WorldWideScience

Sample records for spatial sampling design

  1. Latent spatial models and sampling design for landscape genetics

    Science.gov (United States)

    Hanks, Ephraim M.; Hooten, Mevin B.; Knick, Steven T.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Cross, Todd B.; Schwartz, Michael K.

    2016-01-01

    We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial random effect to allow for spatial correlation between genetic observations. We illustrate how modern dimension reduction approaches to spatial statistics can allow for efficient computation in landscape genetic statistical models covering large spatial domains. We apply our approach to propose a retrospective spatial sampling design for greater sage-grouse (Centrocercus urophasianus) population genetics in the western United States.

  2. A phoswich detector design for improved spatial sampling in PET

    Science.gov (United States)

    Thiessen, Jonathan D.; Koschan, Merry A.; Melcher, Charles L.; Meng, Fang; Schellenberg, Graham; Goertzen, Andrew L.

    2018-02-01

    Block detector designs, utilizing a pixelated scintillator array coupled to a photosensor array in a light-sharing design, are commonly used for positron emission tomography (PET) imaging applications. In practice, the spatial sampling of these designs is limited by the crystal pitch, which must be large enough for individual crystals to be resolved in the detector flood image. Replacing the conventional 2D scintillator array with an array of phoswich elements, each consisting of an optically coupled side-by-side scintillator pair, may improve spatial sampling in one direction of the array without requiring resolving smaller crystal elements. To test the feasibility of this design, a 4 × 4 phoswich array was constructed, with each phoswich element consisting of two optically coupled, 3 . 17 × 1 . 58 × 10mm3 LSO crystals co-doped with cerium and calcium. The amount of calcium doping was varied to create a 'fast' LSO crystal with decay time of 32.9 ns and a 'slow' LSO crystal with decay time of 41.2 ns. Using a Hamamatsu R8900U-00-C12 position-sensitive photomultiplier tube (PS-PMT) and a CAEN V1720 250 MS/s waveform digitizer, we were able to show effective discrimination of the fast and slow LSO crystals in the phoswich array. Although a side-by-side phoswich array is feasible, reflections at the crystal boundary due to a mismatch between the refractive index of the optical adhesive (n = 1 . 5) and LSO (n = 1 . 82) caused it to behave optically as an 8 × 4 array rather than a 4 × 4 array. Direct coupling of each phoswich element to individual photodetector elements may be necessary with the current phoswich array design. Alternatively, in order to implement this phoswich design with a conventional light sharing PET block detector, a high refractive index optical adhesive is necessary to closely match the refractive index of LSO.

  3. The variance quadtree algorithm: use for spatial sampling design

    NARCIS (Netherlands)

    Minasny, B.; McBratney, A.B.; Walvoort, D.J.J.

    2007-01-01

    Spatial sampling schemes are mainly developed to determine sampling locations that can cover the variation of environmental properties in the area of interest. Here we proposed the variance quadtree algorithm for sampling in an area with prior information represented as ancillary or secondary

  4. Detecting spatial structures in throughfall data: The effect of extent, sample size, sampling design, and variogram estimation method

    Science.gov (United States)

    Voss, Sebastian; Zimmermann, Beate; Zimmermann, Alexander

    2016-09-01

    In the last decades, an increasing number of studies analyzed spatial patterns in throughfall by means of variograms. The estimation of the variogram from sample data requires an appropriate sampling scheme: most importantly, a large sample and a layout of sampling locations that often has to serve both variogram estimation and geostatistical prediction. While some recommendations on these aspects exist, they focus on Gaussian data and high ratios of the variogram range to the extent of the study area. However, many hydrological data, and throughfall data in particular, do not follow a Gaussian distribution. In this study, we examined the effect of extent, sample size, sampling design, and calculation method on variogram estimation of throughfall data. For our investigation, we first generated non-Gaussian random fields based on throughfall data with large outliers. Subsequently, we sampled the fields with three extents (plots with edge lengths of 25 m, 50 m, and 100 m), four common sampling designs (two grid-based layouts, transect and random sampling) and five sample sizes (50, 100, 150, 200, 400). We then estimated the variogram parameters by method-of-moments (non-robust and robust estimators) and residual maximum likelihood. Our key findings are threefold. First, the choice of the extent has a substantial influence on the estimation of the variogram. A comparatively small ratio of the extent to the correlation length is beneficial for variogram estimation. Second, a combination of a minimum sample size of 150, a design that ensures the sampling of small distances and variogram estimation by residual maximum likelihood offers a good compromise between accuracy and efficiency. Third, studies relying on method-of-moments based variogram estimation may have to employ at least 200 sampling points for reliable variogram estimates. These suggested sample sizes exceed the number recommended by studies dealing with Gaussian data by up to 100 %. Given that most previous

  5. Sample design effects in landscape genetics

    Science.gov (United States)

    Oyler-McCance, Sara J.; Fedy, Bradley C.; Landguth, Erin L.

    2012-01-01

    An important research gap in landscape genetics is the impact of different field sampling designs on the ability to detect the effects of landscape pattern on gene flow. We evaluated how five different sampling regimes (random, linear, systematic, cluster, and single study site) affected the probability of correctly identifying the generating landscape process of population structure. Sampling regimes were chosen to represent a suite of designs common in field studies. We used genetic data generated from a spatially-explicit, individual-based program and simulated gene flow in a continuous population across a landscape with gradual spatial changes in resistance to movement. Additionally, we evaluated the sampling regimes using realistic and obtainable number of loci (10 and 20), number of alleles per locus (5 and 10), number of individuals sampled (10-300), and generational time after the landscape was introduced (20 and 400). For a simulated continuously distributed species, we found that random, linear, and systematic sampling regimes performed well with high sample sizes (>200), levels of polymorphism (10 alleles per locus), and number of molecular markers (20). The cluster and single study site sampling regimes were not able to correctly identify the generating process under any conditions and thus, are not advisable strategies for scenarios similar to our simulations. Our research emphasizes the importance of sampling data at ecologically appropriate spatial and temporal scales and suggests careful consideration for sampling near landscape components that are likely to most influence the genetic structure of the species. In addition, simulating sampling designs a priori could help guide filed data collection efforts.

  6. An R package for spatial coverage sampling and random sampling from compact geographical strata by k-means

    NARCIS (Netherlands)

    Walvoort, D.J.J.; Brus, D.J.; Gruijter, de J.J.

    2010-01-01

    Both for mapping and for estimating spatial means of an environmental variable, the accuracy of the result will usually be increased by dispersing the sample locations so that they cover the study area as uniformly as possible. We developed a new R package for designing spatial coverage samples for

  7. Incorporating covariance estimation uncertainty in spatial sampling design for prediction with trans-Gaussian random fields

    Directory of Open Access Journals (Sweden)

    Gunter eSpöck

    2015-05-01

    Full Text Available Recently, Spock and Pilz [38], demonstratedthat the spatial sampling design problem forthe Bayesian linear kriging predictor can betransformed to an equivalent experimentaldesign problem for a linear regression modelwith stochastic regression coefficients anduncorrelated errors. The stochastic regressioncoefficients derive from the polar spectralapproximation of the residual process. Thus,standard optimal convex experimental designtheory can be used to calculate optimal spatialsampling designs. The design functionals ̈considered in Spock and Pilz [38] did nottake into account the fact that kriging isactually a plug-in predictor which uses theestimated covariance function. The resultingoptimal designs were close to space-fillingconfigurations, because the design criteriondid not consider the uncertainty of thecovariance function.In this paper we also assume that thecovariance function is estimated, e.g., byrestricted maximum likelihood (REML. Wethen develop a design criterion that fully takesaccount of the covariance uncertainty. Theresulting designs are less regular and space-filling compared to those ignoring covarianceuncertainty. The new designs, however, alsorequire some closely spaced samples in orderto improve the estimate of the covariancefunction. We also relax the assumption ofGaussian observations and assume that thedata is transformed to Gaussianity by meansof the Box-Cox transformation. The resultingprediction method is known as trans-Gaussiankriging. We apply the Smith and Zhu [37]approach to this kriging method and show thatresulting optimal designs also depend on theavailable data. We illustrate our results witha data set of monthly rainfall measurementsfrom Upper Austria.

  8. DESIGN AND CONSTRUCTION OF A FOREST SPATIAL DATABASE: AN APPLICATION

    Directory of Open Access Journals (Sweden)

    Turan Sönmez

    2006-11-01

    Full Text Available General Directorate of Forests (GDF has not yet created the spatial forest database to manage forest and catch the developed countries in forestry. The lack of spatial forest database results in collection of the spatial data redundancy, communication problems among the forestry organizations. Also it causes Turkish forestry to be backward of informatics’ era. To solve these problems; GDF should establish spatial forest database supported Geographic Information System (GIS. To design the spatial database, supported GIS, which provides accurate, on time and current data/info for decision makers and operators in forestry, and to develop sample interface program to apply and monitor classical forest management plans is paramount in contemporary forest management planning process. This research is composed of three major stages: (i spatial rototype database design considering required by the three hierarchical organizations of GDF (regional directorate of forests, forest enterprise, and territorial division, (ii user interface program developed to apply and monitor classical management plans based on the designed database, (iii the implementation of the designed database and its user interface in Artvin Central Planning Unit.

  9. Triangulation based inclusion probabilities: a design-unbiased sampling approach

    OpenAIRE

    Fehrmann, Lutz; Gregoire, Timothy; Kleinn, Christoph

    2011-01-01

    A probabilistic sampling approach for design-unbiased estimation of area-related quantitative characteristics of spatially dispersed population units is proposed. The developed field protocol includes a fixed number of 3 units per sampling location and is based on partial triangulations over their natural neighbors to derive the individual inclusion probabilities. The performance of the proposed design is tested in comparison to fixed area sample plots in a simulation with two forest stands. ...

  10. Interactions of collimation, sampling and filtering on spect spatial resolution

    International Nuclear Information System (INIS)

    Tsui, B.M.W.; Jaszczak, R.J.

    1984-01-01

    The major factors which affect the spatial resolution of single-photon emission computer tomography (SPECT) include collimation, sampling and filtering. A theoretical formulation is presented to describe the relationship between these factors and their effects on the projection data. Numerical calculations were made using commercially available SPECT systems and imaging parameters. The results provide an important guide for proper selection of the collimator-detector design, the imaging and the reconstruction parameters to avoid unnecessary spatial resolution degradation and aliasing artifacts in the reconstructed image. In addition, the understanding will help in the fair evaluation of different SPECT systems under specific imaging conditions

  11. Estimating the spatial scale of herbicide and soil interactions by nested sampling, hierarchical analysis of variance and residual maximum likelihood

    Energy Technology Data Exchange (ETDEWEB)

    Price, Oliver R., E-mail: oliver.price@unilever.co [Warwick-HRI, University of Warwick, Wellesbourne, Warwick, CV32 6EF (United Kingdom); University of Reading, Soil Science Department, Whiteknights, Reading, RG6 6UR (United Kingdom); Oliver, Margaret A. [University of Reading, Soil Science Department, Whiteknights, Reading, RG6 6UR (United Kingdom); Walker, Allan [Warwick-HRI, University of Warwick, Wellesbourne, Warwick, CV32 6EF (United Kingdom); Wood, Martin [University of Reading, Soil Science Department, Whiteknights, Reading, RG6 6UR (United Kingdom)

    2009-05-15

    An unbalanced nested sampling design was used to investigate the spatial scale of soil and herbicide interactions at the field scale. A hierarchical analysis of variance based on residual maximum likelihood (REML) was used to analyse the data and provide a first estimate of the variogram. Soil samples were taken at 108 locations at a range of separating distances in a 9 ha field to explore small and medium scale spatial variation. Soil organic matter content, pH, particle size distribution, microbial biomass and the degradation and sorption of the herbicide, isoproturon, were determined for each soil sample. A large proportion of the spatial variation in isoproturon degradation and sorption occurred at sampling intervals less than 60 m, however, the sampling design did not resolve the variation present at scales greater than this. A sampling interval of 20-25 m should ensure that the main spatial structures are identified for isoproturon degradation rate and sorption without too great a loss of information in this field. - Estimating the spatial scale of herbicide and soil interactions by nested sampling.

  12. Estimating the spatial scale of herbicide and soil interactions by nested sampling, hierarchical analysis of variance and residual maximum likelihood

    International Nuclear Information System (INIS)

    Price, Oliver R.; Oliver, Margaret A.; Walker, Allan; Wood, Martin

    2009-01-01

    An unbalanced nested sampling design was used to investigate the spatial scale of soil and herbicide interactions at the field scale. A hierarchical analysis of variance based on residual maximum likelihood (REML) was used to analyse the data and provide a first estimate of the variogram. Soil samples were taken at 108 locations at a range of separating distances in a 9 ha field to explore small and medium scale spatial variation. Soil organic matter content, pH, particle size distribution, microbial biomass and the degradation and sorption of the herbicide, isoproturon, were determined for each soil sample. A large proportion of the spatial variation in isoproturon degradation and sorption occurred at sampling intervals less than 60 m, however, the sampling design did not resolve the variation present at scales greater than this. A sampling interval of 20-25 m should ensure that the main spatial structures are identified for isoproturon degradation rate and sorption without too great a loss of information in this field. - Estimating the spatial scale of herbicide and soil interactions by nested sampling.

  13. Optimization of Decision-Making for Spatial Sampling in the North China Plain, Based on Remote-Sensing a Priori Knowledge

    Science.gov (United States)

    Feng, J.; Bai, L.; Liu, S.; Su, X.; Hu, H.

