WorldWideScience

Sample records for spatial statistical analysis

  1. Spatial analysis statistics, visualization, and computational methods

    CERN Document Server

    Oyana, Tonny J

    2015-01-01

    An introductory text for the next generation of geospatial analysts and data scientists, Spatial Analysis: Statistics, Visualization, and Computational Methods focuses on the fundamentals of spatial analysis using traditional, contemporary, and computational methods. Outlining both non-spatial and spatial statistical concepts, the authors present practical applications of geospatial data tools, techniques, and strategies in geographic studies. They offer a problem-based learning (PBL) approach to spatial analysis-containing hands-on problem-sets that can be worked out in MS Excel or ArcGIS-as well as detailed illustrations and numerous case studies. The book enables readers to: Identify types and characterize non-spatial and spatial data Demonstrate their competence to explore, visualize, summarize, analyze, optimize, and clearly present statistical data and results Construct testable hypotheses that require inferential statistical analysis Process spatial data, extract explanatory variables, conduct statisti...

  2. Statistical analysis of long term spatial and temporal trends of ...

    Indian Academy of Sciences (India)

    Statistical analysis of long term spatial and temporal trends of temperature ... CGCM3; HadCM3; modified Mann–Kendall test; statistical analysis; Sutlej basin. ... Water Resources Systems Division, National Institute of Hydrology, Roorkee 247 ...

  3. Analysis of thrips distribution: application of spatial statistics and Kriging

    Science.gov (United States)

    John Aleong; Bruce L. Parker; Margaret Skinner; Diantha Howard

    1991-01-01

    Kriging is a statistical technique that provides predictions for spatially and temporally correlated data. Observations of thrips distribution and density in Vermont soils are made in both space and time. Traditional statistical analysis of such data assumes that the counts taken over space and time are independent, which is not necessarily true. Therefore, to analyze...

  4. Spatial Analysis Along Networks Statistical and Computational Methods

    CERN Document Server

    Okabe, Atsuyuki

    2012-01-01

    In the real world, there are numerous and various events that occur on and alongside networks, including the occurrence of traffic accidents on highways, the location of stores alongside roads, the incidence of crime on streets and the contamination along rivers. In order to carry out analyses of those events, the researcher needs to be familiar with a range of specific techniques. Spatial Analysis Along Networks provides a practical guide to the necessary statistical techniques and their computational implementation. Each chapter illustrates a specific technique, from Stochastic Point Process

  5. Tucker tensor analysis of Matern functions in spatial statistics

    KAUST Repository

    Litvinenko, Alexander

    2018-04-20

    Low-rank Tucker tensor methods in spatial statistics 1. Motivation: improve statistical models 2. Motivation: disadvantages of matrices 3. Tools: Tucker tensor format 4. Tensor approximation of Matern covariance function via FFT 5. Typical statistical operations in Tucker tensor format 6. Numerical experiments

  6. Tucker Tensor analysis of Matern functions in spatial statistics

    KAUST Repository

    Litvinenko, Alexander

    2018-03-09

    In this work, we describe advanced numerical tools for working with multivariate functions and for the analysis of large data sets. These tools will drastically reduce the required computing time and the storage cost, and, therefore, will allow us to consider much larger data sets or finer meshes. Covariance matrices are crucial in spatio-temporal statistical tasks, but are often very expensive to compute and store, especially in 3D. Therefore, we approximate covariance functions by cheap surrogates in a low-rank tensor format. We apply the Tucker and canonical tensor decompositions to a family of Matern- and Slater-type functions with varying parameters and demonstrate numerically that their approximations exhibit exponentially fast convergence. We prove the exponential convergence of the Tucker and canonical approximations in tensor rank parameters. Several statistical operations are performed in this low-rank tensor format, including evaluating the conditional covariance matrix, spatially averaged estimation variance, computing a quadratic form, determinant, trace, loglikelihood, inverse, and Cholesky decomposition of a large covariance matrix. Low-rank tensor approximations reduce the computing and storage costs essentially. For example, the storage cost is reduced from an exponential O(n^d) to a linear scaling O(drn), where d is the spatial dimension, n is the number of mesh points in one direction, and r is the tensor rank. Prerequisites for applicability of the proposed techniques are the assumptions that the data, locations, and measurements lie on a tensor (axes-parallel) grid and that the covariance function depends on a distance, ||x-y||.

  7. Handbook of Spatial Statistics

    CERN Document Server

    Gelfand, Alan E

    2010-01-01

    Offers an introduction detailing the evolution of the field of spatial statistics. This title focuses on the three main branches of spatial statistics: continuous spatial variation (point referenced data); discrete spatial variation, including lattice and areal unit data; and, spatial point patterns.

  8. Statistical analysis of the spatial distribution of galaxies and clusters

    International Nuclear Information System (INIS)

    Cappi, Alberto

    1993-01-01

    This thesis deals with the analysis of the distribution of galaxies and clusters, describing some observational problems and statistical results. First chapter gives a theoretical introduction, aiming to describe the framework of the formation of structures, tracing the history of the Universe from the Planck time, t_p = 10"-"4"3 sec and temperature corresponding to 10"1"9 GeV, to the present epoch. The most usual statistical tools and models of the galaxy distribution, with their advantages and limitations, are described in chapter two. A study of the main observed properties of galaxy clustering, together with a detailed statistical analysis of the effects of selecting galaxies according to apparent magnitude or diameter, is reported in chapter three. Chapter four delineates some properties of groups of galaxies, explaining the reasons of discrepant results on group distributions. Chapter five is a study of the distribution of galaxy clusters, with different statistical tools, like correlations, percolation, void probability function and counts in cells; it is found the same scaling-invariant behaviour of galaxies. Chapter six describes our finding that rich galaxy clusters too belong to the fundamental plane of elliptical galaxies, and gives a discussion of its possible implications. Finally chapter seven reviews the possibilities offered by multi-slit and multi-fibre spectrographs, and I present some observational work on nearby and distant galaxy clusters. In particular, I show the opportunities offered by ongoing surveys of galaxies coupled with multi-object fibre spectrographs, focusing on the ESO Key Programme A galaxy redshift survey in the south galactic pole region to which I collaborate and on MEFOS, a multi-fibre instrument with automatic positioning. Published papers related to the work described in this thesis are reported in the last appendix. (author) [fr

  9. Integrating the statistical analysis of spatial data in ecology

    Science.gov (United States)

    A. M. Liebhold; J. Gurevitch

    2002-01-01

    In many areas of ecology there is an increasing emphasis on spatial relationships. Often ecologists are interested in new ways of analyzing data with the objective of quantifying spatial patterns, and in designing surveys and experiments in light of the recognition that there may be underlying spatial pattern in biotic responses. In doing so, ecologists have adopted a...

  10. Recent developments in spatial analysis spatial statistics, behavioural modelling, and computational intelligence

    CERN Document Server

    Getis, Arthur

    1997-01-01

    In recent years, spatial analysis has become an increasingly active field, as evidenced by the establishment of educational and research programs at many universities. Its popularity is due mainly to new technologies and the development of spatial data infrastructures. This book illustrates some recent developments in spatial analysis, behavioural modelling, and computational intelligence. World renown spatial analysts explain and demonstrate their new and insightful models and methods. The applications are in areas of societal interest such as the spread of infectious diseases, migration behaviour, and retail and agricultural location strategies. In addition, there is emphasis on the uses of new technologoies for the analysis of spatial data through the application of neural network concepts.

  11. Spatial and Statistical Analysis of Leptospirosis in Guilan Province, Iran

    Science.gov (United States)

    Nia, A. Mohammadi; Alimohammadi, A.; Habibi, R.; Shirzadi, M. R.

    2015-12-01

    The most underdiagnosed water-borne bacterial zoonosis in the world is Leptospirosis which especially impacts tropical and humid regions. According to World Health Organization (WHO), the number of human cases is not known precisely. Available reports showed that worldwide incidences vary from 0.1-1 per 100 000 per year in temperate climates to 10-100 per 100 000 in the humid tropics. Pathogenic bacteria that is spread by the urines of rats is the main reason of water and soil infections. Rice field farmers who are in contact with infected water or soil, contain the most burden of leptospirosis prevalence. In recent years, this zoonotic disease have been occurred in north of Iran endemically. Guilan as the second rice production province (average=750 000 000 Kg, 40% of country production) after Mazandaran, has one of the most rural population (Male=487 679, Female=496 022) and rice workers (47 621 insured workers) among Iran provinces. The main objectives of this study were to analyse yearly spatial distribution and the possible spatial clusters of leptospirosis to better understand epidemiological aspects of them in the province. Survey was performed during the period of 2009-2013 at rural district level throughout the study area. Global clustering methods including the average nearest neighbour distance, Moran's I and General G indices were utilized to investigate the annual spatial distribution of diseases. At the end, significant spatial clusters have been detected with the objective of informing priority areas for public health planning and resource allocation.

  12. Statistical methods in spatial genetics

    DEFF Research Database (Denmark)

    Guillot, Gilles; Leblois, Raphael; Coulon, Aurelie

    2009-01-01

    The joint analysis of spatial and genetic data is rapidly becoming the norm in population genetics. More and more studies explicitly describe and quantify the spatial organization of genetic variation and try to relate it to underlying ecological processes. As it has become increasingly difficult...... to keep abreast with the latest methodological developments, we review the statistical toolbox available to analyse population genetic data in a spatially explicit framework. We mostly focus on statistical concepts but also discuss practical aspects of the analytical methods, highlighting not only...

  13. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    International Nuclear Information System (INIS)

    Belianinov, Alex; Ganesh, Panchapakesan; Lin, Wenzhi; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.; Sales, Brian C.; Sefat, Athena S.

    2014-01-01

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe 0.55 Se 0.45 (T c = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe 1−x Se x structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces

  14. Non-standard spatial statistics and spatial econometrics

    CERN Document Server

    Griffith, Daniel A

    2011-01-01

    Spatial statistics and spatial econometrics are recent sprouts of the tree "spatial analysis with measurement". Still, several general themes have emerged. Exploring selected fields of possible interest is tantalizing, and this is what the authors aim here.

  15. Spatial statistical analysis of basal stem root disease under natural field epidemic of oil palm

    Science.gov (United States)

    Kamu, Assis; Phin, Chong Khim; Seman, Idris Abu; Wan, Hoong Hak; Mun, Ho Chong

    2015-02-01

    Oil palm or scientifically known as Elaeis guineensis Jacq. is the most important commodity crop in Malaysia and has greatly contributed to the economy growth of the country. As far as disease is concerned in the industry, Basal Stem Rot (BSR) caused by Ganoderma boninence remains the most important disease. BSR disease is the most widely studied with information available for oil palm disease in Malaysia. However, there is still limited study on the spatial as well as temporal pattern or distribution of the disease especially under natural field epidemic condition in oil palm plantation. The objective of this study is to spatially identify the pattern of BSR disease under natural field epidemic using two geospatial analytical techniques, which are quadrat analysis for the first order properties of partial pattern analysis and nearest-neighbor analysis (NNA) for the second order properties of partial pattern analysis. Two study sites were selected with different age of tree. Both sites are located in Tawau, Sabah and managed by the same company. The results showed that at least one of the point pattern analysis used which is NNA (i.e. the second order properties of partial pattern analysis) has confirmed the disease is complete spatial randomness. This suggests the spread of the disease is not from tree to tree and the age of palm does not play a significance role in determining the spatial pattern of the disease. From the spatial pattern of the disease, it would help in the disease management program and for the industry in the future. The statistical modelling is expected to help in identifying the right model to estimate the yield loss of oil palm due to BSR disease in the future.

  16. Understanding spatial organizations of chromosomes via statistical analysis of Hi-C data

    Science.gov (United States)

    Hu, Ming; Deng, Ke; Qin, Zhaohui; Liu, Jun S.

    2015-01-01

    Understanding how chromosomes fold provides insights into the transcription regulation, hence, the functional state of the cell. Using the next generation sequencing technology, the recently developed Hi-C approach enables a global view of spatial chromatin organization in the nucleus, which substantially expands our knowledge about genome organization and function. However, due to multiple layers of biases, noises and uncertainties buried in the protocol of Hi-C experiments, analyzing and interpreting Hi-C data poses great challenges, and requires novel statistical methods to be developed. This article provides an overview of recent Hi-C studies and their impacts on biomedical research, describes major challenges in statistical analysis of Hi-C data, and discusses some perspectives for future research. PMID:26124977

  17. Explorative spatial analysis of traffic accident statistics and road mortality among the provinces of Turkey.

    Science.gov (United States)

    Erdogan, Saffet

    2009-10-01

    The aim of the study is to describe the inter-province differences in traffic accidents and mortality on roads of Turkey. Two different risk indicators were used to evaluate the road safety performance of the provinces in Turkey. These indicators are the ratios between the number of persons killed in road traffic accidents (1) and the number of accidents (2) (nominators) and their exposure to traffic risk (denominator). Population and the number of registered motor vehicles in the provinces were used as denominators individually. Spatial analyses were performed to the mean annual rate of deaths and to the number of fatal accidents that were calculated for the period of 2001-2006. Empirical Bayes smoothing was used to remove background noise from the raw death and accident rates because of the sparsely populated provinces and small number of accident and death rates of provinces. Global and local spatial autocorrelation analyses were performed to show whether the provinces with high rates of deaths-accidents show clustering or are located closer by chance. The spatial distribution of provinces with high rates of deaths and accidents was nonrandom and detected as clustered with significance of Paccidents and deaths were located in the provinces that contain the roads connecting the Istanbul, Ankara, and Antalya provinces. Accident and death rates were also modeled with some independent variables such as number of motor vehicles, length of roads, and so forth using geographically weighted regression analysis with forward step-wise elimination. The level of statistical significance was taken as Paccidents according to denominators in the provinces. The geographically weighted regression analyses did significantly better predictions for both accident rates and death rates than did ordinary least regressions, as indicated by adjusted R(2) values. Geographically weighted regression provided values of 0.89-0.99 adjusted R(2) for death and accident rates, compared with 0

  18. Mapping extreme rainfall in the Northwest Portugal region: statistical analysis and spatial modelling

    Science.gov (United States)

    Santos, Monica; Fragoso, Marcelo

    2010-05-01

    Extreme precipitation events are one of the causes of natural hazards, such as floods and landslides, making its investigation so important, and this research aims to contribute to the study of the extreme rainfall patterns in a Portuguese mountainous area. The study area is centred on the Arcos de Valdevez county, located in the northwest region of Portugal, the rainiest of the country, with more than 3000 mm of annual rainfall at the Peneda-Gerês mountain system. This work focus on two main subjects related with the precipitation variability on the study area. First, a statistical analysis of several precipitation parameters is carried out, using daily data from 17 rain-gauges with a complete record for the 1960-1995 period. This approach aims to evaluate the main spatial contrasts regarding different aspects of the rainfall regime, described by ten parameters and indices of precipitation extremes (e.g. mean annual precipitation, the annual frequency of precipitation days, wet spells durations, maximum daily precipitation, maximum of precipitation in 30 days, number of days with rainfall exceeding 100 mm and estimated maximum daily rainfall for a return period of 100 years). The results show that the highest precipitation amounts (from annual to daily scales) and the higher frequency of very abundant rainfall events occur in the Serra da Peneda and Gerês mountains, opposing to the valleys of the Lima, Minho and Vez rivers, with lower precipitation amounts and less frequent heavy storms. The second purpose of this work is to find a method of mapping extreme rainfall in this mountainous region, investigating the complex influence of the relief (e.g. elevation, topography) on the precipitation patterns, as well others geographical variables (e.g. distance from coast, latitude), applying tested geo-statistical techniques (Goovaerts, 2000; Diodato, 2005). Models of linear regression were applied to evaluate the influence of different geographical variables (altitude

  19. Spatial statistical analysis of organs for intelligent CAD and its application to disease detection

    International Nuclear Information System (INIS)

    Takizawa, Hotaka

    2009-01-01

    The present article reports our research that was performed in a research project supported by a Grantin-Aid for Scientific Research on Priority Area from the Ministry of Education, Culture Sports, Science and Technology, JAPAN, from 2003 to 2006. Our method developed in the research acquired the trend of variation of spatial relations between true diseases, false positives and image features through statistical analysis of a set of medical images and improved the accuracy of disease detection by predicting their occurrence positions in an image based on the trend. This article describes the formulation of the method in general form and shows the results obtained by applying the method to chest X-ray CT images for detection of pulmonary nodules. (author)

  20. Likelihood devices in spatial statistics

    NARCIS (Netherlands)

    Zwet, E.W. van

    1999-01-01

    One of the main themes of this thesis is the application to spatial data of modern semi- and nonparametric methods. Another, closely related theme is maximum likelihood estimation from spatial data. Maximum likelihood estimation is not common practice in spatial statistics. The method of moments

  1. Where did Venomous Snakes Strike? A Spatial Statistical Analysis of Snakebite Cases in Bondowoso Regency, Indonesia

    Directory of Open Access Journals (Sweden)

    Farid Rifaie

    2017-07-01

    Full Text Available Snakebite envenomation in Indonesia is a health burden that receives no attention from stakeholders. The high mortality and morbidity rate caused by snakebite in Indonesia is estimated from regional reports. The true burden of this issue in Indonesia needs to be revealed even starting from a small part of the country. Medical records from a Hospital in Bondowoso Regency were the data source of the snakebite cases. Three spatial statistical summaries were applied to analyze the spatial pattern of snakebite incidents. The comparison between statistical functions and the theoretical model of random distributions shows a significant clustering pattern of the events. The pattern indicates that five subdistricts in Bondowoso have a substantial number of snakebite cases more than other regions. This finding shows the potential application of spatial statistics for the snakebite combating strategy in this area by identifying the priority locations of the snakebite cases.

  2. Architecture of a spatial data service system for statistical analysis and visualization of regional climate changes

    Science.gov (United States)

    Titov, A. G.; Okladnikov, I. G.; Gordov, E. P.

    2017-11-01

    The use of large geospatial datasets in climate change studies requires the development of a set of Spatial Data Infrastructure (SDI) elements, including geoprocessing and cartographical visualization web services. This paper presents the architecture of a geospatial OGC web service system as an integral part of a virtual research environment (VRE) general architecture for statistical processing and visualization of meteorological and climatic data. The architecture is a set of interconnected standalone SDI nodes with corresponding data storage systems. Each node runs a specialized software, such as a geoportal, cartographical web services (WMS/WFS), a metadata catalog, and a MySQL database of technical metadata describing geospatial datasets available for the node. It also contains geospatial data processing services (WPS) based on a modular computing backend realizing statistical processing functionality and, thus, providing analysis of large datasets with the results of visualization and export into files of standard formats (XML, binary, etc.). Some cartographical web services have been developed in a system’s prototype to provide capabilities to work with raster and vector geospatial data based on OGC web services. The distributed architecture presented allows easy addition of new nodes, computing and data storage systems, and provides a solid computational infrastructure for regional climate change studies based on modern Web and GIS technologies.

  3. Components of spatial information management in wildlife ecology: Software for statistical and modeling analysis [Chapter 14

    Science.gov (United States)

    Hawthorne L. Beyer; Jeff Jenness; Samuel A. Cushman

    2010-01-01

    Spatial information systems (SIS) is a term that describes a wide diversity of concepts, techniques, and technologies related to the capture, management, display and analysis of spatial information. It encompasses technologies such as geographic information systems (GIS), global positioning systems (GPS), remote sensing, and relational database management systems (...

  4. Radar Derived Spatial Statistics of Summer Rain. Volume 2; Data Reduction and Analysis

    Science.gov (United States)

    Konrad, T. G.; Kropfli, R. A.

    1975-01-01

    Data reduction and analysis procedures are discussed along with the physical and statistical descriptors used. The statistical modeling techniques are outlined and examples of the derived statistical characterization of rain cells in terms of the several physical descriptors are presented. Recommendations concerning analyses which can be pursued using the data base collected during the experiment are included.

  5. Statistical and Spatial Analysis of Bathymetric Data for the St. Clair River, 1971-2007

    Science.gov (United States)

    Bennion, David

    2009-01-01

    To address questions concerning ongoing geomorphic processes in the St. Clair River, selected bathymetric datasets spanning 36 years were analyzed. Comparisons of recent high-resolution datasets covering the upper river indicate a highly variable, active environment. Although statistical and spatial comparisons of the datasets show that some changes to the channel size and shape have taken place during the study period, uncertainty associated with various survey methods and interpolation processes limit the statistically certain results. The methods used to spatially compare the datasets are sensitive to small variations in position and depth that are within the range of uncertainty associated with the datasets. Characteristics of the data, such as the density of measured points and the range of values surveyed, can also influence the results of spatial comparison. With due consideration of these limitations, apparently active and ongoing areas of elevation change in the river are mapped and discussed.

  6. Statistics for Time-Series Spatial Data: Applying Survival Analysis to Study Land-Use Change

    Science.gov (United States)

    Wang, Ninghua Nathan

    2013-01-01

    Traditional spatial analysis and data mining methods fall short of extracting temporal information from data. This inability makes their use difficult to study changes and the associated mechanisms of many geographic phenomena of interest, for example, land-use. On the other hand, the growing availability of land-change data over multiple time…

  7. Meteor localization via statistical analysis of spatially temporal fluctuations in image sequences

    Science.gov (United States)

    Kukal, Jaromír.; Klimt, Martin; Šihlík, Jan; Fliegel, Karel

    2015-09-01

    Meteor detection is one of the most important procedures in astronomical imaging. Meteor path in Earth's atmosphere is traditionally reconstructed from double station video observation system generating 2D image sequences. However, the atmospheric turbulence and other factors cause spatially-temporal fluctuations of image background, which makes the localization of meteor path more difficult. Our approach is based on nonlinear preprocessing of image intensity using Box-Cox and logarithmic transform as its particular case. The transformed image sequences are then differentiated along discrete coordinates to obtain statistical description of sky background fluctuations, which can be modeled by multivariate normal distribution. After verification and hypothesis testing, we use the statistical model for outlier detection. Meanwhile the isolated outlier points are ignored, the compact cluster of outliers indicates the presence of meteoroids after ignition.

  8. Spatial Statistical Data Fusion (SSDF)

    Science.gov (United States)

    Braverman, Amy J.; Nguyen, Hai M.; Cressie, Noel

    2013-01-01

    As remote sensing for scientific purposes has transitioned from an experimental technology to an operational one, the selection of instruments has become more coordinated, so that the scientific community can exploit complementary measurements. However, tech nological and scientific heterogeneity across devices means that the statistical characteristics of the data they collect are different. The challenge addressed here is how to combine heterogeneous remote sensing data sets in a way that yields optimal statistical estimates of the underlying geophysical field, and provides rigorous uncertainty measures for those estimates. Different remote sensing data sets may have different spatial resolutions, different measurement error biases and variances, and other disparate characteristics. A state-of-the-art spatial statistical model was used to relate the true, but not directly observed, geophysical field to noisy, spatial aggregates observed by remote sensing instruments. The spatial covariances of the true field and the covariances of the true field with the observations were modeled. The observations are spatial averages of the true field values, over pixels, with different measurement noise superimposed. A kriging framework is used to infer optimal (minimum mean squared error and unbiased) estimates of the true field at point locations from pixel-level, noisy observations. A key feature of the spatial statistical model is the spatial mixed effects model that underlies it. The approach models the spatial covariance function of the underlying field using linear combinations of basis functions of fixed size. Approaches based on kriging require the inversion of very large spatial covariance matrices, and this is usually done by making simplifying assumptions about spatial covariance structure that simply do not hold for geophysical variables. In contrast, this method does not require these assumptions, and is also computationally much faster. This method is

  9. Research on the optimization of air quality monitoring station layout based on spatial grid statistical analysis method.

    Science.gov (United States)

    Li, Tianxin; Zhou, Xing Chen; Ikhumhen, Harrison Odion; Difei, An

    2018-05-01

    In recent years, with the significant increase in urban development, it has become necessary to optimize the current air monitoring stations to reflect the quality of air in the environment. Highlighting the spatial representation of some air monitoring stations using Beijing's regional air monitoring station data from 2012 to 2014, the monthly mean particulate matter concentration (PM10) in the region was calculated and through the IDW interpolation method and spatial grid statistical method using GIS, the spatial distribution of PM10 concentration in the whole region was deduced. The spatial distribution variation of districts in Beijing using the gridding model was performed, and through the 3-year spatial analysis, PM10 concentration data including the variation and spatial overlay (1.5 km × 1.5 km cell resolution grid), the spatial distribution result obtained showed that the total PM10 concentration frequency variation exceeded the standard. It is very important to optimize the layout of the existing air monitoring stations by combining the concentration distribution of air pollutants with the spatial region using GIS.

  10. Spatial analysis and statistical modelling of snow cover dynamics in the Central Himalayas, Nepal

    Science.gov (United States)

    Weidinger, Johannes; Gerlitz, Lars; Böhner, Jürgen

    2017-04-01

    General circulation models are able to predict large scale climate variations in global dimensions, however small scale dynamic characteristics, such as snow cover and its temporal variations in high mountain regions, are not represented sufficiently. Detailed knowledge about shifts in seasonal ablation times and spatial distribution of snow cover are crucial for various research interests. Since high mountain areas, for instance the Central Himalayas in Nepal, are generally remote, it is difficult to obtain data in high spatio-temporal resolutions. Regional climate models and downscaling techniques are implemented to compensate coarse resolution. Furthermore earth observation systems, such as MODIS, also permit bridging this gap to a certain extent. They offer snow (cover) data in daily temporal and medium spatial resolution of around 500 m, which can be applied as evaluation and training data for dynamical hydrological and statistical analyses. Within this approach two snow distribution models (binary snow cover and fractional snow cover) as well as one snow recession model were implemented for a research domain in the Rolwaling Himal in Nepal, employing the random forest technique, which represents a state of the art machine learning algorithm. Both bottom-up strategies provide inductive reasoning to derive rules for snow related processes out of climate (temperature, precipitation and irradiance) and climate-related topographic data sets (elevation, aspect and convergence index) obtained by meteorological network stations, remote sensing products (snow cover - MOD10-A1 and land surface temperatures - MOD11-A1) along with GIS. Snow distribution is predicted reliably on a daily basis in the research area, whereas further effort is necessary for predicting daily snow cover recession processes adequately. Swift changes induced by clear sky conditions with high insolation rates are well represented, whereas steady snow loss still needs continuing effort. All

  11. Automation method to identify the geological structure of seabed using spatial statistic analysis of echo sounding data

    Science.gov (United States)

    Kwon, O.; Kim, W.; Kim, J.

    2017-12-01

    Recently construction of subsea tunnel has been increased globally. For safe construction of subsea tunnel, identifying the geological structure including fault at design and construction stage is more than important. Then unlike the tunnel in land, it's very difficult to obtain the data on geological structure because of the limit in geological survey. This study is intended to challenge such difficulties in a way of developing the technology to identify the geological structure of seabed automatically by using echo sounding data. When investigation a potential site for a deep subsea tunnel, there is the technical and economical limit with borehole of geophysical investigation. On the contrary, echo sounding data is easily obtainable while information reliability is higher comparing to above approaches. This study is aimed at developing the algorithm that identifies the large scale of geological structure of seabed using geostatic approach. This study is based on theory of structural geology that topographic features indicate geological structure. Basic concept of algorithm is outlined as follows; (1) convert the seabed topography to the grid data using echo sounding data, (2) apply the moving window in optimal size to the grid data, (3) estimate the spatial statistics of the grid data in the window area, (4) set the percentile standard of spatial statistics, (5) display the values satisfying the standard on the map, (6) visualize the geological structure on the map. The important elements in this study include optimal size of moving window, kinds of optimal spatial statistics and determination of optimal percentile standard. To determine such optimal elements, a numerous simulations were implemented. Eventually, user program based on R was developed using optimal analysis algorithm. The user program was designed to identify the variations of various spatial statistics. It leads to easy analysis of geological structure depending on variation of spatial statistics

  12. A spatial statistical analysis of cork oak competition in two Portuguese silvopastoral systems

    NARCIS (Netherlands)

    Paulo, M.J.; Stein, A.; Tomé, M.

    2002-01-01

    This paper considers competition among cork oaks (Quercus suber L.) at three plots in two representative Portuguese stands. It uses spatial point pattern functions to describe densities and quantify differences among stands. Relations between cork oak characteristics and indices measuring intertree

  13. GIS-based spatial statistical analysis of risk areas for liver flukes in Surin Province of Thailand.

    Science.gov (United States)

    Rujirakul, Ratana; Ueng-arporn, Naporn; Kaewpitoon, Soraya; Loyd, Ryan J; Kaewthani, Sarochinee; Kaewpitoon, Natthawut

    2015-01-01

    It is urgently necessary to be aware of the distribution and risk areas of liver fluke, Opisthorchis viverrini, for proper allocation of prevention and control measures. This study aimed to investigate the human behavior, and environmental factors influencing the distribution in Surin Province of Thailand, and to build a model using stepwise multiple regression analysis with a geographic information system (GIS) on environment and climate data. The relationship between the human behavior, attitudes (R Square=0.878, and, Adjust R Square=0.849. By GIS analysis, we found Si Narong, Sangkha, Phanom Dong Rak, Mueang Surin, Non Narai, Samrong Thap, Chumphon Buri, and Rattanaburi to have the highest distributions in Surin province. In conclusion, the combination of GIS and statistical analysis can help simulate the spatial distribution and risk areas of liver fluke, and thus may be an important tool for future planning of prevention and control measures.

  14. Statistical analysis of temporal and spatial evolution of in-vessel dust particles in KSTAR

    International Nuclear Information System (INIS)

    Kim, Kyung-Rae; Hong, Suk-Ho; Nam, Yong-Un; Jung, Jinil; Kim, Woong-Chae

    2013-01-01

    Images of wide-angle visible standard CCD cameras contain information on in-vessel dusts such as dust creation events (DCEs) that occur during plasma operations, and their velocity. Analyzing the straight line-like dust traces in the shallow cylindrical shell-structured scrape-off layer along the vacuum vessel, a database on the short/long term temporal evolutions, spatial locations of DCEs caused by plasma–dust interaction, and the dust velocity distribution are built. We have studied DCEs of 2010 and 2011 KSTAR campaign

  15. Geovisual analytics to enhance spatial scan statistic interpretation: an analysis of U.S. cervical cancer mortality.

    Science.gov (United States)

    Chen, Jin; Roth, Robert E; Naito, Adam T; Lengerich, Eugene J; Maceachren, Alan M

    2008-11-07

    Kulldorff's spatial scan statistic and its software implementation - SaTScan - are widely used for detecting and evaluating geographic clusters. However, two issues make using the method and interpreting its results non-trivial: (1) the method lacks cartographic support for understanding the clusters in geographic context and (2) results from the method are sensitive to parameter choices related to cluster scaling (abbreviated as scaling parameters), but the system provides no direct support for making these choices. We employ both established and novel geovisual analytics methods to address these issues and to enhance the interpretation of SaTScan results. We demonstrate our geovisual analytics approach in a case study analysis of cervical cancer mortality in the U.S. We address the first issue by providing an interactive visual interface to support the interpretation of SaTScan results. Our research to address the second issue prompted a broader discussion about the sensitivity of SaTScan results to parameter choices. Sensitivity has two components: (1) the method can identify clusters that, while being statistically significant, have heterogeneous contents comprised of both high-risk and low-risk locations and (2) the method can identify clusters that are unstable in location and size as the spatial scan scaling parameter is varied. To investigate cluster result stability, we conducted multiple SaTScan runs with systematically selected parameters. The results, when scanning a large spatial dataset (e.g., U.S. data aggregated by county), demonstrate that no single spatial scan scaling value is known to be optimal to identify clusters that exist at different scales; instead, multiple scans that vary the parameters are necessary. We introduce a novel method of measuring and visualizing reliability that facilitates identification of homogeneous clusters that are stable across analysis scales. Finally, we propose a logical approach to proceed through the analysis of

  16. Multi-criteria decision analysis and spatial statistic: an approach to determining human vulnerability to vector transmission of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Diego Montenegro

    Full Text Available BACKGROUND Chagas disease (CD, caused by the protozoan Trypanosoma cruzi, is a neglected human disease. It is endemic to the Americas and is estimated to have an economic impact, including lost productivity and disability, of 7 billion dollars per year on average. OBJECTIVES To assess vulnerability to vector-borne transmission of T. cruzi in domiciliary environments within an area undergoing domiciliary vector interruption of T. cruzi in Colombia. METHODS Multi-criteria decision analysis [preference ranking method for enrichment evaluation (PROMETHEE and geometrical analysis for interactive assistance (GAIA methods] and spatial statistics were performed on data from a socio-environmental questionnaire and an entomological survey. In the construction of multi-criteria descriptors, decision-making processes and indicators of five determinants of the CD vector pathway were summarily defined, including: (1 house indicator (HI; (2 triatominae indicator (TI; (3 host/reservoir indicator (Ho/RoI; (4 ecotope indicator (EI; and (5 socio-cultural indicator (S-CI. FINDINGS Determination of vulnerability to CD is mostly influenced by TI, with 44.96% of the total weight in the model, while the lowest contribution was from S-CI, with 7.15%. The five indicators comprise 17 indices, and include 78 of the original 104 priority criteria and variables. The PROMETHEE and GAIA methods proved very efficient for prioritisation and quantitative categorisation of socio-environmental determinants and for better determining which criteria should be considered for interrupting the man-T. cruzi-vector relationship in endemic areas of the Americas. Through the analysis of spatial autocorrelation it is clear that there is a spatial dependence in establishing categories of vulnerability, therefore, the effect of neighbors’ setting (border areas on local values should be incorporated into disease management for establishing programs of surveillance and control of CD via vector

  17. Multi-criteria decision analysis and spatial statistic: an approach to determining human vulnerability to vector transmission of Trypanosoma cruzi.

    Science.gov (United States)

    Montenegro, Diego; Cunha, Ana Paula da; Ladeia-Andrade, Simone; Vera, Mauricio; Pedroso, Marcel; Junqueira, Angela

    2017-10-01

    Chagas disease (CD), caused by the protozoan Trypanosoma cruzi, is a neglected human disease. It is endemic to the Americas and is estimated to have an economic impact, including lost productivity and disability, of 7 billion dollars per year on average. To assess vulnerability to vector-borne transmission of T. cruzi in domiciliary environments within an area undergoing domiciliary vector interruption of T. cruzi in Colombia. Multi-criteria decision analysis [preference ranking method for enrichment evaluation (PROMETHEE) and geometrical analysis for interactive assistance (GAIA) methods] and spatial statistics were performed on data from a socio-environmental questionnaire and an entomological survey. In the construction of multi-criteria descriptors, decision-making processes and indicators of five determinants of the CD vector pathway were summarily defined, including: (1) house indicator (HI); (2) triatominae indicator (TI); (3) host/reservoir indicator (Ho/RoI); (4) ecotope indicator (EI); and (5) socio-cultural indicator (S-CI). Determination of vulnerability to CD is mostly influenced by TI, with 44.96% of the total weight in the model, while the lowest contribution was from S-CI, with 7.15%. The five indicators comprise 17 indices, and include 78 of the original 104 priority criteria and variables. The PROMETHEE and GAIA methods proved very efficient for prioritisation and quantitative categorisation of socio-environmental determinants and for better determining which criteria should be considered for interrupting the man-T. cruzi-vector relationship in endemic areas of the Americas. Through the analysis of spatial autocorrelation it is clear that there is a spatial dependence in establishing categories of vulnerability, therefore, the effect of neighbors' setting (border areas) on local values should be incorporated into disease management for establishing programs of surveillance and control of CD via vector. The study model proposed here is flexible and

  18. Tract-based spatial statistics analysis of diffusion-tensor imaging data in pediatric- and adult-onset multiple sclerosis.

    Science.gov (United States)

    Aliotta, Rachel; Cox, Jennifer L; Donohue, Katelyn; Weinstock-Guttman, Bianca; Yeh, E Ann; Polak, Paul; Dwyer, Michael G; Zivadinov, Robert

    2014-01-01

    White matter (WM) microstructure may vary significantly in pediatric-onset (PO) and adult-onset (AO) patients with multiple sclerosis (MS), a difference that could be explained by the effects of an inherent plasticity in the affected pediatric brains early in the disease, and a phenomenon that does not occur later in life. This hypothesis would support the observation that disease progression is much slower in POMS compared to AOMS patients. To examine WM microstructure in the brain of adults with POMS and AOMS, using tract based spatial statistics (TBSS) analysis of diffusion-tensor imaging (DTI). Adults with relapsing-remitting (RR) POMS, who were diagnosed before age of 18 years (n = 16), were compared with age-matched (AOA, n = 23) and disease duration-matched (AOD, n = 22) RR patients who developed MS after the age of 18 years. Scans were analyzed using the FSL software package (Oxford, UK) and statistics were performed using TBSS to evaluate WM microstructure between groups based on the mean fractional anisotropy (FA) values obtained from the DTI. Widespread cortical and deep WM area differences characterized by increased FA values were seen in the AOAMS compared with POMS group (P < 0.05, TFCE corrected). Significantly increased FA values of posterior WM areas were detected in the AODMS compared with POMS group (P < 0.05, TFCE corrected). Increased FA values in WM areas of the AOMS compared with the POMS patients suggest that diffuse WM microstructure changes are more attributable to age of onset than a simple function of disease duration and age. Copyright © 2012 Wiley Periodicals, Inc.

  19. Downscaling of Open Coarse Precipitation Data through Spatial and Statistical Analysis, Integrating NDVI, NDWI, Elevation, and Distance from Sea

    Directory of Open Access Journals (Sweden)

    Hicham Ezzine

    2017-01-01

    Full Text Available This study aims to improve the statistical spatial downscaling of coarse precipitation (TRMM 3B43 product and also to explore its limitations in the Mediterranean area. It was carried out in Morocco and was based on an open dataset including four predictors (NDVI, NDWI, DEM, and distance from sea that explain TRMM 3B43 product. For this purpose, four groups of models were established based on different combinations of the four predictors, in order to compare from one side NDVI and NDWI based models and the other side stepwise with multiple regression. The models that have given rise to the best approximations and best fits were used to downscale TRMM 3B43 product. The resulting downscaled and calibrated precipitations were validated by independent RGS. Aside from that, the limitations of the proposed approach were assessed in five bioclimatic stages. Furthermore, the influence of the sea was analyzed in five classes of distance. The findings showed that the models built using NDVI and NDWI have a high correlation and therefore can be used to downscale precipitation. The integration of elevation and distance improved the correlation models. According to R2, RMSE, bias, and MAE, the study revealed that there is a great agreement between downscaled precipitations and RGS measurements. In addition, the analysis showed that the contribution of the variable (distance from sea is evident around the coastal area and decreases progressively. Likewise, the study demonstrated that the approach performs well in humid and arid bioclimatic stages compared to others.

  20. Spherical Process Models for Global Spatial Statistics

    KAUST Repository

    Jeong, Jaehong; Jun, Mikyoung; Genton, Marc G.

    2017-01-01

    Statistical models used in geophysical, environmental, and climate science applications must reflect the curvature of the spatial domain in global data. Over the past few decades, statisticians have developed covariance models that capture

  1. Heavy metals in soils and sediments from Dongting Lake in China: occurrence, sources, and spatial distribution by multivariate statistical analysis.

    Science.gov (United States)

    Zhang, Yaxin; Tian, Ye; Shen, Maocai; Zeng, Guangming

    2018-03-03

    Heavy metal contamination in soils/sediments and its impact on human health and ecological environment have aroused wide concerns. Our study investigated 30 samples of soils and sediments around Dongting Lake to analyze the concentration of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn in the samples and to distinguish the natural and anthropogenic sources. Also, the relationship between heavy metals and the physicochemical properties of samples was studied by multivariate statistical analysis. Concentration of Cd at most sampling sites were more than five times that of national environmental quality standard for soil in China (GB 15618-1995), and Pb and Zn levels exceeded one to two times. Moreover, Cr in the soil was higher than the national environmental quality standards for one to two times while in sediment was lower than the national standard. The investigation revealed that the accumulations of As, Cd, Mn, and Pb in the soils, and sediments were affected apparently by anthropogenic activities; however, Cr, Fe, and Ni levels were impacted by parent materials. Human activities around Dongting Lake mainly consisted of industrial activities, mining and smelting, sewage discharges, fossil fuel combustion, and agricultural chemicals. The spatial distribution of heavy metal in soil followed the rule of geographical gradient, whereas in sediments, it was significantly affected by the river basins and human activities. The result of principal component analysis (PCA) demonstrated that heavy metals in soils were associated with pH and total phosphorus (TP), while in sediments, As, Cr, Fe, and Ni were closely associated with cation exchange capacity (CEC) and pH, where Pb, Zn, and Cd were associated with total nitrogen (TN), TP, total carbon (TC), moisture content (MC), soil organic matter (SOM), and ignition lost (IL). Our research provides comprehensive approaches to better understand the potential sources and the fate of contaminants in lakeshore soils and sediments.

  2. spatial statistics of poultry production in anambra state of nigeria

    African Journals Online (AJOL)

    user

    case study. Spatial statistics toolbox in ArcGIS was used to generate point density map which reveal the regional .... Global Positioning System (GPS) .... report generated is shown in Figure . .... for the analysis of crime incident locations. Ned.

  3. Statistics of spatially integrated speckle intensity difference

    DEFF Research Database (Denmark)

    Hanson, Steen Grüner; Yura, Harold

    2009-01-01

    We consider the statistics of the spatially integrated speckle intensity difference obtained from two separated finite collecting apertures. For fully developed speckle, closed-form analytic solutions for both the probability density function and the cumulative distribution function are derived...... here for both arbitrary values of the mean number of speckles contained within an aperture and the degree of coherence of the optical field. Additionally, closed-form expressions are obtained for the corresponding nth statistical moments....

  4. Spatial statistical analysis of contamination level of 241Am and 239Pu Thule, North-West Greenland

    International Nuclear Information System (INIS)

    Strodl Andersen, J.

    2011-10-01

    A spatial analysis of data on radioactive pollution on land at Thule, North-West Greenland is presented. The data comprises levels of 241 Am and 239,240 Pu on land. Maximum observed level of 241 Am is 2.8x10 5 Bq m -2 . Highest levels were observed near Narsaarsuk. This area was also sampled most intensively. In Groennedal the maximum observed level of 241 Am is 1.9Oe10 4 Bq m -2 . Prediction of the overall amount of 241 Am and 239,240 Pu is based on grid points within the range from the nearest measurement location. The overall amount is therefore highly dependent on the model. Under the optimal spatial model for Narsaarsuk, within the area of prediction, the predicted total amount of 241 Am is 45 GBq and the predicted total amount of 239,240 Pu is 270 GBq. (Author)

  5. Spatial statistical analysis of contamination level of 241Am and 239Pu, Thule, North-West Greenland

    Energy Technology Data Exchange (ETDEWEB)

    Strodl Andersen, J. (JSA EnviroStat (Denmark))

    2011-10-15

    A spatial analysis of data on radioactive pollution on land at Thule, North-West Greenland is presented. The data comprises levels of 241Am and 239,240Pu on land. Maximum observed level of 241Am is 2.8x105 Bq m-2. Highest levels were observed near Narsaarsuk. This area was also sampled most intensively. In Groennedal the maximum observed level of 241Am is 1.9-104 Bq m-2. Prediction of the overall amount of 241Am and 239,240Pu is based on grid points within the range from the nearest measurement location. The overall amount is therefore highly dependent on the model. Under the optimal spatial model for Narsaarsuk, within the area of prediction, the predicted total amount of 241Am is 45 GBq and the predicted total amount of 239,240Pu is 270 GBq. (Author)

  6. Spatial scan statistics using elliptic windows

    DEFF Research Database (Denmark)

    Christiansen, Lasse Engbo; Andersen, Jens Strodl; Wegener, Henrik Caspar

    The spatial scan statistic is widely used to search for clusters in epidemiologic data. This paper shows that the usually applied elimination of secondary clusters as implemented in SatScan is sensitive to smooth changes in the shape of the clusters. We present an algorithm for generation of set...

  7. Spatial scan statistics using elliptic windows

    DEFF Research Database (Denmark)

    Christiansen, Lasse Engbo; Andersen, Jens Strodl; Wegener, Henrik Caspar

    2006-01-01

    The spatial scan statistic is widely used to search for clusters. This article shows that the usually applied elimination of secondary clusters as implemented in SatScan is sensitive to smooth changes in the shape of the clusters. We present an algorithm for generation of a set of confocal elliptic...

  8. Statistical data analysis handbook

    National Research Council Canada - National Science Library

    Wall, Francis J

    1986-01-01

    It must be emphasized that this is not a text book on statistics. Instead it is a working tool that presents data analysis in clear, concise terms which can be readily understood even by those without formal training in statistics...

  9. Progress in spatial analysis methods and applications

    CERN Document Server

    Páez, Antonio; Buliung, Ron N; Dall'erba, Sandy

    2010-01-01

    This book brings together developments in spatial analysis techniques, including spatial statistics, econometrics, and spatial visualization, and applications to fields such as regional studies, transportation and land use, population and health.

  10. Application of Statistical Downscaling Techniques to Predict Rainfall and Its Spatial Analysis Over Subansiri River Basin of Assam, India

    Science.gov (United States)

    Barman, S.; Bhattacharjya, R. K.

    2017-12-01

    The River Subansiri is the major north bank tributary of river Brahmaputra. It originates from the range of Himalayas beyond the Great Himalayan range at an altitude of approximately 5340m. Subansiri basin extends from tropical to temperate zones and hence exhibits a great diversity in rainfall characteristics. In the Northern and Central Himalayan tracts, precipitation is scarce on account of high altitudes. On the other hand, Southeast part of the Subansiri basin comprising the sub-Himalayan and the plain tract in Arunachal Pradesh and Assam, lies in the tropics. Due to Northeast as well as Southwest monsoon, precipitation occurs in this region in abundant quantities. Particularly, Southwest monsoon causes very heavy precipitation in the entire Subansiri basin during May to October. In this study, the rainfall over Subansiri basin has been studied at 24 different locations by multiple linear and non-linear regression based statistical downscaling techniques and by Artificial Neural Network based model. APHRODITE's gridded rainfall data of 0.25˚ x 0.25˚ resolutions and climatic parameters of HadCM3 GCM of resolution 2.5˚ x 3.75˚ (latitude by longitude) have been used in this study. It has been found that multiple non-linear regression based statistical downscaling technique outperformed the other techniques. Using this method, the future rainfall pattern over the Subansiri basin has been analyzed up to the year 2099 for four different time periods, viz., 2020-39, 2040-59, 2060-79, and 2080-99 at all the 24 locations. On the basis of historical rainfall, the months have been categorized as wet months, months with moderate rainfall and dry months. The spatial changes in rainfall patterns for all these three types of months have also been analyzed over the basin. Potential decrease of rainfall in the wet months and months with moderate rainfall and increase of rainfall in the dry months are observed for the future rainfall pattern of the Subansiri basin.

  11. Statistical mechanics of spatial evolutionary games

    International Nuclear Information System (INIS)

    Miekisz, Jacek

    2004-01-01

    We discuss the long-run behaviour of stochastic dynamics of many interacting players in spatial evolutionary games. In particular, we investigate the effect of the number of players and the noise level on the stochastic stability of Nash equilibria. We discuss similarities and differences between systems of interacting players maximizing their individual payoffs and particles minimizing their interaction energy. We use concepts and techniques of statistical mechanics to study game-theoretic models. In order to obtain results in the case of the so-called potential games, we analyse the thermodynamic limit of the appropriate models of interacting particles

  12. A Statistical Toolbox For Mining And Modeling Spatial Data

    Directory of Open Access Journals (Sweden)

    D’Aubigny Gérard

    2016-12-01

    Full Text Available Most data mining projects in spatial economics start with an evaluation of a set of attribute variables on a sample of spatial entities, looking for the existence and strength of spatial autocorrelation, based on the Moran’s and the Geary’s coefficients, the adequacy of which is rarely challenged, despite the fact that when reporting on their properties, many users seem likely to make mistakes and to foster confusion. My paper begins by a critical appraisal of the classical definition and rational of these indices. I argue that while intuitively founded, they are plagued by an inconsistency in their conception. Then, I propose a principled small change leading to corrected spatial autocorrelation coefficients, which strongly simplifies their relationship, and opens the way to an augmented toolbox of statistical methods of dimension reduction and data visualization, also useful for modeling purposes. A second section presents a formal framework, adapted from recent work in statistical learning, which gives theoretical support to our definition of corrected spatial autocorrelation coefficients. More specifically, the multivariate data mining methods presented here, are easily implementable on the existing (free software, yield methods useful to exploit the proposed corrections in spatial data analysis practice, and, from a mathematical point of view, whose asymptotic behavior, already studied in a series of papers by Belkin & Niyogi, suggests that they own qualities of robustness and a limited sensitivity to the Modifiable Areal Unit Problem (MAUP, valuable in exploratory spatial data analysis.

  13. Temporal scaling and spatial statistical analyses of groundwater level fluctuations

    Science.gov (United States)

    Sun, H.; Yuan, L., Sr.; Zhang, Y.

    2017-12-01

    Natural dynamics such as groundwater level fluctuations can exhibit multifractionality and/or multifractality due likely to multi-scale aquifer heterogeneity and controlling factors, whose statistics requires efficient quantification methods. This study explores multifractionality and non-Gaussian properties in groundwater dynamics expressed by time series of daily level fluctuation at three wells located in the lower Mississippi valley, after removing the seasonal cycle in the temporal scaling and spatial statistical analysis. First, using the time-scale multifractional analysis, a systematic statistical method is developed to analyze groundwater level fluctuations quantified by the time-scale local Hurst exponent (TS-LHE). Results show that the TS-LHE does not remain constant, implying the fractal-scaling behavior changing with time and location. Hence, we can distinguish the potentially location-dependent scaling feature, which may characterize the hydrology dynamic system. Second, spatial statistical analysis shows that the increment of groundwater level fluctuations exhibits a heavy tailed, non-Gaussian distribution, which can be better quantified by a Lévy stable distribution. Monte Carlo simulations of the fluctuation process also show that the linear fractional stable motion model can well depict the transient dynamics (i.e., fractal non-Gaussian property) of groundwater level, while fractional Brownian motion is inadequate to describe natural processes with anomalous dynamics. Analysis of temporal scaling and spatial statistics therefore may provide useful information and quantification to understand further the nature of complex dynamics in hydrology.

  14. Perspectives on spatial data analysis

    CERN Document Server

    Rey, Sergio

    2010-01-01

    This book takes both a retrospective and prospective view of the field of spatial analysis by combining selected reprints of classic articles by Arthur Getis with current observations by leading experts in the field. Four main aspects are highlighted, dealing with spatial analysis, pattern analysis, local statistics as well as illustrative empirical applications. Researchers and students will gain an appreciation of Getis' methodological contributions to spatial analysis and the broad impact of the methods he has helped pioneer on an impressively broad array of disciplines including spatial epidemiology, demography, economics, and ecology. The volume is a compilation of high impact original contributions, as evidenced by citations, and the latest thinking on the field by leading scholars. This makes the book ideal for advanced seminars and courses in spatial analysis as well as a key resource for researchers seeking a comprehensive overview of recent advances and future directions in the field.

  15. Spherical Process Models for Global Spatial Statistics

    KAUST Repository

    Jeong, Jaehong

    2017-11-28

    Statistical models used in geophysical, environmental, and climate science applications must reflect the curvature of the spatial domain in global data. Over the past few decades, statisticians have developed covariance models that capture the spatial and temporal behavior of these global data sets. Though the geodesic distance is the most natural metric for measuring distance on the surface of a sphere, mathematical limitations have compelled statisticians to use the chordal distance to compute the covariance matrix in many applications instead, which may cause physically unrealistic distortions. Therefore, covariance functions directly defined on a sphere using the geodesic distance are needed. We discuss the issues that arise when dealing with spherical data sets on a global scale and provide references to recent literature. We review the current approaches to building process models on spheres, including the differential operator, the stochastic partial differential equation, the kernel convolution, and the deformation approaches. We illustrate realizations obtained from Gaussian processes with different covariance structures and the use of isotropic and nonstationary covariance models through deformations and geographical indicators for global surface temperature data. To assess the suitability of each method, we compare their log-likelihood values and prediction scores, and we end with a discussion of related research problems.

  16. Hedonic approaches based on spatial econometrics and spatial statistics: application to evaluation of project benefits

    Science.gov (United States)

    Tsutsumi, Morito; Seya, Hajime

    2009-12-01

    This study discusses the theoretical foundation of the application of spatial hedonic approaches—the hedonic approach employing spatial econometrics or/and spatial statistics—to benefits evaluation. The study highlights the limitations of the spatial econometrics approach since it uses a spatial weight matrix that is not employed by the spatial statistics approach. Further, the study presents empirical analyses by applying the Spatial Autoregressive Error Model (SAEM), which is based on the spatial econometrics approach, and the Spatial Process Model (SPM), which is based on the spatial statistics approach. SPMs are conducted based on both isotropy and anisotropy and applied to different mesh sizes. The empirical analysis reveals that the estimated benefits are quite different, especially between isotropic and anisotropic SPM and between isotropic SPM and SAEM; the estimated benefits are similar for SAEM and anisotropic SPM. The study demonstrates that the mesh size does not affect the estimated amount of benefits. Finally, the study provides a confidence interval for the estimated benefits and raises an issue with regard to benefit evaluation.

  17. Statistical, Spatial and Temporal Mapping of 911 Emergencies in Ecuador

    Directory of Open Access Journals (Sweden)

    Danilo Corral-De-Witt

    2018-01-01

    Full Text Available A public safety answering point (PSAP receives alerts and attends to emergencies that occur in its responsibility area. The analysis of the events related to a PSAP can give us relevant information in order to manage them and to improve the performance of the first response institutions (FRIs associated to every PSAP. However, current emergency systems are growing dramatically in terms of information heterogeneity and the volume of attended requests. In this work, we propose a system for statistical, spatial, and temporal analysis of incidences registered in a PSAP by using simple, yet robust and compact, event representations. The selected and designed temporal analysis tools include seasonal representations and nonparametric confidence intervals (CIs, which dissociate the main seasonal components and the transients. The spatial analysis tools include a straightforward event location over Google Maps and the detection of heat zones by means of bidimensional geographic Parzen windows with automatic width control in terms of the scales and the number of events in the region of interest. Finally, statistical representations are used for jointly analyzing temporal and spatial data in terms of the “time–space slices”. We analyzed the total number of emergencies that were attended during 2014 by seven FRIs articulated in a PSAP at the Ecuadorian 911 Integrated Security Service. Characteristic weekly patterns were observed in institutions such as the police, health, and transit services, whereas annual patterns were observed in firefighter events. Spatial and spatiotemporal analysis showed some expected patterns together with nontrivial differences among different services, to be taken into account for resource management. The proposed analysis allows for a flexible analysis by combining statistical, spatial and temporal information, and it provides 911 service managers with useful and operative information.

  18. Bias expansion of spatial statistics and approximation of differenced ...

    Indian Academy of Sciences (India)

    Investigations of spatial statistics, computed from lattice data in the plane, can lead to a special lattice point counting problem. The statistical goal is to expand the asymptotic expectation or large-sample bias of certain spatial covariance estimators, where this bias typically depends on the shape of a spatial sampling region.

