package for mapping, although other annotation data in bed format can be used (such as methylation profiles and histone patterns. Gene expression data can be automatically retrieved and processed from the Gene Expression Omnibus and ArrayExpress repositories to highlight the expression profile of genes in the identified neighbourhood. Moreover, statistical inferences about the graph structure and correlations between its topology and multi-omics features can be performed using Exponential-family Random Graph Models. The Hi-C fragment visualisation provided by NuChart allows the comparisons of cells in different conditions, thus providing the possibility of novel biomarkers identification. NuChart is compliant with the Bioconductor standard and it is freely

  11. Correlation-maximizing surrogate gene space for visual mining of gene expression patterns in developing barley endosperm tissue

    Directory of Open Access Journals (Sweden)

    Usadel Björn

    2007-05-01

    Full Text Available Abstract Background Micro- and macroarray technologies help acquire thousands of gene expression patterns covering important biological processes during plant ontogeny. Particularly, faithful visualization methods are beneficial for revealing interesting gene expression patterns and functional relationships of coexpressed genes. Such screening helps to gain deeper insights into regulatory behavior and cellular responses, as will be discussed for expression data of developing barley endosperm tissue. For that purpose, high-throughput multidimensional scaling (HiT-MDS, a recent method for similarity-preserving data embedding, is substantially refined and used for (a assessing the quality and reliability of centroid gene expression patterns, and for (b derivation of functional relationships of coexpressed genes of endosperm tissue during barley grain development (0–26 days after flowering. Results Temporal expression profiles of 4824 genes at 14 time points are faithfully embedded into two-dimensional displays. Thereby, similar shapes of coexpressed genes get closely grouped by a correlation-based similarity measure. As a main result, by using power transformation of correlation terms, a characteristic cloud of points with bipolar sandglass shape is obtained that is inherently connected to expression patterns of pre-storage, intermediate and storage phase of endosperm development. Conclusion The new HiT-MDS-2 method helps to create global views of expression patterns and to validate centroids obtained from clustering programs. Furthermore, functional gene annotation for developing endosperm barley tissue is successfully mapped to the visualization, making easy localization of major centroids of enriched functional categories possible.

  12. Object-Location Training Elicits an Overlapping but Temporally Distinct Transcriptional Profile from Contextual Fear Conditioning

    OpenAIRE

    Poplawski, Shane G.; Schoch, Hannah; Wimmer, Mathieu; Hawk, Joshua D.; Walsh, Jennifer L.; Giese, Karl P.; Abel, Ted

    2014-01-01

    Hippocampus-dependent learning is known to induce changes in gene expression, but information on gene expression differences between different learning paradigms that require the hippocampus is limited. The bulk of studies investigating RNA expression after learning use the contextual fear conditioning task, which couples a novel environment with a footshock. Although contextual fear conditioning has been useful in discovering gene targets, gene expression after spatial memory tasks has recei...

  13. Gene Expression Commons: an open platform for absolute gene expression profiling.

    Directory of Open Access Journals (Sweden)

    Jun Seita

    Full Text Available Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000 of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named "Gene Expression Commons" (https://gexc.stanford.edu/ which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples.

  14. Enhanced learning of proportional math through music training and spatial-temporal training.

    Science.gov (United States)

    Graziano, A B; Peterson, M; Shaw, G L

    1999-03-01

    It was predicted, based on a mathematical model of the cortex, that early music training would enhance spatial-temporal reasoning. We have demonstrated that preschool children given six months of piano keyboard lessons improved dramatically on spatial-temporal reasoning while children in appropriate control groups did not improve. It was then predicted that the enhanced spatial-temporal reasoning from piano keyboard training could lead to enhanced learning of specific math concepts, in particular proportional math, which is notoriously difficult to teach using the usual language-analytic methods. We report here the development of Spatial-Temporal Math Video Game software designed to teach fractions and proportional math, and its strikingly successful use in a study involving 237 second-grade children (age range six years eight months-eight years five months). Furthermore, as predicted, children given piano keyboard training along with the Math Video Game training scored significantly higher on proportional math and fractions than children given a control training along with the Math Video Game. These results were readily measured using the companion Math Video Game Evaluation Program. The training time necessary for children on the Math Video Game is very short, and they rapidly reach a high level of performance. This suggests that, as predicted, we are tapping into fundamental cortical processes of spatial-temporal reasoning. This spatial-temporal approach is easily generalized to teach other math and science concepts in a complementary manner to traditional language-analytic methods, and at a younger age. The neural mechanisms involved in thinking through fractions and proportional math during training with the Math Video Game might be investigated in EEG coherence studies along with priming by specific music.

  15. Spatial-Temporal Data Collection with Compressive Sensing in Mobile Sensor Networks.

    Science.gov (United States)

    Zheng, Haifeng; Li, Jiayin; Feng, Xinxin; Guo, Wenzhong; Chen, Zhonghui; Xiong, Neal

    2017-11-08

    Compressive sensing (CS) provides an energy-efficient paradigm for data gathering in wireless sensor networks (WSNs). However, the existing work on spatial-temporal data gathering using compressive sensing only considers either multi-hop relaying based or multiple random walks based approaches. In this paper, we exploit the mobility pattern for spatial-temporal data collection and propose a novel mobile data gathering scheme by employing the Metropolis-Hastings algorithm with delayed acceptance, an improved random walk algorithm for a mobile collector to collect data from a sensing field. The proposed scheme exploits Kronecker compressive sensing (KCS) for spatial-temporal correlation of sensory data by allowing the mobile collector to gather temporal compressive measurements from a small subset of randomly selected nodes along a random routing path. More importantly, from the theoretical perspective we prove that the equivalent sensing matrix constructed from the proposed scheme for spatial-temporal compressible signal can satisfy the property of KCS models. The simulation results demonstrate that the proposed scheme can not only significantly reduce communication cost but also improve recovery accuracy for mobile data gathering compared to the other existing schemes. In particular, we also show that the proposed scheme is robust in unreliable wireless environment under various packet losses. All this indicates that the proposed scheme can be an efficient alternative for data gathering application in WSNs .

  16. A method to identify differential expression profiles of time-course gene data with Fourier transformation.

    Science.gov (United States)

    Kim, Jaehee; Ogden, Robert Todd; Kim, Haseong

    2013-10-18

    Time course gene expression experiments are an increasingly popular method for exploring biological processes. Temporal gene expression profiles provide an important characterization of gene function, as biological systems are both developmental and dynamic. With such data it is possible to study gene expression changes over time and thereby to detect differential genes. Much of the early work on analyzing time series expression data relied on methods developed originally for static data and thus there is a need for improved methodology. Since time series expression is a temporal process, its unique features such as autocorrelation between successive points should be incorporated into the analysis. This work aims to identify genes that show different gene expression profiles across time. We propose a statistical procedure to discover gene groups with similar profiles using a nonparametric representation that accounts for the autocorrelation in the data. In particular, we first represent each profile in terms of a Fourier basis, and then we screen out genes that are not differentially expressed based on the Fourier coefficients. Finally, we cluster the remaining gene profiles using a model-based approach in the Fourier domain. We evaluate the screening results in terms of sensitivity, specificity, FDR and FNR, compare with the Gaussian process regression screening in a simulation study and illustrate the results by application to yeast cell-cycle microarray expression data with alpha-factor synchronization.The key elements of the proposed methodology: (i) representation of gene profiles in the Fourier domain; (ii) automatic screening of genes based on the Fourier coefficients and taking into account autocorrelation in the data, while controlling the false discovery rate (FDR); (iii) model-based clustering of the remaining gene profiles. Using this method, we identified a set of cell-cycle-regulated time-course yeast genes. The proposed method is general and can be

  17. Temporal Gene Expression of the Cyanobacterium Arthrospira in Response to Gamma Rays

    Science.gov (United States)

    Badri, Hanène; Monsieurs, Pieter; Coninx, Ilse; Nauts, Robin; Wattiez, Ruddy; Leys, Natalie

    2015-01-01

    The edible cyanobacterium Arthrospira is resistant to ionising radiation. The cellular mechanisms underlying this radiation resistance are, however, still largely unknown. Therefore, additional molecular analysis was performed to investigate how these cells can escape from, protect against, or repair the radiation damage. Arthrospira cells were shortly exposed to different doses of 60Co gamma rays and the dynamic response was investigated by monitoring its gene expression and cell physiology at different time points after irradiation. The results revealed a fast switch from an active growth state to a kind of 'survival modus' during which the cells put photosynthesis, carbon and nitrogen assimilation on hold and activate pathways for cellular protection, detoxification, and repair. The higher the radiation dose, the more pronounced this global emergency response is expressed. Genes repressed during early response, suggested a reduction of photosystem II and I activity and reduced tricarboxylic acid (TCA) and Calvin-Benson-Bassham (CBB) cycles, combined with an activation of the pentose phosphate pathway (PPP). For reactive oxygen species detoxification and restoration of the redox balance in Arthrospira cells, the results suggested a powerful contribution of the antioxidant molecule glutathione. The repair mechanisms of Arthrospira cells that were immediately switched on, involve mainly proteases for damaged protein removal, single strand DNA repair and restriction modification systems, while recA was not induced. Additionally, the exposed cells showed significant increased expression of arh genes, coding for a novel group of protein of unknown function, also seen in our previous irradiation studies. This observation confirms our hypothesis that arh genes are key elements in radiation resistance of Arthrospira, requiring further investigation. This study provides new insights into phasic response and the cellular pathways involved in the radiation resistance of

  18. Temporal Gene Expression of the Cyanobacterium Arthrospira in Response to Gamma Rays.

    Directory of Open Access Journals (Sweden)

    Hanène Badri

    Full Text Available The edible cyanobacterium Arthrospira is resistant to ionising radiation. The cellular mechanisms underlying this radiation resistance are, however, still largely unknown. Therefore, additional molecular analysis was performed to investigate how these cells can escape from, protect against, or repair the radiation damage. Arthrospira cells were shortly exposed to different doses of 60Co gamma rays and the dynamic response was investigated by monitoring its gene expression and cell physiology at different time points after irradiation. The results revealed a fast switch from an active growth state to a kind of 'survival modus' during which the cells put photosynthesis, carbon and nitrogen assimilation on hold and activate pathways for cellular protection, detoxification, and repair. The higher the radiation dose, the more pronounced this global emergency response is expressed. Genes repressed during early response, suggested a reduction of photosystem II and I activity and reduced tricarboxylic acid (TCA and Calvin-Benson-Bassham (CBB cycles, combined with an activation of the pentose phosphate pathway (PPP. For reactive oxygen species detoxification and restoration of the redox balance in Arthrospira cells, the results suggested a powerful contribution of the antioxidant molecule glutathione. The repair mechanisms of Arthrospira cells that were immediately switched on, involve mainly proteases for damaged protein removal, single strand DNA repair and restriction modification systems, while recA was not induced. Additionally, the exposed cells showed significant increased expression of arh genes, coding for a novel group of protein of unknown function, also seen in our previous irradiation studies. This observation confirms our hypothesis that arh genes are key elements in radiation resistance of Arthrospira, requiring further investigation. This study provides new insights into phasic response and the cellular pathways involved in the radiation

  19. Transcriptional profiling of cattle infected with Trypanosoma congolense highlights gene expression signatures underlying trypanotolerance and trypanosusceptibility

    Directory of Open Access Journals (Sweden)

    Naessens Jan

    2009-05-01

    Full Text Available Abstract Background African animal trypanosomiasis (AAT caused by tsetse fly-transmitted protozoa of the genus Trypanosoma is a major constraint on livestock and agricultural production in Africa and is among the top ten global cattle diseases impacting on the poor. Here we show that a functional genomics approach can be used to identify temporal changes in host peripheral blood mononuclear cell (PBMC gene expression due to disease progression. We also show that major gene expression differences exist between cattle from trypanotolerant and trypanosusceptible breeds. Using bovine long oligonucleotide microarrays and real time quantitative reverse transcription PCR (qRT-PCR validation we analysed PBMC gene expression in naïve trypanotolerant and trypanosusceptible cattle experimentally challenged with Trypanosoma congolense across a 34-day infection time course. Results Trypanotolerant N'Dama cattle displayed a rapid and distinct transcriptional response to infection, with a ten-fold higher number of genes differentially expressed at day 14 post-infection compared to trypanosusceptible Boran cattle. These analyses identified coordinated temporal gene expression changes for both breeds in response to trypanosome infection. In addition, a panel of genes were identified that showed pronounced differences in gene expression between the two breeds, which may underlie the phenomena of trypanotolerance and trypanosusceptibility. Gene ontology (GO analysis demonstrate that the products of these genes may contribute to increased mitochondrial mRNA translational efficiency, a more pronounced B cell response, an elevated activation status and a heightened response to stress in trypanotolerant cattle. Conclusion This study has revealed an extensive and diverse range of cellular processes that are altered temporally in response to trypanosome infection in African cattle. Results indicate that the trypanotolerant N'Dama cattle respond more rapidly and with a

  20. Decoupling Linear and Nonlinear Associations of Gene Expression

    KAUST Repository

    Itakura, Alan

    2013-05-01

    The FANTOM consortium has generated a large gene expression dataset of different cell lines and tissue cultures using the single-molecule sequencing technology of HeliscopeCAGE. This provides a unique opportunity to investigate novel associations between gene expression over time and different cell types. Here, we create a MatLab wrapper for a powerful and computationally intensive set of statistics known as Maximal Information Coefficient, and then calculate this statistic for a large, comprehensive dataset containing gene expression of a variety of differentiating tissues. We then distinguish between linear and nonlinear associations, and then create gene association networks. Following this analysis, we are then able to identify clusters of linear gene associations that then associate nonlinearly with other clusters of linearity, providing insight to much more complex connections between gene expression patterns than previously anticipated.

  1. Decoupling Linear and Nonlinear Associations of Gene Expression

    KAUST Repository

    Itakura, Alan

    2013-01-01

    The FANTOM consortium has generated a large gene expression dataset of different cell lines and tissue cultures using the single-molecule sequencing technology of HeliscopeCAGE. This provides a unique opportunity to investigate novel associations between gene expression over time and different cell types. Here, we create a MatLab wrapper for a powerful and computationally intensive set of statistics known as Maximal Information Coefficient, and then calculate this statistic for a large, comprehensive dataset containing gene expression of a variety of differentiating tissues. We then distinguish between linear and nonlinear associations, and then create gene association networks. Following this analysis, we are then able to identify clusters of linear gene associations that then associate nonlinearly with other clusters of linearity, providing insight to much more complex connections between gene expression patterns than previously anticipated.

  2. Spatial-Temporal Analysis of Openstreetmap Data after Natural Disasters: a Case Study of Haiti Under Hurricane Matthew

    Science.gov (United States)

    Xu, J.; Li, L.; Zhou, Q.

    2017-09-01

    Volunteered geographic information (VGI) has been widely adopted as an alternative for authoritative geographic information in disaster management considering its up-to-date data. OpenStreetMap, in particular, is now aiming at crisis mapping for humanitarian purpose. This paper illustrated that natural disaster played an essential role in updating OpenStreetMap data after Haiti was hit by Hurricane Matthew in October, 2016. Spatial-temporal analysis of updated OSM data was conducted in this paper. Correlation of features was also studied to figure out whether updates of data were coincidence or the results of the hurricane. Spatial pattern matched the damaged areas and temporal changes fitted the time when disaster occurred. High level of correlation values of features were recorded when hurricane occurred, suggesting that updates in data were led by the hurricane.

  3. RNA preparation and characterization for gene expression studies

    DEFF Research Database (Denmark)

    Stangegaard, Michael

    2009-01-01

    Much information can be obtained from knowledge of the relative expression level of each gene in the transcriptome. With the current advances in technology as little as a single cell is required as starting material for gene expression experiments. The mRNA from a single cell may be linearly...

  4. The Relationship between Spatial and Temporal Magnitude Estimation of Scientific Concepts at Extreme Scales

    Science.gov (United States)

    Price, Aaron; Lee, H.

    2010-01-01

    Many astronomical objects, processes, and events exist and occur at extreme scales of spatial and temporal magnitudes. Our research draws upon the psychological literature, replete with evidence of linguistic and metaphorical links between the spatial and temporal domains, to compare how students estimate spatial and temporal magnitudes associated with objects and processes typically taught in science class.. We administered spatial and temporal scale estimation tests, with many astronomical items, to 417 students enrolled in 12 undergraduate science courses. Results show that while the temporal test was more difficult, students’ overall performance patterns between the two tests were mostly similar. However, asymmetrical correlations between the two tests indicate that students think of the extreme ranges of spatial and temporal scales in different ways, which is likely influenced by their classroom experience. When making incorrect estimations, students tended to underestimate the difference between the everyday scale and the extreme scales on both tests. This suggests the use of a common logarithmic mental number line for both spatial and temporal magnitude estimation. However, there are differences between the two tests in the errors student make in the everyday range. Among the implications discussed is the use of spatio-temporal reference frames, instead of smooth bootstrapping, to help students maneuver between scales of magnitude and the use of logarithmic transformations between reference frames. Implications for astronomy range from learning about spectra to large scale galaxy structure.

  5. Seedling establishment and physiological responses to temporal and spatial soil moisture changes

    Science.gov (United States)

    Jeremy Pinto; John D. Marshall; Kas Dumroese; Anthony S. Davis; Douglas R. Cobos

    2016-01-01

    In many forests of the world, the summer season (temporal element) brings drought conditions causing low soil moisture in the upper soil profile (spatial element) - a potentially large barrier to seedling establishment. We evaluated the relationship between initial seedling root depth, temporal and spatial changes in soil moisture during drought after...

  6. Examining heterogeneity and wildfire management expenditures using spatially and temporally descriptive data

    Science.gov (United States)

    Michael S. Hand; Matthew P. Thompson; Dave Calkin

    2016-01-01

    Increasing costs of wildfire management have highlighted the need to better understand suppression expenditures and potential tradeoffs of land management activities that may affect fire risks. Spatially and temporally descriptive data is used to develop a model of wildfire suppression expenditures, providing new insights into the role of spatial and temporal...

  7. Information and Communication Technologies and the spatio-temporal fragmentation of everyday life

    NARCIS (Netherlands)

    Hubers, C.G.T.M.

    2013-01-01

    Information and Communication Technologies (ICTs), such as the Internet and mobile phone, are thought to enable the temporal and spatial fragmentation of activities. In this process activities, such as shopping and paid work, are divided into smaller subtasks and carried out at different times and

  8. Changes in gene expression during male meiosis in Petunia hybrida.

    Science.gov (United States)

    Cnudde, Filip; Hedatale, Veena; de Jong, Hans; Pierson, Elisabeth S; Rainey, Daphne Y; Zabeau, Marc; Weterings, Koen; Gerats, Tom; Peters, Janny L

    2006-01-01

    We analyzed changes in gene expression during male meiosis in Petunia by combining the meiotic staging of pollen mother cells from a single anther with cDNA-AFLP transcript profiling of mRNA from the synchronously developing sister anthers. The transcript profiling experiments focused on the identification of genes with a modulated expression profile during meiosis, while premeiotic archesporial cells and postmeiotic microspores served as a reference. About 8000 transcript tags, estimated at 30% of the total transcriptome, were generated, of which around 6% exhibited a modulated gene expression pattern at meiosis. Cluster analysis revealed a transcriptional cascade that coincides with the initiation and progression through all stages of the two meiotic divisions. Fragments that exhibited high expression specifically during meiosis I were characterized further by sequencing; 90 out of the 293 sequenced fragments showed homology with known genes, belonging to a wide range of gene classes, including previously characterized meiotic genes. In-situ hybridization experiments were performed to determine the spatial expression pattern for five selected transcript tags. Its concurrence with cDNA-AFLP transcript profiles indicates that this is an excellent approach to study genes involved in specialized processes such as meiosis. Our data set provides the potential to unravel unique meiotic genes that are as yet elusive to reverse genetics approaches.

  9. Figure/ground segregation from temporal delay is best at high spatial frequencies

    OpenAIRE

    Kojima, Haruyuki

    1998-01-01

    Two experiments investigated the role of spatial frequency in performance of a figure/ground segregation task based on temporal cues. Figure orientation was much easier to judge when figure and ground portions of the target were defined exclusively by random texture composed entirely of high spatial frequencies. When target components were defined by low spatial frequencies only, the task was nearly impossible except with long temporal delay between figure and ground. These results are incons...

  10. INTEGRATED FUSION METHOD FOR MULTIPLE TEMPORAL-SPATIAL-SPECTRAL IMAGES

    Directory of Open Access Journals (Sweden)

    H. Shen

    2012-08-01

    Full Text Available Data fusion techniques have been widely researched and applied in remote sensing field. In this paper, an integrated fusion method for remotely sensed images is presented. Differently from the existed methods, the proposed method has the performance to integrate the complementary information in multiple temporal-spatial-spectral images. In order to represent and process the images in one unified framework, two general image observation models are firstly presented, and then the maximum a posteriori (MAP framework is used to set up the fusion model. The gradient descent method is employed to solve the fused image. The efficacy of the proposed method is validated using simulated images.

  11. A framework for the assessment of the spatial and temporal patterns of threatened coastal delphinids.

    Science.gov (United States)

    Wang, Jingzhen; Yang, Yingting; Yang, Feng; Li, Yuelin; Li, Lianjie; Lin, Derun; He, Tangtian; Liang, Bo; Zhang, Tao; Lin, Yao; Li, Ping; Liu, Wenhua

    2016-01-25

    The massively accelerated biodiversity loss rate in the Anthropocene calls for an efficient and effective way to identify the spatial and temporal dynamics of endangered species. To this end, we developed a useful identification framework based on a case study of locally endangered Sousa chinensis by combining both LEK (local ecological knowledge) evaluation and regional boat-based survey methods. Our study investigated the basic ecological information of Sousa chinensis in the estuaries of eastern Guangdong that had previously been neglected, which could guide the future study and conservation. Based on the statistical testing of reported spatial and temporal dolphins sighting data from fishermen and the ecological monitoring analyses, including sighting rate, site fidelity and residence time estimations, some of the current Sousa chinensis units are likely to be geographically isolated and critically endangered, which calls for much greater conservation efforts. Given the accelerated population extinction rate and increasing budgetary constraints, our survey pattern can be applied in a timely and economically acceptable manner to the spatial and temporal assessment of other threatened coastal delphinids, particularly when population distributions are on a large scale and traditional sampling methods are difficult to implement.

  12. Spatial and Temporal Patterns of Locally-Acquired Dengue Transmission in Northern Queensland, Australia, 1993–2012

    Science.gov (United States)

    Naish, Suchithra; Dale, Pat; Mackenzie, John S.; McBride, John; Mengersen, Kerrie; Tong, Shilu

    2014-01-01

    Background Dengue has been a major public health concern in Australia since it re-emerged in Queensland in 1992–1993. We explored spatio-temporal characteristics of locally-acquired dengue cases in northern tropical Queensland, Australia during the period 1993–2012. Methods Locally-acquired notified cases of dengue were collected for northern tropical Queensland from 1993 to 2012. Descriptive spatial and temporal analyses were conducted using geographic information system tools and geostatistical techniques. Results 2,398 locally-acquired dengue cases were recorded in northern tropical Queensland during the study period. The areas affected by the dengue cases exhibited spatial and temporal variation over the study period. Notified cases of dengue occurred more frequently in autumn. Mapping of dengue by statistical local areas (census units) reveals the presence of substantial spatio-temporal variation over time and place. Statistically significant differences in dengue incidence rates among males and females (with more cases in females) (χ2 = 15.17, d.f. = 1, pQueensland. Conclusions Tropical areas are potential high-risk areas for mosquito-borne diseases such as dengue. This study demonstrated that the locally-acquired dengue cases have exhibited a spatial and temporal variation over the past twenty years in northern tropical Queensland, Australia. Therefore, this study provides an impetus for further investigation of clusters and risk factors in these high-risk areas. PMID:24691549

  13. Regional differences in gene expression and promoter usage in aged human brains

    KAUST Repository

    Pardo, Luba M.; Rizzu, Patrizia; Francescatto, Margherita; Vitezic, Morana; Leday, Gwenaë l G.R.; Sanchez, Javier Simon; Khamis, Abdullah M.; Takahashi, Hazuki; van de Berg, Wilma D.J.; Medvedeva, Yulia A.; van de Wiel, Mark A.; Daub, Carsten O.; Carninci, Piero; Heutink, Peter

    2013-01-01

    To characterize the promoterome of caudate and putamen regions (striatum), frontal and temporal cortices, and hippocampi from aged human brains, we used high-throughput cap analysis of gene expression to profile the transcription start sites

  14. Utility and Limitations of Using Gene Expression Data to Identify Functional Associations.

    Directory of Open Access Journals (Sweden)

    Sahra Uygun

    2016-12-01

    Full Text Available Gene co-expression has been widely used to hypothesize gene function through guilt-by association. However, it is not clear to what degree co-expression is informative, whether it can be applied to genes involved in different biological processes, and how the type of dataset impacts inferences about gene functions. Here our goal is to assess the utility and limitations of using co-expression as a criterion to recover functional associations between genes. By determining the percentage of gene pairs in a metabolic pathway with significant expression correlation, we found that many genes in the same pathway do not have similar transcript profiles and the choice of dataset, annotation quality, gene function, expression similarity measure, and clustering approach significantly impacts the ability to recover functional associations between genes using Arabidopsis thaliana as an example. Some datasets are more informative in capturing coordinated expression profiles and larger data sets are not always better. In addition, to recover the maximum number of known pathways and identify candidate genes with similar functions, it is important to explore rather exhaustively multiple dataset combinations, similarity measures, clustering algorithms and parameters. Finally, we validated the biological relevance of co-expression cluster memberships with an independent phenomics dataset and found that genes that consistently cluster with leucine degradation genes tend to have similar leucine levels in mutants. This study provides a framework for obtaining gene functional associations by maximizing the information that can be obtained from gene expression datasets.

  15. Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis

    Directory of Open Access Journals (Sweden)

    Tang Yuhong

    2009-01-01

    developed to enable laser microdissection of M. truncatula root cortical cells. LM coupled with RT-PCR provided spatial gene expression information for both symbionts and expanded current information available for gene expression in cortical cells containing arbuscules.

  16. Diffuse optical imaging using spatially and temporally modulated light

    Science.gov (United States)

    O'Sullivan, Thomas D.; Cerussi, Albert E.; Cuccia, David J.; Tromberg, Bruce J.

    2012-07-01

    The authors describe the development of diffuse optical imaging (DOI) technologies, specifically the use of spatial and temporal modulation to control near infrared light propagation in thick tissues. We present theory and methods of DOI focusing on model-based techniques for quantitative, in vivo measurements of endogenous tissue absorption and scattering properties. We specifically emphasize the common conceptual framework of the scalar photon density wave for both temporal and spatial frequency-domain approaches. After presenting the history, theoretical foundation, and instrumentation related to these methods, we provide a brief review of clinical and preclinical applications from our research as well as our outlook on the future of DOI technology.