    2012-07-01

    In this paper, the MODIS remote sensing data, featured with low-cost, high-timely and moderate/low spatial resolutions, in the North China Plain (NCP) as a study region were firstly used to carry out mixed-pixel spectral decomposition to extract an useful regionalized indicator parameter (RIP) (i.e., an available ratio, that is, fraction/percentage, of winter wheat planting area in each pixel as a regionalized indicator variable (RIV) of spatial sampling) from the initial selected indicators. Then, the RIV values were spatially analyzed, and the spatial structure characteristics (i.e., spatial correlation and variation) of the NCP were achieved, which were further processed to obtain the scalefitting, valid a priori knowledge or information of spatial sampling. Subsequently, founded upon an idea of rationally integrating probability-based and model-based sampling techniques and effectively utilizing the obtained a priori knowledge or information, the spatial sampling models and design schemes and their optimization and optimal selection were developed, as is a scientific basis of improving and optimizing the existing spatial sampling schemes of large-scale cropland remote sensing monitoring. Additionally, by the adaptive analysis and decision strategy the optimal local spatial prediction and gridded system of extrapolation results were able to excellently implement an adaptive report pattern of spatial sampling in accordance with report-covering units in order to satisfy the actual needs of sampling surveys.

  14. Within-otolith variability in chemical fingerprints: implications for sampling designs and possible environmental interpretation.

    Directory of Open Access Journals (Sweden)

    Antonio Di Franco

    Full Text Available Largely used as a natural biological tag in studies of dispersal/connectivity of fish, otolith elemental fingerprinting is usually analyzed by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS. LA-ICP-MS produces an elemental fingerprint at a discrete time-point in the life of a fish and can generate data on within-otolith variability of that fingerprint. The presence of within-otolith variability has been previously acknowledged but not incorporated into experimental designs on the presumed, but untested, grounds of both its negligibility compared to among-otolith variability and of spatial autocorrelation among multiple ablations within an otolith. Here, using a hierarchical sampling design of spatial variation at multiple scales in otolith chemical fingerprints for two Mediterranean coastal fishes, we explore: 1 whether multiple ablations within an otolith can be used as independent replicates for significance tests among otoliths, and 2 the implications of incorporating within-otolith variability when assessing spatial variability in otolith chemistry at a hierarchy of spatial scales (different fish, from different sites, at different locations on the Apulian Adriatic coast. We find that multiple ablations along the same daily rings do not necessarily exhibit spatial dependency within the otolith and can be used to estimate residual variability in a hierarchical sampling design. Inclusion of within-otolith measurements reveals that individuals at the same site can show significant variability in elemental uptake. Within-otolith variability examined across the spatial hierarchy identifies differences between the two fish species investigated, and this finding leads to discussion of the potential for within-otolith variability to be used as a marker for fish exposure to stressful conditions. We also demonstrate that a 'cost'-optimal allocation of sampling effort should typically include some level of within

  15. Within-otolith variability in chemical fingerprints: implications for sampling designs and possible environmental interpretation.

    Science.gov (United States)

    Di Franco, Antonio; Bulleri, Fabio; Pennetta, Antonio; De Benedetto, Giuseppe; Clarke, K Robert; Guidetti, Paolo

    2014-01-01

    Largely used as a natural biological tag in studies of dispersal/connectivity of fish, otolith elemental fingerprinting is usually analyzed by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). LA-ICP-MS produces an elemental fingerprint at a discrete time-point in the life of a fish and can generate data on within-otolith variability of that fingerprint. The presence of within-otolith variability has been previously acknowledged but not incorporated into experimental designs on the presumed, but untested, grounds of both its negligibility compared to among-otolith variability and of spatial autocorrelation among multiple ablations within an otolith. Here, using a hierarchical sampling design of spatial variation at multiple scales in otolith chemical fingerprints for two Mediterranean coastal fishes, we explore: 1) whether multiple ablations within an otolith can be used as independent replicates for significance tests among otoliths, and 2) the implications of incorporating within-otolith variability when assessing spatial variability in otolith chemistry at a hierarchy of spatial scales (different fish, from different sites, at different locations on the Apulian Adriatic coast). We find that multiple ablations along the same daily rings do not necessarily exhibit spatial dependency within the otolith and can be used to estimate residual variability in a hierarchical sampling design. Inclusion of within-otolith measurements reveals that individuals at the same site can show significant variability in elemental uptake. Within-otolith variability examined across the spatial hierarchy identifies differences between the two fish species investigated, and this finding leads to discussion of the potential for within-otolith variability to be used as a marker for fish exposure to stressful conditions. We also demonstrate that a 'cost'-optimal allocation of sampling effort should typically include some level of within-otolith replication in the

  16. On Angular Sampling Methods for 3-D Spatial Channel Models

    DEFF Research Database (Denmark)

    Fan, Wei; Jämsä, Tommi; Nielsen, Jesper Ødum

    2015-01-01

    This paper discusses generating three dimensional (3D) spatial channel models with emphasis on the angular sampling methods. Three angular sampling methods, i.e. modified uniform power sampling, modified uniform angular sampling, and random pairing methods are proposed and investigated in detail....... The random pairing method, which uses only twenty sinusoids in the ray-based model for generating the channels, presents good results if the spatial channel cluster is with a small elevation angle spread. For spatial clusters with large elevation angle spreads, however, the random pairing method would fail...... and the other two methods should be considered....

  17. Counting Cats: Spatially Explicit Population Estimates of Cheetah (Acinonyx jubatus Using Unstructured Sampling Data.

    Directory of Open Access Journals (Sweden)

    Femke Broekhuis

    Full Text Available Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed 'hotspots' of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species.

  18. Counting Cats: Spatially Explicit Population Estimates of Cheetah (Acinonyx jubatus) Using Unstructured Sampling Data.

    Science.gov (United States)

    Broekhuis, Femke; Gopalaswamy, Arjun M

    2016-01-01

    Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed 'hotspots' of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species.

  19. Evaluation of single and two-stage adaptive sampling designs for estimation of density and abundance of freshwater mussels in a large river

    Science.gov (United States)

    Smith, D.R.; Rogala, J.T.; Gray, B.R.; Zigler, S.J.; Newton, T.J.

    2011-01-01

    Reliable estimates of abundance are needed to assess consequences of proposed habitat restoration and enhancement projects on freshwater mussels in the Upper Mississippi River (UMR). Although there is general guidance on sampling techniques for population assessment of freshwater mussels, the actual performance of sampling designs can depend critically on the population density and spatial distribution at the project site. To evaluate various sampling designs, we simulated sampling of populations, which varied in density and degree of spatial clustering. Because of logistics and costs of large river sampling and spatial clustering of freshwater mussels, we focused on adaptive and non-adaptive versions of single and two-stage sampling. The candidate designs performed similarly in terms of precision (CV) and probability of species detection for fixed sample size. Both CV and species detection were determined largely by density, spatial distribution and sample size. However, designs did differ in the rate that occupied quadrats were encountered. Occupied units had a higher probability of selection using adaptive designs than conventional designs. We used two measures of cost: sample size (i.e. number of quadrats) and distance travelled between the quadrats. Adaptive and two-stage designs tended to reduce distance between sampling units, and thus performed better when distance travelled was considered. Based on the comparisons, we provide general recommendations on the sampling designs for the freshwater mussels in the UMR, and presumably other large rivers.

  20. Spatial distribution, sampling precision and survey design optimisation with non-normal variables: The case of anchovy (Engraulis encrasicolus) recruitment in Spanish Mediterranean waters

    Science.gov (United States)

    Tugores, M. Pilar; Iglesias, Magdalena; Oñate, Dolores; Miquel, Joan

    2016-02-01

    In the Mediterranean Sea, the European anchovy (Engraulis encrasicolus) displays a key role in ecological and economical terms. Ensuring stock sustainability requires the provision of crucial information, such as species spatial distribution or unbiased abundance and precision estimates, so that management strategies can be defined (e.g. fishing quotas, temporal closure areas or marine protected areas MPA). Furthermore, the estimation of the precision of global abundance at different sampling intensities can be used for survey design optimisation. Geostatistics provide a priori unbiased estimations of the spatial structure, global abundance and precision for autocorrelated data. However, their application to non-Gaussian data introduces difficulties in the analysis in conjunction with low robustness or unbiasedness. The present study applied intrinsic geostatistics in two dimensions in order to (i) analyse the spatial distribution of anchovy in Spanish Western Mediterranean waters during the species' recruitment season, (ii) produce distribution maps, (iii) estimate global abundance and its precision, (iv) analyse the effect of changing the sampling intensity on the precision of global abundance estimates and, (v) evaluate the effects of several methodological options on the robustness of all the analysed parameters. The results suggested that while the spatial structure was usually non-robust to the tested methodological options when working with the original dataset, it became more robust for the transformed datasets (especially for the log-backtransformed dataset). The global abundance was always highly robust and the global precision was highly or moderately robust to most of the methodological options, except for data transformation.

  1. Spatial-dependence recurrence sample entropy

    Science.gov (United States)

    Pham, Tuan D.; Yan, Hong

    2018-03-01

    Measuring complexity in terms of the predictability of time series is a major area of research in science and engineering, and its applications are spreading throughout many scientific disciplines, where the analysis of physiological signals is perhaps the most widely reported in literature. Sample entropy is a popular measure for quantifying signal irregularity. However, the sample entropy does not take sequential information, which is inherently useful, into its calculation of sample similarity. Here, we develop a method that is based on the mathematical principle of the sample entropy and enables the capture of sequential information of a time series in the context of spatial dependence provided by the binary-level co-occurrence matrix of a recurrence plot. Experimental results on time-series data of the Lorenz system, physiological signals of gait maturation in healthy children, and gait dynamics in Huntington's disease show the potential of the proposed method.

  2. Design in the planning arena : how regional designing influences strategic spatial planning

    NARCIS (Netherlands)

    Kempenaar, Annet

    2017-01-01

    Regional designing is a form of spatial design that engages with the future physical form and arrangement of regions, including its aesthetic appearances and how it can come about. As such it is closely entangled with spatial planning. This thesis studies the influence of regional designing on

  3. Sampling Design of Soil Physical Properties in a Conilon Coffee Field

    Directory of Open Access Journals (Sweden)

    Eduardo Oliveira de Jesus Santos

    Full Text Available ABSTRACT Establishing the number of samples required to determine values of soil physical properties ultimately results in optimization of labor and allows better representation of such attributes. The objective of this study was to analyze the spatial variability of soil physical properties in a Conilon coffee field and propose a soil sampling method better attuned to conditions of the management system. The experiment was performed in a Conilon coffee field in Espírito Santo state, Brazil, under a 3.0 × 2.0 × 1.0 m (4,000 plants ha-1 double spacing design. An irregular grid, with dimensions of 107 × 95.7 m and 65 sampling points, was set up. Soil samples were collected from the 0.00-0.20 m depth from each sampling point. Data were analyzed under descriptive statistical and geostatistical methods. Using statistical parameters, the adequate number of samples for analyzing the attributes under study was established, which ranged from 1 to 11 sampling points. With the exception of particle density, all soil physical properties showed a spatial dependence structure best fitted to the spherical model. Establishment of the number of samples and spatial variability for the physical properties of soils may be useful in developing sampling strategies that minimize costs for farmers within a tolerable and predictable level of error.

  4. Sampling design optimisation for rainfall prediction using a non-stationary geostatistical model

    Science.gov (United States)

    Wadoux, Alexandre M. J.-C.; Brus, Dick J.; Rico-Ramirez, Miguel A.; Heuvelink, Gerard B. M.

    2017-09-01

    The accuracy of spatial predictions of rainfall by merging rain-gauge and radar data is partly determined by the sampling design of the rain-gauge network. Optimising the locations of the rain-gauges may increase the accuracy of the predictions. Existing spatial sampling design optimisation methods are based on minimisation of the spatially averaged prediction error variance under the assumption of intrinsic stationarity. Over the past years, substantial progress has been made to deal with non-stationary spatial processes in kriging. Various well-documented geostatistical models relax the assumption of stationarity in the mean, while recent studies show the importance of considering non-stationarity in the variance for environmental processes occurring in complex landscapes. We optimised the sampling locations of rain-gauges using an extension of the Kriging with External Drift (KED) model for prediction of rainfall fields. The model incorporates both non-stationarity in the mean and in the variance, which are modelled as functions of external covariates such as radar imagery, distance to radar station and radar beam blockage. Spatial predictions are made repeatedly over time, each time recalibrating the model. The space-time averaged KED variance was minimised by Spatial Simulated Annealing (SSA). The methodology was tested using a case study predicting daily rainfall in the north of England for a one-year period. Results show that (i) the proposed non-stationary variance model outperforms the stationary variance model, and (ii) a small but significant decrease of the rainfall prediction error variance is obtained with the optimised rain-gauge network. In particular, it pays off to place rain-gauges at locations where the radar imagery is inaccurate, while keeping the distribution over the study area sufficiently uniform.

  5. Uncertainties in Coastal Ocean Color Products: Impacts of Spatial Sampling

    Science.gov (United States)

    Pahlevan, Nima; Sarkar, Sudipta; Franz, Bryan A.