  19. Beginning statistics with data analysis

    CERN Document Server

    Mosteller, Frederick; Rourke, Robert EK

    2013-01-01

    This introduction to the world of statistics covers exploratory data analysis, methods for collecting data, formal statistical inference, and techniques of regression and analysis of variance. 1983 edition.

  20. Multivariate and spatial statistical analysis of Callovo-Oxfordian physical properties from lab and borehole logs data: towards a characterization of lateral and vertical spatial trends in the Meuse/Haute-Marne transposition zone

    International Nuclear Information System (INIS)

    Garcia, M.H.; Rabaute, A.; Yven, B.; Guillemot, D.

    2010-01-01

    relevant information about the spatial continuity of rock properties as measured on cores in laboratory. To do so, multivariate statistical analysis methods, including principal component analysis based on linear or rank (Spearman) correlations, were carried out. They show that well-log compressive velocity ( V p) is well correlated to static Young modulus and compressive strength measured on cores, and that downhole bulk density and Total CMR porosity are well correlated to dynamic Young modulus, dynamic shear modulus and compressive velocity on cores. Studying the spatial continuity and trends of properties in argillaceous units was a primary objective of the study. To do so, the spatial analysis was first conducted on the well-log properties that proved to be well correlated to properties measured on cores, lab properties remaining the reference physical properties. Lateral and vertical spatial trends were observed and interpreted on the selected well-log properties. In order to confirm that these spatial trends were effective and could apply to physical properties measured on cores, the spatial continuity of some correlated lab properties was studied. Similar trends were found that validated the approach of using log properties for characterizing the spatial continuity of core physical properties. (authors)

  1. Applied multivariate statistical analysis

    CERN Document Server

    Härdle, Wolfgang Karl

    2015-01-01

    Focusing on high-dimensional applications, this 4th edition presents the tools and concepts used in multivariate data analysis in a style that is also accessible for non-mathematicians and practitioners.  It surveys the basic principles and emphasizes both exploratory and inferential statistics; a new chapter on Variable Selection (Lasso, SCAD and Elastic Net) has also been added.  All chapters include practical exercises that highlight applications in different multivariate data analysis fields: in quantitative financial studies, where the joint dynamics of assets are observed; in medicine, where recorded observations of subjects in different locations form the basis for reliable diagnoses and medication; and in quantitative marketing, where consumers’ preferences are collected in order to construct models of consumer behavior.  All of these examples involve high to ultra-high dimensions and represent a number of major fields in big data analysis. The fourth edition of this book on Applied Multivariate ...

  2. Modern Statistics for Spatial Point Processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Waagepetersen, Rasmus

    2007-01-01

    We summarize and discuss the current state of spatial point process theory and directions for future research, making an analogy with generalized linear models and random effect models, and illustrating the theory with various examples of applications. In particular, we consider Poisson, Gibbs...

  3. Modern statistics for spatial point processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Waagepetersen, Rasmus

    We summarize and discuss the current state of spatial point process theory and directions for future research, making an analogy with generalized linear models and random effect models, and illustrating the theory with various examples of applications. In particular, we consider Poisson, Gibbs...

  4. A nonparametric spatial scan statistic for continuous data.

    Science.gov (United States)

    Jung, Inkyung; Cho, Ho Jin

    2015-10-20

    Spatial scan statistics are widely used for spatial cluster detection, and several parametric models exist. For continuous data, a normal-based scan statistic can be used. However, the performance of the model has not been fully evaluated for non-normal data. We propose a nonparametric spatial scan statistic based on the Wilcoxon rank-sum test statistic and compared the performance of the method with parametric models via a simulation study under various scenarios. The nonparametric method outperforms the normal-based scan statistic in terms of power and accuracy in almost all cases under consideration in the simulation study. The proposed nonparametric spatial scan statistic is therefore an excellent alternative to the normal model for continuous data and is especially useful for data following skewed or heavy-tailed distributions.

  5. RADSS: an integration of GIS, spatial statistics, and network service for regional data mining

    Science.gov (United States)

    Hu, Haitang; Bao, Shuming; Lin, Hui; Zhu, Qing

    2005-10-01

    Regional data mining, which aims at the discovery of knowledge about spatial patterns, clusters or association between regions, has widely applications nowadays in social science, such as sociology, economics, epidemiology, crime, and so on. Many applications in the regional or other social sciences are more concerned with the spatial relationship, rather than the precise geographical location. Based on the spatial continuity rule derived from Tobler's first law of geography: observations at two sites tend to be more similar to each other if the sites are close together than if far apart, spatial statistics, as an important means for spatial data mining, allow the users to extract the interesting and useful information like spatial pattern, spatial structure, spatial association, spatial outlier and spatial interaction, from the vast amount of spatial data or non-spatial data. Therefore, by integrating with the spatial statistical methods, the geographical information systems will become more powerful in gaining further insights into the nature of spatial structure of regional system, and help the researchers to be more careful when selecting appropriate models. However, the lack of such tools holds back the application of spatial data analysis techniques and development of new methods and models (e.g., spatio-temporal models). Herein, we make an attempt to develop such an integrated software and apply it into the complex system analysis for the Poyang Lake Basin. This paper presents a framework for integrating GIS, spatial statistics and network service in regional data mining, as well as their implementation. After discussing the spatial statistics methods involved in regional complex system analysis, we introduce RADSS (Regional Analysis and Decision Support System), our new regional data mining tool, by integrating GIS, spatial statistics and network service. RADSS includes the functions of spatial data visualization, exploratory spatial data analysis, and

  6. Quantifying spatial and temporal trends in beach-dune volumetric changes using spatial statistics

    Science.gov (United States)

    Eamer, Jordan B. R.; Walker, Ian J.

    2013-06-01

    Spatial statistics are generally underutilized in coastal geomorphology, despite offering great potential for identifying and quantifying spatial-temporal trends in landscape morphodynamics. In particular, local Moran's Ii provides a statistical framework for detecting clusters of significant change in an attribute (e.g., surface erosion or deposition) and quantifying how this changes over space and time. This study analyzes and interprets spatial-temporal patterns in sediment volume changes in a beach-foredune-transgressive dune complex following removal of invasive marram grass (Ammophila spp.). Results are derived by detecting significant changes in post-removal repeat DEMs derived from topographic surveys and airborne LiDAR. The study site was separated into discrete, linked geomorphic units (beach, foredune, transgressive dune complex) to facilitate sub-landscape scale analysis of volumetric change and sediment budget responses. Difference surfaces derived from a pixel-subtraction algorithm between interval DEMs and the LiDAR baseline DEM were filtered using the local Moran's Ii method and two different spatial weights (1.5 and 5 m) to detect statistically significant change. Moran's Ii results were compared with those derived from a more spatially uniform statistical method that uses a simpler student's t distribution threshold for change detection. Morphodynamic patterns and volumetric estimates were similar between the uniform geostatistical method and Moran's Ii at a spatial weight of 5 m while the smaller spatial weight (1.5 m) consistently indicated volumetric changes of less magnitude. The larger 5 m spatial weight was most representative of broader site morphodynamics and spatial patterns while the smaller spatial weight provided volumetric changes consistent with field observations. All methods showed foredune deflation immediately following removal with increased sediment volumes into the spring via deposition at the crest and on lobes in the lee

  7. Screening for collusion: a spatial statistics approach

    NARCIS (Netherlands)

    Heijnen, P.; Haan, M.A.; Soetevent, A.R.

    2012-01-01

    We develop a method to screen for local cartels. We first test whether there is statistical evidence of clustering of outlets that score high on some characteristic that is consistent with collusive behavior. If so, we determine in a second step the most suspicious regions where further antitrust

  8. Screening for collusion: a spatial statistics approach

    NARCIS (Netherlands)

    Heijnen, P.; Haan, M.A.; Soetevent, A.R.

    2015-01-01

    We develop a method to screen for local cartels. We first test whether there is statistical evidence of clustering of outlets that score high on some characteristic that is consistent with collusive behavior. If so, we determine in a second step the most suspicious regions where further antitrust

  9. Screening for collusion : A spatial statistics approach

    NARCIS (Netherlands)

    Heijnen, Pim; Haan, Marco A.; Soetevent, Adriaan R.

    2015-01-01

    We develop a method to screen for local cartels. We first test whether there is statistical evidence of clustering of outlets that score high on some characteristic that is consistent with collusive behavior. If so, we determine in a second step the most suspicious regions where further antitrust

  10. Spatial and multidimensional visualization of Indonesia's village health statistics.

    Science.gov (United States)

    Parmanto, Bambang; Paramita, Maria V; Sugiantara, Wayan; Pramana, Gede; Scotch, Matthew; Burke, Donald S

    2008-06-11

    A community health assessment (CHA) is used to identify and address health issues in a given population. Effective CHA requires timely and comprehensive information from a wide variety of sources, such as: socio-economic data, disease surveillance, healthcare utilization, environmental data, and health resource allocation. Indonesia is a developing country with 235 million inhabitants over 13,000 islands. There are significant barriers to conducting CHA in developing countries like Indonesia, such as the high cost of computing resources and the lack of computing skills necessary to support such an assessment. At the University of Pittsburgh, we have developed the Spatial OLAP (On-Line Analytical Processing) Visualization and Analysis Tool (SOVAT) for performing CHA. SOVAT combines Geographic Information System (GIS) technology along with an advanced multidimensional data warehouse structure to facilitate analysis of large, disparate health, environmental, population, and spatial data. The objective of this paper is to demonstrate the potential of SOVAT for facilitating CHA among developing countries by using health, population, healthcare resources, and spatial data from Indonesia for use in two CHA cases studies. Bureau of Statistics administered data sets from the Indonesian Census, and the Indonesian village statistics, were used in the case studies. The data consisted of: healthcare resources (number of healthcare professionals and facilities), population (census), morbidity and mortality, and spatial (GIS-formatted) information. The data was formatted, combined, and populated into SOVAT for CHA use. Case study 1 involves the distribution of healthcare professionals in Indonesia, while case study 2 involves malaria mortality. Screen shots are shown for both cases. The results for the CHA were retrieved in seconds and presented through the geospatial and numerical SOVAT interface. The case studies show the potential of spatial and multidimensional analysis using

  11. Per Object statistical analysis

    DEFF Research Database (Denmark)

    2008-01-01

    of a specific class in turn, and uses as pair of PPO stages to derive the statistics and then assign them to the objects' Object Variables. It may be that this could all be done in some other, simply way, but several other ways that were tried did not succeed. The procedure ouptut has been tested against...

  12. Statistical Analysis and validation

    NARCIS (Netherlands)

    Hoefsloot, H.C.J.; Horvatovich, P.; Bischoff, R.

    2013-01-01

    In this chapter guidelines are given for the selection of a few biomarker candidates from a large number of compounds with a relative low number of samples. The main concepts concerning the statistical validation of the search for biomarkers are discussed. These complicated methods and concepts are

  13. Hierarchical modeling and analysis for spatial data

    CERN Document Server

    Banerjee, Sudipto; Gelfand, Alan E

    2003-01-01

    Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis, or written at a level often inaccessible to those lacking a strong background in mathematical statistics.Hierarchical Modeling and Analysis for Spatial Data is the first accessible, self-contained treatment of hierarchical methods, modeling, and dat

  14. Discussion of "Modern statistics for spatial point processes"

    DEFF Research Database (Denmark)

    Jensen, Eva Bjørn Vedel; Prokesová, Michaela; Hellmund, Gunnar

    2007-01-01

    ABSTRACT. The paper ‘Modern statistics for spatial point processes’ by Jesper Møller and Rasmus P. Waagepetersen is based on a special invited lecture given by the authors at the 21st Nordic Conference on Mathematical Statistics, held at Rebild, Denmark, in June 2006. At the conference, Antti...

  15. Identifying clusters of active transportation using spatial scan statistics.

    Science.gov (United States)

    Huang, Lan; Stinchcomb, David G; Pickle, Linda W; Dill, Jennifer; Berrigan, David

    2009-08-01

    There is an intense interest in the possibility that neighborhood characteristics influence active transportation such as walking or biking. The purpose of this paper is to illustrate how a spatial cluster identification method can evaluate the geographic variation of active transportation and identify neighborhoods with unusually high/low levels of active transportation. Self-reported walking/biking prevalence, demographic characteristics, street connectivity variables, and neighborhood socioeconomic data were collected from respondents to the 2001 California Health Interview Survey (CHIS; N=10,688) in Los Angeles County (LAC) and San Diego County (SDC). Spatial scan statistics were used to identify clusters of high or low prevalence (with and without age-adjustment) and the quantity of time spent walking and biking. The data, a subset from the 2001 CHIS, were analyzed in 2007-2008. Geographic clusters of significantly high or low prevalence of walking and biking were detected in LAC and SDC. Structural variables such as street connectivity and shorter block lengths are consistently associated with higher levels of active transportation, but associations between active transportation and socioeconomic variables at the individual and neighborhood levels are mixed. Only one cluster with less time spent walking and biking among walkers/bikers was detected in LAC, and this was of borderline significance. Age-adjustment affects the clustering pattern of walking/biking prevalence in LAC, but not in SDC. The use of spatial scan statistics to identify significant clustering of health behaviors such as active transportation adds to the more traditional regression analysis that examines associations between behavior and environmental factors by identifying specific geographic areas with unusual levels of the behavior independent of predefined administrative units.

  16. Planar-channeling spatial density under statistical equilibrium

    International Nuclear Information System (INIS)

    Ellison, J.A.; Picraux, S.T.

    1978-01-01

    The phase-space density for planar channeled particles has been derived for the continuum model under statistical equilibrium. This is used to obtain the particle spatial probability density as a function of incident angle. The spatial density is shown to depend on only two parameters, a normalized incident angle and a normalized planar spacing. This normalization is used to obtain, by numerical calculation, a set of universal curves for the spatial density and also for the channeled-particle wavelength as a function of amplitude. Using these universal curves, the statistical-equilibrium spatial density and the channeled-particle wavelength can be easily obtained for any case for which the continuum model can be applied. Also, a new one-parameter analytic approximation to the spatial density is developed. This parabolic approximation is shown to give excellent agreement with the exact calculations

  17. Statistical data analysis

    International Nuclear Information System (INIS)

    Hahn, A.A.

    1994-11-01

    The complexity of instrumentation sometimes requires data analysis to be done before the result is presented to the control room. This tutorial reviews some of the theoretical assumptions underlying the more popular forms of data analysis and presents simple examples to illuminate the advantages and hazards of different techniques

  18. Statistical Analysis Plan

    DEFF Research Database (Denmark)

    Ris Hansen, Inge; Søgaard, Karen; Gram, Bibi

    2015-01-01

    This is the analysis plan for the multicentre randomised control study looking at the effect of training and exercises in chronic neck pain patients that is being conducted in Jutland and Funen, Denmark. This plan will be used as a work description for the analyses of the data collected....

  19. Stochastic geometry, spatial statistics and random fields models and algorithms

    CERN Document Server

    2015-01-01

    Providing a graduate level introduction to various aspects of stochastic geometry, spatial statistics and random fields, this volume places a special emphasis on fundamental classes of models and algorithms as well as on their applications, for example in materials science, biology and genetics. This book has a strong focus on simulations and includes extensive codes in Matlab and R, which are widely used in the mathematical community. It can be regarded as a continuation of the recent volume 2068 of Lecture Notes in Mathematics, where other issues of stochastic geometry, spatial statistics and random fields were considered, with a focus on asymptotic methods.

  20. Data-driven inference for the spatial scan statistic

    Directory of Open Access Journals (Sweden)

    Duczmal Luiz H

    2011-08-01

    Full Text Available Abstract Background Kulldorff's spatial scan statistic for aggregated area maps searches for clusters of cases without specifying their size (number of areas or geographic location in advance. Their statistical significance is tested while adjusting for the multiple testing inherent in such a procedure. However, as is shown in this work, this adjustment is not done in an even manner for all possible cluster sizes. Results A modification is proposed to the usual inference test of the spatial scan statistic, incorporating additional information about the size of the most likely cluster found. A new interpretation of the results of the spatial scan statistic is done, posing a modified inference question: what is the probability that the null hypothesis is rejected for the original observed cases map with a most likely cluster of size k, taking into account only those most likely clusters of size k found under null hypothesis for comparison? This question is especially important when the p-value computed by the usual inference process is near the alpha significance level, regarding the correctness of the decision based in this inference. Conclusions A practical procedure is provided to make more accurate inferences about the most likely cluster found by the spatial scan statistic.

  1. Data-driven inference for the spatial scan statistic.

    Science.gov (United States)

    Almeida, Alexandre C L; Duarte, Anderson R; Duczmal, Luiz H; Oliveira, Fernando L P; Takahashi, Ricardo H C

    2011-08-02

    Kulldorff's spatial scan statistic for aggregated area maps searches for clusters of cases without specifying their size (number of areas) or geographic location in advance. Their statistical significance is tested while adjusting for the multiple testing inherent in such a procedure. However, as is shown in this work, this adjustment is not done in an even manner for all possible cluster sizes. A modification is proposed to the usual inference test of the spatial scan statistic, incorporating additional information about the size of the most likely cluster found. A new interpretation of the results of the spatial scan statistic is done, posing a modified inference question: what is the probability that the null hypothesis is rejected for the original observed cases map with a most likely cluster of size k, taking into account only those most likely clusters of size k found under null hypothesis for comparison? This question is especially important when the p-value computed by the usual inference process is near the alpha significance level, regarding the correctness of the decision based in this inference. A practical procedure is provided to make more accurate inferences about the most likely cluster found by the spatial scan statistic.

  2. Research design and statistical analysis

    CERN Document Server

    Myers, Jerome L; Lorch Jr, Robert F

    2013-01-01

    Research Design and Statistical Analysis provides comprehensive coverage of the design principles and statistical concepts necessary to make sense of real data.  The book's goal is to provide a strong conceptual foundation to enable readers to generalize concepts to new research situations.  Emphasis is placed on the underlying logic and assumptions of the analysis and what it tells the researcher, the limitations of the analysis, and the consequences of violating assumptions.  Sampling, design efficiency, and statistical models are emphasized throughout. As per APA recommendations

  3. Stochastic Spatial Models in Ecology: A Statistical Physics Approach

    Science.gov (United States)

    Pigolotti, Simone; Cencini, Massimo; Molina, Daniel; Muñoz, Miguel A.

    2017-11-01

    Ecosystems display a complex spatial organization. Ecologists have long tried to characterize them by looking at how different measures of biodiversity change across spatial scales. Ecological neutral theory has provided simple predictions accounting for general empirical patterns in communities of competing species. However, while neutral theory in well-mixed ecosystems is mathematically well understood, spatial models still present several open problems, limiting the quantitative understanding of spatial biodiversity. In this review, we discuss the state of the art in spatial neutral theory. We emphasize the connection between spatial ecological models and the physics of non-equilibrium phase transitions and how concepts developed in statistical physics translate in population dynamics, and vice versa. We focus on non-trivial scaling laws arising at the critical dimension D = 2 of spatial neutral models, and their relevance for biological populations inhabiting two-dimensional environments. We conclude by discussing models incorporating non-neutral effects in the form of spatial and temporal disorder, and analyze how their predictions deviate from those of purely neutral theories.

  4. SU-F-I-10: Spatially Local Statistics for Adaptive Image Filtering

    International Nuclear Information System (INIS)

    Iliopoulos, AS; Sun, X; Floros, D; Zhang, Y; Yin, FF; Ren, L; Pitsianis, N

    2016-01-01

    Purpose: To facilitate adaptive image filtering operations, addressing spatial variations in both noise and signal. Such issues are prevalent in cone-beam projections, where physical effects such as X-ray scattering result in spatially variant noise, violating common assumptions of homogeneous noise and challenging conventional filtering approaches to signal extraction and noise suppression. Methods: We present a computational mechanism for probing into and quantifying the spatial variance of noise throughout an image. The mechanism builds a pyramid of local statistics at multiple spatial scales; local statistical information at each scale includes (weighted) mean, median, standard deviation, median absolute deviation, as well as histogram or dynamic range after local mean/median shifting. Based on inter-scale differences of local statistics, the spatial scope of distinguishable noise variation is detected in a semi- or un-supervised manner. Additionally, we propose and demonstrate the incorporation of such information in globally parametrized (i.e., non-adaptive) filters, effectively transforming the latter into spatially adaptive filters. The multi-scale mechanism is materialized by efficient algorithms and implemented in parallel CPU/GPU architectures. Results: We demonstrate the impact of local statistics for adaptive image processing and analysis using cone-beam projections of a Catphan phantom, fitted within an annulus to increase X-ray scattering. The effective spatial scope of local statistics calculations is shown to vary throughout the image domain, necessitating multi-scale noise and signal structure analysis. Filtering results with and without spatial filter adaptation are compared visually, illustrating improvements in imaging signal extraction and noise suppression, and in preserving information in low-contrast regions. Conclusion: Local image statistics can be incorporated in filtering operations to equip them with spatial adaptivity to spatial

  5. SU-F-I-10: Spatially Local Statistics for Adaptive Image Filtering

    Energy Technology Data Exchange (ETDEWEB)

    Iliopoulos, AS; Sun, X [Duke University, Durham, NC (United States); Floros, D [Aristotle University of Thessaloniki (Greece); Zhang, Y; Yin, FF; Ren, L [Duke University Medical Center, Durham, NC (United States); Pitsianis, N [Aristotle University of Thessaloniki (Greece); Duke University, Durham, NC (United States)

    2016-06-15

    Purpose: To facilitate adaptive image filtering operations, addressing spatial variations in both noise and signal. Such issues are prevalent in cone-beam projections, where physical effects such as X-ray scattering result in spatially variant noise, violating common assumptions of homogeneous noise and challenging conventional filtering approaches to signal extraction and noise suppression. Methods: We present a computational mechanism for probing into and quantifying the spatial variance of noise throughout an image. The mechanism builds a pyramid of local statistics at multiple spatial scales; local statistical information at each scale includes (weighted) mean, median, standard deviation, median absolute deviation, as well as histogram or dynamic range after local mean/median shifting. Based on inter-scale differences of local statistics, the spatial scope of distinguishable noise variation is detected in a semi- or un-supervised manner. Additionally, we propose and demonstrate the incorporation of such information in globally parametrized (i.e., non-adaptive) filters, effectively transforming the latter into spatially adaptive filters. The multi-scale mechanism is materialized by efficient algorithms and implemented in parallel CPU/GPU architectures. Results: We demonstrate the impact of local statistics for adaptive image processing and analysis using cone-beam projections of a Catphan phantom, fitted within an annulus to increase X-ray scattering. The effective spatial scope of local statistics calculations is shown to vary throughout the image domain, necessitating multi-scale noise and signal structure analysis. Filtering results with and without spatial filter adaptation are compared visually, illustrating improvements in imaging signal extraction and noise suppression, and in preserving information in low-contrast regions. Conclusion: Local image statistics can be incorporated in filtering operations to equip them with spatial adaptivity to spatial

  6. A combined tract-based spatial statistics and voxel-based morphometry study of the first MRI scan after diagnosis of amyotrophic lateral sclerosis with subgroup analysis.

    Science.gov (United States)

    Alruwaili, A R; Pannek, K; Coulthard, A; Henderson, R; Kurniawan, N D; McCombe, P

    2018-02-01

    This study aims to compare the cortical and subcortical deep gray matter (GM) and white matter (WM) of ALS subjects and controls and to compare ALS subjects with (ALScog) and without (ALSnon-cog) cognitive impairment. The study was performed in 30 ALS subjects, and 19 healthy controls. Structural T1- and diffusion-weighted MRI data were analyzed using voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS). All DTI measures and GM volume differed significantly between ALS subjects and controls. Compared to controls, greater DTI changes were present in ALScog than ALSnon-cog subjects. GM results showed reduction in the caudate nucleus volume in ALScog subjects compared to ALSnon-cog. and comparing all ALS with controls, there were changes on the right side and in a small region in the left middle frontal gyrus. This combined DTI and VBM study showed changes in motor and extra-motor regions. The DTI changes were more extensive in ALScog than ALSnon-cog subjects. It is likely that the inclusion of ALS subjects with cognitive impairment in previous studies resulted in extra-motor WM abnormalities being reported in ALS subjects. Copyright © 2017. Published by Elsevier Masson SAS.

  7. Professional analysis in spatial planning

    Directory of Open Access Journals (Sweden)

    Andrej Černe

    2005-12-01

    Full Text Available Spatial analysis contributes to accomplishment of the three basic aims of spatial planning: it is basic element for setting spatial policies, concepts and strategies, gives basic information to inhabitants, land owners, investors, planners and helps in performing spatial policies, strategies, plans, programmes and projects. Analysis in planning are generally devoted to: understand current circumstances and emerging conditions within planning decisions; determine priorities of open questions and their solutions; formulate general principles for further development.

  8. A spatial scan statistic for compound Poisson data.

    Science.gov (United States)

    Rosychuk, Rhonda J; Chang, Hsing-Ming

    2013-12-20

    The topic of spatial cluster detection gained attention in statistics during the late 1980s and early 1990s. Effort has been devoted to the development of methods for detecting spatial clustering of cases and events in the biological sciences, astronomy and epidemiology. More recently, research has examined detecting clusters of correlated count data associated with health conditions of individuals. Such a method allows researchers to examine spatial relationships of disease-related events rather than just incident or prevalent cases. We introduce a spatial scan test that identifies clusters of events in a study region. Because an individual case may have multiple (repeated) events, we base the test on a compound Poisson model. We illustrate our method for cluster detection on emergency department visits, where individuals may make multiple disease-related visits. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Regularized Statistical Analysis of Anatomy

    DEFF Research Database (Denmark)

    Sjöstrand, Karl

    2007-01-01

    This thesis presents the application and development of regularized methods for the statistical analysis of anatomical structures. Focus is on structure-function relationships in the human brain, such as the connection between early onset of Alzheimer’s disease and shape changes of the corpus...... and mind. Statistics represents a quintessential part of such investigations as they are preluded by a clinical hypothesis that must be verified based on observed data. The massive amounts of image data produced in each examination pose an important and interesting statistical challenge...... efficient algorithms which make the analysis of large data sets feasible, and gives examples of applications....

  10. Statistical Analysis of the Spatial Distribution of Multi-Elements in an Island Arc Region: Complicating Factors and Transfer by Water Currents

    Directory of Open Access Journals (Sweden)

    Atsuyuki Ohta

    2017-01-01

    Full Text Available The compositions and transfer processes affecting coastal sea sediments from the Seto Inland Sea and the Pacific Ocean are examined through the construction of comprehensive terrestrial and marine geochemical maps for western Japan. Two-way analysis of variance (ANOVA suggests that the elemental concentrations of marine sediments vary with particle size, and that this has a greater effect than the regional provenance of the terrestrial material. Cluster analysis is employed to reveal similarities and differences in the geochemistry of coastal sea and stream sediments. This analysis suggests that the geochemical features of fine sands and silts in the marine environment reflect those of stream sediments in the adjacent terrestrial areas. However, gravels and coarse sands do not show this direct relationship, which is likely a result of mineral segregation by strong tidal currents and the denudation of old basement rocks. Finally, the transport processes for the fine-grained sediments are discussed, using the spatial distribution patterns of outliers for those elements enriched in silt and clay. Silty and clayey sediments are found to be transported and dispersed widely by a periodic current in the inner sea, and are selectively deposited at the boundary of different water masses in the outer sea.

  11. Monte Carlo testing in spatial statistics, with applications to spatial residuals

    DEFF Research Database (Denmark)

    Mrkvička, Tomáš; Soubeyrand, Samuel; Myllymäki, Mari

    2016-01-01

    This paper reviews recent advances made in testing in spatial statistics and discussed at the Spatial Statistics conference in Avignon 2015. The rank and directional quantile envelope tests are discussed and practical rules for their use are provided. These tests are global envelope tests...... with an appropriate type I error probability. Two novel examples are given on their usage. First, in addition to the test based on a classical one-dimensional summary function, the goodness-of-fit of a point process model is evaluated by means of the test based on a higher dimensional functional statistic, namely...

  12. Spatial statistics of pitting corrosion patterning: Quadrat counts and the non-homogeneous Poisson process

    International Nuclear Information System (INIS)

    Lopez de la Cruz, J.; Gutierrez, M.A.

    2008-01-01

    This paper presents a stochastic analysis of spatial point patterns as effect of localized pitting corrosion. The Quadrat Counts method is studied with two empirical pit patterns. The results are dependent on the quadrat size and bias is introduced when empty quadrats are accounted for the analysis. The spatially inhomogeneous Poisson process is used to improve the performance of the Quadrat Counts method. The latter combines Quadrat Counts with distance-based statistics in the analysis of pit patterns. The Inter-Event and the Nearest-Neighbour statistics are here implemented in order to compare their results. Further, the treatment of patterns in irregular domains is discussed

  13. Statistical inference and visualization in scale-space for spatially dependent images

    KAUST Repository

    Vaughan, Amy

    2012-03-01

    SiZer (SIgnificant ZERo crossing of the derivatives) is a graphical scale-space visualization tool that allows for statistical inferences. In this paper we develop a spatial SiZer for finding significant features and conducting goodness-of-fit tests for spatially dependent images. The spatial SiZer utilizes a family of kernel estimates of the image and provides not only exploratory data analysis but also statistical inference with spatial correlation taken into account. It is also capable of comparing the observed image with a specific null model being tested by adjusting the statistical inference using an assumed covariance structure. Pixel locations having statistically significant differences between the image and a given null model are highlighted by arrows. The spatial SiZer is compared with the existing independent SiZer via the analysis of simulated data with and without signal on both planar and spherical domains. We apply the spatial SiZer method to the decadal temperature change over some regions of the Earth. © 2011 The Korean Statistical Society.

  14. Can spatial statistical river temperature models be transferred between catchments?

    Science.gov (United States)

    Jackson, Faye L.; Fryer, Robert J.; Hannah, David M.; Malcolm, Iain A.

    2017-09-01

    There has been increasing use of spatial statistical models to understand and predict river temperature (Tw) from landscape covariates. However, it is not financially or logistically feasible to monitor all rivers and the transferability of such models has not been explored. This paper uses Tw data from four river catchments collected in August 2015 to assess how well spatial regression models predict the maximum 7-day rolling mean of daily maximum Tw (Twmax) within and between catchments. Models were fitted for each catchment separately using (1) landscape covariates only (LS models) and (2) landscape covariates and an air temperature (Ta) metric (LS_Ta models). All the LS models included upstream catchment area and three included a river network smoother (RNS) that accounted for unexplained spatial structure. The LS models transferred reasonably to other catchments, at least when predicting relative levels of Twmax. However, the predictions were biased when mean Twmax differed between catchments. The RNS was needed to characterise and predict finer-scale spatially correlated variation. Because the RNS was unique to each catchment and thus non-transferable, predictions were better within catchments than between catchments. A single model fitted to all catchments found no interactions between the landscape covariates and catchment, suggesting that the landscape relationships were transferable. The LS_Ta models transferred less well, with particularly poor performance when the relationship with the Ta metric was physically implausible or required extrapolation outside the range of the data. A single model fitted to all catchments found catchment-specific relationships between Twmax and the Ta metric, indicating that the Ta metric was not transferable. These findings improve our understanding of the transferability of spatial statistical river temperature models and provide a foundation for developing new approaches for predicting Tw at unmonitored locations across

  15. Analyse spatiale et statistique de l’âge du Fer en France. L’exemple de la “ BaseFer ” Spatial and statistical analysis of the Iron Age in France. The example of 'basefer'

    Directory of Open Access Journals (Sweden)

    Olivier Buchsenschutz

    2009-05-01

    Full Text Available Le développement des systèmes d'information géographique (SIG permet d'introduire dans les bases de données archéologiques la localisation des données. Il est possible alors d'obtenir des cartes de répartition qu'il s'agit ensuite d'interpréter en s’appuyant sur des analyses statistiques et spatiales. Cartes et statistiques mettent en évidence l'état de la recherche, les conditions de conservation des sites, et au-delà des phénomènes historiques ou culturels.À travers un programme de recherche sur l'âge du Fer en France (Basefer une base de données globale a été constituée pour l'espace métropolitain. Cet article propose un certain nombre d'analyses sur les critères descriptifs généraux d’un corpus de 11 000 sites (les départements côtiers de la Méditerranée ne sont pas traités dans ce test. Le contrôle et le développement des rubriques plus fines seront réalisés avec une équipe élargie, avant une mise en réseau de la base.The development of Geographical Information Systems (GIS allows information in archaeological databases to be georeferenced. It is thus possible to obtain distribution maps which can then be interpreted using statistical and spatial analyses. Maps and statistics highlight the state of research, the condition of sites, and moreover historical and cultural phenomena.Through a research programme on the Iron Age in France (Basefer, a global database was established for the entire country. This article puts forward some analyses of the general descriptive criteria represented in a corpus of 11000 sites (departments along the Mediterranean Sea coast are excluded from this test. The control and development of finer descriptors will be undertaken by an enlarged team, before the data are networked.

  16. Spatial statistics for predicting flow through a rock fracture

    International Nuclear Information System (INIS)

    Coakley, K.J.

    1989-03-01

    Fluid flow through a single rock fracture depends on the shape of the space between the upper and lower pieces of rock which define the fracture. In this thesis, the normalized flow through a fracture, i.e. the equivalent permeability of a fracture, is predicted in terms of spatial statistics computed from the arrangement of voids, i.e. open spaces, and contact areas within the fracture. Patterns of voids and contact areas, with complexity typical of experimental data, are simulated by clipping a correlated Gaussian process defined on a N by N pixel square region. The voids have constant aperture; the distance between the upper and lower surfaces which define the fracture is either zero or a constant. Local flow is assumed to be proportional to local aperture cubed times local pressure gradient. The flow through a pattern of voids and contact areas is solved using a finite-difference method. After solving for the flow through simulated 10 by 10 by 30 pixel patterns of voids and contact areas, a model to predict equivalent permeability is developed. The first model is for patterns with 80% voids where all voids have the same aperture. The equivalent permeability of a pattern is predicted in terms of spatial statistics computed from the arrangement of voids and contact areas within the pattern. Four spatial statistics are examined. The change point statistic measures how often adjacent pixel alternate from void to contact area (or vice versa ) in the rows of the patterns which are parallel to the overall flow direction. 37 refs., 66 figs., 41 tabs

  17. Spatial Analysis Methods of Road Traffic Collisions

    DEFF Research Database (Denmark)

    Loo, Becky P. Y.; Anderson, Tessa Kate

    Spatial Analysis Methods of Road Traffic Collisions centers on the geographical nature of road crashes, and uses spatial methods to provide a greater understanding of the patterns and processes that cause them. Written by internationally known experts in the field of transport geography, the book...... outlines the key issues in identifying hazardous road locations (HRLs), considers current approaches used for reducing and preventing road traffic collisions, and outlines a strategy for improved road safety. The book covers spatial accuracy, validation, and other statistical issues, as well as link...

  18. Modelling malaria treatment practices in Bangladesh using spatial statistics

    Directory of Open Access Journals (Sweden)

    Haque Ubydul

    2012-03-01

    Full Text Available Abstract Background Malaria treatment-seeking practices vary worldwide and Bangladesh is no exception. Individuals from 88 villages in Rajasthali were asked about their treatment-seeking practices. A portion of these households preferred malaria treatment from the National Control Programme, but still a large number of households continued to use drug vendors and approximately one fourth of the individuals surveyed relied exclusively on non-control programme treatments. The risks of low-control programme usage include incomplete malaria treatment, possible misuse of anti-malarial drugs, and an increased potential for drug resistance. Methods The spatial patterns of treatment-seeking practices were first examined using hot-spot analysis (Local Getis-Ord Gi statistic and then modelled using regression. Ordinary least squares (OLS regression identified key factors explaining more than 80% of the variation in control programme and vendor treatment preferences. Geographically weighted regression (GWR was then used to assess where each factor was a strong predictor of treatment-seeking preferences. Results Several factors including tribal affiliation, housing materials, household densities, education levels, and proximity to the regional urban centre, were found to be effective predictors of malaria treatment-seeking preferences. The predictive strength of each of these factors, however, varied across the study area. While education, for example, was a strong predictor in some villages, it was less important for predicting treatment-seeking outcomes in other villages. Conclusion Understanding where each factor is a strong predictor of treatment-seeking outcomes may help in planning targeted interventions aimed at increasing control programme usage. Suggested strategies include providing additional training for the Building Resources across Communities (BRAC health workers, implementing educational programmes, and addressing economic factors.

  19. Bayesian Inference in Statistical Analysis

    CERN Document Server

    Box, George E P

    2011-01-01

    The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Rob

  20. Spatial analysis of the distribution of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) and losses in maize crop productivity using geo statistics

    International Nuclear Information System (INIS)

    Farias, Paulo R.S.; Miranda, Vicente S.; Ribeiro, Susane M.; Barbosa, Jose C.; Busoli, Antonio C.; Overal, William L.

    2008-01-01

    The fall armyworm, Spodoptera frugiperda (J.E. Smith), is one of the chief pests of maize in the Americas. The study of its spatial distribution is fundamental for designing correct control strategies, improving sampling methods, determining actual and potential crop losses, and adopting precise agricultural techniques. In Sao Paulo state, Brazil, a maize field was sampled at weekly intervals, from germination through harvest, for caterpillar densities, using quadrates. In each of 200 quadrates, 10 plants were sampled per week. Harvest weights were obtained in the field for each quadrate, and ear diameters and lengths were also sampled (15 ears per quadrate) and used to estimate potential productivity of the quadrate. Geostatistical analyses of caterpillar densities showed greatest ranges for small caterpillars when semivariograms were adjusted for a spherical model that showed greatest fit. As the caterpillars developed in the field, their spatial distribution became increasingly random, as shown by a model adjusted to a straight line, indicating a lack of spatial dependence among samples. Harvest weight and ear length followed the spherical model, indicating the existence of spatial variability of the production parameters in the maize field. Geostatistics shows promise for the application of precise methods in the integrated control of pests. (author)

  1. Spatial analysis of the distribution of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) and losses in maize crop productivity using geo statistics

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Paulo R.S.; Miranda, Vicente S.; Ribeiro, Susane M. [Universidade Federal Rural da Amazonia (UFRA), Belem, PA (Brazil). Inst. de Ciencias Agrarias]. E-mail: paulo.farias@ufra.edu.br; Barbosa, Jose C. [UNESP, Jaboticabal, SP (Brazil). Faculdade de Ciencias Agrarias e Veterinarias. Dept. de Ciencias Exatas; Busoli, Antonio C. [UNESP, Jaboticabal, SP (Brazil). Faculdade de Ciencias Agrarias e Veterinarias. Dept. de Fitossanidade; Overal, William L. [Museu Paraense Emilio Goeldi (MPEG), Belem, PA (Brazil). Coordenacao de Zoologia

    2008-05-15

    The fall armyworm, Spodoptera frugiperda (J.E. Smith), is one of the chief pests of maize in the Americas. The study of its spatial distribution is fundamental for designing correct control strategies, improving sampling methods, determining actual and potential crop losses, and adopting precise agricultural techniques. In Sao Paulo state, Brazil, a maize field was sampled at weekly intervals, from germination through harvest, for caterpillar densities, using quadrates. In each of 200 quadrates, 10 plants were sampled per week. Harvest weights were obtained in the field for each quadrate, and ear diameters and lengths were also sampled (15 ears per quadrate) and used to estimate potential productivity of the quadrate. Geostatistical analyses of caterpillar densities showed greatest ranges for small caterpillars when semivariograms were adjusted for a spherical model that showed greatest fit. As the caterpillars developed in the field, their spatial distribution became increasingly random, as shown by a model adjusted to a straight line, indicating a lack of spatial dependence among samples. Harvest weight and ear length followed the spherical model, indicating the existence of spatial variability of the production parameters in the maize field. Geostatistics shows promise for the application of precise methods in the integrated control of pests. (author)

  2. The statistical analysis of anisotropies

    International Nuclear Information System (INIS)

    Webster, A.

    1977-01-01

    One of the many uses to which a radio survey may be put is an analysis of the distribution of the radio sources on the celestial sphere to find out whether they are bunched into clusters or lie in preferred regions of space. There are many methods of testing for clustering in point processes and since they are not all equally good this contribution is presented as a brief guide to what seems to be the best of them. The radio sources certainly do not show very strong clusering and may well be entirely unclustered so if a statistical method is to be useful it must be both powerful and flexible. A statistic is powerful in this context if it can efficiently distinguish a weakly clustered distribution of sources from an unclustered one, and it is flexible if it can be applied in a way which avoids mistaking defects in the survey for true peculiarities in the distribution of sources. The paper divides clustering statistics into two classes: number density statistics and log N/log S statistics. (Auth.)

  3. Statistical learning as a tool for rehabilitation in spatial neglect.

    Directory of Open Access Journals (Sweden)

    Albulena eShaqiri

    2013-05-01

    Full Text Available We propose that neglect includes a disorder of representational updating. Representational updating refers to our ability to build mental models and adapt those models to changing experience. This updating ability depends on the processes of priming, working memory, and statistical learning. These processes in turn interact with our capabilities for sustained attention and precise temporal processing. We review evidence showing that all these non-spatial abilities are impaired in neglect, and we discuss how recognition of such deficits can lead to novel approaches for rehabilitating neglect.

  4. Statistical analysis of environmental data

    International Nuclear Information System (INIS)

    Beauchamp, J.J.; Bowman, K.O.; Miller, F.L. Jr.

    1975-10-01

    This report summarizes the analyses of data obtained by the Radiological Hygiene Branch of the Tennessee Valley Authority from samples taken around the Browns Ferry Nuclear Plant located in Northern Alabama. The data collection was begun in 1968 and a wide variety of types of samples have been gathered on a regular basis. The statistical analysis of environmental data involving very low-levels of radioactivity is discussed. Applications of computer calculations for data processing are described

  5. Statistical considerations on safety analysis

    International Nuclear Information System (INIS)

    Pal, L.; Makai, M.

    2004-01-01

    The authors have investigated the statistical methods applied to safety analysis of nuclear reactors and arrived at alarming conclusions: a series of calculations with the generally appreciated safety code ATHLET were carried out to ascertain the stability of the results against input uncertainties in a simple experimental situation. Scrutinizing those calculations, we came to the conclusion that the ATHLET results may exhibit chaotic behavior. A further conclusion is that the technological limits are incorrectly set when the output variables are correlated. Another formerly unnoticed conclusion of the previous ATHLET calculations that certain innocent looking parameters (like wall roughness factor, the number of bubbles per unit volume, the number of droplets per unit volume) can influence considerably such output parameters as water levels. The authors are concerned with the statistical foundation of present day safety analysis practices and can only hope that their own misjudgment will be dispelled. Until then, the authors suggest applying correct statistical methods in safety analysis even if it makes the analysis more expensive. It would be desirable to continue exploring the role of internal parameters (wall roughness factor, steam-water surface in thermal hydraulics codes, homogenization methods in neutronics codes) in system safety codes and to study their effects on the analysis. In the validation and verification process of a code one carries out a series of computations. The input data are not precisely determined because measured data have an error, calculated data are often obtained from a more or less accurate model. Some users of large codes are content with comparing the nominal output obtained from the nominal input, whereas all the possible inputs should be taken into account when judging safety. At the same time, any statement concerning safety must be aleatory, and its merit can be judged only when the probability is known with which the

  6. On two methods of statistical image analysis

    NARCIS (Netherlands)

    Missimer, J; Knorr, U; Maguire, RP; Herzog, H; Seitz, RJ; Tellman, L; Leenders, K.L.

    1999-01-01

    The computerized brain atlas (CBA) and statistical parametric mapping (SPM) are two procedures for voxel-based statistical evaluation of PET activation studies. Each includes spatial standardization of image volumes, computation of a statistic, and evaluation of its significance. In addition,

  7. Statistical analysis of JET disruptions

    International Nuclear Information System (INIS)

    Tanga, A.; Johnson, M.F.

    1991-07-01

    In the operation of JET and of any tokamak many discharges are terminated by a major disruption. The disruptive termination of a discharge is usually an unwanted event which may cause damage to the structure of the vessel. In a reactor disruptions are potentially a very serious problem, hence the importance of studying them and devising methods to avoid disruptions. Statistical information has been collected about the disruptions which have occurred at JET over a long span of operations. The analysis is focused on the operational aspects of the disruptions rather than on the underlining physics. (Author)

  8. Diffusion tensor imaging study of early white matter integrity in HIV-infected patients: A tract-based spatial statistics analysis

    Directory of Open Access Journals (Sweden)

    Ruili Li

    2015-12-01

    Conclusion: Multiple cerebral white matter fiber tracts are damaged in HIV-infected patients without cognitive impairment. Quantitative analysis of DTI using TBSS is valuable in evaluating changes of HIV-associated white matter microstructures.

  9. Generation of future potential scenarios in an Alpine Catchment by applying bias-correction techniques, delta-change approaches and stochastic Weather Generators at different spatial scale. Analysis of their influence on basic and drought statistics.

    Science.gov (United States)

    Collados-Lara, Antonio-Juan; Pulido-Velazquez, David; Pardo-Iguzquiza, Eulogio

    2017-04-01

    and drought statistic of the historical data. A multi-objective analysis using basic statistics (mean, standard deviation and asymmetry coefficient) and droughts statistics (duration, magnitude and intensity) has been performed to identify which models are better in terms of goodness of fit to reproduce the historical series. The drought statistics have been obtained from the Standard Precipitation index (SPI) series using the Theory of Runs. This analysis allows discriminate the best RCM and the best combination of model and correction technique in the bias-correction method. We have also analyzed the possibilities of using different Stochastic Weather Generators to approximate the basic and droughts statistics of the historical series. These analyses have been performed in our case study in a lumped and in a distributed way in order to assess its sensibility to the spatial scale. The statistic of the future temperature series obtained with different ensemble options are quite homogeneous, but the precipitation shows a higher sensibility to the adopted method and spatial scale. The global increment in the mean temperature values are 31.79 %, 31.79 %, 31.03 % and 31.74 % for the distributed bias-correction, distributed delta-change, lumped bias-correction and lumped delta-change ensembles respectively and in the precipitation they are -25.48 %, -28.49 %, -26.42 % and -27.35% respectively. Acknowledgments: This research work has been partially supported by the GESINHIMPADAPT project (CGL2013-48424-C2-2-R) with Spanish MINECO funds. We would also like to thank Spain02 and CORDEX projects for the data provided for this study and the R package qmap.

  10. Statistical Analysis of Protein Ensembles

    Science.gov (United States)

    Máté, Gabriell; Heermann, Dieter

    2014-04-01

    As 3D protein-configuration data is piling up, there is an ever-increasing need for well-defined, mathematically rigorous analysis approaches, especially that the vast majority of the currently available methods rely heavily on heuristics. We propose an analysis framework which stems from topology, the field of mathematics which studies properties preserved under continuous deformations. First, we calculate a barcode representation of the molecules employing computational topology algorithms. Bars in this barcode represent different topological features. Molecules are compared through their barcodes by statistically determining the difference in the set of their topological features. As a proof-of-principle application, we analyze a dataset compiled of ensembles of different proteins, obtained from the Ensemble Protein Database. We demonstrate that our approach correctly detects the different protein groupings.

  11. Statistical data analysis using SAS intermediate statistical methods

    CERN Document Server

    Marasinghe, Mervyn G

    2018-01-01

    The aim of this textbook (previously titled SAS for Data Analytics) is to teach the use of SAS for statistical analysis of data for advanced undergraduate and graduate students in statistics, data science, and disciplines involving analyzing data. The book begins with an introduction beyond the basics of SAS, illustrated with non-trivial, real-world, worked examples. It proceeds to SAS programming and applications, SAS graphics, statistical analysis of regression models, analysis of variance models, analysis of variance with random and mixed effects models, and then takes the discussion beyond regression and analysis of variance to conclude. Pedagogically, the authors introduce theory and methodological basis topic by topic, present a problem as an application, followed by a SAS analysis of the data provided and a discussion of results. The text focuses on applied statistical problems and methods. Key features include: end of chapter exercises, downloadable SAS code and data sets, and advanced material suitab...

  12. Statistically and Computationally Efficient Estimating Equations for Large Spatial Datasets

    KAUST Repository

    Sun, Ying

    2014-11-07

    For Gaussian process models, likelihood based methods are often difficult to use with large irregularly spaced spatial datasets, because exact calculations of the likelihood for n observations require O(n3) operations and O(n2) memory. Various approximation methods have been developed to address the computational difficulties. In this paper, we propose new unbiased estimating equations based on score equation approximations that are both computationally and statistically efficient. We replace the inverse covariance matrix that appears in the score equations by a sparse matrix to approximate the quadratic forms, then set the resulting quadratic forms equal to their expected values to obtain unbiased estimating equations. The sparse matrix is constructed by a sparse inverse Cholesky approach to approximate the inverse covariance matrix. The statistical efficiency of the resulting unbiased estimating equations are evaluated both in theory and by numerical studies. Our methods are applied to nearly 90,000 satellite-based measurements of water vapor levels over a region in the Southeast Pacific Ocean.

  13. Statistically and Computationally Efficient Estimating Equations for Large Spatial Datasets

    KAUST Repository

    Sun, Ying; Stein, Michael L.

    2014-01-01

    For Gaussian process models, likelihood based methods are often difficult to use with large irregularly spaced spatial datasets, because exact calculations of the likelihood for n observations require O(n3) operations and O(n2) memory. Various approximation methods have been developed to address the computational difficulties. In this paper, we propose new unbiased estimating equations based on score equation approximations that are both computationally and statistically efficient. We replace the inverse covariance matrix that appears in the score equations by a sparse matrix to approximate the quadratic forms, then set the resulting quadratic forms equal to their expected values to obtain unbiased estimating equations. The sparse matrix is constructed by a sparse inverse Cholesky approach to approximate the inverse covariance matrix. The statistical efficiency of the resulting unbiased estimating equations are evaluated both in theory and by numerical studies. Our methods are applied to nearly 90,000 satellite-based measurements of water vapor levels over a region in the Southeast Pacific Ocean.

  14. Imaging mass spectrometry statistical analysis.

    Science.gov (United States)

    Jones, Emrys A; Deininger, Sören-Oliver; Hogendoorn, Pancras C W; Deelder, André M; McDonnell, Liam A

    2012-08-30

    Imaging mass spectrometry is increasingly used to identify new candidate biomarkers. This clinical application of imaging mass spectrometry is highly multidisciplinary: expertise in mass spectrometry is necessary to acquire high quality data, histology is required to accurately label the origin of each pixel's mass spectrum, disease biology is necessary to understand the potential meaning of the imaging mass spectrometry results, and statistics to assess the confidence of any findings. Imaging mass spectrometry data analysis is further complicated because of the unique nature of the data (within the mass spectrometry field); several of the assumptions implicit in the analysis of LC-MS/profiling datasets are not applicable to imaging. The very large size of imaging datasets and the reporting of many data analysis routines, combined with inadequate training and accessible reviews, have exacerbated this problem. In this paper we provide an accessible review of the nature of imaging data and the different strategies by which the data may be analyzed. Particular attention is paid to the assumptions of the data analysis routines to ensure that the reader is apprised of their correct usage in imaging mass spectrometry research. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Parametric statistical change point analysis

    CERN Document Server

    Chen, Jie

    2000-01-01

    This work is an in-depth study of the change point problem from a general point of view and a further examination of change point analysis of the most commonly used statistical models Change point problems are encountered in such disciplines as economics, finance, medicine, psychology, signal processing, and geology, to mention only several The exposition is clear and systematic, with a great deal of introductory material included Different models are presented in each chapter, including gamma and exponential models, rarely examined thus far in the literature Other models covered in detail are the multivariate normal, univariate normal, regression, and discrete models Extensive examples throughout the text emphasize key concepts and different methodologies are used, namely the likelihood ratio criterion, and the Bayesian and information criterion approaches A comprehensive bibliography and two indices complete the study

  16. Spatial analysis of weed patterns

    NARCIS (Netherlands)

    Heijting, S.

    2007-01-01

    Keywords: Spatial analysis, weed patterns, Mead’s test, space-time correlograms, 2-D correlograms, dispersal, Generalized Linear Models, heterogeneity, soil, Taylor’s power law. Weeds in agriculture occur in patches. This thesis is a contribution to the characterization of this patchiness, to its

  17. Analysis of Statistical Performance Measures

    National Research Council Canada - National Science Library

    Zoltowski, Michael D

    2004-01-01

    When only a limited number of snapshots is available for estimating the spatial correlation matrix, a low-rank solution of the MVDR equations, obtained via a small number of iterations of Conjugate Gradients (CG...

  18. A spatial scan statistic for survival data based on Weibull distribution.

    Science.gov (United States)

    Bhatt, Vijaya; Tiwari, Neeraj

    2014-05-20

    The spatial scan statistic has been developed as a geographical cluster detection analysis tool for different types of data sets such as Bernoulli, Poisson, ordinal, normal and exponential. We propose a scan statistic for survival data based on Weibull distribution. It may also be used for other survival distributions, such as exponential, gamma, and log normal. The proposed method is applied on the survival data of tuberculosis patients for the years 2004-2005 in Nainital district of Uttarakhand, India. Simulation studies reveal that the proposed method performs well for different survival distribution functions. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Statistical analysis and data management

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This report provides an overview of the history of the WIPP Biology Program. The recommendations of the American Institute of Biological Sciences (AIBS) for the WIPP biology program are summarized. The data sets available for statistical analyses and problems associated with these data sets are also summarized. Biological studies base maps are presented. A statistical model is presented to evaluate any correlation between climatological data and small mammal captures. No statistically significant relationship between variance in small mammal captures on Dr. Gennaro's 90m x 90m grid and precipitation records from the Duval Potash Mine were found

  20. Application of Parallel Hierarchical Matrices and Low-Rank Tensors in Spatial Statistics and Parameter Identification

    KAUST Repository

    Litvinenko, Alexander

    2018-03-12

    Part 1: Parallel H-matrices in spatial statistics 1. Motivation: improve statistical model 2. Tools: Hierarchical matrices 3. Matern covariance function and joint Gaussian likelihood 4. Identification of unknown parameters via maximizing Gaussian log-likelihood 5. Implementation with HLIBPro. Part 2: Low-rank Tucker tensor methods in spatial statistics

  1. Statistical analysis of management data

    CERN Document Server

    Gatignon, Hubert

    2013-01-01

    This book offers a comprehensive approach to multivariate statistical analyses. It provides theoretical knowledge of the concepts underlying the most important multivariate techniques and an overview of actual applications.

  2. Improving alignment in Tract-based spatial statistics: evaluation and optimization of image registration

    NARCIS (Netherlands)

    de Groot, Marius; Vernooij, Meike W.; Klein, Stefan; Ikram, M. Arfan; Vos, Frans M.; Smith, Stephen M.; Niessen, Wiro J.; Andersson, Jesper L. R.

    2013-01-01

    Anatomical alignment in neuroimaging studies is of such importance that considerable effort is put into improving the registration used to establish spatial correspondence. Tract-based spatial statistics (TBSS) is a popular method for comparing diffusion characteristics across subjects. TBSS

  3. Improving alignment in Tract-based spatial statistics : Evaluation and optimization of image registration

    NARCIS (Netherlands)

    De Groot, M.; Vernooij, M.W.; Klein, S.; Arfan Ikram, M.; Vos, F.M.; Smith, S.M.; Niessen, W.J.; Andersson, J.L.R.