  17. Spatial and temporal analysis of postural control in dyslexic children.

    Science.gov (United States)

    Gouleme, Nathalie; Gerard, Christophe Loic; Bui-Quoc, Emmanuel; Bucci, Maria Pia

    2015-07-01

    The aim of this study is to examine postural control of dyslexic children using both spatial and temporal analysis. Thirty dyslexic (mean age 9.7±0.3years) and thirty non-dyslexic age-matched children participated in the study. Postural stability was evaluated using Multitest Equilibre from Framiral®. Posture was recorded in the following conditions: eyes open fixating a target (EO) and eyes closed (EC) on stable (-S-) and unstable (-U-) platforms. The findings of this study showed poor postural stability in dyslexic children with respect to the non-dyslexic children group, as demonstrated by both spatial and temporal analysis. In both groups of children postural control depends on the condition, and improves when the eyes are open on a stable platform. Dyslexic children have spectral power indices that are higher than in non-dyslexic children and they showed a shorter cancelling time. Poor postural control in dyslexic children could be due to a deficit in using sensory information most likely caused by impairment in cerebellar activity. The reliability of brain activation patterns, namely in using sensory input and cerebellar activity may explain the deficit in postural control in dyslexic children. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. A comparative gene expression database for invertebrates

    Directory of Open Access Journals (Sweden)

    Ormestad Mattias

    2011-08-01

    Full Text Available Abstract Background As whole genome and transcriptome sequencing gets cheaper and faster, a great number of 'exotic' animal models are emerging, rapidly adding valuable data to the ever-expanding Evo-Devo field. All these new organisms serve as a fantastic resource for the research community, but the sheer amount of data, some published, some not, makes detailed comparison of gene expression patterns very difficult to summarize - a problem sometimes even noticeable within a single lab. The need to merge existing data with new information in an organized manner that is publicly available to the research community is now more necessary than ever. Description In order to offer a homogenous way of storing and handling gene expression patterns from a variety of organisms, we have developed the first web-based comparative gene expression database for invertebrates that allows species-specific as well as cross-species gene expression comparisons. The database can be queried by gene name, developmental stage and/or expression domains. Conclusions This database provides a unique tool for the Evo-Devo research community that allows the retrieval, analysis and comparison of gene expression patterns within or among species. In addition, this database enables a quick identification of putative syn-expression groups that can be used to initiate, among other things, gene regulatory network (GRN projects.

  19. Spatial-temporal event detection in climate parameter imagery.

    Energy Technology Data Exchange (ETDEWEB)

    McKenna, Sean Andrew; Gutierrez, Karen A.

    2011-10-01

    Previously developed techniques that comprise statistical parametric mapping, with applications focused on human brain imaging, are examined and tested here for new applications in anomaly detection within remotely-sensed imagery. Two approaches to analysis are developed: online, regression-based anomaly detection and conditional differences. These approaches are applied to two example spatial-temporal data sets: data simulated with a Gaussian field deformation approach and weekly NDVI images derived from global satellite coverage. Results indicate that anomalies can be identified in spatial temporal data with the regression-based approach. Additionally, la Nina and el Nino climatic conditions are used as different stimuli applied to the earth and this comparison shows that el Nino conditions lead to significant decreases in NDVI in both the Amazon Basin and in Southern India.

  20. On the Spatial and Temporal Sampling Errors of Remotely Sensed Precipitation Products

    Directory of Open Access Journals (Sweden)

    Ali Behrangi

    2017-11-01

    Full Text Available Observation with coarse spatial and temporal sampling can cause large errors in quantification of the amount, intensity, and duration of precipitation events. In this study, the errors resulting from temporal and spatial sampling of precipitation events were quantified and examined using the latest version (V4 of the Global Precipitation Measurement (GPM mission integrated multi-satellite retrievals for GPM (IMERG, which is available since spring of 2014. Relative mean square error was calculated at 0.1° × 0.1° every 0.5 h between the degraded (temporally and spatially and original IMERG products. The temporal and spatial degradation was performed by producing three-hour (T3, six-hour (T6, 0.5° × 0.5° (S5, and 1.0° × 1.0° (S10 maps. The results show generally larger errors over land than ocean, especially over mountainous regions. The relative error of T6 is almost 20% larger than T3 over tropical land, but is smaller in higher latitudes. Over land relative error of T6 is larger than S5 across all latitudes, while T6 has larger relative error than S10 poleward of 20°S–20°N. Similarly, the relative error of T3 exceeds S5 poleward of 20°S–20°N, but does not exceed S10, except in very high latitudes. Similar results are also seen over ocean, but the error ratios are generally less sensitive to seasonal changes. The results also show that the spatial and temporal relative errors are not highly correlated. Overall, lower correlations between the spatial and temporal relative errors are observed over ocean than over land. Quantification of such spatiotemporal effects provides additional insights into evaluation studies, especially when different products are cross-compared at a range of spatiotemporal scales.

  1. The RNA-Seq based high resolution gene expression atlas of chickpea (Cicer arietinum L.) reveals dynamic spatio-temporal changes associated with growth and development.

    Science.gov (United States)

    Kudapa, Himabindu; Garg, Vanika; Chitikineni, Annapurna; Varshney, Rajeev K

    2018-04-10

    Chickpea is one of the world's largest cultivated food legume and is an excellent source of high-quality protein to the human diet. Plant growth and development are controlled by programmed expression of a suite of genes at the given time, stage and tissue. Understanding how the underlying genome sequence translates into specific plant phenotypes at key developmental stages, information on gene expression patterns is crucial. Here we present a comprehensive Cicer arietinum Gene Expression Atlas (CaGEA) across the plant developmental stages and organs covering the entire life cycle of chickpea. One of the widely used drought tolerant cultivar, ICC 4958 has been used to generate RNA-Seq data from 27 samples at five major developmental stages of the plant. A total of 816 million raw reads were generated and of these, 794 million filtered reads after QC were subjected to downstream analysis. A total of 15,947 unique number of differentially expressed genes across different pairwise tissue combinations were identified. Significant differences in gene expression patterns contributing in the process of flowering, nodulation, seed and root development were inferred in this study. Furthermore, differentially expressed candidate genes from "QTL-hotspot" region associated with drought stress response in chickpea were validated. This article is protected by copyright. All rights reserved.

  2. Spatial Temporal Modelling of Particulate Matter for Health Effects Studies

    Science.gov (United States)

    Hamm, N. A. S.

    2016-10-01

    Epidemiological studies of the health effects of air pollution require estimation of individual exposure. It is not possible to obtain measurements at all relevant locations so it is necessary to predict at these space-time locations, either on the basis of dispersion from emission sources or by interpolating observations. This study used data obtained from a low-cost sensor network of 32 air quality monitoring stations in the Dutch city of Eindhoven, which make up the ILM (innovative air (quality) measurement system). These stations currently provide PM10 and PM2.5 (particulate matter less than 10 and 2.5 m in diameter), aggregated to hourly means. The data provide an unprecedented level of spatial and temporal detail for a city of this size. Despite these benefits the time series of measurements is characterized by missing values and noisy values. In this paper a space-time analysis is presented that is based on a dynamic model for the temporal component and a Gaussian process geostatistical for the spatial component. Spatial-temporal variability was dominated by the temporal component, although the spatial variability was also substantial. The model delivered accurate predictions for both isolated missing values and 24-hour periods of missing values (RMSE = 1.4 μg m-3 and 1.8 μg m-3 respectively). Outliers could be detected by comparison to the 95% prediction interval. The model shows promise for predicting missing values, outlier detection and for mapping to support health impact studies.

  3. Unstable Expression of Commonly Used Reference Genes in Rat Pancreatic Islets Early after Isolation Affects Results of Gene Expression Studies.

    Directory of Open Access Journals (Sweden)

    Lucie Kosinová

    Full Text Available The use of RT-qPCR provides a powerful tool for gene expression studies; however, the proper interpretation of the obtained data is crucially dependent on accurate normalization based on stable reference genes. Recently, strong evidence has been shown indicating that the expression of many commonly used reference genes may vary significantly due to diverse experimental conditions. The isolation of pancreatic islets is a complicated procedure which creates severe mechanical and metabolic stress leading possibly to cellular damage and alteration of gene expression. Despite of this, freshly isolated islets frequently serve as a control in various gene expression and intervention studies. The aim of our study was to determine expression of 16 candidate reference genes and one gene of interest (F3 in isolated rat pancreatic islets during short-term cultivation in order to find a suitable endogenous control for gene expression studies. We compared the expression stability of the most commonly used reference genes and evaluated the reliability of relative and absolute quantification using RT-qPCR during 0-120 hrs after isolation. In freshly isolated islets, the expression of all tested genes was markedly depressed and it increased several times throughout the first 48 hrs of cultivation. We observed significant variability among samples at 0 and 24 hrs but substantial stabilization from 48 hrs onwards. During the first 48 hrs, relative quantification failed to reflect the real changes in respective mRNA concentrations while in the interval 48-120 hrs, the relative expression generally paralleled the results determined by absolute quantification. Thus, our data call into question the suitability of relative quantification for gene expression analysis in pancreatic islets during the first 48 hrs of cultivation, as the results may be significantly affected by unstable expression of reference genes. However, this method could provide reliable information

  4. Human Plague Risk: Spatial-Temporal Models

    Science.gov (United States)

    Pinzon, Jorge E.

    2010-01-01

    This chpater reviews the use of spatial-temporal models in identifying potential risks of plague outbreaks into the human population. Using earth observations by satellites remote sensing there has been a systematic analysis and mapping of the close coupling between the vectors of the disease and climate variability. The overall result is that incidence of plague is correlated to positive El Nino/Southem Oscillation (ENSO).

  5. Temporal and tissue specific regulation of RP-associated splicing factor genes PRPF3, PRPF31 and PRPC8--implications in the pathogenesis of RP.

    Directory of Open Access Journals (Sweden)

    Huibi Cao

    2011-01-01

    Full Text Available Genetic mutations in several ubiquitously expressed RNA splicing genes such as PRPF3, PRP31 and PRPC8, have been found to cause retina-specific diseases in humans. To understand this intriguing phenomenon, most studies have been focused on testing two major hypotheses. One hypothesis assumes that these mutations interrupt retina-specific interactions that are important for RNA splicing, implying that there are specific components in the retina interacting with these splicing factors. The second hypothesis suggests that these mutations have only a mild effect on the protein function and thus affect only the metabolically highly active cells such as retinal photoreceptors.We examined the second hypothesis using the PRPF3 gene as an example. We analyzed the spatial and temporal expression of the PRPF3 gene in mice and found that it is highly expressed in retinal cells relative to other tissues and its expression is developmentally regulated. In addition, we also found that PRP31 and PRPC8 as well as snRNAs are highly expressed in retinal cells.Our data suggest that the retina requires a relatively high level of RNA splicing activity for optimal tissue-specific physiological function. Because the RP18 mutation has neither a debilitating nor acute effect on protein function, we suggest that retinal degeneration is the accumulative effect of decades of suboptimal RNA splicing due to the mildly impaired protein.

  6. Transcriptome database resource and gene expression atlas for the rose

    Science.gov (United States)

    2012-01-01

    Background For centuries roses have been selected based on a number of traits. Little information exists on the genetic and molecular basis that contributes to these traits, mainly because information on expressed genes for this economically important ornamental plant is scarce. Results Here, we used a combination of Illumina and 454 sequencing technologies to generate information on Rosa sp. transcripts using RNA from various tissues and in response to biotic and abiotic stresses. A total of 80714 transcript clusters were identified and 76611 peptides have been predicted among which 20997 have been clustered into 13900 protein families. BLASTp hits in closely related Rosaceae species revealed that about half of the predicted peptides in the strawberry and peach genomes have orthologs in Rosa dataset. Digital expression was obtained using RNA samples from organs at different development stages and under different stress conditions. qPCR validated the digital expression data for a selection of 23 genes with high or low expression levels. Comparative gene expression analyses between the different tissues and organs allowed the identification of clusters that are highly enriched in given tissues or under particular conditions, demonstrating the usefulness of the digital gene expression analysis. A web interface ROSAseq was created that allows data interrogation by BLAST, subsequent analysis of DNA clusters and access to thorough transcript annotation including best BLAST matches on Fragaria vesca, Prunus persica and Arabidopsis. The rose peptides dataset was used to create the ROSAcyc resource pathway database that allows access to the putative genes and enzymatic pathways. Conclusions The study provides useful information on Rosa expressed genes, with thorough annotation and an overview of expression patterns for transcripts with good accuracy. PMID:23164410

  7. Gene expression profile in temporal lobe epilepsy

    NARCIS (Netherlands)

    Aronica, Eleonora; Gorter, Jan A.

    2007-01-01

    Epilepsy is one of the most common neurological disorders. Temporal lobe epilepsy (TLE) represents the most frequent epilepsy syndrome in adult patients with resistance to pharmacological treatment. In TLE, the origin of seizure activity typically involves the hippocampal formation, which displays

  8. Gene expression profile in temporal lobe epilepsy.

    NARCIS (Netherlands)

    Aronica, E.M.A.; Gorter, J.A.

    2007-01-01

    Epilepsy is one of the most common neurological disorders. Temporal lobe epilepsy (TLE) represents the most frequent epilepsy syndrome in adult patients with resistance to pharmacological treatment. In TLE, the origin of seizure activity typically involves the hippocampal formation, which displays

  9. The properties of genome conformation and spatial gene interaction and regulation networks of normal and malignant human cell types.

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    Full Text Available The spatial conformation of a genome plays an important role in the long-range regulation of genome-wide gene expression and methylation, but has not been extensively studied due to lack of genome conformation data. The recently developed chromosome conformation capturing techniques such as the Hi-C method empowered by next generation sequencing can generate unbiased, large-scale, high-resolution chromosomal interaction (contact data, providing an unprecedented opportunity to investigate the spatial structure of a genome and its applications in gene regulation, genomics, epigenetics, and cell biology. In this work, we conducted a comprehensive, large-scale computational analysis of this new stream of genome conformation data generated for three different human leukemia cells or cell lines by the Hi-C technique. We developed and applied a set of bioinformatics methods to reliably generate spatial chromosomal contacts from high-throughput sequencing data and to effectively use them to study the properties of the genome structures in one-dimension (1D and two-dimension (2D. Our analysis demonstrates that Hi-C data can be effectively applied to study tissue-specific genome conformation, chromosome-chromosome interaction, chromosomal translocations, and spatial gene-gene interaction and regulation in a three-dimensional genome of primary tumor cells. Particularly, for the first time, we constructed genome-scale spatial gene-gene interaction network, transcription factor binding site (TFBS - TFBS interaction network, and TFBS-gene interaction network from chromosomal contact information. Remarkably, all these networks possess the properties of scale-free modular networks.

  10. Genome-wide Expression Analysis and Metabolite Profiling Elucidate Transcriptional Regulation of Flavonoid Biosynthesis and Modulation under Abiotic Stresses in Banana.

    Science.gov (United States)

    Pandey, Ashutosh; Alok, Anshu; Lakhwani, Deepika; Singh, Jagdeep; Asif, Mehar H; Trivedi, Prabodh K

    2016-08-19

    Flavonoid biosynthesis is largely regulated at the transcriptional level due to the modulated expression of genes related to the phenylpropanoid pathway in plants. Although accumulation of different flavonoids has been reported in banana, a staple fruit crop, no detailed information is available on regulation of the biosynthesis in this important plant. We carried out genome-wide analysis of banana (Musa acuminata, AAA genome) and identified 28 genes belonging to 9 gene families associated with flavonoid biosynthesis. Expression analysis suggested spatial and temporal regulation of the identified genes in different tissues of banana. Analysis revealed enhanced expression of genes related to flavonol and proanthocyanidin (PA) biosynthesis in peel and pulp at the early developmental stages of fruit. Genes involved in anthocyanin biosynthesis were highly expressed during banana fruit ripening. In general, higher accumulation of metabolites was observed in the peel as compared to pulp tissue. A correlation between expression of genes and metabolite content was observed at the early stage of fruit development. Furthermore, this study also suggests regulation of flavonoid biosynthesis, at transcriptional level, under light and dark exposures as well as methyl jasmonate (MJ) treatment in banana.

  11. Generating spatial precipitation ensembles: impact of temporal correlation structure

    Directory of Open Access Journals (Sweden)

    O. Rakovec

    2012-09-01

    Full Text Available Sound spatially distributed rainfall fields including a proper spatial and temporal error structure are of key interest for hydrologists to force hydrological models and to identify uncertainties in the simulated and forecasted catchment response. The current paper presents a temporally coherent error identification method based on time-dependent multivariate spatial conditional simulations, which are conditioned on preceding simulations. A sensitivity analysis and real-world experiment are carried out within the hilly region of the Belgian Ardennes. Precipitation fields are simulated for pixels of 10 km × 10 km resolution. Uncertainty analyses in the simulated fields focus on (1 the number of previous simulation hours on which the new simulation is conditioned, (2 the advection speed of the rainfall event, (3 the size of the catchment considered, and (4 the rain gauge density within the catchment. The results for a sensitivity analysis show for typical advection speeds >20 km h−1, no uncertainty is added in terms of across ensemble spread when conditioned on more than one or two previous hourly simulations. However, for the real-world experiment, additional uncertainty can still be added when conditioning on a larger number of previous simulations. This is because for actual precipitation fields, the dynamics exhibit a larger spatial and temporal variability. Moreover, by thinning the observation network with 50%, the added uncertainty increases only slightly and the cross-validation shows that the simulations at the unobserved locations are unbiased. Finally, the first-order autocorrelation coefficients show clear temporal coherence in the time series of the areal precipitation using the time-dependent multivariate conditional simulations, which was not the case using the time-independent univariate conditional simulations. The presented work can be easily implemented within a hydrological calibration and data assimilation

  12. Temporal acceleration of spatially distributed kinetic Monte Carlo simulations

    International Nuclear Information System (INIS)

    Chatterjee, Abhijit; Vlachos, Dionisios G.

    2006-01-01

    The computational intensity of kinetic Monte Carlo (KMC) simulation is a major impediment in simulating large length and time scales. In recent work, an approximate method for KMC simulation of spatially uniform systems, termed the binomial τ-leap method, was introduced [A. Chatterjee, D.G. Vlachos, M.A. Katsoulakis, Binomial distribution based τ-leap accelerated stochastic simulation, J. Chem. Phys. 122 (2005) 024112], where molecular bundles instead of individual processes are executed over coarse-grained time increments. This temporal coarse-graining can lead to significant computational savings but its generalization to spatially lattice KMC simulation has not been realized yet. Here we extend the binomial τ-leap method to lattice KMC simulations by combining it with spatially adaptive coarse-graining. Absolute stability and computational speed-up analyses for spatial systems along with simulations provide insights into the conditions where accuracy and substantial acceleration of the new spatio-temporal coarse-graining method are ensured. Model systems demonstrate that the r-time increment criterion of Chatterjee et al. obeys the absolute stability limit for values of r up to near 1

  13. Analysis of multiplex gene expression maps obtained by voxelation

    OpenAIRE

    An, L; Xie, H; Chin, MH; Obradovic, Z; Smith, DJ; Megalooikonomou, V

    2009-01-01

    Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we presen...

  14. A compendium of canine normal tissue gene expression.

    Directory of Open Access Journals (Sweden)

    Joseph Briggs

    Full Text Available BACKGROUND: Our understanding of disease is increasingly informed by changes in gene expression between normal and abnormal tissues. The release of the canine genome sequence in 2005 provided an opportunity to better understand human health and disease using the dog as clinically relevant model. Accordingly, we now present the first genome-wide, canine normal tissue gene expression compendium with corresponding human cross-species analysis. METHODOLOGY/PRINCIPAL FINDINGS: The Affymetrix platform was utilized to catalogue gene expression signatures of 10 normal canine tissues including: liver, kidney, heart, lung, cerebrum, lymph node, spleen, jejunum, pancreas and skeletal muscle. The quality of the database was assessed in several ways. Organ defining gene sets were identified for each tissue and functional enrichment analysis revealed themes consistent with known physio-anatomic functions for each organ. In addition, a comparison of orthologous gene expression between matched canine and human normal tissues uncovered remarkable similarity. To demonstrate the utility of this dataset, novel canine gene annotations were established based on comparative analysis of dog and human tissue selective gene expression and manual curation of canine probeset mapping. Public access, using infrastructure identical to that currently in use for human normal tissues, has been established and allows for additional comparisons across species. CONCLUSIONS/SIGNIFICANCE: These data advance our understanding of the canine genome through a comprehensive analysis of gene expression in a diverse set of tissues, contributing to improved functional annotation that has been lacking. Importantly, it will be used to inform future studies of disease in the dog as a model for human translational research and provides a novel resource to the community at large.

  15. SPATIAL-TEMPORAL ANALYSIS OF OPENSTREETMAP DATA AFTER NATURAL DISASTERS: A CASE STUDY OF HAITI UNDER HURRICANE MATTHEW

    Directory of Open Access Journals (Sweden)

    J. Xu

    2017-09-01

    Full Text Available Volunteered geographic information (VGI has been widely adopted as an alternative for authoritative geographic information in disaster management considering its up-to-date data. OpenStreetMap, in particular, is now aiming at crisis mapping for humanitarian purpose. This paper illustrated that natural disaster played an essential role in updating OpenStreetMap data after Haiti was hit by Hurricane Matthew in October, 2016. Spatial-temporal analysis of updated OSM data was conducted in this paper. Correlation of features was also studied to figure out whether updates of data were coincidence or the results of the hurricane. Spatial pattern matched the damaged areas and temporal changes fitted the time when disaster occurred. High level of correlation values of features were recorded when hurricane occurred, suggesting that updates in data were led by the hurricane.

  16. Temporal scaling in information propagation

    Science.gov (United States)

    Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi

    2014-06-01

    For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.

  17. The progress of tumor gene-radiotherapy induced by Egr-1 promoter

    International Nuclear Information System (INIS)

    Guo Rui; Li Biao

    2010-01-01

    The promoter of early growth response gene-1 (Egr-1) is a cis-acting element of Egr-1, and its activity is regulated by inducers such as ionizing radiation, free radical. In designated gene-radiotherapy system, radiation combined with therapeutic gene (such as tumor necrosis factor-α gene, suicide gene) can spatially and temporally regulate therapeutic gene expression in the irradiated field, produced a marked effect, while little systemic toxicities were observed. The combination of radiotherapy and gene therapy is promising in tumor therapy. (authors)

  18. Multiscale Embedded Gene Co-expression Network Analysis.

    Directory of Open Access Journals (Sweden)

    Won-Min Song

    2015-11-01

    Full Text Available Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3, the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA by: i introducing quality control of co-expression similarities, ii parallelizing embedded network construction, and iii developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs. We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA. MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.

  19. Multiscale Embedded Gene Co-expression Network Analysis.

    Science.gov (United States)

    Song, Won-Min; Zhang, Bin

    2015-11-01

    Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.

  20. Spatial and temporal coherence of paleomonsoon records from ...

    Indian Academy of Sciences (India)

    assess monsoon variability, both spatial and temporal, during the past ~30ka. While 1000 ... speleothems from central India have provided proxy rainfall data for the last 10,000 years, albeit ... vations lead us to an important question whether.

  1. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data

    OpenAIRE

    Ezer, Daphne; Moignard, Victoria; G?ttgens, Berthold; Adryan, Boris

    2016-01-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete ...

  2. Dynamic gene expression in fish muscle during recovery growth induced by a fasting-refeeding schedule

    Directory of Open Access Journals (Sweden)

    Esquerré Diane

    2007-11-01

    Full Text Available Abstract Background Recovery growth is a phase of rapid growth that is triggered by adequate refeeding of animals following a period of weight loss caused by starvation. In this study, to obtain more information on the system-wide integration of recovery growth in muscle, we undertook a time-course analysis of transcript expression in trout subjected to a food deprivation-refeeding sequence. For this purpose complex targets produced from muscle of trout fasted for one month and from muscle of trout fasted for one month and then refed for 4, 7, 11 and 36 days were hybridized to cDNA microarrays containing 9023 clones. Results Significance analysis of microarrays (SAM and temporal expression profiling led to the segregation of differentially expressed genes into four major clusters. One cluster comprising 1020 genes with high expression in muscle from fasted animals included a large set of genes involved in protein catabolism. A second cluster that included approximately 550 genes with transient induction 4 to 11 days post-refeeding was dominated by genes involved in transcription, ribosomal biogenesis, translation, chaperone activity, mitochondrial production of ATP and cell division. A third cluster that contained 480 genes that were up-regulated 7 to 36 days post-refeeding was enriched with genes involved in reticulum and Golgi dynamics and with genes indicative of myofiber and muscle remodelling such as genes encoding sarcomeric proteins and matrix compounds. Finally, a fourth cluster of 200 genes overexpressed only in 36-day refed trout muscle contained genes with function in carbohydrate metabolism and lipid biosynthesis. Remarkably, among the genes induced were several transcriptional regulators which might be important for the gene-specific transcriptional adaptations that underlie muscle recovery. Conclusion Our study is the first demonstration of a coordinated expression of functionally related genes during muscle recovery growth

  3. Selective spatial attention modulates bottom-up informational masking of speech.

    Science.gov (United States)

    Carlile, Simon; Corkhill, Caitlin

    2015-03-02

    To hear out a conversation against other talkers listeners overcome energetic and informational masking. Largely attributed to top-down processes, information masking has also been demonstrated using unintelligible speech and amplitude-modulated maskers suggesting bottom-up processes. We examined the role of speech-like amplitude modulations in information masking using a spatial masking release paradigm. Separating a target talker from two masker talkers produced a 20 dB improvement in speech reception threshold; 40% of which was attributed to a release from informational masking. When across frequency temporal modulations in the masker talkers are decorrelated the speech is unintelligible, although the within frequency modulation characteristics remains identical. Used as a masker as above, the information masking accounted for 37% of the spatial unmasking seen with this masker. This unintelligible and highly differentiable masker is unlikely to involve top-down processes. These data provides strong evidence of bottom-up masking involving speech-like, within-frequency modulations and that this, presumably low level process, can be modulated by selective spatial attention.

  4. Transport of Aquatic Contaminant and Assessment of Radioecological Exposure with Spatial and Temporal Effects

    Science.gov (United States)

    Feng, Ying

    1995-01-01

    A comprehensive study of the radioecological exposure assessment for a contaminated aquatic ecosystem has been performed in this dissertation. The primary objectives of this research were to advance the understanding of radiation exposure in nature and to increase current capabilities for estimating aquatic radiation exposure with the consideration of spatial and temporal effect in nature. This was accomplished through the development of a two-dimensional aquatic exposure assessment framework and by applying the framework to the contaminated Chernobyl cooling lake (pond). This framework integrated spatial and temporal heterogeneity effects of contaminant concentration, abundance and distribution of ecosystem populations, spatial- and temporal-dependent (or density-dependent) radionuclide ingestion, and alternative food web structures. The exposure model was built on the population level to allow for the integration of density dependent population regulation into the exposure assessment. Plankton population dynamics have been integrated into the hydrodynamic-transport model to determine plankton biomass density changes and distributions. The distribution of contaminant in water was also calculated using a hydrodynamic-transport model. The significance of adding spatial and temporal effects, spatial and temporal related ecological functions, and hydrodynamics in the exposure assessment was illustrated through a series of case studies. The results suggested that the spatial and temporal heterogeneity effects of radioactive environments were substantial. Among the ecological functions considered, the food web structure was the most important contributor to the variations of fish exposure. The results obtained using a multiple prey food web structure differed by a factor of 20 from the equilibrium concentration, and by a factor of 2.5 from the concentration obtained using a single-prey food web. Impacts of changes in abundance and distribution of biomass on contaminant

  5. Identification of genes preferentially expressed during

    African Journals Online (AJOL)

    雨林木风

    2012-08-16

    Aug 16, 2012 ... The suppression subtractive hybridization (SSH) method conducted to generate ... which showed the lack of genomic information currently available for lily. ..... characterization of genes expressed during somatic embryo.

  6. Characteristics of Spatial Structural Patterns and Temporal Variability of Annual Precipitation in Ningxia

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the characteristics of the spatial structural patterns and temporal variability of annual precipitation in Ningxia.[Method] Using rotated empirical orthogonal function,the precipitation concentration index,wavelet analysis and Mann-Kendall rank statistic method,the characteristics of precipitation on the spatial-temporal variability and trend were analyzed by the monthly precipitation series in Ningxia during 1951-2008.[Result] In Ningxia,the spatial structural patterns of a...