    2016-01-01

    With increasing demands for ocean color (OC) products with improved accuracy and well characterized, per-retrieval uncertainty budgets, it is vital to decompose overall estimated errors into their primary components. Amongst various contributing elements (e.g., instrument calibration, atmospheric correction, inversion algorithms) in the uncertainty of an OC observation, less attention has been paid to uncertainties associated with spatial sampling. In this paper, we simulate MODIS (aboard both Aqua and Terra) and VIIRS OC products using 30 m resolution OC products derived from the Operational Land Imager (OLI) aboard Landsat-8, to examine impacts of spatial sampling on both cross-sensor product intercomparisons and in-situ validations of R(sub rs) products in coastal waters. Various OLI OC products representing different productivity levels and in-water spatial features were scanned for one full orbital-repeat cycle of each ocean color satellite. While some view-angle dependent differences in simulated Aqua-MODIS and VIIRS were observed, the average uncertainties (absolute) in product intercomparisons (due to differences in spatial sampling) at regional scales are found to be 1.8%, 1.9%, 2.4%, 4.3%, 2.7%, 1.8%, and 4% for the R(sub rs)(443), R(sub rs)(482), R(sub rs)(561), R(sub rs)(655), Chla, K(sub d)(482), and b(sub bp)(655) products, respectively. It is also found that, depending on in-water spatial variability and the sensor's footprint size, the errors for an in-situ validation station in coastal areas can reach as high as +/- 18%. We conclude that a) expected biases induced by the spatial sampling in product intercomparisons are mitigated when products are averaged over at least 7 km × 7 km areas, b) VIIRS observations, with improved consistency in cross-track spatial sampling, yield more precise calibration/validation statistics than that of MODIS, and c) use of a single pixel centered on in-situ coastal stations provides an optimal sampling size for

  6. Estimating abundance of mountain lions from unstructured spatial sampling

    Science.gov (United States)

    Russell, Robin E.; Royle, J. Andrew; Desimone, Richard; Schwartz, Michael K.; Edwards, Victoria L.; Pilgrim, Kristy P.; Mckelvey, Kevin S.

    2012-01-01

    Mountain lions (Puma concolor) are often difficult to monitor because of their low capture probabilities, extensive movements, and large territories. Methods for estimating the abundance of this species are needed to assess population status, determine harvest levels, evaluate the impacts of management actions on populations, and derive conservation and management strategies. Traditional mark–recapture methods do not explicitly account for differences in individual capture probabilities due to the spatial distribution of individuals in relation to survey effort (or trap locations). However, recent advances in the analysis of capture–recapture data have produced methods estimating abundance and density of animals from spatially explicit capture–recapture data that account for heterogeneity in capture probabilities due to the spatial organization of individuals and traps. We adapt recently developed spatial capture–recapture models to estimate density and abundance of mountain lions in western Montana. Volunteers and state agency personnel collected mountain lion DNA samples in portions of the Blackfoot drainage (7,908 km2) in west-central Montana using 2 methods: snow back-tracking mountain lion tracks to collect hair samples and biopsy darting treed mountain lions to obtain tissue samples. Overall, we recorded 72 individual capture events, including captures both with and without tissue sample collection and hair samples resulting in the identification of 50 individual mountain lions (30 females, 19 males, and 1 unknown sex individual). We estimated lion densities from 8 models containing effects of distance, sex, and survey effort on detection probability. Our population density estimates ranged from a minimum of 3.7 mountain lions/100 km2 (95% Cl 2.3–5.7) under the distance only model (including only an effect of distance on detection probability) to 6.7 (95% Cl 3.1–11.0) under the full model (including effects of distance, sex, survey effort, and

  7. spsann - optimization of sample patterns using spatial simulated annealing

    Science.gov (United States)

    Samuel-Rosa, Alessandro; Heuvelink, Gerard; Vasques, Gustavo; Anjos, Lúcia

    2015-04-01

    There are many algorithms and computer programs to optimize sample patterns, some private and others publicly available. A few have only been presented in scientific articles and text books. This dispersion and somewhat poor availability is holds back to their wider adoption and further development. We introduce spsann, a new R-package for the optimization of sample patterns using spatial simulated annealing. R is the most popular environment for data processing and analysis. Spatial simulated annealing is a well known method with widespread use to solve optimization problems in the soil and geo-sciences. This is mainly due to its robustness against local optima and easiness of implementation. spsann offers many optimizing criteria for sampling for variogram estimation (number of points or point-pairs per lag distance class - PPL), trend estimation (association/correlation and marginal distribution of the covariates - ACDC), and spatial interpolation (mean squared shortest distance - MSSD). spsann also includes the mean or maximum universal kriging variance (MUKV) as an optimizing criterion, which is used when the model of spatial variation is known. PPL, ACDC and MSSD were combined (PAN) for sampling when we are ignorant about the model of spatial variation. spsann solves this multi-objective optimization problem scaling the objective function values using their maximum absolute value or the mean value computed over 1000 random samples. Scaled values are aggregated using the weighted sum method. A graphical display allows to follow how the sample pattern is being perturbed during the optimization, as well as the evolution of its energy state. It is possible to start perturbing many points and exponentially reduce the number of perturbed points. The maximum perturbation distance reduces linearly with the number of iterations. The acceptance probability also reduces exponentially with the number of iterations. R is memory hungry and spatial simulated annealing is a

  8. Automated simulation and study of spatial-structural design processes

    NARCIS (Netherlands)

    Davila Delgado, J.M.; Hofmeyer, H.; Stouffs, R.; Sariyildiz, S.

    2013-01-01

    A so-called "Design Process Investigation toolbox" (DPI toolbox), has been developed. It is a set of computational tools that simulate spatial-structural design processes. Its objectives are to study spatial-structural design processes and to support the involved actors. Two case-studies are

  9. The effect of short-range spatial variability on soil sampling uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Perk, Marcel van der [Department of Physical Geography, Utrecht University, P.O. Box 80115, 3508 TC Utrecht (Netherlands)], E-mail: m.vanderperk@geo.uu.nl; De Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria [Agenzia per la Protezione dell' Ambiente e per i Servizi Tecnici (APAT), Servizio Laboratori, Misure ed Attivita di Campo, Via di Castel Romano, 100-00128 Roma (Italy); Fajgelj, Ales; Sansone, Umberto [International Atomic Energy Agency (IAEA), Agency' s Laboratories Seibersdorf, A-1400 Vienna (Austria); Jeran, Zvonka; Jacimovic, Radojko [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2008-11-15

    This paper aims to quantify the soil sampling uncertainty arising from the short-range spatial variability of elemental concentrations in the topsoils of agricultural, semi-natural, and contaminated environments. For the agricultural site, the relative standard sampling uncertainty ranges between 1% and 5.5%. For the semi-natural area, the sampling uncertainties are 2-4 times larger than in the agricultural area. The contaminated site exhibited significant short-range spatial variability in elemental composition, which resulted in sampling uncertainties of 20-30%.

  10. The effect of short-range spatial variability on soil sampling uncertainty.

    Science.gov (United States)

    Van der Perk, Marcel; de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Fajgelj, Ales; Sansone, Umberto; Jeran, Zvonka; Jaćimović, Radojko

    2008-11-01

    This paper aims to quantify the soil sampling uncertainty arising from the short-range spatial variability of elemental concentrations in the topsoils of agricultural, semi-natural, and contaminated environments. For the agricultural site, the relative standard sampling uncertainty ranges between 1% and 5.5%. For the semi-natural area, the sampling uncertainties are 2-4 times larger than in the agricultural area. The contaminated site exhibited significant short-range spatial variability in elemental composition, which resulted in sampling uncertainties of 20-30%.

  11. Nonlinear Spatial Inversion Without Monte Carlo Sampling

    Science.gov (United States)

    Curtis, A.; Nawaz, A.

    2017-12-01

    High-dimensional, nonlinear inverse or inference problems usually have non-unique solutions. The distribution of solutions are described by probability distributions, and these are usually found using Monte Carlo (MC) sampling methods. These take pseudo-random samples of models in parameter space, calculate the probability of each sample given available data and other information, and thus map out high or low probability values of model parameters. However, such methods would converge to the solution only as the number of samples tends to infinity; in practice, MC is found to be slow to converge, convergence is not guaranteed to be achieved in finite time, and detection of convergence requires the use of subjective criteria. We propose a method for Bayesian inversion of categorical variables such as geological facies or rock types in spatial problems, which requires no sampling at all. The method uses a 2-D Hidden Markov Model over a grid of cells, where observations represent localized data constraining the model in each cell. The data in our example application are seismic properties such as P- and S-wave impedances or rock density; our model parameters are the hidden states and represent the geological rock types in each cell. The observations at each location are assumed to depend on the facies at that location only - an assumption referred to as `localized likelihoods'. However, the facies at a location cannot be determined solely by the observation at that location as it also depends on prior information concerning its correlation with the spatial distribution of facies elsewhere. Such prior information is included in the inversion in the form of a training image which represents a conceptual depiction of the distribution of local geologies that might be expected, but other forms of prior information can be used in the method as desired. The method provides direct (pseudo-analytic) estimates of posterior marginal probability distributions over each variable

  12. Detecting the Land-Cover Changes Induced by Large-Physical Disturbances Using Landscape Metrics, Spatial Sampling, Simulation and Spatial Analysis

    Directory of Open Access Journals (Sweden)

    Hone-Jay Chu

    2009-08-01

    Full Text Available The objectives of the study are to integrate the conditional Latin Hypercube Sampling (cLHS, sequential Gaussian simulation (SGS and spatial analysis in remotely sensed images, to monitor the effects of large chronological disturbances on spatial characteristics of landscape changes including spatial heterogeneity and variability. The multiple NDVI images demonstrate that spatial patterns of disturbed landscapes were successfully delineated by spatial analysis such as variogram, Moran’I and landscape metrics in the study area. The hybrid method delineates the spatial patterns and spatial variability of landscapes caused by these large disturbances. The cLHS approach is applied to select samples from Normalized Difference Vegetation Index (NDVI images from SPOT HRV images in the Chenyulan watershed of Taiwan, and then SGS with sufficient samples is used to generate maps of NDVI images. In final, the NDVI simulated maps are verified using indexes such as the correlation coefficient and mean absolute error (MAE. Therefore, the statistics and spatial structures of multiple NDVI images present a very robust behavior, which advocates the use of the index for the quantification of the landscape spatial patterns and land cover change. In addition, the results transferred by Open Geospatial techniques can be accessed from web-based and end-user applications of the watershed management.

  13. APPLICATION OF SPATIAL MODELLING APPROACHES, SAMPLING STRATEGIES AND 3S TECHNOLOGY WITHIN AN ECOLGOCIAL FRAMWORK

    Directory of Open Access Journals (Sweden)

    H.-C. Chen

    2012-07-01

    Full Text Available How to effectively describe ecological patterns in nature over broader spatial scales and build a modeling ecological framework has become an important issue in ecological research. We test four modeling methods (MAXENT, DOMAIN, GLM and ANN to predict the potential habitat of Schima superba (Chinese guger tree, CGT with different spatial scale in the Huisun study area in Taiwan. Then we created three sampling design (from small to large scales for model development and validation by different combinations of CGT samples from aforementioned three sites (Tong-Feng watershed, Yo-Shan Mountain, and Kuan-Dau watershed. These models combine points of known occurrence and topographic variables to infer CGT potential spatial distribution. Our assessment revealed that the method performance from highest to lowest was: MAXENT, DOMAIN, GLM and ANN on small spatial scale. The MAXENT and DOMAIN two models were the most capable for predicting the tree's potential habitat. However, the outcome clearly indicated that the models merely based on topographic variables performed poorly on large spatial extrapolation from Tong-Feng to Kuan-Dau because the humidity and sun illumination of the two watersheds are affected by their microterrains and are quite different from each other. Thus, the models developed from topographic variables can only be applied within a limited geographical extent without a significant error. Future studies will attempt to use variables involving spectral information associated with species extracted from high spatial, spectral resolution remotely sensed data, especially hyperspectral image data, for building a model so that it can be applied on a large spatial scale.

  14. Spatiotemporally Representative and Cost-Efficient Sampling Design for Validation Activities in Wanglang Experimental Site

    Directory of Open Access Journals (Sweden)

    Gaofei Yin

    2017-11-01

    Full Text Available Spatiotemporally representative Elementary Sampling Units (ESUs are required for capturing the temporal variations in surface spatial heterogeneity through field measurements. Since inaccessibility often coexists with heterogeneity, a cost-efficient sampling design is mandatory. We proposed a sampling strategy to generate spatiotemporally representative and cost-efficient ESUs based on the conditioned Latin hypercube sampling scheme. The proposed strategy was constrained by multi-temporal Normalized Difference Vegetation Index (NDVI imagery, and the ESUs were limited within a sampling feasible region established based on accessibility criteria. A novel criterion based on the Overlapping Area (OA between the NDVI frequency distribution histogram from the sampled ESUs and that from the entire study area was used to assess the sampling efficiency. A case study in Wanglang National Nature Reserve in China showed that the proposed strategy improves the spatiotemporally representativeness of sampling (mean annual OA = 74.7% compared to the single-temporally constrained (OA = 68.7% and the random sampling (OA = 63.1% strategies. The introduction of the feasible region constraint significantly reduces in-situ labour-intensive characterization necessities at expenses of about 9% loss in the spatiotemporal representativeness of the sampling. Our study will support the validation activities in Wanglang experimental site providing a benchmark for locating the nodes of automatic observation systems (e.g., LAINet which need a spatially distributed and temporally fixed sampling design.

  15. Spatial Variability of Indicators of Jiaokou Reservoir Under Different Sampling Scales

    Directory of Open Access Journals (Sweden)

    WEI Wen-juan

    2016-12-01

    Full Text Available This research determined total nitrogen, total phosphorus, ammonia nitrogen and potassium permanganate contents in different scales of Jiaokou reservoir with the purpose of exploring the applicability of spatial variability and its characteristic in different sampling scales. The results showed that, compared the sampling scales of 100 m with 200 m, there were some differences among four indicators in the spatial variation, interpolation simulation and spatial distribution. About the testing model fit, the fitting model for the total nitrogen, permanganate index was Gaussian model, the fitting model for total phosphorus, ammonia nitrogen was the spherical model; Combining evaluation of parameters of models and comprehensive evaluation of spatial interpolation, total nitrogen, total phosphorus showed stronger spatial correlation and better interpolation simulation quality on the sampling scales of 200 m, while total phosphorus and permanganate index showed certain advantages on the 100 m scale; On the aspect of spatial distributions, the contents of ammonia nitrogen and potassium permanganate were mainly affected by human factors, the total phosphorus was affected by internal factors of the reservoir, while total nitrogen was closely related to farming activities around reservoir. The above results showed that total nitrogen, ammonia nitrogen were more available for the 200 m scales and total phosphorus, potassium permanganate were more available for the 100 m scales.