    2013-01-01

    Anatomical alignment in neuroimaging studies is of such importance that considerable effort is put into improving the registration used to establish spatial correspondence. Tract-based spatial statistics (TBSS) is a popular method for comparing diffusion characteristics across subjects. TBSS

  4. Stereological analysis of spatial structures

    DEFF Research Database (Denmark)

    Hansen, Linda Vadgård

    The thesis deals with stereological analysis of spatial structures. One area of focus has been to improve the precision of well-known stereological estimators by including information that is available via automatic image analysis. Furthermore, the thesis presents a stochastic model for star......-shaped three-dimensional objects using the radial function. It appears that the model is highly fleksiblel in the sense that it can be used to describe an object with arbitrary irregular surface. Results on the distribution of well-known local stereological volume estimators are provided....

  5. Residual analysis for spatial point processes

    DEFF Research Database (Denmark)

    Baddeley, A.; Turner, R.; Møller, Jesper

    We define residuals for point process models fitted to spatial point pattern data, and propose diagnostic plots based on these residuals. The techniques apply to any Gibbs point process model, which may exhibit spatial heterogeneity, interpoint interaction and dependence on spatial covariates. Ou...... or covariate effects. Q-Q plots of the residuals are effective in diagnosing interpoint interaction. Some existing ad hoc statistics of point patterns (quadrat counts, scan statistic, kernel smoothed intensity, Berman's diagnostic) are recovered as special cases....

  6. The statistical geoportal and the ``cartographic added value'' - creation of the spatial knowledge infrastructure

    Science.gov (United States)

    Fiedukowicz, Anna; Gasiorowski, Jedrzej; Kowalski, Paweł; Olszewski, Robert; Pillich-Kolipinska, Agata

    2012-11-01

    The wide access to source data, published by numerous websites, results in situation, when information acquisition is not a problem any more. The real problem is how to transform information in the useful knowledge. Cartographic method of research, dealing with spatial data, has been serving this purpose for many years. Nowadays, it allows conducting analyses at the high complexity level, thanks to the intense development in IT technologies, The vast majority of analytic methods utilizing the so-called data mining and data enrichment techniques, however, concerns non-spatial data. According to the Authors, utilizing those techniques in spatial data analysis (including analysis based on statistical data with spatial reference), would allow the evolution of the Spatial Information Infrastructure (SII) into the Spatial Knowledge Infrastructure (SKI). The SKI development would benefit from the existence of statistical geoportal. Its proposed functionality, consisting of data analysis as well as visualization, is outlined in the article. The examples of geostatistical analyses (ANOVA and the regression model considering the spatial neighborhood), possible to implement in such portal and allowing to produce the “cartographic added value”, are also presented here. Szeroki dostep do danych zródłowych publikowanych w licznych serwisach internetowych sprawia, iz współczesnie problemem jest nie pozyskanie informacji, lecz umiejetne przekształcenie jej w uzyteczna wiedze. Kartograficzna metoda badan, która od wielu lat słuzy temu celowi w odniesieniu do danych przestrzennych, zyskuje dzis nowe oblicze - pozwala na wykonywanie złozonych analiz dzieki wykorzystaniu intensywnego rozwoju technologii informatycznych. Znaczaca wiekszosc zastosowan metod analitycznych tzw. eksploracyjnej analizy danych (data mining) i ich "wzbogacania” (data enrichment) dotyczy jednakze danych nieprzestrzennych. Wykorzystanie tych metod do analizy danych o charakterze przestrzennym, w

  7. STATISTICAL ANALYSIS OF SPORT MOVEMENT OBSERVATIONS: THE CASE OF ORIENTEERING

    Directory of Open Access Journals (Sweden)

    K. Amouzandeh

    2017-09-01

    Full Text Available Study of movement observations is becoming more popular in several applications. Particularly, analyzing sport movement time series has been considered as a demanding area. However, most of the attempts made on analyzing movement sport data have focused on spatial aspects of movement to extract some movement characteristics, such as spatial patterns and similarities. This paper proposes statistical analysis of sport movement observations, which refers to analyzing changes in the spatial movement attributes (e.g. distance, altitude and slope and non-spatial movement attributes (e.g. speed and heart rate of athletes. As the case study, an example dataset of movement observations acquired during the “orienteering” sport is presented and statistically analyzed.

  8. Statistical Analysis of Sport Movement Observations: the Case of Orienteering

    Science.gov (United States)

    Amouzandeh, K.; Karimipour, F.

    2017-09-01

    Study of movement observations is becoming more popular in several applications. Particularly, analyzing sport movement time series has been considered as a demanding area. However, most of the attempts made on analyzing movement sport data have focused on spatial aspects of movement to extract some movement characteristics, such as spatial patterns and similarities. This paper proposes statistical analysis of sport movement observations, which refers to analyzing changes in the spatial movement attributes (e.g. distance, altitude and slope) and non-spatial movement attributes (e.g. speed and heart rate) of athletes. As the case study, an example dataset of movement observations acquired during the "orienteering" sport is presented and statistically analyzed.

  9. Multivariate statistical analysis of wildfires in Portugal

    Science.gov (United States)

    Costa, Ricardo; Caramelo, Liliana; Pereira, Mário

    2013-04-01

    Several studies demonstrate that wildfires in Portugal present high temporal and spatial variability as well as cluster behavior (Pereira et al., 2005, 2011). This study aims to contribute to the characterization of the fire regime in Portugal with the multivariate statistical analysis of the time series of number of fires and area burned in Portugal during the 1980 - 2009 period. The data used in the analysis is an extended version of the Rural Fire Portuguese Database (PRFD) (Pereira et al, 2011), provided by the National Forest Authority (Autoridade Florestal Nacional, AFN), the Portuguese Forest Service, which includes information for more than 500,000 fire records. There are many multiple advanced techniques for examining the relationships among multiple time series at the same time (e.g., canonical correlation analysis, principal components analysis, factor analysis, path analysis, multiple analyses of variance, clustering systems). This study compares and discusses the results obtained with these different techniques. Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C., Leite, S.M., 2005: "Synoptic patterns associated with large summer forest fires in Portugal". Agricultural and Forest Meteorology. 129, 11-25. Pereira, M. G., Malamud, B. D., Trigo, R. M., and Alves, P. I.: The history and characteristics of the 1980-2005 Portuguese rural fire database, Nat. Hazards Earth Syst. Sci., 11, 3343-3358, doi:10.5194/nhess-11-3343-2011, 2011 This work is supported by European Union Funds (FEDER/COMPETE - Operational Competitiveness Programme) and by national funds (FCT - Portuguese Foundation for Science and Technology) under the project FCOMP-01-0124-FEDER-022692, the project FLAIR (PTDC/AAC-AMB/104702/2008) and the EU 7th Framework Program through FUME (contract number 243888).

  10. An improved Fuzzy Kappa statistic that accounts for spatial autocorrelation

    NARCIS (Netherlands)

    Hagen - Zanker, A.H.

    2009-01-01

    The Fuzzy Kappa statistic expresses the agreement between two categorical raster maps. The statistic goes beyond cell-by-cell comparison and gives partial credit to cells based on the categories found in the neighborhood. When matching categories are found at shorter distances the agreement is

  11. A Statistical Analysis of Cryptocurrencies

    Directory of Open Access Journals (Sweden)

    Stephen Chan

    2017-05-01

    Full Text Available We analyze statistical properties of the largest cryptocurrencies (determined by market capitalization, of which Bitcoin is the most prominent example. We characterize their exchange rates versus the U.S. Dollar by fitting parametric distributions to them. It is shown that returns are clearly non-normal, however, no single distribution fits well jointly to all the cryptocurrencies analysed. We find that for the most popular currencies, such as Bitcoin and Litecoin, the generalized hyperbolic distribution gives the best fit, while for the smaller cryptocurrencies the normal inverse Gaussian distribution, generalized t distribution, and Laplace distribution give good fits. The results are important for investment and risk management purposes.

  12. Water quality, Multivariate statistical techniques, submarine out fall, spatial variation, temporal variation

    International Nuclear Information System (INIS)

    Garcia, Francisco; Palacio, Carlos; Garcia, Uriel

    2012-01-01

    Multivariate statistical techniques were used to investigate the temporal and spatial variations of water quality at the Santa Marta coastal area where a submarine out fall that discharges 1 m3/s of domestic wastewater is located. Two-way analysis of variance (ANOVA), cluster and principal component analysis and Krigging interpolation were considered for this report. Temporal variation showed two heterogeneous periods. From December to April, and July, where the concentration of the water quality parameters is higher; the rest of the year (May, June, August-November) were significantly lower. The spatial variation reported two areas where the water quality is different, this difference is related to the proximity to the submarine out fall discharge.

  13. Statistical Power in Meta-Analysis

    Science.gov (United States)

    Liu, Jin

    2015-01-01

    Statistical power is important in a meta-analysis study, although few studies have examined the performance of simulated power in meta-analysis. The purpose of this study is to inform researchers about statistical power estimation on two sample mean difference test under different situations: (1) the discrepancy between the analytical power and…

  14. Statistical methods for astronomical data analysis

    CERN Document Server

    Chattopadhyay, Asis Kumar

    2014-01-01

    This book introduces “Astrostatistics” as a subject in its own right with rewarding examples, including work by the authors with galaxy and Gamma Ray Burst data to engage the reader. This includes a comprehensive blending of Astrophysics and Statistics. The first chapter’s coverage of preliminary concepts and terminologies for astronomical phenomenon will appeal to both Statistics and Astrophysics readers as helpful context. Statistics concepts covered in the book provide a methodological framework. A unique feature is the inclusion of different possible sources of astronomical data, as well as software packages for converting the raw data into appropriate forms for data analysis. Readers can then use the appropriate statistical packages for their particular data analysis needs. The ideas of statistical inference discussed in the book help readers determine how to apply statistical tests. The authors cover different applications of statistical techniques already developed or specifically introduced for ...

  15. A flexible spatial scan statistic with a restricted likelihood ratio for detecting disease clusters.

    Science.gov (United States)

    Tango, Toshiro; Takahashi, Kunihiko

    2012-12-30

    Spatial scan statistics are widely used tools for detection of disease clusters. Especially, the circular spatial scan statistic proposed by Kulldorff (1997) has been utilized in a wide variety of epidemiological studies and disease surveillance. However, as it cannot detect noncircular, irregularly shaped clusters, many authors have proposed different spatial scan statistics, including the elliptic version of Kulldorff's scan statistic. The flexible spatial scan statistic proposed by Tango and Takahashi (2005) has also been used for detecting irregularly shaped clusters. However, this method sets a feasible limitation of a maximum of 30 nearest neighbors for searching candidate clusters because of heavy computational load. In this paper, we show a flexible spatial scan statistic implemented with a restricted likelihood ratio proposed by Tango (2008) to (1) eliminate the limitation of 30 nearest neighbors and (2) to have surprisingly much less computational time than the original flexible spatial scan statistic. As a side effect, it is shown to be able to detect clusters with any shape reasonably well as the relative risk of the cluster becomes large via Monte Carlo simulation. We illustrate the proposed spatial scan statistic with data on mortality from cerebrovascular disease in the Tokyo Metropolitan area, Japan. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Statistical analysis with Excel for dummies

    CERN Document Server

    Schmuller, Joseph

    2013-01-01

    Take the mystery out of statistical terms and put Excel to work! If you need to create and interpret statistics in business or classroom settings, this easy-to-use guide is just what you need. It shows you how to use Excel's powerful tools for statistical analysis, even if you've never taken a course in statistics. Learn the meaning of terms like mean and median, margin of error, standard deviation, and permutations, and discover how to interpret the statistics of everyday life. You'll learn to use Excel formulas, charts, PivotTables, and other tools to make sense of everything fro

  17. Applications of spatial statistical network models to stream data

    Science.gov (United States)

    Daniel J. Isaak; Erin E. Peterson; Jay M. Ver Hoef; Seth J. Wenger; Jeffrey A. Falke; Christian E. Torgersen; Colin Sowder; E. Ashley Steel; Marie-Josee Fortin; Chris E. Jordan; Aaron S. Ruesch; Nicholas Som; Pascal. Monestiez

    2014-01-01

    Streams and rivers host a significant portion of Earth's biodiversity and provide important ecosystem services for human populations. Accurate information regarding the status and trends of stream resources is vital for their effective conservation and management. Most statistical techniques applied to data measured on stream networks were developed for...

  18. Selection of the Maximum Spatial Cluster Size of the Spatial Scan Statistic by Using the Maximum Clustering Set-Proportion Statistic.

    Science.gov (United States)

    Ma, Yue; Yin, Fei; Zhang, Tao; Zhou, Xiaohua Andrew; Li, Xiaosong

    2016-01-01

    Spatial scan statistics are widely used in various fields. The performance of these statistics is influenced by parameters, such as maximum spatial cluster size, and can be improved by parameter selection using performance measures. Current performance measures are based on the presence of clusters and are thus inapplicable to data sets without known clusters. In this work, we propose a novel overall performance measure called maximum clustering set-proportion (MCS-P), which is based on the likelihood of the union of detected clusters and the applied dataset. MCS-P was compared with existing performance measures in a simulation study to select the maximum spatial cluster size. Results of other performance measures, such as sensitivity and misclassification, suggest that the spatial scan statistic achieves accurate results in most scenarios with the maximum spatial cluster sizes selected using MCS-P. Given that previously known clusters are not required in the proposed strategy, selection of the optimal maximum cluster size with MCS-P can improve the performance of the scan statistic in applications without identified clusters.

  19. Collecting operational event data for statistical analysis

    International Nuclear Information System (INIS)

    Atwood, C.L.

    1994-09-01

    This report gives guidance for collecting operational data to be used for statistical analysis, especially analysis of event counts. It discusses how to define the purpose of the study, the unit (system, component, etc.) to be studied, events to be counted, and demand or exposure time. Examples are given of classification systems for events in the data sources. A checklist summarizes the essential steps in data collection for statistical analysis

  20. Spatial analysis of the electrical energy demand in Greece

    International Nuclear Information System (INIS)

    Tyralis, Hristos; Mamassis, Nikos; Photis, Yorgos N.

    2017-01-01

    The Electrical Energy Demand (EED) of the agricultural, commercial and industrial sector in Greece, as well as its use for domestic activities, public and municipal authorities and street lighting are analysed spatially using Geographical Information System and spatial statistical methods. The analysis is performed on data which span from 2008 to 2012 and have annual temporal resolution and spatial resolution down to the NUTS (Nomenclature of Territorial Units for Statistics) level 3. The aim is to identify spatial patterns of the EED and its transformations such as the ratios of the EED to socioeconomic variables, i.e. the population, the total area, the population density and the Gross Domestic Product (GDP). Based on the analysis, Greece is divided in five regions, each one with a different development model, i.e. Attica and Thessaloniki which are two heavily populated major poles, Thessaly and Central Greece which form a connected geographical region with important agricultural and industrial sector, the islands and some coastal areas which are characterized by an important commercial sector and the rest Greek areas. The spatial patterns can provide additional information for policy decision about the electrical energy management and better representation of the regional socioeconomic conditions. - Highlights: • We visualize spatially the Electrical Energy Demand (EED) in Greece. • We apply spatial analysis methods to the EED data. • Spatial patterns of the EED are identified. • Greece is classified in five distinct groups, based on the analysis. • The results can be used for optimal planning of the electric system.

  1. Explorations in Statistics: The Analysis of Change

    Science.gov (United States)

    Curran-Everett, Douglas; Williams, Calvin L.

    2015-01-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This tenth installment of "Explorations in Statistics" explores the analysis of a potential change in some physiological response. As researchers, we often express absolute change as percent change so we can…

  2. A method for statistically comparing spatial distribution maps

    Directory of Open Access Journals (Sweden)

    Reynolds Mary G

    2009-01-01

    Full Text Available Abstract Background Ecological niche modeling is a method for estimation of species distributions based on certain ecological parameters. Thus far, empirical determination of significant differences between independently generated distribution maps for a single species (maps which are created through equivalent processes, but with different ecological input parameters, has been challenging. Results We describe a method for comparing model outcomes, which allows a statistical evaluation of whether the strength of prediction and breadth of predicted areas is measurably different between projected distributions. To create ecological niche models for statistical comparison, we utilized GARP (Genetic Algorithm for Rule-Set Production software to generate ecological niche models of human monkeypox in Africa. We created several models, keeping constant the case location input records for each model but varying the ecological input data. In order to assess the relative importance of each ecological parameter included in the development of the individual predicted distributions, we performed pixel-to-pixel comparisons between model outcomes and calculated the mean difference in pixel scores. We used a two sample Student's t-test, (assuming as null hypothesis that both maps were identical to each other regardless of which input parameters were used to examine whether the mean difference in corresponding pixel scores from one map to another was greater than would be expected by chance alone. We also utilized weighted kappa statistics, frequency distributions, and percent difference to look at the disparities in pixel scores. Multiple independent statistical tests indicated precipitation as the single most important independent ecological parameter in the niche model for human monkeypox disease. Conclusion In addition to improving our understanding of the natural factors influencing the distribution of human monkeypox disease, such pixel-to-pixel comparison

  3. Statistical shape analysis with applications in R

    CERN Document Server

    Dryden, Ian L

    2016-01-01

    A thoroughly revised and updated edition of this introduction to modern statistical methods for shape analysis Shape analysis is an important tool in the many disciplines where objects are compared using geometrical features. Examples include comparing brain shape in schizophrenia; investigating protein molecules in bioinformatics; and describing growth of organisms in biology. This book is a significant update of the highly-regarded `Statistical Shape Analysis’ by the same authors. The new edition lays the foundations of landmark shape analysis, including geometrical concepts and statistical techniques, and extends to include analysis of curves, surfaces, images and other types of object data. Key definitions and concepts are discussed throughout, and the relative merits of different approaches are presented. The authors have included substantial new material on recent statistical developments and offer numerous examples throughout the text. Concepts are introduced in an accessible manner, while reta...

  4. Crash rates analysis in China using a spatial panel model

    Directory of Open Access Journals (Sweden)

    Wonmongo Lacina Soro

    2017-10-01

    Full Text Available The consideration of spatial externalities in traffic safety analysis is of paramount importance for the success of road safety policies. Yet, the quasi-totality of spatial dependence studies on crash rates is performed within the framework of single-equation spatial cross-sectional studies. The present study extends the spatial cross-sectional scheme to a spatial fixed-effects panel model estimated using the maximum likelihood method. The spatial units are the 31 administrative regions of mainland China over the period 2004–2013. The presence of neighborhood effects is evidenced through the Moran's I statistic. Consistent with previous studies, the analysis reveals that omitting the spatial effects in traffic safety analysis is likely to bias the estimation results. The spatial and error lags are all positive and statistically significant suggesting similarities of crash rates pattern in neighboring regions. Some other explanatory variables, such as freight traffic, the length of paved roads and the populations of age 65 and above are related to higher rates while the opposite trend is observed for the Gross Regional Product, the urban unemployment rate and passenger traffic.

  5. High-Throughput Nanoindentation for Statistical and Spatial Property Determination

    Science.gov (United States)

    Hintsala, Eric D.; Hangen, Ude; Stauffer, Douglas D.

    2018-04-01

    Standard nanoindentation tests are "high throughput" compared to nearly all other mechanical tests, such as tension or compression. However, the typical rates of tens of tests per hour can be significantly improved. These higher testing rates enable otherwise impractical studies requiring several thousands of indents, such as high-resolution property mapping and detailed statistical studies. However, care must be taken to avoid systematic errors in the measurement, including choosing of the indentation depth/spacing to avoid overlap of plastic zones, pileup, and influence of neighboring microstructural features in the material being tested. Furthermore, since fast loading rates are required, the strain rate sensitivity must also be considered. A review of these effects is given, with the emphasis placed on making complimentary standard nanoindentation measurements to address these issues. Experimental applications of the technique, including mapping of welds, microstructures, and composites with varying length scales, along with studying the effect of surface roughness on nominally homogeneous specimens, will be presented.

  6. Spatial analysis and planning under imprecision

    CERN Document Server

    Leung, Y

    1988-01-01

    The book deals with complexity, imprecision, human valuation, and uncertainty in spatial analysis and planning, providing a systematic exposure of a new philosophical and theoretical foundation for spatial analysis and planning under imprecision. Regional concepts and regionalization, spatial preference-utility-choice structures, spatial optimization with single and multiple objectives, dynamic spatial systems and their controls are analyzed in sequence.The analytical framework is based on fuzzy set theory. Basic concepts of fuzzy set theory are first discussed. Many numerical examples and emp

  7. Advances in statistical models for data analysis

    CERN Document Server

    Minerva, Tommaso; Vichi, Maurizio

    2015-01-01

    This edited volume focuses on recent research results in classification, multivariate statistics and machine learning and highlights advances in statistical models for data analysis. The volume provides both methodological developments and contributions to a wide range of application areas such as economics, marketing, education, social sciences and environment. The papers in this volume were first presented at the 9th biannual meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, held in September 2013 at the University of Modena and Reggio Emilia, Italy.

  8. Penultimate modeling of spatial extremes: statistical inference for max-infinitely divisible processes

    KAUST Repository

    Huser, Raphaë l; Opitz, Thomas; Thibaud, Emeric

    2018-01-01

    Extreme-value theory for stochastic processes has motivated the statistical use of max-stable models for spatial extremes. However, fitting such asymptotic models to maxima observed over finite blocks is problematic when the asymptotic stability

  9. Remote Sensing Based Spatial Statistics to Document Tropical Rainforest Transition Pathways

    Directory of Open Access Journals (Sweden)

    Abduwasit Ghulam

    2015-05-01

    Full Text Available In this paper, grid cell based spatial statistics were used to quantify the drivers of land-cover and land-use change (LCLUC and habitat degradation in a tropical rainforest in Madagascar. First, a spectral database of various land-cover and land-use information was compiled using multi-year field campaign data and photointerpretation of satellite images. Next, residential areas were extracted from IKONOS-2 and GeoEye-1 images using object oriented feature extraction (OBIA. Then, Landsat Thematic Mapper (TM and Enhanced Thematic Mapper Plus (ETM+ data were used to generate land-cover and land-use maps from 1990 to 2011, and LCLUC maps were developed with decadal intervals and converted to 100 m vector grid cells. Finally, the causal associations between LCLUC were quantified using ordinary least square regression analysis and Moran’s I, and a forest disturbance index derived from the time series Landsat data were used to further confirm LCLUC drivers. The results showed that (1 local spatial statistical approaches were most effective at quantifying the drivers of LCLUC, and (2 the combined threats of habitat degradation in and around the reserve and increasing encroachment of invasive plant species lead to the expansion of shrubland and mixed forest within the former primary forest, which was echoed by the forest disturbance index derived from the Landsat data.

  10. Classification, (big) data analysis and statistical learning

    CERN Document Server

    Conversano, Claudio; Vichi, Maurizio

    2018-01-01

    This edited book focuses on the latest developments in classification, statistical learning, data analysis and related areas of data science, including statistical analysis of large datasets, big data analytics, time series clustering, integration of data from different sources, as well as social networks. It covers both methodological aspects as well as applications to a wide range of areas such as economics, marketing, education, social sciences, medicine, environmental sciences and the pharmaceutical industry. In addition, it describes the basic features of the software behind the data analysis results, and provides links to the corresponding codes and data sets where necessary. This book is intended for researchers and practitioners who are interested in the latest developments and applications in the field. The peer-reviewed contributions were presented at the 10th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, held in Santa Margherita di Pul...

  11. Statistical hot spot analysis of reactor cores

    International Nuclear Information System (INIS)

    Schaefer, H.

    1974-05-01

    This report is an introduction into statistical hot spot analysis. After the definition of the term 'hot spot' a statistical analysis is outlined. The mathematical method is presented, especially the formula concerning the probability of no hot spots in a reactor core is evaluated. A discussion with the boundary conditions of a statistical hot spot analysis is given (technological limits, nominal situation, uncertainties). The application of the hot spot analysis to the linear power of pellets and the temperature rise in cooling channels is demonstrated with respect to the test zone of KNK II. Basic values, such as probability of no hot spots, hot spot potential, expected hot spot diagram and cumulative distribution function of hot spots, are discussed. It is shown, that the risk of hot channels can be dispersed equally over all subassemblies by an adequate choice of the nominal temperature distribution in the core

  12. Statistics and analysis of scientific data

    CERN Document Server

    Bonamente, Massimiliano

    2013-01-01

    Statistics and Analysis of Scientific Data covers the foundations of probability theory and statistics, and a number of numerical and analytical methods that are essential for the present-day analyst of scientific data. Topics covered include probability theory, distribution functions of statistics, fits to two-dimensional datasheets and parameter estimation, Monte Carlo methods and Markov chains. Equal attention is paid to the theory and its practical application, and results from classic experiments in various fields are used to illustrate the importance of statistics in the analysis of scientific data. The main pedagogical method is a theory-then-application approach, where emphasis is placed first on a sound understanding of the underlying theory of a topic, which becomes the basis for an efficient and proactive use of the material for practical applications. The level is appropriate for undergraduates and beginning graduate students, and as a reference for the experienced researcher. Basic calculus is us...

  13. Rweb:Web-based Statistical Analysis

    Directory of Open Access Journals (Sweden)

    Jeff Banfield

    1999-03-01

    Full Text Available Rweb is a freely accessible statistical analysis environment that is delivered through the World Wide Web (WWW. It is based on R, a well known statistical analysis package. The only requirement to run the basic Rweb interface is a WWW browser that supports forms. If you want graphical output you must, of course, have a browser that supports graphics. The interface provides access to WWW accessible data sets, so you may run Rweb on your own data. Rweb can provide a four window statistical computing environment (code input, text output, graphical output, and error information through browsers that support Javascript. There is also a set of point and click modules under development for use in introductory statistics courses.

  14. Statistical analysis of random pulse trains

    International Nuclear Information System (INIS)

    Da Costa, G.

    1977-02-01

    Some experimental and theoretical results concerning the statistical properties of optical beams formed by a finite number of independent pulses are presented. The considered waves (corresponding to each pulse) present important spatial variations of the illumination distribution in a cross-section of the beam, due to the time-varying random refractive index distribution in the active medium. Some examples of this kind of emission are: (a) Free-running ruby laser emission; (b) Mode-locked pulse trains; (c) Randomly excited nonlinear media

  15. Semiclassical analysis, Witten Laplacians, and statistical mechanis

    CERN Document Server

    Helffer, Bernard

    2002-01-01

    This important book explains how the technique of Witten Laplacians may be useful in statistical mechanics. It considers the problem of analyzing the decay of correlations, after presenting its origin in statistical mechanics. In addition, it compares the Witten Laplacian approach with other techniques, such as the transfer matrix approach and its semiclassical analysis. The author concludes by providing a complete proof of the uniform Log-Sobolev inequality. Contents: Witten Laplacians Approach; Problems in Statistical Mechanics with Discrete Spins; Laplace Integrals and Transfer Operators; S

  16. A statistical approach to plasma profile analysis

    International Nuclear Information System (INIS)

    Kardaun, O.J.W.F.; McCarthy, P.J.; Lackner, K.; Riedel, K.S.

    1990-05-01

    A general statistical approach to the parameterisation and analysis of tokamak profiles is presented. The modelling of the profile dependence on both the radius and the plasma parameters is discussed, and pertinent, classical as well as robust, methods of estimation are reviewed. Special attention is given to statistical tests for discriminating between the various models, and to the construction of confidence intervals for the parameterised profiles and the associated global quantities. The statistical approach is shown to provide a rigorous approach to the empirical testing of plasma profile invariance. (orig.)

  17. Reproducible statistical analysis with multiple languages

    DEFF Research Database (Denmark)

    Lenth, Russell; Højsgaard, Søren

    2011-01-01

    This paper describes the system for making reproducible statistical analyses. differs from other systems for reproducible analysis in several ways. The two main differences are: (1) Several statistics programs can be in used in the same document. (2) Documents can be prepared using OpenOffice or ......Office or \\LaTeX. The main part of this paper is an example showing how to use and together in an OpenOffice text document. The paper also contains some practical considerations on the use of literate programming in statistics....

  18. Foundation of statistical energy analysis in vibroacoustics

    CERN Document Server

    Le Bot, A

    2015-01-01

    This title deals with the statistical theory of sound and vibration. The foundation of statistical energy analysis is presented in great detail. In the modal approach, an introduction to random vibration with application to complex systems having a large number of modes is provided. For the wave approach, the phenomena of propagation, group speed, and energy transport are extensively discussed. Particular emphasis is given to the emergence of diffuse field, the central concept of the theory.

  19. Application of Parallel Hierarchical Matrices in Spatial Statistics and Parameter Identification

    KAUST Repository

    Litvinenko, Alexander

    2018-04-20

    Parallel H-matrices in spatial statistics 1. Motivation: improve statistical model 2. Tools: Hierarchical matrices [Hackbusch 1999] 3. Matern covariance function and joint Gaussian likelihood 4. Identification of unknown parameters via maximizing Gaussian log-likelihood 5. Implementation with HLIBPro

  20. A Statistical Toolkit for Data Analysis

    International Nuclear Information System (INIS)

    Donadio, S.; Guatelli, S.; Mascialino, B.; Pfeiffer, A.; Pia, M.G.; Ribon, A.; Viarengo, P.

    2006-01-01

    The present project aims to develop an open-source and object-oriented software Toolkit for statistical data analysis. Its statistical testing component contains a variety of Goodness-of-Fit tests, from Chi-squared to Kolmogorov-Smirnov, to less known, but generally much more powerful tests such as Anderson-Darling, Goodman, Fisz-Cramer-von Mises, Kuiper, Tiku. Thanks to the component-based design and the usage of the standard abstract interfaces for data analysis, this tool can be used by other data analysis systems or integrated in experimental software frameworks. This Toolkit has been released and is downloadable from the web. In this paper we describe the statistical details of the algorithms, the computational features of the Toolkit and describe the code validation

  1. Spatial analysis of digital technologies and impact on socio - cultural ...

    African Journals Online (AJOL)

    The objective of this study was to determine the spatial distribution of digital technologies and ascertain whether digital technologies have significant impact on socio - cultural values or not. Moran's index and Getis and Ord's statistic were used for cluster and hotspots analysis. The unique locations of digital technologies ...

  2. Statistics of the turbulent/non-turbulent interface in a spatially developing mixing layer

    KAUST Repository

    Attili, Antonio

    2014-06-02

    The thin interface separating the inner turbulent region from the outer irrotational fluid is analysed in a direct numerical simulation of a spatially developing turbulent mixing layer. A vorticity threshold is defined to detect the interface separating the turbulent from the non-turbulent regions of the flow, and to calculate statistics conditioned on the distance from this interface. The conditional statistics for velocity are in remarkable agreement with the results for other free shear flows available in the literature, such as turbulent jets and wakes. In addition, an analysis of the passive scalar field in the vicinity of the interface is presented. It is shown that the scalar has a jump at the interface, even stronger than that observed for velocity. The strong jump for the scalar has been observed before in the case of high Schmidt number (Sc). In the present study, such a strong jump is observed for a scalar with Sc ≈ 1. Conditional statistics of kinetic energy and scalar dissipation are presented. While the kinetic energy dissipation has its maximum far from the interface, the scalar dissipation is characterised by a strong peak very close to the interface. Finally, it is shown that the geometric features of the interfaces correlate with relatively large scale structures as visualised by low-pressure isosurfaces. © 2014 Taylor & Francis.

  3. Statistics of the turbulent/non-turbulent interface in a spatially evolving mixing layer

    KAUST Repository

    Cristancho, Juan

    2012-12-01

    The thin interface separating the inner turbulent region from the outer irrotational fluid is analyzed in a direct numerical simulation of a spatially developing turbulent mixing layer. A vorticity threshold is defined to detect the interface separating the turbulent from the non-turbulent regions of the flow, and to calculate statistics conditioned on the distance from this interface. Velocity and passive scalar statistics are computed and compared to the results of studies addressing other shear flows, such as turbulent jets and wakes. The conditional statistics for velocity are in remarkable agreement with the results for other types of free shear flow available in the literature. In addition, a detailed analysis of the passive scalar field (with Sc 1) in the vicinity of the interface is presented. The scalar has a jump at the interface, even stronger than that observed for velocity. The strong jump for the scalar has been observed before in the case of high Schmidt number, but it is a new result for Schmidt number of order one. Finally, the dissipation for the kinetic energy and the scalar are presented. While the kinetic energy dissipation has its maximum far from the interface, the scalar dissipation is characterized by a strong peak very close to the interface.

  4. Analysis of statistical misconception in terms of statistical reasoning

    Science.gov (United States)

    Maryati, I.; Priatna, N.

    2018-05-01

    Reasoning skill is needed for everyone to face globalization era, because every person have to be able to manage and use information from all over the world which can be obtained easily. Statistical reasoning skill is the ability to collect, group, process, interpret, and draw conclusion of information. Developing this skill can be done through various levels of education. However, the skill is low because many people assume that statistics is just the ability to count and using formulas and so do students. Students still have negative attitude toward course which is related to research. The purpose of this research is analyzing students’ misconception in descriptive statistic course toward the statistical reasoning skill. The observation was done by analyzing the misconception test result and statistical reasoning skill test; observing the students’ misconception effect toward statistical reasoning skill. The sample of this research was 32 students of math education department who had taken descriptive statistic course. The mean value of misconception test was 49,7 and standard deviation was 10,6 whereas the mean value of statistical reasoning skill test was 51,8 and standard deviation was 8,5. If the minimal value is 65 to state the standard achievement of a course competence, students’ mean value is lower than the standard competence. The result of students’ misconception study emphasized on which sub discussion that should be considered. Based on the assessment result, it was found that students’ misconception happen on this: 1) writing mathematical sentence and symbol well, 2) understanding basic definitions, 3) determining concept that will be used in solving problem. In statistical reasoning skill, the assessment was done to measure reasoning from: 1) data, 2) representation, 3) statistic format, 4) probability, 5) sample, and 6) association.

  5. Statistical analysis of network data with R

    CERN Document Server

    Kolaczyk, Eric D

    2014-01-01

    Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).

  6. Spatial analysis of hemorrhagic fever with renal syndrome in China

    Directory of Open Access Journals (Sweden)

    Yang Hong

    2006-04-01

    Full Text Available Abstract Background Hemorrhagic fever with renal syndrome (HFRS is endemic in many provinces with high incidence in mainland China, although integrated intervention measures including rodent control, environment management and vaccination have been implemented for over ten years. In this study, we conducted a geographic information system (GIS-based spatial analysis on distribution of HFRS cases for the whole country with an objective to inform priority areas for public health planning and resource allocation. Methods Annualized average incidence at a county level was calculated using HFRS cases reported during 1994–1998 in mainland China. GIS-based spatial analyses were conducted to detect spatial autocorrelation and clusters of HFRS incidence at the county level throughout the country. Results Spatial distribution of HFRS cases in mainland China from 1994 to 1998 was mapped at county level in the aspects of crude incidence, excess hazard and spatial smoothed incidence. The spatial distribution of HFRS cases was nonrandom and clustered with a Moran's I = 0.5044 (p = 0.001. Spatial cluster analyses suggested that 26 and 39 areas were at increased risks of HFRS (p Conclusion The application of GIS, together with spatial statistical techniques, provide a means to quantify explicit HFRS risks and to further identify environmental factors responsible for the increasing disease risks. We demonstrate a new perspective of integrating such spatial analysis tools into the epidemiologic study and risk assessment of HFRS.

  7. Statistics and analysis of scientific data

    CERN Document Server

    Bonamente, Massimiliano

    2017-01-01

    The revised second edition of this textbook provides the reader with a solid foundation in probability theory and statistics as applied to the physical sciences, engineering and related fields. It covers a broad range of numerical and analytical methods that are essential for the correct analysis of scientific data, including probability theory, distribution functions of statistics, fits to two-dimensional data and parameter estimation, Monte Carlo methods and Markov chains. Features new to this edition include: • a discussion of statistical techniques employed in business science, such as multiple regression analysis of multivariate datasets. • a new chapter on the various measures of the mean including logarithmic averages. • new chapters on systematic errors and intrinsic scatter, and on the fitting of data with bivariate errors. • a new case study and additional worked examples. • mathematical derivations and theoretical background material have been appropriately marked,to improve the readabili...

  8. A log-Weibull spatial scan statistic for time to event data.

    Science.gov (United States)

    Usman, Iram; Rosychuk, Rhonda J

    2018-06-13

    Spatial scan statistics have been used for the identification of geographic clusters of elevated numbers of cases of a condition such as disease outbreaks. These statistics accompanied by the appropriate distribution can also identify geographic areas with either longer or shorter time to events. Other authors have proposed the spatial scan statistics based on the exponential and Weibull distributions. We propose the log-Weibull as an alternative distribution for the spatial scan statistic for time to events data and compare and contrast the log-Weibull and Weibull distributions through simulation studies. The effect of type I differential censoring and power have been investigated through simulated data. Methods are also illustrated on time to specialist visit data for discharged patients presenting to emergency departments for atrial fibrillation and flutter in Alberta during 2010-2011. We found northern regions of Alberta had longer times to specialist visit than other areas. We proposed the spatial scan statistic for the log-Weibull distribution as a new approach for detecting spatial clusters for time to event data. The simulation studies suggest that the test performs well for log-Weibull data.

  9. Statistical analysis on extreme wave height

    Digital Repository Service at National Institute of Oceanography (India)

    Teena, N.V.; SanilKumar, V.; Sudheesh, K.; Sajeev, R.

    -294. • WAFO (2000) – A MATLAB toolbox for analysis of random waves and loads, Lund University, Sweden, homepage http://www.maths.lth.se/matstat/wafo/,2000. 15    Table 1: Statistical results of data and fitted distribution for cumulative distribution...

  10. Applied Behavior Analysis and Statistical Process Control?

    Science.gov (United States)

    Hopkins, B. L.

    1995-01-01

    Incorporating statistical process control (SPC) methods into applied behavior analysis is discussed. It is claimed that SPC methods would likely reduce applied behavior analysts' intimate contacts with problems and would likely yield poor treatment and research decisions. Cases and data presented by Pfadt and Wheeler (1995) are cited as examples.…

  11. The fuzzy approach to statistical analysis

    NARCIS (Netherlands)

    Coppi, Renato; Gil, Maria A.; Kiers, Henk A. L.

    2006-01-01

    For the last decades, research studies have been developed in which a coalition of Fuzzy Sets Theory and Statistics has been established with different purposes. These namely are: (i) to introduce new data analysis problems in which the objective involves either fuzzy relationships or fuzzy terms;

  12. Second order analysis for spatial Hawkes processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Torrisi, Giovanni Luca

    We derive summary statistics for stationary Hawkes processes which can be considered as spatial versions of classical Hawkes processes. Particularly, we derive the intensity, the pair correlation function and the Bartlett spectrum. Our results for Gaussian fertility rates and the extension...... to marked Hawkes processes are discussed....

  13. Plasma data analysis using statistical analysis system

    International Nuclear Information System (INIS)

    Yoshida, Z.; Iwata, Y.; Fukuda, Y.; Inoue, N.

    1987-01-01

    Multivariate factor analysis has been applied to a plasma data base of REPUTE-1. The characteristics of the reverse field pinch plasma in REPUTE-1 are shown to be explained by four independent parameters which are described in the report. The well known scaling laws F/sub chi/ proportional to I/sub p/, T/sub e/ proportional to I/sub p/, and tau/sub E/ proportional to N/sub e/ are also confirmed. 4 refs., 8 figs., 1 tab

  14. Spatial Assessment of Road Traffic Injuries in the Greater Toronto Area (GTA: Spatial Analysis Framework

    Directory of Open Access Journals (Sweden)

    Sina Tehranchi

    2017-03-01

    Full Text Available This research presents a Geographic Information Systems (GIS and spatial analysis approach based on the global spatial autocorrelation of road traffic injuries for identifying spatial patterns. A locational spatial autocorrelation was also used for identifying traffic injury at spatial level. Data for this research study were acquired from Canadian Institute for Health Information (CIHI based on 2004 and 2011. Moran’s I statistics were used to examine spatial patterns of road traffic injuries in the Greater Toronto Area (GTA. An assessment of Getis-Ord Gi* statistic was followed as to identify hot spots and cold spots within the study area. The results revealed that Peel and Durham have the highest collision rate for other motor vehicle with motor vehicle. Geographic weighted regression (GWR technique was conducted to test the relationships between the dependent variable, number of road traffic injury incidents and independent variables such as number of seniors, low education, unemployed, vulnerable groups, people smoking and drinking, urban density and average median income. The result of this model suggested that number of seniors and low education have a very strong correlation with the number of road traffic injury incidents.

  15. Statistical model of natural stimuli predicts edge-like pooling of spatial frequency channels in V2

    Directory of Open Access Journals (Sweden)

    Gutmann Michael

    2005-02-01

    Full Text Available Abstract Background It has been shown that the classical receptive fields of simple and complex cells in the primary visual cortex emerge from the statistical properties of natural images by forcing the cell responses to be maximally sparse or independent. We investigate how to learn features beyond the primary visual cortex from the statistical properties of modelled complex-cell outputs. In previous work, we showed that a new model, non-negative sparse coding, led to the emergence of features which code for contours of a given spatial frequency band. Results We applied ordinary independent component analysis to modelled outputs of complex cells that span different frequency bands. The analysis led to the emergence of features which pool spatially coherent across-frequency activity in the modelled primary visual cortex. Thus, the statistically optimal way of processing complex-cell outputs abandons separate frequency channels, while preserving and even enhancing orientation tuning and spatial localization. As a technical aside, we found that the non-negativity constraint is not necessary: ordinary independent component analysis produces essentially the same results as our previous work. Conclusion We propose that the pooling that emerges allows the features to code for realistic low-level image features related to step edges. Further, the results prove the viability of statistical modelling of natural images as a framework that produces quantitative predictions of visual processing.

  16. Statistical analysis of metallicity in spiral galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Galeotti, P [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica Generale)

    1981-04-01

    A principal component analysis of metallicity and other integral properties of 33 spiral galaxies is presented; the involved parameters are: morphological type, diameter, luminosity and metallicity. From the statistical analysis it is concluded that the sample has only two significant dimensions and additonal tests, involving different parameters, show similar results. Thus it seems that only type and luminosity are independent variables, being the other integral properties of spiral galaxies correlated with them.

  17. Selected papers on analysis, probability, and statistics

    CERN Document Server

    Nomizu, Katsumi

    1994-01-01

    This book presents papers that originally appeared in the Japanese journal Sugaku. The papers fall into the general area of mathematical analysis as it pertains to probability and statistics, dynamical systems, differential equations and analytic function theory. Among the topics discussed are: stochastic differential equations, spectra of the Laplacian and Schrödinger operators, nonlinear partial differential equations which generate dissipative dynamical systems, fractal analysis on self-similar sets and the global structure of analytic functions.

  18. Statistical evaluation of vibration analysis techniques

    Science.gov (United States)

    Milner, G. Martin; Miller, Patrice S.

    1987-01-01

    An evaluation methodology is presented for a selection of candidate vibration analysis techniques applicable to machinery representative of the environmental control and life support system of advanced spacecraft; illustrative results are given. Attention is given to the statistical analysis of small sample experiments, the quantification of detection performance for diverse techniques through the computation of probability of detection versus probability of false alarm, and the quantification of diagnostic performance.

  19. Spatially explicit spectral analysis of point clouds and geospatial data

    Science.gov (United States)

    Buscombe, Daniel D.

    2015-01-01

    The increasing use of spatially explicit analyses of high-resolution spatially distributed data (imagery and point clouds) for the purposes of characterising spatial heterogeneity in geophysical phenomena necessitates the development of custom analytical and computational tools. In recent years, such analyses have become the basis of, for example, automated texture characterisation and segmentation, roughness and grain size calculation, and feature detection and classification, from a variety of data types. In this work, much use has been made of statistical descriptors of localised spatial variations in amplitude variance (roughness), however the horizontal scale (wavelength) and spacing of roughness elements is rarely considered. This is despite the fact that the ratio of characteristic vertical to horizontal scales is not constant and can yield important information about physical scaling relationships. Spectral analysis is a hitherto under-utilised but powerful means to acquire statistical information about relevant amplitude and wavelength scales, simultaneously and with computational efficiency. Further, quantifying spatially distributed data in the frequency domain lends itself to the development of stochastic models for probing the underlying mechanisms which govern the spatial distribution of geological and geophysical phenomena. The software packagePySESA (Python program for Spatially Explicit Spectral Analysis) has been developed for generic analyses of spatially distributed data in both the spatial and frequency domains. Developed predominantly in Python, it accesses libraries written in Cython and C++ for efficiency. It is open source and modular, therefore readily incorporated into, and combined with, other data analysis tools and frameworks with particular utility for supporting research in the fields of geomorphology, geophysics, hydrography, photogrammetry and remote sensing. The analytical and computational structure of the toolbox is

  20. Spatially explicit spectral analysis of point clouds and geospatial data

    Science.gov (United States)

    Buscombe, Daniel

    2016-01-01

    The increasing use of spatially explicit analyses of high-resolution spatially distributed data (imagery and point clouds) for the purposes of characterising spatial heterogeneity in geophysical phenomena necessitates the development of custom analytical and computational tools. In recent years, such analyses have become the basis of, for example, automated texture characterisation and segmentation, roughness and grain size calculation, and feature detection and classification, from a variety of data types. In this work, much use has been made of statistical descriptors of localised spatial variations in amplitude variance (roughness), however the horizontal scale (wavelength) and spacing of roughness elements is rarely considered. This is despite the fact that the ratio of characteristic vertical to horizontal scales is not constant and can yield important information about physical scaling relationships. Spectral analysis is a hitherto under-utilised but powerful means to acquire statistical information about relevant amplitude and wavelength scales, simultaneously and with computational efficiency. Further, quantifying spatially distributed data in the frequency domain lends itself to the development of stochastic models for probing the underlying mechanisms which govern the spatial distribution of geological and geophysical phenomena. The software package PySESA (Python program for Spatially Explicit Spectral Analysis) has been developed for generic analyses of spatially distributed data in both the spatial and frequency domains. Developed predominantly in Python, it accesses libraries written in Cython and C++ for efficiency. It is open source and modular, therefore readily incorporated into, and combined with, other data analysis tools and frameworks with particular utility for supporting research in the fields of geomorphology, geophysics, hydrography, photogrammetry and remote sensing. The analytical and computational structure of the toolbox is described

  1. Statistical Analysis of Data for Timber Strengths

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2003-01-01

    Statistical analyses are performed for material strength parameters from a large number of specimens of structural timber. Non-parametric statistical analysis and fits have been investigated for the following distribution types: Normal, Lognormal, 2 parameter Weibull and 3-parameter Weibull...... fits to the data available, especially if tail fits are used whereas the Log Normal distribution generally gives a poor fit and larger coefficients of variation, especially if tail fits are used. The implications on the reliability level of typical structural elements and on partial safety factors...... for timber are investigated....

  2. The Statistical Analysis of Time Series

    CERN Document Server

    Anderson, T W

    2011-01-01

    The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences George

  3. Geographic variations in cervical cancer risk in San Luis Potosí state, Mexico: A spatial statistical approach.

    Science.gov (United States)

    Terán-Hernández, Mónica; Ramis-Prieto, Rebeca; Calderón-Hernández, Jaqueline; Garrocho-Rangel, Carlos Félix; Campos-Alanís, Juan; Ávalos-Lozano, José Antonio; Aguilar-Robledo, Miguel

    2016-09-29

    Worldwide, Cervical Cancer (CC) is the fourth most common type of cancer and cause of death in women. It is a significant public health problem, especially in low and middle-income/Gross Domestic Product (GDP) countries. In the past decade, several studies of CC have been published, that identify the main modifiable and non-modifiable CC risk factors for Mexican women. However, there are no studies that attempt to explain the residual spatial variation in CC incidence In Mexico, i.e. spatial variation that cannot be ascribed to known, spatially varying risk factors. This paper uses a spatial statistical methodology that takes into account spatial variation in socio-economic factors and accessibility to health services, whilst allowing for residual, unexplained spatial variation in risk. To describe residual spatial variations in CC risk, we used generalised linear mixed models (GLMM) with both spatially structured and unstructured random effects, using a Bayesian approach to inference. The highest risk is concentrated in the southeast, where the Matlapa and Aquismón municipalities register excessive risk, with posterior probabilities greater than 0.8. The lack of coverage of Cervical Cancer-Screening Programme (CCSP) (RR 1.17, 95 % CI 1.12-1.22), Marginalisation Index (RR 1.05, 95 % CI 1.03-1.08), and lack of accessibility to health services (RR 1.01, 95 % CI 1.00-1.03) were significant covariates. There are substantial differences between municipalities, with high-risk areas mainly in low-resource areas lacking accessibility to health services for CC. Our results clearly indicate the presence of spatial patterns, and the relevance of the spatial analysis for public health intervention. Ignoring the spatial variability means to continue a public policy that does not tackle deficiencies in its national CCSP and to keep disadvantaging and disempowering Mexican women in regard to their health care.

  4. Developments in statistical analysis in quantitative genetics

    DEFF Research Database (Denmark)

    Sorensen, Daniel

    2009-01-01

    of genetic means and variances, models for the analysis of categorical and count data, the statistical genetics of a model postulating that environmental variance is partly under genetic control, and a short discussion of models that incorporate massive genetic marker information. We provide an overview......A remarkable research impetus has taken place in statistical genetics since the last World Conference. This has been stimulated by breakthroughs in molecular genetics, automated data-recording devices and computer-intensive statistical methods. The latter were revolutionized by the bootstrap...... and by Markov chain Monte Carlo (McMC). In this overview a number of specific areas are chosen to illustrate the enormous flexibility that McMC has provided for fitting models and exploring features of data that were previously inaccessible. The selected areas are inferences of the trajectories over time...

  5. Statistical Analysis of Big Data on Pharmacogenomics

    Science.gov (United States)

    Fan, Jianqing; Liu, Han

    2013-01-01

    This paper discusses statistical methods for estimating complex correlation structure from large pharmacogenomic datasets. We selectively review several prominent statistical methods for estimating large covariance matrix for understanding correlation structure, inverse covariance matrix for network modeling, large-scale simultaneous tests for selecting significantly differently expressed genes and proteins and genetic markers for complex diseases, and high dimensional variable selection for identifying important molecules for understanding molecule mechanisms in pharmacogenomics. Their applications to gene network estimation and biomarker selection are used to illustrate the methodological power. Several new challenges of Big data analysis, including complex data distribution, missing data, measurement error, spurious correlation, endogeneity, and the need for robust statistical methods, are also discussed. PMID:23602905

  6. Statistical analysis of next generation sequencing data

    CERN Document Server

    Nettleton, Dan

    2014-01-01

    Next Generation Sequencing (NGS) is the latest high throughput technology to revolutionize genomic research. NGS generates massive genomic datasets that play a key role in the big data phenomenon that surrounds us today. To extract signals from high-dimensional NGS data and make valid statistical inferences and predictions, novel data analytic and statistical techniques are needed. This book contains 20 chapters written by prominent statisticians working with NGS data. The topics range from basic preprocessing and analysis with NGS data to more complex genomic applications such as copy number variation and isoform expression detection. Research statisticians who want to learn about this growing and exciting area will find this book useful. In addition, many chapters from this book could be included in graduate-level classes in statistical bioinformatics for training future biostatisticians who will be expected to deal with genomic data in basic biomedical research, genomic clinical trials and personalized med...

  7. Robust statistics and geochemical data analysis

    International Nuclear Information System (INIS)

    Di, Z.

    1987-01-01

    Advantages of robust procedures over ordinary least-squares procedures in geochemical data analysis is demonstrated using NURE data from the Hot Springs Quadrangle, South Dakota, USA. Robust principal components analysis with 5% multivariate trimming successfully guarded the analysis against perturbations by outliers and increased the number of interpretable factors. Regression with SINE estimates significantly increased the goodness-of-fit of the regression and improved the correspondence of delineated anomalies with known uranium prospects. Because of the ubiquitous existence of outliers in geochemical data, robust statistical procedures are suggested as routine procedures to replace ordinary least-squares procedures

  8. Visual Statistical Learning Works after Binding the Temporal Sequences of Shapes and Spatial Positions

    Directory of Open Access Journals (Sweden)

    Osamu Watanabe

    2011-05-01

    Full Text Available The human visual system can acquire the statistical structures in temporal sequences of object feature changes, such as changes in shape, color, and its combination. Here we investigate whether the statistical learning for spatial position and shape changes operates separately or not. It is known that the visual system processes these two types of information separately; the spatial information is processed in the parietal cortex, whereas object shapes and colors are detected in the temporal pathway, and, after that, we perceive bound information in the two streams. We examined whether the statistical learning operates before or after binding the shape and the spatial information by using the “re-paired triplet” paradigm proposed by Turk-Browne, Isola, Scholl, and Treat (2008. The result showed that observers acquired combined sequences of shape and position changes, but no statistical information in individual sequence was obtained. This finding suggests that the visual statistical learning works after binding the temporal sequences of shapes and spatial structures and would operate in the higher-order visual system; this is consistent with recent ERP (Abla & Okanoya, 2009 and fMRI (Turk-Browne, Scholl, Chun, & Johnson, 2009 studies.

  9. Exploring neighborhood inequality in female breast cancer incidence in Tehran using Bayesian spatial models and a spatial scan statistic

    Directory of Open Access Journals (Sweden)

    Erfan Ayubi

    2017-05-01

    Full Text Available OBJECTIVES The aim of this study was to explore the spatial pattern of female breast cancer (BC incidence at the neighborhood level in Tehran, Iran. METHODS The present study included all registered incident cases of female BC from March 2008 to March 2011. The raw standardized incidence ratio (SIR of BC for each neighborhood was estimated by comparing observed cases relative to expected cases. The estimated raw SIRs were smoothed by a Besag, York, and Mollie spatial model and the spatial empirical Bayesian method. The purely spatial scan statistic was used to identify spatial clusters. RESULTS There were 4,175 incident BC cases in the study area from 2008 to 2011, of which 3,080 were successfully geocoded to the neighborhood level. Higher than expected rates of BC were found in neighborhoods located in northern and central Tehran, whereas lower rates appeared in southern areas. The most likely cluster of higher than expected BC incidence involved neighborhoods in districts 3 and 6, with an observed-to-expected ratio of 3.92 (p<0.001, whereas the most likely cluster of lower than expected rates involved neighborhoods in districts 17, 18, and 19, with an observed-to-expected ratio of 0.05 (p<0.001. CONCLUSIONS Neighborhood-level inequality in the incidence of BC exists in Tehran. These findings can serve as a basis for resource allocation and preventive strategies in at-risk areas.

  10. Quantitative analysis of spatial variability of geotechnical parameters

    Science.gov (United States)

    Fang, Xing

    2018-04-01

    Geotechnical parameters are the basic parameters of geotechnical engineering design, while the geotechnical parameters have strong regional characteristics. At the same time, the spatial variability of geotechnical parameters has been recognized. It is gradually introduced into the reliability analysis of geotechnical engineering. Based on the statistical theory of geostatistical spatial information, the spatial variability of geotechnical parameters is quantitatively analyzed. At the same time, the evaluation of geotechnical parameters and the correlation coefficient between geotechnical parameters are calculated. A residential district of Tianjin Survey Institute was selected as the research object. There are 68 boreholes in this area and 9 layers of mechanical stratification. The parameters are water content, natural gravity, void ratio, liquid limit, plasticity index, liquidity index, compressibility coefficient, compressive modulus, internal friction angle, cohesion and SP index. According to the principle of statistical correlation, the correlation coefficient of geotechnical parameters is calculated. According to the correlation coefficient, the law of geotechnical parameters is obtained.