  7. Spatial and temporal variability of chorus and hiss

    Science.gov (United States)

    Santolik, O.; Hospodarsky, G. B.; Kurth, W. S.; Kletzing, C.

    2017-12-01

    Whistler-mode electromagnetic waves, especially natural emissions of chorus and hiss, have been shown to influence the dynamics of the Van Allen radiation belts via quasi-linear or nonlinear wave particle interactions, transferring energy between different electron populations. Average intensities of chorus and hiss emissions have been found to increase with increasing levels of geomagnetic activity but their stochastic variations in individual spacecraft measurements are usually larger these large-scale temporal effects. To separate temporal and spatial variations of wave characteristics, measurements need to be simultaneously carried out in different locations by identical and/or well calibrated instrumentation. We use two-point survey measurements of the Waves instruments of the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard two Van Allen Probes to asses spatial and temporal variability of chorus and hiss. We take advantage of a systematic analysis of this large data set which has been collected during 2012-2017 over a range of separation vectors of the two spacecraft. We specifically address the question whether similar variations occur at different places at the same time. Our results indicate that power variations are dominated by separations in MLT at scales larger than 0.5h.

  8. Quantifying spatial and temporal trends in beach-dune volumetric changes using spatial statistics

    Science.gov (United States)

    Eamer, Jordan B. R.; Walker, Ian J.

    2013-06-01

    Spatial statistics are generally underutilized in coastal geomorphology, despite offering great potential for identifying and quantifying spatial-temporal trends in landscape morphodynamics. In particular, local Moran's Ii provides a statistical framework for detecting clusters of significant change in an attribute (e.g., surface erosion or deposition) and quantifying how this changes over space and time. This study analyzes and interprets spatial-temporal patterns in sediment volume changes in a beach-foredune-transgressive dune complex following removal of invasive marram grass (Ammophila spp.). Results are derived by detecting significant changes in post-removal repeat DEMs derived from topographic surveys and airborne LiDAR. The study site was separated into discrete, linked geomorphic units (beach, foredune, transgressive dune complex) to facilitate sub-landscape scale analysis of volumetric change and sediment budget responses. Difference surfaces derived from a pixel-subtraction algorithm between interval DEMs and the LiDAR baseline DEM were filtered using the local Moran's Ii method and two different spatial weights (1.5 and 5 m) to detect statistically significant change. Moran's Ii results were compared with those derived from a more spatially uniform statistical method that uses a simpler student's t distribution threshold for change detection. Morphodynamic patterns and volumetric estimates were similar between the uniform geostatistical method and Moran's Ii at a spatial weight of 5 m while the smaller spatial weight (1.5 m) consistently indicated volumetric changes of less magnitude. The larger 5 m spatial weight was most representative of broader site morphodynamics and spatial patterns while the smaller spatial weight provided volumetric changes consistent with field observations. All methods showed foredune deflation immediately following removal with increased sediment volumes into the spring via deposition at the crest and on lobes in the lee

  9. Spatial-Temporal Synchrophasor Data Characterization and Analytics in Smart Grid Fault Detection, Identification, and Impact Causal Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaiguang; Dai, Xiaoxiao; Gao, David Wenzhong; Zhang, Jun Jason; Zhang, Yingchen; Muljadi, Eduard

    2016-09-01

    An approach of big data characterization for smart grids (SGs) and its applications in fault detection, identification, and causal impact analysis is proposed in this paper, which aims to provide substantial data volume reduction while keeping comprehensive information from synchrophasor measurements in spatial and temporal domains. Especially, based on secondary voltage control (SVC) and local SG observation algorithm, a two-layer dynamic optimal synchrophasor measurement devices selection algorithm (OSMDSA) is proposed to determine SVC zones, their corresponding pilot buses, and the optimal synchrophasor measurement devices. Combining the two-layer dynamic OSMDSA and matching pursuit decomposition, the synchrophasor data is completely characterized in the spatial-temporal domain. To demonstrate the effectiveness of the proposed characterization approach, SG situational awareness is investigated based on hidden Markov model based fault detection and identification using the spatial-temporal characteristics generated from the reduced data. To identify the major impact buses, the weighted Granger causality for SGs is proposed to investigate the causal relationship of buses during system disturbance. The IEEE 39-bus system and IEEE 118-bus system are employed to validate and evaluate the proposed approach.

  10. Temporal Modulation Detection Depends on Sharpness of Spatial Tuning.

    Science.gov (United States)

    Zhou, Ning; Cadmus, Matthew; Dong, Lixue; Mathews, Juliana

    2018-04-25

    Prior research has shown that in electrical hearing, cochlear implant (CI) users' speech recognition performance is related in part to their ability to detect temporal modulation (i.e., modulation sensitivity). Previous studies have also shown better speech recognition when selectively stimulating sites with good modulation sensitivity rather than all stimulation sites. Site selection based on channel interaction measures, such as those using imaging or psychophysical estimates of spread of neural excitation, has also been shown to improve speech recognition. This led to the question of whether temporal modulation sensitivity and spatial selectivity of neural excitation are two related variables. In the present study, CI users' modulation sensitivity was compared for sites with relatively broad or narrow neural excitation patterns. This was achieved by measuring temporal modulation detection thresholds (MDTs) at stimulation sites that were significantly different in their sharpness of the psychophysical spatial tuning curves (PTCs) and measuring MDTs at the same sites in monopolar (MP) and bipolar (BP) stimulation modes. Nine postlingually deafened subjects implanted with Cochlear Nucleus® device took part in the study. Results showed a significant correlation between the sharpness of PTCs and MDTs, indicating that modulation detection benefits from a more spatially restricted neural activation pattern. There was a significant interaction between stimulation site and mode. That is, using BP stimulation only improved MDTs at stimulation sites with broad PTCs but had no effect or sometimes a detrimental effect on MDTs at stimulation sites with sharp PTCs. This interaction could suggest that a criterion number of nerve fibers is needed to achieve optimal temporal resolution, and, to achieve optimized speech recognition outcomes, individualized selection of site-specific current focusing strategies may be necessary. These results also suggest that the removal of

  11. Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis.

    Science.gov (United States)

    DePianto, Daryle J; Chandriani, Sanjay; Abbas, Alexander R; Jia, Guiquan; N'Diaye, Elsa N; Caplazi, Patrick; Kauder, Steven E; Biswas, Sabyasachi; Karnik, Satyajit K; Ha, Connie; Modrusan, Zora; Matthay, Michael A; Kukreja, Jasleen; Collard, Harold R; Egen, Jackson G; Wolters, Paul J; Arron, Joseph R

    2015-01-01

    There is microscopic spatial and temporal heterogeneity of pathological changes in idiopathic pulmonary fibrosis (IPF) lung tissue, which may relate to heterogeneity in pathophysiological mediators of disease and clinical progression. We assessed relationships between gene expression patterns, pathological features, and systemic biomarkers to identify biomarkers that reflect the aggregate disease burden in patients with IPF. Gene expression microarrays (N=40 IPF; 8 controls) and immunohistochemical analyses (N=22 IPF; 8 controls) of lung biopsies. Clinical characterisation and blood biomarker levels of MMP3 and CXCL13 in a separate cohort of patients with IPF (N=80). 2940 genes were significantly differentially expressed between IPF and control samples (|fold change| >1.5, p<0.05). Two clusters of co-regulated genes related to bronchiolar epithelium or lymphoid aggregates exhibited substantial heterogeneity within the IPF population. Gene expression in bronchiolar and lymphoid clusters corresponded to the extent of bronchiolisation and lymphoid aggregates determined by immunohistochemistry in adjacent tissue sections. Elevated serum levels of MMP3, encoded in the bronchiolar cluster, and CXCL13, encoded in the lymphoid cluster, corresponded to disease severity and shortened survival time (p<10(-7) for MMP3 and p<10(-5) for CXCL13; Cox proportional hazards model). Microscopic pathological heterogeneity in IPF lung tissue corresponds to specific gene expression patterns related to bronchiolisation and lymphoid aggregates. MMP3 and CXCL13 are systemic biomarkers that reflect the aggregate burden of these pathological features across total lung tissue. These biomarkers may have clinical utility as prognostic and/or surrogate biomarkers of disease activity in interventional studies in IPF. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Temporal-Spatial Analysis of Traffic Congestion Based on Modified CTM

    Directory of Open Access Journals (Sweden)

    Chenglong Chu

    2015-01-01

    Full Text Available A modified cell transmission model (CTM is proposed to depict the temporal-spatial evolution of traffic congestion on urban freeways. Specifically, drivers’ adaptive behaviors and the corresponding influence on traffic flows are emphasized. Two piecewise linear regression models are proposed to describe the relationship of flow and density (occupancy. Several types of cellular connections are designed to depict urban rapid roads with on/off-ramps and junctions. Based on the data collected on freeway of Queen Elizabeth, Ontario, Canada, we show that the new model provides a relatively higher accuracy of temporal-spatial evolution of traffic congestions.

  13. Spatial and temporal epidemiological analysis in the Big Data era.

    Science.gov (United States)

    Pfeiffer, Dirk U; Stevens, Kim B

    2015-11-01

    Concurrent with global economic development in the last 50 years, the opportunities for the spread of existing diseases and emergence of new infectious pathogens, have increased substantially. The activities associated with the enormously intensified global connectivity have resulted in large amounts of data being generated, which in turn provides opportunities for generating knowledge that will allow more effective management of animal and human health risks. This so-called Big Data has, more recently, been accompanied by the Internet of Things which highlights the increasing presence of a wide range of sensors, interconnected via the Internet. Analysis of this data needs to exploit its complexity, accommodate variation in data quality and should take advantage of its spatial and temporal dimensions, where available. Apart from the development of hardware technologies and networking/communication infrastructure, it is necessary to develop appropriate data management tools that make this data accessible for analysis. This includes relational databases, geographical information systems and most recently, cloud-based data storage such as Hadoop distributed file systems. While the development in analytical methodologies has not quite caught up with the data deluge, important advances have been made in a number of areas, including spatial and temporal data analysis where the spectrum of analytical methods ranges from visualisation and exploratory analysis, to modelling. While there used to be a primary focus on statistical science in terms of methodological development for data analysis, the newly emerged discipline of data science is a reflection of the challenges presented by the need to integrate diverse data sources and exploit them using novel data- and knowledge-driven modelling methods while simultaneously recognising the value of quantitative as well as qualitative analytical approaches. Machine learning regression methods, which are more robust and can handle

  14. Widespread ectopic expression of olfactory receptor genes

    Directory of Open Access Journals (Sweden)

    Yanai Itai

    2006-05-01

    Full Text Available Abstract Background Olfactory receptors (ORs are the largest gene family in the human genome. Although they are expected to be expressed specifically in olfactory tissues, some ectopic expression has been reported, with special emphasis on sperm and testis. The present study systematically explores the expression patterns of OR genes in a large number of tissues and assesses the potential functional implication of such ectopic expression. Results We analyzed the expression of hundreds of human and mouse OR transcripts, via EST and microarray data, in several dozens of human and mouse tissues. Different tissues had specific, relatively small OR gene subsets which had particularly high expression levels. In testis, average expression was not particularly high, and very few highly expressed genes were found, none corresponding to ORs previously implicated in sperm chemotaxis. Higher expression levels were more common for genes with a non-OR genomic neighbor. Importantly, no correlation in expression levels was detected for human-mouse orthologous pairs. Also, no significant difference in expression levels was seen between intact and pseudogenized ORs, except for the pseudogenes of subfamily 7E which has undergone a human-specific expansion. Conclusion The OR superfamily as a whole, show widespread, locus-dependent and heterogeneous expression, in agreement with a neutral or near neutral evolutionary model for transcription control. These results cannot reject the possibility that small OR subsets might play functional roles in different tissues, however considerable care should be exerted when offering a functional interpretation for ectopic OR expression based only on transcription information.

  15. Statistical approach for selection of biologically informative genes.

    Science.gov (United States)

    Das, Samarendra; Rai, Anil; Mishra, D C; Rai, Shesh N

    2018-05-20

    Selection of informative genes from high dimensional gene expression data has emerged as an important research area in genomics. Many gene selection techniques have been proposed so far are either based on relevancy or redundancy measure. Further, the performance of these techniques has been adjudged through post selection classification accuracy computed through a classifier using the selected genes. This performance metric may be statistically sound but may not be biologically relevant. A statistical approach, i.e. Boot-MRMR, was proposed based on a composite measure of maximum relevance and minimum redundancy, which is both statistically sound and biologically relevant for informative gene selection. For comparative evaluation of the proposed approach, we developed two biological sufficient criteria, i.e. Gene Set Enrichment with QTL (GSEQ) and biological similarity score based on Gene Ontology (GO). Further, a systematic and rigorous evaluation of the proposed technique with 12 existing gene selection techniques was carried out using five gene expression datasets. This evaluation was based on a broad spectrum of statistically sound (e.g. subject classification) and biological relevant (based on QTL and GO) criteria under a multiple criteria decision-making framework. The performance analysis showed that the proposed technique selects informative genes which are more biologically relevant. The proposed technique is also found to be quite competitive with the existing techniques with respect to subject classification and computational time. Our results also showed that under the multiple criteria decision-making setup, the proposed technique is best for informative gene selection over the available alternatives. Based on the proposed approach, an R Package, i.e. BootMRMR has been developed and available at https://cran.r-project.org/web/packages/BootMRMR. This study will provide a practical guide to select statistical techniques for selecting informative genes

  16. Differential transcript abundance and genotypic variation of four putative allergen-encoding gene families in melting peach

    NARCIS (Netherlands)

    Yang, Z.; Ma, Y.; Chen, L.; Xie, R.; Zhang, X.; Zhang, B.; Lu, M.; Wu, S.; Gilissen, L.J.W.J.; Ree, van R.; Gao, Z.

    2011-01-01

    We analysed the temporal and spatial transcript expression of the panel of 18 putative isoallergens from four gene families (Pru p 1–4) in the peach fruit, anther and leaf of two melting cultivars, to gain insight into their expression profiles and to identify the key family members. Genotypic

  17. Model-based deconvolution of cell cycle time-series data reveals gene expression details at high resolution.

    Directory of Open Access Journals (Sweden)

    Dan Siegal-Gaskins

    2009-08-01

    Full Text Available In both prokaryotic and eukaryotic cells, gene expression is regulated across the cell cycle to ensure "just-in-time" assembly of select cellular structures and molecular machines. However, present in all time-series gene expression measurements is variability that arises from both systematic error in the cell synchrony process and variance in the timing of cell division at the level of the single cell. Thus, gene or protein expression data collected from a population of synchronized cells is an inaccurate measure of what occurs in the average single-cell across a cell cycle. Here, we present a general computational method to extract "single-cell"-like information from population-level time-series expression data. This method removes the effects of 1 variance in growth rate and 2 variance in the physiological and developmental state of the cell. Moreover, this method represents an advance in the deconvolution of molecular expression data in its flexibility, minimal assumptions, and the use of a cross-validation analysis to determine the appropriate level of regularization. Applying our deconvolution algorithm to cell cycle gene expression data from the dimorphic bacterium Caulobacter crescentus, we recovered critical features of cell cycle regulation in essential genes, including ctrA and ftsZ, that were obscured in population-based measurements. In doing so, we highlight the problem with using population data alone to decipher cellular regulatory mechanisms and demonstrate how our deconvolution algorithm can be applied to produce a more realistic picture of temporal regulation in a cell.

  18. An Approximation to the Temporal Order in Endogenous Circadian Rhythms of Genes Implicated in Human Adipose Tissue Metabolism

    Science.gov (United States)

    GARAULET, MARTA; ORDOVÁS, JOSÉ M.; GÓMEZ-ABELLÁN, PURIFICACIÓN; MARTÍNEZ, JOSE A.; MADRID, JUAN A.

    2015-01-01

    Although it is well established that human adipose tissue (AT) shows circadian rhythmicity, published studies have been discussed as if tissues or systems showed only one or few circadian rhythms at a time. To provide an overall view of the internal temporal order of circadian rhythms in human AT including genes implicated in metabolic processes such as energy intake and expenditure, insulin resistance, adipocyte differentiation, dyslipidemia, and body fat distribution. Visceral and subcutaneous abdominal AT biopsies (n = 6) were obtained from morbid obese women (BMI ≥ 40 kg/m2). To investigate rhythmic expression pattern, AT explants were cultured during 24-h and gene expression was analyzed at the following times: 08:00, 14:00, 20:00, 02:00 h using quantitative real-time PCR. Clock genes, glucocorticoid metabolism-related genes, leptin, adiponectin and their receptors were studied. Significant differences were found both in achrophases and relative-amplitude among genes (P 30%). When interpreting the phase map of gene expression in both depots, data indicated that circadian rhythmicity of the genes studied followed a predictable physiological pattern, particularly for subcutaneous AT. Interesting are the relationships between adiponectin, leptin, and glucocorticoid metabolism-related genes circadian profiles. Their metabolic significance is discussed. Visceral AT behaved in a different way than subcutaneous for most of the genes studied. For every gene, protein mRNA levels fluctuated during the day in synchrony with its receptors. We have provided an overall view of the internal temporal order of circadian rhythms in human adipose tissue. PMID:21520059

  19. Identification of valid reference genes for the normalization of RT qPCR gene expression data in human brain tissue

    Directory of Open Access Journals (Sweden)

    Ravid Rivka

    2008-05-01

    Full Text Available Abstract Background Studies of gene expression in post mortem human brain can contribute to understanding of the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD, Parkinson's disease (PD and dementia with Lewy bodies (DLB. Quantitative real-time PCR (RT qPCR is often used to analyse gene expression. The validity of results obtained using RT qPCR is reliant on accurate data normalization. Reference genes are generally used to normalize RT qPCR data. Given that expression of some commonly used reference genes is altered in certain conditions, this study aimed to establish which reference genes were stably expressed in post mortem brain tissue from individuals with AD, PD or DLB. Results The present study investigated the expression stability of 8 candidate reference genes, (ubiquitin C [UBC], tyrosine-3-monooxygenase [YWHAZ], RNA polymerase II polypeptide [RP II], hydroxymethylbilane synthase [HMBS], TATA box binding protein [TBP], β-2-microglobulin [B2M], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], and succinate dehydrogenase complex-subunit A, [SDHA] in cerebellum and medial temporal gyrus of 6 AD, 6 PD, 6 DLB subjects, along with 5 matched controls using RT qPCR (TaqMan® Gene Expression Assays. Gene expression stability was analysed using geNorm to rank the candidate genes in order of decreasing stability in each disease group. The optimal number of genes recommended for accurate data normalization in each disease state was determined by pairwise variation analysis. Conclusion This study identified validated sets of mRNAs which would be appropriate for the normalization of RT qPCR data when studying gene expression in brain tissue of AD, PD, DLB and control subjects.

  20. Reference Gene Screening for Analyzing Gene Expression Across Goat Tissue

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2013-12-01

    Full Text Available Real-time quantitative PCR (qRT-PCR is one of the important methods for investigating the changes in mRNA expression levels in cells and tissues. Selection of the proper reference genes is very important when calibrating the results of real-time quantitative PCR. Studies on the selection of reference genes in goat tissues are limited, despite the economic importance of their meat and dairy products. We used real-time quantitative PCR to detect the expression levels of eight reference gene candidates (18S, TBP, HMBS, YWHAZ, ACTB, HPRT1, GAPDH and EEF1A2 in ten tissues types sourced from Boer goats. The optimal reference gene combination was selected according to the results determined by geNorm, NormFinder and Bestkeeper software packages. The analyses showed that tissue is an important variability factor in genes expression stability. When all tissues were considered, 18S, TBP and HMBS is the optimal reference combination for calibrating quantitative PCR analysis of gene expression from goat tissues. Dividing data set by tissues, ACTB was the most stable in stomach, small intestine and ovary, 18S in heart and spleen, HMBS in uterus and lung, TBP in liver, HPRT1 in kidney and GAPDH in muscle. Overall, this study provided valuable information about the goat reference genes that can be used in order to perform a proper normalisation when relative quantification by qRT-PCR studies is undertaken.

  1. Development of temporal and spatial bimanual coordination during childhood

    OpenAIRE

    de Boer, B.J.; Peper, C.E.; Beek, P.J.

    2012-01-01

    Developmental changes in bimanual coordination were examined in four age groups: 6/7, 10/11, 14/15 years, and young adults. Temporal coupling was assessed through the stabilizing contributions of interlimb interactions related to planning, error correction, and reflexes during rhythmic wrist movements, by comparing various unimanual and bimanual tasks involving passive and active movements. Spatial coupling was assessed via bimanual line-circle drawing. With increasing age, temporal stability...

  2. Expression of genes related to the hypothalamic-pituitary-adrenal axis in murine fetal lungs in late gestation

    Directory of Open Access Journals (Sweden)

    Côté Mélissa

    2010-11-01

    Full Text Available Abstract Background Lung maturation is modulated by several factors, including glucocorticoids. Expression of hypothalamic-pituitary-adrenal (HPA axis-related components, with proposed or described local regulatory systems analogous to the HPA axis, was reported in peripheral tissues. Here, HPA axis-related genes were studied in the mouse developing lung during a period overlapping the surge of surfactant production. Methods Expression of genes encoding for corticotropin-releasing hormone (CRH, CRH receptors (CRHR 1 and 2beta, CRH-binding protein, proopiomelanocortin (POMC, melanocortin receptor 2 (MC2R, and glucocorticoid receptor was quantified by real-time PCR and localized by in situ hydridization in fetal lungs at gestational days (GD 15.5, 16.5, and 17.5, and was also quantified in primary mesenchymal- and epithelial cell-enriched cultures. In addition, the capability of CRH and adrenocorticotropic hormone (ACTH to stimulate pulmonary expression of enzymes involved in the adrenal pathway of glucocorticoid synthesis was addressed, as well as the glucocorticoid production by fetal lung explants. Results We report that all the studied genes are expressed in fetal lungs according to different patterns. On GD 15.5, Mc2r showed peaks in expression in samples that have previously presented high mRNA levels for glucocorticoid synthesizing enzymes, including 11beta-hydroxylase (Cyp11b1. Crhr1 mRNA co-localized with Pomc mRNA in cells surrounding the proximal epithelium on GD 15.5 and 16.5. A transition in expression sites toward distal epithelial cells was observed between GD 15.5 and 17.5 for all the studied genes. CRH or ACTH stimulation of genes involved in the adrenal pathway of glucocorticoid synthesis was not observed in lung explants on GD 15.5, whereas CRH significantly increased expression of 21-hydroxylase (Cyp21a1 on GD 17.5. A deoxycorticosterone production by fetal lung explants was observed. Conclusions Temporal and spatial

  3. Spatial and temporal air quality pattern recognition using environmetric techniques: a case study in Malaysia.

    Science.gov (United States)

    Syed Abdul Mutalib, Sharifah Norsukhairin; Juahir, Hafizan; Azid, Azman; Mohd Sharif, Sharifah; Latif, Mohd Talib; Aris, Ahmad Zaharin; Zain, Sharifuddin M; Dominick, Doreena

    2013-09-01

    The objective of this study is to identify spatial and temporal patterns in the air quality at three selected Malaysian air monitoring stations based on an eleven-year database (January 2000-December 2010). Four statistical methods, Discriminant Analysis (DA), Hierarchical Agglomerative Cluster Analysis (HACA), Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs), were selected to analyze the datasets of five air quality parameters, namely: SO2, NO2, O3, CO and particulate matter with a diameter size of below 10 μm (PM10). The three selected air monitoring stations share the characteristic of being located in highly urbanized areas and are surrounded by a number of industries. The DA results show that spatial characterizations allow successful discrimination between the three stations, while HACA shows the temporal pattern from the monthly and yearly factor analysis which correlates with severe haze episodes that have happened in this country at certain periods of time. The PCA results show that the major source of air pollution is mostly due to the combustion of fossil fuel in motor vehicles and industrial activities. The spatial pattern recognition (S-ANN) results show a better prediction performance in discriminating between the regions, with an excellent percentage of correct classification compared to DA. This study presents the necessity and usefulness of environmetric techniques for the interpretation of large datasets aiming to obtain better information about air quality patterns based on spatial and temporal characterizations at the selected air monitoring stations.

  4. Aberrant Behaviours of Reaction Diffusion Self-organisation Models on Growing Domains in the Presence of Gene Expression Time Delays

    KAUST Repository

    Seirin Lee, S.

    2010-03-23

    Turing\\'s pattern formation mechanism exhibits sensitivity to the details of the initial conditions suggesting that, in isolation, it cannot robustly generate pattern within noisy biological environments. Nonetheless, secondary aspects of developmental self-organisation, such as a growing domain, have been shown to ameliorate this aberrant model behaviour. Furthermore, while in-situ hybridisation reveals the presence of gene expression in developmental processes, the influence of such dynamics on Turing\\'s model has received limited attention. Here, we novelly focus on the Gierer-Meinhardt reaction diffusion system considering delays due the time taken for gene expression, while incorporating a number of different domain growth profiles to further explore the influence and interplay of domain growth and gene expression on Turing\\'s mechanism. We find extensive pathological model behaviour, exhibiting one or more of the following: temporal oscillations with no spatial structure, a failure of the Turing instability and an extreme sensitivity to the initial conditions, the growth profile and the duration of gene expression. This deviant behaviour is even more severe than observed in previous studies of Schnakenberg kinetics on exponentially growing domains in the presence of gene expression (Gaffney and Monk in Bull. Math. Biol. 68:99-130, 2006). Our results emphasise that gene expression dynamics induce unrealistic behaviour in Turing\\'s model for multiple choices of kinetics and thus such aberrant modelling predictions are likely to be generic. They also highlight that domain growth can no longer ameliorate the excessive sensitivity of Turing\\'s mechanism in the presence of gene expression time delays. The above, extensive, pathologies suggest that, in the presence of gene expression, Turing\\'s mechanism would generally require a novel and extensive secondary mechanism to control reaction diffusion patterning. © 2010 Society for Mathematical Biology.

  5. Personality and gene expression: Do individual differences exist in the leukocyte transcriptome?

    Science.gov (United States)

    Vedhara, Kavita; Gill, Sana; Eldesouky, Lameese; Campbell, Bruce K; Arevalo, Jesusa M G; Ma, Jeffrey; Cole, Steven W

    2015-02-01

    The temporal and situational stability of personality has led generations of researchers to hypothesize that personality may have enduring effects on health, but the biological mechanisms of such relationships remain poorly understood. In the present study, we utilized a functional genomics approach to examine the relationship between the 5 major dimensions of personality and patterns of gene expression as predicted by 'behavioural immune response' theory. We specifically focussed on two sets of genes previously linked to stress, threat, and adverse socio-environmental conditions: pro-inflammatory genes and genes involved in Type I interferon and antibody responses. An opportunity sample of 121 healthy individuals was recruited (86 females; mean age 24 years). Individuals completed a validated measure of personality; questions relating to current health behaviours; and provided a 5ml sample of peripheral blood for gene expression analysis. Extraversion was associated with increased expression of pro-inflammatory genes and Conscientiousness was associated with reduced expression of pro-inflammatory genes. Both associations were independent of health behaviours, negative affect, and leukocyte subset distributions. Antiviral and antibody-related gene expression was not associated with any personality dimension. The present data shed new light on the long-observed epidemiological associations between personality, physical health, and human longevity. Further research is required to elucidate the biological mechanisms underlying these associations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Visual Benefits in Apparent Motion Displays: Automatically Driven Spatial and Temporal Anticipation Are Partially Dissociated.