  16. Spatial Mapping of Organic Carbon in Returned Samples from Mars

    Science.gov (United States)

    Siljeström, S.; Fornaro, T.; Greenwalt, D.; Steele, A.

    2018-04-01

    To map organic material spatially to minerals present in the sample will be essential for the understanding of the origin of any organics in returned samples from Mars. It will be shown how ToF-SIMS may be used to map organics in samples from Mars.

  17. Spatial ability in computer-aided design courses

    OpenAIRE

    Torner Ribé, Jordi; Alpiste Penalba, Francesc; Brigos Hermida, Miguel Ángel

    2014-01-01

    Many studies have demonstrated that spatial ability is an important factor in the study of Industrial Engineering. Spatial ability is fundamentally important to the work of an engineer, as it is vital for project design. Among other elements, spatial ability correlates with factors such as good academic results and a natural ability to learn how to use I.T systems and computer programs. Furthermore, the new framework drawn up by the European Higher Education Area (EHEA) guides us as to the...

  18. Spatial issues in user interface design from a graphic design perspective

    Science.gov (United States)

    Marcus, Aaron

    1989-01-01

    The user interface of a computer system is a visual display that provides information about the status of operations on data within the computer and control options to the user that enable adjustments to these operations. From the very beginning of computer technology the user interface was a spatial display, although its spatial features were not necessarily complex or explicitly recognized by the users. All text and nonverbal signs appeared in a virtual space generally thought of as a single flat plane of symbols. Current technology of high performance workstations permits any element of the display to appear as dynamic, multicolor, 3-D signs in a virtual 3-D space. The complexity of appearance and the user's interaction with the display provide significant challenges to the graphic designer of current and future user interfaces. In particular, spatial depiction provides many opportunities for effective communication of objects, structures, processes, navigation, selection, and manipulation. Issues are presented that are relevant to the graphic designer seeking to optimize the user interface's spatial attributes for effective visual communication.

  19. A statistically rigorous sampling design to integrate avian monitoring and management within Bird Conservation Regions.

    Science.gov (United States)

    Pavlacky, David C; Lukacs, Paul M; Blakesley, Jennifer A; Skorkowsky, Robert C; Klute, David S; Hahn, Beth A; Dreitz, Victoria J; George, T Luke; Hanni, David J

    2017-01-01

    Monitoring is an essential component of wildlife management and conservation. However, the usefulness of monitoring data is often undermined by the lack of 1) coordination across organizations and regions, 2) meaningful management and conservation objectives, and 3) rigorous sampling designs. Although many improvements to avian monitoring have been discussed, the recommendations have been slow to emerge in large-scale programs. We introduce the Integrated Monitoring in Bird Conservation Regions (IMBCR) program designed to overcome the above limitations. Our objectives are to outline the development of a statistically defensible sampling design to increase the value of large-scale monitoring data and provide example applications to demonstrate the ability of the design to meet multiple conservation and management objectives. We outline the sampling process for the IMBCR program with a focus on the Badlands and Prairies Bird Conservation Region (BCR 17). We provide two examples for the Brewer's sparrow (Spizella breweri) in BCR 17 demonstrating the ability of the design to 1) determine hierarchical population responses to landscape change and 2) estimate hierarchical habitat relationships to predict the response of the Brewer's sparrow to conservation efforts at multiple spatial scales. The collaboration across organizations and regions provided economy of scale by leveraging a common data platform over large spatial scales to promote the efficient use of monitoring resources. We designed the IMBCR program to address the information needs and core conservation and management objectives of the participating partner organizations. Although it has been argued that probabilistic sampling designs are not practical for large-scale monitoring, the IMBCR program provides a precedent for implementing a statistically defensible sampling design from local to bioregional scales. We demonstrate that integrating conservation and management objectives with rigorous statistical

  20. A statistically rigorous sampling design to integrate avian monitoring and management within Bird Conservation Regions.

    Directory of Open Access Journals (Sweden)

    David C Pavlacky

    Full Text Available Monitoring is an essential component of wildlife management and conservation. However, the usefulness of monitoring data is often undermined by the lack of 1 coordination across organizations and regions, 2 meaningful management and conservation objectives, and 3 rigorous sampling designs. Although many improvements to avian monitoring have been discussed, the recommendations have been slow to emerge in large-scale programs. We introduce the Integrated Monitoring in Bird Conservation Regions (IMBCR program designed to overcome the above limitations. Our objectives are to outline the development of a statistically defensible sampling design to increase the value of large-scale monitoring data and provide example applications to demonstrate the ability of the design to meet multiple conservation and management objectives. We outline the sampling process for the IMBCR program with a focus on the Badlands and Prairies Bird Conservation Region (BCR 17. We provide two examples for the Brewer's sparrow (Spizella breweri in BCR 17 demonstrating the ability of the design to 1 determine hierarchical population responses to landscape change and 2 estimate hierarchical habitat relationships to predict the response of the Brewer's sparrow to conservation efforts at multiple spatial scales. The collaboration across organizations and regions provided economy of scale by leveraging a common data platform over large spatial scales to promote the efficient use of monitoring resources. We designed the IMBCR program to address the information needs and core conservation and management objectives of the participating partner organizations. Although it has been argued that probabilistic sampling designs are not practical for large-scale monitoring, the IMBCR program provides a precedent for implementing a statistically defensible sampling design from local to bioregional scales. We demonstrate that integrating conservation and management objectives with rigorous

  1. Multiobjective design of aquifer monitoring networks for optimal spatial prediction and geostatistical parameter estimation

    Science.gov (United States)

    Alzraiee, Ayman H.; Bau, Domenico A.; Garcia, Luis A.

    2013-06-01

    Effective sampling of hydrogeological systems is essential in guiding groundwater management practices. Optimal sampling of groundwater systems has previously been formulated based on the assumption that heterogeneous subsurface properties can be modeled using a geostatistical approach. Therefore, the monitoring schemes have been developed to concurrently minimize the uncertainty in the spatial distribution of systems' states and parameters, such as the hydraulic conductivity K and the hydraulic head H, and the uncertainty in the geostatistical model of system parameters using a single objective function that aggregates all objectives. However, it has been shown that the aggregation of possibly conflicting objective functions is sensitive to the adopted aggregation scheme and may lead to distorted results. In addition, the uncertainties in geostatistical parameters affect the uncertainty in the spatial prediction of K and H according to a complex nonlinear relationship, which has often been ineffectively evaluated using a first-order approximation. In this study, we propose a multiobjective optimization framework to assist the design of monitoring networks of K and H with the goal of optimizing their spatial predictions and estimating the geostatistical parameters of the K field. The framework stems from the combination of a data assimilation (DA) algorithm and a multiobjective evolutionary algorithm (MOEA). The DA algorithm is based on the ensemble Kalman filter, a Monte-Carlo-based Bayesian update scheme for nonlinear systems, which is employed to approximate the posterior uncertainty in K, H, and the geostatistical parameters of K obtained by collecting new measurements. Multiple MOEA experiments are used to investigate the trade-off among design objectives and identify the corresponding monitoring schemes. The methodology is applied to design a sampling network for a shallow unconfined groundwater system located in Rocky Ford, Colorado. Results indicate that

  2. Reachable Distance Space: Efficient Sampling-Based Planning for Spatially Constrained Systems

    KAUST Repository

    Xinyu Tang,

    2010-01-25

    Motion planning for spatially constrained robots is difficult due to additional constraints placed on the robot, such as closure constraints for closed chains or requirements on end-effector placement for articulated linkages. It is usually computationally too expensive to apply sampling-based planners to these problems since it is difficult to generate valid configurations. We overcome this challenge by redefining the robot\\'s degrees of freedom and constraints into a new set of parameters, called reachable distance space (RD-space), in which all configurations lie in the set of constraint-satisfying subspaces. This enables us to directly sample the constrained subspaces with complexity linear in the number of the robot\\'s degrees of freedom. In addition to supporting efficient sampling of configurations, we show that the RD-space formulation naturally supports planning and, in particular, we design a local planner suitable for use by sampling-based planners. We demonstrate the effectiveness and efficiency of our approach for several systems including closed chain planning with multiple loops, restricted end-effector sampling, and on-line planning for drawing/sculpting. We can sample single-loop closed chain systems with 1,000 links in time comparable to open chain sampling, and we can generate samples for 1,000-link multi-loop systems of varying topologies in less than a second. © 2010 The Author(s).

  3. Spatial Distribution and Sampling Plans for Grapevine Plant Canopy-Inhabiting Scaphoideus titanus (Hemiptera: Cicadellidae) Nymphs.

    Science.gov (United States)

    Rigamonti, Ivo E; Brambilla, Carla; Colleoni, Emanuele; Jermini, Mauro; Trivellone, Valeria; Baumgärtner, Johann

    2016-04-01

    The paper deals with the study of the spatial distribution and the design of sampling plans for estimating nymph densities of the grape leafhopper Scaphoideus titanus Ball in vine plant canopies. In a reference vineyard sampled for model parameterization, leaf samples were repeatedly taken according to a multistage, stratified, random sampling procedure, and data were subjected to an ANOVA. There were no significant differences in density neither among the strata within the vineyard nor between the two strata with basal and apical leaves. The significant differences between densities on trunk and productive shoots led to the adoption of two-stage (leaves and plants) and three-stage (leaves, shoots, and plants) sampling plans for trunk shoots- and productive shoots-inhabiting individuals, respectively. The mean crowding to mean relationship used to analyze the nymphs spatial distribution revealed aggregated distributions. In both the enumerative and the sequential enumerative sampling plans, the number of leaves of trunk shoots, and of leaves and shoots of productive shoots, was kept constant while the number of plants varied. In additional vineyards data were collected and used to test the applicability of the distribution model and the sampling plans. The tests confirmed the applicability 1) of the mean crowding to mean regression model on the plant and leaf stages for representing trunk shoot-inhabiting distributions, and on the plant, shoot, and leaf stages for productive shoot-inhabiting nymphs, 2) of the enumerative sampling plan, and 3) of the sequential enumerative sampling plan. In general, sequential enumerative sampling was more cost efficient than enumerative sampling.

  4. A proposal of optimal sampling design using a modularity strategy

    Science.gov (United States)

    Simone, A.; Giustolisi, O.; Laucelli, D. B.

    2016-08-01

    In real water distribution networks (WDNs) are present thousands nodes and optimal placement of pressure and flow observations is a relevant issue for different management tasks. The planning of pressure observations in terms of spatial distribution and number is named sampling design and it was faced considering model calibration. Nowadays, the design of system monitoring is a relevant issue for water utilities e.g., in order to manage background leakages, to detect anomalies and bursts, to guarantee service quality, etc. In recent years, the optimal location of flow observations related to design of optimal district metering areas (DMAs) and leakage management purposes has been faced considering optimal network segmentation and the modularity index using a multiobjective strategy. Optimal network segmentation is the basis to identify network modules by means of optimal conceptual cuts, which are the candidate locations of closed gates or flow meters creating the DMAs. Starting from the WDN-oriented modularity index, as a metric for WDN segmentation, this paper proposes a new way to perform the sampling design, i.e., the optimal location of pressure meters, using newly developed sampling-oriented modularity index. The strategy optimizes the pressure monitoring system mainly based on network topology and weights assigned to pipes according to the specific technical tasks. A multiobjective optimization minimizes the cost of pressure meters while maximizing the sampling-oriented modularity index. The methodology is presented and discussed using the Apulian and Exnet networks.

  5. Towards spatial isolation design in a multi-core real-time kernel targeting safety-critical applications

    DEFF Research Database (Denmark)

    Li, Gang; Top, Søren

    2013-01-01

    . Partitioning can prevent fault propagation among mixed-criticality applications, if spatial and temporal isolation are adequately ensured. This paper focuses on the solution of spatial isolation in the HARTEX kernel on a multi-core platform in terms of memory, communication between applications and I/O sharing....... According to formulated isolation requirements, a simple partitioning multi-core hardware architecture is proposed using SoC and memory protection units, and the kernel is extended to support spatial isolation between the kernel and applications as well as between applications. Combined design of hardware...... and software can easily achieve this isolation. At last, the spatial isolation is evaluated using a statistical sampling method and its performance is tested in terms of task switch, system call and footprint....

  6. Spatial effects, sampling errors, and task specialization in the honey bee.

    Science.gov (United States)

    Johnson, B R

    2010-05-01

    Task allocation patterns should depend on the spatial distribution of work within the nest, variation in task demand, and the movement patterns of workers, however, relatively little research has focused on these topics. This study uses a spatially explicit agent based model to determine whether such factors alone can generate biases in task performance at the individual level in the honey bees, Apis mellifera. Specialization (bias in task performance) is shown to result from strong sampling error due to localized task demand, relatively slow moving workers relative to nest size, and strong spatial variation in task demand. To date, specialization has been primarily interpreted with the response threshold concept, which is focused on intrinsic (typically genotypic) differences between workers. Response threshold variation and sampling error due to spatial effects are not mutually exclusive, however, and this study suggests that both contribute to patterns of task bias at the individual level. While spatial effects are strong enough to explain some documented cases of specialization; they are relatively short term and not explanatory for long term cases of specialization. In general, this study suggests that the spatial layout of tasks and fluctuations in their demand must be explicitly controlled for in studies focused on identifying genotypic specialists.

  7. Involving Motion Graphics in Spatial Experience Design

    DEFF Research Database (Denmark)

    Steijn, Arthur

    2013-01-01

    elements such as e.g. space, tone, color, movement, time and timing. Developing this design model has two purposes. The first is as a tool for analyzing empirical examples or cases of where motion graphics is used in spatial experience design. The second is as a tool that can be used in the actual design...... process, and therefore it should be constructed as such. Since the development of the design model has this double focus, I involve design students in design laboratories related to my practice as a teacher in visual communication design and production design. I also reflect on how an initial design...