  11. Analysis of photon statistics with Silicon Photomultiplier

    International Nuclear Information System (INIS)

    D'Ascenzo, N.; Saveliev, V.; Wang, L.; Xie, Q.

    2015-01-01

    The Silicon Photomultiplier (SiPM) is a novel silicon-based photodetector, which represents the modern perspective of low photon flux detection. The aim of this paper is to provide an introduction on the statistical analysis methods needed to understand and estimate in quantitative way the correct features and description of the response of the SiPM to a coherent source of light

  12. Vapor Pressure Data Analysis and Statistics

    Science.gov (United States)

    2016-12-01

    near 8, 2000, and 200, respectively. The A (or a) value is directly related to vapor pressure and will be greater for high vapor pressure materials...1, (10) where n is the number of data points, Yi is the natural logarithm of the i th experimental vapor pressure value, and Xi is the...VAPOR PRESSURE DATA ANALYSIS AND STATISTICS ECBC-TR-1422 Ann Brozena RESEARCH AND TECHNOLOGY DIRECTORATE

  13. Geospatial environmental data modelling applications using remote sensing, GIS and spatial statistics

    Energy Technology Data Exchange (ETDEWEB)

    Siljander, M.

    2010-07-01

    This thesis presents novel modelling applications for environmental geospatial data using remote sensing, GIS and statistical modelling techniques. The studied themes can be classified into four main themes: (i) to develop advanced geospatial databases. Paper (I) demonstrates the creation of a geospatial database for the Glanville fritillary butterfly (Melitaea cinxia) in the Aaland Islands, south-western Finland; (ii) to analyse species diversity and distribution using GIS techniques. Paper (II) presents a diversity and geographical distribution analysis for Scopulini moths at a world-wide scale; (iii) to study spatiotemporal forest cover change. Paper (III) presents a study of exotic and indigenous tree cover change detection in Taita Hills Kenya using airborne imagery and GIS analysis techniques; (iv) to explore predictive modelling techniques using geospatial data. In Paper (IV) human population occurrence and abundance in the Taita Hills highlands was predicted using the generalized additive modelling (GAM) technique. Paper (V) presents techniques to enhance fire prediction and burned area estimation at a regional scale in East Caprivi Namibia. Paper (VI) compares eight state-of-the-art predictive modelling methods to improve fire prediction, burned area estimation and fire risk mapping in East Caprivi Namibia. The results in Paper (I) showed that geospatial data can be managed effectively using advanced relational database management systems. Metapopulation data for Melitaea cinxia butterfly was successfully combined with GPS-delimited habitat patch information and climatic data. Using the geospatial database, spatial analyses were successfully conducted at habitat patch level or at more coarse analysis scales. Moreover, this study showed it appears evident that at a large-scale spatially correlated weather conditions are one of the primary causes of spatially correlated changes in Melitaea cinxia population sizes. In Paper (II) spatiotemporal characteristics

  14. A book review of Spatial data analysis in ecology and agriculture using R

    Science.gov (United States)

    Spatial Data Analysis in Ecology and Agriculture Using R is a valuable resource to assist agricultural and ecological researchers with spatial data analyses using the R statistical software(www.r-project.org). Special emphasis is on spatial data sets; how-ever, the text also provides ample guidance ...

  15. Statistical inference and visualization in scale-space for spatially dependent images

    KAUST Repository

    Vaughan, Amy; Jun, Mikyoung; Park, Cheolwoo

    2012-01-01

    SiZer (SIgnificant ZERo crossing of the derivatives) is a graphical scale-space visualization tool that allows for statistical inferences. In this paper we develop a spatial SiZer for finding significant features and conducting goodness-of-fit tests

  16. A spatial scan statistic for nonisotropic two-level risk cluster.

    Science.gov (United States)

    Li, Xiao-Zhou; Wang, Jin-Feng; Yang, Wei-Zhong; Li, Zhong-Jie; Lai, Sheng-Jie

    2012-01-30

    Spatial scan statistic methods are commonly used for geographical disease surveillance and cluster detection. The standard spatial scan statistic does not model any variability in the underlying risks of subregions belonging to a detected cluster. For a multilevel risk cluster, the isotonic spatial scan statistic could model a centralized high-risk kernel in the cluster. Because variations in disease risks are anisotropic owing to different social, economical, or transport factors, the real high-risk kernel will not necessarily take the central place in a whole cluster area. We propose a spatial scan statistic for a nonisotropic two-level risk cluster, which could be used to detect a whole cluster and a noncentralized high-risk kernel within the cluster simultaneously. The performance of the three methods was evaluated through an intensive simulation study. Our proposed nonisotropic two-level method showed better power and geographical precision with two-level risk cluster scenarios, especially for a noncentralized high-risk kernel. Our proposed method is illustrated using the hand-foot-mouth disease data in Pingdu City, Shandong, China in May 2009, compared with two other methods. In this practical study, the nonisotropic two-level method is the only way to precisely detect a high-risk area in a detected whole cluster. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Statistical analysis of brake squeal noise

    Science.gov (United States)

    Oberst, S.; Lai, J. C. S.

    2011-06-01

    Despite substantial research efforts applied to the prediction of brake squeal noise since the early 20th century, the mechanisms behind its generation are still not fully understood. Squealing brakes are of significant concern to the automobile industry, mainly because of the costs associated with warranty claims. In order to remedy the problems inherent in designing quieter brakes and, therefore, to understand the mechanisms, a design of experiments study, using a noise dynamometer, was performed by a brake system manufacturer to determine the influence of geometrical parameters (namely, the number and location of slots) of brake pads on brake squeal noise. The experimental results were evaluated with a noise index and ranked for warm and cold brake stops. These data are analysed here using statistical descriptors based on population distributions, and a correlation analysis, to gain greater insight into the functional dependency between the time-averaged friction coefficient as the input and the peak sound pressure level data as the output quantity. The correlation analysis between the time-averaged friction coefficient and peak sound pressure data is performed by applying a semblance analysis and a joint recurrence quantification analysis. Linear measures are compared with complexity measures (nonlinear) based on statistics from the underlying joint recurrence plots. Results show that linear measures cannot be used to rank the noise performance of the four test pad configurations. On the other hand, the ranking of the noise performance of the test pad configurations based on the noise index agrees with that based on nonlinear measures: the higher the nonlinearity between the time-averaged friction coefficient and peak sound pressure, the worse the squeal. These results highlight the nonlinear character of brake squeal and indicate the potential of using nonlinear statistical analysis tools to analyse disc brake squeal.

  18. Using Pre-Statistical Analysis to Streamline Monitoring Assessments

    International Nuclear Information System (INIS)

    Reed, J.K.

    1999-01-01

    A variety of statistical methods exist to aid evaluation of groundwater quality and subsequent decision making in regulatory programs. These methods are applied because of large temporal and spatial extrapolations commonly applied to these data. In short, statistical conclusions often serve as a surrogate for knowledge. However, facilities with mature monitoring programs that have generated abundant data have inherently less uncertainty because of the sheer quantity of analytical results. In these cases, statistical tests can be less important, and ''expert'' data analysis should assume an important screening role.The WSRC Environmental Protection Department, working with the General Separations Area BSRI Environmental Restoration project team has developed a method for an Integrated Hydrogeological Analysis (IHA) of historical water quality data from the F and H Seepage Basins groundwater remediation project. The IHA combines common sense analytical techniques and a GIS presentation that force direct interactive evaluation of the data. The IHA can perform multiple data analysis tasks required by the RCRA permit. These include: (1) Development of a groundwater quality baseline prior to remediation startup, (2) Targeting of constituents for removal from RCRA GWPS, (3) Targeting of constituents for removal from UIC, permit, (4) Targeting of constituents for reduced, (5)Targeting of monitoring wells not producing representative samples, (6) Reduction in statistical evaluation, and (7) Identification of contamination from other facilities

  19. Sensitivity analysis and related analysis : A survey of statistical techniques

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    1995-01-01

    This paper reviews the state of the art in five related types of analysis, namely (i) sensitivity or what-if analysis, (ii) uncertainty or risk analysis, (iii) screening, (iv) validation, and (v) optimization. The main question is: when should which type of analysis be applied; which statistical

  20. Statistical analysis and interpolation of compositional data in materials science.

    Science.gov (United States)

    Pesenson, Misha Z; Suram, Santosh K; Gregoire, John M

    2015-02-09

    Compositional data are ubiquitous in chemistry and materials science: analysis of elements in multicomponent systems, combinatorial problems, etc., lead to data that are non-negative and sum to a constant (for example, atomic concentrations). The constant sum constraint restricts the sampling space to a simplex instead of the usual Euclidean space. Since statistical measures such as mean and standard deviation are defined for the Euclidean space, traditional correlation studies, multivariate analysis, and hypothesis testing may lead to erroneous dependencies and incorrect inferences when applied to compositional data. Furthermore, composition measurements that are used for data analytics may not include all of the elements contained in the material; that is, the measurements may be subcompositions of a higher-dimensional parent composition. Physically meaningful statistical analysis must yield results that are invariant under the number of composition elements, requiring the application of specialized statistical tools. We present specifics and subtleties of compositional data processing through discussion of illustrative examples. We introduce basic concepts, terminology, and methods required for the analysis of compositional data and utilize them for the spatial interpolation of composition in a sputtered thin film. The results demonstrate the importance of this mathematical framework for compositional data analysis (CDA) in the fields of materials science and chemistry.

  1. Analysis of Variance in Statistical Image Processing

    Science.gov (United States)

    Kurz, Ludwik; Hafed Benteftifa, M.

    1997-04-01

    A key problem in practical image processing is the detection of specific features in a noisy image. Analysis of variance (ANOVA) techniques can be very effective in such situations, and this book gives a detailed account of the use of ANOVA in statistical image processing. The book begins by describing the statistical representation of images in the various ANOVA models. The authors present a number of computationally efficient algorithms and techniques to deal with such problems as line, edge, and object detection, as well as image restoration and enhancement. By describing the basic principles of these techniques, and showing their use in specific situations, the book will facilitate the design of new algorithms for particular applications. It will be of great interest to graduate students and engineers in the field of image processing and pattern recognition.

  2. Statistical Analysis of Zebrafish Locomotor Response.

    Science.gov (United States)

    Liu, Yiwen; Carmer, Robert; Zhang, Gaonan; Venkatraman, Prahatha; Brown, Skye Ashton; Pang, Chi-Pui; Zhang, Mingzhi; Ma, Ping; Leung, Yuk Fai

    2015-01-01

    Zebrafish larvae display rich locomotor behaviour upon external stimulation. The movement can be simultaneously tracked from many larvae arranged in multi-well plates. The resulting time-series locomotor data have been used to reveal new insights into neurobiology and pharmacology. However, the data are of large scale, and the corresponding locomotor behavior is affected by multiple factors. These issues pose a statistical challenge for comparing larval activities. To address this gap, this study has analyzed a visually-driven locomotor behaviour named the visual motor response (VMR) by the Hotelling's T-squared test. This test is congruent with comparing locomotor profiles from a time period. Different wild-type (WT) strains were compared using the test, which shows that they responded differently to light change at different developmental stages. The performance of this test was evaluated by a power analysis, which shows that the test was sensitive for detecting differences between experimental groups with sample numbers that were commonly used in various studies. In addition, this study investigated the effects of various factors that might affect the VMR by multivariate analysis of variance (MANOVA). The results indicate that the larval activity was generally affected by stage, light stimulus, their interaction, and location in the plate. Nonetheless, different factors affected larval activity differently over time, as indicated by a dynamical analysis of the activity at each second. Intriguingly, this analysis also shows that biological and technical repeats had negligible effect on larval activity. This finding is consistent with that from the Hotelling's T-squared test, and suggests that experimental repeats can be combined to enhance statistical power. Together, these investigations have established a statistical framework for analyzing VMR data, a framework that should be generally applicable to other locomotor data with similar structure.

  3. On the Statistical Validation of Technical Analysis

    Directory of Open Access Journals (Sweden)

    Rosane Riera Freire

    2007-06-01

    Full Text Available Technical analysis, or charting, aims on visually identifying geometrical patterns in price charts in order to antecipate price "trends". In this paper we revisit the issue of thecnical analysis validation which has been tackled in the literature without taking care for (i the presence of heterogeneity and (ii statistical dependence in the analyzed data - various agglutinated return time series from distinct financial securities. The main purpose here is to address the first cited problem by suggesting a validation methodology that also "homogenizes" the securities according to the finite dimensional probability distribution of their return series. The general steps go through the identification of the stochastic processes for the securities returns, the clustering of similar securities and, finally, the identification of presence, or absence, of informatinal content obtained from those price patterns. We illustrate the proposed methodology with a real data exercise including several securities of the global market. Our investigation shows that there is a statistically significant informational content in two out of three common patterns usually found through technical analysis, namely: triangle, rectangle and head and shoulders.

  4. Perceptual and statistical analysis of cardiac phase and amplitude images

    International Nuclear Information System (INIS)

    Houston, A.; Craig, A.

    1991-01-01

    A perceptual experiment was conducted using cardiac phase and amplitude images. Estimates of statistical parameters were derived from the images and the diagnostic potential of human and statistical decisions compared. Five methods were used to generate the images from 75 gated cardiac studies, 39 of which were classified as pathological. The images were presented to 12 observers experienced in nuclear medicine. The observers rated the images using a five-category scale based on their confidence of an abnormality presenting. Circular and linear statistics were used to analyse phase and amplitude image data, respectively. Estimates of mean, standard deviation (SD), skewness, kurtosis and the first term of the spatial correlation function were evaluated in the region of the left ventricle. A receiver operating characteristic analysis was performed on both sets of data and the human and statistical decisions compared. For phase images, circular SD was shown to discriminate better between normal and abnormal than experienced observers, but no single statistic discriminated as well as the human observer for amplitude images. (orig.)

  5. Statistical trend analysis methods for temporal phenomena

    International Nuclear Information System (INIS)

    Lehtinen, E.; Pulkkinen, U.; Poern, K.

    1997-04-01

    We consider point events occurring in a random way in time. In many applications the pattern of occurrence is of intrinsic interest as indicating a trend or some other systematic feature in the rate of occurrence. The purpose of this report is to survey briefly different statistical trend analysis methods and illustrate their applicability to temporal phenomena in particular. The trend testing of point events is usually seen as the testing of the hypotheses concerning the intensity of the occurrence of events. When the intensity function is parametrized, the testing of trend is a typical parametric testing problem. In industrial applications the operational experience generally does not suggest any specified model and method in advance. Therefore, and particularly, if the Poisson process assumption is very questionable, it is desirable to apply tests that are valid for a wide variety of possible processes. The alternative approach for trend testing is to use some non-parametric procedure. In this report we have presented four non-parametric tests: The Cox-Stuart test, the Wilcoxon signed ranks test, the Mann test, and the exponential ordered scores test. In addition to the classical parametric and non-parametric approaches we have also considered the Bayesian trend analysis. First we discuss a Bayesian model, which is based on a power law intensity model. The Bayesian statistical inferences are based on the analysis of the posterior distribution of the trend parameters, and the probability of trend is immediately seen from these distributions. We applied some of the methods discussed in an example case. It should be noted, that this report is a feasibility study rather than a scientific evaluation of statistical methods, and the examples can only be seen as demonstrations of the methods

  6. Statistical trend analysis methods for temporal phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, E.; Pulkkinen, U. [VTT Automation, (Finland); Poern, K. [Poern Consulting, Nykoeping (Sweden)

    1997-04-01

    We consider point events occurring in a random way in time. In many applications the pattern of occurrence is of intrinsic interest as indicating a trend or some other systematic feature in the rate of occurrence. The purpose of this report is to survey briefly different statistical trend analysis methods and illustrate their applicability to temporal phenomena in particular. The trend testing of point events is usually seen as the testing of the hypotheses concerning the intensity of the occurrence of events. When the intensity function is parametrized, the testing of trend is a typical parametric testing problem. In industrial applications the operational experience generally does not suggest any specified model and method in advance. Therefore, and particularly, if the Poisson process assumption is very questionable, it is desirable to apply tests that are valid for a wide variety of possible processes. The alternative approach for trend testing is to use some non-parametric procedure. In this report we have presented four non-parametric tests: The Cox-Stuart test, the Wilcoxon signed ranks test, the Mann test, and the exponential ordered scores test. In addition to the classical parametric and non-parametric approaches we have also considered the Bayesian trend analysis. First we discuss a Bayesian model, which is based on a power law intensity model. The Bayesian statistical inferences are based on the analysis of the posterior distribution of the trend parameters, and the probability of trend is immediately seen from these distributions. We applied some of the methods discussed in an example case. It should be noted, that this report is a feasibility study rather than a scientific evaluation of statistical methods, and the examples can only be seen as demonstrations of the methods. 14 refs, 10 figs.

  7. A study on the use of Gumbel approximation with the Bernoulli spatial scan statistic.

    Science.gov (United States)

    Read, S; Bath, P A; Willett, P; Maheswaran, R

    2013-08-30

    The Bernoulli version of the spatial scan statistic is a well established method of detecting localised spatial clusters in binary labelled point data, a typical application being the epidemiological case-control study. A recent study suggests the inferential accuracy of several versions of the spatial scan statistic (principally the Poisson version) can be improved, at little computational cost, by using the Gumbel distribution, a method now available in SaTScan(TM) (www.satscan.org). We study in detail the effect of this technique when applied to the Bernoulli version and demonstrate that it is highly effective, albeit with some increase in false alarm rates at certain significance thresholds. We explain how this increase is due to the discrete nature of the Bernoulli spatial scan statistic and demonstrate that it can affect even small p-values. Despite this, we argue that the Gumbel method is actually preferable for very small p-values. Furthermore, we extend previous research by running benchmark trials on 12 000 synthetic datasets, thus demonstrating that the overall detection capability of the Bernoulli version (i.e. ratio of power to false alarm rate) is not noticeably affected by the use of the Gumbel method. We also provide an example application of the Gumbel method using data on hospital admissions for chronic obstructive pulmonary disease. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Local multiplicity adjustment for the spatial scan statistic using the Gumbel distribution.

    Science.gov (United States)

    Gangnon, Ronald E

    2012-03-01

    The spatial scan statistic is an important and widely used tool for cluster detection. It is based on the simultaneous evaluation of the statistical significance of the maximum likelihood ratio test statistic over a large collection of potential clusters. In most cluster detection problems, there is variation in the extent of local multiplicity across the study region. For example, using a fixed maximum geographic radius for clusters, urban areas typically have many overlapping potential clusters, whereas rural areas have relatively few. The spatial scan statistic does not account for local multiplicity variation. We describe a previously proposed local multiplicity adjustment based on a nested Bonferroni correction and propose a novel adjustment based on a Gumbel distribution approximation to the distribution of a local scan statistic. We compare the performance of all three statistics in terms of power and a novel unbiased cluster detection criterion. These methods are then applied to the well-known New York leukemia dataset and a Wisconsin breast cancer incidence dataset. © 2011, The International Biometric Society.

  9. Statistical Analysis of Radio Propagation Channel in Ruins Environment

    Directory of Open Access Journals (Sweden)

    Jiao He

    2015-01-01

    Full Text Available The cellphone based localization system for search and rescue in complex high density ruins has attracted a great interest in recent years, where the radio channel characteristics are critical for design and development of such a system. This paper presents a spatial smoothing estimation via rotational invariance technique (SS-ESPRIT for radio channel characterization of high density ruins. The radio propagations at three typical mobile communication bands (0.9, 1.8, and 2 GHz are investigated in two different scenarios. Channel parameters, such as arrival time, delays, and complex amplitudes, are statistically analyzed. Furthermore, a channel simulator is built based on these statistics. By comparison analysis of average excess delay and delay spread, the validation results show a good agreement between the measurements and channel modeling results.

  10. Modulation of spatial attention by goals, statistical learning, and monetary reward.

    Science.gov (United States)

    Jiang, Yuhong V; Sha, Li Z; Remington, Roger W

    2015-10-01

    This study documented the relative strength of task goals, visual statistical learning, and monetary reward in guiding spatial attention. Using a difficult T-among-L search task, we cued spatial attention to one visual quadrant by (i) instructing people to prioritize it (goal-driven attention), (ii) placing the target frequently there (location probability learning), or (iii) associating that quadrant with greater monetary gain (reward-based attention). Results showed that successful goal-driven attention exerted the strongest influence on search RT. Incidental location probability learning yielded a smaller though still robust effect. Incidental reward learning produced negligible guidance for spatial attention. The 95 % confidence intervals of the three effects were largely nonoverlapping. To understand these results, we simulated the role of location repetition priming in probability cuing and reward learning. Repetition priming underestimated the strength of location probability cuing, suggesting that probability cuing involved long-term statistical learning of how to shift attention. Repetition priming provided a reasonable account for the negligible effect of reward on spatial attention. We propose a multiple-systems view of spatial attention that includes task goals, search habit, and priming as primary drivers of top-down attention.

  11. Spatial Statistics and Spatio-Temporal Data Covariance Functions and Directional Properties

    CERN Document Server

    Sherman, Michael

    2010-01-01

    In the spatial or space-time context, specifying the correct covariance function is important to obtain efficient predictions and to understand the underlying physical process of interest. There have been several books in recent years in the general area of spatial statistics. This book focuses on covariance and variogram functions, their role in prediction, and the proper choice of these functions in data applications. Presenting recent methods from 2004-2007 alongside more established methodology of assessing the usual assumptions on such functions such as isotropy, separability and symmetry

  12. Statistical analysis of solar proton events

    Directory of Open Access Journals (Sweden)

    V. Kurt

    2004-06-01

    Full Text Available A new catalogue of 253 solar proton events (SPEs with energy >10MeV and peak intensity >10 protons/cm2.s.sr (pfu at the Earth's orbit for three complete 11-year solar cycles (1970-2002 is given. A statistical analysis of this data set of SPEs and their associated flares that occurred during this time period is presented. It is outlined that 231 of these proton events are flare related and only 22 of them are not associated with Ha flares. It is also noteworthy that 42 of these events are registered as Ground Level Enhancements (GLEs in neutron monitors. The longitudinal distribution of the associated flares shows that a great number of these events are connected with west flares. This analysis enables one to understand the long-term dependence of the SPEs and the related flare characteristics on the solar cycle which are useful for space weather prediction.

  13. Recent advances in statistical energy analysis

    Science.gov (United States)

    Heron, K. H.

    1992-01-01

    Statistical Energy Analysis (SEA) has traditionally been developed using modal summation and averaging approach, and has led to the need for many restrictive SEA assumptions. The assumption of 'weak coupling' is particularly unacceptable when attempts are made to apply SEA to structural coupling. It is now believed that this assumption is more a function of the modal formulation rather than a necessary formulation of SEA. The present analysis ignores this restriction and describes a wave approach to the calculation of plate-plate coupling loss factors. Predictions based on this method are compared with results obtained from experiments using point excitation on one side of an irregular six-sided box structure. Conclusions show that the use and calculation of infinite transmission coefficients is the way forward for the development of a purely predictive SEA code.

  14. STATISTICS, Program System for Statistical Analysis of Experimental Data

    International Nuclear Information System (INIS)

    Helmreich, F.

    1991-01-01

    1 - Description of problem or function: The package is composed of 83 routines, the most important of which are the following: BINDTR: Binomial distribution; HYPDTR: Hypergeometric distribution; POIDTR: Poisson distribution; GAMDTR: Gamma distribution; BETADTR: Beta-1 and Beta-2 distributions; NORDTR: Normal distribution; CHIDTR: Chi-square distribution; STUDTR : Distribution of 'Student's T'; FISDTR: Distribution of F; EXPDTR: Exponential distribution; WEIDTR: Weibull distribution; FRAKTIL: Calculation of the fractiles of the normal, chi-square, Student's, and F distributions; VARVGL: Test for equality of variance for several sample observations; ANPAST: Kolmogorov-Smirnov test and chi-square test of goodness of fit; MULIRE: Multiple linear regression analysis for a dependent variable and a set of independent variables; STPRG: Performs a stepwise multiple linear regression analysis for a dependent variable and a set of independent variables. At each step, the variable entered into the regression equation is the one which has the greatest amount of variance between it and the dependent variable. Any independent variable can be forced into or deleted from the regression equation, irrespective of its contribution to the equation. LTEST: Tests the hypotheses of linearity of the data. SPRANK: Calculates the Spearman rank correlation coefficient. 2 - Method of solution: VARVGL: The Bartlett's Test, the Cochran's Test and the Hartley's Test are performed in the program. MULIRE: The Gauss-Jordan method is used in the solution of the normal equations. STPRG: The abbreviated Doolittle method is used to (1) determine variables to enter into the regression, and (2) complete regression coefficient calculation. 3 - Restrictions on the complexity of the problem: VARVGL: The Hartley's Test is only performed if the sample observations are all of the same size

  15. Dengue hemorrhagic fever and typhoid fever association based on spatial standpoint using scan statistics in DKI Jakarta

    Science.gov (United States)

    Hervind, Widyaningsih, Y.

    2017-07-01

    Concurrent infection with multiple infectious agents may occur in one patient, it appears frequently in dengue hemorrhagic fever (DHF) and typhoid fever. This paper depicted association between DHF and typhoid based on spatial point of view. Since paucity of data regarding dengue and typhoid co-infection, data that be used are the number of patients of those diseases in every district (kecamatan) in Jakarta in 2014 and 2015 obtained from Jakarta surveillance website. Poisson spatial scan statistics is used to detect DHF and typhoid hotspots area district in Jakarta separately. After obtain the hotspot, Fisher's exact test is applied to validate association between those two diseases' hotspot. The result exhibit hotspots of DHF and typhoid are located around central Jakarta. The further analysis used Poisson space-time scan statistics to reveal the hotspot in term of spatial and time. DHF and typhoid fever more likely occurr from January until May in the area which is relatively similar with pure spatial result. Preventive action could be done especially in the hotspot areas and it is required further study to observe the causes based on characteristics of the hotspot area.

  16. Diffusion tensor imaging in children with tuberous sclerosis complex: tract-based spatial statistics assessment of brain microstructural changes.

    Science.gov (United States)

    Zikou, Anastasia K; Xydis, Vasileios G; Astrakas, Loukas G; Nakou, Iliada; Tzarouchi, Loukia C; Tzoufi, Meropi; Argyropoulou, Maria I

    2016-07-01

    There is evidence of microstructural changes in normal-appearing white matter of patients with tuberous sclerosis complex. To evaluate major white matter tracts in children with tuberous sclerosis complex using tract-based spatial statistics diffusion tensor imaging (DTI) analysis. Eight children (mean age ± standard deviation: 8.5 ± 5.5 years) with an established diagnosis of tuberous sclerosis complex and 8 age-matched controls were studied. The imaging protocol consisted of T1-weighted high-resolution 3-D spoiled gradient-echo sequence and a spin-echo, echo-planar diffusion-weighted sequence. Differences in the diffusion indices were evaluated using tract-based spatial statistics. Tract-based spatial statistics showed increased axial diffusivity in the children with tuberous sclerosis complex in the superior and anterior corona radiata, the superior longitudinal fascicle, the inferior fronto-occipital fascicle, the uncinate fascicle and the anterior thalamic radiation. No significant differences were observed in fractional anisotropy, mean diffusivity and radial diffusivity between patients and control subjects. No difference was found in the diffusion indices between the baseline and follow-up examination in the patient group. Patients with tuberous sclerosis complex have increased axial diffusivity in major white matter tracts, probably related to reduced axonal integrity.

  17. Diffusion tensor imaging in children with tuberous sclerosis complex: tract-based spatial statistics assessment of brain microstructural changes

    International Nuclear Information System (INIS)

    Zikou, Anastasia K.; Xydis, Vasileios G.; Tzarouchi, Loukia C.; Argyropoulou, Maria I.; Astrakas, Loukas G.; Nakou, Iliada; Tzoufi, Meropi

    2016-01-01

    There is evidence of microstructural changes in normal-appearing white matter of patients with tuberous sclerosis complex. To evaluate major white matter tracts in children with tuberous sclerosis complex using tract-based spatial statistics diffusion tensor imaging (DTI) analysis. Eight children (mean age ± standard deviation: 8.5 ± 5.5 years) with an established diagnosis of tuberous sclerosis complex and 8 age-matched controls were studied. The imaging protocol consisted of T1-weighted high-resolution 3-D spoiled gradient-echo sequence and a spin-echo, echo-planar diffusion-weighted sequence. Differences in the diffusion indices were evaluated using tract-based spatial statistics. Tract-based spatial statistics showed increased axial diffusivity in the children with tuberous sclerosis complex in the superior and anterior corona radiata, the superior longitudinal fascicle, the inferior fronto-occipital fascicle, the uncinate fascicle and the anterior thalamic radiation. No significant differences were observed in fractional anisotropy, mean diffusivity and radial diffusivity between patients and control subjects. No difference was found in the diffusion indices between the baseline and follow-up examination in the patient group. Patients with tuberous sclerosis complex have increased axial diffusivity in major white matter tracts, probably related to reduced axonal integrity. (orig.)

  18. Statistical analysis of tourism destination competitiveness

    Directory of Open Access Journals (Sweden)

    Attilio Gardini

    2013-05-01

    Full Text Available The growing relevance of tourism industry for modern advanced economies has increased the interest among researchers and policy makers in the statistical analysis of destination competitiveness. In this paper we outline a new model of destination competitiveness based on sound theoretical grounds and we develop a statistical test of the model on sample data based on Italian tourist destination decisions and choices. Our model focuses on the tourism decision process which starts from the demand schedule for holidays and ends with the choice of a specific holiday destination. The demand schedule is a function of individual preferences and of destination positioning, while the final decision is a function of the initial demand schedule and the information concerning services for accommodation and recreation in the selected destinations. Moreover, we extend previous studies that focused on image or attributes (such as climate and scenery by paying more attention to the services for accommodation and recreation in the holiday destinations. We test the proposed model using empirical data collected from a sample of 1.200 Italian tourists interviewed in 2007 (October - December. Data analysis shows that the selection probability for the destination included in the consideration set is not proportional to the share of inclusion because the share of inclusion is determined by the brand image, while the selection of the effective holiday destination is influenced by the real supply conditions. The analysis of Italian tourists preferences underline the existence of a latent demand for foreign holidays which points out a risk of market share reduction for Italian tourism system in the global market. We also find a snow ball effect which helps the most popular destinations, mainly in the northern Italian regions.

  19. From Matched Spatial Filtering towards the Fused Statistical Descriptive Regularization Method for Enhanced Radar Imaging

    Directory of Open Access Journals (Sweden)

    Shkvarko Yuriy

    2006-01-01

    Full Text Available We address a new approach to solve the ill-posed nonlinear inverse problem of high-resolution numerical reconstruction of the spatial spectrum pattern (SSP of the backscattered wavefield sources distributed over the remotely sensed scene. An array or synthesized array radar (SAR that employs digital data signal processing is considered. By exploiting the idea of combining the statistical minimum risk estimation paradigm with numerical descriptive regularization techniques, we address a new fused statistical descriptive regularization (SDR strategy for enhanced radar imaging. Pursuing such an approach, we establish a family of the SDR-related SSP estimators, that encompass a manifold of existing beamforming techniques ranging from traditional matched filter to robust and adaptive spatial filtering, and minimum variance methods.

  20. Spatial statistics detect clustering patterns of kidney diseases in south-eastern Romania

    Directory of Open Access Journals (Sweden)

    Ruben I.

    2016-02-01

    Full Text Available Medical geography was conceptualized almost ten years ago due to its obvious usefulness in epidemiological research. Still, numerous diseases in many regions were neglected in these aspects of research, and the prevalence of kidney diseases in Eastern Europe is such an example. We evaluated the spatial patterns of main kidney diseases in south-eastern Romania, and highlighted the importance of spatial modeling in medical management in Romania. We found two statistically significant hotspots of kidney diseases prevalence. We also found differences in the spatial patterns between categories of diseases. We propose to speed up the process of creating a national database of records on kidney diseases. Offering the researchers access to a national database will allow further epidemiology studies in Romania and finally lead to a better management of medical services.

  1. Multivariate spatial Gaussian mixture modeling for statistical clustering of hemodynamic parameters in functional MRI

    International Nuclear Information System (INIS)

    Fouque, A.L.; Ciuciu, Ph.; Risser, L.; Fouque, A.L.; Ciuciu, Ph.; Risser, L.

    2009-01-01

    In this paper, a novel statistical parcellation of intra-subject functional MRI (fMRI) data is proposed. The key idea is to identify functionally homogenous regions of interest from their hemodynamic parameters. To this end, a non-parametric voxel-based estimation of hemodynamic response function is performed as a prerequisite. Then, the extracted hemodynamic features are entered as the input data of a Multivariate Spatial Gaussian Mixture Model (MSGMM) to be fitted. The goal of the spatial aspect is to favor the recovery of connected components in the mixture. Our statistical clustering approach is original in the sense that it extends existing works done on univariate spatially regularized Gaussian mixtures. A specific Gibbs sampler is derived to account for different covariance structures in the feature space. On realistic artificial fMRI datasets, it is shown that our algorithm is helpful for identifying a parsimonious functional parcellation required in the context of joint detection estimation of brain activity. This allows us to overcome the classical assumption of spatial stationarity of the BOLD signal model. (authors)

  2. A statistical analysis of electrical cerebral activity

    International Nuclear Information System (INIS)

    Bassant, Marie-Helene

    1971-01-01

    The aim of this work was to study the statistical properties of the amplitude of the electroencephalographic signal. The experimental method is described (implantation of electrodes, acquisition and treatment of data). The program of the mathematical analysis is given (calculation of probability density functions, study of stationarity) and the validity of the tests discussed. The results concerned ten rabbits. Trips of EEG were sampled during 40 s. with very short intervals (500 μs). The probability density functions established for different brain structures (especially the dorsal hippocampus) and areas, were compared during sleep, arousal and visual stimulus. Using a Χ 2 test, it was found that the Gaussian distribution assumption was rejected in 96.7 per cent of the cases. For a given physiological state, there was no mathematical reason to reject the assumption of stationarity (in 96 per cent of the cases). (author) [fr

  3. Statistical analysis of ultrasonic measurements in concrete

    Science.gov (United States)

    Chiang, Chih-Hung; Chen, Po-Chih

    2002-05-01

    Stress wave techniques such as measurements of ultrasonic pulse velocity are often used to evaluate concrete quality in structures. For proper interpretation of measurement results, the dependence of pulse transit time on the average acoustic impedance and the material homogeneity along the sound path need to be examined. Semi-direct measurement of pulse velocity could be more convenient than through transmission measurement. It is not necessary to assess both sides of concrete floors or walls. A novel measurement scheme is proposed and verified based on statistical analysis. It is shown that Semi-direct measurements are very effective for gathering large amount of pulse velocity data from concrete reference specimens. The variability of measurements is comparable with that reported by American Concrete Institute using either break-off or pullout tests.

  4. Statistical Analysis of Data for Timber Strengths

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Hoffmeyer, P.

    Statistical analyses are performed for material strength parameters from approximately 6700 specimens of structural timber. Non-parametric statistical analyses and fits to the following distributions types have been investigated: Normal, Lognormal, 2 parameter Weibull and 3-parameter Weibull...

  5. Altering spatial priority maps via statistical learning of target selection and distractor filtering.

    Science.gov (United States)

    Ferrante, Oscar; Patacca, Alessia; Di Caro, Valeria; Della Libera, Chiara; Santandrea, Elisa; Chelazzi, Leonardo

    2018-05-01

    The cognitive system has the capacity to learn and make use of environmental regularities - known as statistical learning (SL), including for the implicit guidance of attention. For instance, it is known that attentional selection is biased according to the spatial probability of targets; similarly, changes in distractor filtering can be triggered by the unequal spatial distribution of distractors. Open questions remain regarding the cognitive/neuronal mechanisms underlying SL of target selection and distractor filtering. Crucially, it is unclear whether the two processes rely on shared neuronal machinery, with unavoidable cross-talk, or they are fully independent, an issue that we directly addressed here. In a series of visual search experiments, participants had to discriminate a target stimulus, while ignoring a task-irrelevant salient distractor (when present). We systematically manipulated spatial probabilities of either one or the other stimulus, or both. We then measured performance to evaluate the direct effects of the applied contingent probability distribution (e.g., effects on target selection of the spatial imbalance in target occurrence across locations) as well as its indirect or "transfer" effects (e.g., effects of the same spatial imbalance on distractor filtering across locations). By this approach, we confirmed that SL of both target and distractor location implicitly bias attention. Most importantly, we described substantial indirect effects, with the unequal spatial probability of the target affecting filtering efficiency and, vice versa, the unequal spatial probability of the distractor affecting target selection efficiency across locations. The observed cross-talk demonstrates that SL of target selection and distractor filtering are instantiated via (at least partly) shared neuronal machinery, as further corroborated by strong correlations between direct and indirect effects at the level of individual participants. Our findings are compatible

  6. Regional Convergence of Income: Spatial Analysis

    Directory of Open Access Journals (Sweden)

    Vera Ivanovna Ivanova

    2014-12-01

    Full Text Available Russia has a huge territory and a strong interregional heterogeneity, so we can assume that geographical factors have a significant impact on the pace of economic growth in Russian regions. Therefore the article is focused on the following issues: 1 correlation between comparative advantages of geographical location and differences in growth rates; 2 impact of more developed regions on their neighbors and 3 correlation between economic growth of regions and their spatial interaction. The article is devoted to the empirical analysis of regional per capita incomes from 1996 to 2012 and explores the dynamics of the spatial autocorrelation of regional development indicator. It is shown that there is a problem of measuring the intensity of spatial dependence: factor value of Moran’s index varies greatly depending on the choice of the matrix of distances. In addition, with the help of spatial econometrics the author tests the following hypotheses: 1 there is convergence between regions for a specified period; 2 the process of beta convergence is explained by the spatial arrangement of regions and 3 there is positive impact of market size on regional growth. The author empirically confirmed all three hypotheses

  7. Application of descriptive statistics in analysis of experimental data

    OpenAIRE

    Mirilović Milorad; Pejin Ivana

    2008-01-01

    Statistics today represent a group of scientific methods for the quantitative and qualitative investigation of variations in mass appearances. In fact, statistics present a group of methods that are used for the accumulation, analysis, presentation and interpretation of data necessary for reaching certain conclusions. Statistical analysis is divided into descriptive statistical analysis and inferential statistics. The values which represent the results of an experiment, and which are the subj...

  8. Statistical analysis in MSW collection performance assessment.

    Science.gov (United States)

    Teixeira, Carlos Afonso; Avelino, Catarina; Ferreira, Fátima; Bentes, Isabel

    2014-09-01

    The increase of Municipal Solid Waste (MSW) generated over the last years forces waste managers pursuing more effective collection schemes, technically viable, environmentally effective and economically sustainable. The assessment of MSW services using performance indicators plays a crucial role for improving service quality. In this work, we focus on the relevance of regular system monitoring as a service assessment tool. In particular, we select and test a core-set of MSW collection performance indicators (effective collection distance, effective collection time and effective fuel consumption) that highlights collection system strengths and weaknesses and supports pro-active management decision-making and strategic planning. A statistical analysis was conducted with data collected in mixed collection system of Oporto Municipality, Portugal, during one year, a week per month. This analysis provides collection circuits' operational assessment and supports effective short-term municipality collection strategies at the level of, e.g., collection frequency and timetables, and type of containers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Statistics Analysis Measures Painting of Cooling Tower

    Directory of Open Access Journals (Sweden)

    A. Zacharopoulou

    2013-01-01

    Full Text Available This study refers to the cooling tower of Megalopolis (construction 1975 and protection from corrosive environment. The maintenance of the cooling tower took place in 2008. The cooling tower was badly damaged from corrosion of reinforcement. The parabolic cooling towers (factory of electrical power are a typical example of construction, which has a special aggressive environment. The protection of cooling towers is usually achieved through organic coatings. Because of the different environmental impacts on the internal and external side of the cooling tower, a different system of paint application is required. The present study refers to the damages caused by corrosion process. The corrosive environments, the application of this painting, the quality control process, the measures and statistics analysis, and the results were discussed in this study. In the process of quality control the following measurements were taken into consideration: (1 examination of the adhesion with the cross-cut test, (2 examination of the film thickness, and (3 controlling of the pull-off resistance for concrete substrates and paintings. Finally, this study refers to the correlations of measurements, analysis of failures in relation to the quality of repair, and rehabilitation of the cooling tower. Also this study made a first attempt to apply the specific corrosion inhibitors in such a large structure.

  10. Transit safety & security statistics & analysis 2002 annual report (formerly SAMIS)

    Science.gov (United States)

    2004-12-01

    The Transit Safety & Security Statistics & Analysis 2002 Annual Report (formerly SAMIS) is a compilation and analysis of mass transit accident, casualty, and crime statistics reported under the Federal Transit Administrations (FTAs) National Tr...

  11. Transit safety & security statistics & analysis 2003 annual report (formerly SAMIS)

    Science.gov (United States)

    2005-12-01

    The Transit Safety & Security Statistics & Analysis 2003 Annual Report (formerly SAMIS) is a compilation and analysis of mass transit accident, casualty, and crime statistics reported under the Federal Transit Administrations (FTAs) National Tr...

  12. Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data.

    Science.gov (United States)

    Kim, Sehwi; Jung, Inkyung

    2017-01-01

    The spatial scan statistic is an important tool for spatial cluster detection. There have been numerous studies on scanning window shapes. However, little research has been done on the maximum scanning window size or maximum reported cluster size. Recently, Han et al. proposed to use the Gini coefficient to optimize the maximum reported cluster size. However, the method has been developed and evaluated only for the Poisson model. We adopt the Gini coefficient to be applicable to the spatial scan statistic for ordinal data to determine the optimal maximum reported cluster size. Through a simulation study and application to a real data example, we evaluate the performance of the proposed approach. With some sophisticated modification, the Gini coefficient can be effectively employed for the ordinal model. The Gini coefficient most often picked the optimal maximum reported cluster sizes that were the same as or smaller than the true cluster sizes with very high accuracy. It seems that we can obtain a more refined collection of clusters by using the Gini coefficient. The Gini coefficient developed specifically for the ordinal model can be useful for optimizing the maximum reported cluster size for ordinal data and helpful for properly and informatively discovering cluster patterns.

  13. Statistical approach to partial equilibrium analysis

    Science.gov (United States)

    Wang, Yougui; Stanley, H. E.

    2009-04-01

    A statistical approach to market equilibrium and efficiency analysis is proposed in this paper. One factor that governs the exchange decisions of traders in a market, named willingness price, is highlighted and constitutes the whole theory. The supply and demand functions are formulated as the distributions of corresponding willing exchange over the willingness price. The laws of supply and demand can be derived directly from these distributions. The characteristics of excess demand function are analyzed and the necessary conditions for the existence and uniqueness of equilibrium point of the market are specified. The rationing rates of buyers and sellers are introduced to describe the ratio of realized exchange to willing exchange, and their dependence on the market price is studied in the cases of shortage and surplus. The realized market surplus, which is the criterion of market efficiency, can be written as a function of the distributions of willing exchange and the rationing rates. With this approach we can strictly prove that a market is efficient in the state of equilibrium.

  14. Measuring streetscape complexity based on the statistics of local contrast and spatial frequency.

    Directory of Open Access Journals (Sweden)

    André Cavalcante

    Full Text Available Streetscapes are basic urban elements which play a major role in the livability of a city. The visual complexity of streetscapes is known to influence how people behave in such built spaces. However, how and which characteristics of a visual scene influence our perception of complexity have yet to be fully understood. This study proposes a method to evaluate the complexity perceived in streetscapes based on the statistics of local contrast and spatial frequency. Here, 74 streetscape images from four cities, including daytime and nighttime scenes, were ranked for complexity by 40 participants. Image processing was then used to locally segment contrast and spatial frequency in the streetscapes. The statistics of these characteristics were extracted and later combined to form a single objective measure. The direct use of statistics revealed structural or morphological patterns in streetscapes related to the perception of complexity. Furthermore, in comparison to conventional measures of visual complexity, the proposed objective measure exhibits a higher correlation with the opinion of the participants. Also, the performance of this method is more robust regarding different time scenarios.

  15. Analysis of Variance: What Is Your Statistical Software Actually Doing?

    Science.gov (United States)

    Li, Jian; Lomax, Richard G.

    2011-01-01

    Users assume statistical software packages produce accurate results. In this article, the authors systematically examined Statistical Package for the Social Sciences (SPSS) and Statistical Analysis System (SAS) for 3 analysis of variance (ANOVA) designs, mixed-effects ANOVA, fixed-effects analysis of covariance (ANCOVA), and nested ANOVA. For each…

  16. STATISTICAL ANALYSIS OF TANK 18F FLOOR SAMPLE RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Harris, S.

    2010-09-02

    Representative sampling has been completed for characterization of the residual material on the floor of Tank 18F as per the statistical sampling plan developed by Shine [1]. Samples from eight locations have been obtained from the tank floor and two of the samples were archived as a contingency. Six samples, referred to in this report as the current scrape samples, have been submitted to and analyzed by SRNL [2]. This report contains the statistical analysis of the floor sample analytical results to determine if further data are needed to reduce uncertainty. Included are comparisons with the prior Mantis samples results [3] to determine if they can be pooled with the current scrape samples to estimate the upper 95% confidence limits (UCL{sub 95%}) for concentration. Statistical analysis revealed that the Mantis and current scrape sample results are not compatible. Therefore, the Mantis sample results were not used to support the quantification of analytes in the residual material. Significant spatial variability among the current sample results was not found. Constituent concentrations were similar between the North and South hemispheres as well as between the inner and outer regions of the tank floor. The current scrape sample results from all six samples fall within their 3-sigma limits. In view of the results from numerous statistical tests, the data were pooled from all six current scrape samples. As such, an adequate sample size was provided for quantification of the residual material on the floor of Tank 18F. The uncertainty is quantified in this report by an upper 95% confidence limit (UCL{sub 95%}) on each analyte concentration. The uncertainty in analyte concentration was calculated as a function of the number of samples, the average, and the standard deviation of the analytical results. The UCL{sub 95%} was based entirely on the six current scrape sample results (each averaged across three analytical determinations).

  17. Statistical Analysis Of Tank 19F Floor Sample Results

    International Nuclear Information System (INIS)

    Harris, S.

    2010-01-01

    Representative sampling has been completed for characterization of the residual material on the floor of Tank 19F as per the statistical sampling plan developed by Harris and Shine. Samples from eight locations have been obtained from the tank floor and two of the samples were archived as a contingency. Six samples, referred to in this report as the current scrape samples, have been submitted to and analyzed by SRNL. This report contains the statistical analysis of the floor sample analytical results to determine if further data are needed to reduce uncertainty. Included are comparisons with the prior Mantis samples results to determine if they can be pooled with the current scrape samples to estimate the upper 95% confidence limits (UCL95%) for concentration. Statistical analysis revealed that the Mantis and current scrape sample results are not compatible. Therefore, the Mantis sample results were not used to support the quantification of analytes in the residual material. Significant spatial variability among the current scrape sample results was not found. Constituent concentrations were similar between the North and South hemispheres as well as between the inner and outer regions of the tank floor. The current scrape sample results from all six samples fall within their 3-sigma limits. In view of the results from numerous statistical tests, the data were pooled from all six current scrape samples. As such, an adequate sample size was provided for quantification of the residual material on the floor of Tank 19F. The uncertainty is quantified in this report by an UCL95% on each analyte concentration. The uncertainty in analyte concentration was calculated as a function of the number of samples, the average, and the standard deviation of the analytical results. The UCL95% was based entirely on the six current scrape sample results (each averaged across three analytical determinations).

  18. Statistical analysis of non-homogeneous Poisson processes. Statistical processing of a particle multidetector

    International Nuclear Information System (INIS)

    Lacombe, J.P.

    1985-12-01

    Statistic study of Poisson non-homogeneous and spatial processes is the first part of this thesis. A Neyman-Pearson type test is defined concerning the intensity measurement of these processes. Conditions are given for which consistency of the test is assured, and others giving the asymptotic normality of the test statistics. Then some techniques of statistic processing of Poisson fields and their applications to a particle multidetector study are given. Quality tests of the device are proposed togetherwith signal extraction methods [fr

  19. Spatial and statistical methods for correlating the interaction between groundwater contamination and tap water exposure in karst regions

    Science.gov (United States)

    Padilla, I. Y.; Rivera, V. L.; Macchiavelli, R. E.; Torres Torres, N. I.

    2016-12-01

    Groundwater systems in karst regions are highly vulnerable to contamination and have an enormous capacity to store and rapidly convey pollutants to potential exposure zones over long periods of time. Contaminants in karst aquifers used for drinking water purposes can, therefore, enter distributions lines and the tap water point of use. This study applies spatial and statistical analytical methods to assess potential correlations between contaminants in a karst groundwater system in northern Puerto Rico and exposure in the tap water. It focuses on chlorinated volatile organic compounds (CVOC) and phthalates because of their ubiquitous presence in the environment and the potential public health impacts. The work integrates historical data collected from regulatory agencies and current field measurements involving groundwater and tap water sampling and analysis. Contaminant distributions and cluster analysis is performed with Geographic Information System technology. Correlations between detection frequencies and contaminants concentration in source groundwater and tap water point of use are assessed using Pearson's Chi Square and T-Test analysis. Although results indicate that correlations are contaminant-specific, detection frequencies are generally higher for total CVOC in groundwater than tap water samples, but greater for phthalates in tap water than groundwater samples. Spatial analysis shows widespread distribution of CVOC and phthalates in both groundwater and tap water, suggesting that contamination comes from multiple sources. Spatial correlation analysis indicates that association between tap water and groundwater contamination depends on the source and type of contaminants, spatial location, and time. Full description of the correlations may, however, need to take into consideration variable anthropogenic interventions.

  20. Spatial prediction of landslide hazard using discriminant analysis and GIS

    Science.gov (United States)

    Peter V. Gorsevski; Paul Gessler; Randy B. Foltz

    2000-01-01

    Environmental attributes relevant for spatial prediction of landslides triggered by rain and snowmelt events were derived from digital elevation model (DEM). Those data in conjunction with statistics and geographic information system (GIS) provided a detailed basis for spatial prediction of landslide hazard. The spatial prediction of landslide hazard in this paper is...

  1. Statistical analysis of angular correlation measurements

    International Nuclear Information System (INIS)

    Oliveira, R.A.A.M. de.

    1986-01-01

    Obtaining the multipole mixing ratio, δ, of γ transitions in angular correlation measurements is a statistical problem characterized by the small number of angles in which the observation is made and by the limited statistic of counting, α. The inexistence of a sufficient statistics for the estimator of δ, is shown. Three different estimators for δ were constructed and their properties of consistency, bias and efficiency were tested. Tests were also performed in experimental results obtained in γ-γ directional correlation measurements. (Author) [pt

  2. Surface Properties of TNOs: Preliminary Statistical Analysis

    Science.gov (United States)

    Antonieta Barucci, Maria; Fornasier, S.; Alvarez-Cantal, A.; de Bergh, C.; Merlin, F.; DeMeo, F.; Dumas, C.

    2009-09-01

    An overview of the surface properties based on the last results obtained during the Large Program performed at ESO-VLT (2007-2008) will be presented. Simultaneous high quality visible and near-infrared spectroscopy and photometry have been carried out on 40 objects with various dynamical properties, using FORS1 (V), ISAAC (J) and SINFONI (H+K bands) mounted respectively at UT2, UT1 and UT4 VLT-ESO telescopes (Cerro Paranal, Chile). For spectroscopy we computed the spectral slope for each object and searched for possible rotational inhomogeneities. A few objects show features in their visible spectra such as Eris, whose spectral bands are displaced with respect to pure methane-ice. We identify new faint absorption features on 10199 Chariklo and 42355 Typhon, possibly due to the presence of aqueous altered materials. The H+K band spectroscopy was performed with the new instrument SINFONI which is a 3D integral field spectrometer. While some objects show no diagnostic spectral bands, others reveal surface deposits of ices of H2O, CH3OH, CH4, and N2. To investigate the surface properties of these bodies, a radiative transfer model has been applied to interpret the entire 0.4-2.4 micron spectral region. The diversity of the spectra suggests that these objects represent a substantial range of bulk compositions. These different surface compositions can be diagnostic of original compositional diversity, interior source and/or different evolution with different physical processes affecting the surfaces. A statistical analysis is in progress to investigate the correlation of the TNOs’ surface properties with size and dynamical properties.

  3. Time Series Analysis Based on Running Mann Whitney Z Statistics

    Science.gov (United States)

    A sensitive and objective time series analysis method based on the calculation of Mann Whitney U statistics is described. This method samples data rankings over moving time windows, converts those samples to Mann-Whitney U statistics, and then normalizes the U statistics to Z statistics using Monte-...

  4. COMPARATIVE STATISTICAL ANALYSIS OF GENOTYPES’ COMBINING

    Directory of Open Access Journals (Sweden)

    V. Z. Stetsyuk

    2015-05-01

    The program provides the creation of desktop program complex for statistics calculations on a personal computer of doctor. Modern methods and tools for development of information systems were described to create program.

  5. Descriptive statistics and spatial distributions of geochemical variables associated with manganese oxide-rich phases in the northern Pacific

    Science.gov (United States)

    Botbol, Joseph Moses; Evenden, Gerald Ian

    1989-01-01

    Tables, graphs, and maps are used to portray the frequency characteristics and spatial distribution of manganese oxide-rich phase geochemical data, to characterize the northern Pacific in terms of publicly available nodule geochemical data, and to develop data portrayal methods that will facilitate data analysis. Source data are a subset of the Scripps Institute of Oceanography's Sediment Data Bank. The study area is bounded by 0° N., 40° N., 120° E., and 100° W. and is arbitrarily subdivided into 14-20°x20° geographic subregions. Frequency distributions of trace metals characterized in the original raw data are graphed as ogives, and salient parameters are tabulated. All variables are transformed to enrichment values relative to median concentration within their host subregions. Scatter plots of all pairs of original variables and their enrichment transforms are provided as an aid to the interpretation of correlations between variables. Gridded spatial distributions of all variables are portrayed as gray-scale maps. The use of tables and graphs to portray frequency statistics and gray-scale maps to portray spatial distributions is an effective way to prepare for and facilitate multivariate data analysis.

  6. Humans make efficient use of natural image statistics when performing spatial interpolation.

    Science.gov (United States)

    D'Antona, Anthony D; Perry, Jeffrey S; Geisler, Wilson S

    2013-12-16

    Visual systems learn through evolution and experience over the lifespan to exploit the statistical structure of natural images when performing visual tasks. Understanding which aspects of this statistical structure are incorporated into the human nervous system is a fundamental goal in vision science. To address this goal, we measured human ability to estimate the intensity of missing image pixels in natural images. Human estimation accuracy is compared with various simple heuristics (e.g., local mean) and with optimal observers that have nearly complete knowledge of the local statistical structure of natural images. Human estimates are more accurate than those of simple heuristics, and they match the performance of an optimal observer that knows the local statistical structure of relative intensities (contrasts). This optimal observer predicts the detailed pattern of human estimation errors and hence the results place strong constraints on the underlying neural mechanisms. However, humans do not reach the performance of an optimal observer that knows the local statistical structure of the absolute intensities, which reflect both local relative intensities and local mean intensity. As predicted from a statistical analysis of natural images, human estimation accuracy is negligibly improved by expanding the context from a local patch to the whole image. Our results demonstrate that the human visual system exploits efficiently the statistical structure of natural images.