    Directory of Open Access Journals (Sweden)

    Merle-Marie Ahrens

    Full Text Available Many behaviourally relevant sensory events such as motion stimuli and speech have an intrinsic spatio-temporal structure. This will engage intentional and most likely unintentional (automatic prediction mechanisms enhancing the perception of upcoming stimuli in the event stream. Here we sought to probe the anticipatory processes that are automatically driven by rhythmic input streams in terms of their spatial and temporal components. To this end, we employed an apparent visual motion paradigm testing the effects of pre-target motion on lateralized visual target discrimination. The motion stimuli either moved towards or away from peripheral target positions (valid vs. invalid spatial motion cueing at a rhythmic or arrhythmic pace (valid vs. invalid temporal motion cueing. Crucially, we emphasized automatic motion-induced anticipatory processes by rendering the motion stimuli non-predictive of upcoming target position (by design and task-irrelevant (by instruction, and by creating instead endogenous (orthogonal expectations using symbolic cueing. Our data revealed that the apparent motion cues automatically engaged both spatial and temporal anticipatory processes, but that these processes were dissociated. We further found evidence for lateralisation of anticipatory temporal but not spatial processes. This indicates that distinct mechanisms may drive automatic spatial and temporal extrapolation of upcoming events from rhythmic event streams. This contrasts with previous findings that instead suggest an interaction between spatial and temporal attention processes when endogenously driven. Our results further highlight the need for isolating intentional from unintentional processes for better understanding the various anticipatory mechanisms engaged in processing behaviourally relevant stimuli with predictable spatio-temporal structure such as motion and speech.

  7. Temporal and spatial variations of rainfall erosivity in Southern Taiwan

    Science.gov (United States)

    Lee, Ming-Hsi; Lin, Huan-Hsuan; Chu, Chun-Kuang

    2014-05-01

    Soil erosion models are essential in developing effective soil and water resource conservation strategies. Soil erosion is generally evaluated using the Universal Soil Loss Equation (USLE) with an appropriate regional scale description. Among factors in the USLE model, the rainfall erosivity index (R) provides one of the clearest indications of the effects of climate change. Accurate estimation of rainfall erosivity requires continuous rainfall data; however, such data rarely demonstrate good spatial and temporal coverage. The data set consisted of 9240 storm events for the period 1993 to 2011, monitored by 27 rainfall stations of the Central Weather Bureau (CWB) in southern Taiwan, was used to analyze the temporal-spatial variations of rainfall erosivity. The spatial distribution map was plotted based on rainfall erosivity by the Kriging interpolation method. Results indicated that rainfall erosivity is mainly concentrated in rainy season from June to November typically contributed 90% of the yearly R factor. The temporal variations of monthly rainfall erosivity during June to November and annual rainfall erosivity have increasing trend from 1993 to 2011. There is an increasing trend from southwest to northeast in spatial distribution of rainfall erosivity in southern Taiwan. The results further indicated that there is a higher relationship between elevation and rainfall erosivity. The method developed in this study may also be useful for sediment disasters on Climate Change.

  8. Inducible defenses stay up late: temporal patterns of immune gene expression in Tenebrio molitor.

    Science.gov (United States)

    Johnston, Paul R; Makarova, Olga; Rolff, Jens

    2013-12-06

    The course of microbial infection in insects is shaped by a two-stage process of immune defense. Constitutive defenses, such as engulfment and melanization, act immediately and are followed by inducible defenses, archetypically the production of antimicrobial peptides, which eliminate or suppress the remaining microbes. By applying RNAseq across a 7-day time course, we sought to characterize the long-lasting immune response to bacterial challenge in the mealworm beetle Tenebrio molitor, a model for the biochemistry of insect immunity and persistent bacterial infection. By annotating a hybrid de novo assembly of RNAseq data, we were able to identify putative orthologs for the majority of components of the conserved insect immune system. Compared with Tribolium castaneum, the most closely related species with a reference genome sequence and a manually curated immune system annotation, the T. molitor immune gene count was lower, with lineage-specific expansions of genes encoding serine proteases and their countervailing inhibitors accounting for the majority of the deficit. Quantitative mapping of RNAseq reads to the reference assembly showed that expression of genes with predicted functions in cellular immunity, wound healing, melanization, and the production of reactive oxygen species was transiently induced immediately after immune challenge. In contrast, expression of genes encoding antimicrobial peptides or components of the Toll signaling pathway and iron sequestration response remained elevated for at least 7 days. Numerous genes involved in metabolism and nutrient storage were repressed, indicating a possible cost of immune induction. Strikingly, the expression of almost all antibacterial peptides followed the same pattern of long-lasting induction, regardless of their spectra of activity, signaling possible interactive roles in vivo. Copyright © 2014 Johnston et al.

  9. Evaluating the consistency of gene sets used in the analysis of bacterial gene expression data

    Directory of Open Access Journals (Sweden)

    Tintle Nathan L

    2012-08-01

    Full Text Available Abstract Background Statistical analyses of whole genome expression data require functional information about genes in order to yield meaningful biological conclusions. The Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG are common sources of functionally grouped gene sets. For bacteria, the SEED and MicrobesOnline provide alternative, complementary sources of gene sets. To date, no comprehensive evaluation of the data obtained from these resources has been performed. Results We define a series of gene set consistency metrics directly related to the most common classes of statistical analyses for gene expression data, and then perform a comprehensive analysis of 3581 Affymetrix® gene expression arrays across 17 diverse bacteria. We find that gene sets obtained from GO and KEGG demonstrate lower consistency than those obtained from the SEED and MicrobesOnline, regardless of gene set size. Conclusions Despite the widespread use of GO and KEGG gene sets in bacterial gene expression data analysis, the SEED and MicrobesOnline provide more consistent sets for a wide variety of statistical analyses. Increased use of the SEED and MicrobesOnline gene sets in the analysis of bacterial gene expression data may improve statistical power and utility of expression data.

  10. Monitoring spatial-temporal variability of aerosol over Kenya ...

    African Journals Online (AJOL)

    This study sought to investigate the spatial and temporal variations of aerosols over Kenya based on Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensor Aerosol Optical Depth (AOD) data for the period between 2001 and 2012. A Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) ...

  11. Spatially and temporally controlled hydrogels for tissue engineering

    NARCIS (Netherlands)

    J., Leijten; Seo, Jungmok; Yue, Kan; Trujillo-de Santiago, Grissel; Tamayol, Ali; Ruiz-Esparza, Guillermo U.; Ryon Shin, Su; Sharifi, Roholah; Noshadi, Iman; Moises Alvarez, Mario; Shrike Zhang, Yu; Khademhosseini, Ali

    2017-01-01

    Recent years have seen tremendous advances in the field of hydrogel-based biomaterials. One of the most prominent revolutions in this field has been the integration of elements or techniques that enable spatial and temporal control over hydrogels’ properties and functions. Here, we critically review

  12. Genetic architecture of gene expression in the chicken

    Directory of Open Access Journals (Sweden)

    Stanley Dragana

    2013-01-01

    Full Text Available Abstract Background The annotation of many genomes is limited, with a large proportion of identified genes lacking functional assignments. The construction of gene co-expression networks is a powerful approach that presents a way of integrating information from diverse gene expression datasets into a unified analysis which allows inferences to be drawn about the role of previously uncharacterised genes. Using this approach, we generated a condition-free gene co-expression network for the chicken using data from 1,043 publically available Affymetrix GeneChip Chicken Genome Arrays. This data was generated from a diverse range of experiments, including different tissues and experimental conditions. Our aim was to identify gene co-expression modules and generate a tool to facilitate exploration of the functional chicken genome. Results Fifteen modules, containing between 24 and 473 genes, were identified in the condition-free network. Most of the modules showed strong functional enrichment for particular Gene Ontology categories. However, a few showed no enrichment. Transcription factor binding site enrichment was also noted. Conclusions We have demonstrated that this chicken gene co-expression network is a useful tool in gene function prediction and the identification of putative novel transcription factors and binding sites. This work highlights the relevance of this methodology for functional prediction in poorly annotated genomes such as the chicken.

  13. Spatial-temporal noise reduction method optimized for real-time implementation

    Science.gov (United States)

    Romanenko, I. V.; Edirisinghe, E. A.; Larkin, D.

    2013-02-01

    Image de-noising in the spatial-temporal domain has been a problem studied in-depth in the field of digital image processing. However complexity of algorithms often leads to high hardware resource usage, or computational complexity and memory bandwidth issues, making their practical use impossible. In our research we attempt to solve these issues with an optimized implementation of a practical spatial-temporal de-noising algorithm. Spatial-temporal filtering was performed in Bayer RAW data space, which allowed us to benefit from predictable sensor noise characteristics and reduce memory bandwidth requirements. The proposed algorithm efficiently removes different kinds of noise in a wide range of signal to noise ratios. In our algorithm the local motion compensation is performed in Bayer RAW data space, while preserving the resolution and effectively improving the signal to noise ratios of moving objects. The main challenge for the use of spatial-temporal noise reduction algorithms in video applications is the compromise between the quality of the motion prediction and the complexity of the algorithm and required memory bandwidth. In photo and video applications it is very important that moving objects should stay sharp, while the noise is efficiently removed in both the static background and moving objects. Another important use case is the case when background is also non-static as well as the foreground where objects are also moving. Taking into account the achievable improvement in PSNR (on the level of the best known noise reduction techniques, like VBM3D) and low algorithmic complexity, enabling its practical use in commercial video applications, the results of our research can be very valuable.

  14. Spatial and temporal expression patterns of auxin response transcription factors in the syncytium induced by the beet cyst nematode Heterodera schachtii in Arabidopsis.

    Science.gov (United States)

    Hewezi, Tarek; Piya, Sarbottam; Richard, Geoffrey; Rice, J Hollis

    2014-09-01

    Plant-parasitic cyst nematodes induce the formation of a multinucleated feeding site in the infected root, termed the syncytium. Recent studies point to key roles of the phytohormone auxin in the regulation of gene expression and establishment of the syncytium. Nevertheless, information about the spatiotemporal expression patterns of the transcription factors that mediate auxin transcriptional responses during syncytium formation is limited. Here, we provide a gene expression map of 22 auxin response factors (ARFs) during the initiation, formation and maintenance stages of the syncytium induced by the cyst nematode Heterodera schachtii in Arabidopsis. We observed distinct and overlapping expression patterns of ARFs throughout syncytium development phases. We identified a set of ARFs whose expression is predominantly located inside the developing syncytium, whereas others are expressed in the neighbouring cells, presumably to initiate specific transcriptional programmes required for their incorporation within the developing syncytium. Our analyses also point to a role of certain ARFs in determining the maximum size of the syncytium. In addition, several ARFs were found to be highly expressed in fully developed syncytia, suggesting a role in maintaining the functional phenotype of mature syncytia. The dynamic distribution and overlapping expression patterns of various ARFs seem to be essential characteristics of ARF activity during syncytium development. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  15. Spatial pattern and temporal trend of mortality due to tuberculosis

    Directory of Open Access Journals (Sweden)

    Ana Angélica Rêgo de Queiroz

    2018-05-01

    Full Text Available ABSTRACT Objectives: To describe the epidemiological profile of mortality due to tuberculosis (TB, to analyze the spatial pattern of these deaths and to investigate the temporal trend in mortality due to tuberculosis in Northeast Brazil. Methods: An ecological study based on secondary mortality data. Deaths due to TB were included in the study. Descriptive statistics were calculated and gross mortality rates were estimated and smoothed by the Local Empirical Bayesian Method. Prais-Winsten’s regression was used to analyze the temporal trend in the TB mortality coefficients. The Kernel density technique was used to analyze the spatial distribution of TB mortality. Results: Tuberculosis was implicated in 236 deaths. The burden of tuberculosis deaths was higher amongst males, single people and people of mixed ethnicity, and the mean age at death was 51 years. TB deaths were clustered in the East, West and North health districts, and the tuberculosis mortality coefficient remained stable throughout the study period. Conclusions: Analyses of the spatial pattern and temporal trend in mortality revealed that certain areas have higher TB mortality rates, and should therefore be prioritized in public health interventions targeting the disease.

  16. Long term socio-ecological research across temporal and spatial scales

    Science.gov (United States)

    Singh, S. J.; Haberl, H.

    2012-04-01

    Long term socio-ecological research across temporal and spatial scales Simron Jit Singh and Helmut Haberl Institute of Social Ecology, Vienna, Austria Understanding trajectories of change in coupled socio-ecological (or human-environment) systems requires monitoring and analysis at several spatial and temporal scales. Long-term ecosystem research (LTER) is a strand of research coupled with observation systems and infrastructures (LTER sites) aimed at understanding how global change affects ecosystems around the world. In recent years it has been increasingly recognized that sustainability concerns require extending this approach to long-term socio-ecological research, i.e. a more integrated perspective that focuses on interaction processes between society and ecosystems over longer time periods. Thus, Long-Term Socio-Ecological Research, abbreviated LTSER, aims at observing, analyzing, understanding and modelling of changes in coupled socio-ecological systems over long periods of time. Indeed, the magnitude of the problems we now face is an outcome of a much longer process, accelerated by industrialisation since the nineteenth century. The paper will provide an overview of a book (in press) on LTSER with particular emphasis on 'socio-ecological transitions' in terms of material, energy and land use dynamics across temporal and spatial scales.

  17. 1988 Wet deposition temporal and spatial patterns in North America

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

    1992-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-year (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen's median trend estimate and Kendall's seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.

  18. 1988 Wet deposition temporal and spatial patterns in North America

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

    1992-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-year (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen`s median trend estimate and Kendall`s seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.

  19. Characterization of Drosophila fruitless-gal4 transgenes reveals expression in male-specific fruitless neurons and innervation of male reproductive structures

    NARCIS (Netherlands)

    Billeter, Jean-Christophe; Goodwin, Stephen F

    2004-01-01

    The fruitless (fru) gene acts in the central nervous system (CNS) of Drosophila melanogaster to establish male sexual behavior. Genetic dissection of the locus has shown that one of the fru gene's promoter, P1, controls the spatial and temporal expression of male-specific FruM proteins critical to

  20. Temporal variations in the gene expression levels of cyanobacterial anti-oxidant enzymes through geological history: implications for biological evolution during the Great Oxidation Event

    Science.gov (United States)

    Harada, M.; Furukawa, R.; Yokobori, S. I.; Tajika, E.; Yamagishi, A.

    2016-12-01

    A significant rise in atmospheric O2 levels during the GOE (Great Oxidation Event), ca. 2.45-2.0 Ga, must have caused a great stress to biosphere, enforcing life to adapt to oxic conditions. Cyanobacteria, oxygenic photosynthetic bacteria that had been responsible for the GOE, are at the same time one of the organisms that would have been greatly affected by the rise of O2 level in the surface environments. Knowledge on the evolution of cyanobacteria is not only important to elucidate the cause of the GOE, but also helps us to better understand the adaptive evolution of life in response to the GOE. Here we performed phylogenetic analysis of an anti-oxidant enzyme Fe-SOD (iron superoxide dismutase) of cyanobacteria, to assess the adaptive evolution of life under the GOE. The rise of O2 level must have increased the level of toxic reactive oxygen species in cyanobacterial cells, thus forced them to change activities or the gene expression levels of Fe-SOD. In the present study, we focus on the change in the gene expression levels of the enzyme, which can be estimated from the promoter sequences of the gene. Promoters are DNA sequences found upstream of protein encoding regions, where RNA polymerase binds and initiates transcription. "Strong" promoters that efficiently interact with RNA polymerase induce high rates of transcription, leading to high levels of gene expression. Thus, from the temporal changes in the promoter sequences, we can estimate the variations in the gene expression levels during the geological time. Promoter sequences of Fe-SOD at each ancestral node of cyanobacteria were predicted from phylogenetic analysis, and the ancestral promoter sequences were compared to the promoters of known highly expressed genes. The similarity was low at the time of the emergence of cyanobacteria; however, increased at the branching nodes diverged 2.4 billon years ago. This roughly coincided with the onset of the GOE, implying that the transition from low to high gene

  1. Visualization of gene expression in the live subject using the Na/I symporter as a reporter gene: applications in biotherapy.

    Science.gov (United States)

    Baril, Patrick; Martin-Duque, Pilar; Vassaux, Georges

    2010-02-01

    Biotherapies involve the utilization of antibodies, genetically modified viruses, bacteria or cells for therapeutic purposes. Molecular imaging has the potential to provide unique information that will guarantee their biosafety in humans and provide a rationale for the future development of new generations of reagents. In this context, non-invasive imaging of gene expression is an attractive prospect, allowing precise, spacio-temporal measurements of gene expression in longitudinal studies involving gene transfer vectors. With the emergence of cell therapies in regenerative medicine, it is also possible to track cells injected into subjects. In this context, the Na/I symporter (NIS) has been used in preclinical studies. Associated with a relevant radiotracer ((123)I(-), (124)I(-), (99m)TcO4(-)), NIS can be used to monitor gene transfer and the spread of selectively replicative viruses in tumours as well as in cells with a therapeutic potential. In addition to its imaging potential, NIS can be used as a therapeutic transgene through its ability to concentrate therapeutic doses of radionuclides in target cells. This dual property has applications in cancer treatment and could also be used to eradicate cells with therapeutic potential in the case of adverse events. Through experience acquired in preclinical studies, we can expect that non-invasive molecular imaging using NIS as a transgene will be pivotal for monitoring in vivo the exact distribution and pharmacodynamics of gene expression in a precise and quantitative way. This review highlights the applications of NIS in biotherapy, with a particular emphasis on image-guided radiotherapy, monitoring of gene and vector biodistribution and trafficking of stem cells.

  2. Spatial and Temporal Dynamics in Air Pollution Exposure Assessment

    Science.gov (United States)

    Dias, Daniela; Tchepel, Oxana

    2018-01-01

    Analyzing individual exposure in urban areas offers several challenges where both the individual’s activities and air pollution levels demonstrate a large degree of spatial and temporal dynamics. This review article discusses the concepts, key elements, current developments in assessing personal exposure to urban air pollution (seventy-two studies reviewed) and respective advantages and disadvantages. A new conceptual structure to organize personal exposure assessment methods is proposed according to two classification criteria: (i) spatial-temporal variations of individuals’ activities (point-fixed or trajectory based) and (ii) characterization of air quality (variable or uniform). This review suggests that the spatial and temporal variability of urban air pollution levels in combination with indoor exposures and individual’s time-activity patterns are key elements of personal exposure assessment. In the literature review, the majority of revised studies (44 studies) indicate that the trajectory based with variable air quality approach provides a promising framework for tackling the important question of inter- and intra-variability of individual exposure. However, future quantitative comparison between the different approaches should be performed, and the selection of the most appropriate approach for exposure quantification should take into account the purpose of the health study. This review provides a structured basis for the intercomparing of different methodologies and to make their advantages and limitations more transparent in addressing specific research objectives. PMID:29558426

  3. Analysis of baseline gene expression levels from ...

    Science.gov (United States)

    The use of gene expression profiling to predict chemical mode of action would be enhanced by better characterization of variance due to individual, environmental, and technical factors. Meta-analysis of microarray data from untreated or vehicle-treated animals within the control arm of toxicogenomics studies has yielded useful information on baseline fluctuations in gene expression. A dataset of control animal microarray expression data was assembled by a working group of the Health and Environmental Sciences Institute's Technical Committee on the Application of Genomics in Mechanism Based Risk Assessment in order to provide a public resource for assessments of variability in baseline gene expression. Data from over 500 Affymetrix microarrays from control rat liver and kidney were collected from 16 different institutions. Thirty-five biological and technical factors were obtained for each animal, describing a wide range of study characteristics, and a subset were evaluated in detail for their contribution to total variability using multivariate statistical and graphical techniques. The study factors that emerged as key sources of variability included gender, organ section, strain, and fasting state. These and other study factors were identified as key descriptors that should be included in the minimal information about a toxicogenomics study needed for interpretation of results by an independent source. Genes that are the most and least variable, gender-selectiv

  4. Analysis of gene expression in normal and neoplastic human testis: new roles of RNA

    DEFF Research Database (Denmark)

    Novotny, G W; Nielsen, J E; Sonne, Si Brask

    2007-01-01

    Large-scale methods for analysing gene expression, such as microarrays, have yielded a wealth of information about gene expression at the mRNA level. However, expression of alternative transcripts, together with the presence of a wide range of largely undescribed RNA transcripts combined with reg......Large-scale methods for analysing gene expression, such as microarrays, have yielded a wealth of information about gene expression at the mRNA level. However, expression of alternative transcripts, together with the presence of a wide range of largely undescribed RNA transcripts combined...

  5. Gene expression in periodontal tissues following treatment

    Directory of Open Access Journals (Sweden)

    Eisenacher Martin

    2008-07-01

    Full Text Available Abstract Background In periodontitis, treatment aimed at controlling the periodontal biofilm infection results in a resolution of the clinical and histological signs of inflammation. Although the cell types found in periodontal tissues following treatment have been well described, information on gene expression is limited to few candidate genes. Therefore, the aim of the study was to determine the expression profiles of immune and inflammatory genes in periodontal tissues from sites with severe chronic periodontitis following periodontal therapy in order to identify genes involved in tissue homeostasis. Gingival biopsies from 12 patients with severe chronic periodontitis were taken six to eight weeks following non-surgical periodontal therapy, and from 11 healthy controls. As internal standard, RNA of an immortalized human keratinocyte line (HaCaT was used. Total RNA was subjected to gene expression profiling using a commercially available microarray system focusing on inflammation-related genes. Post-hoc confirmation of selected genes was done by Realtime-PCR. Results Out of the 136 genes analyzed, the 5% most strongly expressed genes compared to healthy controls were Interleukin-12A (IL-12A, Versican (CSPG-2, Matrixmetalloproteinase-1 (MMP-1, Down syndrome critical region protein-1 (DSCR-1, Macrophage inflammatory protein-2β (Cxcl-3, Inhibitor of apoptosis protein-1 (BIRC-1, Cluster of differentiation antigen 38 (CD38, Regulator of G-protein signalling-1 (RGS-1, and Finkel-Biskis-Jinkins murine osteosarcoma virus oncogene (C-FOS; the 5% least strongly expressed genes were Receptor-interacting Serine/Threonine Kinase-2 (RIP-2, Complement component 3 (C3, Prostaglandin-endoperoxide synthase-2 (COX-2, Interleukin-8 (IL-8, Endothelin-1 (EDN-1, Plasminogen activator inhibitor type-2 (PAI-2, Matrix-metalloproteinase-14 (MMP-14, and Interferon regulating factor-7 (IRF-7. Conclusion Gene expression profiles found in periodontal tissues following

  6. Parallel Gene Expression Differences between Low and High Latitude Populations of Drosophila melanogaster and D. simulans.

    Science.gov (United States)

    Zhao, Li; Wit, Janneke; Svetec, Nicolas; Begun, David J

    2015-05-01

    Gene expression variation within species is relatively common, however, the role of natural selection in the maintenance of this variation is poorly understood. Here we investigate low and high latitude populations of Drosophila melanogaster and its sister species, D. simulans, to determine whether the two species show similar patterns of population differentiation, consistent with a role for spatially varying selection in maintaining gene expression variation. We compared at two temperatures the whole male transcriptome of D. melanogaster and D. simulans sampled from Panama City (Panama) and Maine (USA). We observed a significant excess of genes exhibiting differential expression in both species, consistent with parallel adaptation to heterogeneous environments. Moreover, the majority of genes showing parallel expression differentiation showed the same direction of differential expression in the two species and the magnitudes of expression differences between high and low latitude populations were correlated across species, further bolstering the conclusion that parallelism for expression phenotypes results from spatially varying selection. However, the species also exhibited important differences in expression phenotypes. For example, the genomic extent of genotype × environment interaction was much more common in D. melanogaster. Highly differentiated SNPs between low and high latitudes were enriched in the 3' UTRs and CDS of the geographically differently expressed genes in both species, consistent with an important role for cis-acting variants in driving local adaptation for expression-related phenotypes.

  7. Of mice and men: divergence of gene expression patterns in kidney.

    Directory of Open Access Journals (Sweden)

    Lydie Cheval

    Full Text Available Since the development of methods for homologous gene recombination, mouse models have played a central role in research in renal pathophysiology. However, many published and unpublished results show that mice with genetic changes mimicking human pathogenic mutations do not display the human phenotype. These functional differences may stem from differences in gene expression between mouse and human kidneys. However, large scale comparison of gene expression networks revealed conservation of gene expression among a large panel of human and mouse tissues including kidneys. Because renal functions result from the spatial integration of elementary processes originating in the glomerulus and the successive segments constituting the nephron, we hypothesized that differences in gene expression profiles along the human and mouse nephron might account for different behaviors. Analysis of SAGE libraries generated from the glomerulus and seven anatomically defined nephron segments from human and mouse kidneys allowed us to identify 4644 pairs of gene orthologs expressed in either one or both species. Quantitative analysis shows that many transcripts are present at different levels in the two species. It also shows poor conservation of gene expression profiles, with less than 10% of the 4644 gene orthologs displaying a higher conservation of expression profiles than the neutral expectation (p<0.05. Accordingly, hierarchical clustering reveals a higher degree of conservation of gene expression patterns between functionally unrelated kidney structures within a given species than between cognate structures from the two species. Similar findings were obtained for sub-groups of genes with either kidney-specific or housekeeping functions. Conservation of gene expression at the scale of the whole organ and divergence at the level of its constituting sub-structures likely account for the fact that although kidneys assume the same global function in the two species

  8. Spatial and temporal dynamics of multidimensional well-being, livelihoods and ecosystem services in coastal Bangladesh

    Science.gov (United States)

    Adams, Helen; Adger, W. Neil; Ahmad, Sate; Ahmed, Ali; Begum, Dilruba; Lázár, Attila N.; Matthews, Zoe; Rahman, Mohammed Mofizur; Streatfield, Peter Kim

    2016-01-01

    Populations in resource dependent economies gain well-being from the natural environment, in highly spatially and temporally variable patterns. To collect information on this, we designed and implemented a 1586-household quantitative survey in the southwest coastal zone of Bangladesh. Data were collected on material, subjective and health dimensions of well-being in the context of natural resource use, particularly agriculture, aquaculture, mangroves and fisheries. The questionnaire included questions on factors that mediate poverty outcomes: mobility and remittances; loans and micro-credit; environmental perceptions; shocks; and women’s empowerment. The data are stratified by social-ecological system to take into account spatial dynamics and the survey was repeated with the same respondents three times within a year to incorporate seasonal dynamics. The dataset includes blood pressure measurements and height and weight of men, women and children. In addition, the household listing includes basic data on livelihoods and income for approximately 10,000 households. The dataset facilitates interdisciplinary research on spatial and temporal dynamics of well-being in the context of natural resource dependence in low income countries. PMID:27824340

  9. Spatial and temporal variation in evacuee risk perception throughout the evacuation and return-entry process.

    Science.gov (United States)

    Siebeneck, Laura K; Cova, Thomas J

    2012-09-01

    Developing effective evacuation and return-entry plans requires understanding the spatial and temporal dimensions of risk perception experienced by evacuees throughout a disaster event. Using data gathered from the 2008 Cedar Rapids, Iowa Flood, this article explores how risk perception and location influence evacuee behavior during the evacuation and return-entry process. Three themes are discussed: (1) the spatial and temporal characteristics of risk perception throughout the evacuation and return-entry process, (2) the relationship between risk perception and household compliance with return-entry orders, and (3) the role social influences have on the timing of the return by households. The results indicate that geographic location and spatial variation of risk influenced household risk perception and compliance with return-entry plans. In addition, sociodemographic characteristics influenced the timing and characteristics of the return groups. The findings of this study advance knowledge of evacuee behavior throughout a disaster and can inform strategies used by emergency managers throughout the evacuation and return-entry process. © 2012 Society for Risk Analysis.