  8. How does spatial study design influence density estimates from spatial capture-recapture models?

    Directory of Open Access Journals (Sweden)

    Rahel Sollmann

    Full Text Available When estimating population density from data collected on non-invasive detector arrays, recently developed spatial capture-recapture (SCR models present an advance over non-spatial models by accounting for individual movement. While these models should be more robust to changes in trapping designs, they have not been well tested. Here we investigate how the spatial arrangement and size of the trapping array influence parameter estimates for SCR models. We analysed black bear data collected with 123 hair snares with an SCR model accounting for differences in detection and movement between sexes and across the trapping occasions. To see how the size of the trap array and trap dispersion influence parameter estimates, we repeated analysis for data from subsets of traps: 50% chosen at random, 50% in the centre of the array and 20% in the South of the array. Additionally, we simulated and analysed data under a suite of trap designs and home range sizes. In the black bear study, we found that results were similar across trap arrays, except when only 20% of the array was used. Black bear density was approximately 10 individuals per 100 km(2. Our simulation study showed that SCR models performed well as long as the extent of the trap array was similar to or larger than the extent of individual movement during the study period, and movement was at least half the distance between traps. SCR models performed well across a range of spatial trap setups and animal movements. Contrary to non-spatial capture-recapture models, they do not require the trapping grid to cover an area several times the average home range of the studied species. This renders SCR models more appropriate for the study of wide-ranging mammals and more flexible to design studies targeting multiple species.

  9. Planetary Sample Caching System Design Options

    Science.gov (United States)

    Collins, Curtis; Younse, Paulo; Backes, Paul

    2009-01-01

    Potential Mars Sample Return missions would aspire to collect small core and regolith samples using a rover with a sample acquisition tool and sample caching system. Samples would need to be stored in individual sealed tubes in a canister that could be transfered to a Mars ascent vehicle and returned to Earth. A sample handling, encapsulation and containerization system (SHEC) has been developed as part of an integrated system for acquiring and storing core samples for application to future potential MSR and other potential sample return missions. Requirements and design options for the SHEC system were studied and a recommended design concept developed. Two families of solutions were explored: 1)transfer of a raw sample from the tool to the SHEC subsystem and 2)transfer of a tube containing the sample to the SHEC subsystem. The recommended design utilizes sample tool bit change out as the mechanism for transferring tubes to and samples in tubes from the tool. The SHEC subsystem design, called the Bit Changeout Caching(BiCC) design, is intended for operations on a MER class rover.

  10. Spatial distribution sampling and Monte Carlo simulation of radioactive isotopes

    CERN Document Server

    Krainer, Alexander Michael

    2015-01-01

    This work focuses on the implementation of a program for random sampling of uniformly spatially distributed isotopes for Monte Carlo particle simulations and in specific FLUKA. With FLUKA it is possible to calculate the radio nuclide production in high energy fields. The decay of these nuclide, and therefore the resulting radiation field, however can only be simulated in the same geometry. This works gives the tool to simulate the decay of the produced nuclide in other geometries. With that the radiation field from an irradiated object can be simulated in arbitrary environments. The sampling of isotope mixtures was tested by simulating a 50/50 mixture of $Cs^{137}$ and $Co^{60}$. These isotopes are both well known and provide therefore a first reliable benchmark in that respect. The sampling of uniformly distributed coordinates was tested using the histogram test for various spatial distributions. The advantages and disadvantages of the program compared to standard methods are demonstrated in the real life ca...

  11. Design of spatial experiments: Model fitting and prediction

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, V.V.

    1996-03-01

    The main objective of the paper is to describe and develop model oriented methods and algorithms for the design of spatial experiments. Unlike many other publications in this area, the approach proposed here is essentially based on the ideas of convex design theory.

  12. The effects of spatial sampling choices on MR temperature measurements.

    Science.gov (United States)

    Todd, Nick; Vyas, Urvi; de Bever, Josh; Payne, Allison; Parker, Dennis L

    2011-02-01

    The purpose of this article is to quantify the effects that spatial sampling parameters have on the accuracy of magnetic resonance temperature measurements during high intensity focused ultrasound treatments. Spatial resolution and position of the sampling grid were considered using experimental and simulated data for two different types of high intensity focused ultrasound heating trajectories (a single point and a 4-mm circle) with maximum measured temperature and thermal dose volume as the metrics. It is demonstrated that measurement accuracy is related to the curvature of the temperature distribution, where regions with larger spatial second derivatives require higher resolution. The location of the sampling grid relative temperature distribution has a significant effect on the measured values. When imaging at 1.0 × 1.0 × 3.0 mm(3) resolution, the measured values for maximum temperature and volume dosed to 240 cumulative equivalent minutes (CEM) or greater varied by 17% and 33%, respectively, for the single-point heating case, and by 5% and 18%, respectively, for the 4-mm circle heating case. Accurate measurement of the maximum temperature required imaging at 1.0 × 1.0 × 3.0 mm(3) resolution for the single-point heating case and 2.0 × 2.0 × 5.0 mm(3) resolution for the 4-mm circle heating case. Copyright © 2010 Wiley-Liss, Inc.

  13. Visualisation and research strategy for computational spatial and structural design interaction

    NARCIS (Netherlands)

    Peeten, D.; Hofmeyer, H.; Thabet, W

    2010-01-01

    A research engine is under development for studying the interaction of spatial and structural design processes. The design processes are being implemented as two separate configurable transformation steps; a conversion step and an optimisation step. A significant part of the spatial-to-structural

  14. Cost-effective sampling of 137Cs-derived net soil redistribution: part 1 – estimating the spatial mean across scales of variation

    International Nuclear Information System (INIS)

    Li, Y.; Chappell, A.; Nyamdavaa, B.; Yu, H.; Davaasuren, D.; Zoljargal, K.

    2015-01-01

    The 137 Cs technique for estimating net time-integrated soil redistribution is valuable for understanding the factors controlling soil redistribution by all processes. The literature on this technique is dominated by studies of individual fields and describes its typically time-consuming nature. We contend that the community making these studies has inappropriately assumed that many 137 Cs measurements are required and hence estimates of net soil redistribution can only be made at the field scale. Here, we support future studies of 137 Cs-derived net soil redistribution to apply their often limited resources across scales of variation (field, catchment, region etc.) without compromising the quality of the estimates at any scale. We describe a hybrid, design-based and model-based, stratified random sampling design with composites to estimate the sampling variance and a cost model for fieldwork and laboratory measurements. Geostatistical mapping of net (1954–2012) soil redistribution as a case study on the Chinese Loess Plateau is compared with estimates for several other sampling designs popular in the literature. We demonstrate the cost-effectiveness of the hybrid design for spatial estimation of net soil redistribution. To demonstrate the limitations of current sampling approaches to cut across scales of variation, we extrapolate our estimate of net soil redistribution across the region, show that for the same resources, estimates from many fields could have been provided and would elucidate the cause of differences within and between regional estimates. We recommend that future studies evaluate carefully the sampling design to consider the opportunity to investigate 137 Cs-derived net soil redistribution across scales of variation. - Highlights: • The 137 Cs technique estimates net time-integrated soil redistribution by all processes. • It is time-consuming and dominated by studies of individual fields. • We use limited resources to estimate soil

  15. A method to combine non-probability sample data with probability sample data in estimating spatial means of environmental variables

    NARCIS (Netherlands)

    Brus, D.J.; Gruijter, de J.J.

    2003-01-01

    In estimating spatial means of environmental variables of a region from data collected by convenience or purposive sampling, validity of the results can be ensured by collecting additional data through probability sampling. The precision of the pi estimator that uses the probability sample can be

  16. Characterization of spatial distribution of Tetranychus urticae in peppermint in California and implication for improving sampling plan.

    Science.gov (United States)

    Rijal, Jhalendra P; Wilson, Rob; Godfrey, Larry D

    2016-02-01

    Twospotted spider mite, Tetranychus urticae Koch, is an important pest of peppermint in California, USA. Spider mite feeding on peppermint leaves causes physiological changes in the plant, which coupling with the favorable environmental condition can lead to increased mite infestations. Significant yield loss can occur in absence of pest monitoring and timely management. Understating the within-field spatial distribution of T. urticae is critical for the development of reliable sampling plan. The study reported here aims to characterize the spatial distribution of mite infestation in four commercial peppermint fields in northern California using spatial techniques, variogram and Spatial Analysis by Distance IndicEs (SADIE). Variogram analysis revealed that there was a strong evidence for spatially dependent (aggregated) mite population in 13 of 17 sampling dates and the physical distance of the aggregation reached maximum to 7 m in peppermint fields. Using SADIE, 11 of 17 sampling dates showed aggregated distribution pattern of mite infestation. Combining results from variogram and SADIE analysis, the spatial aggregation of T. urticae was evident in all four fields for all 17 sampling dates evaluated. Comparing spatial association using SADIE, ca. 62% of the total sampling pairs showed a positive association of mite spatial distribution patterns between two consecutive sampling dates, which indicates a strong spatial and temporal stability of mite infestation in peppermint fields. These results are discussed in relation to behavior of spider mite distribution within field, and its implications for improving sampling guidelines that are essential for effective pest monitoring and management.

  17. Spatial Sampling of Weather Data for Regional Crop Yield Simulations

    Science.gov (United States)

    Van Bussel, Lenny G. J.; Ewert, Frank; Zhao, Gang; Hoffmann, Holger; Enders, Andreas; Wallach, Daniel; Asseng, Senthold; Baigorria, Guillermo A.; Basso, Bruno; Biernath, Christian; hide

    2016-01-01

    Field-scale crop models are increasingly applied at spatio-temporal scales that range from regions to the globe and from decades up to 100 years. Sufficiently detailed data to capture the prevailing spatio-temporal heterogeneity in weather, soil, and management conditions as needed by crop models are rarely available. Effective sampling may overcome the problem of missing data but has rarely been investigated. In this study the effect of sampling weather data has been evaluated for simulating yields of winter wheat in a region in Germany over a 30-year period (1982-2011) using 12 process-based crop models. A stratified sampling was applied to compare the effect of different sizes of spatially sampled weather data (10, 30, 50, 100, 500, 1000 and full coverage of 34,078 sampling points) on simulated wheat yields. Stratified sampling was further compared with random sampling. Possible interactions between sample size and crop model were evaluated. The results showed differences in simulated yields among crop models but all models reproduced well the pattern of the stratification. Importantly, the regional mean of simulated yields based on full coverage could already be reproduced by a small sample of 10 points. This was also true for reproducing the temporal variability in simulated yields but more sampling points (about 100) were required to accurately reproduce spatial yield variability. The number of sampling points can be smaller when a stratified sampling is applied as compared to a random sampling. However, differences between crop models were observed including some interaction between the effect of sampling on simulated yields and the model used. We concluded that stratified sampling can considerably reduce the number of required simulations. But, differences between crop models must be considered as the choice for a specific model can have larger effects on simulated yields than the sampling strategy. Assessing the impact of sampling soil and crop management

  18. Urban Design and Spatial Equity

    DEFF Research Database (Denmark)

    Silva, Victor

    2012-01-01

    During the last century, the motorized vehicles have been preponderant in the streets. However, the emergence of the debate about sustainability and its relation to the urban environment has influenced urban designers to rethink the role of the streets and their spatiality. Pedestrians and cyclists...... are gaining space not only for move to a specific destination, but also space in which to play and stay. Taking in consideration the formal structure of our cities, streets are critical to urban transformation and strategic to restructure the urban flows and the quality of urban life. This chapter aims...... transformation of a street in the core of Odense – Vestergade Vest. Firstly, this chapter presents the notion of shared use streets – including a brief historical context and a debate about its design characteristics and its role to enhance street life. Secondly, it is presented a creative and low budget design...

  19. [Study of spatial stratified sampling strategy of Oncomelania hupensis snail survey based on plant abundance].

    Science.gov (United States)

    Xun-Ping, W; An, Z

    2017-07-27

    Objective To optimize and simplify the survey method of Oncomelania hupensis snails in marshland endemic regions of schistosomiasis, so as to improve the precision, efficiency and economy of the snail survey. Methods A snail sampling strategy (Spatial Sampling Scenario of Oncomelania based on Plant Abundance, SOPA) which took the plant abundance as auxiliary variable was explored and an experimental study in a 50 m×50 m plot in a marshland in the Poyang Lake region was performed. Firstly, the push broom surveyed data was stratified into 5 layers by the plant abundance data; then, the required numbers of optimal sampling points of each layer through Hammond McCullagh equation were calculated; thirdly, every sample point in the line with the Multiple Directional Interpolation (MDI) placement scheme was pinpointed; and finally, the comparison study among the outcomes of the spatial random sampling strategy, the traditional systematic sampling method, the spatial stratified sampling method, Sandwich spatial sampling and inference and SOPA was performed. Results The method (SOPA) proposed in this study had the minimal absolute error of 0.213 8; and the traditional systematic sampling method had the largest estimate, and the absolute error was 0.924 4. Conclusion The snail sampling strategy (SOPA) proposed in this study obtains the higher estimation accuracy than the other four methods.

  20. The influence of sampling unit size and spatial arrangement patterns on neighborhood-based spatial structure analyses of forest stands

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Zhang, G.; Hui, G.; Li, Y.; Hu, Y.; Zhao, Z.