  7. Remote sensing and spatial statistical techniques for modelling Ommatissus lybicus (Hemiptera: Tropiduchidae) habitat and population densities.

    Science.gov (United States)

    Al-Kindi, Khalifa M; Kwan, Paul; R Andrew, Nigel; Welch, Mitchell

    2017-01-01

    In order to understand the distribution and prevalence of Ommatissus lybicus (Hemiptera: Tropiduchidae) as well as analyse their current biographical patterns and predict their future spread, comprehensive and detailed information on the environmental, climatic, and agricultural practices are essential. The spatial analytical techniques such as Remote Sensing and Spatial Statistics Tools, can help detect and model spatial links and correlations between the presence, absence and density of O. lybicus in response to climatic, environmental, and human factors. The main objective of this paper is to review remote sensing and relevant analytical techniques that can be applied in mapping and modelling the habitat and population density of O. lybicus . An exhaustive search of related literature revealed that there are very limited studies linking location-based infestation levels of pests like the O. lybicus with climatic, environmental, and human practice related variables. This review also highlights the accumulated knowledge and addresses the gaps in this area of research. Furthermore, it makes recommendations for future studies, and gives suggestions on monitoring and surveillance methods in designing both local and regional level integrated pest management strategies of palm tree and other affected cultivated crops.

  8. Remote sensing and spatial statistical techniques for modelling Ommatissus lybicus (Hemiptera: Tropiduchidae habitat and population densities

    Directory of Open Access Journals (Sweden)

    Khalifa M. Al-Kindi

    2017-08-01

    Full Text Available In order to understand the distribution and prevalence of Ommatissus lybicus (Hemiptera: Tropiduchidae as well as analyse their current biographical patterns and predict their future spread, comprehensive and detailed information on the environmental, climatic, and agricultural practices are essential. The spatial analytical techniques such as Remote Sensing and Spatial Statistics Tools, can help detect and model spatial links and correlations between the presence, absence and density of O. lybicus in response to climatic, environmental, and human factors. The main objective of this paper is to review remote sensing and relevant analytical techniques that can be applied in mapping and modelling the habitat and population density of O. lybicus. An exhaustive search of related literature revealed that there are very limited studies linking location-based infestation levels of pests like the O. lybicus with climatic, environmental, and human practice related variables. This review also highlights the accumulated knowledge and addresses the gaps in this area of research. Furthermore, it makes recommendations for future studies, and gives suggestions on monitoring and surveillance methods in designing both local and regional level integrated pest management strategies of palm tree and other affected cultivated crops.

  9. Improving alignment in Tract-based spatial statistics: evaluation and optimization of image registration.

    Science.gov (United States)

    de Groot, Marius; Vernooij, Meike W; Klein, Stefan; Ikram, M Arfan; Vos, Frans M; Smith, Stephen M; Niessen, Wiro J; Andersson, Jesper L R

    2013-08-01

    Anatomical alignment in neuroimaging studies is of such importance that considerable effort is put into improving the registration used to establish spatial correspondence. Tract-based spatial statistics (TBSS) is a popular method for comparing diffusion characteristics across subjects. TBSS establishes spatial correspondence using a combination of nonlinear registration and a "skeleton projection" that may break topological consistency of the transformed brain images. We therefore investigated feasibility of replacing the two-stage registration-projection procedure in TBSS with a single, regularized, high-dimensional registration. To optimize registration parameters and to evaluate registration performance in diffusion MRI, we designed an evaluation framework that uses native space probabilistic tractography for 23 white matter tracts, and quantifies tract similarity across subjects in standard space. We optimized parameters for two registration algorithms on two diffusion datasets of different quality. We investigated reproducibility of the evaluation framework, and of the optimized registration algorithms. Next, we compared registration performance of the regularized registration methods and TBSS. Finally, feasibility and effect of incorporating the improved registration in TBSS were evaluated in an example study. The evaluation framework was highly reproducible for both algorithms (R(2) 0.993; 0.931). The optimal registration parameters depended on the quality of the dataset in a graded and predictable manner. At optimal parameters, both algorithms outperformed the registration of TBSS, showing feasibility of adopting such approaches in TBSS. This was further confirmed in the example experiment. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Comparison of different statistical modelling approaches for deriving spatial air temperature patterns in an urban environment

    Science.gov (United States)

    Straub, Annette; Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Geruschkat, Uta; Jacobeit, Jucundus; Kühlbach, Benjamin; Kusch, Thomas; Richter, Katja; Schneider, Alexandra; Umminger, Robin; Wolf, Kathrin

    2017-04-01

    Frequently spatial variations of air temperature of considerable magnitude occur within urban areas. They correspond to varying land use/land cover characteristics and vary with season, time of day and synoptic conditions. These temperature differences have an impact on human health and comfort directly by inducing thermal stress as well as indirectly by means of affecting air quality. Therefore, knowledge of the spatial patterns of air temperature in cities and the factors causing them is of great importance, e.g. for urban planners. A multitude of studies have shown statistical modelling to be a suitable tool for generating spatial air temperature patterns. This contribution presents a comparison of different statistical modelling approaches for deriving spatial air temperature patterns in the urban environment of Augsburg, Southern Germany. In Augsburg there exists a measurement network for air temperature and humidity currently comprising 48 stations in the city and its rural surroundings (corporately operated by the Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health and the Institute of Geography, University of Augsburg). Using different datasets for land surface characteristics (Open Street Map, Urban Atlas) area percentages of different types of land cover were calculated for quadratic buffer zones of different size (25, 50, 100, 250, 500 m) around the stations as well for source regions of advective air flow and used as predictors together with additional variables such as sky view factor, ground level and distance from the city centre. Multiple Linear Regression and Random Forest models for different situations taking into account season, time of day and weather condition were applied utilizing selected subsets of these predictors in order to model spatial distributions of mean hourly and daily air temperature deviations from a rural reference station. Furthermore, the different model setups were

  11. Statistical Analysis of Research Data | Center for Cancer Research

    Science.gov (United States)

    Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data. The Statistical Analysis of Research Data (SARD) course will be held on April 5-6, 2018 from 9 a.m.-5 p.m. at the National Institutes of Health's Natcher Conference Center, Balcony C on the Bethesda Campus. SARD is designed to provide an overview on the general principles of statistical analysis of research data.  The first day will feature univariate data analysis, including descriptive statistics, probability distributions, one- and two-sample inferential statistics.

  12. Statistical network analysis for analyzing policy networks

    DEFF Research Database (Denmark)

    Robins, Garry; Lewis, Jenny; Wang, Peng

    2012-01-01

    and policy network methodology is the development of statistical modeling approaches that can accommodate such dependent data. In this article, we review three network statistical methods commonly used in the current literature: quadratic assignment procedures, exponential random graph models (ERGMs......To analyze social network data using standard statistical approaches is to risk incorrect inference. The dependencies among observations implied in a network conceptualization undermine standard assumptions of the usual general linear models. One of the most quickly expanding areas of social......), and stochastic actor-oriented models. We focus most attention on ERGMs by providing an illustrative example of a model for a strategic information network within a local government. We draw inferences about the structural role played by individuals recognized as key innovators and conclude that such an approach...

  13. Spatially Resolved Analysis of Bragg Selectivity

    Directory of Open Access Journals (Sweden)

    Tina Sabel

    2015-11-01

    Full Text Available This paper targets an inherent control of optical shrinkage in photosensitive polymers, contributing by means of spatially resolved analysis of volume holographic phase gratings. Point by point scanning of the local material response to the Gaussian intensity distribution of the recording beams is accomplished. Derived information on the local grating period and grating slant is evaluated by mapping of optical shrinkage in the lateral plane as well as through the depth of the layer. The influence of recording intensity, exposure duration and the material viscosity on the Bragg selectivity is investigated.

  14. Time series evaluation of landscape dynamics using annual Landsat imagery and spatial statistical modeling: Evidence from the Phoenix metropolitan region

    Science.gov (United States)

    Fan, Chao; Myint, Soe W.; Rey, Sergio J.; Li, Wenwen

    2017-06-01

    Urbanization is a natural and social process involving simultaneous changes to the Earth's land systems, energy flow, demographics, and the economy. Understanding the spatiotemporal pattern of urbanization is increasingly important for policy formulation, decision making, and natural resource management. A combination of satellite remote sensing and patch-based models has been widely adopted to characterize landscape changes at various spatial and temporal scales. Nevertheless, the validity of this type of framework in identifying long-term changes, especially subtle or gradual land modifications is seriously challenged. In this paper, we integrate annual image time series, continuous spatial indices, and non-parametric trend analysis into a spatiotemporal study of landscape dynamics over the Phoenix metropolitan area from 1991 to 2010. We harness local indicators of spatial dependence and modified Mann-Kendall test to describe the monotonic trends in the quantity and spatial arrangement of two important land use land cover types: vegetation and built-up areas. Results suggest that declines in vegetation and increases in built-up areas are the two prevalent types of changes across the region. Vegetation increases mostly occur at the outskirts where new residential areas are developed from natural desert. A sizable proportion of vegetation declines and built-up increases are seen in the central and southeast part. Extensive land conversion from agricultural fields into urban land use is one important driver of vegetation declines. The xeriscaping practice also contributes to part of vegetation loss and an increasingly heterogeneous landscape. The quantitative framework proposed in this study provides a pathway to effective landscape mapping and change monitoring from a spatial statistical perspective.

  15. Statistical model based iterative reconstruction (MBIR) in clinical CT systems. Part II. Experimental assessment of spatial resolution performance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ke; Chen, Guang-Hong, E-mail: gchen7@wisc.edu [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 and Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, Wisconsin 53792 (United States); Garrett, John; Ge, Yongshuai [Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705 (United States)

    2014-07-15

    Purpose: Statistical model based iterative reconstruction (MBIR) methods have been introduced to clinical CT systems and are being used in some clinical diagnostic applications. The purpose of this paper is to experimentally assess the unique spatial resolution characteristics of this nonlinear reconstruction method and identify its potential impact on the detectabilities and the associated radiation dose levels for specific imaging tasks. Methods: The thoracic section of a pediatric phantom was repeatedly scanned 50 or 100 times using a 64-slice clinical CT scanner at four different dose levels [CTDI{sub vol} =4, 8, 12, 16 (mGy)]. Both filtered backprojection (FBP) and MBIR (Veo{sup ®}, GE Healthcare, Waukesha, WI) were used for image reconstruction and results were compared with one another. Eight test objects in the phantom with contrast levels ranging from 13 to 1710 HU were used to assess spatial resolution. The axial spatial resolution was quantified with the point spread function (PSF), while the z resolution was quantified with the slice sensitivity profile. Both were measured locally on the test objects and in the image domain. The dependence of spatial resolution on contrast and dose levels was studied. The study also features a systematic investigation of the potential trade-off between spatial resolution and locally defined noise and their joint impact on the overall image quality, which was quantified by the image domain-based channelized Hotelling observer (CHO) detectability index d′. Results: (1) The axial spatial resolution of MBIR depends on both radiation dose level and image contrast level, whereas it is supposedly independent of these two factors in FBP. The axial spatial resolution of MBIR always improved with an increasing radiation dose level and/or contrast level. (2) The axial spatial resolution of MBIR became equivalent to that of FBP at some transitional contrast level, above which MBIR demonstrated superior spatial resolution than

  16. Statistical models and methods for reliability and survival analysis

    CERN Document Server

    Couallier, Vincent; Huber-Carol, Catherine; Mesbah, Mounir; Huber -Carol, Catherine; Limnios, Nikolaos; Gerville-Reache, Leo

    2013-01-01

    Statistical Models and Methods for Reliability and Survival Analysis brings together contributions by specialists in statistical theory as they discuss their applications providing up-to-date developments in methods used in survival analysis, statistical goodness of fit, stochastic processes for system reliability, amongst others. Many of these are related to the work of Professor M. Nikulin in statistics over the past 30 years. The authors gather together various contributions with a broad array of techniques and results, divided into three parts - Statistical Models and Methods, Statistical

  17. The Inappropriate Symmetries of Multivariate Statistical Analysis in Geometric Morphometrics.

    Science.gov (United States)

    Bookstein, Fred L

    In today's geometric morphometrics the commonest multivariate statistical procedures, such as principal component analysis or regressions of Procrustes shape coordinates on Centroid Size, embody a tacit roster of symmetries -axioms concerning the homogeneity of the multiple spatial domains or descriptor vectors involved-that do not correspond to actual biological fact. These techniques are hence inappropriate for any application regarding which we have a-priori biological knowledge to the contrary (e.g., genetic/morphogenetic processes common to multiple landmarks, the range of normal in anatomy atlases, the consequences of growth or function for form). But nearly every morphometric investigation is motivated by prior insights of this sort. We therefore need new tools that explicitly incorporate these elements of knowledge, should they be quantitative, to break the symmetries of the classic morphometric approaches. Some of these are already available in our literature but deserve to be known more widely: deflated (spatially adaptive) reference distributions of Procrustes coordinates, Sewall Wright's century-old variant of factor analysis, the geometric algebra of importing explicit biomechanical formulas into Procrustes space. Other methods, not yet fully formulated, might involve parameterized models for strain in idealized forms under load, principled approaches to the separation of functional from Brownian aspects of shape variation over time, and, in general, a better understanding of how the formalism of landmarks interacts with the many other approaches to quantification of anatomy. To more powerfully organize inferences from the high-dimensional measurements that characterize so much of today's organismal biology, tomorrow's toolkit must rely neither on principal component analysis nor on the Procrustes distance formula, but instead on sound prior biological knowledge as expressed in formulas whose coefficients are not all the same. I describe the problems

  18. Statistical analysis of hydrodynamic cavitation events

    Science.gov (United States)

    Gimenez, G.; Sommer, R.

    1980-10-01

    The frequency (number of events per unit time) of pressure pulses produced by hydrodynamic cavitation bubble collapses is investigated using statistical methods. The results indicate that this frequency is distributed according to a normal law, its parameters not being time-evolving.

  19. Statistical analysis of lineaments of Goa, India

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Banerjee, G.; Wagle, B.G.

    statistically to obtain the nonlinear pattern in the form of a cosine wave. Three distinct peaks were found at azimuths of 40-45 degrees, 90-95 degrees and 140-145 degrees, which have peak values of 5.85, 6.80 respectively. These three peaks are correlated...

  20. On statistical analysis of compound point process

    Czech Academy of Sciences Publication Activity Database

    Volf, Petr

    2006-01-01

    Roč. 35, 2-3 (2006), s. 389-396 ISSN 1026-597X R&D Projects: GA ČR(CZ) GA402/04/1294 Institutional research plan: CEZ:AV0Z10750506 Keywords : counting process * compound process * hazard function * Cox -model Subject RIV: BB - Applied Statistics, Operational Research

  1. Statistical Analysis Of Reconnaissance Geochemical Data From ...

    African Journals Online (AJOL)

    , Co, Mo, Hg, Sb, Tl, Sc, Cr, Ni, La, W, V, U, Th, Bi, Sr and Ga in 56 stream sediment samples collected from Orle drainage system were subjected to univariate and multivariate statistical analyses. The univariate methods used include ...

  2. Uncertainty analysis with statistically correlated failure data

    International Nuclear Information System (INIS)

    Modarres, M.; Dezfuli, H.; Roush, M.L.

    1987-01-01

    Likelihood of occurrence of the top event of a fault tree or sequences of an event tree is estimated from the failure probability of components that constitute the events of the fault/event tree. Component failure probabilities are subject to statistical uncertainties. In addition, there are cases where the failure data are statistically correlated. At present most fault tree calculations are based on uncorrelated component failure data. This chapter describes a methodology for assessing the probability intervals for the top event failure probability of fault trees or frequency of occurrence of event tree sequences when event failure data are statistically correlated. To estimate mean and variance of the top event, a second-order system moment method is presented through Taylor series expansion, which provides an alternative to the normally used Monte Carlo method. For cases where component failure probabilities are statistically correlated, the Taylor expansion terms are treated properly. Moment matching technique is used to obtain the probability distribution function of the top event through fitting the Johnson Ssub(B) distribution. The computer program, CORRELATE, was developed to perform the calculations necessary for the implementation of the method developed. (author)

  3. Spatial Statistical and Modeling Strategy for Inventorying and Monitoring Ecosystem Resources at Multiple Scales and Resolution Levels

    Science.gov (United States)

    Robin M. Reich; C. Aguirre-Bravo; M.S. Williams

    2006-01-01

    A statistical strategy for spatial estimation and modeling of natural and environmental resource variables and indicators is presented. This strategy is part of an inventory and monitoring pilot study that is being carried out in the Mexican states of Jalisco and Colima. Fine spatial resolution estimates of key variables and indicators are outputs that will allow the...

  4. Statistical analysis of medical data using SAS

    CERN Document Server

    Der, Geoff

    2005-01-01

    An Introduction to SASDescribing and Summarizing DataBasic InferenceScatterplots Correlation: Simple Regression and SmoothingAnalysis of Variance and CovarianceMultiple RegressionLogistic RegressionThe Generalized Linear ModelGeneralized Additive ModelsNonlinear Regression ModelsThe Analysis of Longitudinal Data IThe Analysis of Longitudinal Data II: Models for Normal Response VariablesThe Analysis of Longitudinal Data III: Non-Normal ResponseSurvival AnalysisAnalysis Multivariate Date: Principal Components and Cluster AnalysisReferences

  5. Use of a spatial scan statistic to identify clusters of births occurring outside Ghanaian health facilities for targeted intervention.

    Science.gov (United States)

    Bosomprah, Samuel; Dotse-Gborgbortsi, Winfred; Aboagye, Patrick; Matthews, Zoe

    2016-11-01

    To identify and evaluate clusters of births that occurred outside health facilities in Ghana for targeted intervention. A retrospective study was conducted using a convenience sample of live births registered in Ghanaian health facilities from January 1 to December 31, 2014. Data were extracted from the district health information system. A spatial scan statistic was used to investigate clusters of home births through a discrete Poisson probability model. Scanning with a circular spatial window was conducted only for clusters with high rates of such deliveries. The district was used as the geographic unit of analysis. The likelihood P value was estimated using Monte Carlo simulations. Ten statistically significant clusters with a high rate of home birth were identified. The relative risks ranged from 1.43 ("least likely" cluster; P=0.001) to 1.95 ("most likely" cluster; P=0.001). The relative risks of the top five "most likely" clusters ranged from 1.68 to 1.95; these clusters were located in Ashanti, Brong Ahafo, and the Western, Eastern, and Greater regions of Accra. Health facility records, geospatial techniques, and geographic information systems provided locally relevant information to assist policy makers in delivering targeted interventions to small geographic areas. Copyright © 2016 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Developing a spatial-statistical model and map of historical malaria prevalence in Botswana using a staged variable selection procedure

    Directory of Open Access Journals (Sweden)

    Mabaso Musawenkosi LH

    2007-09-01

    Full Text Available Abstract Background Several malaria risk maps have been developed in recent years, many from the prevalence of infection data collated by the MARA (Mapping Malaria Risk in Africa project, and using various environmental data sets as predictors. Variable selection is a major obstacle due to analytical problems caused by over-fitting, confounding and non-independence in the data. Testing and comparing every combination of explanatory variables in a Bayesian spatial framework remains unfeasible for most researchers. The aim of this study was to develop a malaria risk map using a systematic and practicable variable selection process for spatial analysis and mapping of historical malaria risk in Botswana. Results Of 50 potential explanatory variables from eight environmental data themes, 42 were significantly associated with malaria prevalence in univariate logistic regression and were ranked by the Akaike Information Criterion. Those correlated with higher-ranking relatives of the same environmental theme, were temporarily excluded. The remaining 14 candidates were ranked by selection frequency after running automated step-wise selection procedures on 1000 bootstrap samples drawn from the data. A non-spatial multiple-variable model was developed through step-wise inclusion in order of selection frequency. Previously excluded variables were then re-evaluated for inclusion, using further step-wise bootstrap procedures, resulting in the exclusion of another variable. Finally a Bayesian geo-statistical model using Markov Chain Monte Carlo simulation was fitted to the data, resulting in a final model of three predictor variables, namely summer rainfall, mean annual temperature and altitude. Each was independently and significantly associated with malaria prevalence after allowing for spatial correlation. This model was used to predict malaria prevalence at unobserved locations, producing a smooth risk map for the whole country. Conclusion We have

  7. A new methodology of spatial cross-correlation analysis.

    Science.gov (United States)

    Chen, Yanguang

    2015-01-01

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran's index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson's correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China's urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes.

  8. A New Methodology of Spatial Cross-Correlation Analysis

    Science.gov (United States)

    Chen, Yanguang

    2015-01-01

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran’s index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson’s correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China’s urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes. PMID:25993120

  9. Displaying R spatial statistics on Google dynamic maps with web applications created by Rwui

    Science.gov (United States)

    2012-01-01

    Background The R project includes a large variety of packages designed for spatial statistics. Google dynamic maps provide web based access to global maps and satellite imagery. We describe a method for displaying directly the spatial output from an R script on to a Google dynamic map. Methods This is achieved by creating a Java based web application which runs the R script and then displays the results on the dynamic map. In order to make this method easy to implement by those unfamiliar with programming Java based web applications, we have added the method to the options available in the R Web User Interface (Rwui) application. Rwui is an established web application for creating web applications for running R scripts. A feature of Rwui is that all the code for the web application being created is generated automatically so that someone with no knowledge of web programming can make a fully functional web application for running an R script in a matter of minutes. Results Rwui can now be used to create web applications that will display the results from an R script on a Google dynamic map. Results may be displayed as discrete markers and/or as continuous overlays. In addition, users of the web application may select regions of interest on the dynamic map with mouse clicks and the coordinates of the region of interest will automatically be made available for use by the R script. Conclusions This method of displaying R output on dynamic maps is designed to be of use in a number of areas. Firstly it allows statisticians, working in R and developing methods in spatial statistics, to easily visualise the results of applying their methods to real world data. Secondly, it allows researchers who are using R to study health geographics data, to display their results directly onto dynamic maps. Thirdly, by creating a web application for running an R script, a statistician can enable users entirely unfamiliar with R to run R coded statistical analyses of health geographics

  10. Fundamentals of statistical experimental design and analysis

    CERN Document Server

    Easterling, Robert G

    2015-01-01

    Professionals in all areas - business; government; the physical, life, and social sciences; engineering; medicine, etc. - benefit from using statistical experimental design to better understand their worlds and then use that understanding to improve the products, processes, and programs they are responsible for. This book aims to provide the practitioners of tomorrow with a memorable, easy to read, engaging guide to statistics and experimental design. This book uses examples, drawn from a variety of established texts, and embeds them in a business or scientific context, seasoned with a dash of humor, to emphasize the issues and ideas that led to the experiment and the what-do-we-do-next? steps after the experiment. Graphical data displays are emphasized as means of discovery and communication and formulas are minimized, with a focus on interpreting the results that software produce. The role of subject-matter knowledge, and passion, is also illustrated. The examples do not require specialized knowledge, and t...

  11. Common misconceptions about data analysis and statistics.

    Science.gov (United States)

    Motulsky, Harvey J

    2014-11-01

    Ideally, any experienced investigator with the right tools should be able to reproduce a finding published in a peer-reviewed biomedical science journal. In fact, the reproducibility of a large percentage of published findings has been questioned. Undoubtedly, there are many reasons for this, but one reason maybe that investigators fool themselves due to a poor understanding of statistical concepts. In particular, investigators often make these mistakes: 1. P-Hacking. This is when you reanalyze a data set in many different ways, or perhaps reanalyze with additional replicates, until you get the result you want. 2. Overemphasis on P values rather than on the actual size of the observed effect. 3. Overuse of statistical hypothesis testing, and being seduced by the word "significant". 4. Overreliance on standard errors, which are often misunderstood.

  12. Common misconceptions about data analysis and statistics.

    Science.gov (United States)

    Motulsky, Harvey J

    2015-02-01

    Ideally, any experienced investigator with the right tools should be able to reproduce a finding published in a peer-reviewed biomedical science journal. In fact, the reproducibility of a large percentage of published findings has been questioned. Undoubtedly, there are many reasons for this, but one reason may be that investigators fool themselves due to a poor understanding of statistical concepts. In particular, investigators often make these mistakes: (1) P-Hacking. This is when you reanalyze a data set in many different ways, or perhaps reanalyze with additional replicates, until you get the result you want. (2) Overemphasis on P values rather than on the actual size of the observed effect. (3) Overuse of statistical hypothesis testing, and being seduced by the word "significant". (4) Overreliance on standard errors, which are often misunderstood.

  13. Statistical analysis of radioactivity in the environment

    International Nuclear Information System (INIS)

    Barnes, M.G.; Giacomini, J.J.

    1980-05-01

    The pattern of radioactivity in surface soils of Area 5 of the Nevada Test Site is analyzed statistically by means of kriging. The 1962 event code-named Smallboy effected the greatest proportion of the area sampled, but some of the area was also affected by a number of other events. The data for this study were collected on a regular grid to take advantage of the efficiency of grid sampling

  14. Data analysis for radiological characterisation: Geostatistical and statistical complementarity

    International Nuclear Information System (INIS)

    Desnoyers, Yvon; Dubot, Didier

    2012-01-01

    Radiological characterisation may cover a large range of evaluation objectives during a decommissioning and dismantling (D and D) project: removal of doubt, delineation of contaminated materials, monitoring of the decontamination work and final survey. At each stage, collecting relevant data to be able to draw the conclusions needed is quite a big challenge. In particular two radiological characterisation stages require an advanced sampling process and data analysis, namely the initial categorization and optimisation of the materials to be removed and the final survey to demonstrate compliance with clearance levels. On the one hand the latter is widely used and well developed in national guides and norms, using random sampling designs and statistical data analysis. On the other hand a more complex evaluation methodology has to be implemented for the initial radiological characterisation, both for sampling design and for data analysis. The geostatistical framework is an efficient way to satisfy the radiological characterisation requirements providing a sound decision-making approach for the decommissioning and dismantling of nuclear premises. The relevance of the geostatistical methodology relies on the presence of a spatial continuity for radiological contamination. Thus geo-statistics provides reliable methods for activity estimation, uncertainty quantification and risk analysis, leading to a sound classification of radiological waste (surfaces and volumes). This way, the radiological characterization of contaminated premises can be divided into three steps. First, the most exhaustive facility analysis provides historical and qualitative information. Then, a systematic (exhaustive or not) surface survey of the contamination is implemented on a regular grid. Finally, in order to assess activity levels and contamination depths, destructive samples are collected at several locations within the premises (based on the surface survey results) and analysed. Combined with

  15. Critical analysis of adsorption data statistically

    Science.gov (United States)

    Kaushal, Achla; Singh, S. K.

    2017-10-01

    Experimental data can be presented, computed, and critically analysed in a different way using statistics. A variety of statistical tests are used to make decisions about the significance and validity of the experimental data. In the present study, adsorption was carried out to remove zinc ions from contaminated aqueous solution using mango leaf powder. The experimental data was analysed statistically by hypothesis testing applying t test, paired t test and Chi-square test to (a) test the optimum value of the process pH, (b) verify the success of experiment and (c) study the effect of adsorbent dose in zinc ion removal from aqueous solutions. Comparison of calculated and tabulated values of t and χ 2 showed the results in favour of the data collected from the experiment and this has been shown on probability charts. K value for Langmuir isotherm was 0.8582 and m value for Freundlich adsorption isotherm obtained was 0.725, both are mango leaf powder.

  16. Common pitfalls in statistical analysis: "P" values, statistical significance and confidence intervals

    Directory of Open Access Journals (Sweden)

    Priya Ranganathan

    2015-01-01

    Full Text Available In the second part of a series on pitfalls in statistical analysis, we look at various ways in which a statistically significant study result can be expressed. We debunk some of the myths regarding the ′P′ value, explain the importance of ′confidence intervals′ and clarify the importance of including both values in a paper

  17. Common pitfalls in statistical analysis: “P” values, statistical significance and confidence intervals

    Science.gov (United States)

    Ranganathan, Priya; Pramesh, C. S.; Buyse, Marc

    2015-01-01

    In the second part of a series on pitfalls in statistical analysis, we look at various ways in which a statistically significant study result can be expressed. We debunk some of the myths regarding the ‘P’ value, explain the importance of ‘confidence intervals’ and clarify the importance of including both values in a paper PMID:25878958

  18. Statistical analysis and interpretation of prenatal diagnostic imaging studies, Part 2: descriptive and inferential statistical methods.

    Science.gov (United States)

    Tuuli, Methodius G; Odibo, Anthony O

    2011-08-01

    The objective of this article is to discuss the rationale for common statistical tests used for the analysis and interpretation of prenatal diagnostic imaging studies. Examples from the literature are used to illustrate descriptive and inferential statistics. The uses and limitations of linear and logistic regression analyses are discussed in detail.

  19. Statistical analysis of silo wall pressures

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Berntsen, Kasper Nikolaj

    1998-01-01

    Previously published silo wall pressure measurements during plug flow of barley in alarge concrete silo are re-analysed under the hypothesis that the wall pressures are gamma-distributed.The fits of the gamma distribution type to the local pressure data from each measuring cell are satisfactory.......However, the estimated parameters of the gamma distributions turn out to be significantly inhomogeneous overthe silo wall surface. This inhomogeneity is attributed to the geometrical imperfections of the silo wall.Motivated by the engineering importance of the problem a mathematical model for constructing astochastic...... gamma-type continuous pressure field is given. The model obeys the necessary equilibrium conditionsof the wall pressure field and reflects the spatial correlation properties as estimated from simultaneouslymeasured pressures at different locations along a horizontal perimeter....

  20. Statistical learning methods in high-energy and astrophysics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, J. [Forschungszentrum Juelich GmbH, Zentrallabor fuer Elektronik, 52425 Juelich (Germany) and Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)]. E-mail: zimmerm@mppmu.mpg.de; Kiesling, C. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)

    2004-11-21

    We discuss several popular statistical learning methods used in high-energy- and astro-physics analysis. After a short motivation for statistical learning we present the most popular algorithms and discuss several examples from current research in particle- and astro-physics. The statistical learning methods are compared with each other and with standard methods for the respective application.

  1. Statistical learning methods in high-energy and astrophysics analysis

    International Nuclear Information System (INIS)

    Zimmermann, J.; Kiesling, C.

    2004-01-01

    We discuss several popular statistical learning methods used in high-energy- and astro-physics analysis. After a short motivation for statistical learning we present the most popular algorithms and discuss several examples from current research in particle- and astro-physics. The statistical learning methods are compared with each other and with standard methods for the respective application

  2. Statistical analysis of partial reduced width distributions

    International Nuclear Information System (INIS)

    Tran Quoc Thuong.

    1973-01-01

    The aim of this study was to develop rigorous methods for analysing experimental event distributions according to a law in chi 2 and to check if the number of degrees of freedom ν is compatible with the value 1 for the reduced neutron width distribution. Two statistical methods were used (the maximum-likelihood method and the method of moments); it was shown, in a few particular cases, that ν is compatible with 1. The difference between ν and 1, if it exists, should not exceed 3%. These results confirm the validity of the compound nucleus model [fr

  3. Statistical analysis of random duration times

    International Nuclear Information System (INIS)

    Engelhardt, M.E.

    1996-04-01

    This report presents basic statistical methods for analyzing data obtained by observing random time durations. It gives nonparametric estimates of the cumulative distribution function, reliability function and cumulative hazard function. These results can be applied with either complete or censored data. Several models which are commonly used with time data are discussed, and methods for model checking and goodness-of-fit tests are discussed. Maximum likelihood estimates and confidence limits are given for the various models considered. Some results for situations where repeated durations such as repairable systems are also discussed

  4. Statistical analysis of dragline monitoring data

    Energy Technology Data Exchange (ETDEWEB)

    Mirabediny, H.; Baafi, E.Y. [University of Tehran, Tehran (Iran)

    1998-07-01

    Dragline monitoring systems are normally the best tool used to collect data on the machine performance and operational parameters of a dragline operation. This paper discusses results of a time study using data from a dragline monitoring system captured over a four month period. Statistical summaries of the time study in terms of average values, standard deviation and frequency distributions showed that the mode of operation and the geological conditions have a significant influence on the dragline performance parameters. 6 refs., 14 figs., 3 tabs.

  5. Penultimate modeling of spatial extremes: statistical inference for max-infinitely divisible processes

    KAUST Repository

    Huser, Raphaël

    2018-01-09

    Extreme-value theory for stochastic processes has motivated the statistical use of max-stable models for spatial extremes. However, fitting such asymptotic models to maxima observed over finite blocks is problematic when the asymptotic stability of the dependence does not prevail in finite samples. This issue is particularly serious when data are asymptotically independent, such that the dependence strength weakens and eventually vanishes as events become more extreme. We here aim to provide flexible sub-asymptotic models for spatially indexed block maxima, which more realistically account for discrepancies between data and asymptotic theory. We develop models pertaining to the wider class of max-infinitely divisible processes, extending the class of max-stable processes while retaining dependence properties that are natural for maxima: max-id models are positively associated, and they yield a self-consistent family of models for block maxima defined over any time unit. We propose two parametric construction principles for max-id models, emphasizing a point process-based generalized spectral representation, that allows for asymptotic independence while keeping the max-stable extremal-$t$ model as a special case. Parameter estimation is efficiently performed by pairwise likelihood, and we illustrate our new modeling framework with an application to Dutch wind gust maxima calculated over different time units.

  6. Comparing Visual and Statistical Analysis of Multiple Baseline Design Graphs.

    Science.gov (United States)

    Wolfe, Katie; Dickenson, Tammiee S; Miller, Bridget; McGrath, Kathleen V

    2018-04-01

    A growing number of statistical analyses are being developed for single-case research. One important factor in evaluating these methods is the extent to which each corresponds to visual analysis. Few studies have compared statistical and visual analysis, and information about more recently developed statistics is scarce. Therefore, our purpose was to evaluate the agreement between visual analysis and four statistical analyses: improvement rate difference (IRD); Tau-U; Hedges, Pustejovsky, Shadish (HPS) effect size; and between-case standardized mean difference (BC-SMD). Results indicate that IRD and BC-SMD had the strongest overall agreement with visual analysis. Although Tau-U had strong agreement with visual analysis on raw values, it had poorer agreement when those values were dichotomized to represent the presence or absence of a functional relation. Overall, visual analysis appeared to be more conservative than statistical analysis, but further research is needed to evaluate the nature of these disagreements.

  7. A statistical method for draft tube pressure pulsation analysis

    International Nuclear Information System (INIS)

    Doerfler, P K; Ruchonnet, N

    2012-01-01

    Draft tube pressure pulsation (DTPP) in Francis turbines is composed of various components originating from different physical phenomena. These components may be separated because they differ by their spatial relationships and by their propagation mechanism. The first step for such an analysis was to distinguish between so-called synchronous and asynchronous pulsations; only approximately periodic phenomena could be described in this manner. However, less regular pulsations are always present, and these become important when turbines have to operate in the far off-design range, in particular at very low load. The statistical method described here permits to separate the stochastic (random) component from the two traditional 'regular' components. It works in connection with the standard technique of model testing with several pressure signals measured in draft tube cone. The difference between the individual signals and the averaged pressure signal, together with the coherence between the individual pressure signals is used for analysis. An example reveals that a generalized, non-periodic version of the asynchronous pulsation is important at low load.

  8. CONFIDENCE LEVELS AND/VS. STATISTICAL HYPOTHESIS TESTING IN STATISTICAL ANALYSIS. CASE STUDY

    Directory of Open Access Journals (Sweden)

    ILEANA BRUDIU

    2009-05-01

    Full Text Available Estimated parameters with confidence intervals and testing statistical assumptions used in statistical analysis to obtain conclusions on research from a sample extracted from the population. Paper to the case study presented aims to highlight the importance of volume of sample taken in the study and how this reflects on the results obtained when using confidence intervals and testing for pregnant. If statistical testing hypotheses not only give an answer "yes" or "no" to some questions of statistical estimation using statistical confidence intervals provides more information than a test statistic, show high degree of uncertainty arising from small samples and findings build in the "marginally significant" or "almost significant (p very close to 0.05.

  9. Statistical analysis of long term spatial and temporal trends of ...

    Indian Academy of Sciences (India)

    Water Resources Systems Division, National Institute of Hydrology, Roorkee 247 667, India. ∗. Corresponding author. e-mail: ..... adopting established meteorological techniques like ...... a decision support tool for the assessment of regional.

  10. Geographic analysis of forest health indicators using spatial scan statistics

    Science.gov (United States)

    John W. Coulston; Kurt H. Riitters

    2003-01-01

    Forest health analysts seek to define the location, extent, and magnitude of changes in forest ecosystems, to explain the observed changes when possible, and to draw attention to the unexplained changes for further investigation. The data come from a variety of sources including satellite images, field plot measurements, and low-altitude aerial surveys. Indicators...

  11. Tucker Tensor analysis of Matern functions in spatial statistics

    KAUST Repository

    Litvinenko, Alexander; Keyes, David E.; Khoromskaia, Venera; Khoromskij, Boris N.; Matthies, Hermann G.

    2018-01-01

    in a low-rank tensor format. We apply the Tucker and canonical tensor decompositions to a family of Matern- and Slater-type functions with varying parameters and demonstrate numerically that their approximations exhibit exponentially fast convergence

  12. Statistical analysis of long term spatial and temporal trends of ...

    Indian Academy of Sciences (India)

    (2011–2099) in the middle catchment of Sutlej river basin, India. The future time series of ... to the Purvanchal in east and is arcuate in shape. It covers a vast area of ... of climate change because of the fact that perturba- tion occurring due to ...

  13. Geospatial analysis platform: Supporting strategic spatial analysis and planning

    CSIR Research Space (South Africa)

    Naude, A

    2008-11-01

    Full Text Available Whilst there have been rapid advances in satellite imagery and related fine resolution mapping and web-based interfaces (e.g. Google Earth), the development of capabilities for strategic spatial analysis and planning support has lagged behind...

  14. Statistical models for competing risk analysis

    International Nuclear Information System (INIS)

    Sather, H.N.

    1976-08-01

    Research results on three new models for potential applications in competing risks problems. One section covers the basic statistical relationships underlying the subsequent competing risks model development. Another discusses the problem of comparing cause-specific risk structure by competing risks theory in two homogeneous populations, P1 and P2. Weibull models which allow more generality than the Berkson and Elveback models are studied for the effect of time on the hazard function. The use of concomitant information for modeling single-risk survival is extended to the multiple failure mode domain of competing risks. The model used to illustrate the use of this methodology is a life table model which has constant hazards within pre-designated intervals of the time scale. Two parametric models for bivariate dependent competing risks, which provide interesting alternatives, are proposed and examined

  15. Statistical analysis of the ASME KIc database

    International Nuclear Information System (INIS)

    Sokolov, M.A.

    1998-01-01

    The American Society of Mechanical Engineers (ASME) K Ic curve is a function of test temperature (T) normalized to a reference nil-ductility temperature, RT NDT , namely, T-RT NDT . It was constructed as the lower boundary to the available K Ic database. Being a lower bound to the unique but limited database, the ASME K Ic curve concept does not discuss probability matters. However, a continuing evolution of fracture mechanics advances has led to employment of the Weibull distribution function to model the scatter of fracture toughness values in the transition range. The Weibull statistic/master curve approach was applied to analyze the current ASME K Ic database. It is shown that the Weibull distribution function models the scatter in K Ic data from different materials very well, while the temperature dependence is described by the master curve. Probabilistic-based tolerance-bound curves are suggested to describe lower-bound K Ic values

  16. Statistical analysis of earthquake ground motion parameters

    International Nuclear Information System (INIS)

    1979-12-01

    Several earthquake ground response parameters that define the strength, duration, and frequency content of the motions are investigated using regression analyses techniques; these techniques incorporate statistical significance testing to establish the terms in the regression equations. The parameters investigated are the peak acceleration, velocity, and displacement; Arias intensity; spectrum intensity; bracketed duration; Trifunac-Brady duration; and response spectral amplitudes. The study provides insight into how these parameters are affected by magnitude, epicentral distance, local site conditions, direction of motion (i.e., whether horizontal or vertical), and earthquake event type. The results are presented in a form so as to facilitate their use in the development of seismic input criteria for nuclear plants and other major structures. They are also compared with results from prior investigations that have been used in the past in the criteria development for such facilities

  17. A Spatial Analysis of Tourism Activity in Romania

    Directory of Open Access Journals (Sweden)

    Daniela Luminita Constantin

    2018-02-01

    Full Text Available Location is a key concept in tourism sector analysis, given the dependence of this activity on the natural, built, cultural and social characteristics of a certain territory. As a result, the tourist zoning is an important instrument for delimiting tourist areas in accordance with multiple criteria, so as to lay the foundations for finding the most suitable solutions of turning to good account the resources in this field. The modern approaches proposed in this paper use a series of analytical tools that combine GIS and spatial agglomeration analysis based techniques. They can be also employed in order to examine and explain the differences between tourist zones (and sub-zones in terms of economic and social results and thus to suggest realistic ways to improve the efficiency and effectiveness of tourist activities in various geographical areas. In the described context this paper proposes an interdisciplinary perspective (spatial statistics and Geographical Information Systems for analysing the tourism activity in Romania, mainly aiming to identify the agglomerations of companies acting in this industry and assess their performance and contribution to the economic development of the corresponding regions. It also intends to contribute to a better understanding of the way in which tourism related business activities develop, in order to enhance appropriate support networks. Territorial and spatial statistics, as well as GIS based analyses are applied, using data about all companies acting in tourism industry in Romania provided by the National Authority for Tourism as well as data from the Environmental Systems Research Institute (ESRI.

  18. Statistical power analysis for the behavioral sciences

    National Research Council Canada - National Science Library

    Cohen, Jacob

    1988-01-01

    .... A chapter has been added for power analysis in set correlation and multivariate methods (Chapter 10). Set correlation is a realization of the multivariate general linear model, and incorporates the standard multivariate methods...

  19. Statistical power analysis for the behavioral sciences

    National Research Council Canada - National Science Library

    Cohen, Jacob

    1988-01-01

    ... offers a unifying framework and some new data-analytic possibilities. 2. A new chapter (Chapter 11) considers some general topics in power analysis in more integrted form than is possible in the earlier...

  20. Statistical methods for categorical data analysis

    CERN Document Server

    Powers, Daniel

    2008-01-01

    This book provides a comprehensive introduction to methods and models for categorical data analysis and their applications in social science research. Companion website also available, at https://webspace.utexas.edu/dpowers/www/

  1. Consumer Loyalty and Loyalty Programs: a topographic examination of the scientific literature using bibliometrics, spatial statistics and network analyses

    Directory of Open Access Journals (Sweden)

    Viviane Moura Rocha

    2015-04-01

    Full Text Available This paper presents a topographic analysis of the fields of consumer loyalty and loyalty programs, vastly studied in the last decades and still relevant in the marketing literature. After the identification of 250 scientific papers that were published in the last ten years in indexed journals, a subset of 76 were chosen and their 3223 references were extracted. The journals in which these papers were published, their key words, abstracts, authors, institutions of origin and citation patterns were identified and analyzed using bibliometrics, spatial statistics techniques and network analyses. The results allow the identification of the central components of the field, as well as its main authors, journals, institutions and countries that intermediate the diffusion of knowledge, which contributes to the understanding of the constitution of the field by researchers and students.

  2. Spatial scan statistics to assess sampling strategy of antimicrobial resistance monitoring programme

    DEFF Research Database (Denmark)

    Vieira, Antonio; Houe, Hans; Wegener, Henrik Caspar

    2009-01-01

    Pie collection and analysis of data on antimicrobial resistance in human and animal Populations are important for establishing a baseline of the occurrence of resistance and for determining trends over time. In animals, targeted monitoring with a stratified sampling plan is normally used. However...... sampled by the Danish Integrated Antimicrobial Resistance Monitoring and Research Programme (DANMAP), by identifying spatial Clusters of samples and detecting areas with significantly high or low sampling rates. These analyses were performed for each year and for the total 5-year study period for all...... by an antimicrobial monitoring program....

  3. Statistical Modelling of Wind Proles - Data Analysis and Modelling

    DEFF Research Database (Denmark)

    Jónsson, Tryggvi; Pinson, Pierre

    The aim of the analysis presented in this document is to investigate whether statistical models can be used to make very short-term predictions of wind profiles.......The aim of the analysis presented in this document is to investigate whether statistical models can be used to make very short-term predictions of wind profiles....

  4. Sensitivity analysis of ranked data: from order statistics to quantiles

    NARCIS (Netherlands)

    Heidergott, B.F.; Volk-Makarewicz, W.

    2015-01-01

    In this paper we provide the mathematical theory for sensitivity analysis of order statistics of continuous random variables, where the sensitivity is with respect to a distributional parameter. Sensitivity analysis of order statistics over a finite number of observations is discussed before

  5. Statistics

    CERN Document Server

    Hayslett, H T

    1991-01-01

    Statistics covers the basic principles of Statistics. The book starts by tackling the importance and the two kinds of statistics; the presentation of sample data; the definition, illustration and explanation of several measures of location; and the measures of variation. The text then discusses elementary probability, the normal distribution and the normal approximation to the binomial. Testing of statistical hypotheses and tests of hypotheses about the theoretical proportion of successes in a binomial population and about the theoretical mean of a normal population are explained. The text the

  6. Statistical analysis of disruptions in JET

    International Nuclear Information System (INIS)

    De Vries, P.C.; Johnson, M.F.; Segui, I.

    2009-01-01

    The disruption rate (the percentage of discharges that disrupt) in JET was found to drop steadily over the years. Recent campaigns (2005-2007) show a yearly averaged disruption rate of only 6% while from 1991 to 1995 this was often higher than 20%. Besides the disruption rate, the so-called disruptivity, or the likelihood of a disruption depending on the plasma parameters, has been determined. The disruptivity of plasmas was found to be significantly higher close to the three main operational boundaries for tokamaks; the low-q, high density and β-limit. The frequency at which JET operated close to the density-limit increased six fold over the last decade; however, only a small reduction in disruptivity was found. Similarly the disruptivity close to the low-q and β-limit was found to be unchanged. The most significant reduction in disruptivity was found far from the operational boundaries, leading to the conclusion that the improved disruption rate is due to a better technical capability of operating JET, instead of safer operations close to the physics limits. The statistics showed that a simple protection system was able to mitigate the forces of a large fraction of disruptions, although it has proved to be at present more difficult to ameliorate the heat flux.

  7. The Statistical Analysis of Failure Time Data

    CERN Document Server

    Kalbfleisch, John D

    2011-01-01

    Contains additional discussion and examples on left truncation as well as material on more general censoring and truncation patterns.Introduces the martingale and counting process formulation swil lbe in a new chapter.Develops multivariate failure time data in a separate chapter and extends the material on Markov and semi Markov formulations.Presents new examples and applications of data analysis.

  8. Metal contamination in campus dust of Xi'an, China: A study based on multivariate statistics and spatial distribution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hao [School of Tourism and Environment, Shaanxi Normal University, Xi' an 710062 (China); Lu, Xinwei, E-mail: luxinwei@snnu.edu.cn [School of Tourism and Environment, Shaanxi Normal University, Xi' an 710062 (China); Li, Loretta Y., E-mail: lli@civil.ubc.ca [Department of Civil Engineering, University of British Columbia, Vancouver V6T 1Z4 (Canada); Gao, Tianning; Chang, Yuyu [School of Tourism and Environment, Shaanxi Normal University, Xi' an 710062 (China)

    2014-06-01

    The concentrations of As, Ba, Co, Cr, Cu, Mn, Ni, Pb, V and Zn in campus dust from kindergartens, elementary schools, middle schools and universities of Xi'an, China were determined by X-ray fluorescence spectrometry. Correlation coefficient analysis, principal component analysis (PCA) and cluster analysis (CA) were used to analyze the data and to identify possible sources of these metals in the dust. The spatial distributions of metals in urban dust of Xi'an were analyzed based on the metal concentrations in campus dusts using the geostatistics method. The results indicate that dust samples from campuses have elevated metal concentrations, especially for Pb, Zn, Co, Cu, Cr and Ba, with the mean values of 7.1, 5.6, 3.7, 2.9, 2.5 and 1.9 times the background values for Shaanxi soil, respectively. The enrichment factor results indicate that Mn, Ni, V, As and Ba in the campus dust were deficiently to minimally enriched, mainly affected by nature and partly by anthropogenic sources, while Co, Cr, Cu, Pb and Zn in the campus dust and especially Pb and Zn were mostly affected by human activities. As and Cu, Mn and Ni, Ba and V, and Pb and Zn had similar distribution patterns. The southwest high-tech industrial area and south commercial and residential areas have relatively high levels of most metals. Three main sources were identified based on correlation coefficient analysis, PCA, CA, as well as spatial distribution characteristics. As, Ni, Cu, Mn, Pb, Zn and Cr have mixed sources — nature, traffic, as well as fossil fuel combustion and weathering of materials. Ba and V are mainly derived from nature, but partly also from industrial emissions, as well as construction sources, while Co principally originates from construction. - Highlights: • Metal content in dust from schools was determined by XRF. • Spatial distribution of metals in urban dust was focused on campus samples. • Multivariate statistic and spatial distribution were used to identify metal

  9. Metal contamination in campus dust of Xi'an, China: A study based on multivariate statistics and spatial distribution

    International Nuclear Information System (INIS)

    Chen, Hao; Lu, Xinwei; Li, Loretta Y.; Gao, Tianning; Chang, Yuyu

    2014-01-01

    The concentrations of As, Ba, Co, Cr, Cu, Mn, Ni, Pb, V and Zn in campus dust from kindergartens, elementary schools, middle schools and universities of Xi'an, China were determined by X-ray fluorescence spectrometry. Correlation coefficient analysis, principal component analysis (PCA) and cluster analysis (CA) were used to analyze the data and to identify possible sources of these metals in the dust. The spatial distributions of metals in urban dust of Xi'an were analyzed based on the metal concentrations in campus dusts using the geostatistics method. The results indicate that dust samples from campuses have elevated metal concentrations, especially for Pb, Zn, Co, Cu, Cr and Ba, with the mean values of 7.1, 5.6, 3.7, 2.9, 2.5 and 1.9 times the background values for Shaanxi soil, respectively. The enrichment factor results indicate that Mn, Ni, V, As and Ba in the campus dust were deficiently to minimally enriched, mainly affected by nature and partly by anthropogenic sources, while Co, Cr, Cu, Pb and Zn in the campus dust and especially Pb and Zn were mostly affected by human activities. As and Cu, Mn and Ni, Ba and V, and Pb and Zn had similar distribution patterns. The southwest high-tech industrial area and south commercial and residential areas have relatively high levels of most metals. Three main sources were identified based on correlation coefficient analysis, PCA, CA, as well as spatial distribution characteristics. As, Ni, Cu, Mn, Pb, Zn and Cr have mixed sources — nature, traffic, as well as fossil fuel combustion and weathering of materials. Ba and V are mainly derived from nature, but partly also from industrial emissions, as well as construction sources, while Co principally originates from construction. - Highlights: • Metal content in dust from schools was determined by XRF. • Spatial distribution of metals in urban dust was focused on campus samples. • Multivariate statistic and spatial distribution were used to identify metal sources.

  10. Participative Spatial Scenario Analysis for Alpine Ecosystems

    Science.gov (United States)

    Kohler, Marina; Stotten, Rike; Steinbacher, Melanie; Leitinger, Georg; Tasser, Erich; Schirpke, Uta; Tappeiner, Ulrike; Schermer, Markus

    2017-10-01

    Land use and land cover patterns are shaped by the interplay of human and ecological processes. Thus, heterogeneous cultural landscapes have developed, delivering multiple ecosystem services. To guarantee human well-being, the development of land use types has to be evaluated. Scenario development and land use and land cover change models are well-known tools for assessing future landscape changes. However, as social and ecological systems are inextricably linked, land use-related management decisions are difficult to identify. The concept of social-ecological resilience can thereby provide a framework for understanding complex interlinkages on multiple scales and from different disciplines. In our study site (Stubai Valley, Tyrol/Austria), we applied a sequence of steps including the characterization of the social-ecological system and identification of key drivers that influence farmers' management decisions. We then developed three scenarios, i.e., "trend", "positive" and "negative" future development of farming conditions and assessed respective future land use changes. Results indicate that within the "trend" and "positive" scenarios pluri-activity (various sources of income) prevents considerable changes in land use and land cover and promotes the resilience of farming systems. Contrarily, reductions in subsidies and changes in consumer behavior are the most important key drivers in the negative scenario and lead to distinct abandonment of grassland, predominantly in the sub-alpine zone of our study site. Our conceptual approach, i.e., the combination of social and ecological methods and the integration of local stakeholders' knowledge into spatial scenario analysis, resulted in highly detailed and spatially explicit results that can provide a basis for further community development recommendations.

  11. An analysis of UK wind farm statistics

    International Nuclear Information System (INIS)

    Milborrow, D.J.

    1995-01-01

    An analysis of key data for 22 completed wind projects shows 134 MW of plant cost Pound 152 million, giving an average cost of Pound 1136/kW. The energy generation potential of these windfarms is around 360 GWh, derived from sites with windspeeds between 6.2 and 8.8 m/s. Relationships between wind speed, energy production and cost were examined and it was found that costs increased with wind speed, due to the difficulties of access in hilly regions. It also appears that project costs fell with time and wind energy prices have fallen much faster than electricity prices. (Author)

  12. A power comparison of generalized additive models and the spatial scan statistic in a case-control setting

    Directory of Open Access Journals (Sweden)

    Ozonoff Al

    2010-07-01

    Full Text Available Abstract Background A common, important problem in spatial epidemiology is measuring and identifying variation in disease risk across a study region. In application of statistical methods, the problem has two parts. First, spatial variation in risk must be detected across the study region and, second, areas of increased or decreased risk must be correctly identified. The location of such areas may give clues to environmental sources of exposure and disease etiology. One statistical method applicable in spatial epidemiologic settings is a generalized additive model (GAM which can be applied with a bivariate LOESS smoother to account for geographic location as a possible predictor of disease status. A natural hypothesis when applying this method is whether residential location of subjects is associated with the outcome, i.e. is the smoothing term necessary? Permutation tests are a reasonable hypothesis testing method and provide adequate power under a simple alternative hypothesis. These tests have yet to be compared to other spatial statistics. Results This research uses simulated point data generated under three alternative hypotheses to evaluate the properties of the permutation methods and compare them to the popular spatial scan statistic in a case-control setting. Case 1 was a single circular cluster centered in a circular study region. The spatial scan statistic had the highest power though the GAM method estimates did not fall far behind. Case 2 was a single point source located at the center of a circular cluster and Case 3 was a line source at the center of the horizontal axis of a square study region. Each had linearly decreasing logodds with distance from the point. The GAM methods outperformed the scan statistic in Cases 2 and 3. Comparing sensitivity, measured as the proportion of the exposure source correctly identified as high or low risk, the GAM methods outperformed the scan statistic in all three Cases. Conclusions The GAM

  13. A power comparison of generalized additive models and the spatial scan statistic in a case-control setting.

    Science.gov (United States)

    Young, Robin L; Weinberg, Janice; Vieira, Verónica; Ozonoff, Al; Webster, Thomas F

    2010-07-19

    A common, important problem in spatial epidemiology is measuring and identifying variation in disease risk across a study region. In application of statistical methods, the problem has two parts. First, spatial variation in risk must be detected across the study region and, second, areas of increased or decreased risk must be correctly identified. The location of such areas may give clues to environmental sources of exposure and disease etiology. One statistical method applicable in spatial epidemiologic settings is a generalized additive model (GAM) which can be applied with a bivariate LOESS smoother to account for geographic location as a possible predictor of disease status. A natural hypothesis when applying this method is whether residential location of subjects is associated with the outcome, i.e. is the smoothing term necessary? Permutation tests are a reasonable hypothesis testing method and provide adequate power under a simple alternative hypothesis. These tests have yet to be compared to other spatial statistics. This research uses simulated point data generated under three alternative hypotheses to evaluate the properties of the permutation methods and compare them to the popular spatial scan statistic in a case-control setting. Case 1 was a single circular cluster centered in a circular study region. The spatial scan statistic had the highest power though the GAM method estimates did not fall far behind. Case 2 was a single point source located at the center of a circular cluster and Case 3 was a line source at the center of the horizontal axis of a square study region. Each had linearly decreasing logodds with distance from the point. The GAM methods outperformed the scan statistic in Cases 2 and 3. Comparing sensitivity, measured as the proportion of the exposure source correctly identified as high or low risk, the GAM methods outperformed the scan statistic in all three Cases. The GAM permutation testing methods provide a regression

  14. Mathematical Analysis of Urban Spatial Networks

    CERN Document Server

    Blanchard, Philippe

    2009-01-01

    Cities can be considered to be among the largest and most complex artificial networks created by human beings. Due to the numerous and diverse human-driven activities, urban network topology and dynamics can differ quite substantially from that of natural networks and so call for an alternative method of analysis. The intent of the present monograph is to lay down the theoretical foundations for studying the topology of compact urban patterns, using methods from spectral graph theory and statistical physics. These methods are demonstrated as tools to investigate the structure of a number of real cities with widely differing properties: medieval German cities, the webs of city canals in Amsterdam and Venice, and a modern urban structure such as found in Manhattan. Last but not least, the book concludes by providing a brief overview of possible applications that will eventually lead to a useful body of knowledge for architects, urban planners and civil engineers.