  10. Rhythmic expression of circadian clock genes in the preovulatory ovarian follicles of the laying hen.

    Directory of Open Access Journals (Sweden)

    Zhichao Zhang

    Full Text Available The circadian clock is reported to play a role in the ovaries in a variety of vertebrate species, including the domestic hen. However, the ovary is an organ that changes daily, and the laying hen maintains a strict follicular hierarchy. The aim of this study was to examine the spatial-temporal expression of several known canonical clock genes in the granulosa and theca layers of six hierarchy follicles. We demonstrated that the granulosa cells (GCs of the F1-F3 follicles harbored intrinsic oscillatory mechanisms in vivo. In addition, cultured granulosa cells (GCs from F1 follicles exposed to luteinizing hormone (LH synchronization displayed Per2 mRNA oscillations, whereas, the less mature GCs (F5 plus F6 displayed no circadian change in Per2 mRNA levels. Cultures containing follicle-stimulating hormone (FSH combined with LH expressed levels of Per2 mRNA that were 2.5-fold higher than those in cultures with LH or FSH alone. These results show that there is spatial specificity in the localization of clock cells in hen preovulatory follicles. In addition, our results support the hypothesis that gonadotropins provide a cue for the development of the functional cellular clock in immature GCs.

  11. Comparison of Urban Human Movements Inferring from Multi-Source Spatial-Temporal Data

    Science.gov (United States)

    Cao, Rui; Tu, Wei; Cao, Jinzhou; Li, Qingquan

    2016-06-01

    The quantification of human movements is very hard because of the sparsity of traditional data and the labour intensive of the data collecting process. Recently, much spatial-temporal data give us an opportunity to observe human movement. This research investigates the relationship of city-wide human movements inferring from two types of spatial-temporal data at traffic analysis zone (TAZ) level. The first type of human movement is inferred from long-time smart card transaction data recording the boarding actions. The second type of human movement is extracted from citywide time sequenced mobile phone data with 30 minutes interval. Travel volume, travel distance and travel time are used to measure aggregated human movements in the city. To further examine the relationship between the two types of inferred movements, the linear correlation analysis is conducted on the hourly travel volume. The obtained results show that human movements inferred from smart card data and mobile phone data have a correlation of 0.635. However, there are still some non-ignorable differences in some special areas. This research not only reveals the citywide spatial-temporal human dynamic but also benefits the understanding of the reliability of the inference of human movements with big spatial-temporal data.

  12. COMPARISON OF URBAN HUMAN MOVEMENTS INFERRING FROM MULTI-SOURCE SPATIAL-TEMPORAL DATA

    Directory of Open Access Journals (Sweden)

    R. Cao

    2016-06-01

    Full Text Available The quantification of human movements is very hard because of the sparsity of traditional data and the labour intensive of the data collecting process. Recently, much spatial-temporal data give us an opportunity to observe human movement. This research investigates the relationship of city-wide human movements inferring from two types of spatial-temporal data at traffic analysis zone (TAZ level. The first type of human movement is inferred from long-time smart card transaction data recording the boarding actions. The second type of human movement is extracted from citywide time sequenced mobile phone data with 30 minutes interval. Travel volume, travel distance and travel time are used to measure aggregated human movements in the city. To further examine the relationship between the two types of inferred movements, the linear correlation analysis is conducted on the hourly travel volume. The obtained results show that human movements inferred from smart card data and mobile phone data have a correlation of 0.635. However, there are still some non-ignorable differences in some special areas. This research not only reveals the citywide spatial-temporal human dynamic but also benefits the understanding of the reliability of the inference of human movements with big spatial-temporal data.

  13. Dynamics of immune system gene expression upon bacterial challenge and wounding in a social insect (Bombus terrestris.

    Directory of Open Access Journals (Sweden)

    Silvio Erler

    2011-03-01

    Full Text Available The innate immune system which helps individuals to combat pathogens comprises a set of genes representing four immune system pathways (Toll, Imd, JNK and JAK/STAT. There is a lack of immune genes in social insects (e.g. honeybees when compared to Diptera. Potentially, this might be compensated by an advanced system of social immunity (synergistic action of several individuals. The bumble bee, Bombus terrestris, is a primitively eusocial species with an annual life cycle and colonies headed by a single queen. We used this key pollinator to study the temporal dynamics of immune system gene expression in response to wounding and bacterial challenge.Antimicrobial peptides (AMP (abaecin, defensin 1, hymenoptaecin were strongly up-regulated by wounding and bacterial challenge, the latter showing a higher impact on the gene expression level. Sterile wounding down-regulated TEP A, an effector gene of the JAK/STAT pathway, and bacterial infection influenced genes of the Imd (relish and JNK pathway (basket. Relish was up-regulated within the first hour after bacterial challenge, but decreased strongly afterwards. AMP expression following wounding and bacterial challenge correlates with the expression pattern of relish whereas correlated expression with dorsal was absent. Although expression of AMPs was high, continuous bacterial growth was observed throughout the experiment.Here we demonstrate for the first time the temporal dynamics of immune system gene expression in a social insect. Wounding and bacterial challenge affected the innate immune system significantly. Induction of AMP expression due to wounding might comprise a pre-adaptation to accompanying bacterial infections. Compared with solitary species this social insect exhibits reduced immune system efficiency, as bacterial growth could not be inhibited. A negative feedback loop regulating the Imd-pathway is suggested. AMPs, the end product of the Imd-pathway, inhibited the up-regulation of the

  14. Effects of subchronic benzo(a)pyrene exposure on neurotransmitter receptor gene expression in the rat hippocampus related with spatial learning and memory change.

    Science.gov (United States)

    Qiu, Chongying; Cheng, Shuqun; Xia, Yinyin; Peng, Bin; Tang, Qian; Tu, Baijie

    2011-11-18

    Exposure of laboratory rats to Benzo(a)pyrene (BaP), an environmental contaminant with its high lipophilicify which is widely dispersed in the environment and can easily cross the blood brain barrier presenting in the central nervous system, is associated with impaired learning and memory. The purpose of the research was to examine whether subchronic exposure to BaP affects spatial learning and memory, and how it alters normal gene expression in hippocampus, as well as selection of candidate genes involving neurotransmitter receptor attributed to learning and memory. Morris water maze (MWM) was used to evaluate behavioral differences between BaP-treated and vehicle-treated groups. To gain a better insight into the mechanism of BaP-induced neurotoxicity on learning and memory, we used whole genome oligo microarrays as well as Polymerase Chain Reaction (PCR) to assess the global impact of gene expression. Male Sprague-Dawley rats were intraperitoneally injected with 6.25mg/kg of BaP or vehicle for 14 weeks. The results from the Morris water maze (MWM) test showed that rats treated with BaP exhibited significantly higher mean latencies as compared to vehicle controls. BaP exposure significantly decreased the number of crossing the platform and the time spent in the target area. After the hippocampus was collected from each rat, total RNA was isolated. Microarray and PCR revealed that exposure to BaP affected mRNA expression of neurotransmitter receptors. The web tool DAVID was used to analyze the significantly enriched gene ontology (GO) and KEGG pathways in the differentially expressed genes. Analysis showed that the most significantly affected gene ontology category was behavior. Furthermore, the fourth highest significantly affected gene ontology category was learning and memory. KEGG molecular pathway analysis showed that "neuroactive ligand-receptor interaction" was affected by BaP with highest statistical significance, and 9 candidate neurotransmitter receptor

  15. Temporal and spatial variation of nitrogen transformations in a coniferous soil.

    NARCIS (Netherlands)

    Laverman, A.M.; Zoomer, H.R.; van Verseveld, H.W.; Verhoef, H.A.

    2000-01-01

    Forest soils show a great degree of temporal and spatial variation of nitrogen mineralization. The aim of the present study was to explain temporal variation in nitrate leaching from a nitrogen-saturated coniferous forest soil by potential nitrification, mineralization rates and nitrate uptake by

  16. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Michael R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)], E-mail: armstrong30@llnl.gov; Boyden, Ken [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Browning, Nigel D. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); Campbell, Geoffrey H.; Colvin, Jeffrey D.; De Hope, William J.; Frank, Alan M. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Gibson, David J.; Hartemann, Fred [N Division, Physics and Advanced Technologies Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-280, Livermore, CA 94550 (United States); Kim, Judy S. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); King, Wayne E.; La Grange, Thomas B.; Pyke, Ben J.; Reed, Bryan W.; Shuttlesworth, Richard M.; Stuart, Brent C.; Torralva, Ben R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)

    2007-04-15

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5x10{sup 7} electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution <10{sup -6} s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed.

  17. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy

    International Nuclear Information System (INIS)

    Armstrong, Michael R.; Boyden, Ken; Browning, Nigel D.; Campbell, Geoffrey H.; Colvin, Jeffrey D.; De Hope, William J.; Frank, Alan M.; Gibson, David J.; Hartemann, Fred; Kim, Judy S.; King, Wayne E.; La Grange, Thomas B.; Pyke, Ben J.; Reed, Bryan W.; Shuttlesworth, Richard M.; Stuart, Brent C.; Torralva, Ben R.

    2007-01-01

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5x10 7 electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution -6 s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed

  18. Serial Analysis of Gene Expression: Applications in Human Studies

    Directory of Open Access Journals (Sweden)

    Tuteja Renu

    2004-01-01

    Full Text Available Serial analysis of gene expression (SAGE is a powerful tool, which provides quantitative and comprehensive expression profile of genes in a given cell population. It works by isolating short fragments of genetic information from the expressed genes that are present in the cell being studied. These short sequences, called SAGE tags, are linked together for efficient sequencing. The frequency of each SAGE tag in the cloned multimers directly reflects the transcript abundance. Therefore, SAGE results in an accurate picture of gene expression at both the qualitative and the quantitative levels. It does not require a hybridization probe for each transcript and allows new genes to be discovered. This technique has been applied widely in human studies and various SAGE tags/SAGE libraries have been generated from different cells/tissues such as dendritic cells, lung fibroblast cells, oocytes, thyroid tissue, B-cell lymphoma, cultured keratinocytes, muscles, brain tissues, sciatic nerve, cultured Schwann cells, cord blood-derived mast cells, retina, macula, retinal pigment epithelial cells, skin cells, and so forth. In this review we present the updated information on the applications of SAGE technology mainly to human studies.

  19. A study of verbal and spatial information processing using event-related potentials and positron emission tomography

    International Nuclear Information System (INIS)

    Ninomiya, Hideaki; Ichimiya, Atsushi; Chen, Chung-Ho; Onitsuka, Toshiaki; Kuwabara, Yasuo; Otsuka, Makoto; Ichiya, Yuichi

    1997-01-01

    The activated cerebral regions and the timing of information processing in the hemispheres was investigated using event-related potentials (ERP) and regional cerebral blood flow (rCBF) as the neurophysiological indicators. Seven men and one woman (age 19-27 years) were asked to categorize two-syllable Japanese nouns (verbal condition) and to judge the difference between pairs of rectangles (spatial condition), both tests presented on a monochrome display. In the electroencephalogram (EEG) session, EEG were recorded from 16 electrode sites, with linked earlobe electrodes as reference. In the positron emission tomography (PET) session, rCBF were measured by the 15 O-labeled H 2 O bolus injection method. Regions of interest were the frontal, temporal, parietal, occipital and central lobes, and the entire cerebral hemispheres. When the subtracted voltages of the ERP in homologous scalp sites were compared for the verbal and spatial conditions, the significant differences were at F7·F8 and T5·T6 (the 10-20 system). The latencies of the differences at T5·T6 were around 200, 250 and 320 ms. A significant difference in rCBF between the verbal and spatial conditions was found only in the temporal region. It was concluded that early processing of information, that is, registration and simple recognition, may be performed mainly in the left temporal lobe for verbal information and in the right for spatial information. (author)

  20. LocExpress: a web server for efficiently estimating expression of novel transcripts.

    Science.gov (United States)

    Hou, Mei; Tian, Feng; Jiang, Shuai; Kong, Lei; Yang, Dechang; Gao, Ge

    2016-12-22

    The temporal and spatial-specific expression pattern of a transcript in multiple tissues and cell types can indicate key clues about its function. While several gene atlas available online as pre-computed databases for known gene models, it's still challenging to get expression profile for previously uncharacterized (i.e. novel) transcripts efficiently. Here we developed LocExpress, a web server for efficiently estimating expression of novel transcripts across multiple tissues and cell types in human (20 normal tissues/cells types and 14 cell lines) as well as in mouse (24 normal tissues/cell types and nine cell lines). As a wrapper to RNA-Seq quantification algorithm, LocExpress efficiently reduces the time cost by making abundance estimation calls increasingly within the minimum spanning bundle region of input transcripts. For a given novel gene model, such local context-oriented strategy allows LocExpress to estimate its FPKMs in hundreds of samples within minutes on a standard Linux box, making an online web server possible. To the best of our knowledge, LocExpress is the only web server to provide nearly real-time expression estimation for novel transcripts in common tissues and cell types. The server is publicly available at http://loc-express.cbi.pku.edu.cn .

  1. Developmental expression of the alpha-skeletal actin gene

    Directory of Open Access Journals (Sweden)

    Vonk Freek J

    2008-06-01

    Full Text Available Abstract Background Actin is a cytoskeletal protein which exerts a broad range of functions in almost all eukaryotic cells. In higher vertebrates, six primary actin isoforms can be distinguished: alpha-skeletal, alpha-cardiac, alpha-smooth muscle, gamma-smooth muscle, beta-cytoplasmic and gamma-cytoplasmic isoactin. Expression of these actin isoforms during vertebrate development is highly regulated in a temporal and tissue-specific manner, but the mechanisms and the specific differences are currently not well understood. All members of the actin multigene family are highly conserved, suggesting that there is a high selective pressure on these proteins. Results We present here a model for the evolution of the genomic organization of alpha-skeletal actin and by molecular modeling, illustrate the structural differences of actin proteins of different phyla. We further describe and compare alpha-skeletal actin expression in two developmental stages of five vertebrate species (mouse, chicken, snake, salamander and fish. Our findings confirm that alpha-skeletal actin is expressed in skeletal muscle and in the heart of all five species. In addition, we identify many novel non-muscular expression domains including several in the central nervous system. Conclusion Our results show that the high sequence homology of alpha-skeletal actins is reflected by similarities of their 3 dimensional protein structures, as well as by conserved gene expression patterns during vertebrate development. Nonetheless, we find here important differences in 3D structures, in gene architectures and identify novel expression domains for this structural and functional important gene.

  2. Amygdala nuclei critical for emotional learning exhibit unique gene expression patterns.

    Science.gov (United States)

    Partin, Alexander C; Hosek, Matthew P; Luong, Jonathan A; Lella, Srihari K; Sharma, Sachein A R; Ploski, Jonathan E

    2013-09-01

    The amygdala is a heterogeneous, medial temporal lobe structure that has been implicated in the formation, expression and extinction of emotional memories. This structure is composed of numerous nuclei that vary in cytoarchitectonics and neural connections. In particular the lateral nucleus of the amygdala (LA), central nucleus of the amygdala (CeA), and the basal (B) nucleus contribute an essential role to emotional learning. However, to date it is still unclear to what extent these nuclei differ at the molecular level. Therefore we have performed whole genome gene expression analysis on these nuclei to gain a better understanding of the molecular differences and similarities among these nuclei. Specifically the LA, CeA and B nuclei were laser microdissected from the rat brain, and total RNA was isolated from these nuclei and subjected to RNA amplification. Amplified RNA was analyzed by whole genome microarray analysis which revealed that 129 genes are differentially expressed among these nuclei. Notably gene expression patterns differed between the CeA nucleus and the LA and B nuclei. However gene expression differences were not considerably different between the LA and B nuclei. Secondary confirmation of numerous genes was performed by in situ hybridization to validate the microarray findings, which also revealed that for many genes, expression differences among these nuclei were consistent with the embryological origins of these nuclei. Knowing the stable gene expression differences among these nuclei will provide novel avenues of investigation into how these nuclei contribute to emotional arousal and emotional learning, and potentially offer new genetic targets to manipulate emotional learning and memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. ReTrOS: a MATLAB toolbox for reconstructing transcriptional activity from gene and protein expression data.

    Science.gov (United States)

    Minas, Giorgos; Momiji, Hiroshi; Jenkins, Dafyd J; Costa, Maria J; Rand, David A; Finkenstädt, Bärbel

    2017-06-26

    Given the development of high-throughput experimental techniques, an increasing number of whole genome transcription profiling time series data sets, with good temporal resolution, are becoming available to researchers. The ReTrOS toolbox (Reconstructing Transcription Open Software) provides MATLAB-based implementations of two related methods, namely ReTrOS-Smooth and ReTrOS-Switch, for reconstructing the temporal transcriptional activity profile of a gene from given mRNA expression time series or protein reporter time series. The methods are based on fitting a differential equation model incorporating the processes of transcription, translation and degradation. The toolbox provides a framework for model fitting along with statistical analyses of the model with a graphical interface and model visualisation. We highlight several applications of the toolbox, including the reconstruction of the temporal cascade of transcriptional activity inferred from mRNA expression data and protein reporter data in the core circadian clock in Arabidopsis thaliana, and how such reconstructed transcription profiles can be used to study the effects of different cell lines and conditions. The ReTrOS toolbox allows users to analyse gene and/or protein expression time series where, with appropriate formulation of prior information about a minimum of kinetic parameters, in particular rates of degradation, users are able to infer timings of changes in transcriptional activity. Data from any organism and obtained from a range of technologies can be used as input due to the flexible and generic nature of the model and implementation. The output from this software provides a useful analysis of time series data and can be incorporated into further modelling approaches or in hypothesis generation.

  4. Ascl1 Coordinately Regulates Gene Expression and the Chromatin Landscape during Neurogenesis

    Directory of Open Access Journals (Sweden)

    Alexandre A.S.F. Raposo

    2015-03-01

    Full Text Available The proneural transcription factor Ascl1 coordinates gene expression in both proliferating and differentiating progenitors along the neuronal lineage. Here, we used a cellular model of neurogenesis to investigate how Ascl1 interacts with the chromatin landscape to regulate gene expression when promoting neuronal differentiation. We find that Ascl1 binding occurs mostly at distal enhancers and is associated with activation of gene transcription. Surprisingly, the accessibility of Ascl1 to its binding sites in neural stem/progenitor cells remains largely unchanged throughout their differentiation, as Ascl1 targets regions of both readily accessible and closed chromatin in proliferating cells. Moreover, binding of Ascl1 often precedes an increase in chromatin accessibility and the appearance of new regions of open chromatin, associated with de novo gene expression during differentiation. Our results reveal a function of Ascl1 in promoting chromatin accessibility during neurogenesis, linking the chromatin landscape at Ascl1 target regions with the temporal progression of its transcriptional program.

  5. Spatial and temporal distribution of geophysical disasters

    Directory of Open Access Journals (Sweden)

    Cvetković Vladimir

    2013-01-01

    Full Text Available Natural disasters of all kinds (meteorological, hydrological, geophysical, climatological and biological are increasingly becoming part of everyday life of modern human. The consequences are often devastating, to the life, health and property of people, as well to the security of states and the entire international regions. In this regard, we noted the need for a comprehensive investigation of the phenomenology of natural disasters. In addition, it is particularly important to pay attention to the different factors that might correlate with each other to indicate more dubious and more original facts about their characteristics. However, as the issue of natural disasters is very wide, the subject of this paper will be forms, consequences, temporal and spatial distribution of geophysical natural disasters, while analysis of other disasters will be the subject of our future research. Using an international database on natural disasters of the centre for research on the epidemiology of disasters (CRED based in Brussels, with the support of the statistical analysis (SPSS, we tried to point out the number, trends, consequences, the spatial and temporal distribution of earthquakes, volcanic eruptions and dry mass movements in the world, from 1900 to 2013.

  6. Spatial-temporal variability of leaf chlorophyll and its relationship with cocoa yield

    Directory of Open Access Journals (Sweden)

    Caique C. Medauar

    Full Text Available ABSTRACT The objective of this study was to evaluate the spatial-temporal variability of leaf chlorophyll index and its relationship with cocoa yield. The experiment was carried out in an experimental area of cocoa production located in Ilhéus, Bahia State, Brazil. Leaf chlorophyll content was measured in September, October, January, February, March and April in the 2014/2015 season, at each sampling point of a regular grid by using a portable chlorophyll meter. Under the same conditions, yield was evaluated and the data were submitted to descriptive statistics and a linear correlation study. Geostatistical analysis was used to determine and quantify the spatial and temporal variability of leaf chlorophyll index and yield. Leaf chlorophyll index varied over the period evaluated, but the months of February, March and April showed no spatial dependence in the study area, indicating absence of temporal stability. Cocoa monthly yield, except in January, presented high spatial variability. Under the conditions of this study, it was not possible to establish a relationship between leaf chlorophyll index and cocoa yield.

  7. Information and Temporality

    Directory of Open Access Journals (Sweden)

    Christian Flender

    2016-09-01

    Full Text Available Being able to give reasons for what the world is and how it works is one of the defining characteristics of modernity. Mathematical reason and empirical observation brought science and engineering to unprecedented success. However, modernity has reached a post-state where an instrumental view of technology needs revision with reasonable arguments and evidence, i.e. without falling back to superstition and mysticism. Instrumentally, technology bears the potential to ease and to harm. Easing and harming can't be controlled like the initial development of technology is a controlled exercise for a specific, mostly easing purpose. Therefore, a revised understanding of information technology is proposed based upon mathematical concepts and intuitions as developed in quantum mechanics. Quantum mechanics offers unequaled opportunities because it raises foundational questions in a precise form. Beyond instrumentalism it enables to raise the question of essences as that what remains through time what it is. The essence of information technology is acausality. The time of acausality is temporality. Temporality is not a concept or a category. It is not epistemological. As an existential and thus more comprehensive and fundamental than a concept or a category temporality is ontological; it does not simply have ontic properties. Rather it exhibits general essences. Datability, significance, spannedness and openness are general essences of equiprimordial time (temporality.

  8. Functional clustering of time series gene expression data by Granger causality

    Science.gov (United States)

    2012-01-01

    Background A common approach for time series gene expression data analysis includes the clustering of genes with similar expression patterns throughout time. Clustered gene expression profiles point to the joint contribution of groups of genes to a particular cellular process. However, since genes belong to intricate networks, other features, besides comparable expression patterns, should provide additional information for the identification of functionally similar genes. Results In this study we perform gene clustering through the identification of Granger causality between and within sets of time series gene expression data. Granger causality is based on the idea that the cause of an event cannot come after its consequence. Conclusions This kind of analysis can be used as a complementary approach for functional clustering, wherein genes would be clustered not solely based on their expression similarity but on their topological proximity built according to the intensity of Granger causality among them. PMID:23107425

  9. Automated Detection of Cancer Associated Genes Using a Combined Fuzzy-Rough-Set-Based F-Information and Water Swirl Algorithm of Human Gene Expression Data.

    Directory of Open Access Journals (Sweden)

    Pugalendhi Ganesh Kumar

    Full Text Available This study describes a novel approach to reducing the challenges of highly nonlinear multiclass gene expression values for cancer diagnosis. To build a fruitful system for cancer diagnosis, in this study, we introduced two levels of gene selection such as filtering and embedding for selection of potential genes and the most relevant genes associated with cancer, respectively. The filter procedure was implemented by developing a fuzzy rough set (FR-based method for redefining the criterion function of f-information (FI to identify the potential genes without discretizing the continuous gene expression values. The embedded procedure is implemented by means of a water swirl algorithm (WSA, which attempts to optimize the rule set and membership function required to classify samples using a fuzzy-rule-based multiclassification system (FRBMS. Two novel update equations are proposed in WSA, which have better exploration and exploitation abilities while designing a self-learning FRBMS. The efficiency of our new approach was evaluated on 13 multicategory and 9 binary datasets of cancer gene expression. Additionally, the performance of the proposed FRFI-WSA method in designing an FRBMS was compared with existing methods for gene selection and optimization such as genetic algorithm (GA, particle swarm optimization (PSO, and artificial bee colony algorithm (ABC on all the datasets. In the global cancer map with repeated measurements (GCM_RM dataset, the FRFI-WSA showed the smallest number of 16 most relevant genes associated with cancer using a minimal number of 26 compact rules with the highest classification accuracy (96.45%. In addition, the statistical validation used in this study revealed that the biological relevance of the most relevant genes associated with cancer and their linguistics detected by the proposed FRFI-WSA approach are better than those in the other methods. The simple interpretable rules with most relevant genes and effectively

  10. Global gene expression analysis for evaluation and design of biomaterials

    Directory of Open Access Journals (Sweden)

    Nobutaka Hanagata, Taro Takemura and Takashi Minowa

    2010-01-01

    Full Text Available Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data.

  11. Global gene expression analysis for evaluation and design of biomaterials

    International Nuclear Information System (INIS)

    Hanagata, Nobutaka; Takemura, Taro; Minowa, Takashi

    2010-01-01

    Comprehensive gene expression analysis using DNA microarrays has become a widespread technique in molecular biological research. In the biomaterials field, it is used to evaluate the biocompatibility or cellular toxicity of metals, polymers and ceramics. Studies in this field have extracted differentially expressed genes in the context of differences in cellular responses among multiple materials. Based on these genes, the effects of materials on cells at the molecular level have been examined. Expression data ranging from several to tens of thousands of genes can be obtained from DNA microarrays. For this reason, several tens or hundreds of differentially expressed genes are often present in different materials. In this review, we outline the principles of DNA microarrays, and provide an introduction to methods of extracting information which is useful for evaluating and designing biomaterials from comprehensive gene expression data. (topical review)

  12. Extracting biologically significant patterns from short time series gene expression data

    Directory of Open Access Journals (Sweden)

    McGinnis Thomas

    2009-08-01

    Full Text Available Abstract Background Time series gene expression data analysis is used widely to study the dynamics of various cell processes. Most of the time series data available today consist of few time points only, thus making the application of standard clustering techniques difficult. Results We developed two new algorithms that are capable of extracting biological patterns from short time point series gene expression data. The two algorithms, ASTRO and MiMeSR, are inspired by the rank order preserving framework and the minimum mean squared residue approach, respectively. However, ASTRO and MiMeSR differ from previous approaches in that they take advantage of the relatively few number of time points in order to reduce the problem from NP-hard to linear. Tested on well-defined short time expression data, we found that our approaches are robust to noise, as well as to random patterns, and that they can correctly detect the temporal expression profile of relevant functional categories. Evaluation of our methods was performed using Gene Ontology (GO annotations and chromatin immunoprecipitation (ChIP-chip data. Conclusion Our approaches generally outperform both standard clustering algorithms and algorithms designed specifically for clustering of short time series gene expression data. Both algorithms are available at http://www.benoslab.pitt.edu/astro/.

  13. Genome-scale modelling of microbial metabolism with temporal and spatial resolution.

    Science.gov (United States)

    Henson, Michael A

    2015-12-01

    Most natural microbial systems have evolved to function in environments with temporal and spatial variations. A major limitation to understanding such complex systems is the lack of mathematical modelling frameworks that connect the genomes of individual species and temporal and spatial variations in the environment to system behaviour. The goal of this review is to introduce the emerging field of spatiotemporal metabolic modelling based on genome-scale reconstructions of microbial metabolism. The extension of flux balance analysis (FBA) to account for both temporal and spatial variations in the environment is termed spatiotemporal FBA (SFBA). Following a brief overview of FBA and its established dynamic extension, the SFBA problem is introduced and recent progress is described. Three case studies are reviewed to illustrate the current state-of-the-art and possible future research directions are outlined. The author posits that SFBA is the next frontier for microbial metabolic modelling and a rapid increase in methods development and system applications is anticipated. © 2015 Authors; published by Portland Press Limited.