    2016-07-01

    Aim of study: Neighborhood-based stand spatial structure parameters can quantify and characterize forest spatial structure effectively. How these neighborhood-based structure parameters are influenced by the selection of different numbers of nearest-neighbor trees is unclear, and there is some disagreement in the literature regarding the appropriate number of nearest-neighbor trees to sample around reference trees. Understanding how to efficiently characterize forest structure is critical for forest management. Area of study: Multi-species uneven-aged forests of Northern China. Material and methods: We simulated stands with different spatial structural characteristics and systematically compared their structure parameters when two to eight neighboring trees were selected. Main results: Results showed that values of uniform angle index calculated in the same stand were different with different sizes of structure unit. When tree species and sizes were completely randomly interspersed, different numbers of neighbors had little influence on mingling and dominance indices. Changes of mingling or dominance indices caused by different numbers of neighbors occurred when the tree species or size classes were not randomly interspersed and their changing characteristics can be detected according to the spatial arrangement patterns of tree species and sizes. Research highlights: The number of neighboring trees selected for analyzing stand spatial structure parameters should be fixed. We proposed that the four-tree structure unit is the best compromise between sampling accuracy and costs for practical forest management. (Author)

  1. Design and implementation of distributed spatial computing node based on WPS

    International Nuclear Information System (INIS)

    Liu, Liping; Li, Guoqing; Xie, Jibo

    2014-01-01

    Currently, the research work of SIG (Spatial Information Grid) technology mostly emphasizes on the spatial data sharing in grid environment, while the importance of spatial computing resources is ignored. In order to implement the sharing and cooperation of spatial computing resources in grid environment, this paper does a systematical research of the key technologies to construct Spatial Computing Node based on the WPS (Web Processing Service) specification by OGC (Open Geospatial Consortium). And a framework of Spatial Computing Node is designed according to the features of spatial computing resources. Finally, a prototype of Spatial Computing Node is implemented and the relevant verification work under the environment is completed

  2. Designing optimal sampling schemes for field visits

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2008-10-01

    Full Text Available This is a presentation of a statistical method for deriving optimal spatial sampling schemes. The research focuses on ground verification of minerals derived from hyperspectral data. Spectral angle mapper (SAM) and spectral feature fitting (SFF...

  3. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples

    Science.gov (United States)

    Yan, Wei; Yang, Yanlong; Tan, Yu; Chen, Xun; Li, Yang; Qu, Junle; Ye, Tong

    2018-01-01

    Stimulated emission depletion microscopy (STED) is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of specimens’ optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the sever distortion of the depletion beam profile may cause complete loss of the super resolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is hard to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique (COAT). The full correction can effectively maintain and improve the spatial resolution in imaging thick samples. PMID:29400356

  4. Coevolutionary and genetic algorithm based building spatial and structural design

    NARCIS (Netherlands)

    Hofmeyer, H.; Davila Delgado, J.M.

    2015-01-01

    In this article, two methods to develop and optimize accompanying building spatial and structural designs are compared. The first, a coevolutionary method, applies deterministic procedures, inspired by realistic design processes, to cyclically add a suitable structural design to the input of a

  5. Spatial interpolation

    NARCIS (Netherlands)

    Stein, A.

    1991-01-01

    The theory and practical application of techniques of statistical interpolation are studied in this thesis, and new developments in multivariate spatial interpolation and the design of sampling plans are discussed. Several applications to studies in soil science are

  6. A two-phase sampling design for increasing detections of rare species in occupancy surveys

    Science.gov (United States)

    Pacifici, Krishna; Dorazio, Robert M.; Dorazio, Michael J.

    2012-01-01

    1. Occupancy estimation is a commonly used tool in ecological studies owing to the ease at which data can be collected and the large spatial extent that can be covered. One major obstacle to using an occupancy-based approach is the complications associated with designing and implementing an efficient survey. These logistical challenges become magnified when working with rare species when effort can be wasted in areas with none or very few individuals. 2. Here, we develop a two-phase sampling approach that mitigates these problems by using a design that places more effort in areas with higher predicted probability of occurrence. We compare our new sampling design to traditional single-season occupancy estimation under a range of conditions and population characteristics. We develop an intuitive measure of predictive error to compare the two approaches and use simulations to assess the relative accuracy of each approach. 3. Our two-phase approach exhibited lower predictive error rates compared to the traditional single-season approach in highly spatially correlated environments. The difference was greatest when detection probability was high (0·75) regardless of the habitat or sample size. When the true occupancy rate was below 0·4 (0·05-0·4), we found that allocating 25% of the sample to the first phase resulted in the lowest error rates. 4. In the majority of scenarios, the two-phase approach showed lower error rates compared to the traditional single-season approach suggesting our new approach is fairly robust to a broad range of conditions and design factors and merits use under a wide variety of settings. 5. Synthesis and applications. Conservation and management of rare species are a challenging task facing natural resource managers. It is critical for studies involving rare species to efficiently allocate effort and resources as they are usually of a finite nature. We believe our approach provides a framework for optimal allocation of effort while

  7. Design and realization of tourism spatial decision support system based on GIS

    Science.gov (United States)

    Ma, Zhangbao; Qi, Qingwen; Xu, Li

    2008-10-01

    In this paper, the existing problems of current tourism management information system are analyzed. GIS, tourism as well as spatial decision support system are introduced, and the application of geographic information system technology and spatial decision support system to tourism management and the establishment of tourism spatial decision support system based on GIS are proposed. System total structure, system hardware and software environment, database design and structure module design of this system are introduced. Finally, realization methods of this systemic core functions are elaborated.

  8. Climate Change and Agricultural Productivity in Sub-Saharan Africa: A Spatial Sample Selection Model

    NARCIS (Netherlands)

    Ward, P.S.; Florax, R.J.G.M.; Flores-Lagunes, A.

    2014-01-01

    Using spatially explicit data, we estimate a cereal yield response function using a recently developed estimator for spatial error models when endogenous sample selection is of concern. Our results suggest that yields across Sub-Saharan Africa will decline with projected climatic changes, and that

  9. Accuracy assessment of the National Forest Inventory map of Mexico: sampling designs and the fuzzy characterization of landscapes

    Directory of Open Access Journals (Sweden)

    Stéphane Couturier

    2009-10-01

    Full Text Available There is no record so far in the literature of a comprehensive method to assess the accuracy of regional scale Land Cover/ Land Use (LCLU maps in the sub-tropical belt. The elevated biodiversity and the presence of highly fragmented classes hamper the use of sampling designs commonly employed in previous assessments of mainly temperate zones. A sampling design for assessing the accuracy of the Mexican National Forest Inventory (NFI map at community level is presented. A pilot study was conducted on the Cuitzeo Lake watershed region covering 400 000 ha of the 2000 Landsat-derived map. Various sampling designs were tested in order to find a trade-off between operational costs, a good spatial distribution of the sample and the inclusion of all scarcely distributed classes (‘rare classes’. A two-stage sampling design where the selection of Primary Sampling Units (PSU was done under separate schemes for commonly and scarcely distributed classes, showed best characteristics. A total of 2 023 punctual secondary sampling units were verified against their NFI map label. Issues regarding the assessment strategy and trends of class confusions are devised.

  10. OpenMSI Arrayed Analysis Toolkit: Analyzing Spatially Defined Samples Using Mass Spectrometry Imaging

    Energy Technology Data Exchange (ETDEWEB)

    de Raad, Markus [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); de Rond, Tristan [Univ. of California, Berkeley, CA (United States); Rübel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Keasling, Jay D. [Univ. of California, Berkeley, CA (United States); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Technical Univ. of Denmark, Lyngby (Denmark); Northen, Trent R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Bowen, Benjamin P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)

    2017-05-03

    Mass spectrometry imaging (MSI) has primarily been applied in localizing biomolecules within biological matrices. Although well-suited, the application of MSI for comparing thousands of spatially defined spotted samples has been limited. One reason for this is a lack of suitable and accessible data processing tools for the analysis of large arrayed MSI sample sets. In this paper, the OpenMSI Arrayed Analysis Toolkit (OMAAT) is a software package that addresses the challenges of analyzing spatially defined samples in MSI data sets. OMAAT is written in Python and is integrated with OpenMSI (http://openmsi.nersc.gov), a platform for storing, sharing, and analyzing MSI data. By using a web-based python notebook (Jupyter), OMAAT is accessible to anyone without programming experience yet allows experienced users to leverage all features. OMAAT was evaluated by analyzing an MSI data set of a high-throughput glycoside hydrolase activity screen comprising 384 samples arrayed onto a NIMS surface at a 450 μm spacing, decreasing analysis time >100-fold while maintaining robust spot-finding. The utility of OMAAT was demonstrated for screening metabolic activities of different sized soil particles, including hydrolysis of sugars, revealing a pattern of size dependent activities. Finally, these results introduce OMAAT as an effective toolkit for analyzing spatially defined samples in MSI. OMAAT runs on all major operating systems, and the source code can be obtained from the following GitHub repository: https://github.com/biorack/omaat.

  11. On the Spatial and Temporal Sampling Errors of Remotely Sensed Precipitation Products

    Directory of Open Access Journals (Sweden)

    Ali Behrangi

    2017-11-01

    Full Text Available Observation with coarse spatial and temporal sampling can cause large errors in quantification of the amount, intensity, and duration of precipitation events. In this study, the errors resulting from temporal and spatial sampling of precipitation events were quantified and examined using the latest version (V4 of the Global Precipitation Measurement (GPM mission integrated multi-satellite retrievals for GPM (IMERG, which is available since spring of 2014. Relative mean square error was calculated at 0.1° × 0.1° every 0.5 h between the degraded (temporally and spatially and original IMERG products. The temporal and spatial degradation was performed by producing three-hour (T3, six-hour (T6, 0.5° × 0.5° (S5, and 1.0° × 1.0° (S10 maps. The results show generally larger errors over land than ocean, especially over mountainous regions. The relative error of T6 is almost 20% larger than T3 over tropical land, but is smaller in higher latitudes. Over land relative error of T6 is larger than S5 across all latitudes, while T6 has larger relative error than S10 poleward of 20°S–20°N. Similarly, the relative error of T3 exceeds S5 poleward of 20°S–20°N, but does not exceed S10, except in very high latitudes. Similar results are also seen over ocean, but the error ratios are generally less sensitive to seasonal changes. The results also show that the spatial and temporal relative errors are not highly correlated. Overall, lower correlations between the spatial and temporal relative errors are observed over ocean than over land. Quantification of such spatiotemporal effects provides additional insights into evaluation studies, especially when different products are cross-compared at a range of spatiotemporal scales.

  12. Effects of Spatial Experiences & Cognitive Styles in the Solution Process of Space-Based Design Problems in the First Year of Architectural Design Education

    Science.gov (United States)

    Erkan Yazici, Yasemin

    2013-01-01

    There are many factors that influence designers in the architectural design process. Cognitive style, which varies according to the cognitive structure of persons, and spatial experience, which is created with spatial data acquired during life are two of these factors. Designers usually refer to their spatial experiences in order to find solutions…

  13. Spatial scan statistics to assess sampling strategy of antimicrobial resistance monitoring programme

    DEFF Research Database (Denmark)

    Vieira, Antonio; Houe, Hans; Wegener, Henrik Caspar

    2009-01-01

    Pie collection and analysis of data on antimicrobial resistance in human and animal Populations are important for establishing a baseline of the occurrence of resistance and for determining trends over time. In animals, targeted monitoring with a stratified sampling plan is normally used. However...... sampled by the Danish Integrated Antimicrobial Resistance Monitoring and Research Programme (DANMAP), by identifying spatial Clusters of samples and detecting areas with significantly high or low sampling rates. These analyses were performed for each year and for the total 5-year study period for all...... by an antimicrobial monitoring program....

  14. Software Architecture Design for Spatially-Indexed Media in Smart Environments

    Directory of Open Access Journals (Sweden)

    SCHIPOR, O.-A.

    2017-05-01

    Full Text Available We introduce in this work a new software architecture design, based on well-established web communication protocols and scripting languages, for implementing spatially-indexed media in smart environments. We based our approach on specific design guidelines. Our concept of spatially-indexed media enables users to readily instantiate mappings between digital content and specific regions of the physical space. We present an implementation of the architecture using a motion capture system, a large visualization display, and several smart devices. We also present an experimental evaluation of our new software architecture by reporting response times function of changes in the complexity of physical-digital environment.

  15. Spatial distribution of single-nucleotide polymorphisms related to fungicide resistance and implications for sampling.

    Science.gov (United States)

    Van der Heyden, H; Dutilleul, P; Brodeur, L; Carisse, O

    2014-06-01

    Spatial distribution of single-nucleotide polymorphisms (SNPs) related to fungicide resistance was studied for Botrytis cinerea populations in vineyards and for B. squamosa populations in onion fields. Heterogeneity in this distribution was characterized by performing geostatistical analyses based on semivariograms and through the fitting of discrete probability distributions. Two SNPs known to be responsible for boscalid resistance (H272R and H272Y), both located on the B subunit of the succinate dehydrogenase gene, and one SNP known to be responsible for dicarboximide resistance (I365S) were chosen for B. cinerea in grape. For B. squamosa in onion, one SNP responsible for dicarboximide resistance (I365S homologous) was chosen. One onion field was sampled in 2009 and another one was sampled in 2010 for B. squamosa, and two vineyards were sampled in 2011 for B. cinerea, for a total of four sampled sites. Cluster sampling was carried on a 10-by-10 grid, each of the 100 nodes being the center of a 10-by-10-m quadrat. In each quadrat, 10 samples were collected and analyzed by restriction fragment length polymorphism polymerase chain reaction (PCR) or allele specific PCR. Mean SNP incidence varied from 16 to 68%, with an overall mean incidence of 43%. In the geostatistical analyses, omnidirectional variograms showed spatial autocorrelation characterized by ranges of 21 to 1 m. Various levels of anisotropy were detected, however, with variograms computed in four directions (at 0°, 45°, 90°, and 135° from the within-row direction used as reference), indicating that spatial autocorrelation was prevalent or characterized by a longer range in one direction. For all eight data sets, the β-binomial distribution was found to fit the data better than the binomial distribution. This indicates local aggregation of fungicide resistance among sampling units, as supported by estimates of the parameter θ of the β-binomial distribution of 0.09 to 0.23 (overall median value = 0

  16. Experimental and Sampling Design for the INL-2 Sample Collection Operational Test

    Energy Technology Data Exchange (ETDEWEB)

    Piepel, Gregory F.; Amidan, Brett G.; Matzke, Brett D.