  15. Statistics and scaling of turbulence in a spatially developing mixing layer at Reλ = 250

    KAUST Repository

    Attili, Antonio

    2012-03-21

    The turbulent flow originating from the interaction between two parallel streams with different velocities is studied by means of direct numerical simulation. Rather than the more common temporal evolving layer, a spatially evolving configuration, with perturbed laminar inlet conditions is considered. The streamwise evolution and the self-similar state of turbulence statistics are reported and compared to results available in the literature. The characteristics of the transitional region agree with those observed in other simulations and experiments of mixing layers originating from laminar inlets. The present results indicate that the transitional region depends strongly on the inlet flow. Conversely, the self-similar state of turbulent kinetic energy and dissipation agrees quantitatively with those in a temporal mixing layer developing from turbulent initial conditions [M. M. Rogers and R. D. Moser, “Direct simulation of a self-similar turbulent mixing layer,” Phys. Fluids6, 903 (1994)]. The statistical features of turbulence in the self-similar region have been analysed in terms of longitudinal velocity structure functions, and scaling exponents are estimated by applying the extended self-similarity concept. In the small scale range (60 < r/η < 250), the scaling exponents display the universal anomalous scaling observed in homogeneous isotropic turbulence. The hypothesis of isotropy recovery holds in the turbulent mixing layer despite the presence of strong shear and large-scale structures, independently of the means of turbulence generation. At larger scales (r/η > 400), the mean shear and large coherent structures result in a significant deviation from predictions based on homogeneous isotropic turbulence theory. In this second scaling range, the numerical values of the exponents agree quantitatively with those reported for a variety of other flows characterized by strong shear, such as boundary layers, as well as channel and wake flows.

  16. Statistics and scaling of turbulence in a spatially developing mixing layer at Reλ = 250

    KAUST Repository

    Attili, Antonio; Bisetti, Fabrizio

    2012-01-01

    The turbulent flow originating from the interaction between two parallel streams with different velocities is studied by means of direct numerical simulation. Rather than the more common temporal evolving layer, a spatially evolving configuration, with perturbed laminar inlet conditions is considered. The streamwise evolution and the self-similar state of turbulence statistics are reported and compared to results available in the literature. The characteristics of the transitional region agree with those observed in other simulations and experiments of mixing layers originating from laminar inlets. The present results indicate that the transitional region depends strongly on the inlet flow. Conversely, the self-similar state of turbulent kinetic energy and dissipation agrees quantitatively with those in a temporal mixing layer developing from turbulent initial conditions [M. M. Rogers and R. D. Moser, “Direct simulation of a self-similar turbulent mixing layer,” Phys. Fluids6, 903 (1994)]. The statistical features of turbulence in the self-similar region have been analysed in terms of longitudinal velocity structure functions, and scaling exponents are estimated by applying the extended self-similarity concept. In the small scale range (60 < r/η < 250), the scaling exponents display the universal anomalous scaling observed in homogeneous isotropic turbulence. The hypothesis of isotropy recovery holds in the turbulent mixing layer despite the presence of strong shear and large-scale structures, independently of the means of turbulence generation. At larger scales (r/η > 400), the mean shear and large coherent structures result in a significant deviation from predictions based on homogeneous isotropic turbulence theory. In this second scaling range, the numerical values of the exponents agree quantitatively with those reported for a variety of other flows characterized by strong shear, such as boundary layers, as well as channel and wake flows.

  17. A statistical analysis of UK financial networks

    Science.gov (United States)

    Chu, J.; Nadarajah, S.

    2017-04-01

    In recent years, with a growing interest in big or large datasets, there has been a rise in the application of large graphs and networks to financial big data. Much of this research has focused on the construction and analysis of the network structure of stock markets, based on the relationships between stock prices. Motivated by Boginski et al. (2005), who studied the characteristics of a network structure of the US stock market, we construct network graphs of the UK stock market using same method. We fit four distributions to the degree density of the vertices from these graphs, the Pareto I, Fréchet, lognormal, and generalised Pareto distributions, and assess the goodness of fit. Our results show that the degree density of the complements of the market graphs, constructed using a negative threshold value close to zero, can be fitted well with the Fréchet and lognormal distributions.

  18. UTOOLS: microcomputer software for spatial analysis and landscape visualization.

    Science.gov (United States)

    Alan A. Ager; Robert J. McGaughey

    1997-01-01

    UTOOLS is a collection of programs designed to integrate various spatial data in a way that allows versatile spatial analysis and visualization. The programs were designed for watershed-scale assessments in which a wide array of resource data must be integrated, analyzed, and interpreted. UTOOLS software combines raster, attribute, and vector data into "spatial...

  19. Spatial Econometric data analysis: moving beyond traditional models

    NARCIS (Netherlands)

    Florax, R.J.G.M.; Vlist, van der A.J.

    2003-01-01

    This article appraises recent advances in the spatial econometric literature. It serves as the introduction too collection of new papers on spatial econometric data analysis brought together in this special issue, dealing specifically with new extensions to the spatial econometric modeling

  20. Spatial analysis of NDVI readings with difference sampling density

    Science.gov (United States)

    Advanced remote sensing technologies provide research an innovative way of collecting spatial data for use in precision agriculture. Sensor information and spatial analysis together allow for a complete understanding of the spatial complexity of a field and its crop. The objective of the study was...

  1. Statistics

    Science.gov (United States)

    Links to sources of cancer-related statistics, including the Surveillance, Epidemiology and End Results (SEER) Program, SEER-Medicare datasets, cancer survivor prevalence data, and the Cancer Trends Progress Report.

  2. Comparative analysis of positive and negative attitudes toward statistics

    Science.gov (United States)

    Ghulami, Hassan Rahnaward; Ab Hamid, Mohd Rashid; Zakaria, Roslinazairimah

    2015-02-01

    Many statistics lecturers and statistics education researchers are interested to know the perception of their students' attitudes toward statistics during the statistics course. In statistics course, positive attitude toward statistics is a vital because it will be encourage students to get interested in the statistics course and in order to master the core content of the subject matters under study. Although, students who have negative attitudes toward statistics they will feel depressed especially in the given group assignment, at risk for failure, are often highly emotional, and could not move forward. Therefore, this study investigates the students' attitude towards learning statistics. Six latent constructs have been the measurement of students' attitudes toward learning statistic such as affect, cognitive competence, value, difficulty, interest, and effort. The questionnaire was adopted and adapted from the reliable and validate instrument of Survey of Attitudes towards Statistics (SATS). This study is conducted among engineering undergraduate engineering students in the university Malaysia Pahang (UMP). The respondents consist of students who were taking the applied statistics course from different faculties. From the analysis, it is found that the questionnaire is acceptable and the relationships among the constructs has been proposed and investigated. In this case, students show full effort to master the statistics course, feel statistics course enjoyable, have confidence that they have intellectual capacity, and they have more positive attitudes then negative attitudes towards statistics learning. In conclusion in terms of affect, cognitive competence, value, interest and effort construct the positive attitude towards statistics was mostly exhibited. While negative attitudes mostly exhibited by difficulty construct.

  3. CORSSA: The Community Online Resource for Statistical Seismicity Analysis

    Science.gov (United States)

    Michael, Andrew J.; Wiemer, Stefan

    2010-01-01

    Statistical seismology is the application of rigorous statistical methods to earthquake science with the goal of improving our knowledge of how the earth works. Within statistical seismology there is a strong emphasis on the analysis of seismicity data in order to improve our scientific understanding of earthquakes and to improve the evaluation and testing of earthquake forecasts, earthquake early warning, and seismic hazards assessments. Given the societal importance of these applications, statistical seismology must be done well. Unfortunately, a lack of educational resources and available software tools make it difficult for students and new practitioners to learn about this discipline. The goal of the Community Online Resource for Statistical Seismicity Analysis (CORSSA) is to promote excellence in statistical seismology by providing the knowledge and resources necessary to understand and implement the best practices, so that the reader can apply these methods to their own research. This introduction describes the motivation for and vision of CORRSA. It also describes its structure and contents.

  4. Spatial Analysis Of Human Capital Structures

    Directory of Open Access Journals (Sweden)

    Gajdos Artur

    2014-12-01

    Full Text Available The main purpose of this paper is to analyse the interdependence between labour productivity and the occupational structure of human capital in a spatial cross-section. Research indicates (see Fischer 2009 the possibility to assess the impact of the quality of human capital (measured by means of the level of education on labour productivity in a spatial cross-section.

  5. Spatial analysis and characteristics of pig farming in Thailand.

    Science.gov (United States)

    Thanapongtharm, Weerapong; Linard, Catherine; Chinson, Pornpiroon; Kasemsuwan, Suwicha; Visser, Marjolein; Gaughan, Andrea E; Epprech, Michael; Robinson, Timothy P; Gilbert, Marius

    2016-10-06

    In Thailand, pig production intensified significantly during the last decade, with many economic, epidemiological and environmental implications. Strategies toward more sustainable future developments are currently investigated, and these could be informed by a detailed assessment of the main trends in the pig sector, and on how different production systems are geographically distributed. This study had two main objectives. First, we aimed to describe the main trends and geographic patterns of pig production systems in Thailand in terms of pig type (native, breeding, and fattening pigs), farm scales (smallholder and large-scale farming systems) and type of farming systems (farrow-to-finish, nursery, and finishing systems) based on a very detailed 2010 census. Second, we aimed to study the statistical spatial association between these different types of pig farming distribution and a set of spatial variables describing access to feed and markets. Over the last decades, pig population gradually increased, with a continuously increasing number of pigs per holder, suggesting a continuing intensification of the sector. The different pig-production systems showed very contrasted geographical distributions. The spatial distribution of large-scale pig farms corresponds with that of commercial pig breeds, and spatial analysis conducted using Random Forest distribution models indicated that these were concentrated in lowland urban or peri-urban areas, close to means of transportation, facilitating supply to major markets such as provincial capitals and the Bangkok Metropolitan region. Conversely the smallholders were distributed throughout the country, with higher densities located in highland, remote, and rural areas, where they supply local rural markets. A limitation of the study was that pig farming systems were defined from the number of animals per farm, resulting in their possible misclassification, but this should have a limited impact on the main patterns revealed

  6. Method for statistical data analysis of multivariate observations

    CERN Document Server

    Gnanadesikan, R

    1997-01-01

    A practical guide for multivariate statistical techniques-- now updated and revised In recent years, innovations in computer technology and statistical methodologies have dramatically altered the landscape of multivariate data analysis. This new edition of Methods for Statistical Data Analysis of Multivariate Observations explores current multivariate concepts and techniques while retaining the same practical focus of its predecessor. It integrates methods and data-based interpretations relevant to multivariate analysis in a way that addresses real-world problems arising in many areas of inte

  7. Statistical evaluation of diagnostic performance topics in ROC analysis

    CERN Document Server

    Zou, Kelly H; Bandos, Andriy I; Ohno-Machado, Lucila; Rockette, Howard E

    2016-01-01

    Statistical evaluation of diagnostic performance in general and Receiver Operating Characteristic (ROC) analysis in particular are important for assessing the performance of medical tests and statistical classifiers, as well as for evaluating predictive models or algorithms. This book presents innovative approaches in ROC analysis, which are relevant to a wide variety of applications, including medical imaging, cancer research, epidemiology, and bioinformatics. Statistical Evaluation of Diagnostic Performance: Topics in ROC Analysis covers areas including monotone-transformation techniques in parametric ROC analysis, ROC methods for combined and pooled biomarkers, Bayesian hierarchical transformation models, sequential designs and inferences in the ROC setting, predictive modeling, multireader ROC analysis, and free-response ROC (FROC) methodology. The book is suitable for graduate-level students and researchers in statistics, biostatistics, epidemiology, public health, biomedical engineering, radiology, medi...

  8. Online Statistical Modeling (Regression Analysis) for Independent Responses

    Science.gov (United States)

    Made Tirta, I.; Anggraeni, Dian; Pandutama, Martinus

    2017-06-01

    Regression analysis (statistical analmodelling) are among statistical methods which are frequently needed in analyzing quantitative data, especially to model relationship between response and explanatory variables. Nowadays, statistical models have been developed into various directions to model various type and complex relationship of data. Rich varieties of advanced and recent statistical modelling are mostly available on open source software (one of them is R). However, these advanced statistical modelling, are not very friendly to novice R users, since they are based on programming script or command line interface. Our research aims to developed web interface (based on R and shiny), so that most recent and advanced statistical modelling are readily available, accessible and applicable on web. We have previously made interface in the form of e-tutorial for several modern and advanced statistical modelling on R especially for independent responses (including linear models/LM, generalized linier models/GLM, generalized additive model/GAM and generalized additive model for location scale and shape/GAMLSS). In this research we unified them in the form of data analysis, including model using Computer Intensive Statistics (Bootstrap and Markov Chain Monte Carlo/ MCMC). All are readily accessible on our online Virtual Statistics Laboratory. The web (interface) make the statistical modeling becomes easier to apply and easier to compare them in order to find the most appropriate model for the data.

  9. Statistical Analysis and Modelling of Olkiluoto Structures

    International Nuclear Information System (INIS)

    Hellae, P.; Vaittinen, T.; Saksa, P.; Nummela, J.

    2004-11-01

    Posiva Oy is carrying out investigations for the disposal of the spent nuclear fuel at the Olkiluoto site in SW Finland. The investigations have focused on the central part of the island. The layout design of the entire repository requires characterization of notably larger areas and must rely at least at the current stage on borehole information from a rather sparse network and on the geophysical soundings providing information outside and between the holes. In this work, the structural data according to the current version of the Olkiluoto bedrock model is analyzed. The bedrock model relies much on the borehole data although results of the seismic surveys and, for example, pumping tests are used in determining the orientation and continuation of the structures. Especially in the analysis, questions related to the frequency of structures and size of the structures are discussed. The structures observed in the boreholes are mainly dipping gently to the southeast. About 9 % of the sample length belongs to structures. The proportion is higher in the upper parts of the rock. The number of fracture and crushed zones seems not to depend greatly on the depth, whereas the hydraulic features concentrate on the depth range above -100 m. Below level -300 m, the hydraulic conductivity occurs in connection of fractured zones. Especially the hydraulic features, but also fracture and crushed zones often occur in groups. The frequency of the structure (area of structures per total volume) is estimated to be of the order of 1/100m. The size of the local structures was estimated by calculating the intersection of the zone to the nearest borehole where the zone has not been detected. Stochastic models using the Fracman software by Golder Associates were generated based on the bedrock model data complemented with the magnetic ground survey data. The seismic surveys (from boreholes KR5, KR13, KR14, and KR19) were used as alternative input data. The generated models were tested by

  10. JULIDE: a software tool for 3D reconstruction and statistical analysis of autoradiographic mouse brain sections.

    Directory of Open Access Journals (Sweden)

    Delphine Ribes

    Full Text Available In this article we introduce JULIDE, a software toolkit developed to perform the 3D reconstruction, intensity normalization, volume standardization by 3D image registration and voxel-wise statistical analysis of autoradiographs of mouse brain sections. This software tool has been developed in the open-source ITK software framework and is freely available under a GPL license. The article presents the complete image processing chain from raw data acquisition to 3D statistical group analysis. Results of the group comparison in the context of a study on spatial learning are shown as an illustration of the data that can be obtained with this tool.

  11. Explorations in Statistics: The Analysis of Ratios and Normalized Data

    Science.gov (United States)

    Curran-Everett, Douglas

    2013-01-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This ninth installment of "Explorations in Statistics" explores the analysis of ratios and normalized--or standardized--data. As researchers, we compute a ratio--a numerator divided by a denominator--to compute a…

  12. Statistics

    International Nuclear Information System (INIS)

    2005-01-01

    For the years 2004 and 2005 the figures shown in the tables of Energy Review are partly preliminary. The annual statistics published in Energy Review are presented in more detail in a publication called Energy Statistics that comes out yearly. Energy Statistics also includes historical time-series over a longer period of time (see e.g. Energy Statistics, Statistics Finland, Helsinki 2004.) The applied energy units and conversion coefficients are shown in the back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes, precautionary stock fees and oil pollution fees

  13. Statistical analysis of the count and profitability of air conditioners.

    Science.gov (United States)

    Rady, El Houssainy A; Mohamed, Salah M; Abd Elmegaly, Alaa A

    2018-08-01

    This article presents the statistical analysis of the number and profitability of air conditioners in an Egyptian company. Checking the same distribution for each categorical variable has been made using Kruskal-Wallis test.

  14. Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance

    Science.gov (United States)

    Glascock, M. D.; Neff, H.; Vaughn, K. J.

    2004-06-01

    The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.

  15. Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance

    International Nuclear Information System (INIS)

    Glascock, M. D.; Neff, H.; Vaughn, K. J.

    2004-01-01

    The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.

  16. Application of Ontology Technology in Health Statistic Data Analysis.

    Science.gov (United States)

    Guo, Minjiang; Hu, Hongpu; Lei, Xingyun

    2017-01-01

    Research Purpose: establish health management ontology for analysis of health statistic data. Proposed Methods: this paper established health management ontology based on the analysis of the concepts in China Health Statistics Yearbook, and used protégé to define the syntactic and semantic structure of health statistical data. six classes of top-level ontology concepts and their subclasses had been extracted and the object properties and data properties were defined to establish the construction of these classes. By ontology instantiation, we can integrate multi-source heterogeneous data and enable administrators to have an overall understanding and analysis of the health statistic data. ontology technology provides a comprehensive and unified information integration structure of the health management domain and lays a foundation for the efficient analysis of multi-source and heterogeneous health system management data and enhancement of the management efficiency.

  17. Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance

    Energy Technology Data Exchange (ETDEWEB)

    Glascock, M. D.; Neff, H. [University of Missouri, Research Reactor Center (United States); Vaughn, K. J. [Pacific Lutheran University, Department of Anthropology (United States)

    2004-06-15

    The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.

  18. Statistics

    International Nuclear Information System (INIS)

    2001-01-01

    For the year 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions from the use of fossil fuels, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in 2000, Energy exports by recipient country in 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products

  19. Statistics

    International Nuclear Information System (INIS)

    2000-01-01

    For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g., Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-March 2000, Energy exports by recipient country in January-March 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products

  20. Statistics

    International Nuclear Information System (INIS)

    1999-01-01

    For the year 1998 and the year 1999, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 1999, Energy exports by recipient country in January-June 1999, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products

  1. Propensity Score Analysis: An Alternative Statistical Approach for HRD Researchers

    Science.gov (United States)

    Keiffer, Greggory L.; Lane, Forrest C.

    2016-01-01

    Purpose: This paper aims to introduce matching in propensity score analysis (PSA) as an alternative statistical approach for researchers looking to make causal inferences using intact groups. Design/methodology/approach: An illustrative example demonstrated the varying results of analysis of variance, analysis of covariance and PSA on a heuristic…

  2. Advanced data analysis in neuroscience integrating statistical and computational models

    CERN Document Server

    Durstewitz, Daniel

    2017-01-01

    This book is intended for use in advanced graduate courses in statistics / machine learning, as well as for all experimental neuroscientists seeking to understand statistical methods at a deeper level, and theoretical neuroscientists with a limited background in statistics. It reviews almost all areas of applied statistics, from basic statistical estimation and test theory, linear and nonlinear approaches for regression and classification, to model selection and methods for dimensionality reduction, density estimation and unsupervised clustering.  Its focus, however, is linear and nonlinear time series analysis from a dynamical systems perspective, based on which it aims to convey an understanding also of the dynamical mechanisms that could have generated observed time series. Further, it integrates computational modeling of behavioral and neural dynamics with statistical estimation and hypothesis testing. This way computational models in neuroscience are not only explanat ory frameworks, but become powerfu...

  3. Modelling spatial relationship between climatic conditions and annual parasite incidence of malaria in southern part of Sistan&Balouchistan Province of Iran using spatial statistic models

    Directory of Open Access Journals (Sweden)

    Mansour Halimi

    2014-02-01

    Full Text Available Objective: To model spatial relationship between climatic conditions and annual parasite incidence (API of malaria in southern part of Sistan&Balouchistan Province of Iran using spatial statistic models . Methods: A geographical weighted regression model was applied for predicting API by 3 climatic factors in order to model the spatial API of malaria in Sistan&Baluchistan Province of Iran. Results: The results indicated that most important climatic factor for explaining API in Sistan&Baluchistan was annual rainfall being of more importance in southern part of study area such as Chabahar, and Nikshar. The temperature and relative humidity are of the second and third priority respectively. The importance of these two climatic factors is higher in northern part of the studied region. The spatial autocorrelation (Moran ’s I for standard residual of applied geographical weighted regression model is -0.022 which indicated no spatial patterns. Conclusions: This model explained only 0.51 of API spatial variation (R2=0.51. Thus, the nonclimatic factors such as socioeconomic, lifestyle and the neighborhood position of this province with Afghanistan, and Pakistan also should be considered in epidemiological survey of malaria in Sistan&Baluchistan.

  4. Abnormal white matter microstructure among early adulthood smokers: a tract-based spatial statistics study.

    Science.gov (United States)

    Wang, Shuangkun; Zuo, Long; Jiang, Tao; Peng, Peng; Chu, Shuilian; Xiao, Dan

    2017-12-01

    Objectives Cigarette smoking is an important risk factor of central nervous system diseases. However, the white matter (WM) integrity of early adulthood chronic smokers has not been attached enough importance to as it deserves, and the relationship between the chronic smoking effect and the WM is still unclear. The purpose of this study was to investigate whole - brain WM microstructure of early adulthood smokers and explore the structural correlates of behaviorally relevant features of the disorder. Methods We compared multiple DTI-derived indices, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD), between early adulthood smokers (n = 19) and age-, education- and gender-matched controls (n = 23) using a whole-brain tract-based spatial statistics approach. We also explored the correlations of the mean DTI index values with pack-years and Fagerström Test for Nicotine Dependence. Results The smokers showed increased FA in left superior longitudinal fasciculus (SLF), left anterior corona radiate, left superior corona radiate, left posterior corona radiate, left external capsule (EC), left inferior fronto-occipital fasciculus and sagittal stratum (SS), and decreased RD in left SLF. There were significant negative correlations among the average FA in the left external capsule and pack-years in smokers. In addition, significant positive correlation was found between RD values in the left SLF and pack-years. Discussion These findings indicate that smokers show microstructural changes in several white-matter regions. The correlation between the cumulative effect and microstructural WM alternations suggests that WM properties may become the new biomarkers in practice.

  5. Spatial and temporal epidemiological analysis in the Big Data era.

    Science.gov (United States)

    Pfeiffer, Dirk U; Stevens, Kim B

    2015-11-01

    Concurrent with global economic development in the last 50 years, the opportunities for the spread of existing diseases and emergence of new infectious pathogens, have increased substantially. The activities associated with the enormously intensified global connectivity have resulted in large amounts of data being generated, which in turn provides opportunities for generating knowledge that will allow more effective management of animal and human health risks. This so-called Big Data has, more recently, been accompanied by the Internet of Things which highlights the increasing presence of a wide range of sensors, interconnected via the Internet. Analysis of this data needs to exploit its complexity, accommodate variation in data quality and should take advantage of its spatial and temporal dimensions, where available. Apart from the development of hardware technologies and networking/communication infrastructure, it is necessary to develop appropriate data management tools that make this data accessible for analysis. This includes relational databases, geographical information systems and most recently, cloud-based data storage such as Hadoop distributed file systems. While the development in analytical methodologies has not quite caught up with the data deluge, important advances have been made in a number of areas, including spatial and temporal data analysis where the spectrum of analytical methods ranges from visualisation and exploratory analysis, to modelling. While there used to be a primary focus on statistical science in terms of methodological development for data analysis, the newly emerged discipline of data science is a reflection of the challenges presented by the need to integrate diverse data sources and exploit them using novel data- and knowledge-driven modelling methods while simultaneously recognising the value of quantitative as well as qualitative analytical approaches. Machine learning regression methods, which are more robust and can handle

  6. Dispersal of potato cyst nematodes measured using historical and spatial statistical analyses.

    Science.gov (United States)

    Banks, N C; Hodda, M; Singh, S K; Matveeva, E M

    2012-06-01

    Rates and modes of dispersal of potato cyst nematodes (PCNs) were investigated. Analysis of records from eight countries suggested that PCNs spread a mean distance of 5.3 km/year radially from the site of first detection, and spread 212 km over ≈40 years before detection. Data from four countries with more detailed histories of invasion were analyzed further, using distance from first detection, distance from previous detection, distance from nearest detection, straight line distance, and road distance. Linear distance from first detection was significantly related to the time since the first detection. Estimated rate of spread was 5.7 km/year, and did not differ statistically between countries. Time between the first detection and estimated introduction date varied between 0 and 20 years, and differed among countries. Road distances from nearest and first detection were statistically significantly related to time, and gave slightly higher estimates for rate of spread of 6.0 and 7.9 km/year, respectively. These results indicate that the original site of introduction of PCNs may act as a source for subsequent spread and that this may occur at a relatively constant rate over time regardless of whether this distance is measured by road or by a straight line. The implications of this constant radial rate of dispersal for biosecurity and pest management are discussed, along with the effects of control strategies.

  7. Rings and sector : intrasite spatial analysis of stone age sites

    NARCIS (Netherlands)

    Stapert, Durk

    1992-01-01

    This thesis deals with intrasite spatial analysis: the analysis of spatial patterns on site level. My main concern has been to develop a simple method for analysing Stone Age sites of a special type: those characterised by the presence of a hearth closely associated in space with an artefact

  8. [A spatially explicit analysis of traffic accidents involving pedestrians and cyclists in Berlin].

    Science.gov (United States)

    Lakes, Tobia

    2017-12-01

    In many German cities and counties, sustainable mobility concepts that strengthen pedestrian and cyclist traffic are promoted. From the perspectives of urban development, traffic planning and public healthcare, a spatially differentiated analysis of traffic accident data is decisive. 1) The identification of spatial and temporal patterns of the distribution of accidents involving cyclists and pedestrians, 2) the identification of hotspots and exploration of possible underlying causes and 3) the critical discussion of benefits and challenges of the results and the derivation of conclusions. Spatio-temporal distributions of data from accident statistics in Berlin involving pedestrians and cyclists from 2011 to 2015 were analysed with geographic information systems (GIS). While the total number of accidents remains relatively stable for pedestrian and cyclist accidents, the spatial distribution analysis shows, however, that there are significant spatial clusters (hotspots) of traffic accidents with a strong concentration in the inner city area. In a critical discussion, the benefits of geographic concepts are identified, such as spatially explicit health data (in this case traffic accident data), the importance of the integration of other data sources for the evaluation of the health impact of areas (traffic accident statistics of the police), and the possibilities and limitations of spatial-temporal data analysis (spatial point-density analyses) for the derivation of decision-supported recommendations and for the evaluation of policy measures of health prevention and of health-relevant urban development.

  9. Statistics

    International Nuclear Information System (INIS)

    2003-01-01

    For the year 2002, part of the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot 2001, Statistics Finland, Helsinki 2002). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supply and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees on energy products

  10. Statistics

    International Nuclear Information System (INIS)

    2004-01-01

    For the year 2003 and 2004, the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot, Statistics Finland, Helsinki 2003, ISSN 0785-3165). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-March 2004, Energy exports by recipient country in January-March 2004, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees

  11. Statistics

    International Nuclear Information System (INIS)

    2000-01-01

    For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy also includes historical time series over a longer period (see e.g., Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 2000, Energy exports by recipient country in January-June 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products

  12. Basic statistical tools in research and data analysis

    Directory of Open Access Journals (Sweden)

    Zulfiqar Ali

    2016-01-01

    Full Text Available Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise only if proper statistical tests are used. This article will try to acquaint the reader with the basic research tools that are utilised while conducting various studies. The article covers a brief outline of the variables, an understanding of quantitative and qualitative variables and the measures of central tendency. An idea of the sample size estimation, power analysis and the statistical errors is given. Finally, there is a summary of parametric and non-parametric tests used for data analysis.

  13. Numeric computation and statistical data analysis on the Java platform

    CERN Document Server

    Chekanov, Sergei V

    2016-01-01

    Numerical computation, knowledge discovery and statistical data analysis integrated with powerful 2D and 3D graphics for visualization are the key topics of this book. The Python code examples powered by the Java platform can easily be transformed to other programming languages, such as Java, Groovy, Ruby and BeanShell. This book equips the reader with a computational platform which, unlike other statistical programs, is not limited by a single programming language. The author focuses on practical programming aspects and covers a broad range of topics, from basic introduction to the Python language on the Java platform (Jython), to descriptive statistics, symbolic calculations, neural networks, non-linear regression analysis and many other data-mining topics. He discusses how to find regularities in real-world data, how to classify data, and how to process data for knowledge discoveries. The code snippets are so short that they easily fit into single pages. Numeric Computation and Statistical Data Analysis ...

  14. Analysis of room transfer function and reverberant signal statistics

    DEFF Research Database (Denmark)

    Georganti, Eleftheria; Mourjopoulos, John; Jacobsen, Finn

    2008-01-01

    For some time now, statistical analysis has been a valuable tool in analyzing room transfer functions (RTFs). This work examines existing statistical time-frequency models and techniques for RTF analysis (e.g., Schroeder's stochastic model and the standard deviation over frequency bands for the RTF...... magnitude and phase). RTF fractional octave smoothing, as with 1-slash 3 octave analysis, may lead to RTF simplifications that can be useful for several audio applications, like room compensation, room modeling, auralisation purposes. The aim of this work is to identify the relationship of optimal response...... and the corresponding ratio of the direct and reverberant signal. In addition, this work examines the statistical quantities for speech and audio signals prior to their reproduction within rooms and when recorded in rooms. Histograms and other statistical distributions are used to compare RTF minima of typical...

  15. Spatial and temporal variation of water quality of a segment of Marikina River using multivariate statistical methods.

    Science.gov (United States)

    Chounlamany, Vanseng; Tanchuling, Maria Antonia; Inoue, Takanobu

    2017-09-01

    Payatas landfill in Quezon City, Philippines, releases leachate to the Marikina River through a creek. Multivariate statistical techniques were applied to study temporal and spatial variations in water quality of a segment of the Marikina River. The data set included 12 physico-chemical parameters for five monitoring stations over a year. Cluster analysis grouped the monitoring stations into four clusters and identified January-May as dry season and June-September as wet season. Principal components analysis showed that three latent factors are responsible for the data set explaining 83% of its total variance. The chemical oxygen demand, biochemical oxygen demand, total dissolved solids, Cl - and PO 4 3- are influenced by anthropogenic impact/eutrophication pollution from point sources. Total suspended solids, turbidity and SO 4 2- are influenced by rain and soil erosion. The highest state of pollution is at the Payatas creek outfall from March to May, whereas at downstream stations it is in May. The current study indicates that the river monitoring requires only four stations, nine water quality parameters and testing over three specific months of the year. The findings of this study imply that Payatas landfill requires a proper leachate collection and treatment system to reduce its impact on the Marikina River.

  16. STARS: An ArcGIS Toolset Used to Calculate the Spatial Information Needed to Fit Spatial Statistical Models to Stream Network Data

    Directory of Open Access Journals (Sweden)

    Erin Peterson

    2014-01-01

    Full Text Available This paper describes the STARS ArcGIS geoprocessing toolset, which is used to calcu- late the spatial information needed to fit spatial statistical models to stream network data using the SSN package. The STARS toolset is designed for use with a landscape network (LSN, which is a topological data model produced by the FLoWS ArcGIS geoprocessing toolset. An overview of the FLoWS LSN structure and a few particularly useful tools is also provided so that users will have a clear understanding of the underlying data struc- ture that the STARS toolset depends on. This document may be used as an introduction to new users. The methods used to calculate the spatial information and format the final .ssn object are also explicitly described so that users may create their own .ssn object using other data models and software.

  17. Statistical analysis of dynamic parameters of the core

    International Nuclear Information System (INIS)

    Ionov, V.S.

    2007-01-01

    The transients of various types were investigated for the cores of zero power critical facilities in RRC KI and NPP. Dynamic parameters of neutron transients were explored by tool statistical analysis. Its have sufficient duration, few channels for currents of chambers and reactivity and also some channels for technological parameters. On these values the inverse period. reactivity, lifetime of neutrons, reactivity coefficients and some effects of a reactivity are determinate, and on the values were restored values of measured dynamic parameters as result of the analysis. The mathematical means of statistical analysis were used: approximation(A), filtration (F), rejection (R), estimation of parameters of descriptive statistic (DSP), correlation performances (kk), regression analysis(KP), the prognosis (P), statistician criteria (SC). The calculation procedures were realized by computer language MATLAB. The reasons of methodical and statistical errors are submitted: inadequacy of model operation, precision neutron-physical parameters, features of registered processes, used mathematical model in reactivity meters, technique of processing for registered data etc. Examples of results of statistical analysis. Problems of validity of the methods used for definition and certification of values of statistical parameters and dynamic characteristics are considered (Authors)

  18. Generalised recurrence plot analysis for spatial data

    International Nuclear Information System (INIS)

    Marwan, Norbert; Kurths, Juergen; Saparin, Peter

    2007-01-01

    Recurrence plot based methods are highly efficient and widely accepted tools for the investigation of time series or one-dimensional data. We present an extension of the recurrence plots and their quantifications in order to study recurrent structures in higher-dimensional spatial data. The capability of this extension is illustrated on prototypical 2D models. Next, the tested and proved approach is applied to assess the bone structure from CT images of human proximal tibia. We find that the spatial structures in trabecular bone become more recurrent during the bone loss in osteoporosis

  19. A Spatial Analysis of Poverty in Kigali, Rwanda using indicators of ...

    African Journals Online (AJOL)

    A Spatial Analysis of Poverty in Kigali, Rwanda using indicators of household ... conducted by the National Institute of Statistics of Rwanda in 2000-2001. ... The third region of low poverty incident has between 4-12% of its population poor.

  20. Determinants of the distribution and concentration of biogas production in Germany. A spatial econometric analysis

    International Nuclear Information System (INIS)

    Scholz, Lukas

    2015-01-01

    The biogas production in Germany is characterized by a heterogeneous distribution and the formation of regional centers. In the present study the determinants of the spatial distribution and concentration are analyzed with methods of spatial statistics and spatial econometrics. In addition to the consideration of ''classic'' site factors of agricultural production, the analysis here focuses on the possible relevance of agglomeration effects. The results of the work contribute to a better understanding of the regional distribution and concentration of the biogas production in Germany. [de

  1. Simulation Experiments in Practice: Statistical Design and Regression Analysis

    OpenAIRE

    Kleijnen, J.P.C.

    2007-01-01

    In practice, simulation analysts often change only one factor at a time, and use graphical analysis of the resulting Input/Output (I/O) data. The goal of this article is to change these traditional, naïve methods of design and analysis, because statistical theory proves that more information is obtained when applying Design Of Experiments (DOE) and linear regression analysis. Unfortunately, classic DOE and regression analysis assume a single simulation response that is normally and independen...

  2. Research progress and hotspot analysis of spatial interpolation

    Science.gov (United States)

    Jia, Li-juan; Zheng, Xin-qi; Miao, Jin-li

    2018-02-01

    In this paper, the literatures related to spatial interpolation between 1982 and 2017, which are included in the Web of Science core database, are used as data sources, and the visualization analysis is carried out according to the co-country network, co-category network, co-citation network, keywords co-occurrence network. It is found that spatial interpolation has experienced three stages: slow development, steady development and rapid development; The cross effect between 11 clustering groups, the main convergence of spatial interpolation theory research, the practical application and case study of spatial interpolation and research on the accuracy and efficiency of spatial interpolation. Finding the optimal spatial interpolation is the frontier and hot spot of the research. Spatial interpolation research has formed a theoretical basis and research system framework, interdisciplinary strong, is widely used in various fields.

  3. Sequential spatial processes for image analysis

    NARCIS (Netherlands)

    M.N.M. van Lieshout (Marie-Colette); V. Capasso

    2009-01-01

    htmlabstractWe give a brief introduction to sequential spatial processes. We discuss their definition, formulate a Markov property, and indicate why such processes are natural tools in tackling high level vision problems. We focus on the problem of tracking a variable number of moving objects

  4. Sequential spatial processes for image analysis

    NARCIS (Netherlands)

    Lieshout, van M.N.M.; Capasso, V.

    2009-01-01

    We give a brief introduction to sequential spatial processes. We discuss their definition, formulate a Markov property, and indicate why such processes are natural tools in tackling high level vision problems. We focus on the problem of tracking a variable number of moving objects through a video

  5. Statistical analysis of planktic foraminifera of the surface Continental ...

    African Journals Online (AJOL)

    Planktic foraminiferal assemblage recorded from selected samples obtained from shallow continental shelf sediments off southwestern Nigeria were subjected to statistical analysis. The Principal Component Analysis (PCA) was used to determine variants of planktic parameters. Values obtained for these parameters were ...

  6. Simulation Experiments in Practice : Statistical Design and Regression Analysis

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2007-01-01

    In practice, simulation analysts often change only one factor at a time, and use graphical analysis of the resulting Input/Output (I/O) data. Statistical theory proves that more information is obtained when applying Design Of Experiments (DOE) and linear regression analysis. Unfortunately, classic

  7. Simulation Experiments in Practice : Statistical Design and Regression Analysis

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2007-01-01

    In practice, simulation analysts often change only one factor at a time, and use graphical analysis of the resulting Input/Output (I/O) data. The goal of this article is to change these traditional, naïve methods of design and analysis, because statistical theory proves that more information is

  8. PRECISE - pregabalin in addition to usual care: Statistical analysis plan

    NARCIS (Netherlands)

    S. Mathieson (Stephanie); L. Billot (Laurent); C. Maher (Chris); A.J. McLachlan (Andrew J.); J. Latimer (Jane); B.W. Koes (Bart); M.J. Hancock (Mark J.); I. Harris (Ian); R.O. Day (Richard O.); J. Pik (Justin); S. Jan (Stephen); C.-W.C. Lin (Chung-Wei Christine)

    2016-01-01

    textabstractBackground: Sciatica is a severe, disabling condition that lacks high quality evidence for effective treatment strategies. This a priori statistical analysis plan describes the methodology of analysis for the PRECISE study. Methods/design: PRECISE is a prospectively registered, double

  9. A Divergence Statistics Extension to VTK for Performance Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pebay, Philippe Pierre [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bennett, Janine Camille [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-02-01

    This report follows the series of previous documents ([PT08, BPRT09b, PT09, BPT09, PT10, PB13], where we presented the parallel descriptive, correlative, multi-correlative, principal component analysis, contingency, k -means, order and auto-correlative statistics engines which we developed within the Visualization Tool Kit ( VTK ) as a scalable, parallel and versatile statistics package. We now report on a new engine which we developed for the calculation of divergence statistics, a concept which we hereafter explain and whose main goal is to quantify the discrepancy, in a stasticial manner akin to measuring a distance, between an observed empirical distribution and a theoretical, "ideal" one. The ease of use of the new diverence statistics engine is illustrated by the means of C++ code snippets. Although this new engine does not yet have a parallel implementation, it has already been applied to HPC performance analysis, of which we provide an example.

  10. HistFitter software framework for statistical data analysis

    CERN Document Server

    Baak, M.; Côte, D.; Koutsman, A.; Lorenz, J.; Short, D.

    2015-01-01

    We present a software framework for statistical data analysis, called HistFitter, that has been used extensively by the ATLAS Collaboration to analyze big datasets originating from proton-proton collisions at the Large Hadron Collider at CERN. Since 2012 HistFitter has been the standard statistical tool in searches for supersymmetric particles performed by ATLAS. HistFitter is a programmable and flexible framework to build, book-keep, fit, interpret and present results of data models of nearly arbitrary complexity. Starting from an object-oriented configuration, defined by users, the framework builds probability density functions that are automatically fitted to data and interpreted with statistical tests. A key innovation of HistFitter is its design, which is rooted in core analysis strategies of particle physics. The concepts of control, signal and validation regions are woven into its very fabric. These are progressively treated with statistically rigorous built-in methods. Being capable of working with mu...

  11. Statistical analysis applied to safety culture self-assessment

    International Nuclear Information System (INIS)

    Macedo Soares, P.P.

    2002-01-01

    Interviews and opinion surveys are instruments used to assess the safety culture in an organization as part of the Safety Culture Enhancement Programme. Specific statistical tools are used to analyse the survey results. This paper presents an example of an opinion survey with the corresponding application of the statistical analysis and the conclusions obtained. Survey validation, Frequency statistics, Kolmogorov-Smirnov non-parametric test, Student (T-test) and ANOVA means comparison tests and LSD post-hoc multiple comparison test, are discussed. (author)

  12. Longitudinal data analysis a handbook of modern statistical methods

    CERN Document Server

    Fitzmaurice, Garrett; Verbeke, Geert; Molenberghs, Geert

    2008-01-01

    Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory and applications. It also focuses on the assorted challenges that arise in analyzing longitudinal data. After discussing historical aspects, leading researchers explore four broad themes: parametric modeling, nonparametric and semiparametric methods, joint

  13. Highly Robust Statistical Methods in Medical Image Analysis

    Czech Academy of Sciences Publication Activity Database

    Kalina, Jan

    2012-01-01

    Roč. 32, č. 2 (2012), s. 3-16 ISSN 0208-5216 R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : robust statistics * classification * faces * robust image analysis * forensic science Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.208, year: 2012 http://www.ibib.waw.pl/bbe/bbefulltext/BBE_32_2_003_FT.pdf

  14. Network similarity and statistical analysis of earthquake seismic data

    OpenAIRE

    Deyasi, Krishanu; Chakraborty, Abhijit; Banerjee, Anirban

    2016-01-01

    We study the structural similarity of earthquake networks constructed from seismic catalogs of different geographical regions. A hierarchical clustering of underlying undirected earthquake networks is shown using Jensen-Shannon divergence in graph spectra. The directed nature of links indicates that each earthquake network is strongly connected, which motivates us to study the directed version statistically. Our statistical analysis of each earthquake region identifies the hub regions. We cal...

  15. Structural abnormalities in early Tourette syndrome children: a combined voxel-based morphometry and tract-based spatial statistics study.

    Directory of Open Access Journals (Sweden)

    Yue Liu

    Full Text Available Tourette Syndrome (TS is characterized with chronic motor and vocal tics beginning in childhood. Abnormality of both gray (GM and white matter (WM has been observed in cortico-striato-thalamo-cortical circuits and sensory-motor cortex of adult TS patient. It is not clear if these morphological changes are also present in TS children and if there are any microstructural changes of WM. To understand the developmental cause of such changes, we investigated volumetric changes of GM and WM using VBM and microstructural changes of WM using DTI, and correlated these changes with tic severity and duration. T1 images and Diffusion Tensor Images (DTI from 21 TS children were compared with 20 age and gender matched health control children using a 1.5T Philips scanner. All of the 21 TS children met the DSM-IV-TR criteria. T1 images were analyzed using DARTEL-VBM in conjunction with statistical parametric mapping (SPM. Diffusion tensor imaging (DTI analysis was performed using Tract-Based Spatial Statistics (TBSS. Brain volume changes were found in left superior temporal gyrus, left and right paracentral gyrus, right precuneous cortex, right pre- and post-central gyrus, left temporal occipital fusiform cortex, right frontal pole, and left lingual gyrus. Significant axial diffusivity (AD and mean diffusivity (MD increases were found in anterior thalamic radiation, right cingulum bundle projecting to the cingulate gurus and forceps minor. Decreases in white matter volume (WMV in the right frontal pole were inversely related with tic severity (YGTSS, and increases in AD and MD were positively correlated with tic severity and duration, respectively. These changes in TS children can be interpreted as signs of neural plasticity in response to the experiential demand. Our findings may suggest that the morphological and microstructural measurements from structural MRI and DTI can potentially be used as a biomarker of the pathophysiologic pattern of early TS children.

  16. Spatial analysis of various multiplex cinema types

    Directory of Open Access Journals (Sweden)

    Young-Seo Park

    2016-03-01

    Full Text Available This study identifies the spatial characteristics and relationships of each used space according to the multiplex type. In this study, multiplexes are classified according to screen rooms and circulation systems, and each used space is quantitatively analyzed. The multiplex type based on screen rooms and moving line systems influences the relationship and characteristics of each used space in various ways. In particular, the structure of the used space of multiplexes has a significant effect on profit generation and audience convenience.

  17. EFFECTS OF HETEROGENIETY ON SPATIAL PATTERN ANALYSIS OF WILD PISTACHIO TREES IN ZAGROS WOODLANDS, IRAN

    Directory of Open Access Journals (Sweden)

    Y. Erfanifard

    2014-10-01

    Full Text Available Vegetation heterogeneity biases second-order summary statistics, e.g., Ripley's K-function, applied for spatial pattern analysis in ecology. Second-order investigation based on Ripley's K-function and related statistics (i.e., L- and pair correlation function g is widely used in ecology to develop hypothesis on underlying processes by characterizing spatial patterns of vegetation. The aim of this study was to demonstrate effects of underlying heterogeneity of wild pistachio (Pistacia atlantica Desf. trees on the second-order summary statistics of point pattern analysis in a part of Zagros woodlands, Iran. The spatial distribution of 431 wild pistachio trees was accurately mapped in a 40 ha stand in the Wild Pistachio & Almond Research Site, Fars province, Iran. Three commonly used second-order summary statistics (i.e., K-, L-, and g-functions were applied to analyse their spatial pattern. The two-sample Kolmogorov-Smirnov goodness-of-fit test showed that the observed pattern significantly followed an inhomogeneous Poisson process null model in the study region. The results also showed that heterogeneous pattern of wild pistachio trees biased the homogeneous form of K-, L-, and g-functions, demonstrating a stronger aggregation of the trees at the scales of 0–50 m than actually existed and an aggregation at scales of 150–200 m, while regularly distributed. Consequently, we showed that heterogeneity of point patterns may bias the results of homogeneous second-order summary statistics and we also suggested applying inhomogeneous summary statistics with related null models for spatial pattern analysis of heterogeneous vegetations.

  18. Effects of Heterogeniety on Spatial Pattern Analysis of Wild Pistachio Trees in Zagros Woodlands, Iran

    Science.gov (United States)

    Erfanifard, Y.; Rezayan, F.

    2014-10-01

    Vegetation heterogeneity biases second-order summary statistics, e.g., Ripley's K-function, applied for spatial pattern analysis in ecology. Second-order investigation based on Ripley's K-function and related statistics (i.e., L- and pair correlation function g) is widely used in ecology to develop hypothesis on underlying processes by characterizing spatial patterns of vegetation. The aim of this study was to demonstrate effects of underlying heterogeneity of wild pistachio (Pistacia atlantica Desf.) trees on the second-order summary statistics of point pattern analysis in a part of Zagros woodlands, Iran. The spatial distribution of 431 wild pistachio trees was accurately mapped in a 40 ha stand in the Wild Pistachio & Almond Research Site, Fars province, Iran. Three commonly used second-order summary statistics (i.e., K-, L-, and g-functions) were applied to analyse their spatial pattern. The two-sample Kolmogorov-Smirnov goodness-of-fit test showed that the observed pattern significantly followed an inhomogeneous Poisson process null model in the study region. The results also showed that heterogeneous pattern of wild pistachio trees biased the homogeneous form of K-, L-, and g-functions, demonstrating a stronger aggregation of the trees at the scales of 0-50 m than actually existed and an aggregation at scales of 150-200 m, while regularly distributed. Consequently, we showed that heterogeneity of point patterns may bias the results of homogeneous second-order summary statistics and we also suggested applying inhomogeneous summary statistics with related null models for spatial pattern analysis of heterogeneous vegetations.

  19. A methodology for spatial data selection for statistical downscaling purposes. A case study of precipitation in southwestern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Woth, K. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Kuestenforschung

    2001-07-01

    In this study, the sensitivity of the estimation of small-scale climate variables using the technique of statistical downscaling is investigated and one method to select the most suitable input data is presented. For the example of precipitation in southwest Europe, the input data are selected systematically by extracting those stations that show a strong statistical relation in time with North Atlantic sea level pressure (SLP). From these stations the sector of North Atlantic SLP is selected that best explains the dominant spatial pattern of regional precipitation. For comparison, one alternative, slightly different geographical box is used. For both sectors a statistical model for the estimation of future rainfall in the southwest of Europe is constructed. It is shown that the method of statistical downscaling is sensitive to small changes of the input data and that the estimations of future precipitation show remarkable differences for the two different Atlantic SLP sectors considered. Possible reasons are discussed. (orig.)

  20. Geometric anisotropic spatial point pattern analysis and Cox processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Toftaker, Håkon

    . In particular we study Cox process models with an elliptical pair correlation function, including shot noise Cox processes and log Gaussian Cox processes, and we develop estimation procedures using summary statistics and Bayesian methods. Our methodology is illustrated on real and synthetic datasets of spatial...

  1. Multivariate statistical analysis for x-ray photoelectron spectroscopy spectral imaging: Effect of image acquisition time

    International Nuclear Information System (INIS)

    Peebles, D.E.; Ohlhausen, J.A.; Kotula, P.G.; Hutton, S.; Blomfield, C.

    2004-01-01

    The acquisition of spectral images for x-ray photoelectron spectroscopy (XPS) is a relatively new approach, although it has been used with other analytical spectroscopy tools for some time. This technique provides full spectral information at every pixel of an image, in order to provide a complete chemical mapping of the imaged surface area. Multivariate statistical analysis techniques applied to the spectral image data allow the determination of chemical component species, and their distribution and concentrations, with minimal data acquisition and processing times. Some of these statistical techniques have proven to be very robust and efficient methods for deriving physically realistic chemical components without input by the user other than the spectral matrix itself. The benefits of multivariate analysis of the spectral image data include significantly improved signal to noise, improved image contrast and intensity uniformity, and improved spatial resolution - which are achieved due to the effective statistical aggregation of the large number of often noisy data points in the image. This work demonstrates the improvements in chemical component determination and contrast, signal-to-noise level, and spatial resolution that can be obtained by the application of multivariate statistical analysis to XPS spectral images

  2. Abnormal white matter integrity in the corpus callosum among smokers: tract-based spatial statistics.

    Directory of Open Access Journals (Sweden)

    Wakako Umene-Nakano

    Full Text Available In the present study, we aimed to investigate the difference in white matter between smokers and nonsmokers. In addition, we examined relationships between white matter integrity and nicotine dependence parameters in smoking subjects. Nineteen male smokers were enrolled in this study. Eighteen age-matched non-smokers with no current or past psychiatric history were included as controls. Diffusion tensor imaging scans were performed, and the analysis was conducted using a tract-based special statistics approach. Compared with nonsmokers, smokers exhibited a significant decrease in fractional anisotropy (FA throughout the whole corpus callosum. There were no significant differences in radial diffusivity or axial diffusivity between the two groups. There was a significant negative correlation between FA in the whole corpus callosum and the amount of tobacco use (cigarettes/day; R = - 0.580, p = 0.023. These results suggest that the corpus callosum may be one of the key areas influenced by chronic smoking.

  3. Using a spatial and tabular database to generate statistics from terrain and spectral data for soil surveys

    Science.gov (United States)

    Horvath , E.A.; Fosnight, E.A.; Klingebiel, A.A.; Moore, D.G.; Stone, J.E.; Reybold, W.U.; Petersen, G.W.

    1987-01-01

    A methodology has been developed to create a spatial database by referencing digital elevation, Landsat multispectral scanner data, and digitized soil premap delineations of a number of adjacent 7.5-min quadrangle areas to a 30-m Universal Transverse Mercator projection. Slope and aspect transformations are calculated from elevation data and grouped according to field office specifications. An unsupervised classification is performed on a brightness and greenness transformation of the spectral data. The resulting spectral, slope, and aspect maps of each of the 7.5-min quadrangle areas are then plotted and submitted to the field office to be incorporated into the soil premapping stages of a soil survey. A tabular database is created from spatial data by generating descriptive statistics for each data layer within each soil premap delineation. The tabular data base is then entered into a data base management system to be accessed by the field office personnel during the soil survey and to be used for subsequent resource management decisions.Large amounts of data are collected and archived during resource inventories for public land management. Often these data are stored as stacks of maps or folders in a file system in someone's office, with the maps in a variety of formats, scales, and with various standards of accuracy depending on their purpose. This system of information storage and retrieval is cumbersome at best when several categories of information are needed simultaneously for analysis or as input to resource management models. Computers now provide the resource scientist with the opportunity to design increasingly complex models that require even more categories of resource-related information, thus compounding the problem.Recently there has been much emphasis on the use of geographic information systems (GIS) as an alternative method for map data archives and as a resource management tool. Considerable effort has been devoted to the generation of tabular

  4. Statistical analysis of corn yields responding to climate variability at various spatio-temporal resolutions

    Science.gov (United States)

    Jiang, H.; Lin, T.