  14. Spatially and temporally fluctuating selection at non-MHC immune genes: evidence from TAP polymorphism in populations of brown trout ( Salmo trutta , L.)

    DEFF Research Database (Denmark)

    Jensen, L.F.; Hansen, Michael Møller; Mensberg, Karen-Lise Dons

    2008-01-01

    Temporal samples of Danish brown trout (Salmo trutta) from populations representing varying geographical scales were analysed using eight putatively neutral microsatellite loci and two microsatellite loci embedded in TAP genes (Transporter associated with Antigen Processing). These genes encode m...

  15. A comprehensive view of expression profiles dynamics of capsaicinoid biosynthesis-related genes during pepper fruit development and under meja treatment

    International Nuclear Information System (INIS)

    Deng, M.; Huo, J.; Zhu, H.; Zhang, Z.

    2018-01-01

    Capsaicinoids are a group of secondary plant metabolites which are synthesized and accumulated only in the fruits of peppers (Capsicum annuum L.). In this paper, the fruits of nadao chili peppers were used as experiment materials and the mechanism of capsaicinoid biosynthesis was studied. HPLC studies revealed that capsaicinoid accumulation in the developing fruits initially occurred at 24 days after pollination (DAP), was increasing at 36 DAP, and peaked at 48 DAP. Eleven genes that encoded enzymes involved in capsaicinoid biosynthesis were isolated and characterized. Gene expression with quantitative reverse-transcription polymerase chain reaction analysis demonstrated that capsaicin synthase (CaCS) was expressed only in the placenta of the fruit, while the other ten genes were expressed in all tissues tested, with nine of the eleven genes (with the exception of cinnamic acid-4-hydroxylase [CaCa4H] and p-coumaric acid-3-hydroxylase [CaCa3H]) being strongly expressed in placenta tissue. Spatial expression analysis demonstrated that the 11 genes could be grouped into four categories, based on the patterns of relative expression of the genes during fruit development. Category I contained two genes, which displayed a bell-shaped expression pattern, with peak expression at 24 DAP. Category II contained five genes, the expression of which increased steadily from 0 to 36 DAP, peaking at 36 DAP. Category III comprises two genes, expression of which peaked at 48 DAP. Category IV consists of two genes, which were not expressed from 0 to 12 DAP, but then showed a high level of expression at 36 and 48 DAP. Treatment of the developing fruit with methyl jasmonate (MeJA) resulted in upregulation of the expression of each of the 11 genes. These results provide the first information on capsaicinoid biosynthesis and regulation during pepper fruit development. (author)

  16. A hybrid approach of gene sets and single genes for the prediction of survival risks with gene expression data.

    Science.gov (United States)

    Seok, Junhee; Davis, Ronald W; Xiao, Wenzhong

    2015-01-01

    Accumulated biological knowledge is often encoded as gene sets, collections of genes associated with similar biological functions or pathways. The use of gene sets in the analyses of high-throughput gene expression data has been intensively studied and applied in clinical research. However, the main interest remains in finding modules of biological knowledge, or corresponding gene sets, significantly associated with disease conditions. Risk prediction from censored survival times using gene sets hasn't been well studied. In this work, we propose a hybrid method that uses both single gene and gene set information together to predict patient survival risks from gene expression profiles. In the proposed method, gene sets provide context-level information that is poorly reflected by single genes. Complementarily, single genes help to supplement incomplete information of gene sets due to our imperfect biomedical knowledge. Through the tests over multiple data sets of cancer and trauma injury, the proposed method showed robust and improved performance compared with the conventional approaches with only single genes or gene sets solely. Additionally, we examined the prediction result in the trauma injury data, and showed that the modules of biological knowledge used in the prediction by the proposed method were highly interpretable in biology. A wide range of survival prediction problems in clinical genomics is expected to benefit from the use of biological knowledge.

  17. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development

    DEFF Research Database (Denmark)

    Venø, Morten T; Hansen, Thomas B; Venø, Susanne T

    2015-01-01

    BACKGROUND: Recently, thousands of circular RNAs (circRNAs) have been discovered in various tissues and cell types from human, mouse, fruit fly and nematodes. However, expression of circRNAs across mammalian brain development has never been examined. RESULTS: Here we profile the expression of circ......RNA in five brain tissues at up to six time-points during fetal porcine development, constituting the first report of circRNA in the brain development of a large animal. An unbiased analysis reveals a highly complex regulation pattern of thousands of circular RNAs, with a distinct spatio-temporal expression...... are functionally conserved between mouse and human. Furthermore, we observe that "hot-spot" genes produce multiple circRNA isoforms, which are often differentially expressed across porcine brain development. A global comparison of porcine circRNAs reveals that introns flanking circularized exons are longer than...

  18. Effects of Photoperiod Extension on Clock Gene and Neuropeptide RNA Expression in the SCN of the Soay Sheep.

    Directory of Open Access Journals (Sweden)

    Hugues Dardente

    Full Text Available In mammals, changing daylength (photoperiod is the main synchronizer of seasonal functions. The photoperiodic information is transmitted through the retino-hypothalamic tract to the suprachiasmatic nuclei (SCN, site of the master circadian clock. To investigate effects of day length change on the sheep SCN, we used in-situ hybridization to assess the daily temporal organization of expression of circadian clock genes (Per1, Per2, Bmal1 and Fbxl21 and neuropeptides (Vip, Grp and Avp in animals acclimated to a short photoperiod (SP; 8h of light and at 3 or 15 days following transfer to a long photoperiod (LP3, LP15, respectively; 16h of light, achieved by an acute 8-h delay of lights off. We found that waveforms of SCN gene expression conformed to those previously seen in LP acclimated animals within 3 days of transfer to LP. Mean levels of expression for Per1-2 and Fbxl21 were nearly 2-fold higher in the LP15 than in the SP group. The expression of Vip was arrhythmic and unaffected by photoperiod, while, in contrast to rodents, Grp expression was not detectable within the sheep SCN. Expression of the circadian output gene Avp cycled robustly in all photoperiod groups with no detectable change in phasing. Overall these data suggest that synchronizing effects of light on SCN circadian organisation proceed similarly in ungulates and in rodents, despite differences in neuropeptide gene expression.

  19. Spatial-temporal changes in phytoplankton biomass and primary ...

    African Journals Online (AJOL)

    Spatial-temporal variations in phytoplankton primary production (PP) and biomass (B) were studied for a period of about one year, from July 1999 to July 2000. In addition, changes in corresponding environmental variables were examined. Sampling took place at two stations in Chwaka Bay, one located in mangrove areas, ...

  20. Grammatical Means of Temporality Expression in Translation

    Directory of Open Access Journals (Sweden)

    Tulegen Asylbekovich Merkibayev

    2016-11-01

    Full Text Available Creation problem of model of grammatical means of temporality expression in translation from English into Kazakh and Russian languages is considered in the article. At a choice of translation of transformations of aspectual-temporal categories of a verb from English into Kazakh and Russian languages it is considered not only grammatical compliance of categories of tense, but also the contextual use of a functional and semantic field of verbs, comparison of lexical temporality with positions of concepts, specific to each language world picture, with positions of modern philosophy and logic of language. Authors come to a conclusion that productive use of analytical forms in the Kazakh and English languages is the result of structural features of categories of tense and a type of English and Kazakh languages. Comparison of a phase of actions of a verb in English and Kazakh languages allows creation of reference model of grammatical means of expression of temporality in translation from English into Kazakh and Russian languages on the basis of a functional and semantic field of verbs, comparison of lexical temporality from positions specific on each language picture of the world.

  1. Complete gene expression profiling of Saccharopolyspora erythraea using GeneChip DNA microarrays

    Directory of Open Access Journals (Sweden)

    Bordoni Roberta

    2007-11-01

    Full Text Available Abstract Background The Saccharopolyspora erythraea genome sequence, recently published, presents considerable divergence from those of streptomycetes in gene organization and function, confirming the remarkable potential of S. erythraea for producing many other secondary metabolites in addition to erythromycin. In order to investigate, at whole transcriptome level, how S. erythraea genes are modulated, a DNA microarray was specifically designed and constructed on the S. erythraea strain NRRL 2338 genome sequence, and the expression profiles of 6494 ORFs were monitored during growth in complex liquid medium. Results The transcriptional analysis identified a set of 404 genes, whose transcriptional signals vary during growth and characterize three distinct phases: a rapid growth until 32 h (Phase A; a growth slowdown until 52 h (Phase B; and another rapid growth phase from 56 h to 72 h (Phase C before the cells enter the stationary phase. A non-parametric statistical method, that identifies chromosomal regions with transcriptional imbalances, determined regional organization of transcription along the chromosome, highlighting differences between core and non-core regions, and strand specific patterns of expression. Microarray data were used to characterize the temporal behaviour of major functional classes and of all the gene clusters for secondary metabolism. The results confirmed that the ery cluster is up-regulated during Phase A and identified six additional clusters (for terpenes and non-ribosomal peptides that are clearly regulated in later phases. Conclusion The use of a S. erythraea DNA microarray improved specificity and sensitivity of gene expression analysis, allowing a global and at the same time detailed picture of how S. erythraea genes are modulated. This work underlines the importance of using DNA microarrays, coupled with an exhaustive statistical and bioinformatic analysis of the results, to understand the transcriptional

  2. Effects of Hand Proximity and Movement Direction in Spatial and Temporal Gap Discrimination.

    Science.gov (United States)

    Wiemers, Michael; Fischer, Martin H

    2016-01-01

    Previous research on the interplay between static manual postures and visual attention revealed enhanced visual selection near the hands (near-hand effect). During active movements there is also superior visual performance when moving toward compared to away from the stimulus (direction effect). The "modulated visual pathways" hypothesis argues that differential involvement of magno- and parvocellular visual processing streams causes the near-hand effect. The key finding supporting this hypothesis is an increase in temporal and a reduction in spatial processing in near-hand space (Gozli et al., 2012). Since this hypothesis has, so far, only been tested with static hand postures, we provide a conceptual replication of Gozli et al.'s (2012) result with moving hands, thus also probing the generality of the direction effect. Participants performed temporal or spatial gap discriminations while their right hand was moving below the display. In contrast to Gozli et al. (2012), temporal gap discrimination was superior at intermediate and not near hand proximity. In spatial gap discrimination, a direction effect without hand proximity effect suggests that pragmatic attentional maps overshadowed temporal/spatial processing biases for far/near-hand space.

  3. Expression Analysis of Four Peroxiredoxin Genes from Tamarix hispida in Response to Different Abiotic Stresses and Exogenous Abscisic Acid (ABA

    Directory of Open Access Journals (Sweden)

    Guiyan Yang

    2012-03-01

    Full Text Available Peroxiredoxins (Prxs are a recently discovered family of antioxidant enzymes that catalyze the reduction of peroxides and alkyl peroxides. In this study, four Prx genes (named as ThPrxII, ThPrxIIE, ThPrxIIF, and Th2CysPrx were cloned from Tamarix hispida. Their expression profiles in response to stimulus of NaCl, NaHCO3, PEG, CdCl2 and abscisic acid (ABA in roots, stems and leaves of T. hispida were investigated using real-time RT-PCR. The results showed that the four ThPrxs were all expressed in roots, stems and leaves. Furthermore, the transcript levels of ThPrxIIE and ThPrxII were the lowest and the highest, respectively, in all tissue types. All the ThPrx genes were induced by both NaCl and NaHCO3 and reached their highest expression levels at the onset of stress in roots. Under PEG and CdCl2 stress, the expression patterns of these ThPrxs showed temporal and spatial specificity. The expressions of the ThPrxs were all differentially regulated by ABA, indicating that they are all involved in the ABA signaling pathway. These findings reveal a complex regulation of Prxs that is dependent on the type of Prx, tissue, and the signaling molecule. The divergence of the stress-dependent transcriptional regulation of the ThPrx gene family in T. hispida may provide an essential basis for the elucidation of Prx function in future work.

  4. Expression analysis of four peroxiredoxin genes from Tamarix hispida in response to different abiotic stresses and Exogenous Abscisic Acid (ABA).

    Science.gov (United States)

    Gao, Caiqiu; Zhang, Kaimin; Yang, Guiyan; Wang, Yucheng

    2012-01-01

    Peroxiredoxins (Prxs) are a recently discovered family of antioxidant enzymes that catalyze the reduction of peroxides and alkyl peroxides. In this study, four Prx genes (named as ThPrxII, ThPrxIIE, ThPrxIIF, and Th2CysPrx) were cloned from Tamarix hispida. Their expression profiles in response to stimulus of NaCl, NaHCO(3), PEG, CdCl(2) and abscisic acid (ABA) in roots, stems and leaves of T. hispida were investigated using real-time RT-PCR. The results showed that the four ThPrxs were all expressed in roots, stems and leaves. Furthermore, the transcript levels of ThPrxIIE and ThPrxII were the lowest and the highest, respectively, in all tissue types. All the ThPrx genes were induced by both NaCl and NaHCO(3) and reached their highest expression levels at the onset of stress in roots. Under PEG and CdCl(2) stress, the expression patterns of these ThPrxs showed temporal and spatial specificity. The expressions of the ThPrxs were all differentially regulated by ABA, indicating that they are all involved in the ABA signaling pathway. These findings reveal a complex regulation of Prxs that is dependent on the type of Prx, tissue, and the signaling molecule. The divergence of the stress-dependent transcriptional regulation of the ThPrx gene family in T. hispida may provide an essential basis for the elucidation of Prx function in future work.

  5. Spatial and temporal distribution of onroad CO2 emissions at the Urban spatial scale

    Science.gov (United States)

    Song, Y.; Gurney, K. R.; Zhou, Y.; Mendoza, D. L.

    2011-12-01

    The Hestia Project is a multi-disciplinary effort to help better understand the spatial and temporal distribution of fossil fuel carbon dioxide (CO2) emission at urban scale. Onroad transportation is an essential source of CO2 emissions. This study examines two urban domains: Marion County (Indianapolis) and Los Angeles County and explores the methods and results associated with the spatial and temporal distribution of local urban onroad CO2 emissions. We utilize a bottom-up approach and spatially distribute county emissions based on the Annual Average Daily Traffic (AADT) counts provided by local Department of Transportation. The total amount of CO2 emissions is calculated by the National Mobile Inventory Model (NMIM) for Marion County and the EMission FACtors (EMFAC) model for Los Angeles County. The NMIM model provides CO2 emissions based on vehicle miles traveled (VMT) data at the county-level from the national county database (NCD). The EMFAC model provides CO2 emissions for California State based on vehicle activities, including VMT, vehicle population and fuel types. A GIS road atlas is retrieved from the US Census Bureau. Further spatial analysis and integration are performed by GIS software to distribute onroad CO2 emission according to the traffic volume. The temporal allocation of onroad CO2 emission is based on the hourly traffic data obtained from the Metropolitan Planning Orgnizations (MPO) for Marion County and Department of Transportation for Los Angeles County. The annual CO2 emissions are distributed according to each hourly fraction of traffic counts. Due to the fact that ATR stations are unevenly distributed in space, we create Thiessen polygons such that each road segment is linked to the nearest neighboring ATR station. The hourly profile for each individual station is then combined to create a "climatology" of CO2 emissions in time on each road segment. We find that for Marion County in the year 2002, urban interstate and arterial roads have

  6. Creating and validating cis-regulatory maps of tissue-specific gene expression regulation

    Science.gov (United States)

    O'Connor, Timothy R.; Bailey, Timothy L.

    2014-01-01

    Predicting which genomic regions control the transcription of a given gene is a challenge. We present a novel computational approach for creating and validating maps that associate genomic regions (cis-regulatory modules–CRMs) with genes. The method infers regulatory relationships that explain gene expression observed in a test tissue using widely available genomic data for ‘other’ tissues. To predict the regulatory targets of a CRM, we use cross-tissue correlation between histone modifications present at the CRM and expression at genes within 1 Mbp of it. To validate cis-regulatory maps, we show that they yield more accurate models of gene expression than carefully constructed control maps. These gene expression models predict observed gene expression from transcription factor binding in the CRMs linked to that gene. We show that our maps are able to identify long-range regulatory interactions and improve substantially over maps linking genes and CRMs based on either the control maps or a ‘nearest neighbor’ heuristic. Our results also show that it is essential to include CRMs predicted in multiple tissues during map-building, that H3K27ac is the most informative histone modification, and that CAGE is the most informative measure of gene expression for creating cis-regulatory maps. PMID:25200088

  7. Temporal changes of spatial soil moisture patterns: controlling factors explained with a multidisciplinary approach

    Science.gov (United States)

    Martini, Edoardo; Wollschläger, Ute; Kögler, Simon; Behrens, Thorsten; Dietrich, Peter; Reinstorf, Frido; Schmidt, Karsten; Weiler, Markus; Werban, Ulrike; Zacharias, Steffen

    2016-04-01

    Characterizing the spatial patterns of soil moisture is critical for hydrological and meteorological models, as soil moisture is a key variable that controls matter and energy fluxes and soil-vegetation-atmosphere exchange processes. Deriving detailed process understanding at the hillslope scale is not trivial, because of the temporal variability of local soil moisture dynamics. Nevertheless, it remains a challenge to provide adequate information on the temporal variability of soil moisture and its controlling factors. Recent advances in wireless sensor technology allow monitoring of soil moisture dynamics with high temporal resolution at varying scales. In addition, mobile geophysical methods such as electromagnetic induction (EMI) have been widely used for mapping soil water content at the field scale with high spatial resolution, as being related to soil apparent electrical conductivity (ECa). The objective of this study was to characterize the spatial and temporal pattern of soil moisture at the hillslope scale and to infer the controlling hydrological processes, integrating well established and innovative sensing techniques, as well as new statistical methods. We combined soil hydrological and pedological expertise with geophysical measurements and methods from digital soil mapping for designing a wireless soil moisture monitoring network. For a hillslope site within the Schäfertal catchment (Central Germany), soil water dynamics were observed during 14 months, and soil ECa was mapped on seven occasions whithin this period of time using an EM38-DD device. Using the Spearman rank correlation coefficient, we described the temporal persistence of a dry and a wet characteristic state of soil moisture as well as the switching mechanisms, inferring the local properties that control the observed spatial patterns and the hydrological processes driving the transitions. Based on this, we evaluated the use of EMI for mapping the spatial pattern of soil moisture under

  8. Integrating mean and variance heterogeneities to identify differentially expressed genes.

    Science.gov (United States)

    Ouyang, Weiwei; An, Qiang; Zhao, Jinying; Qin, Huaizhen

    2016-12-06

    In functional genomics studies, tests on mean heterogeneity have been widely employed to identify differentially expressed genes with distinct mean expression levels under different experimental conditions. Variance heterogeneity (aka, the difference between condition-specific variances) of gene expression levels is simply neglected or calibrated for as an impediment. The mean heterogeneity in the expression level of a gene reflects one aspect of its distribution alteration; and variance heterogeneity induced by condition change may reflect another aspect. Change in condition may alter both mean and some higher-order characteristics of the distributions of expression levels of susceptible genes. In this report, we put forth a conception of mean-variance differentially expressed (MVDE) genes, whose expression means and variances are sensitive to the change in experimental condition. We mathematically proved the null independence of existent mean heterogeneity tests and variance heterogeneity tests. Based on the independence, we proposed an integrative mean-variance test (IMVT) to combine gene-wise mean heterogeneity and variance heterogeneity induced by condition change. The IMVT outperformed its competitors under comprehensive simulations of normality and Laplace settings. For moderate samples, the IMVT well controlled type I error rates, and so did existent mean heterogeneity test (i.e., the Welch t test (WT), the moderated Welch t test (MWT)) and the procedure of separate tests on mean and variance heterogeneities (SMVT), but the likelihood ratio test (LRT) severely inflated type I error rates. In presence of variance heterogeneity, the IMVT appeared noticeably more powerful than all the valid mean heterogeneity tests. Application to the gene profiles of peripheral circulating B raised solid evidence of informative variance heterogeneity. After adjusting for background data structure, the IMVT replicated previous discoveries and identified novel experiment

  9. Anxa4 Genes are Expressed in Distinct Organ Systems in Xenopus laevis and tropicalis But are Functionally Conserved

    Science.gov (United States)

    Massé, Karine L; Collins, Robert J; Bhamra, Surinder; Seville, Rachel A

    2007-01-01

    Anxa4 belongs to the multigenic annexin family of proteins which are characterized by their ability to interact with membranes in a calcium-dependent manner. Defined as a marker for polarized epithelial cells, Anxa4 is believed to be involved in many cellular processes but its functions in vivo are still poorly understood. Previously, we cloned Xanx4 in Xenopus laevis (now referred to as anxa4a) and demonstrated its role during organogenesis of the pronephros, providing the first evidence of a specific function for this protein during the development of a vertebrate. Here, we describe the strict conservation of protein sequence and functional domains of anxa4 during vertebrate evolution. We also identify the paralog of anxa4a, anxa4b and show its specific temporal and spatial expression pattern is different from anxa4a. We show that anxa4 orthologs in X. laevis and tropicalis display expression domains in different organ systems. Whilst the anxa4a gene is mainly expressed in the kidney, Xt anxa4 is expressed in the liver. Finally, we demonstrate Xt anxa4 and anxa4a can display conserved function during kidney organogenesis, despite the fact that Xt anxa4 transcripts are not expressed in this domain. This study highlights the divergence of expression of homologous genes during Xenopus evolution and raises the potential problems of using X. tropicalis promoters in X. laevis. PMID:19279706

  10. Sub-cellular mRNA localization modulates the regulation of gene expression by small RNAs in bacteria

    Science.gov (United States)

    Teimouri, Hamid; Korkmazhan, Elgin; Stavans, Joel; Levine, Erel

    2017-10-01

    Small non-coding RNAs can exert significant regulatory activity on gene expression in bacteria. In recent years, substantial progress has been made in understanding bacterial gene expression by sRNAs. However, recent findings that demonstrate that families of mRNAs show non-trivial sub-cellular distributions raise the question of how localization may affect the regulatory activity of sRNAs. Here we address this question within a simple mathematical model. We show that the non-uniform spatial distributions of mRNA can alter the threshold-linear response that characterizes sRNAs that act stoichiometrically, and modulate the hierarchy among targets co-regulated by the same sRNA. We also identify conditions where the sub-cellular organization of cofactors in the sRNA pathway can induce spatial heterogeneity on sRNA targets. Our results suggest that under certain conditions, interpretation and modeling of natural and synthetic gene regulatory circuits need to take into account the spatial organization of the transcripts of participating genes.

  11. Spatial and temporal analyses for multiscale monitoring of landslides: Examples from Northern Ireland

    Science.gov (United States)

    Bell, Andrew; McKinley, Jennifer; Hughes, David

    2013-04-01

    slopes with DEMs of difference showing areas of recent movement, erosion and deposition. In addition, changes in the structure of the slope characterised by DEM of difference and morphological parameters in the form of roughness, slope and curvature measures are progressively linked to failures indicated from temporal DEM monitoring. Preliminary results are presented for a case site at Straidkilly Point, Glenarm, Co. Antrim, Northern Ireland, illustrating multiple approaches to the spatial and temporal monitoring of landslides. These indicate how spatial morphological approaches and risk assessment frameworks coupled with TLS monitoring and field instrumentation enable characterisation and prediction of potential areas of slope stability issues. On site weather instrumentation and piezometers document changes in pore water pressures resulting in site-specific information with geotechnical observations parameterised within the temporal LiDAR monitoring. This provides a multifaceted approach to the characterisation and analysis of slope stability issues. The presented methodology of multiscale datasets and surveying approaches utilising spatial parameters and risk index mapping enables a more comprehensive and effective prediction of landslides resulting in effective characterisation and remediation strategies.

  12. Dynamic association rules for gene expression data analysis.

    Science.gov (United States)

    Chen, Shu-Chuan; Tsai, Tsung-Hsien; Chung, Cheng-Han; Li, Wen-Hsiung

    2015-10-14

    The purpose of gene expression analysis is to look for the association between regulation of gene expression levels and phenotypic variations. This association based on gene expression profile has been used to determine whether the induction/repression of genes correspond to phenotypic variations including cell regulations, clinical diagnoses and drug development. Statistical analyses on microarray data have been developed to resolve gene selection issue. However, these methods do not inform us of causality between genes and phenotypes. In this paper, we propose the dynamic association rule algorithm (DAR algorithm) which helps ones to efficiently select a subset of significant genes for subsequent analysis. The DAR algorithm is based on association rules from market basket analysis in marketing. We first propose a statistical way, based on constructing a one-sided confidence interval and hypothesis testing, to determine if an association rule is meaningful. Based on the proposed statistical method, we then developed the DAR algorithm for gene expression data analysis. The method was applied to analyze four microarray datasets and one Next Generation Sequencing (NGS) dataset: the Mice Apo A1 dataset, the whole genome expression dataset of mouse embryonic stem cells, expression profiling of the bone marrow of Leukemia patients, Microarray Quality Control (MAQC) data set and the RNA-seq dataset of a mouse genomic imprinting study. A comparison of the proposed method with the t-test on the expression profiling of the bone marrow of Leukemia patients was conducted. We developed a statistical way, based on the concept of confidence interval, to determine the minimum support and minimum confidence for mining association relationships among items. With the minimum support and minimum confidence, one can find significant rules in one single step. The DAR algorithm was then developed for gene expression data analysis. Four gene expression datasets showed that the proposed

  13. GSMA: Gene Set Matrix Analysis, An Automated Method for Rapid Hypothesis Testing of Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Chris Cheadle

    2007-01-01

    Full Text Available Background: Microarray technology has become highly valuable for identifying complex global changes in gene expression patterns. The assignment of functional information to these complex patterns remains a challenging task in effectively interpreting data and correlating results from across experiments, projects and laboratories. Methods which allow the rapid and robust evaluation of multiple functional hypotheses increase the power of individual researchers to data mine gene expression data more efficiently.Results: We have developed (gene set matrix analysis GSMA as a useful method for the rapid testing of group-wise up- or downregulation of gene expression simultaneously for multiple lists of genes (gene sets against entire distributions of gene expression changes (datasets for single or multiple experiments. The utility of GSMA lies in its flexibility to rapidly poll gene sets related by known biological function or as designated solely by the end-user against large numbers of datasets simultaneously.Conclusions: GSMA provides a simple and straightforward method for hypothesis testing in which genes are tested by groups across multiple datasets for patterns of expression enrichment.