    2009-02-16

    This report describes the experimental and sampling design developed to assess sampling approaches and methods for detecting contamination in a building and clearing the building for use after decontamination. An Idaho National Laboratory (INL) building will be contaminated with BG (Bacillus globigii, renamed Bacillus atrophaeus), a simulant for Bacillus anthracis (BA). The contamination, sampling, decontamination, and re-sampling will occur per the experimental and sampling design. This INL-2 Sample Collection Operational Test is being planned by the Validated Sampling Plan Working Group (VSPWG). The primary objectives are: 1) Evaluate judgmental and probabilistic sampling for characterization as well as probabilistic and combined (judgment and probabilistic) sampling approaches for clearance, 2) Conduct these evaluations for gradient contamination (from low or moderate down to absent or undetectable) for different initial concentrations of the contaminant, 3) Explore judgment composite sampling approaches to reduce sample numbers, 4) Collect baseline data to serve as an indication of the actual levels of contamination in the tests. A combined judgmental and random (CJR) approach uses Bayesian methodology to combine judgmental and probabilistic samples to make clearance statements of the form "X% confidence that at least Y% of an area does not contain detectable contamination” (X%/Y% clearance statements). The INL-2 experimental design has five test events, which 1) vary the floor of the INL building on which the contaminant will be released, 2) provide for varying the amount of contaminant released to obtain desired concentration gradients, and 3) investigate overt as well as covert release of contaminants. Desirable contaminant gradients would have moderate to low concentrations of contaminant in rooms near the release point, with concentrations down to zero in other rooms. Such gradients would provide a range of contamination levels to challenge the sampling

  17. Preferential sampling in veterinary parasitological surveillance

    Directory of Open Access Journals (Sweden)

    Lorenzo Cecconi

    2016-04-01

    Full Text Available In parasitological surveillance of livestock, prevalence surveys are conducted on a sample of farms using several sampling designs. For example, opportunistic surveys or informative sampling designs are very common. Preferential sampling refers to any situation in which the spatial process and the sampling locations are not independent. Most examples of preferential sampling in the spatial statistics literature are in environmental statistics with focus on pollutant monitors, and it has been shown that, if preferential sampling is present and is not accounted for in the statistical modelling and data analysis, statistical inference can be misleading. In this paper, working in the context of veterinary parasitology, we propose and use geostatistical models to predict the continuous and spatially-varying risk of a parasite infection. Specifically, breaking with the common practice in veterinary parasitological surveillance to ignore preferential sampling even though informative or opportunistic samples are very common, we specify a two-stage hierarchical Bayesian model that adjusts for preferential sampling and we apply it to data on Fasciola hepatica infection in sheep farms in Campania region (Southern Italy in the years 2013-2014.

  18. Spatially explicit population estimates for black bears based on cluster sampling

    Science.gov (United States)

    Humm, J.; McCown, J. Walter; Scheick, B.K.; Clark, Joseph D.

    2017-01-01

    We estimated abundance and density of the 5 major black bear (Ursus americanus) subpopulations (i.e., Eglin, Apalachicola, Osceola, Ocala-St. Johns, Big Cypress) in Florida, USA with spatially explicit capture-mark-recapture (SCR) by extracting DNA from hair samples collected at barbed-wire hair sampling sites. We employed a clustered sampling configuration with sampling sites arranged in 3 × 3 clusters spaced 2 km apart within each cluster and cluster centers spaced 16 km apart (center to center). We surveyed all 5 subpopulations encompassing 38,960 km2 during 2014 and 2015. Several landscape variables, most associated with forest cover, helped refine density estimates for the 5 subpopulations we sampled. Detection probabilities were affected by site-specific behavioral responses coupled with individual capture heterogeneity associated with sex. Model-averaged bear population estimates ranged from 120 (95% CI = 59–276) bears or a mean 0.025 bears/km2 (95% CI = 0.011–0.44) for the Eglin subpopulation to 1,198 bears (95% CI = 949–1,537) or 0.127 bears/km2 (95% CI = 0.101–0.163) for the Ocala-St. Johns subpopulation. The total population estimate for our 5 study areas was 3,916 bears (95% CI = 2,914–5,451). The clustered sampling method coupled with information on land cover was efficient and allowed us to estimate abundance across extensive areas that would not have been possible otherwise. Clustered sampling combined with spatially explicit capture-recapture methods has the potential to provide rigorous population estimates for a wide array of species that are extensive and heterogeneous in their distribution.

  19. Minimum detection limit and spatial resolution of thin-sample field-emission electron probe microanalysis

    International Nuclear Information System (INIS)

    Kubo, Yugo; Hamada, Kotaro; Urano, Akira

    2013-01-01

    The minimum detection limit and spatial resolution for a thinned semiconductor sample were determined by electron probe microanalysis (EPMA) using a Schottky field emission (FE) electron gun and wavelength dispersive X-ray spectrometry. Comparison of the FE-EPMA results with those obtained using energy dispersive X-ray spectrometry in conjunction with scanning transmission electron microscopy, confirmed that FE-EPMA is largely superior in terms of detection sensitivity. Thin-sample FE-EPMA is demonstrated as a very effective method for high resolution, high sensitivity analysis in a laboratory environment because a high probe current and high signal-to-noise ratio can be achieved. - Highlights: • Minimum detection limit and spatial resolution determined for FE-EPMA. • Detection sensitivity of FE-EPMA greatly superior to that of STEM-EDX. • Minimum detection limit and spatial resolution controllable by probe current

  20. The Field Trip as Part of Spatial (Architectural) Design Art Classes

    Science.gov (United States)

    Batic, Janja

    2011-01-01

    Spatial (architectural) design is one of five fields introduced to pupils as part of art education. In planning architectural design tasks, one should take into consideration the particularities of the architectural design process and enable pupils to experience space and relationships within space through their own movement. Furthermore, pupils…

  1. Study and design of a very high spatial resolution beta imaging system

    International Nuclear Information System (INIS)

    Donnard, J.

    2008-01-01

    The b autoradiography is a widely used technique in pharmacology or biological fields. It is able to locate in two dimensions molecules labeled with beta emitters. The development of a gaseous detector incorporating micro-mesh called PIM in the Subatech laboratory leads to the construction of a very high spatial resolution apparatus dedicated to b imaging. This device is devoted to small analysis surface of a half microscope slide in particular of 3 H or 14 C and the measured spatial resolution is 20 μm FWHM. The recent development of a new reconstruction method allows enlarging the field of investigation to high energy beta emitters such as 131 I, 18 F or 46 Sc. A new device with a large active area of 18*18 cm 2 has been built with a user friendly design. This allows to image simultaneously 10 microscope slides. Thanks to a multi-modality solution, it retains the good characteristics of spatial resolution obtained previously on a small surface. Moreover, different kinds of samples, like microscope slides or scotches can be analysed. The simulation and experimentation work achieved during this thesis led to an optimal disposition of the inner structure of the detector. These results and characterization show that the PIM structure has to be considered for a next generation of b-Imager. (author)

  2. Determination and optimization of spatial samples for distributed measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Huo, Xiaoming (Georgia Institute of Technology, Atlanta, GA); Tran, Hy D.; Shilling, Katherine Meghan; Kim, Heeyong (Georgia Institute of Technology, Atlanta, GA)

    2010-10-01

    There are no accepted standards for determining how many measurements to take during part inspection or where to take them, or for assessing confidence in the evaluation of acceptance based on these measurements. The goal of this work was to develop a standard method for determining the number of measurements, together with the spatial distribution of measurements and the associated risks for false acceptance and false rejection. Two paths have been taken to create a standard method for selecting sampling points. A wavelet-based model has been developed to select measurement points and to determine confidence in the measurement after the points are taken. An adaptive sampling strategy has been studied to determine implementation feasibility on commercial measurement equipment. Results using both real and simulated data are presented for each of the paths.

  3. A General-Purpose Spatial Survey Design for Collaborative Science and Monitoring of Global Environmental Change: The Global Grid

    Directory of Open Access Journals (Sweden)

    David M. Theobald

    2016-09-01

    Full Text Available Recent guidance on environmental modeling and global land-cover validation stresses the need for a probability-based design. Additionally, spatial balance has also been recommended as it ensures more efficient sampling, which is particularly relevant for understanding land use change. In this paper I describe a global sample design and database called the Global Grid (GG that has both of these statistical characteristics, as well as being flexible, multi-scale, and globally comprehensive. The GG is intended to facilitate collaborative science and monitoring of land changes among local, regional, and national groups of scientists and citizens, and it is provided in a variety of open source formats to promote collaborative and citizen science. Since the GG sample grid is provided at multiple scales and is globally comprehensive, it provides a universal, readily-available sample. It also supports uneven probability sample designs through filtering sample locations by user-defined strata. The GG is not appropriate for use at locations above ±85° because the shape and topological distortion of quadrants becomes extreme near the poles. Additionally, the file sizes of the GG datasets are very large at fine scale (resolution ~600 m × 600 m and require a 64-bit integer representation.

  4. The Effects of Computer-Aided Design Software on Engineering Students' Spatial Visualisation Skills

    Science.gov (United States)

    Kösa, Temel; Karakus, Fatih

    2018-01-01

    The purpose of this study was to determine the influence of computer-aided design (CAD) software-based instruction on the spatial visualisation skills of freshman engineering students in a computer-aided engineering drawing course. A quasi-experimental design was applied, using the Purdue Spatial Visualization Test-Visualization of Rotations…

  5. Spatial filter lens design for the main laser of the National Ignition Facility

    International Nuclear Information System (INIS)

    Korniski, R.J.

    1998-01-01

    The National Ignition Facility (NIF), being designed and constructed at Lawrence Livermore National Laboratory (LLNL), comprises 192 laser beams The lasing medium is neodymium in phosphate glass with a fundamental frequency (1ω) of 1 053microm Sum frequency generation in a pair of conversion crystals (KDP/KD*P) will produce 1 8 megajoules of the third harmonic light (3ω or λ=351microm) at the target The purpose of this paper is to provide the lens design community with the current lens design details of the large optics in the Main Laser This paper describes the lens design configuration and design considerations of the Main Laser The Main Laser is 123 meters long and includes two spatial filters one 13 5 meters and one 60 meters These spatial filters perform crucial beam filtering and relaying functions We shall describe the significant lens design aspects of these spatial filter lenses which allow them to successfully deliver the appropriate beam characteristic onto the target For an overview of NIF please see ''Optical system design of the National Ignition Facility,'' by R Edward English. et al also found in this volume

  6. INVESTIGATING THE EFFECT OF EMPLOYING IMMERSIVE VIRTUAL ENVIRONMENT ON ENHANCING SPATIAL PERCEPTION WITHIN DESIGN PROCESS

    Directory of Open Access Journals (Sweden)

    Rawan Taisser Abu Alatta

    2017-07-01

    Full Text Available The recent developments in Information Technology (IT and digital media have introduced new opportunities to design studio and new dimensions to design and architecture. The current research studies how the immersion of Virtual Reality (VR in architectural design studio affects spatial perception through the design process. The aim of this study is to investigate the effect of using such environments on changing the way how to design for human experience: how it will improve students' spatial understanding of Three Dimensions (3D volumes, and how it will enhance their imagination, enrich their creativity and promote their ability to experience their design's sensations. This study hypothesizes that using an immersive virtual environment in design studio will empower students' imaginations and give them the ability to understand and experience their ideas. It will give them the opportunity to check their design's validity with greater 3D exploration, understanding and comprehension of spatial volumes.  Within a framework of an experimental design research, a series of experiments was conducted to evaluate what had been assumed.  The research used teaching, monitoring, explanatory observation and evaluation methods. The results showed that VR can not only enhance spatial perception and improve the design, but also it can affect the design process and make changes in the architectural design way of thinking. It can help designers to incorporate human experience within the design process.

  7. Choosing a Cluster Sampling Design for Lot Quality Assurance Sampling Surveys.

    Directory of Open Access Journals (Sweden)

    Lauren Hund

    Full Text Available Lot quality assurance sampling (LQAS surveys are commonly used for monitoring and evaluation in resource-limited settings. Recently several methods have been proposed to combine LQAS with cluster sampling for more timely and cost-effective data collection. For some of these methods, the standard binomial model can be used for constructing decision rules as the clustering can be ignored. For other designs, considered here, clustering is accommodated in the design phase. In this paper, we compare these latter cluster LQAS methodologies and provide recommendations for choosing a cluster LQAS design. We compare technical differences in the three methods and determine situations in which the choice of method results in a substantively different design. We consider two different aspects of the methods: the distributional assumptions and the clustering parameterization. Further, we provide software tools for implementing each method and clarify misconceptions about these designs in the literature. We illustrate the differences in these methods using vaccination and nutrition cluster LQAS surveys as example designs. The cluster methods are not sensitive to the distributional assumptions but can result in substantially different designs (sample sizes depending on the clustering parameterization. However, none of the clustering parameterizations used in the existing methods appears to be consistent with the observed data, and, consequently, choice between the cluster LQAS methods is not straightforward. Further research should attempt to characterize clustering patterns in specific applications and provide suggestions for best-practice cluster LQAS designs on a setting-specific basis.