    2017-12-01

    Rain-fed corn production systems are subject to sub-seasonal variations of precipitation and temperature during the growing season. As each growth phase has varied inherent physiological process, plants necessitate different optimal environmental conditions during each phase. However, this temporal heterogeneity towards climate variability alongside the lifecycle of crops is often simplified and fixed as constant responses in large scale statistical modeling analysis. To capture the time-variant growing requirements in large scale statistical analysis, we develop and compare statistical models at various spatial and temporal resolutions to quantify the relationship between corn yield and weather factors for 12 corn belt states from 1981 to 2016. The study compares three spatial resolutions (county, agricultural district, and state scale) and three temporal resolutions (crop growth phase, monthly, and growing season) to characterize the effects of spatial and temporal variability. Our results show that the agricultural district model together with growth phase resolution can explain 52% variations of corn yield caused by temperature and precipitation variability. It provides a practical model structure balancing the overfitting problem in county specific model and weak explanation power in state specific model. In US corn belt, precipitation has positive impact on corn yield in growing season except for vegetative stage while extreme heat attains highest sensitivity from silking to dough phase. The results show the northern counties in corn belt area are less interfered by extreme heat but are more vulnerable to water deficiency.

  5. Statistical margin to DNB safety analysis approach for LOFT

    International Nuclear Information System (INIS)

    Atkinson, S.A.

    1982-01-01

    A method was developed and used for LOFT thermal safety analysis to estimate the statistical margin to DNB for the hot rod, and to base safety analysis on desired DNB probability limits. This method is an advanced approach using response surface analysis methods, a very efficient experimental design, and a 2nd-order response surface equation with a 2nd-order error propagation analysis to define the MDNBR probability density function. Calculations for limiting transients were used in the response surface analysis thereby including transient interactions and trip uncertainties in the MDNBR probability density

  6. Data analysis using the Gnu R system for statistical computation

    Energy Technology Data Exchange (ETDEWEB)

    Simone, James; /Fermilab

    2011-07-01

    R is a language system for statistical computation. It is widely used in statistics, bioinformatics, machine learning, data mining, quantitative finance, and the analysis of clinical drug trials. Among the advantages of R are: it has become the standard language for developing statistical techniques, it is being actively developed by a large and growing global user community, it is open source software, it is highly portable (Linux, OS-X and Windows), it has a built-in documentation system, it produces high quality graphics and it is easily extensible with over four thousand extension library packages available covering statistics and applications. This report gives a very brief introduction to R with some examples using lattice QCD simulation results. It then discusses the development of R packages designed for chi-square minimization fits for lattice n-pt correlation functions.

  7. Processing and statistical analysis of soil-root images

    Science.gov (United States)

    Razavi, Bahar S.; Hoang, Duyen; Kuzyakov, Yakov

    2016-04-01

    Importance of the hotspots such as rhizosphere, the small soil volume that surrounds and is influenced by plant roots, calls for spatially explicit methods to visualize distribution of microbial activities in this active site (Kuzyakov and Blagodatskaya, 2015). Zymography technique has previously been adapted to visualize the spatial dynamics of enzyme activities in rhizosphere (Spohn and Kuzyakov, 2014). Following further developing of soil zymography -to obtain a higher resolution of enzyme activities - we aimed to 1) quantify the images, 2) determine whether the pattern (e.g. distribution of hotspots in space) is clumped (aggregated) or regular (dispersed). To this end, we incubated soil-filled rhizoboxes with maize Zea mays L. and without maize (control box) for two weeks. In situ soil zymography was applied to visualize enzymatic activity of β-glucosidase and phosphatase at soil-root interface. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. Furthermore, we applied "spatial point pattern analysis" to determine whether the pattern (e.g. distribution of hotspots in space) is clumped (aggregated) or regular (dispersed). Our results demonstrated that distribution of hotspots at rhizosphere is clumped (aggregated) compare to control box without plant which showed regular (dispersed) pattern. These patterns were similar in all three replicates and for both enzymes. We conclude that improved zymography is promising in situ technique to identify, analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere. Moreover, such different patterns should be considered in assessments and modeling of rhizosphere extension and the corresponding effects on soil properties and functions. Key words: rhizosphere, spatial point pattern, enzyme activity, zymography, maize.

  8. Statistical analysis of the potassium concentration obtained through

    International Nuclear Information System (INIS)

    Pereira, Joao Eduardo da Silva; Silva, Jose Luiz Silverio da; Pires, Carlos Alberto da Fonseca; Strieder, Adelir Jose

    2007-01-01

    The present work was developed in outcrops of Santa Maria region, southern Brazil, Rio Grande do Sul State. Statistic evaluations were applied in different rock types. The possibility to distinguish different geologic units, sedimentary and volcanic (acid and basic types) by means of the statistic analyses from the use of airborne gamma-ray spectrometry integrating potash radiation emissions data with geological and geochemistry data is discussed. This Project was carried out at 1973 by Geological Survey of Brazil/Companhia de Pesquisas de Recursos Minerais. The Camaqua Project evaluated the behavior of potash concentrations generating XYZ Geosof 1997 format, one grid, thematic map and digital thematic map files from this total area. Using these data base, the integration of statistics analyses in sedimentary formations which belong to the Depressao Central do Rio Grande do Sul and/or to volcanic rocks from Planalto da Serra Geral at the border of Parana Basin was tested. Univariate statistics model was used: the media, the standard media error, and the trust limits were estimated. The Tukey's Test was used in order to compare mean values. The results allowed to create criteria to distinguish geological formations based on their potash content. The back-calibration technique was employed to transform K radiation to percentage. Inside this context it was possible to define characteristic values from radioactive potash emissions and their trust ranges in relation to geologic formations. The potash variable when evaluated in relation to geographic Universal Transverse Mercator coordinates system showed a spatial relation following one polynomial model of second order, with one determination coefficient. The statistica 7.1 software Generalist Linear Models produced by Statistics Department of Federal University of Santa Maria/Brazil was used. (author)

  9. A κ-generalized statistical mechanics approach to income analysis

    International Nuclear Information System (INIS)

    Clementi, F; Gallegati, M; Kaniadakis, G

    2009-01-01

    This paper proposes a statistical mechanics approach to the analysis of income distribution and inequality. A new distribution function, having its roots in the framework of κ-generalized statistics, is derived that is particularly suitable for describing the whole spectrum of incomes, from the low–middle income region up to the high income Pareto power-law regime. Analytical expressions for the shape, moments and some other basic statistical properties are given. Furthermore, several well-known econometric tools for measuring inequality, which all exist in a closed form, are considered. A method for parameter estimation is also discussed. The model is shown to fit remarkably well the data on personal income for the United States, and the analysis of inequality performed in terms of its parameters is revealed as very powerful

  10. A κ-generalized statistical mechanics approach to income analysis

    Science.gov (United States)

    Clementi, F.; Gallegati, M.; Kaniadakis, G.

    2009-02-01

    This paper proposes a statistical mechanics approach to the analysis of income distribution and inequality. A new distribution function, having its roots in the framework of κ-generalized statistics, is derived that is particularly suitable for describing the whole spectrum of incomes, from the low-middle income region up to the high income Pareto power-law regime. Analytical expressions for the shape, moments and some other basic statistical properties are given. Furthermore, several well-known econometric tools for measuring inequality, which all exist in a closed form, are considered. A method for parameter estimation is also discussed. The model is shown to fit remarkably well the data on personal income for the United States, and the analysis of inequality performed in terms of its parameters is revealed as very powerful.

  11. Backyard housing in Gauteng: An analysis of spatial dynamics

    African Journals Online (AJOL)

    Backyard housing in Gauteng: An analysis of spatial dynamics. Yasmin Shapurjee ... Drawing on quantitative geo-demographic data from GeoTerraImage (GTI). (2010), Knowledge .... a fundamental role in absorbing demand for low-income ...

  12. Spatial Analysis of Accident Spots Using Weighted Severity Index ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Spatial Analysis of Accident Spots Using Weighted Severity Index (WSI) and ... pedestrians avoiding the use of pedestrian bridges/aid even when they are available. ..... not minding an unforeseen obstruction, miscalculations and wrong break.

  13. SPATIAL ANALYSIS AND DECISION ASSISTANCE (SADA) TRAINING COURSE

    Science.gov (United States)

    Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates tools from environmental assessment into an effective problem-solving environment. SADA was developed by the Institute for Environmental Modeling at the University of Tennessee and inc...

  14. Common pitfalls in statistical analysis: Linear regression analysis

    Directory of Open Access Journals (Sweden)

    Rakesh Aggarwal

    2017-01-01

    Full Text Available In a previous article in this series, we explained correlation analysis which describes the strength of relationship between two continuous variables. In this article, we deal with linear regression analysis which predicts the value of one continuous variable from another. We also discuss the assumptions and pitfalls associated with this analysis.

  15. A novel statistic for genome-wide interaction analysis.

    Directory of Open Access Journals (Sweden)

    Xuesen Wu

    2010-09-01

    Full Text Available Although great progress in genome-wide association studies (GWAS has been made, the significant SNP associations identified by GWAS account for only a few percent of the genetic variance, leading many to question where and how we can find the missing heritability. There is increasing interest in genome-wide interaction analysis as a possible source of finding heritability unexplained by current GWAS. However, the existing statistics for testing interaction have low power for genome-wide interaction analysis. To meet challenges raised by genome-wide interactional analysis, we have developed a novel statistic for testing interaction between two loci (either linked or unlinked. The null distribution and the type I error rates of the new statistic for testing interaction are validated using simulations. Extensive power studies show that the developed statistic has much higher power to detect interaction than classical logistic regression. The results identified 44 and 211 pairs of SNPs showing significant evidence of interactions with FDR<0.001 and 0.001analysis is a valuable tool for finding remaining missing heritability unexplained by the current GWAS, and the developed novel statistic is able to search significant interaction between SNPs across the genome. Real data analysis showed that the results of genome-wide interaction analysis can be replicated in two independent studies.

  16. Temporal and spatial assessment of river surface water quality using multivariate statistical techniques: a study in Can Tho City, a Mekong Delta area, Vietnam.

    Science.gov (United States)

    Phung, Dung; Huang, Cunrui; Rutherford, Shannon; Dwirahmadi, Febi; Chu, Cordia; Wang, Xiaoming; Nguyen, Minh; Nguyen, Nga Huy; Do, Cuong Manh; Nguyen, Trung Hieu; Dinh, Tuan Anh Diep

    2015-05-01

    The present study is an evaluation of temporal/spatial variations of surface water quality using multivariate statistical techniques, comprising cluster analysis (CA), principal component analysis (PCA), factor analysis (FA) and discriminant analysis (DA). Eleven water quality parameters were monitored at 38 different sites in Can Tho City, a Mekong Delta area of Vietnam from 2008 to 2012. Hierarchical cluster analysis grouped the 38 sampling sites into three clusters, representing mixed urban-rural areas, agricultural areas and industrial zone. FA/PCA resulted in three latent factors for the entire research location, three for cluster 1, four for cluster 2, and four for cluster 3 explaining 60, 60.2, 80.9, and 70% of the total variance in the respective water quality. The varifactors from FA indicated that the parameters responsible for water quality variations are related to erosion from disturbed land or inflow of effluent from sewage plants and industry, discharges from wastewater treatment plants and domestic wastewater, agricultural activities and industrial effluents, and contamination by sewage waste with faecal coliform bacteria through sewer and septic systems. Discriminant analysis (DA) revealed that nephelometric turbidity units (NTU), chemical oxygen demand (COD) and NH₃ are the discriminating parameters in space, affording 67% correct assignation in spatial analysis; pH and NO₂ are the discriminating parameters according to season, assigning approximately 60% of cases correctly. The findings suggest a possible revised sampling strategy that can reduce the number of sampling sites and the indicator parameters responsible for large variations in water quality. This study demonstrates the usefulness of multivariate statistical techniques for evaluation of temporal/spatial variations in water quality assessment and management.

  17. Error analysis of terrestrial laser scanning data by means of spherical statistics and 3D graphs.

    Science.gov (United States)

    Cuartero, Aurora; Armesto, Julia; Rodríguez, Pablo G; Arias, Pedro

    2010-01-01

    This paper presents a complete analysis of the positional errors of terrestrial laser scanning (TLS) data based on spherical statistics and 3D graphs. Spherical statistics are preferred because of the 3D vectorial nature of the spatial error. Error vectors have three metric elements (one module and two angles) that were analyzed by spherical statistics. A study case has been presented and discussed in detail. Errors were calculating using 53 check points (CP) and CP coordinates were measured by a digitizer with submillimetre accuracy. The positional accuracy was analyzed by both the conventional method (modular errors analysis) and the proposed method (angular errors analysis) by 3D graphics and numerical spherical statistics. Two packages in R programming language were performed to obtain graphics automatically. The results indicated that the proposed method is advantageous as it offers a more complete analysis of the positional accuracy, such as angular error component, uniformity of the vector distribution, error isotropy, and error, in addition the modular error component by linear statistics.

  18. Statistical Compilation of the ICT Sector and Policy Analysis | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Statistical Compilation of the ICT Sector and Policy Analysis. As the presence and influence of information and communication technologies (ICTs) continues to widen and deepen, so too does its impact on economic development. However, much work needs to be done before the linkages between economic development ...

  19. Multivariate statistical analysis of major and trace element data for ...

    African Journals Online (AJOL)

    Multivariate statistical analysis of major and trace element data for niobium exploration in the peralkaline granites of the anorogenic ring-complex province of Nigeria. PO Ogunleye, EC Ike, I Garba. Abstract. No Abstract Available Journal of Mining and Geology Vol.40(2) 2004: 107-117. Full Text: EMAIL FULL TEXT EMAIL ...

  20. Statistical Compilation of the ICT Sector and Policy Analysis | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Statistical Compilation of the ICT Sector and Policy Analysis. As the presence and influence of information and communication technologies (ICTs) continues to widen and deepen, so too does its impact on economic development. However, much work needs to be done before the linkages between economic development ...

  1. Statistical analysis of the BOIL program in RSYST-III

    International Nuclear Information System (INIS)

    Beck, W.; Hausch, H.J.

    1978-11-01

    The paper describes a statistical analysis in the RSYST-III program system. Using the example of the BOIL program, it is shown how the effects of inaccurate input data on the output data can be discovered. The existing possibilities of data generation, data handling, and data evaluation are outlined. (orig.) [de

  2. Statistical analysis of thermal conductivity of nanofluid containing ...

    Indian Academy of Sciences (India)

    Thermal conductivity measurements of nanofluids were analysed via two-factor completely randomized design and comparison of data means is carried out with Duncan's multiple-range test. Statistical analysis of experimental data show that temperature and weight fraction have a reasonable impact on the thermal ...

  3. Asymptotic analysis of spatial discretizations in implicit Monte Carlo

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.

    2009-01-01

    We perform an asymptotic analysis of spatial discretizations in Implicit Monte Carlo (IMC). We consider two asymptotic scalings: one that represents a time step that resolves the mean-free time, and one that corresponds to a fixed, optically large time step. We show that only the latter scaling results in a valid spatial discretization of the proper diffusion equation, and thus we conclude that IMC only yields accurate solutions when using optically large spatial cells if time steps are also optically large. We demonstrate the validity of our analysis with a set of numerical examples.

  4. Multivariate statistical analysis of precipitation chemistry in Northwestern Spain

    International Nuclear Information System (INIS)

    Prada-Sanchez, J.M.; Garcia-Jurado, I.; Gonzalez-Manteiga, W.; Fiestras-Janeiro, M.G.; Espada-Rios, M.I.; Lucas-Dominguez, T.

    1993-01-01

    149 samples of rainwater were collected in the proximity of a power station in northwestern Spain at three rainwater monitoring stations. The resulting data are analyzed using multivariate statistical techniques. Firstly, the Principal Component Analysis shows that there are three main sources of pollution in the area (a marine source, a rural source and an acid source). The impact from pollution from these sources on the immediate environment of the stations is studied using Factorial Discriminant Analysis. 8 refs., 7 figs., 11 tabs

  5. Implementation and statistical analysis of Metropolis algorithm for SU(3)

    International Nuclear Information System (INIS)

    Katznelson, E.; Nobile, A.

    1984-12-01

    In this paper we study the statistical properties of an implementation of the Metropolis algorithm for SU(3) gauge theory. It is shown that the results have normal distribution. We demonstrate that in this case error analysis can be carried on in a simple way and we show that applying it to both the measurement strategy and the output data analysis has an important influence on the performance and reliability of the simulation. (author)

  6. Multivariate statistical analysis of precipitation chemistry in Northwestern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Prada-Sanchez, J.M.; Garcia-Jurado, I.; Gonzalez-Manteiga, W.; Fiestras-Janeiro, M.G.; Espada-Rios, M.I.; Lucas-Dominguez, T. (University of Santiago, Santiago (Spain). Faculty of Mathematics, Dept. of Statistics and Operations Research)

    1993-07-01

    149 samples of rainwater were collected in the proximity of a power station in northwestern Spain at three rainwater monitoring stations. The resulting data are analyzed using multivariate statistical techniques. Firstly, the Principal Component Analysis shows that there are three main sources of pollution in the area (a marine source, a rural source and an acid source). The impact from pollution from these sources on the immediate environment of the stations is studied using Factorial Discriminant Analysis. 8 refs., 7 figs., 11 tabs.

  7. Reducing bias in the analysis of counting statistics data

    International Nuclear Information System (INIS)

    Hammersley, A.P.; Antoniadis, A.

    1997-01-01

    In the analysis of counting statistics data it is common practice to estimate the variance of the measured data points as the data points themselves. This practice introduces a bias into the results of further analysis which may be significant, and under certain circumstances lead to false conclusions. In the case of normal weighted least squares fitting this bias is quantified and methods to avoid it are proposed. (orig.)

  8. Fisher statistics for analysis of diffusion tensor directional information.

    Science.gov (United States)

    Hutchinson, Elizabeth B; Rutecki, Paul A; Alexander, Andrew L; Sutula, Thomas P

    2012-04-30

    A statistical approach is presented for the quantitative analysis of diffusion tensor imaging (DTI) directional information using Fisher statistics, which were originally developed for the analysis of vectors in the field of paleomagnetism. In this framework, descriptive and inferential statistics have been formulated based on the Fisher probability density function, a spherical analogue of the normal distribution. The Fisher approach was evaluated for investigation of rat brain DTI maps to characterize tissue orientation in the corpus callosum, fornix, and hilus of the dorsal hippocampal dentate gyrus, and to compare directional properties in these regions following status epilepticus (SE) or traumatic brain injury (TBI) with values in healthy brains. Direction vectors were determined for each region of interest (ROI) for each brain sample and Fisher statistics were applied to calculate the mean direction vector and variance parameters in the corpus callosum, fornix, and dentate gyrus of normal rats and rats that experienced TBI or SE. Hypothesis testing was performed by calculation of Watson's F-statistic and associated p-value giving the likelihood that grouped observations were from the same directional distribution. In the fornix and midline corpus callosum, no directional differences were detected between groups, however in the hilus, significant (pstatistical comparison of tissue structural orientation. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. HistFitter software framework for statistical data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baak, M. [CERN, Geneva (Switzerland); Besjes, G.J. [Radboud University Nijmegen, Nijmegen (Netherlands); Nikhef, Amsterdam (Netherlands); Cote, D. [University of Texas, Arlington (United States); Koutsman, A. [TRIUMF, Vancouver (Canada); Lorenz, J. [Ludwig-Maximilians-Universitaet Muenchen, Munich (Germany); Excellence Cluster Universe, Garching (Germany); Short, D. [University of Oxford, Oxford (United Kingdom)

    2015-04-15

    We present a software framework for statistical data analysis, called HistFitter, that has been used extensively by the ATLAS Collaboration to analyze big datasets originating from proton-proton collisions at the Large Hadron Collider at CERN. Since 2012 HistFitter has been the standard statistical tool in searches for supersymmetric particles performed by ATLAS. HistFitter is a programmable and flexible framework to build, book-keep, fit, interpret and present results of data models of nearly arbitrary complexity. Starting from an object-oriented configuration, defined by users, the framework builds probability density functions that are automatically fit to data and interpreted with statistical tests. Internally HistFitter uses the statistics packages RooStats and HistFactory. A key innovation of HistFitter is its design, which is rooted in analysis strategies of particle physics. The concepts of control, signal and validation regions are woven into its fabric. These are progressively treated with statistically rigorous built-in methods. Being capable of working with multiple models at once that describe the data, HistFitter introduces an additional level of abstraction that allows for easy bookkeeping, manipulation and testing of large collections of signal hypotheses. Finally, HistFitter provides a collection of tools to present results with publication quality style through a simple command-line interface. (orig.)

  10. HistFitter software framework for statistical data analysis

    International Nuclear Information System (INIS)

    Baak, M.; Besjes, G.J.; Cote, D.; Koutsman, A.; Lorenz, J.; Short, D.

    2015-01-01

    We present a software framework for statistical data analysis, called HistFitter, that has been used extensively by the ATLAS Collaboration to analyze big datasets originating from proton-proton collisions at the Large Hadron Collider at CERN. Since 2012 HistFitter has been the standard statistical tool in searches for supersymmetric particles performed by ATLAS. HistFitter is a programmable and flexible framework to build, book-keep, fit, interpret and present results of data models of nearly arbitrary complexity. Starting from an object-oriented configuration, defined by users, the framework builds probability density functions that are automatically fit to data and interpreted with statistical tests. Internally HistFitter uses the statistics packages RooStats and HistFactory. A key innovation of HistFitter is its design, which is rooted in analysis strategies of particle physics. The concepts of control, signal and validation regions are woven into its fabric. These are progressively treated with statistically rigorous built-in methods. Being capable of working with multiple models at once that describe the data, HistFitter introduces an additional level of abstraction that allows for easy bookkeeping, manipulation and testing of large collections of signal hypotheses. Finally, HistFitter provides a collection of tools to present results with publication quality style through a simple command-line interface. (orig.)

  11. Multisite longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging of healthy elderly subjects.

    Science.gov (United States)

    Jovicich, Jorge; Marizzoni, Moira; Bosch, Beatriz; Bartrés-Faz, David; Arnold, Jennifer; Benninghoff, Jens; Wiltfang, Jens; Roccatagliata, Luca; Picco, Agnese; Nobili, Flavio; Blin, Oliver; Bombois, Stephanie; Lopes, Renaud; Bordet, Régis; Chanoine, Valérie; Ranjeva, Jean-Philippe; Didic, Mira; Gros-Dagnac, Hélène; Payoux, Pierre; Zoccatelli, Giada; Alessandrini, Franco; Beltramello, Alberto; Bargalló, Núria; Ferretti, Antonio; Caulo, Massimo; Aiello, Marco; Ragucci, Monica; Soricelli, Andrea; Salvadori, Nicola; Tarducci, Roberto; Floridi, Piero; Tsolaki, Magda; Constantinidis, Manos; Drevelegas, Antonios; Rossini, Paolo Maria; Marra, Camillo; Otto, Josephin; Reiss-Zimmermann, Martin; Hoffmann, Karl-Titus; Galluzzi, Samantha; Frisoni, Giovanni B

    2014-11-01

    Large-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological processes that change in time, both in healthy and diseased brains. The predictive power of such longitudinal models will always be limited by the reproducibility of repeated measures acquired during different sessions. At present, there is limited quantitative knowledge about the across-session reproducibility of standard diffusion metrics in 3T multi-centric studies on subjects in stable conditions, in particular when using tract based spatial statistics and with elderly people. In this study we implemented a multi-site brain diffusion protocol in 10 clinical 3T MRI sites distributed across 4 countries in Europe (Italy, Germany, France and Greece) using vendor provided sequences from Siemens (Allegra, Trio Tim, Verio, Skyra, Biograph mMR), Philips (Achieva) and GE (HDxt) scanners. We acquired DTI data (2 × 2 × 2 mm(3), b = 700 s/mm(2), 5 b0 and 30 diffusion weighted volumes) of a group of healthy stable elderly subjects (5 subjects per site) in two separate sessions at least a week apart. For each subject and session four scalar diffusion metrics were considered: fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial (AD) diffusivity. The diffusion metrics from multiple subjects and sessions at each site were aligned to their common white matter skeleton using tract-based spatial statistics. The reproducibility at each MRI site was examined by looking at group averages of absolute changes relative to the mean (%) on various parameters: i) reproducibility of the signal-to-noise ratio (SNR) of the b0 images in centrum semiovale, ii) full brain test-retest differences of the diffusion metric maps on the white matter skeleton, iii) reproducibility of the diffusion metrics on atlas-based white matter ROIs on the white matter skeleton. Despite the differences of MRI scanner

  12. Spatial analysis of Schistosomiasis in Hubei Province, China: a GIS-based analysis of Schistosomiasis from 2009 to 2013.

    Directory of Open Access Journals (Sweden)

    Yan-Yan Chen

    Full Text Available Schistosomiasis remains a major public health problem in China. The major endemic areas are located in the lake and marshland regions of southern China, particularly in areas along the middle and low reach of the Yangtze River. Spatial analytical techniques are often used in epidemiology to identify spatial clusters in disease regions. This study assesses the spatial distribution of schistosomiasis and explores high-risk regions in Hubei Province, China to provide guidance on schistosomiasis control in marshland regions.In this study, spatial autocorrelation methodologies, including global Moran's I and local Getis-Ord statistics, were utilized to describe and map spatial clusters and areas where human Schistosoma japonicum infection is prevalent at the county level in Hubei province. In addition, linear logistic regression model was used to determine the characteristics of spatial autocorrelation with time.The infection rates of S. japonicum decreased from 2009 to 2013. The global autocorrelation analysis results on the infection rate of S. japonicum for five years showed statistical significance (Moran's I > 0, P < 0.01, which suggested that spatial clusters were present in the distribution of S. japonicum infection from 2009 to 2013. Local autocorrelation analysis results showed that the number of highly aggregated areas ranged from eight to eleven within the five-year analysis period. The highly aggregated areas were mainly distributed in eight counties.The spatial distribution of human S. japonicum infections did not exhibit a temporal change at the county level in Hubei Province. The risk factors that influence human S. japonicum transmission may not have changed after achieving the national criterion of infection control. The findings indicated that spatial-temporal surveillance of S. japonicum transmission plays a significant role on schistosomiasis control. Timely and integrated prevention should be continued, especially in the Yangtze

  13. Detecting the Land-Cover Changes Induced by Large-Physical Disturbances Using Landscape Metrics, Spatial Sampling, Simulation and Spatial Analysis

    Directory of Open Access Journals (Sweden)

    Hone-Jay Chu

    2009-08-01

    Full Text Available The objectives of the study are to integrate the conditional Latin Hypercube Sampling (cLHS, sequential Gaussian simulation (SGS and spatial analysis in remotely sensed images, to monitor the effects of large chronological disturbances on spatial characteristics of landscape changes including spatial heterogeneity and variability. The multiple NDVI images demonstrate that spatial patterns of disturbed landscapes were successfully delineated by spatial analysis such as variogram, Moran’I and landscape metrics in the study area. The hybrid method delineates the spatial patterns and spatial variability of landscapes caused by these large disturbances. The cLHS approach is applied to select samples from Normalized Difference Vegetation Index (NDVI images from SPOT HRV images in the Chenyulan watershed of Taiwan, and then SGS with sufficient samples is used to generate maps of NDVI images. In final, the NDVI simulated maps are verified using indexes such as the correlation coefficient and mean absolute error (MAE. Therefore, the statistics and spatial structures of multiple NDVI images present a very robust behavior, which advocates the use of the index for the quantification of the landscape spatial patterns and land cover change. In addition, the results transferred by Open Geospatial techniques can be accessed from web-based and end-user applications of the watershed management.

  14. A spatial cluster analysis of tractor overturns in Kentucky from 1960 to 2002.

    Directory of Open Access Journals (Sweden)

    Daniel M Saman

    Full Text Available Agricultural tractor overturns without rollover protective structures are the leading cause of farm fatalities in the United States. To our knowledge, no studies have incorporated the spatial scan statistic in identifying high-risk areas for tractor overturns. The aim of this study was to determine whether tractor overturns cluster in certain parts of Kentucky and identify factors associated with tractor overturns.A spatial statistical analysis using Kulldorff's spatial scan statistic was performed to identify county clusters at greatest risk for tractor overturns. A regression analysis was then performed to identify factors associated with tractor overturns.The spatial analysis revealed a cluster of higher than expected tractor overturns in four counties in northern Kentucky (RR = 2.55 and 10 counties in eastern Kentucky (RR = 1.97. Higher rates of tractor overturns were associated with steeper average percent slope of pasture land by county (p = 0.0002 and a greater percent of total tractors with less than 40 horsepower by county (p<0.0001.This study reveals that geographic hotspots of tractor overturns exist in Kentucky and identifies factors associated with overturns. This study provides policymakers a guide to targeted county-level interventions (e.g., roll-over protective structures promotion interventions with the intention of reducing tractor overturns in the highest risk counties in Kentucky.

  15. STATCAT, Statistical Analysis of Parametric and Non-Parametric Data

    International Nuclear Information System (INIS)

    David, Hugh

    1990-01-01

    1 - Description of program or function: A suite of 26 programs designed to facilitate the appropriate statistical analysis and data handling of parametric and non-parametric data, using classical and modern univariate and multivariate methods. 2 - Method of solution: Data is read entry by entry, using a choice of input formats, and the resultant data bank is checked for out-of- range, rare, extreme or missing data. The completed STATCAT data bank can be treated by a variety of descriptive and inferential statistical methods, and modified, using other standard programs as required

  16. Statistical analysis of absorptive laser damage in dielectric thin films

    International Nuclear Information System (INIS)

    Budgor, A.B.; Luria-Budgor, K.F.

    1978-01-01

    The Weibull distribution arises as an example of the theory of extreme events. It is commonly used to fit statistical data arising in the failure analysis of electrical components and in DC breakdown of materials. This distribution is employed to analyze time-to-damage and intensity-to-damage statistics obtained when irradiating thin film coated samples of SiO 2 , ZrO 2 , and Al 2 O 3 with tightly focused laser beams. The data used is furnished by Milam. The fit to the data is excellent; and least squared correlation coefficients greater than 0.9 are often obtained

  17. Analytical and statistical analysis of elemental composition of lichens

    International Nuclear Information System (INIS)

    Calvelo, S.; Baccala, N.; Bubach, D.; Arribere, M.A.; Riberio Guevara, S.

    1997-01-01

    The elemental composition of lichens from remote southern South America regions has been studied with analytical and statistical techniques to determine if the values obtained reflect species, growth forms or habitat characteristics. The enrichment factors are calculated discriminated by species and collection site and compared with data available in the literature. The elemental concentrations are standardized and compared for different species. The information was statistically processed, a cluster analysis was performed using the three first principal axes of the PCA; the three groups formed are presented. Their relationship with the species, collection sites and the lichen growth forms are interpreted. (author)

  18. Detecting errors in micro and trace analysis by using statistics

    DEFF Research Database (Denmark)

    Heydorn, K.

    1993-01-01

    By assigning a standard deviation to each step in an analytical method it is possible to predict the standard deviation of each analytical result obtained by this method. If the actual variability of replicate analytical results agrees with the expected, the analytical method is said...... to be in statistical control. Significant deviations between analytical results from different laboratories reveal the presence of systematic errors, and agreement between different laboratories indicate the absence of systematic errors. This statistical approach, referred to as the analysis of precision, was applied...

  19. Multivariate statistical analysis of atom probe tomography data

    International Nuclear Information System (INIS)

    Parish, Chad M.; Miller, Michael K.

    2010-01-01

    The application of spectrum imaging multivariate statistical analysis methods, specifically principal component analysis (PCA), to atom probe tomography (APT) data has been investigated. The mathematical method of analysis is described and the results for two example datasets are analyzed and presented. The first dataset is from the analysis of a PM 2000 Fe-Cr-Al-Ti steel containing two different ultrafine precipitate populations. PCA properly describes the matrix and precipitate phases in a simple and intuitive manner. A second APT example is from the analysis of an irradiated reactor pressure vessel steel. Fine, nm-scale Cu-enriched precipitates having a core-shell structure were identified and qualitatively described by PCA. Advantages, disadvantages, and future prospects for implementing these data analysis methodologies for APT datasets, particularly with regard to quantitative analysis, are also discussed.

  20. Visual and statistical analysis of {sup 18}F-FDG PET in primary progressive aphasia

    Energy Technology Data Exchange (ETDEWEB)

    Matias-Guiu, Jordi A.; Moreno-Ramos, Teresa; Garcia-Ramos, Rocio; Fernandez-Matarrubia, Marta; Oreja-Guevara, Celia; Matias-Guiu, Jorge [Hospital Clinico San Carlos, Department of Neurology, Madrid (Spain); Cabrera-Martin, Maria Nieves; Perez-Castejon, Maria Jesus; Rodriguez-Rey, Cristina; Ortega-Candil, Aida; Carreras, Jose Luis [San Carlos Health Research Institute (IdISSC) Complutense University of Madrid, Department of Nuclear Medicine, Hospital Clinico San Carlos, Madrid (Spain)

    2015-05-01

    Diagnosing progressive primary aphasia (PPA) and its variants is of great clinical importance, and fluorodeoxyglucose (FDG) positron emission tomography (PET) may be a useful diagnostic technique. The purpose of this study was to evaluate interobserver variability in the interpretation of FDG PET images in PPA as well as the diagnostic sensitivity and specificity of the technique. We also aimed to compare visual and statistical analyses of these images. There were 10 raters who analysed 44 FDG PET scans from 33 PPA patients and 11 controls. Five raters analysed the images visually, while the other five used maps created using Statistical Parametric Mapping software. Two spatial normalization procedures were performed: global mean normalization and cerebellar normalization. Clinical diagnosis was considered the gold standard. Inter-rater concordance was moderate for visual analysis (Fleiss' kappa 0.568) and substantial for statistical analysis (kappa 0.756-0.881). Agreement was good for all three variants of PPA except for the nonfluent/agrammatic variant studied with visual analysis. The sensitivity and specificity of each rater's diagnosis of PPA was high, averaging 87.8 and 89.9 % for visual analysis and 96.9 and 90.9 % for statistical analysis using global mean normalization, respectively. In cerebellar normalization, sensitivity was 88.9 % and specificity 100 %. FDG PET demonstrated high diagnostic accuracy for the diagnosis of PPA and its variants. Inter-rater concordance was higher for statistical analysis, especially for the nonfluent/agrammatic variant. These data support the use of FDG PET to evaluate patients with PPA and show that statistical analysis methods are particularly useful for identifying the nonfluent/agrammatic variant of PPA. (orig.)

  1. Visual and statistical analysis of 18F-FDG PET in primary progressive aphasia

    International Nuclear Information System (INIS)

    Matias-Guiu, Jordi A.; Moreno-Ramos, Teresa; Garcia-Ramos, Rocio; Fernandez-Matarrubia, Marta; Oreja-Guevara, Celia; Matias-Guiu, Jorge; Cabrera-Martin, Maria Nieves; Perez-Castejon, Maria Jesus; Rodriguez-Rey, Cristina; Ortega-Candil, Aida; Carreras, Jose Luis

    2015-01-01

    Diagnosing progressive primary aphasia (PPA) and its variants is of great clinical importance, and fluorodeoxyglucose (FDG) positron emission tomography (PET) may be a useful diagnostic technique. The purpose of this study was to evaluate interobserver variability in the interpretation of FDG PET images in PPA as well as the diagnostic sensitivity and specificity of the technique. We also aimed to compare visual and statistical analyses of these images. There were 10 raters who analysed 44 FDG PET scans from 33 PPA patients and 11 controls. Five raters analysed the images visually, while the other five used maps created using Statistical Parametric Mapping software. Two spatial normalization procedures were performed: global mean normalization and cerebellar normalization. Clinical diagnosis was considered the gold standard. Inter-rater concordance was moderate for visual analysis (Fleiss' kappa 0.568) and substantial for statistical analysis (kappa 0.756-0.881). Agreement was good for all three variants of PPA except for the nonfluent/agrammatic variant studied with visual analysis. The sensitivity and specificity of each rater's diagnosis of PPA was high, averaging 87.8 and 89.9 % for visual analysis and 96.9 and 90.9 % for statistical analysis using global mean normalization, respectively. In cerebellar normalization, sensitivity was 88.9 % and specificity 100 %. FDG PET demonstrated high diagnostic accuracy for the diagnosis of PPA and its variants. Inter-rater concordance was higher for statistical analysis, especially for the nonfluent/agrammatic variant. These data support the use of FDG PET to evaluate patients with PPA and show that statistical analysis methods are particularly useful for identifying the nonfluent/agrammatic variant of PPA. (orig.)

  2. Spatial statistics of hydrography and water chemistry in a eutrophic boreal lake based on sounding and water samples.

    Science.gov (United States)

    Leppäranta, Matti; Lewis, John E; Heini, Anniina; Arvola, Lauri

    2018-06-04

    Spatial variability, an essential characteristic of lake ecosystems, has often been neglected in field research and monitoring. In this study, we apply spatial statistical methods for the key physics and chemistry variables and chlorophyll a over eight sampling dates in two consecutive years in a large (area 103 km 2 ) eutrophic boreal lake in southern Finland. In the four summer sampling dates, the water body was vertically and horizontally heterogenic except with color and DOC, in the two winter ice-covered dates DO was vertically stratified, while in the two autumn dates, no significant spatial differences in any of the measured variables were found. Chlorophyll a concentration was one order of magnitude lower under the ice cover than in open water. The Moran statistic for spatial correlation was significant for chlorophyll a and NO 2 +NO 3 -N in all summer situations and for dissolved oxygen and pH in three cases. In summer, the mass centers of the chemicals were within 1.5 km from the geometric center of the lake, and the 2nd moment radius ranged in 3.7-4.1 km respective to 3.9 km for the homogeneous situation. The lateral length scales of the studied variables were 1.5-2.5 km, about 1 km longer in the surface layer. The detected spatial "noise" strongly suggests that besides vertical variation also the horizontal variation in eutrophic lakes, in particular, should be considered when the ecosystems are monitored.

  3. Data management and statistical analysis for environmental assessment

    International Nuclear Information System (INIS)

    Wendelberger, J.R.; McVittie, T.I.

    1995-01-01

    Data management and statistical analysis for environmental assessment are important issues on the interface of computer science and statistics. Data collection for environmental decision making can generate large quantities of various types of data. A database/GIS system developed is described which provides efficient data storage as well as visualization tools which may be integrated into the data analysis process. FIMAD is a living database and GIS system. The system has changed and developed over time to meet the needs of the Los Alamos National Laboratory Restoration Program. The system provides a repository for data which may be accessed by different individuals for different purposes. The database structure is driven by the large amount and varied types of data required for environmental assessment. The integration of the database with the GIS system provides the foundation for powerful visualization and analysis capabilities

  4. Explorations in statistics: the analysis of ratios and normalized data.

    Science.gov (United States)

    Curran-Everett, Douglas

    2013-09-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This ninth installment of Explorations in Statistics explores the analysis of ratios and normalized-or standardized-data. As researchers, we compute a ratio-a numerator divided by a denominator-to compute a proportion for some biological response or to derive some standardized variable. In each situation, we want to control for differences in the denominator when the thing we really care about is the numerator. But there is peril lurking in a ratio: only if the relationship between numerator and denominator is a straight line through the origin will the ratio be meaningful. If not, the ratio will misrepresent the true relationship between numerator and denominator. In contrast, regression techniques-these include analysis of covariance-are versatile: they can accommodate an analysis of the relationship between numerator and denominator when a ratio is useless.

  5. Feature-Based Statistical Analysis of Combustion Simulation Data

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, J; Krishnamoorthy, V; Liu, S; Grout, R; Hawkes, E; Chen, J; Pascucci, V; Bremer, P T

    2011-11-18

    We present a new framework for feature-based statistical analysis of large-scale scientific data and demonstrate its effectiveness by analyzing features from Direct Numerical Simulations (DNS) of turbulent combustion. Turbulent flows are ubiquitous and account for transport and mixing processes in combustion, astrophysics, fusion, and climate modeling among other disciplines. They are also characterized by coherent structure or organized motion, i.e. nonlocal entities whose geometrical features can directly impact molecular mixing and reactive processes. While traditional multi-point statistics provide correlative information, they lack nonlocal structural information, and hence, fail to provide mechanistic causality information between organized fluid motion and mixing and reactive processes. Hence, it is of great interest to capture and track flow features and their statistics together with their correlation with relevant scalar quantities, e.g. temperature or species concentrations. In our approach we encode the set of all possible flow features by pre-computing merge trees augmented with attributes, such as statistical moments of various scalar fields, e.g. temperature, as well as length-scales computed via spectral analysis. The computation is performed in an efficient streaming manner in a pre-processing step and results in a collection of meta-data that is orders of magnitude smaller than the original simulation data. This meta-data is sufficient to support a fully flexible and interactive analysis of the features, allowing for arbitrary thresholds, providing per-feature statistics, and creating various global diagnostics such as Cumulative Density Functions (CDFs), histograms, or time-series. We combine the analysis with a rendering of the features in a linked-view browser that enables scientists to interactively explore, visualize, and analyze the equivalent of one terabyte of simulation data. We highlight the utility of this new framework for combustion

  6. Inferring spatial clouds statistics from limited field-of-view, zenith observations

    Energy Technology Data Exchange (ETDEWEB)

    Sun, C.H.; Thorne, L.R. [Sandia National Labs., Livermore, CA (United States)

    1996-04-01

    Many of the Cloud and Radiation Testbed (CART) measurements produce a time series of zenith observations, but spatial averages are often the desired data product. One possible approach to deriving spatial averages from temporal averages is to invoke Taylor`s hypothesis where and when it is valid. Taylor`s hypothesis states that when the turbulence is small compared with the mean flow, the covariance in time is related to the covariance in space by the speed of the mean flow. For clouds fields, Taylor`s hypothesis would apply when the {open_quotes}local{close_quotes} turbulence is small compared with advective flow (mean wind). The objective of this study is to determine under what conditions Taylor`s hypothesis holds or does not hold true for broken cloud fields.

  7. Spatial statistics of magnetic field in two-dimensional chaotic flow in the resistive growth stage

    Energy Technology Data Exchange (ETDEWEB)

    Kolokolov, I.V., E-mail: igor.kolokolov@gmail.com [Landau Institute for Theoretical Physics RAS, 119334, Kosygina 2, Moscow (Russian Federation); NRU Higher School of Economics, 101000, Myasnitskaya 20, Moscow (Russian Federation)

    2017-03-18

    The correlation tensors of magnetic field in a two-dimensional chaotic flow of conducting fluid are studied. It is shown that there is a stage of resistive evolution where the field correlators grow exponentially with time. The two- and four-point field correlation tensors are computed explicitly in this stage in the framework of Batchelor–Kraichnan–Kazantsev model. They demonstrate strong temporal intermittency of the field fluctuations and high level of non-Gaussianity in spatial field distribution.

  8. Provincial-level spatial statistical modelling of the change in per capita disposable Family Income in Spain, 1975-1983

    Directory of Open Access Journals (Sweden)

    Daniel A. Griffith

    1998-02-01

    Full Text Available Computational simplifications for a space-time autoregressive response model specification are explored for the change in Spain's per capita disposable family income between 1975 and 1983. The geographic resolution for this analysis is the provincial partitioning of part of the Iberian peninsula into Spain's 47 coterminous provinces coupled with its 3 island clusters provinces. In keeping with the Paelinckian tradition of spatial econometrics, exploration focuses on both new spatial econometric estimators and model specifications that emphasize the capturing of spatial dependency effects in the mean response term. One goal of this analysis is to differentiate between spatial, temporal, and space-time interaction information contained in the per capita disposable family income data. A second objective of the application is to illustrate the utility of extending computational simplifications from the spatial to the space-time domain. And a third purpose is to gain some substantive insights into the economic development of one country in a changing Europe. A serendipitous outcome of this investigation is a detailed analysis of locational information latent in Spain's regionally disaggregated per capita disposable family income.

  9. Building the Community Online Resource for Statistical Seismicity Analysis (CORSSA)

    Science.gov (United States)

    Michael, A. J.; Wiemer, S.; Zechar, J. D.; Hardebeck, J. L.; Naylor, M.; Zhuang, J.; Steacy, S.; Corssa Executive Committee

    2010-12-01

    Statistical seismology is critical to the understanding of seismicity, the testing of proposed earthquake prediction and forecasting methods, and the assessment of seismic hazard. Unfortunately, despite its importance to seismology - especially to those aspects with great impact on public policy - statistical seismology is mostly ignored in the education of seismologists, and there is no central repository for the existing open-source software tools. To remedy these deficiencies, and with the broader goal to enhance the quality of statistical seismology research, we have begun building the Community Online Resource for Statistical Seismicity Analysis (CORSSA). CORSSA is a web-based educational platform that is authoritative, up-to-date, prominent, and user-friendly. We anticipate that the users of CORSSA will range from beginning graduate students to experienced researchers. More than 20 scientists from around the world met for a week in Zurich in May 2010 to kick-start the creation of CORSSA: the format and initial table of contents were defined; a governing structure was organized; and workshop participants began drafting articles. CORSSA materials are organized with respect to six themes, each containing between four and eight articles. The CORSSA web page, www.corssa.org, officially unveiled on September 6, 2010, debuts with an initial set of approximately 10 to 15 articles available online for viewing and commenting with additional articles to be added over the coming months. Each article will be peer-reviewed and will present a balanced discussion, including illustrative examples and code snippets. Topics in the initial set of articles will include: introductions to both CORSSA and statistical seismology, basic statistical tests and their role in seismology; understanding seismicity catalogs and their problems; basic techniques for modeling seismicity; and methods for testing earthquake predictability hypotheses. A special article will compare and review

  10. CORSSA: Community Online Resource for Statistical Seismicity Analysis

    Science.gov (United States)

    Zechar, J. D.; Hardebeck, J. L.; Michael, A. J.; Naylor, M.; Steacy, S.; Wiemer, S.; Zhuang, J.

    2011-12-01

    Statistical seismology is critical to the understanding of seismicity, the evaluation of proposed earthquake prediction and forecasting methods, and the assessment of seismic hazard. Unfortunately, despite its importance to seismology-especially to those aspects with great impact on public policy-statistical seismology is mostly ignored in the education of seismologists, and there is no central repository for the existing open-source software tools. To remedy these deficiencies, and with the broader goal to enhance the quality of statistical seismology research, we have begun building the Community Online Resource for Statistical Seismicity Analysis (CORSSA, www.corssa.org). We anticipate that the users of CORSSA will range from beginning graduate students to experienced researchers. More than 20 scientists from around the world met for a week in Zurich in May 2010 to kick-start the creation of CORSSA: the format and initial table of contents were defined; a governing structure was organized; and workshop participants began drafting articles. CORSSA materials are organized with respect to six themes, each will contain between four and eight articles. CORSSA now includes seven articles with an additional six in draft form along with forums for discussion, a glossary, and news about upcoming meetings, special issues, and recent papers. Each article is peer-reviewed and presents a balanced discussion, including illustrative examples and code snippets. Topics in the initial set of articles include: introductions to both CORSSA and statistical seismology, basic statistical tests and their role in seismology; understanding seismicity catalogs and their problems; basic techniques for modeling seismicity; and methods for testing earthquake predictability hypotheses. We have also begun curating a collection of statistical seismology software packages.

  11. Diffusion tensor imaging of Parkinson's disease, multiple system atrophy and progressive supranuclear palsy: a tract-based spatial statistics study.

    Directory of Open Access Journals (Sweden)

    Amanda Worker

    Full Text Available Although often clinically indistinguishable in the early stages, Parkinson's disease (PD, Multiple System Atrophy (MSA and Progressive Supranuclear Palsy (PSP have distinct neuropathological changes. The aim of the current study was to identify white matter tract neurodegeneration characteristic of each of the three syndromes. Tract-based spatial statistics (TBSS was used to perform a whole-brain automated analysis of diffusion tensor imaging (DTI data to compare differences in fractional anisotropy (FA and mean diffusivity (MD between the three clinical groups and healthy control subjects. Further analyses were conducted to assess the relationship between these putative indices of white matter microstructure and clinical measures of disease severity and symptoms. In PSP, relative to controls, changes in DTI indices consistent with white matter tract degeneration were identified in the corpus callosum, corona radiata, corticospinal tract, superior longitudinal fasciculus, anterior thalamic radiation, superior cerebellar peduncle, medial lemniscus, retrolenticular and anterior limb of the internal capsule, cerebral peduncle and external capsule bilaterally, as well as the left posterior limb of the internal capsule and the right posterior thalamic radiation. MSA patients also displayed differences in the body of the corpus callosum corticospinal tract, cerebellar peduncle, medial lemniscus, anterior and superior corona radiata, posterior limb of the internal capsule external capsule and cerebral peduncle bilaterally, as well as the left anterior limb of the internal capsule and the left anterior thalamic radiation. No significant white matter abnormalities were observed in the PD group. Across groups, MD correlated positively with disease severity in all major white matter tracts. These results show widespread changes in white matter tracts in both PSP and MSA patients, even at a mid-point in the disease process, which are not found in patients

  12. Assessment of tuberculosis spatial hotspot areas in Antananarivo, Madagascar, by combining spatial analysis and genotyping.

    Science.gov (United States)

    Ratovonirina, Noël Harijaona; Rakotosamimanana, Niaina; Razafimahatratra, Solohery Lalaina; Raherison, Mamy Serge; Refrégier, Guislaine; Sola, Christophe; Rakotomanana, Fanjasoa; Rasolofo Razanamparany, Voahangy

    2017-08-14

    Tuberculosis (TB) remains a public health problem in Madagascar. A crucial element of TB control is the development of an easy and rapid method for the orientation of TB control strategies in the country. Our main objective was to develop a TB spatial hotspot identification method by combining spatial analysis and TB genotyping method in Antananarivo. Sputa of new pulmonary TB cases from 20 TB diagnosis and treatment centers (DTCs) in Antananarivo were collected from August 2013 to May 2014 for culture. Mycobacterium tuberculosis complex (MTBC) clinical isolates were typed by spoligotyping on a Luminex® 200 platform. All TB patients were respectively localized according to their neighborhood residence and the spatial distribution of all pulmonary TB patients and patients with genotypic clustered isolates were scanned respectively by the Kulldorff spatial scanning method for identification of significant spatial clustering. Areas exhibiting spatial clustering of patients with genotypic clustered isolates were considered as hotspot TB areas for transmission. Overall, 467 new cases were included in the study, and 394 spoligotypes were obtained (84.4%). New TB cases were distributed in 133 of the 192 Fokontany (administrative neighborhoods) of Antananarivo (1 to 15 clinical patients per Fokontany) and patients with genotypic clustered isolates were distributed in 127 of the 192 Fokontany (1 to 13 per Fokontany). A single spatial focal point of epidemics was detected when ignoring genotypic data (p = 0.039). One Fokontany of this focal point and three additional ones were detected to be spatially clustered when taking genotypes into account (p Madagascar and will allow better TB control strategies by public health authorities.

  13. State analysis of BOP using statistical and heuristic methods

    International Nuclear Information System (INIS)

    Heo, Gyun Young; Chang, Soon Heung

    2003-01-01

    Under the deregulation environment, the performance enhancement of BOP in nuclear power plants is being highlighted. To analyze performance level of BOP, we use the performance test procedures provided from an authorized institution such as ASME. However, through plant investigation, it was proved that the requirements of the performance test procedures about the reliability and quantity of sensors was difficult to be satisfied. As a solution of this, state analysis method that are the expanded concept of signal validation, was proposed on the basis of the statistical and heuristic approaches. Authors recommended the statistical linear regression model by analyzing correlation among BOP parameters as a reference state analysis method. Its advantage is that its derivation is not heuristic, it is possible to calculate model uncertainty, and it is easy to apply to an actual plant. The error of the statistical linear regression model is below 3% under normal as well as abnormal system states. Additionally a neural network model was recommended since the statistical model is impossible to apply to the validation of all of the sensors and is sensitive to the outlier that is the signal located out of a statistical distribution. Because there are a lot of sensors need to be validated in BOP, wavelet analysis (WA) were applied as a pre-processor for the reduction of input dimension and for the enhancement of training accuracy. The outlier localization capability of WA enhanced the robustness of the neural network. The trained neural network restored the degraded signals to the values within ±3% of the true signals

  14. Computerized statistical analysis with bootstrap method in nuclear medicine

    International Nuclear Information System (INIS)

    Zoccarato, O.; Sardina, M.; Zatta, G.; De Agostini, A.; Barbesti, S.; Mana, O.; Tarolo, G.L.

    1988-01-01

    Statistical analysis of data samples involves some hypothesis about the features of data themselves. The accuracy of these hypotheses can influence the results of statistical inference. Among the new methods of computer-aided statistical analysis, the bootstrap method appears to be one of the most powerful, thanks to its ability to reproduce many artificial samples starting from a single original sample and because it works without hypothesis about data distribution. The authors applied the bootstrap method to two typical situation of Nuclear Medicine Department. The determination of the normal range of serum ferritin, as assessed by radioimmunoassay and defined by the mean value ±2 standard deviations, starting from an experimental sample of small dimension, shows an unacceptable lower limit (ferritin plasmatic levels below zero). On the contrary, the results obtained by elaborating 5000 bootstrap samples gives ans interval of values (10.95 ng/ml - 72.87 ng/ml) corresponding to the normal ranges commonly reported. Moreover the authors applied the bootstrap method in evaluating the possible error associated with the correlation coefficient determined between left ventricular ejection fraction (LVEF) values obtained by first pass radionuclide angiocardiography with 99m Tc and 195m Au. The results obtained indicate a high degree of statistical correlation and give the range of r 2 values to be considered acceptable for this type of studies

  15. Statistical analysis of the Ft. Calhoun reactor coolant pump system

    International Nuclear Information System (INIS)

    Heising, Carolyn D.

    1998-01-01

    In engineering science, statistical quality control techniques have traditionally been applied to control manufacturing processes. An application to commercial nuclear power plant maintenance and control is presented that can greatly improve plant safety. As a demonstration of such an approach to plant maintenance and control, a specific system is analyzed: the reactor coolant pumps (RCPs) of the Ft. Calhoun nuclear power plant. This research uses capability analysis, Shewhart X-bar, R-charts, canonical correlation methods, and design of experiments to analyze the process for the state of statistical control. The results obtained show that six out of ten parameters are under control specifications limits and four parameters are not in the state of statistical control. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators Such a system would provide operators with ample time to respond to possible emergency situations and thus improve plant safety and reliability. (author)

  16. Statistical analysis of the Ft. Calhoun reactor coolant pump system

    International Nuclear Information System (INIS)

    Patel, Bimal; Heising, C.D.

    1997-01-01

    In engineering science, statistical quality control techniques have traditionally been applied to control manufacturing processes. An application to commercial nuclear power plant maintenance and control is presented that can greatly improve plant safety. As a demonstration of such an approach, a specific system is analyzed: the reactor coolant pumps (RCPs) of the Ft. Calhoun nuclear power plant. This research uses capability analysis, Shewhart X-bar, R charts, canonical correlation methods, and design of experiments to analyze the process for the state of statistical control. The results obtained show that six out of ten parameters are under control specification limits and four parameters are not in the state of statistical control. The analysis shows that statistical process control methods can be applied as an early warning system capable of identifying significant equipment problems well in advance of traditional control room alarm indicators. Such a system would provide operators with ample time to respond to possible emergency situations and thus improve plant safety and reliability. (Author)

  17. STATISTICAL ANALYSIS OF THE HEAVY NEUTRAL ATOMS MEASURED BY IBEX

    International Nuclear Information System (INIS)

    Park, Jeewoo; Kucharek, Harald; Möbius, Eberhard; Galli, André; Livadiotis, George; Fuselier, Steve A.; McComas, David J.