  14. Biomonitoring spatial and temporal impact of atmospheric dust from a cement industry

    International Nuclear Information System (INIS)

    Branquinho, Cristina; Gaio-Oliveira, Gisela; Augusto, Sofia; Pinho, Pedro; Maguas, Cristina; Correia, Otilia

    2008-01-01

    The objective of this work was to evaluate the spatial and temporal impact of dust-pollution in the vicinity of a cement industry, located in an area with dry climate. The spatial impact integrated over time was evaluated from the concentrations of Ca, Fe and Mg in in-situ Xanthoria parietina. The temporal pattern was assessed through one-month transplants of the lichen Ramalina canariensis. Four potential sources of atmospheric dust were evaluated: the limestone-quarry; the unpaved roads, the deposit area and the cement mill. Calcium concentration in lichens was considered the best cement-dust indicator. Different types of dust (clinker and grinded-limestone-dust) resulted in different time-patterns of Ca accumulation, which was also related with the different influence that wet and dry periods have in the lichen accumulation process. The dust pollution was found to be deposited locally and dependent on: the nature of dust particles and the volume and frequency of precipitation. - Biomonitoring Spatial and Temporal dust emissions in dry climates

  15. Biomonitoring spatial and temporal impact of atmospheric dust from a cement industry

    Energy Technology Data Exchange (ETDEWEB)

    Branquinho, Cristina [Universidade de Lisboa, Faculdade de Ciencias, Centro de Ecologia e Biologia Vegetal, Campo Grande, Edificio C2, Piso 4, 1749-016 Lisbon (Portugal); Universidade Atlantica, Antiga Fabrica da Polvora de Barcarena, 2745-615 Barcarena (Portugal)], E-mail: cmbranquinho@fc.ul.pt; Gaio-Oliveira, Gisela; Augusto, Sofia; Pinho, Pedro; Maguas, Cristina; Correia, Otilia [Universidade de Lisboa, Faculdade de Ciencias, Centro de Ecologia e Biologia Vegetal, Campo Grande, Edificio C2, Piso 4, 1749-016 Lisbon (Portugal)

    2008-01-15

    The objective of this work was to evaluate the spatial and temporal impact of dust-pollution in the vicinity of a cement industry, located in an area with dry climate. The spatial impact integrated over time was evaluated from the concentrations of Ca, Fe and Mg in in-situ Xanthoria parietina. The temporal pattern was assessed through one-month transplants of the lichen Ramalina canariensis. Four potential sources of atmospheric dust were evaluated: the limestone-quarry; the unpaved roads, the deposit area and the cement mill. Calcium concentration in lichens was considered the best cement-dust indicator. Different types of dust (clinker and grinded-limestone-dust) resulted in different time-patterns of Ca accumulation, which was also related with the different influence that wet and dry periods have in the lichen accumulation process. The dust pollution was found to be deposited locally and dependent on: the nature of dust particles and the volume and frequency of precipitation. - Biomonitoring Spatial and Temporal dust emissions in dry climates.

  16. Synchronous retinotopic frontal-temporal activity during long-term memory for spatial location.

    Science.gov (United States)

    Slotnick, Scott D

    2010-05-12

    Early visual areas in occipital cortex are known to be retinotopic. Recently, retinotopic maps have been reported in frontal and parietal cortex during spatial attention and working memory. The present event-related potential (ERP) and functional magnetic resonance imaging (fMRI) study determined whether spatial long-term memory was associated with retinotopic activity in frontal and parietal regions, and assessed whether retinotopic activity in these higher level control regions was synchronous with retinotopic activity in lower level visual sensory regions. During encoding, abstract shapes were presented to the left or right of fixation. During retrieval, old and new shapes were presented at fixation and participants classified each shape as old and previously on the "left", old and previously on the "right", or "new". Retinotopic effects were manifested by accurate memory for items previously presented on the left producing activity in the right hemisphere and accurate memory for items previously presented on the right producing activity in the left hemisphere. Retinotopic ERP activity was observed in frontal regions and visual sensory (occipital and temporal) regions. In frontal cortex, retinotopic fMRI activity was localized to the frontal eye fields. There were no significant ERP or fMRI retinotopic memory effects in parietal regions. The present long-term memory retinotopic effects complement previous spatial attention and working memory findings (and suggest retinotopic activity in parietal cortex may require an external peripheral stimulus). Furthermore, ERP cross-correlogram analysis revealed that retinotopic activations in frontal and temporal regions were synchronous, indicating that these regions interact during retrieval of spatial information. (c) 2010 Elsevier B.V. All rights reserved.

  17. Spatial and Temporal Dynamics and Value of Nature-Based Recreation, Estimated via Social Media.

    Science.gov (United States)

    Sonter, Laura J; Watson, Keri B; Wood, Spencer A; Ricketts, Taylor H

    2016-01-01

    Conserved lands provide multiple ecosystem services, including opportunities for nature-based recreation. Managing this service requires understanding the landscape attributes underpinning its provision, and how changes in land management affect its contribution to human wellbeing over time. However, evidence from both spatially explicit and temporally dynamic analyses is scarce, often due to data limitations. In this study, we investigated nature-based recreation within conserved lands in Vermont, USA. We used geotagged photographs uploaded to the photo-sharing website Flickr to quantify visits by in-state and out-of-state visitors, and we multiplied visits by mean trip expenditures to show that conserved lands contributed US $1.8 billion (US $0.18-20.2 at 95% confidence) to Vermont's tourism industry between 2007 and 2014. We found eight landscape attributes explained the pattern of visits to conserved lands; visits were higher in larger conserved lands, with less forest cover, greater trail density and more opportunities for snow sports. Some of these attributes differed from those found in other locations, but all aligned with our understanding of recreation in Vermont. We also found that using temporally static models to inform conservation decisions may have perverse outcomes for nature-based recreation. For example, static models suggest conserved land with less forest cover receive more visits, but temporally dynamic models suggest clearing forests decreases, rather than increases, visits to these sites. Our results illustrate the importance of understanding both the spatial and temporal dynamics of ecosystem services for conservation decision-making.

  18. Novel gene sets improve set-level classification of prokaryotic gene expression data.

    Science.gov (United States)

    Holec, Matěj; Kuželka, Ondřej; Železný, Filip

    2015-10-28

    Set-level classification of gene expression data has received significant attention recently. In this setting, high-dimensional vectors of features corresponding to genes are converted into lower-dimensional vectors of features corresponding to biologically interpretable gene sets. The dimensionality reduction brings the promise of a decreased risk of overfitting, potentially resulting in improved accuracy of the learned classifiers. However, recent empirical research has not confirmed this expectation. Here we hypothesize that the reported unfavorable classification results in the set-level framework were due to the adoption of unsuitable gene sets defined typically on the basis of the Gene ontology and the KEGG database of metabolic networks. We explore an alternative approach to defining gene sets, based on regulatory interactions, which we expect to collect genes with more correlated expression. We hypothesize that such more correlated gene sets will enable to learn more accurate classifiers. We define two families of gene sets using information on regulatory interactions, and evaluate them on phenotype-classification tasks using public prokaryotic gene expression data sets. From each of the two gene-set families, we first select the best-performing subtype. The two selected subtypes are then evaluated on independent (testing) data sets against state-of-the-art gene sets and against the conventional gene-level approach. The novel gene sets are indeed more correlated than the conventional ones, and lead to significantly more accurate classifiers. The novel gene sets are indeed more correlated than the conventional ones, and lead to significantly more accurate classifiers. Novel gene sets defined on the basis of regulatory interactions improve set-level classification of gene expression data. The experimental scripts and other material needed to reproduce the experiments are available at http://ida.felk.cvut.cz/novelgenesets.tar.gz.

  19. High-resolution temporal and regional mapping of MAPT expression and splicing in human brain development.

    Science.gov (United States)

    Hefti, Marco M; Farrell, Kurt; Kim, SoongHo; Bowles, Kathryn R; Fowkes, Mary E; Raj, Towfique; Crary, John F

    2018-01-01

    The microtubule associated protein tau plays a critical role in the pathogenesis of neurodegenerative disease. Recent studies suggest that tau also plays a role in disorders of neuronal connectivity, including epilepsy and post-traumatic stress disorder. Animal studies have shown that the MAPT gene, which codes for the tau protein, undergoes complex pre-mRNA alternative splicing to produce multiple isoforms during brain development. Human data, particularly on temporal and regional variation in tau splicing during development are however lacking. In this study, we present the first detailed examination of the temporal and regional sequence of MAPT alternative splicing in the developing human brain. We used a novel computational analysis of large transcriptomic datasets (total n = 502 patients), quantitative polymerase chain reaction (qPCR) and western blotting to examine tau expression and splicing in post-mortem human fetal, pediatric and adult brains. We found that MAPT exons 2 and 10 undergo abrupt shifts in expression during the perinatal period that are unique in the canonical human microtubule-associated protein family, while exon 3 showed small but significant temporal variation. Tau isoform expression may be a marker of neuronal maturation, temporally correlated with the onset of axonal growth. Immature brain regions such as the ganglionic eminence and rhombic lip had very low tau expression, but within more mature regions, there was little variation in tau expression or splicing. We thus demonstrate an abrupt, evolutionarily conserved shift in tau isoform expression during the human perinatal period that may be due to tau expression in maturing neurons. Alternative splicing of the MAPT pre-mRNA may play a vital role in normal brain development across multiple species and provides a basis for future investigations into the developmental and pathological functions of the tau protein.

  20. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.).

    Science.gov (United States)

    Li, Fupeng; Hao, Chaoyun; Yan, Lin; Wu, Baoduo; Qin, Xiaowei; Lai, Jianxiong; Song, Yinghui

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family.

  1. Transcriptomic analysis across nasal, temporal, and macular regions of human neural retina and RPE/choroid by RNA-Seq

    Science.gov (United States)

    Whitmore, S. Scott; Wagner, Alex H.; DeLuca, Adam P.; Drack, Arlene V.; Stone, Edwin M.; Tucker, Budd A.; Zeng, Shemin; Braun, Terry A.; Mullins, Robert F.; Scheetz, Todd E.

    2014-01-01

    Proper spatial differentiation of retinal cell types is necessary for normal human vision. Many retinal diseases, such as Best disease and male germ cell associated kinase (MAK)-associated retinitis pigmentosa, preferentially affect distinct topographic regions of the retina. While much is known about the distribution of cell-types in the retina, the distribution of molecular components across the posterior pole of the eye has not been well-studied. To investigate regional difference in molecular composition of ocular tissues, we assessed differential gene expression across the temporal, macular, and nasal retina and retinal pigment epithelium (RPE)/choroid of human eyes using RNA-Seq. RNA from temporal, macular, and nasal retina and RPE/choroid from four human donor eyes was extracted, poly-A selected, fragmented, and sequenced as 100 bp read pairs. Digital read files were mapped to the human genome and analyzed for differential expression using the Tuxedo software suite. Retina and RPE/choroid samples were clearly distinguishable at the transcriptome level. Numerous transcription factors were differentially expressed between regions of the retina and RPE/choroid. Photoreceptor-specific genes were enriched in the peripheral samples, while ganglion cell and amacrine cell genes were enriched in the macula. Within the RPE/choroid, RPE-specific genes were upregulated at the periphery while endothelium associated genes were upregulated in the macula. Consistent with previous studies, BEST1 expression was lower in macular than extramacular regions. The MAK gene was expressed at lower levels in macula than in extramacular regions, but did not exhibit a significant difference between nasal and temporal retina. The regional molecular distinction is greatest between macula and periphery and decreases between different peripheral regions within a tissue. Datasets such as these can be used to prioritize candidate genes for possible involvement in retinal diseases with

  2. Transcriptomic analysis across nasal, temporal, and macular regions of human neural retina and RPE/choroid by RNA-Seq.

    Science.gov (United States)

    Whitmore, S Scott; Wagner, Alex H; DeLuca, Adam P; Drack, Arlene V; Stone, Edwin M; Tucker, Budd A; Zeng, Shemin; Braun, Terry A; Mullins, Robert F; Scheetz, Todd E

    2014-12-01

    Proper spatial differentiation of retinal cell types is necessary for normal human vision. Many retinal diseases, such as Best disease and male germ cell associated kinase (MAK)-associated retinitis pigmentosa, preferentially affect distinct topographic regions of the retina. While much is known about the distribution of cell types in the retina, the distribution of molecular components across the posterior pole of the eye has not been well-studied. To investigate regional difference in molecular composition of ocular tissues, we assessed differential gene expression across the temporal, macular, and nasal retina and retinal pigment epithelium (RPE)/choroid of human eyes using RNA-Seq. RNA from temporal, macular, and nasal retina and RPE/choroid from four human donor eyes was extracted, poly-A selected, fragmented, and sequenced as 100 bp read pairs. Digital read files were mapped to the human genome and analyzed for differential expression using the Tuxedo software suite. Retina and RPE/choroid samples were clearly distinguishable at the transcriptome level. Numerous transcription factors were differentially expressed between regions of the retina and RPE/choroid. Photoreceptor-specific genes were enriched in the peripheral samples, while ganglion cell and amacrine cell genes were enriched in the macula. Within the RPE/choroid, RPE-specific genes were upregulated at the periphery while endothelium associated genes were upregulated in the macula. Consistent with previous studies, BEST1 expression was lower in macular than extramacular regions. The MAK gene was expressed at lower levels in macula than in extramacular regions, but did not exhibit a significant difference between nasal and temporal retina. The regional molecular distinction is greatest between macula and periphery and decreases between different peripheral regions within a tissue. Datasets such as these can be used to prioritize candidate genes for possible involvement in retinal diseases with

  3. Network Security via Biometric Recognition of Patterns of Gene Expression

    Science.gov (United States)

    Shaw, Harry C.

    2016-01-01

    Molecular biology provides the ability to implement forms of information and network security completely outside the bounds of legacy security protocols and algorithms. This paper addresses an approach which instantiates the power of gene expression for security. Molecular biology provides a rich source of gene expression and regulation mechanisms, which can be adopted to use in the information and electronic communication domains. Conventional security protocols are becoming increasingly vulnerable due to more intensive, highly capable attacks on the underlying mathematics of cryptography. Security protocols are being undermined by social engineering and substandard implementations by IT (Information Technology) organizations. Molecular biology can provide countermeasures to these weak points with the current security approaches. Future advances in instruments for analyzing assays will also enable this protocol to advance from one of cryptographic algorithms to an integrated system of cryptographic algorithms and real-time assays of gene expression products.

  4. Gradient COUP-TFI Expression Is Required for Functional Organization of the Hippocampal Septo-Temporal Longitudinal Axis.

    Science.gov (United States)

    Flore, Gemma; Di Ruberto, Giuseppina; Parisot, Joséphine; Sannino, Sara; Russo, Fabio; Illingworth, Elizabeth A; Studer, Michèle; De Leonibus, Elvira

    2017-02-01

    The hippocampus (HP), a medial cortical structure, is subdivided into a distinct dorsal (septal) and ventral (temporal) portion, which is separated by an intermediate region lying on a longitudinal curvature. While the dorsal portion is more dedicated to spatial navigation and memory, the most ventral part processes emotional information. Genetic factors expressed in gradient during development seem to control the size and correct positioning of the HP along its longitudinal axis; however, their roles in regulating differential growth and in supporting its anatomical and functional dissociation remain unexplored. Here, we challenge the in vivo function of the nuclear receptor COUP-TFI (chicken ovalbumin upstream promoter transcription factor 1) in controlling the hippocampal, anatomical, and functional properties along its longitudinal axis. Loss of cortical COUP-TFI function results in a dysmorphic HP with altered shape, volume, and connectivity, particularly in its dorsal and intermediate regions. Notably, topographic inputs from the entorhinal cortex are strongly impaired in the dorsal portion of COUP-TFI mutants. These severe morphological changes are associated with selective spatial learning and memory impairment. These findings identify a novel transcriptional regulator required in the functional organization along the hippocampal septo-temporal axis supporting a genetic basis of the hippocampal volumetric growth with its final shape, circuit, and type of memory function. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Correlation-based iterative clustering methods for time course data: The identification of temporal gene response modules for influenza infection in humans

    Directory of Open Access Journals (Sweden)

    Michelle Carey

    2016-10-01

    Full Text Available Many pragmatic clustering methods have been developed to group data vectors or objects into clusters so that the objects in one cluster are very similar and objects in different clusters are distinct based on some similarity measure. The availability of time course data has motivated researchers to develop methods, such as mixture and mixed-effects modelling approaches, that incorporate the temporal information contained in the shape of the trajectory of the data. However, there is still a need for the development of time-course clustering methods that can adequately deal with inhomogeneous clusters (some clusters are quite large and others are quite small. Here we propose two such methods, hierarchical clustering (IHC and iterative pairwise-correlation clustering (IPC. We evaluate and compare the proposed methods to the Markov Cluster Algorithm (MCL and the generalised mixed-effects model (GMM using simulation studies and an application to a time course gene expression data set from a study containing human subjects who were challenged by a live influenza virus. We identify four types of temporal gene response modules to influenza infection in humans, i.e., single-gene modules (SGM, small-size modules (SSM, medium-size modules (MSM and large-size modules (LSM. The LSM contain genes that perform various fundamental biological functions that are consistent across subjects. The SSM and SGM contain genes that perform either different or similar biological functions that have complex temporal responses to the virus and are unique to each subject. We show that the temporal response of the genes in the LSM have either simple patterns with a single peak or trough a consequence of the transient stimuli sustained or state-transitioning patterns pertaining to developmental cues and that these modules can differentiate the severity of disease outcomes. Additionally, the size of gene response modules follows a power-law distribution with a consistent

  6. Xylella fastidiosa gene expression analysis by DNA microarrays

    Directory of Open Access Journals (Sweden)

    Regiane F. Travensolo

    2009-01-01

    Full Text Available Xylella fastidiosa genome sequencing has generated valuable data by identifying genes acting either on metabolic pathways or in associated pathogenicity and virulence. Based on available information on these genes, new strategies for studying their expression patterns, such as microarray technology, were employed. A total of 2,600 primer pairs were synthesized and then used to generate fragments using the PCR technique. The arrays were hybridized against cDNAs labeled during reverse transcription reactions and which were obtained from bacteria grown under two different conditions (liquid XDM2 and liquid BCYE. All data were statistically analyzed to verify which genes were differentially expressed. In addition to exploring conditions for X. fastidiosa genome-wide transcriptome analysis, the present work observed the differential expression of several classes of genes (energy, protein, amino acid and nucleotide metabolism, transport, degradation of substances, toxins and hypothetical proteins, among others. The understanding of expressed genes in these two different media will be useful in comprehending the metabolic characteristics of X. fastidiosa, and in evaluating how important certain genes are for the functioning and survival of these bacteria in plants.

  7. Identification of transcription-factor genes expressed in the Arabidopsis female gametophyte

    Directory of Open Access Journals (Sweden)

    Kang Il-Ho

    2010-06-01

    Full Text Available Abstract Background In flowering plants, the female gametophyte is typically a seven-celled structure with four cell types: the egg cell, the central cell, the synergid cells, and the antipodal cells. These cells perform essential functions required for double fertilization and early seed development. Differentiation of these distinct cell types likely involves coordinated changes in gene expression regulated by transcription factors. Therefore, understanding female gametophyte cell differentiation and function will require dissection of the gene regulatory networks operating in each of the cell types. These efforts have been hampered because few transcription factor genes expressed in the female gametophyte have been identified. To identify such genes, we undertook a large-scale differential expression screen followed by promoter-fusion analysis to detect transcription-factor genes transcribed in the Arabidopsis female gametophyte. Results Using quantitative reverse-transcriptase PCR, we analyzed 1,482 Arabidopsis transcription-factor genes and identified 26 genes exhibiting reduced mRNA levels in determinate infertile 1 mutant ovaries, which lack female gametophytes, relative to ovaries containing female gametophytes. Spatial patterns of gene transcription within the mature female gametophyte were identified for 17 transcription-factor genes using promoter-fusion analysis. Of these, ten genes were predominantly expressed in a single cell type of the female gametophyte including the egg cell, central cell and the antipodal cells whereas the remaining seven genes were expressed in two or more cell types. After fertilization, 12 genes were transcriptionally active in the developing embryo and/or endosperm. Conclusions We have shown that our quantitative reverse-transcriptase PCR differential-expression screen is sufficiently sensitive to detect transcription-factor genes transcribed in the female gametophyte. Most of the genes identified in this

  8. Independent effects of bottom-up temporal expectancy and top-down spatial attention. An audiovisual study using rhythmic cueing.

    Directory of Open Access Journals (Sweden)

    Alexander eJones

    2015-01-01

    Full Text Available Selective attention to a spatial location has shown enhance perception and facilitate behaviour for events at attended locations. However, selection relies not only on where but also when an event occurs. Recently, interest has turned to how intrinsic neural oscillations in the brain entrain to rhythms in our environment, and, stimuli appearing in or out of synch with a rhythm have shown to modulate perception and performance. Temporal expectations created by rhythms and spatial attention are two processes which have independently shown to affect stimulus processing but it remains largely unknown how, and if, they interact. In four separate tasks, this study investigated the effects of voluntary spatial attention and bottom-up temporal expectations created by rhythms in both unimodal and crossmodal conditions. In each task the participant used an informative cue, either colour or pitch, to direct their covert spatial attention to the left or right, and respond as quickly as possible to a target. The lateralized target (visual or auditory was then presented at the attended or unattended side. Importantly, although not task relevant, the cue was a rhythm of either flashes or beeps. The target was presented in or out of sync (early or late with the rhythmic cue. The results showed participants were faster responding to spatially attended compared to unattended targets in all tasks. Moreover, there was an effect of rhythmic cueing upon response times in both unimodal and crossmodal conditions. Responses were faster to targets presented in sync with the rhythm compared to when they appeared too early in both crossmodal tasks. That is, rhythmic stimuli in one modality influenced the temporal expectancy in the other modality, suggesting temporal expectancies created by rhythms are crossmodal. Interestingly, there was no interaction between top-down spatial attention and rhythmic cueing in any task suggesting these two processes largely influenced

  9. MicroRNA-gene expression network in murine liver during Schistosoma japonicum infection.

    Directory of Open Access Journals (Sweden)

    Pengfei Cai

    Full Text Available BACKGROUND: Schistosomiasis japonica remains a significant public health problem in China and Southeast Asian countries. The most typical and serious outcome of the chronic oriental schistosomiasis is the progressive granuloma and fibrosis in the host liver, which has been a major medical challenge. However, the molecular mechanism underling the hepatic pathogenesis is still not clear. METHODOLOGY AND PRINCIPAL FINDINGS: Using microarrays, we quantified the temporal gene expression profiles in the liver of Schistosoma japonicum-infected BALB/c mice at 15, 30, and 45 day post infection (dpi with that from uninfected mice as controls. Gene expression alternation associated with liver damage was observed in the initial phase of infection (dpi 15, which became more magnificent with the onset of egg-laying. Up-regulated genes were dominantly associated with inflammatory infiltration, whereas down-regulated genes primarily led to the hepatic functional disorders. Simultaneously, microRNA profiles from the same samples were decoded by Solexa sequencing. More than 130 miRNAs were differentially expressed in murine liver during S. japonicum infection. MiRNAs significantly dysregulated in the mid-phase of infection (dpi 30, such as mmu-miR-146b and mmu-miR-155, may relate to the regulation of hepatic inflammatory responses, whereas miRNAs exhibiting a peak expression in the late phase of infection (dpi 45, such as mmu-miR-223, mmu-miR-146a/b, mmu-miR-155, mmu-miR-34c, mmu-miR-199, and mmu-miR-134, may represent a molecular signature of the development of schistosomal hepatopathy. Further, a dynamic miRNA-gene co-expression network in the progression of infection was constructed. CONCLUSIONS AND SIGNIFICANCE: This study presents a global view of dynamic expression of both mRNA and miRNA transcripts in murine liver during S. japonicum infection, and highlights that miRNAs may play a variety of regulatory roles in balancing the immune responses during the

  10. Geo-Parcel Based Crop Identification by Integrating High Spatial-Temporal Resolution Imagery from Multi-Source Satellite Data

    Directory of Open Access Journals (Sweden)

    Yingpin Yang

    2017-12-01

    Full Text Available Geo-parcel based crop identification plays an important role in precision agriculture. It meets the needs of refined farmland management. This study presents an improved identification procedure for geo-parcel based crop identification by combining fine-resolution images and multi-source medium-resolution images. GF-2 images with fine spatial resolution of 0.8 m provided agricultural farming plot boundaries, and GF-1 (16 m and Landsat 8 OLI data were used to transform the geo-parcel based enhanced vegetation index (EVI time-series. In this study, we propose a piecewise EVI time-series smoothing method to fit irregular time profiles, especially for crop rotation situations. Global EVI time-series were divided into several temporal segments, from which phenological metrics could be derived. This method was applied to Lixian, where crop rotation was the common practice of growing different types of crops, in the same plot, in sequenced seasons. After collection of phenological features and multi-temporal spectral information, Random Forest (RF was performed to classify crop types, and the overall accuracy was 93.27%. Moreover, an analysis of feature significance showed that phenological features were of greater importance for distinguishing agricultural land cover compared to temporal spectral information. The identification results indicated that the integration of high spatial-temporal resolution imagery is promising for geo-parcel based crop identification and that the newly proposed smoothing method is effective.

  11. Dynamic, mating-induced gene expression changes in female head and brain tissues of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Stirling Emma J

    2010-10-01

    Full Text Available Abstract Background Drosophila melanogaster females show changes in behavior and physiology after mating that are thought to maximize the number of progeny resulting from the most recent copulation. Sperm and seminal fluid proteins induce post-mating changes in females, however, very little is known about the resulting gene expression changes in female head and central nervous system tissues that contribute to the post-mating response. Results We determined the temporal gene expression changes in female head tissues 0-2, 24, 48 and 72 hours after mating. Females from each time point had a unique post-mating gene expression response, with 72 hours post-mating having the largest number of genes with significant changes in expression. At most time points, genes expressed in the head fat body that encode products involved in metabolism showed a marked change in expression. Additional analysis of gene expression changes in dissected brain tissues 24 hours post-mating revealed changes in transcript abundance of many genes, notably, the reduced transcript abundance of genes that encode ion channels. Conclusions Substantial changes occur in the regulation of many genes in female head tissues after mating, which might underlie aspects of the female post-mating response. These results provide new insights into the physiological and metabolic changes that accompany changes in female behaviors.

  12. Multiple Suboptimal Solutions for Prediction Rules in Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Osamu Komori

    2013-01-01

    Full Text Available This paper discusses mathematical and statistical aspects in analysis methods applied to microarray gene expressions. We focus on pattern recognition to extract informative features embedded in the data for prediction of phenotypes. It has been pointed out that there are severely difficult problems due to the unbalance in the number of observed genes compared with the number of observed subjects. We make a reanalysis of microarray gene expression published data to detect many other gene sets with almost the same performance. We conclude in the current stage that it is not possible to extract only informative genes with high performance in the all observed genes. We investigate the reason why this difficulty still exists even though there are actively proposed analysis methods and learning algorithms in statistical machine learning approaches. We focus on the mutual coherence or the absolute value of the Pearson correlations between two genes and describe the distributions of the correlation for the selected set of genes and the total set. We show that the problem of finding informative genes in high dimensional data is ill-posed and that the difficulty is closely related with the mutual coherence.

  13. FARO server: Meta-analysis of gene expression by matching gene expression signatures to a compendium of public gene expression data

    DEFF Research Database (Denmark)

    Manijak, Mieszko P.; Nielsen, Henrik Bjørn

    2011-01-01

    circumvented by instead matching gene expression signatures to signatures of other experiments. FINDINGS: To facilitate this we present the Functional Association Response by Overlap (FARO) server, that match input signatures to a compendium of 242 gene expression signatures, extracted from more than 1700...... Arabidopsis microarray experiments. CONCLUSIONS: Hereby we present a publicly available tool for robust characterization of Arabidopsis gene expression experiments which can point to similar experimental factors in other experiments. The server is available at http://www.cbs.dtu.dk/services/faro/....

  14. Digital gene expression analysis of gene expression differences within Brassica diploids and allopolyploids.

    Science.gov (United States)

    Jiang, Jinjin; Wang, Yue; Zhu, Bao; Fang, Tingting; Fang, Yujie; Wang, Youping

    2015-01-27

    Brassica includes many successfully cultivated crop species of polyploid origin, either by ancestral genome triplication or by hybridization between two diploid progenitors, displaying complex repetitive sequences and transposons. The U's triangle, which consists of three diploids and three amphidiploids, is optimal for the analysis of complicated genomes after polyploidization. Next-generation sequencing enables the transcriptome profiling of polyploids on a global scale. We examined the gene expression patterns of three diploids (Brassica rapa, B. nigra, and B. oleracea) and three amphidiploids (B. napus, B. juncea, and B. carinata) via digital gene expression analysis. In total, the libraries generated between 5.7 and 6.1 million raw reads, and the clean tags of each library were mapped to 18547-21995 genes of B. rapa genome. The unambiguous tag-mapped genes in the libraries were compared. Moreover, the majority of differentially expressed genes (DEGs) were explored among diploids as well as between diploids and amphidiploids. Gene ontological analysis was performed to functionally categorize these DEGs into different classes. The Kyoto Encyclopedia of Genes and Genomes analysis was performed to assign these DEGs into approximately 120 pathways, among which the metabolic pathway, biosynthesis of secondary metabolites, and peroxisomal pathway were enriched. The non-additive genes in Brassica amphidiploids were analyzed, and the results indicated that orthologous genes in polyploids are frequently expressed in a non-additive pattern. Methyltransferase genes showed differential expression pattern in Brassica species. Our results provided an understanding of the transcriptome complexity of natural Brassica species. The gene expression changes in diploids and allopolyploids may help elucidate the morphological and physiological differences among Brassica species.

  15. Diurnal gene expression of lipolytic natriuretic peptide receptors in white adipose tissue

    DEFF Research Database (Denmark)

    Smith, Julie; Fahrenkrug, Jan; Jørgensen, Henrik L

    2015-01-01

    Disruption of the circadian rhythm can lead to obesity and cardiovascular disease. In white adipose tissue, activation of the natriuretic peptide receptors (NPRs) stimulates lipolysis. We have previously shown that natriuretic peptides are expressed in a circadian manner in the heart, but the tem......Disruption of the circadian rhythm can lead to obesity and cardiovascular disease. In white adipose tissue, activation of the natriuretic peptide receptors (NPRs) stimulates lipolysis. We have previously shown that natriuretic peptides are expressed in a circadian manner in the heart......, but the temporal expression profile of their cognate receptors has not been examined in white adipose tissue. We therefore collected peri-renal white adipose tissue and serum from WT mice. Tissue mRNA contents of NPRs - NPR-A and NPR-C, the clock genes Per1 and Bmal1, and transcripts involved in lipid metabolism...... in serum peaked in the active dark period (P=0.003). In conclusion, NPR-A and NPR-C gene expression is associated with the expression of clock genes in white adipose tissue. The reciprocal expression may thus contribute to regulate lipolysis and energy homeostasis in a diurnal manner....

  16. Tilt shift determinations with spatial-carrier phase-shift method in temporal phase-shift interferometry

    International Nuclear Information System (INIS)

    Liu, Qian; Wang, Yang; He, Jianguo; Ji, Fang; Wang, Baorui

    2014-01-01

    An algorithm is proposed to deal with tilt-shift errors in temporal phase-shift interferometry (PSI). In the algorithm, the tilt shifts are detected with the spatial-carrier phase-shift (SCPS) method and then the tilt shifts are applied as priori information to the least-squares fittings of phase retrieval. The algorithm combines the best features of the SCPS and the temporal PSI. The algorithm could be applied to interferograms of arbitrary aperture without data extrapolation for the Fourier transform is not involved. Simulations and experiments demonstrate the effectiveness of the algorithm. The statistics of simulation results show a satisfied accuracy in detecting tilt-shift errors. Comparisons of the measurements with and without environmental vibration show that the proposed algorithm could compensate tilt-shift errors and retrieve wavefront phase accurately. The algorithm provides an approach to retrieve wavefront phase for the temporal PSI in vibrating environment. (paper)

  17. AffyMiner: mining differentially expressed genes and biological knowledge in GeneChip microarray data

    Directory of Open Access Journals (Sweden)

    Xia Yuannan

    2006-12-01

    Full Text Available Abstract Background DNA microarrays are a powerful tool for monitoring the expression of tens of thousands of genes simultaneously. With the advance of microarray technology, the challenge issue becomes how to analyze a large amount of microarray data and make biological sense of them. Affymetrix GeneChips are widely used microarrays, where a variety of statistical algorithms have been explored and used for detecting significant genes in the experiment. These methods rely solely on the quantitative data, i.e., signal intensity; however, qualitative data are also important parameters in detecting differentially expressed genes. Results AffyMiner is a tool developed for detecting differentially expressed genes in Affymetrix GeneChip microarray data and for associating gene annotation and gene ontology information with the genes detected. AffyMiner consists of the functional modules, GeneFinder for detecting significant genes in a treatment versus control experiment and GOTree for mapping genes of interest onto the Gene Ontology (GO space; and interfaces to run Cluster, a program for clustering analysis, and GenMAPP, a program for pathway analysis. AffyMiner has been used for analyzing the GeneChip data and the results were presented in several publications. Conclusion AffyMiner fills an important gap in finding differentially expressed genes in Affymetrix GeneChip microarray data. AffyMiner effectively deals with multiple replicates in the experiment and takes into account both quantitative and qualitative data in identifying significant genes. AffyMiner reduces the time and effort needed to compare data from multiple arrays and to interpret the possible biological implications associated with significant changes in a gene's expression.

  18. Expression of Root Genes in Arabidopsis Seedlings Grown by Standard and Improved Growing Methods.

    Science.gov (United States)

    Qu, Yanli; Liu, Shuai; Bao, Wenlong; Xue, Xian; Ma, Zhengwen; Yokawa, Ken; Baluška, František; Wan, Yinglang

    2017-05-03

    Roots of Arabidopsis thaliana seedlings grown in the laboratory using the traditional plant-growing culture system (TPG) were covered to maintain them in darkness. This new method is based on a dark chamber and is named the improved plant-growing method (IPG). We measured the light conditions in dark chambers, and found that the highest light intensity was dramatically reduced deeper in the dark chamber. In the bottom and side parts of dark chambers, roots were almost completely shaded. Using the high-throughput RNA sequencing method on the whole RNA extraction from roots, we compared the global gene expression levels in roots of seedlings from these two conditions and identified 141 differently expressed genes (DEGs) between them. According to the KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment, the flavone and flavonol biosynthesis and flavonoid biosynthesis pathways were most affected among all annotated pathways. Surprisingly, no genes of known plant photoreceptors were identified as DEGs by this method. Considering that the light intensity was decreased in the IPG system, we collected four sections (1.5 cm for each) of Arabidopsis roots grown in TPG and IPG conditions, and the spatial-related differential gene expression levels of plant photoreceptors and polar auxin transporters, including CRY1 , CRY2 , PHYA , PHYB , PHOT1 , PHOT2 , and UVR8 were analyzed by qRT-PCR. Using these results, we generated a map of the spatial-related expression patterns of these genes under IPG and TPG conditions. The expression levels of light-related genes in roots is highly sensitive to illumination and it provides a background reference for selecting an improved culture method for laboratory-maintained Arabidopsis seedlings.

  19. A polynomial time biclustering algorithm for finding approximate expression patterns in gene expression time series

    Directory of Open Access Journals (Sweden)

    Madeira Sara C

    2009-06-01

    Full Text Available Abstract Background The ability to monitor the change in expression patterns over time, and to observe the emergence of coherent temporal responses using gene expression time series, obtained from microarray experiments, is critical to advance our understanding of complex biological processes. In this context, biclustering algorithms have been recognized as an important tool for the discovery of local expression patterns, which are crucial to unravel potential regulatory mechanisms. Although most formulations of the biclustering problem are NP-hard, when working with time series expression data the interesting biclusters can be restricted to those with contiguous columns. This restriction leads to a tractable problem and enables the design of efficient biclustering algorithms able to identify all maximal contiguous column coherent biclusters. Methods In this work, we propose e-CCC-Biclustering, a biclustering algorithm that finds and reports all maximal contiguous column coherent biclusters with approximate expression patterns in time polynomial in the size of the time series gene expression matrix. This polynomial time complexity is achieved by manipulating a discretized version of the original matrix using efficient string processing techniques. We also propose extensions to deal with missing values, discover anticorrelated and scaled expression patterns, and different ways to compute the errors allowed in the expression patterns. We propose a scoring criterion combining the statistical significance of expression patterns with a similarity measure between overlapping biclusters. Results We present results in real data showing the effectiveness of e-CCC-Biclustering and its relevance in the discovery of regulatory modules describing the transcriptomic expression patterns occurring in Saccharomyces cerevisiae in response to heat stress. In particular, the results show the advantage of considering approximate patterns when compared to state of

  20. Network Security via Biometric Recognition of Patterns of Gene Expression

    Science.gov (United States)

    Shaw, Harry C.

    2016-01-01

    Molecular biology provides the ability to implement forms of information and network security completely outside the bounds of legacy security protocols and algorithms. This paper addresses an approach which instantiates the power of gene expression for security. Molecular biology provides a rich source of gene expression and regulation mechanisms, which can be adopted to use in the information and electronic communication domains. Conventional security protocols are becoming increasingly vulnerable due to more intensive, highly capable attacks on the underlying mathematics of cryptography. Security protocols are being undermined by social engineering and substandard implementations by IT organizations. Molecular biology can provide countermeasures to these weak points with the current security approaches. Future advances in instruments for analyzing assays will also enable this protocol to advance from one of cryptographic algorithms to an integrated system of cryptographic algorithms and real-time expression and assay of gene expression products.

  1. Temporal and spatial variation of nitrogen transformations in a coniferous forest soils.

    NARCIS (Netherlands)

    Laverman, A.M.; Zoomer, H.R.; van Verseveld, H.W.; Verhoef, H.A.

    2000-01-01

    Forest soils show a great degree of temporal and spatial variation of nitrogen mineralization. The aim of the present study was to explain temporal variation in nitrate leaching from a nitrogen-saturated coniferous forest soil by potential nitrification, mineralization rates and nitrate uptake by

  2. Marine spatial planning and Good Environmental Status: a perspective on spatial and temporal dimensions

    Directory of Open Access Journals (Sweden)

    Alison J. Gilbert

    2015-03-01

    Full Text Available The European Union Marine Strategy Framework Directive requires the Good Environmental Status of marine environments in Europe's regional seas; yet, maritime activities, including sources of marine degradation, are diversifying and intensifying in an increasingly globalized world. Marine spatial planning is emerging as a tool for rationalizing competing uses of the marine environment while guarding its quality. A directive guiding the development of such plans by European Union member states is currently being formulated. There is an undeniable need for marine spatial planning. However, we argue that considerable care must be taken with marine spatial planning, as the spatial and temporal scales of maritime activities and of Good Environmental Status may be mismatched. We identify four principles for careful and explicit consideration to align the requirements of the two directives and enable marine spatial planning to support the achievement of Good Environmental Status in Europe's regional seas.

  3. Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ishii, Jun; Kondo, Takashi; Makino, Harumi; Ogura, Akira; Matsuda, Fumio; Kondo, Akihiko

    2014-05-01

    Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  4. Quantitative high-throughput gene expression profiling of human striatal development to screen stem cell–derived medium spiny neurons

    Directory of Open Access Journals (Sweden)

    Marco Straccia

    Full Text Available A systematic characterization of the spatio-temporal gene expression during human neurodevelopment is essential to understand brain function in both physiological and pathological conditions. In recent years, stem cell technology has provided an in vitro tool to recapitulate human development, permitting also the generation of human models for many diseases. The correct differentiation of human pluripotent stem cell (hPSC into specific cell types should be evaluated by comparison with specific cells/tissue profiles from the equivalent adult in vivo organ. Here, we define by a quantitative high-throughput gene expression analysis the subset of specific genes of the whole ganglionic eminence (WGE and adult human striatum. Our results demonstrate that not only the number of specific genes is crucial but also their relative expression levels between brain areas. We next used these gene profiles to characterize the differentiation of hPSCs. Our findings demonstrate a temporal progression of gene expression during striatal differentiation of hPSCs from a WGE toward an adult striatum identity. Present results establish a gene expression profile to qualitatively and quantitatively evaluate the telencephalic hPSC-derived progenitors eventually used for transplantation and mature striatal neurons for disease modeling and drug-screening.

  5. An assessment of the spatial and temporal changes of Mabira ...

    African Journals Online (AJOL)

    An assessment of the spatial and temporal changes of Mabira tropical forest ... The non-significant drivers included the low education levels, establishment of ... in the sustainable utilization of forest products and biodiversity conservation.

  6. High spatial and temporal resolution cell manipulation techniques in microchannels.

    Science.gov (United States)

    Novo, Pedro; Dell'Aica, Margherita; Janasek, Dirk; Zahedi, René P

    2016-03-21

    The advent of microfluidics has enabled thorough control of cell manipulation experiments in so called lab on chips. Lab on chips foster the integration of actuation and detection systems, and require minute sample and reagent amounts. Typically employed microfluidic structures have similar dimensions as cells, enabling precise spatial and temporal control of individual cells and their local environments. Several strategies for high spatio-temporal control of cells in microfluidics have been reported in recent years, namely methods relying on careful design of the microfluidic structures (e.g. pinched flow), by integration of actuators (e.g. electrodes or magnets for dielectro-, acousto- and magneto-phoresis), or integrations thereof. This review presents the recent developments of cell experiments in microfluidics divided into two parts: an introduction to spatial control of cells in microchannels followed by special emphasis in the high temporal control of cell-stimulus reaction and quenching. In the end, the present state of the art is discussed in line with future perspectives and challenges for translating these devices into routine applications.

  7. Spatial Distribution of Transgenic Protein After Gene Electrotransfer to Porcine Muscle

    DEFF Research Database (Denmark)

    Spanggaard, Iben; Corydon, Thomas; Hojman, Pernille

    2012-01-01

    Abstract Gene electrotransfer is an effective nonviral technique for delivery of plasmid DNA into tissues. From a clinical perspective, muscle is an attractive target tissue as long-term, high-level transgenic expression can be achieved. Spatial distribution of the transgenic protein following gene...... electrotransfer to muscle in a large animal model has not yet been investigated. In this study, 17 different doses of plasmid DNA (1-1500 μg firefly luciferase pCMV-Luc) were delivered in vivo to porcine gluteal muscle using electroporation. Forty-eight hours post treatment several biopsies were obtained from...... each transfection site in order to examine the spatial distribution of the transgenic product. We found a significantly higher luciferase activity in biopsies from the center of the transfection site compared to biopsies taken adjacent to the center, 1 and 2 cm along muscle fiber orientation (p...

  8. Gene expression profiling in mouse lung following polymeric hexamethylene diisocyanate exposure

    International Nuclear Information System (INIS)

    Lee, C.-T.; Ylostalo, Joni; Friedman, Mitchell; Hoyle, Gary W.

    2005-01-01

    Isocyanates are a common cause of occupational lung disease. Hexamethylene diisocyanate (HDI), a component of polyurethane spray paints, can induce respiratory symptoms, inflammation, lung function impairment, and isocyanate asthma. The predominant form of HDI in polyurethane paints is a nonvolatile polyisocyanate known as HDI biuret trimer (HDI-BT). Exposure of mice to aerosolized HDI-BT results in pathological effects, including pulmonary edema, lung inflammation, cellular proliferation, and fibrotic lesions, which occur with distinct time courses following exposure. To identify genes that mediate lung pathology in the distinct temporal phases after exposure, gene expression profiles in HDI-BT-exposed C57BL/6J mouse lungs were analyzed. RNase protection assay (RPA) of genes involved in apoptosis, cell survival, and inflammation revealed increased expression of IκBα, Fas, Bcl-X L , TNFα, KC, MIP-2, IL-6, and GM-CSF following HDI-BT exposure. Microarray analysis of approximately 10 000 genes was performed on lung RNA collected from mice 6, 18, and 90 h after HDI-BT exposure and from unexposed mice. Classes of genes whose expression was increased 6 h after exposure included those involved in stress responses (particularly oxidative stress and thiol redox balance), growth arrest, apoptosis, signal transduction, and inflammation. Types of genes whose expression was increased at 18 h included proteinases, anti-proteinases, cytoskeletal molecules, and inflammatory mediators. Transcripts increased at 90 h included extracellular matrix components, transcription factors, inflammatory mediators, and cell cycle regulators. This characterization of the gene expression profile in lungs exposed to HDI-BT will provide a basis for investigating injury and repair pathways that are operative during isocyanate-induced lung disease

  9. The trade-off between spatial and temporal variabilities in reciprocal upper-limb aiming movements of different durations.

    Directory of Open Access Journals (Sweden)

    Frederic Danion

    Full Text Available The spatial and temporal aspects of movement variability have typically been studied separately. As a result the relationship between spatial and temporal variabilities remains largely unknown. In two experiments we examined the evolution and covariation of spatial and temporal variabilities over variations in the duration of reciprocal aiming movements. Experiments differed in settings: In Experiment 1 participants moved unperturbed whereas in Experiment 2 they were confronted with an elastic force field. Different movement durations-for a constant inter-target distance-were either evoked by imposing spatial accuracy constraints while requiring participants to move as fast as possible, or prescribed by means of an auditory metronome while requiring participants to maximize spatial accuracy. Analyses focused on absolute and relative variabilities, respectively captured by the standard deviation (SD and the coefficient of variation (CV = SD/mean. Spatial variability (both SDspace and CVspace decreased with movement duration, while temporal variability (both SDtime and CVtime increased with movement duration. We found strong negative correlations between spatial and temporal variabilities over variations in movement duration, whether the variability examined was absolute or relative. These findings observed at the level of the full movement contrasted with the findings observed at the level of the separate acceleration and deceleration phases of movement. During the separate acceleration and deceleration phases both spatial and temporal variabilities (SD and CV were found to increase with their respective durations, leading to positive correlations between them. Moreover, variability was generally larger at the level of the constituent movement phases than at the level of the full movement. The general pattern of results was robust, as it emerged in both tasks in each of the two experiments. We conclude that feedback mechanisms operating to

  10. Direct visualization of electroporation-assisted in vivo gene delivery to tumors using intravital microscopy – spatial and time dependent distribution

    International Nuclear Information System (INIS)

    Cemazar, Maja; Wilson, Ian; Dachs, Gabi U; Tozer, Gillian M; Sersa, Gregor

    2004-01-01

    Electroporation is currently receiving much attention as a way to increase drug and DNA delivery. Recent studies demonstrated the feasibility of electrogene therapy using a range of therapeutic genes for the treatment of experimental tumors. However, the transfection efficiency of electroporation-assisted DNA delivery is still low compared to viral methods and there is a clear need to optimize this approach. In order to optimize treatment, knowledge about spatial and time dependency of gene expression following delivery is of utmost importance in order to improve gene delivery. Intravital microscopy of tumors growing in dorsal skin fold window chambers is a useful method for monitoring gene transfection, since it allows non-invasive dynamic monitoring of gene expression in tumors in a live animal. Intravital microscopy was used to monitor real time spatial distribution of the green fluorescent protein (GFP) and time dependence of transfection efficiency in syngeneic P22 rat tumor model. DNA alone, liposome-DNA complexes and electroporation-assisted DNA delivery using two different sets of electric pulse parameters were compared. Electroporation-assisted DNA delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz was superior to other methods and resulted in 22% increase in fluorescence intensity in the tumors up to 6 days post-transfection, compared to the non-transfected area in granulation tissue. Functional GFP was detected within 5 h after transfection. Cells expressing GFP were detected throughout the tumor, but not in the surrounding tissue that was not exposed to electric pulses. Intravital microscopy was demonstrated to be a suitable method for monitoring time and spatial distribution of gene expression in experimental tumors and provided evidence that electroporation-assisted gene delivery using 8 pulses, 600 V/cm, 5 ms, 1 Hz is an effective method, resulting in early onset and homogenous distribution of gene expression in the syngeneic P22 rat tumor model

  11. Ultra high spatial and temporal resolution breast imaging at 7T.

    Science.gov (United States)

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Principles of Temporal Processing Across the Cortical Hierarchy.

    Science.gov (United States)

    Himberger, Kevin D; Chien, Hsiang-Yun; Honey, Christopher J

    2018-05-02

    The world is richly structured on multiple spatiotemporal scales. In order to represent spatial structure, many machine-learning models repeat a set of basic operations at each layer of a hierarchical architecture. These iterated spatial operations - including pooling, normalization and pattern completion - enable these systems to recognize and predict spatial structure, while robust to changes in the spatial scale, contrast and noisiness of the input signal. Because our brains also process temporal information that is rich and occurs across multiple time scales, might the brain employ an analogous set of operations for temporal information processing? Here we define a candidate set of temporal operations, and we review evidence that they are implemented in the mammalian cerebral cortex in a hierarchical manner. We conclude that multiple consecutive stages of cortical processing can be understood to perform temporal pooling, temporal normalization and temporal pattern completion. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Insulin-Like Growth Factor-1 Inscribes a Gene Expression Profile for Angiogenic Factors and Cancer Progression in Breast Epithelial Cells

    Directory of Open Access Journals (Sweden)

    J.S. Oh

    2002-01-01

    Full Text Available Activation of the insulin-like growth factor-1 receptor (IGF-11R by IGF-1 is associated with the risk and progression of many types of cancer, although despite this it remains unclear how activated IGF-1 R contributes to cancer progression. In this study, gene expression changes elicited by IGF-1 were profiled in breast epithelial cells. We noted that many genes are functionally linked to cancer progression and angiogenesis. To validate some of the changes observed, the RNA and/or protein was confirmed for c-fos, cytochrome P4501Al, cytochrome P450 1131, interleukin-1 beta, fas ligand, vascular endothelial growth factor, and urokinase plasminogen activator. Nuclear proteins were also temporally monitored to address how gene expression changes were regulated. We found that IGF-1 stimulated the nuclear translocation of phosphorylated AKT, hypoxic-inducible factor-1 alpha, and phosphorylated cAMP-responsive element-binding protein, which correlated with temporal changes in gene expression. Next, the promoter regions of IGF-1-regulated genes were searched in silico. The promoters of genes that clustered together had similar regulatory regions. In summary, IGF-1 inscribes a gene expression profile relevant to cancer progression, and this study provides insight into the mechanism(s whereby some of these changes occur.

  14. Large scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans

    Directory of Open Access Journals (Sweden)

    Benjamin Mayne

    2016-10-01

    Full Text Available The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analysed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes, followed by the heart (375 genes, kidney (224 genes, colon (218 genes and thyroid (163 genes. More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

  15. Emotion's influence on memory for spatial and temporal context.

    Science.gov (United States)

    Schmidt, Katherine; Patnaik, Pooja; Kensinger, Elizabeth A

    2011-02-01

    Individuals report remembering emotional items vividly. It is debated whether this report reflects enhanced memory accuracy or a bias to believe emotional memories are vivid. We hypothesized emotion would enhance memory accuracy, improving memory for contextual details. The hallmark of episodic memory is that items are remembered in a spatial and temporal context, so we examined whether an item's valence (positive, negative) or arousal (high, low) would influence its ability to be remembered with those contextual details. Across two experiments, high-arousal items were remembered with spatial and temporal context more often than low-arousal items. Item valence did not influence memory for those details, although positive high-arousal items were recognized or recalled more often than negative items. These data suggest that emotion does not just bias participants to believe they have a vivid memory; rather, the arousal elicited by an event can benefit memory for some types of contextual details. © 2010 Psychology Press, an imprint of the Taylor & Francis Group, an Informa business

  16. Statistical analysis of long term spatial and temporal trends of ...

    Indian Academy of Sciences (India)

    Statistical analysis of long term spatial and temporal trends of temperature ... CGCM3; HadCM3; modified Mann–Kendall test; statistical analysis; Sutlej basin. ... Water Resources Systems Division, National Institute of Hydrology, Roorkee 247 ...

  17. Identification of Differentially Expressed Genes through Integrated Study of Alzheimer's Disease Affected Brain Regions.

    Directory of Open Access Journals (Sweden)

    Nisha Puthiyedth

    Full Text Available Alzheimer's disease (AD is the most common form of dementia in older adults that damages the brain and results in impaired memory, thinking and behaviour. The identification of differentially expressed genes and related pathways among affected brain regions can provide more information on the mechanisms of AD. In the past decade, several studies have reported many genes that are associated with AD. This wealth of information has become difficult to follow and interpret as most of the results are conflicting. In that case, it is worth doing an integrated study of multiple datasets that helps to increase the total number of samples and the statistical power in detecting biomarkers. In this study, we present an integrated analysis of five different brain region datasets and introduce new genes that warrant further investigation.The aim of our study is to apply a novel combinatorial optimisation based meta-analysis approach to identify differentially expressed genes that are associated to AD across brain regions. In this study, microarray gene expression data from 161 samples (74 non-demented controls, 87 AD from the Entorhinal Cortex (EC, Hippocampus (HIP, Middle temporal gyrus (MTG, Posterior cingulate cortex (PC, Superior frontal gyrus (SFG and visual cortex (VCX brain regions were integrated and analysed using our method. The results are then compared to two popular meta-analysis methods, RankProd and GeneMeta, and to what can be obtained by analysing the individual datasets.We find genes related with AD that are consistent with existing studies, and new candidate genes not previously related with AD. Our study confirms the up-regualtion of INFAR2 and PTMA along with the down regulation of GPHN, RAB2A, PSMD14 and FGF. Novel genes PSMB2, WNK1, RPL15, SEMA4C, RWDD2A and LARGE are found to be differentially expressed across all brain regions. Further investigation on these genes may provide new insights into the development of AD. In addition, we

  18. Hierarchical information representation and efficient classification of gene expression microarray data

    OpenAIRE

    Bosio, Mattia

    2014-01-01

    In the field of computational biology, microarryas are used to measure the activity of thousands of genes at once and create a global picture of cellular function. Microarrays allow scientists to analyze expression of many genes in a single experiment quickly and eficiently. Even if microarrays are a consolidated research technology nowadays and the trends in high-throughput data analysis are shifting towards new technologies like Next Generation Sequencing (NGS), an optimum method for sample...

  19. The Relative Importance of Spatial Versus Temporal Structure in the Perception of Biological Motion: An Event-Related Potential Study

    Science.gov (United States)

    Hirai, Masahiro; Hiraki, Kazuo

    2006-01-01

    We investigated how the spatiotemporal structure of animations of biological motion (BM) affects brain activity. We measured event-related potentials (ERPs) during the perception of BM under four conditions: normal spatial and temporal structure; scrambled spatial and normal temporal structure; normal spatial and scrambled temporal structure; and…

  20. A computational model for how cells choose temporal or spatial sensing during chemotaxis.

    Science.gov (United States)

    Tan, Rui Zhen; Chiam, Keng-Hwee

    2018-03-01

    Cell size is thought to play an important role in choosing between temporal and spatial sensing in chemotaxis. Large cells are thought to use spatial sensing due to large chemical difference at its ends whereas small cells are incapable of spatial sensing due to rapid homogenization of proteins within the cell. However, small cells have been found to polarize and large cells like sperm cells undergo temporal sensing. Thus, it remains an open question what exactly governs spatial versus temporal sensing. Here, we identify the factors that determines sensing choices through mathematical modeling of chemotactic circuits. Comprehensive computational search of three-node signaling circuits has identified the negative integral feedback (NFB) and incoherent feedforward (IFF) circuits as capable of adaptation, an important property for chemotaxis. Cells are modeled as one-dimensional circular system consisting of diffusible activator, inactivator and output proteins, traveling across a chemical gradient. From our simulations, we find that sensing outcomes are similar for NFB or IFF circuits. Rather than cell size, the relevant parameters are the 1) ratio of cell speed to the product of cell diameter and rate of signaling, 2) diffusivity of the output protein and 3) ratio of the diffusivities of the activator to inactivator protein. Spatial sensing is favored when all three parameters are low. This corresponds to a cell moving slower than the time it takes for signaling to propagate across the cell diameter, has an output protein that is polarizable and has a local-excitation global-inhibition system to amplify the chemical gradient. Temporal sensing is favored otherwise. We also find that temporal sensing is more robust to noise. By performing extensive literature search, we find that our prediction agrees with observation in a wide range of species and cell types ranging from E. coli to human Fibroblast cells and propose that our result is universally applicable.