    2015-01-01

    We investigate the directional distribution of heavy neutral atoms in the heliosphere by using heavy neutral maps generated with the IBEX-Lo instrument over three years from 2009 to 2011. The interstellar neutral (ISN) O and Ne gas flow was found in the first-year heavy neutral map at 601 keV and its flow direction and temperature were studied. However, due to the low counting statistics, researchers have not treated the full sky maps in detail. The main goal of this study is to evaluate the statistical significance of each pixel in the heavy neutral maps to get a better understanding of the directional distribution of heavy neutral atoms in the heliosphere. Here, we examine three statistical analysis methods: the signal-to-noise filter, the confidence limit method, and the cluster analysis method. These methods allow us to exclude background from areas where the heavy neutral signal is statistically significant. These methods also allow the consistent detection of heavy neutral atom structures. The main emission feature expands toward lower longitude and higher latitude from the observational peak of the ISN O and Ne gas flow. We call this emission the extended tail. It may be an imprint of the secondary oxygen atoms generated by charge exchange between ISN hydrogen atoms and oxygen ions in the outer heliosheath

  18. Software for statistical data analysis used in Higgs searches

    International Nuclear Information System (INIS)

    Gumpert, Christian; Moneta, Lorenzo; Cranmer, Kyle; Kreiss, Sven; Verkerke, Wouter

    2014-01-01

    The analysis and interpretation of data collected by the Large Hadron Collider (LHC) requires advanced statistical tools in order to quantify the agreement between observation and theoretical models. RooStats is a project providing a statistical framework for data analysis with the focus on discoveries, confidence intervals and combination of different measurements in both Bayesian and frequentist approaches. It employs the RooFit data modelling language where mathematical concepts such as variables, (probability density) functions and integrals are represented as C++ objects. RooStats and RooFit rely on the persistency technology of the ROOT framework. The usage of a common data format enables the concept of digital publishing of complicated likelihood functions. The statistical tools have been developed in close collaboration with the LHC experiments to ensure their applicability to real-life use cases. Numerous physics results have been produced using the RooStats tools, with the discovery of the Higgs boson by the ATLAS and CMS experiments being certainly the most popular among them. We will discuss tools currently used by LHC experiments to set exclusion limits, to derive confidence intervals and to estimate discovery significances based on frequentist statistics and the asymptotic behaviour of likelihood functions. Furthermore, new developments in RooStats and performance optimisation necessary to cope with complex models depending on more than 1000 variables will be reviewed

  19. A kernel version of spatial factor analysis

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    2009-01-01

    . Schölkopf et al. introduce kernel PCA. Shawe-Taylor and Cristianini is an excellent reference for kernel methods in general. Bishop and Press et al. describe kernel methods among many other subjects. Nielsen and Canty use kernel PCA to detect change in univariate airborne digital camera images. The kernel...... version of PCA handles nonlinearities by implicitly transforming data into high (even infinite) dimensional feature space via the kernel function and then performing a linear analysis in that space. In this paper we shall apply kernel versions of PCA, maximum autocorrelation factor (MAF) analysis...

  20. Application of Fourier analysis to multispectral/spatial recognition

    Science.gov (United States)

    Hornung, R. J.; Smith, J. A.

    1973-01-01

    One approach for investigating spectral response from materials is to consider spatial features of the response. This might be accomplished by considering the Fourier spectrum of the spatial response. The Fourier Transform may be used in a one-dimensional to multidimensional analysis of more than one channel of data. The two-dimensional transform represents the Fraunhofer diffraction pattern of the image in optics and has certain invariant features. Physically the diffraction pattern contains spatial features which are possibly unique to a given configuration or classification type. Different sampling strategies may be used to either enhance geometrical differences or extract additional features.

  1. A digital elevation analysis: Spatially distributed flow apportioning algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Hyun; Kim, Kyung-Hyun [Pusan National University, Pusan(Korea); Jung, Sun-Hee [Korea Environment Institute, (Korea)

    2001-06-30

    A flow determination algorithm is proposed for the distributed hydrologic model. The advantages of a single flow direction scheme and multiple flow direction schemes are selectively considered to address the drawbacks of existing algorithms. A spatially varied flow apportioning factor is introduced in order to accommodate the accumulated area from upslope cells. The channel initiation threshold area(CIT) concept is expanded and integrated into the spatially distributed flow apportioning algorithm in order to delineate a realistic channel network. An application of a field example suggests that the linearly distributed flow apportioning scheme provides some advantages over existing approaches, such as the relaxation of over-dissipation problems near channel cells, the connectivity feature of river cells, the continuity of saturated areas and the negligence of the optimization of few parameters in existing algorithms. The effects of grid sizes are explored spatially as well as statistically. (author). 28 refs., 7 figs.

  2. Conditional Probability Analysis: A Statistical Tool for Environmental Analysis.

    Science.gov (United States)

    The use and application of environmental conditional probability analysis (CPA) is relatively recent. The first presentation using CPA was made in 2002 at the New England Association of Environmental Biologists Annual Meeting in Newport. Rhode Island. CPA has been used since the...

  3. Modeling the effect of urban infrastructure on hydrologic processes within i-Tree Hydro, a statistically and spatially distributed model

    Science.gov (United States)

    Taggart, T. P.; Endreny, T. A.; Nowak, D.

    2014-12-01

    Gray and green infrastructure in urban environments alters many natural hydrologic processes, creating an urban water balance unique to the developed environment. A common way to assess the consequences of impervious cover and grey infrastructure is by measuring runoff hydrographs. This focus on the watershed outlet masks the spatial variation of hydrologic process alterations across the urban environment in response to localized landscape characteristics. We attempt to represent this spatial variation in the urban environment using the statistically and spatially distributed i-Tree Hydro model, a scoping level urban forest effects water balance model. i-Tree Hydro has undergone expansion and modification to include the effect of green infrastructure processes, road network attributes, and urban pipe system leakages. These additions to the model are intended to increase the understanding of the altered urban hydrologic cycle by examining the effects of the location of these structures on the water balance. Specifically, the effect of these additional structures and functions on the spatially varying properties of interception, soil moisture and runoff generation. Differences in predicted properties and optimized parameter sets between the two models are examined and related to the recent landscape modifications. Datasets used in this study consist of watersheds and sewersheds within the Syracuse, NY metropolitan area, an urban area that has integrated green and gray infrastructure practices to alleviate stormwater problems.

  4. A statistical test for outlier identification in data envelopment analysis

    Directory of Open Access Journals (Sweden)

    Morteza Khodabin

    2010-09-01

    Full Text Available In the use of peer group data to assess individual, typical or best practice performance, the effective detection of outliers is critical for achieving useful results. In these ‘‘deterministic’’ frontier models, statistical theory is now mostly available. This paper deals with the statistical pared sample method and its capability of detecting outliers in data envelopment analysis. In the presented method, each observation is deleted from the sample once and the resulting linear program is solved, leading to a distribution of efficiency estimates. Based on the achieved distribution, a pared test is designed to identify the potential outlier(s. We illustrate the method through a real data set. The method could be used in a first step, as an exploratory data analysis, before using any frontier estimation.

  5. Statistical analysis of the determinations of the Sun's Galactocentric distance

    Science.gov (United States)

    Malkin, Zinovy

    2013-02-01

    Based on several tens of R0 measurements made during the past two decades, several studies have been performed to derive the best estimate of R0. Some used just simple averaging to derive a result, whereas others provided comprehensive analyses of possible errors in published results. In either case, detailed statistical analyses of data used were not performed. However, a computation of the best estimates of the Galactic rotation constants is not only an astronomical but also a metrological task. Here we perform an analysis of 53 R0 measurements (published in the past 20 years) to assess the consistency of the data. Our analysis shows that they are internally consistent. It is also shown that any trend in the R0 estimates from the last 20 years is statistically negligible, which renders the presence of a bandwagon effect doubtful. On the other hand, the formal errors in the published R0 estimates improve significantly with time.

  6. Statistical analysis of first period of operation of FTU Tokamak

    International Nuclear Information System (INIS)

    Crisanti, F.; Apruzzese, G.; Frigione, D.; Kroegler, H.; Lovisetto, L.; Mazzitelli, G.; Podda, S.

    1996-09-01

    On the FTU Tokamak the plasma physics operations started on the 20/4/90. The first plasma had a plasma current Ip=0.75 MA for about a second. The experimental phase lasted until 7/7/94, when a long shut-down begun for installing the toroidal limiter in the inner side of the vacuum vessel. In these four years of operations plasma experiments have been successfully exploited, e.g. experiments of single and multiple pellet injections; full current drive up to Ip=300 KA was obtained by using waves at the frequency of the Lower Hybrid; analysis of ohmic plasma parameters with different materials (from the low Z silicon to high Z tungsten) as plasma facing element was performed. In this work a statistical analysis of the full period of operation is presented. Moreover, a comparison with the statistical data from other Tokamaks is attempted

  7. Statistics in experimental design, preprocessing, and analysis of proteomics data.

    Science.gov (United States)

    Jung, Klaus

    2011-01-01

    High-throughput experiments in proteomics, such as 2-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), yield usually high-dimensional data sets of expression values for hundreds or thousands of proteins which are, however, observed on only a relatively small number of biological samples. Statistical methods for the planning and analysis of experiments are important to avoid false conclusions and to receive tenable results. In this chapter, the most frequent experimental designs for proteomics experiments are illustrated. In particular, focus is put on studies for the detection of differentially regulated proteins. Furthermore, issues of sample size planning, statistical analysis of expression levels as well as methods for data preprocessing are covered.

  8. Statistical analysis of RHIC beam position monitors performance

    Science.gov (United States)

    Calaga, R.; Tomás, R.

    2004-04-01

    A detailed statistical analysis of beam position monitors (BPM) performance at RHIC is a critical factor in improving regular operations and future runs. Robust identification of malfunctioning BPMs plays an important role in any orbit or turn-by-turn analysis. Singular value decomposition and Fourier transform methods, which have evolved as powerful numerical techniques in signal processing, will aid in such identification from BPM data. This is the first attempt at RHIC to use a large set of data to statistically enhance the capability of these two techniques and determine BPM performance. A comparison from run 2003 data shows striking agreement between the two methods and hence can be used to improve BPM functioning at RHIC and possibly other accelerators.

  9. Statistical analysis of RHIC beam position monitors performance

    Directory of Open Access Journals (Sweden)

    R. Calaga

    2004-04-01

    Full Text Available A detailed statistical analysis of beam position monitors (BPM performance at RHIC is a critical factor in improving regular operations and future runs. Robust identification of malfunctioning BPMs plays an important role in any orbit or turn-by-turn analysis. Singular value decomposition and Fourier transform methods, which have evolved as powerful numerical techniques in signal processing, will aid in such identification from BPM data. This is the first attempt at RHIC to use a large set of data to statistically enhance the capability of these two techniques and determine BPM performance. A comparison from run 2003 data shows striking agreement between the two methods and hence can be used to improve BPM functioning at RHIC and possibly other accelerators.

  10. Common pitfalls in statistical analysis: Odds versus risk

    Science.gov (United States)

    Ranganathan, Priya; Aggarwal, Rakesh; Pramesh, C. S.

    2015-01-01

    In biomedical research, we are often interested in quantifying the relationship between an exposure and an outcome. “Odds” and “Risk” are the most common terms which are used as measures of association between variables. In this article, which is the fourth in the series of common pitfalls in statistical analysis, we explain the meaning of risk and odds and the difference between the two. PMID:26623395

  11. Statistical and machine learning approaches for network analysis

    CERN Document Server

    Dehmer, Matthias

    2012-01-01

    Explore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internation

  12. Statistical Challenges of Big Data Analysis in Medicine

    Czech Academy of Sciences Publication Activity Database

    Kalina, Jan

    2015-01-01

    Roč. 3, č. 1 (2015), s. 24-27 ISSN 1805-8698 R&D Projects: GA ČR GA13-23940S Grant - others:CESNET Development Fund(CZ) 494/2013 Institutional support: RVO:67985807 Keywords : big data * variable selection * classification * cluster analysis Subject RIV: BB - Applied Statistics, Operational Research http://www.ijbh.org/ijbh2015-1.pdf

  13. Research and Development on Food Nutrition Statistical Analysis Software System

    OpenAIRE

    Du Li; Ke Yun

    2013-01-01

    Designing and developing a set of food nutrition component statistical analysis software can realize the automation of nutrition calculation, improve the nutrition processional professional’s working efficiency and achieve the informatization of the nutrition propaganda and education. In the software development process, the software engineering method and database technology are used to calculate the human daily nutritional intake and the intelligent system is used to evaluate the user’s hea...

  14. Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation

    OpenAIRE

    Rajiv D. Banker

    1993-01-01

    This paper provides a formal statistical basis for the efficiency evaluation techniques of data envelopment analysis (DEA). DEA estimators of the best practice monotone increasing and concave production function are shown to be also maximum likelihood estimators if the deviation of actual output from the efficient output is regarded as a stochastic variable with a monotone decreasing probability density function. While the best practice frontier estimator is biased below the theoretical front...

  15. Lifetime statistics of quantum chaos studied by a multiscale analysis

    KAUST Repository

    Di Falco, A.

    2012-04-30

    In a series of pump and probe experiments, we study the lifetime statistics of a quantum chaotic resonator when the number of open channels is greater than one. Our design embeds a stadium billiard into a two dimensional photonic crystal realized on a silicon-on-insulator substrate. We calculate resonances through a multiscale procedure that combines energy landscape analysis and wavelet transforms. Experimental data is found to follow the universal predictions arising from random matrix theory with an excellent level of agreement.

  16. Statistical Analysis of the Exchange Rate of Bitcoin

    Science.gov (United States)

    Chu, Jeffrey; Nadarajah, Saralees; Chan, Stephen

    2015-01-01

    Bitcoin, the first electronic payment system, is becoming a popular currency. We provide a statistical analysis of the log-returns of the exchange rate of Bitcoin versus the United States Dollar. Fifteen of the most popular parametric distributions in finance are fitted to the log-returns. The generalized hyperbolic distribution is shown to give the best fit. Predictions are given for future values of the exchange rate. PMID:26222702

  17. Statistical Analysis of the Exchange Rate of Bitcoin.

    Directory of Open Access Journals (Sweden)

    Jeffrey Chu

    Full Text Available Bitcoin, the first electronic payment system, is becoming a popular currency. We provide a statistical analysis of the log-returns of the exchange rate of Bitcoin versus the United States Dollar. Fifteen of the most popular parametric distributions in finance are fitted to the log-returns. The generalized hyperbolic distribution is shown to give the best fit. Predictions are given for future values of the exchange rate.

  18. Statistical Analysis of the Exchange Rate of Bitcoin.

    Science.gov (United States)

    Chu, Jeffrey; Nadarajah, Saralees; Chan, Stephen

    2015-01-01

    Bitcoin, the first electronic payment system, is becoming a popular currency. We provide a statistical analysis of the log-returns of the exchange rate of Bitcoin versus the United States Dollar. Fifteen of the most popular parametric distributions in finance are fitted to the log-returns. The generalized hyperbolic distribution is shown to give the best fit. Predictions are given for future values of the exchange rate.

  19. Analysis of spectral data with rare events statistics

    International Nuclear Information System (INIS)

    Ilyushchenko, V.I.; Chernov, N.I.

    1990-01-01

    The case is considered of analyzing experimental data, when the results of individual experimental runs cannot be summed due to large systematic errors. A statistical analysis of the hypothesis about the persistent peaks in the spectra has been performed by means of the Neyman-Pearson test. The computations demonstrate the confidence level for the hypothesis about the presence of a persistent peak in the spectrum is proportional to the square root of the number of independent experimental runs, K. 5 refs

  20. Australasian Resuscitation In Sepsis Evaluation trial statistical analysis plan.

    Science.gov (United States)

    Delaney, Anthony; Peake, Sandra L; Bellomo, Rinaldo; Cameron, Peter; Holdgate, Anna; Howe, Belinda; Higgins, Alisa; Presneill, Jeffrey; Webb, Steve

    2013-10-01

    The Australasian Resuscitation In Sepsis Evaluation (ARISE) study is an international, multicentre, randomised, controlled trial designed to evaluate the effectiveness of early goal-directed therapy compared with standard care for patients presenting to the ED with severe sepsis. In keeping with current practice, and taking into considerations aspects of trial design and reporting specific to non-pharmacologic interventions, this document outlines the principles and methods for analysing and reporting the trial results. The document is prepared prior to completion of recruitment into the ARISE study, without knowledge of the results of the interim analysis conducted by the data safety and monitoring committee and prior to completion of the two related international studies. The statistical analysis plan was designed by the ARISE chief investigators, and reviewed and approved by the ARISE steering committee. The data collected by the research team as specified in the study protocol, and detailed in the study case report form were reviewed. Information related to baseline characteristics, characteristics of delivery of the trial interventions, details of resuscitation and other related therapies, and other relevant data are described with appropriate comparisons between groups. The primary, secondary and tertiary outcomes for the study are defined, with description of the planned statistical analyses. A statistical analysis plan was developed, along with a trial profile, mock-up tables and figures. A plan for presenting baseline characteristics, microbiological and antibiotic therapy, details of the interventions, processes of care and concomitant therapies, along with adverse events are described. The primary, secondary and tertiary outcomes are described along with identification of subgroups to be analysed. A statistical analysis plan for the ARISE study has been developed, and is available in the public domain, prior to the completion of recruitment into the

  1. Kernel parameter dependence in spatial factor analysis

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    2010-01-01

    kernel PCA. Shawe-Taylor and Cristianini [4] is an excellent reference for kernel methods in general. Bishop [5] and Press et al. [6] describe kernel methods among many other subjects. The kernel version of PCA handles nonlinearities by implicitly transforming data into high (even infinite) dimensional...... feature space via the kernel function and then performing a linear analysis in that space. In this paper we shall apply a kernel version of maximum autocorrelation factor (MAF) [7, 8] analysis to irregularly sampled stream sediment geochemistry data from South Greenland and illustrate the dependence...... of the kernel width. The 2,097 samples each covering on average 5 km2 are analyzed chemically for the content of 41 elements....

  2. Uncertainties in repository performance from spatial variability of hydraulic conductivities - statistical estimation and stochastic simulation using PROPER

    International Nuclear Information System (INIS)

    Lovius, L.; Norman, S.; Kjellbert, N.

    1990-02-01

    An assessment has been made of the impact of spatial variability on the performance of a KBS-3 type repository. The uncertainties in geohydrologically related performance measures have been investigated using conductivity data from one of the Swedish study sites. The analysis was carried out with the PROPER code and the FSCF10 submodel. (authors)

  3. Precision Statistical Analysis of Images Based on Brightness Distribution

    Directory of Open Access Journals (Sweden)

    Muzhir Shaban Al-Ani

    2017-07-01

    Full Text Available Study the content of images is considered an important topic in which reasonable and accurate analysis of images are generated. Recently image analysis becomes a vital field because of huge number of images transferred via transmission media in our daily life. These crowded media with images lead to highlight in research area of image analysis. In this paper, the implemented system is passed into many steps to perform the statistical measures of standard deviation and mean values of both color and grey images. Whereas the last step of the proposed method concerns to compare the obtained results in different cases of the test phase. In this paper, the statistical parameters are implemented to characterize the content of an image and its texture. Standard deviation, mean and correlation values are used to study the intensity distribution of the tested images. Reasonable results are obtained for both standard deviation and mean value via the implementation of the system. The major issue addressed in the work is concentrated on brightness distribution via statistical measures applying different types of lighting.

  4. SAS and R data management, statistical analysis, and graphics

    CERN Document Server

    Kleinman, Ken

    2009-01-01

    An All-in-One Resource for Using SAS and R to Carry out Common TasksProvides a path between languages that is easier than reading complete documentationSAS and R: Data Management, Statistical Analysis, and Graphics presents an easy way to learn how to perform an analytical task in both SAS and R, without having to navigate through the extensive, idiosyncratic, and sometimes unwieldy software documentation. The book covers many common tasks, such as data management, descriptive summaries, inferential procedures, regression analysis, and the creation of graphics, along with more complex applicat

  5. Neutron activation and statistical analysis of pottery from Thera, Greece

    International Nuclear Information System (INIS)

    Kilikoglou, V.; Grimanis, A.P.; Karayannis, M.I.

    1990-01-01

    Neutron activation analysis, in combination with multivariate analysis of the generated data, was used for the chemical characterization of prehistoric pottery from the Greek islands of Thera, Melos (islands with similar geology) and Crete. The statistical procedure which proved that Theran pottery could be distinguished from Melian is described. This discrimination, attained for the first time, was mainly based on the concentrations of the trace elements Sm, Yb, Lu and Cr. Also, Cretan imports to both Thera and Melos were clearly separable from local products. (author) 22 refs.; 1 fig.; 4 tabs

  6. Statistical Analysis of Hypercalcaemia Data related to Transferability

    DEFF Research Database (Denmark)

    Frølich, Anne; Nielsen, Bo Friis

    2005-01-01

    In this report we describe statistical analysis related to a study of hypercalcaemia carried out in the Copenhagen area in the ten year period from 1984 to 1994. Results from the study have previously been publised in a number of papers [3, 4, 5, 6, 7, 8, 9] and in various abstracts and posters...... at conferences during the late eighties and early nineties. In this report we give a more detailed description of many of the analysis and provide some new results primarily by simultaneous studies of several databases....

  7. Urban Transmission of American Cutaneous Leishmaniasis in Argentina: Spatial Analysis Study

    Science.gov (United States)

    Gil, José F.; Nasser, Julio R.; Cajal, Silvana P.; Juarez, Marisa; Acosta, Norma; Cimino, Rubén O.; Diosque, Patricio; Krolewiecki, Alejandro J.

    2010-01-01

    We used kernel density and scan statistics to examine the spatial distribution of cases of pediatric and adult American cutaneous leishmaniasis in an urban disease-endemic area in Salta Province, Argentina. Spatial analysis was used for the whole population and stratified by women > 14 years of age (n = 159), men > 14 years of age (n = 667), and children < 15 years of age (n = 213). Although kernel density for adults encompassed nearly the entire city, distribution in children was most prevalent in the peripheral areas of the city. Scan statistic analysis for adult males, adult females, and children found 11, 2, and 8 clusters, respectively. Clusters for children had the highest odds ratios (P < 0.05) and were located in proximity of plantations and secondary vegetation. The data from this study provide further evidence of the potential urban transmission of American cutaneous leishmaniasis in northern Argentina. PMID:20207869

  8. Analysis of Preference Data Using Intermediate Test Statistic Abstract

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    2013-06-01

    Jun 1, 2013 ... West African Journal of Industrial and Academic Research Vol.7 No. 1 June ... Keywords:-Preference data, Friedman statistic, multinomial test statistic, intermediate test statistic. ... new method and consequently a new statistic ...

  9. Statistical Analysis of 30 Years Rainfall Data: A Case Study

    Science.gov (United States)

    Arvind, G.; Ashok Kumar, P.; Girish Karthi, S.; Suribabu, C. R.

    2017-07-01

    Rainfall is a prime input for various engineering design such as hydraulic structures, bridges and culverts, canals, storm water sewer and road drainage system. The detailed statistical analysis of each region is essential to estimate the relevant input value for design and analysis of engineering structures and also for crop planning. A rain gauge station located closely in Trichy district is selected for statistical analysis where agriculture is the prime occupation. The daily rainfall data for a period of 30 years is used to understand normal rainfall, deficit rainfall, Excess rainfall and Seasonal rainfall of the selected circle headquarters. Further various plotting position formulae available is used to evaluate return period of monthly, seasonally and annual rainfall. This analysis will provide useful information for water resources planner, farmers and urban engineers to assess the availability of water and create the storage accordingly. The mean, standard deviation and coefficient of variation of monthly and annual rainfall was calculated to check the rainfall variability. From the calculated results, the rainfall pattern is found to be erratic. The best fit probability distribution was identified based on the minimum deviation between actual and estimated values. The scientific results and the analysis paved the way to determine the proper onset and withdrawal of monsoon results which were used for land preparation and sowing.

  10. Validation of statistical models for creep rupture by parametric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J., E-mail: john.bolton@uwclub.net [65, Fisher Ave., Rugby, Warks CV22 5HW (United Kingdom)

    2012-01-15

    Statistical analysis is an efficient method for the optimisation of any candidate mathematical model of creep rupture data, and for the comparative ranking of competing models. However, when a series of candidate models has been examined and the best of the series has been identified, there is no statistical criterion to determine whether a yet more accurate model might be devised. Hence there remains some uncertainty that the best of any series examined is sufficiently accurate to be considered reliable as a basis for extrapolation. This paper proposes that models should be validated primarily by parametric graphical comparison to rupture data and rupture gradient data. It proposes that no mathematical model should be considered reliable for extrapolation unless the visible divergence between model and data is so small as to leave no apparent scope for further reduction. This study is based on the data for a 12% Cr alloy steel used in BS PD6605:1998 to exemplify its recommended statistical analysis procedure. The models considered in this paper include a) a relatively simple model, b) the PD6605 recommended model and c) a more accurate model of somewhat greater complexity. - Highlights: Black-Right-Pointing-Pointer The paper discusses the validation of creep rupture models derived from statistical analysis. Black-Right-Pointing-Pointer It demonstrates that models can be satisfactorily validated by a visual-graphic comparison of models to data. Black-Right-Pointing-Pointer The method proposed utilises test data both as conventional rupture stress and as rupture stress gradient. Black-Right-Pointing-Pointer The approach is shown to be more reliable than a well-established and widely used method (BS PD6605).

  11. Abnormal white matter integrity in chronic users of codeine-containing cough syrups: a tract-based spatial statistics study.

    Science.gov (United States)

    Qiu, Y-W; Su, H-H; Lv, X-F; Jiang, G-H

    2015-01-01

    Codeine-containing cough syrups have become one of the most popular drugs of abuse in young people in the world. Chronic codeine-containing cough syrup abuse is related to impairments in a broad range of cognitive functions. However, the potential brain white matter impairment caused by chronic codeine-containing cough syrup abuse has not been reported previously. Our aim was to investigate abnormalities in the microstructure of brain white matter in chronic users of codeine-containing syrups and to determine whether these WM abnormalities are related to the duration of the use these syrups and clinical impulsivity. Thirty chronic codeine-containing syrup users and 30 matched controls were evaluated. Diffusion tensor imaging was performed by using a single-shot spin-echo-planar sequence. Whole-brain voxelwise analysis of fractional anisotropy was performed by using tract-based spatial statistics to localize abnormal WM regions. The Barratt Impulsiveness Scale 11 was surveyed to assess participants' impulsivity. Volume-of-interest analysis was used to detect changes of diffusivity indices in regions with fractional anisotropy abnormalities. Abnormal fractional anisotropy was extracted and correlated with clinical impulsivity and the duration of codeine-containing syrup use. Chronic codeine-containing syrup users had significantly lower fractional anisotropy in the inferior fronto-occipital fasciculus of the bilateral temporo-occipital regions, right frontal region, and the right corona radiata WM than controls. There were significant negative correlations among fractional anisotropy values of the right frontal region of the inferior fronto-occipital fasciculus and the right superior corona radiata WM and Barratt Impulsiveness Scale total scores, and between the right frontal region of the inferior fronto-occipital fasciculus and nonplan impulsivity scores in chronic codeine-containing syrup users. There was also a significant negative correlation between fractional

  12. Automated Analysis of 123I-beta-CIT SPECT Images with Statistical Probabilistic Anatomical Mapping

    International Nuclear Information System (INIS)

    Eo, Jae Seon; Lee, Hoyoung; Lee, Jae Sung; Kim, Yu Kyung; Jeon, Bumseok; Lee, Dong Soo

    2014-01-01

    Population-based statistical probabilistic anatomical maps have been used to generate probabilistic volumes of interest for analyzing perfusion and metabolic brain imaging. We investigated the feasibility of automated analysis for dopamine transporter images using this technique and evaluated striatal binding potentials in Parkinson's disease and Wilson's disease. We analyzed 2β-Carbomethoxy-3β-(4- 123 I-iodophenyl)tropane ( 123 I-beta-CIT) SPECT images acquired from 26 people with Parkinson's disease (M:F=11:15,mean age=49±12 years), 9 people with Wilson's disease (M: F=6:3, mean age=26±11 years) and 17 normal controls (M:F=5:12, mean age=39±16 years). A SPECT template was created using striatal statistical probabilistic map images. All images were spatially normalized onto the template, and probability-weighted regional counts in striatal structures were estimated. The binding potential was calculated using the ratio of specific and nonspecific binding activities at equilibrium. Voxel-based comparisons between groups were also performed using statistical parametric mapping. Qualitative assessment showed that spatial normalizations of the SPECT images were successful for all images. The striatal binding potentials of participants with Parkinson's disease and Wilson's disease were significantly lower than those of normal controls. Statistical parametric mapping analysis found statistically significant differences only in striatal regions in both disease groups compared to controls. We successfully evaluated the regional 123 I-beta-CIT distribution using the SPECT template and probabilistic map data automatically. This procedure allows an objective and quantitative comparison of the binding potential, which in this case showed a significantly decreased binding potential in the striata of patients with Parkinson's disease or Wilson's disease

  13. Spatial data analysis for exploration of regional scale geothermal resources

    Science.gov (United States)

    Moghaddam, Majid Kiavarz; Noorollahi, Younes; Samadzadegan, Farhad; Sharifi, Mohammad Ali; Itoi, Ryuichi

    2013-10-01

    Defining a comprehensive conceptual model of the resources sought is one of the most important steps in geothermal potential mapping. In this study, Fry analysis as a spatial distribution method and 5% well existence, distance distribution, weights of evidence (WofE), and evidential belief function (EBFs) methods as spatial association methods were applied comparatively to known geothermal occurrences, and to publicly-available regional-scale geoscience data in Akita and Iwate provinces within the Tohoku volcanic arc, in northern Japan. Fry analysis and rose diagrams revealed similar directional patterns of geothermal wells and volcanoes, NNW-, NNE-, NE-trending faults, hotsprings and fumaroles. Among the spatial association methods, WofE defined a conceptual model correspondent with the real world situations, approved with the aid of expert opinion. The results of the spatial association analyses quantitatively indicated that the known geothermal occurrences are strongly spatially-associated with geological features such as volcanoes, craters, NNW-, NNE-, NE-direction faults and geochemical features such as hotsprings, hydrothermal alteration zones and fumaroles. Geophysical data contains temperature gradients over 100 °C/km and heat flow over 100 mW/m2. In general, geochemical and geophysical data were better evidence layers than geological data for exploring geothermal resources. The spatial analyses of the case study area suggested that quantitative knowledge from hydrothermal geothermal resources was significantly useful for further exploration and for geothermal potential mapping in the case study region. The results can also be extended to the regions with nearly similar characteristics.

  14. Multivariate statistical analysis a high-dimensional approach

    CERN Document Server

    Serdobolskii, V

    2000-01-01

    In the last few decades the accumulation of large amounts of in­ formation in numerous applications. has stimtllated an increased in­ terest in multivariate analysis. Computer technologies allow one to use multi-dimensional and multi-parametric models successfully. At the same time, an interest arose in statistical analysis with a de­ ficiency of sample data. Nevertheless, it is difficult to describe the recent state of affairs in applied multivariate methods as satisfactory. Unimprovable (dominating) statistical procedures are still unknown except for a few specific cases. The simplest problem of estimat­ ing the mean vector with minimum quadratic risk is unsolved, even for normal distributions. Commonly used standard linear multivari­ ate procedures based on the inversion of sample covariance matrices can lead to unstable results or provide no solution in dependence of data. Programs included in standard statistical packages cannot process 'multi-collinear data' and there are no theoretical recommen­ ...

  15. Spatial Analysis and Safety Assessment of Social and Economic Development of Small and Medium Cities

    Directory of Open Access Journals (Sweden)

    Elena Anatolyevna Orekhova

    2016-12-01

    Full Text Available The article discusses the spatial patterns of socio-economic development of small and medium-sized cities in the Volgograd region. We know that small and medium-sized cities as spatial socio-economic systems are not only the support frame of settlement, but the main “engine” of innovative impulses for the surrounding periphery. The scientific novelty of the study consists in the effort to implement a spatial approach to the assessment of the economic security of small and medium-sized cities (SCR. The content of the economic security of cities is determined by two system characteristics of the socio-economic system: economic activity (EA and quality of life (QL of the urban population, or SCR = F (EA; QL. For finding spatial patterns in GIS, great interest is in investigating the environment of each city by calculating the local statistical characteristics of geo-variability which allow assessing trends of spatial variation of the six components of security (human security, technosphere safety, environmental safety, etc., local variations in emissions and their values indicators Ki. The successful solution of these problems is possible with the use of tools of exploratory spatial data analysis (ESDA in ARCGIS, and in particular, the Voronoy maps. The spatial approach has allowed to perform an integrated assessment of the economic security and to evaluate safety risks in small and medium-sized cities of the Volgograd region with the security system of indicators.

  16. Statistical wind analysis for near-space applications

    Science.gov (United States)

    Roney, Jason A.

    2007-09-01

    Statistical wind models were developed based on the existing observational wind data for near-space altitudes between 60 000 and 100 000 ft (18 30 km) above ground level (AGL) at two locations, Akon, OH, USA, and White Sands, NM, USA. These two sites are envisioned as playing a crucial role in the first flights of high-altitude airships. The analysis shown in this paper has not been previously applied to this region of the stratosphere for such an application. Standard statistics were compiled for these data such as mean, median, maximum wind speed, and standard deviation, and the data were modeled with Weibull distributions. These statistics indicated, on a yearly average, there is a lull or a “knee” in the wind between 65 000 and 72 000 ft AGL (20 22 km). From the standard statistics, trends at both locations indicated substantial seasonal variation in the mean wind speed at these heights. The yearly and monthly statistical modeling indicated that Weibull distributions were a reasonable model for the data. Forecasts and hindcasts were done by using a Weibull model based on 2004 data and comparing the model with the 2003 and 2005 data. The 2004 distribution was also a reasonable model for these years. Lastly, the Weibull distribution and cumulative function were used to predict the 50%, 95%, and 99% winds, which are directly related to the expected power requirements of a near-space station-keeping airship. These values indicated that using only the standard deviation of the mean may underestimate the operational conditions.

  17. Bayesian Sensitivity Analysis of Statistical Models with Missing Data.

    Science.gov (United States)

    Zhu, Hongtu; Ibrahim, Joseph G; Tang, Niansheng

    2014-04-01

    Methods for handling missing data depend strongly on the mechanism that generated the missing values, such as missing completely at random (MCAR) or missing at random (MAR), as well as other distributional and modeling assumptions at various stages. It is well known that the resulting estimates and tests may be sensitive to these assumptions as well as to outlying observations. In this paper, we introduce various perturbations to modeling assumptions and individual observations, and then develop a formal sensitivity analysis to assess these perturbations in the Bayesian analysis of statistical models with missing data. We develop a geometric framework, called the Bayesian perturbation manifold, to characterize the intrinsic structure of these perturbations. We propose several intrinsic influence measures to perform sensitivity analysis and quantify the effect of various perturbations to statistical models. We use the proposed sensitivity analysis procedure to systematically investigate the tenability of the non-ignorable missing at random (NMAR) assumption. Simulation studies are conducted to evaluate our methods, and a dataset is analyzed to illustrate the use of our diagnostic measures.

  18. Noise removing in encrypted color images by statistical analysis

    Science.gov (United States)

    Islam, N.; Puech, W.

    2012-03-01

    Cryptographic techniques are used to secure confidential data from unauthorized access but these techniques are very sensitive to noise. A single bit change in encrypted data can have catastrophic impact over the decrypted data. This paper addresses the problem of removing bit error in visual data which are encrypted using AES algorithm in the CBC mode. In order to remove the noise, a method is proposed which is based on the statistical analysis of each block during the decryption. The proposed method exploits local statistics of the visual data and confusion/diffusion properties of the encryption algorithm to remove the errors. Experimental results show that the proposed method can be used at the receiving end for the possible solution for noise removing in visual data in encrypted domain.

  19. Statistical Analysis Of Failure Strength Of Material Using Weibull Distribution

    International Nuclear Information System (INIS)

    Entin Hartini; Mike Susmikanti; Antonius Sitompul

    2008-01-01

    In evaluation of ceramic and glass materials strength a statistical approach is necessary Strength of ceramic and glass depend on its measure and size distribution of flaws in these material. The distribution of strength for ductile material is narrow and close to a Gaussian distribution while strength of brittle materials as ceramic and glass following Weibull distribution. The Weibull distribution is an indicator of the failure of material strength resulting from a distribution of flaw size. In this paper, cumulative probability of material strength to failure probability, cumulative probability of failure versus fracture stress and cumulative probability of reliability of material were calculated. Statistical criteria calculation supporting strength analysis of Silicon Nitride material were done utilizing MATLAB. (author)

  20. Multivariate statistical pattern recognition system for reactor noise analysis

    International Nuclear Information System (INIS)

    Gonzalez, R.C.; Howington, L.C.; Sides, W.H. Jr.; Kryter, R.C.

    1976-01-01

    A multivariate statistical pattern recognition system for reactor noise analysis was developed. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, and updating capabilities. System design emphasizes control of the false-alarm rate. The ability of the system to learn normal patterns of reactor behavior and to recognize deviations from these patterns was evaluated by experiments at the ORNL High-Flux Isotope Reactor (HFIR). Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the system

  1. Reactor noise analysis by statistical pattern recognition methods

    International Nuclear Information System (INIS)

    Howington, L.C.; Gonzalez, R.C.

    1976-01-01

    A multivariate statistical pattern recognition system for reactor noise analysis is presented. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, updating, and data compacting capabilities. System design emphasizes control of the false-alarm rate. Its abilities to learn normal patterns, to recognize deviations from these patterns, and to reduce the dimensionality of data with minimum error were evaluated by experiments at the Oak Ridge National Laboratory (ORNL) High-Flux Isotope Reactor. Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the pattern recognition system

  2. Multivariate statistical pattern recognition system for reactor noise analysis

    International Nuclear Information System (INIS)

    Gonzalez, R.C.; Howington, L.C.; Sides, W.H. Jr.; Kryter, R.C.

    1975-01-01

    A multivariate statistical pattern recognition system for reactor noise analysis was developed. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, and updating capabilities. System design emphasizes control of the false-alarm rate. The ability of the system to learn normal patterns of reactor behavior and to recognize deviations from these patterns was evaluated by experiments at the ORNL High-Flux Isotope Reactor (HFIR). Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the system. 19 references

  3. Statistical Mechanics Analysis of ATP Binding to a Multisubunit Enzyme

    International Nuclear Information System (INIS)

    Zhang Yun-Xin

    2014-01-01

    Due to inter-subunit communication, multisubunit enzymes usually hydrolyze ATP in a concerted fashion. However, so far the principle of this process remains poorly understood. In this study, from the viewpoint of statistical mechanics, a simple model is presented. In this model, we assume that the binding of ATP will change the potential of the corresponding enzyme subunit, and the degree of this change depends on the state of its adjacent subunits. The probability of enzyme in a given state satisfies the Boltzmann's distribution. Although it looks much simple, this model can fit the recent experimental data of chaperonin TRiC/CCT well. From this model, the dominant state of TRiC/CCT can be obtained. This study provide a new way to understand biophysical processe by statistical mechanics analysis. (interdisciplinary physics and related areas of science and technology)

  4. Statistical methods for data analysis in particle physics

    CERN Document Server

    AUTHOR|(CDS)2070643

    2015-01-01

    This concise set of course-based notes provides the reader with the main concepts and tools to perform statistical analysis of experimental data, in particular in the field of high-energy physics (HEP). First, an introduction to probability theory and basic statistics is given, mainly as reminder from advanced undergraduate studies, yet also in view to clearly distinguish the Frequentist versus Bayesian approaches and interpretations in subsequent applications. More advanced concepts and applications are gradually introduced, culminating in the chapter on upper limits as many applications in HEP concern hypothesis testing, where often the main goal is to provide better and better limits so as to be able to distinguish eventually between competing hypotheses or to rule out some of them altogether. Many worked examples will help newcomers to the field and graduate students to understand the pitfalls in applying theoretical concepts to actual data

  5. Statistical analysis of subjective preferences for video enhancement

    Science.gov (United States)

    Woods, Russell L.; Satgunam, PremNandhini; Bronstad, P. Matthew; Peli, Eli

    2010-02-01

    Measuring preferences for moving video quality is harder than for static images due to the fleeting and variable nature of moving video. Subjective preferences for image quality can be tested by observers indicating their preference for one image over another. Such pairwise comparisons can be analyzed using Thurstone scaling (Farrell, 1999). Thurstone (1927) scaling is widely used in applied psychology, marketing, food tasting and advertising research. Thurstone analysis constructs an arbitrary perceptual scale for the items that are compared (e.g. enhancement levels). However, Thurstone scaling does not determine the statistical significance of the differences between items on that perceptual scale. Recent papers have provided inferential statistical methods that produce an outcome similar to Thurstone scaling (Lipovetsky and Conklin, 2004). Here, we demonstrate that binary logistic regression can analyze preferences for enhanced video.

  6. A Stochastic Model of Space-Time Variability of Tropical Rainfall: I. Statistics of Spatial Averages

    Science.gov (United States)

    Kundu, Prasun K.; Bell, Thomas L.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Global maps of rainfall are of great importance in connection with modeling of the earth s climate. Comparison between the maps of rainfall predicted by computer-generated climate models with observation provides a sensitive test for these models. To make such a comparison, one typically needs the total precipitation amount over a large area, which could be hundreds of kilometers in size over extended periods of time of order days or months. This presents a difficult problem since rain varies greatly from place to place as well as in time. Remote sensing methods using ground radar or satellites detect rain over a large area by essentially taking a series of snapshots at infrequent intervals and indirectly deriving the average rain intensity within a collection of pixels , usually several kilometers in size. They measure area average of rain at a particular instant. Rain gauges, on the other hand, record rain accumulation continuously in time but only over a very small area tens of centimeters across, say, the size of a dinner plate. They measure only a time average at a single location. In making use of either method one needs to fill in the gaps in the observation - either the gaps in the area covered or the gaps in time of observation. This involves using statistical models to obtain information about the rain that is missed from what is actually detected. This paper investigates such a statistical model and validates it with rain data collected over the tropical Western Pacific from ship borne radars during TOGA COARE (Tropical Oceans Global Atmosphere Coupled Ocean-Atmosphere Response Experiment). The model incorporates a number of commonly observed features of rain. While rain varies rapidly with location and time, the variability diminishes when averaged over larger areas or longer periods of time. Moreover, rain is patchy in nature - at any instant on the average only a certain fraction of the observed pixels contain rain. The fraction of area covered by

  7. Statistical spatial properties of speckle patterns generated by multiple laser beams

    International Nuclear Information System (INIS)

    Le Cain, A.; Sajer, J. M.; Riazuelo, G.

    2011-01-01

    This paper investigates hot spot characteristics generated by the superposition of multiple laser beams. First, properties of speckle statistics are studied in the context of only one laser beam by computing the autocorrelation function. The case of multiple laser beams is then considered. In certain conditions, it is shown that speckles have an ellipsoidal shape. Analytical expressions of hot spot radii generated by multiple laser beams are derived and compared to numerical estimates made from the autocorrelation function. They are also compared to numerical simulations performed within the paraxial approximation. Excellent agreement is found for the speckle width as well as for the speckle length. Application to the speckle patterns generated in the Laser MegaJoule configuration in the zone where all the beams overlap is presented. Influence of polarization on the size of the speckles as well as on their abundance is studied.

  8. Chemical library subset selection algorithms: a unified derivation using spatial statistics.

    Science.gov (United States)

    Hamprecht, Fred A; Thiel, Walter; van Gunsteren, Wilfred F

    2002-01-01

    If similar compounds have similar activity, rational subset selection becomes superior to random selection in screening for pharmacological lead discovery programs. Traditional approaches to this experimental design problem fall into two classes: (i) a linear or quadratic response function is assumed (ii) some space filling criterion is optimized. The assumptions underlying the first approach are clear but not always defendable; the second approach yields more intuitive designs but lacks a clear theoretical foundation. We model activity in a bioassay as realization of a stochastic process and use the best linear unbiased estimator to construct spatial sampling designs that optimize the integrated mean square prediction error, the maximum mean square prediction error, or the entropy. We argue that our approach constitutes a unifying framework encompassing most proposed techniques as limiting cases and sheds light on their underlying assumptions. In particular, vector quantization is obtained, in dimensions up to eight, in the limiting case of very smooth response surfaces for the integrated mean square error criterion. Closest packing is obtained for very rough surfaces under the integrated mean square error and entropy criteria. We suggest to use either the integrated mean square prediction error or the entropy as optimization criteria rather than approximations thereof and propose a scheme for direct iterative minimization of the integrated mean square prediction error. Finally, we discuss how the quality of chemical descriptors manifests itself and clarify the assumptions underlying the selection of diverse or representative subsets.

  9. Statistical analysis plan for the EuroHYP-1 trial

    DEFF Research Database (Denmark)

    Winkel, Per; Bath, Philip M; Gluud, Christian

    2017-01-01

    Score; (4) brain infarct size at 48 +/-24 hours; (5) EQ-5D-5 L score, and (6) WHODAS 2.0 score. Other outcomes are: the primary safety outcome serious adverse events; and the incremental cost-effectiveness, and cost utility ratios. The analysis sets include (1) the intention-to-treat population, and (2...... outcome), logistic regression (binary outcomes), general linear model (continuous outcomes), and the Poisson or negative binomial model (rate outcomes). DISCUSSION: Major adjustments compared with the original statistical analysis plan encompass: (1) adjustment of analyses by nationality; (2) power......) the per protocol population. The sample size is estimated to 800 patients (5% type 1 and 20% type 2 errors). All analyses are adjusted for the protocol-specified stratification variables (nationality of centre), and the minimisation variables. In the analysis, we use ordinal regression (the primary...

  10. Data and statistical methods for analysis of trends and patterns

    International Nuclear Information System (INIS)

    Atwood, C.L.; Gentillon, C.D.; Wilson, G.E.

    1992-11-01

    This report summarizes topics considered at a working meeting on data and statistical methods for analysis of trends and patterns in US commercial nuclear power plants. This meeting was sponsored by the Office of Analysis and Evaluation of Operational Data (AEOD) of the Nuclear Regulatory Commission (NRC). Three data sets are briefly described: Nuclear Plant Reliability Data System (NPRDS), Licensee Event Report (LER) data, and Performance Indicator data. Two types of study are emphasized: screening studies, to see if any trends or patterns appear to be present; and detailed studies, which are more concerned with checking the analysis assumptions, modeling any patterns that are present, and searching for causes. A prescription is given for a screening study, and ideas are suggested for a detailed study, when the data take of any of three forms: counts of events per time, counts of events per demand, and non-event data

  11. STATISTICS. The reusable holdout: Preserving validity in adaptive data analysis.

    Science.gov (United States)

    Dwork, Cynthia; Feldman, Vitaly; Hardt, Moritz; Pitassi, Toniann; Reingold, Omer; Roth, Aaron

    2015-08-07

    Misapplication of statistical data analysis is a common cause of spurious discoveries in scientific research. Existing approaches to ensuring the validity of inferences drawn from data assume a fixed procedure to be performed, selected before the data are examined. In common practice, however, data analysis is an intrinsically adaptive process, with new analyses generated on the basis of data exploration, as well as the results of previous analyses on the same data. We demonstrate a new approach for addressing the challenges of adaptivity based on insights from privacy-preserving data analysis. As an application, we show how to safely reuse a holdout data set many times to validate the results of adaptively chosen analyses. Copyright © 2015, American Association for the Advancement of Science.

  12. International Conference on Modern Problems of Stochastic Analysis and Statistics

    CERN Document Server

    2017-01-01

    This book brings together the latest findings in the area of stochastic analysis and statistics. The individual chapters cover a wide range of topics from limit theorems, Markov processes, nonparametric methods, acturial science, population dynamics, and many others. The volume is dedicated to Valentin Konakov, head of the International Laboratory of Stochastic Analysis and its Applications on the occasion of his 70th birthday. Contributions were prepared by the participants of the international conference of the international conference “Modern problems of stochastic analysis and statistics”, held at the Higher School of Economics in Moscow from May 29 - June 2, 2016. It offers a valuable reference resource for researchers and graduate students interested in modern stochastics.

  13. Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography

    Science.gov (United States)

    Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.

    2014-11-01

    Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as "Muon Central Slice Theorem". Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction.

  14. Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography

    International Nuclear Information System (INIS)

    Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.

    2014-01-01

    Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as M uon Central Slice Theorem . Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction

  15. Tendency to occupy a statistically dominant spatial state of the flow as a driving force for turbulent transition.

    Science.gov (United States)

    Chekmarev, Sergei F

    2013-03-01

    The transition from laminar to turbulent fluid motion occurring at large Reynolds numbers is generally associated with the instability of the laminar flow. On the other hand, since the turbulent flow characteristically appears in the form of spatially localized structures (e.g., eddies) filling the flow field, a tendency to occupy such a structured state of the flow cannot be ruled out as a driving force for turbulent transition. To examine this possibility, we propose a simple analytical model that treats the flow as a collection of localized spatial structures, each of which consists of elementary cells in which the behavior of the particles (atoms or molecules) is uncorrelated. This allows us to introduce the Reynolds number, associating it with the ratio between the total phase volume for the system and that for the elementary cell. Using the principle of maximum entropy to calculate the most probable size distribution of the localized structures, we show that as the Reynolds number increases, the elementary cells group into the localized structures, which successfully explains turbulent transition and some other general properties of turbulent flows. An important feature of the present model is that a bridge between the spatial-statistical description of the flow and hydrodynamic equations is established. We show that the basic assumptions underlying the model, i.e., that the particles are indistinguishable and elementary volumes of phase space exist in which the state of the particles is uncertain, are involved in the derivation of the Navier-Stokes equation. Taking into account that the model captures essential features of turbulent flows, this suggests that the driving force for the turbulent transition is basically the same as in the present model, i.e., the tendency of the system to occupy a statistically dominant state plays a key role. The instability of the flow at high Reynolds numbers can then be a mechanism to initiate structural rearrangement of

  16. Consolidity analysis for fully fuzzy functions, matrices, probability and statistics

    Directory of Open Access Journals (Sweden)

    Walaa Ibrahim Gabr

    2015-03-01

    Full Text Available The paper presents a comprehensive review of the know-how for developing the systems consolidity theory for modeling, analysis, optimization and design in fully fuzzy environment. The solving of systems consolidity theory included its development for handling new functions of different dimensionalities, fuzzy analytic geometry, fuzzy vector analysis, functions of fuzzy complex variables, ordinary differentiation of fuzzy functions and partial fraction of fuzzy polynomials. On the other hand, the handling of fuzzy matrices covered determinants of fuzzy matrices, the eigenvalues of fuzzy matrices, and solving least-squares fuzzy linear equations. The approach demonstrated to be also applicable in a systematic way in handling new fuzzy probabilistic and statistical problems. This included extending the conventional probabilistic and statistical analysis for handling fuzzy random data. Application also covered the consolidity of fuzzy optimization problems. Various numerical examples solved have demonstrated that the new consolidity concept is highly effective in solving in a compact form the propagation of fuzziness in linear, nonlinear, multivariable and dynamic problems with different types of complexities. Finally, it is demonstrated that the implementation of the suggested fuzzy mathematics can be easily embedded within normal mathematics through building special fuzzy functions library inside the computational Matlab Toolbox or using other similar software languages.

  17. No-Reference Video Quality Assessment Based on Statistical Analysis in 3D-DCT Domain.

    Science.gov (United States)

    Li, Xuelong; Guo, Qun; Lu, Xiaoqiang

    2016-05-13

    It is an important task to design models for universal no-reference video quality assessment (NR-VQA) in multiple video processing and computer vision applications. However, most existing NR-VQA metrics are designed for specific distortion types which are not often aware in practical applications. A further deficiency is that the spatial and temporal information of videos is hardly considered simultaneously. In this paper, we propose a new NR-VQA metric based on the spatiotemporal natural video statistics (NVS) in 3D discrete cosine transform (3D-DCT) domain. In the proposed method, a set of features are firstly extracted based on the statistical analysis of 3D-DCT coefficients to characterize the spatiotemporal statistics of videos in different views. These features are used to predict the perceived video quality via the efficient linear support vector regression (SVR) model afterwards. The contributions of this paper are: 1) we explore the spatiotemporal statistics of videos in 3DDCT domain which has the inherent spatiotemporal encoding advantage over other widely used 2D transformations; 2) we extract a small set of simple but effective statistical features for video visual quality prediction; 3) the proposed method is universal for multiple types of distortions and robust to different databases. The proposed method is tested on four widely used video databases. Extensive experimental results demonstrate that the proposed method is competitive with the state-of-art NR-VQA metrics and the top-performing FR-VQA and RR-VQA metrics.

  18. FADTTS: functional analysis of diffusion tensor tract statistics.

    Science.gov (United States)

    Zhu, Hongtu; Kong, Linglong; Li, Runze; Styner, Martin; Gerig, Guido; Lin, Weili; Gilmore, John H

    2011-06-01

    The aim of this paper is to present a functional analysis of a diffusion tensor tract statistics (FADTTS) pipeline for delineating the association between multiple diffusion properties along major white matter fiber bundles with a set of covariates of interest, such as age, diagnostic status and gender, and the structure of the variability of these white matter tract properties in various diffusion tensor imaging studies. The FADTTS integrates five statistical tools: (i) a multivariate varying coefficient model for allowing the varying coefficient functions in terms of arc length to characterize the varying associations between fiber bundle diffusion properties and a set of covariates, (ii) a weighted least squares estimation of the varying coefficient functions, (iii) a functional principal component analysis to delineate the structure of the variability in fiber bundle diffusion properties, (iv) a global test statistic to test hypotheses of interest, and (v) a simultaneous confidence band to quantify the uncertainty in the estimated coefficient functions. Simulated data are used to evaluate the finite sample performance of FADTTS. We apply FADTTS to investigate the development of white matter diffusivities along the splenium of the corpus callosum tract and the right internal capsule tract in a clinical study of neurodevelopment. FADTTS can be used to facilitate the understanding of normal brain development, the neural bases of neuropsychiatric disorders, and the joint effects of environmental and genetic factors on white matter fiber bundles. The advantages of FADTTS compared with the other existing approaches are that they are capable of modeling the structured inter-subject variability, testing the joint effects, and constructing their simultaneous confidence bands. However, FADTTS is not crucial for estimation and reduces to the functional analysis method for the single measure. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Sensitivity analysis and optimization of system dynamics models : Regression analysis and statistical design of experiments

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    1995-01-01

    This tutorial discusses what-if analysis and optimization of System Dynamics models. These problems are solved, using the statistical techniques of regression analysis and design of experiments (DOE). These issues are illustrated by applying the statistical techniques to a System Dynamics model for

  20. Signal processing and statistical analysis of spaced-based measurements

    International Nuclear Information System (INIS)

    Iranpour, K.

    1996-05-01

    The reports deals with data obtained by the ROSE rocket project. This project was designed to investigate the low altitude auroral instabilities in the electrojet region. The spectral and statistical analyses indicate the existence of unstable waves in the ionized gas in the region. An experimentally obtained dispersion relation for these waves were established. It was demonstrated that the characteristic phase velocities are much lower than what is expected from the standard theoretical results. This analysis of the ROSE data indicate the cascading of energy from lower to higher frequencies. 44 refs., 54 figs