  8. Choosing a Cluster Sampling Design for Lot Quality Assurance Sampling Surveys.

    Science.gov (United States)

    Hund, Lauren; Bedrick, Edward J; Pagano, Marcello

    2015-01-01

    Lot quality assurance sampling (LQAS) surveys are commonly used for monitoring and evaluation in resource-limited settings. Recently several methods have been proposed to combine LQAS with cluster sampling for more timely and cost-effective data collection. For some of these methods, the standard binomial model can be used for constructing decision rules as the clustering can be ignored. For other designs, considered here, clustering is accommodated in the design phase. In this paper, we compare these latter cluster LQAS methodologies and provide recommendations for choosing a cluster LQAS design. We compare technical differences in the three methods and determine situations in which the choice of method results in a substantively different design. We consider two different aspects of the methods: the distributional assumptions and the clustering parameterization. Further, we provide software tools for implementing each method and clarify misconceptions about these designs in the literature. We illustrate the differences in these methods using vaccination and nutrition cluster LQAS surveys as example designs. The cluster methods are not sensitive to the distributional assumptions but can result in substantially different designs (sample sizes) depending on the clustering parameterization. However, none of the clustering parameterizations used in the existing methods appears to be consistent with the observed data, and, consequently, choice between the cluster LQAS methods is not straightforward. Further research should attempt to characterize clustering patterns in specific applications and provide suggestions for best-practice cluster LQAS designs on a setting-specific basis.

  9. 30 CFR 71.208 - Bimonthly sampling; designated work positions.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bimonthly sampling; designated work positions... UNDERGROUND COAL MINES Sampling Procedures § 71.208 Bimonthly sampling; designated work positions. (a) Each... standard when quartz is present), respirable dust sampling of designated work positions shall begin on the...

  10. Visual-Spatial Art and Design Literacy as a Prelude to Aesthetic Growth

    Science.gov (United States)

    Lerner, Fern

    2018-01-01

    In bridging ideas from the forum of visual-spatial learning with those of art and design learning, inspiration is taken from Piaget who explained that the evolution of spatial cognition occurs through perception, as well as through thought and imagination. Insights are embraced from interdisciplinary educational theorists, intertwining and…

  11. Choosing a Cluster Sampling Design for Lot Quality Assurance Sampling Surveys

    OpenAIRE

    Hund, Lauren; Bedrick, Edward J.; Pagano, Marcello

    2015-01-01

    Lot quality assurance sampling (LQAS) surveys are commonly used for monitoring and evaluation in resource-limited settings. Recently several methods have been proposed to combine LQAS with cluster sampling for more timely and cost-effective data collection. For some of these methods, the standard binomial model can be used for constructing decision rules as the clustering can be ignored. For other designs, considered here, clustering is accommodated in the design phase. In this paper, we comp...

  12. Transfer function design based on user selected samples for intuitive multivariate volume exploration

    KAUST Repository

    Zhou, Liang

    2013-02-01

    Multivariate volumetric datasets are important to both science and medicine. We propose a transfer function (TF) design approach based on user selected samples in the spatial domain to make multivariate volumetric data visualization more accessible for domain users. Specifically, the user starts the visualization by probing features of interest on slices and the data values are instantly queried by user selection. The queried sample values are then used to automatically and robustly generate high dimensional transfer functions (HDTFs) via kernel density estimation (KDE). Alternatively, 2D Gaussian TFs can be automatically generated in the dimensionality reduced space using these samples. With the extracted features rendered in the volume rendering view, the user can further refine these features using segmentation brushes. Interactivity is achieved in our system and different views are tightly linked. Use cases show that our system has been successfully applied for simulation and complicated seismic data sets. © 2013 IEEE.

  13. Transfer function design based on user selected samples for intuitive multivariate volume exploration

    KAUST Repository

    Zhou, Liang; Hansen, Charles

    2013-01-01

    Multivariate volumetric datasets are important to both science and medicine. We propose a transfer function (TF) design approach based on user selected samples in the spatial domain to make multivariate volumetric data visualization more accessible for domain users. Specifically, the user starts the visualization by probing features of interest on slices and the data values are instantly queried by user selection. The queried sample values are then used to automatically and robustly generate high dimensional transfer functions (HDTFs) via kernel density estimation (KDE). Alternatively, 2D Gaussian TFs can be automatically generated in the dimensionality reduced space using these samples. With the extracted features rendered in the volume rendering view, the user can further refine these features using segmentation brushes. Interactivity is achieved in our system and different views are tightly linked. Use cases show that our system has been successfully applied for simulation and complicated seismic data sets. © 2013 IEEE.

  14. Generating Improved Experimental Designs with Spatially and Genetically Correlated Observations Using Mixed Models

    Directory of Open Access Journals (Sweden)

    Lazarus K. Mramba

    2018-03-01

    Full Text Available The aim of this study was to generate and evaluate the efficiency of improved field experiments while simultaneously accounting for spatial correlations and different levels of genetic relatedness using a mixed models framework for orthogonal and non-orthogonal designs. Optimality criteria and a search algorithm were implemented to generate randomized complete block (RCB, incomplete block (IB, augmented block (AB and unequally replicated (UR designs. Several conditions were evaluated including size of the experiment, levels of heritability, and optimality criteria. For RCB designs with half-sib or full-sib families, the optimization procedure yielded important improvements under the presence of mild to strong spatial correlation levels and relatively low heritability values. Also, for these designs, improvements in terms of overall design efficiency (ODE% reached values of up to 8.7%, but these gains varied depending on the evaluated conditions. In general, for all evaluated designs, higher ODE% values were achieved from genetically unrelated individuals compared to experiments with half-sib and full-sib families. As expected, accuracy of prediction of genetic values improved as levels of heritability and spatial correlations increased. This study has demonstrated that important improvements in design efficiency and prediction accuracies can be achieved by optimizing how the levels of a treatment are assigned to the experimental units.

  15. Development of spatial scaling technique of forest health sample point information

    Science.gov (United States)

    Lee, J.; Ryu, J.; Choi, Y. Y.; Chung, H. I.; Kim, S. H.; Jeon, S. W.

    2017-12-01

    Most forest health assessments are limited to monitoring sampling sites. The monitoring of forest health in Britain in Britain was carried out mainly on five species (Norway spruce, Sitka spruce, Scots pine, Oak, Beech) Database construction using Oracle database program with density The Forest Health Assessment in GreatBay in the United States was conducted to identify the characteristics of the ecosystem populations of each area based on the evaluation of forest health by tree species, diameter at breast height, water pipe and density in summer and fall of 200. In the case of Korea, in the first evaluation report on forest health vitality, 1000 sample points were placed in the forests using a systematic method of arranging forests at 4Km × 4Km at regular intervals based on an sample point, and 29 items in four categories such as tree health, vegetation, soil, and atmosphere. As mentioned above, existing researches have been done through the monitoring of the survey sample points, and it is difficult to collect information to support customized policies for the regional survey sites. In the case of special forests such as urban forests and major forests, policy and management appropriate to the forest characteristics are needed. Therefore, it is necessary to expand the survey headquarters for diagnosis and evaluation of customized forest health. For this reason, we have constructed a method of spatial scale through the spatial interpolation according to the characteristics of each index of the main sample point table of 29 index in the four points of diagnosis and evaluation report of the first forest health vitality report, PCA statistical analysis and correlative analysis are conducted to construct the indicators with significance, and then weights are selected for each index, and evaluation of forest health is conducted through statistical grading.

  16. Autonomous spatially adaptive sampling in experiments based on curvature, statistical error and sample spacing with applications in LDA measurements

    Science.gov (United States)

    Theunissen, Raf; Kadosh, Jesse S.; Allen, Christian B.

    2015-06-01

    Spatially varying signals are typically sampled by collecting uniformly spaced samples irrespective of the signal content. For signals with inhomogeneous information content, this leads to unnecessarily dense sampling in regions of low interest or insufficient sample density at important features, or both. A new adaptive sampling technique is presented directing sample collection in proportion to local information content, capturing adequately the short-period features while sparsely sampling less dynamic regions. The proposed method incorporates a data-adapted sampling strategy on the basis of signal curvature, sample space-filling, variable experimental uncertainty and iterative improvement. Numerical assessment has indicated a reduction in the number of samples required to achieve a predefined uncertainty level overall while improving local accuracy for important features. The potential of the proposed method has been further demonstrated on the basis of Laser Doppler Anemometry experiments examining the wake behind a NACA0012 airfoil and the boundary layer characterisation of a flat plate.

  17. Design of an optical spatial interferometer with transformation optics

    International Nuclear Information System (INIS)

    Naghibi, Atefeh; Shokooh-Saremi, Mehrdad

    2015-01-01

    In this paper, we apply transformation optics to design an optical spatial interferometer. The transformation equations are described and two-dimensional finite element simulations are presented to numerically confirm the functionality of the device. It is shown that a small change in the refractive index can alter the interference pattern and hence can be detected. The design of the interferometer could expand transformation optics’ applications and make way for introduction of new structures with unique electromagnetic or optical functionalities. (paper)

  18. Sampling-Based Motion Planning Algorithms for Replanning and Spatial Load Balancing

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Beth Leigh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-12

    The common theme of this dissertation is sampling-based motion planning with the two key contributions being in the area of replanning and spatial load balancing for robotic systems. Here, we begin by recalling two sampling-based motion planners: the asymptotically optimal rapidly-exploring random tree (RRT*), and the asymptotically optimal probabilistic roadmap (PRM*). We also provide a brief background on collision cones and the Distributed Reactive Collision Avoidance (DRCA) algorithm. The next four chapters detail novel contributions for motion replanning in environments with unexpected static obstacles, for multi-agent collision avoidance, and spatial load balancing. First, we show improved performance of the RRT* when using the proposed Grandparent-Connection (GP) or Focused-Refinement (FR) algorithms. Next, the Goal Tree algorithm for replanning with unexpected static obstacles is detailed and proven to be asymptotically optimal. A multi-agent collision avoidance problem in obstacle environments is approached via the RRT*, leading to the novel Sampling-Based Collision Avoidance (SBCA) algorithm. The SBCA algorithm is proven to guarantee collision free trajectories for all of the agents, even when subject to uncertainties in the knowledge of the other agents’ positions and velocities. Given that a solution exists, we prove that livelocks and deadlock will lead to the cost to the goal being decreased. We introduce a new deconfliction maneuver that decreases the cost-to-come at each step. This new maneuver removes the possibility of livelocks and allows a result to be formed that proves convergence to the goal configurations. Finally, we present a limited range Graph-based Spatial Load Balancing (GSLB) algorithm which fairly divides a non-convex space among multiple agents that are subject to differential constraints and have a limited travel distance. The GSLB is proven to converge to a solution when maximizing the area covered by the agents. The analysis

  19. The study of combining Latin Hypercube Sampling method and LU decomposition method (LULHS method) for constructing spatial random field

    Science.gov (United States)

    WANG, P. T.

    2015-12-01

    Groundwater modeling requires to assign hydrogeological properties to every numerical grid. Due to the lack of detailed information and the inherent spatial heterogeneity, geological properties can be treated as random variables. Hydrogeological property is assumed to be a multivariate distribution with spatial correlations. By sampling random numbers from a given statistical distribution and assigning a value to each grid, a random field for modeling can be completed. Therefore, statistics sampling plays an important role in the efficiency of modeling procedure. Latin Hypercube Sampling (LHS) is a stratified random sampling procedure that provides an efficient way to sample variables from their multivariate distributions. This study combines the the stratified random procedure from LHS and the simulation by using LU decomposition to form LULHS. Both conditional and unconditional simulations of LULHS were develpoed. The simulation efficiency and spatial correlation of LULHS are compared to the other three different simulation methods. The results show that for the conditional simulation and unconditional simulation, LULHS method is more efficient in terms of computational effort. Less realizations are required to achieve the required statistical accuracy and spatial correlation.

  20. The SDSS-IV MaNGA Sample: Design, Optimization, and Usage Considerations

    Science.gov (United States)

    Wake, David A.; Bundy, Kevin; Diamond-Stanic, Aleksandar M.; Yan, Renbin; Blanton, Michael R.; Bershady, Matthew A.; Sánchez-Gallego, José R.; Drory, Niv; Jones, Amy; Kauffmann, Guinevere; Law, David R.; Li, Cheng; MacDonald, Nicholas; Masters, Karen; Thomas, Daniel; Tinker, Jeremy; Weijmans, Anne-Marie; Brownstein, Joel R.

    2017-09-01

    We describe the sample design for the SDSS-IV MaNGA survey and present the final properties of the main samples along with important considerations for using these samples for science. Our target selection criteria were developed while simultaneously optimizing the size distribution of the MaNGA integral field units (IFUs), the IFU allocation strategy, and the target density to produce a survey defined in terms of maximizing signal-to-noise ratio, spatial resolution, and sample size. Our selection strategy makes use of redshift limits that only depend on I-band absolute magnitude (M I ), or, for a small subset of our sample, M I and color (NUV - I). Such a strategy ensures that all galaxies span the same range in angular size irrespective of luminosity and are therefore covered evenly by the adopted range of IFU sizes. We define three samples: the Primary and Secondary samples are selected to have a flat number density with respect to M I and are targeted to have spectroscopic coverage to 1.5 and 2.5 effective radii (R e ), respectively. The Color-Enhanced supplement increases the number of galaxies in the low-density regions of color-magnitude space by extending the redshift limits of the Primary sample in the appropriate color bins. The samples cover the stellar mass range 5× {10}8≤slant {M}* ≤slant 3× {10}11 {M}⊙ {h}-2 and are sampled at median physical resolutions of 1.37 and 2.5 kpc for the Primary and Secondary samples, respectively. We provide weights that will statistically correct for our luminosity and color-dependent selection function and IFU allocation strategy, thus correcting the observed sample to a volume-limited sample.

  1. Sampling design and procedures for fixed surface-water sites in the Georgia-Florida coastal plain study unit, 1993

    Science.gov (United States)

    Hatzell, H.H.; Oaksford, E.T.; Asbury, C.E.

    1995-01-01

    The implementation of design guidelines for the National Water-Quality Assessment (NAWQA) Program has resulted in the development of new sampling procedures and the modification of existing procedures commonly used in the Water Resources Division of the U.S. Geological Survey. The Georgia-Florida Coastal Plain (GAFL) study unit began the intensive data collection phase of the program in October 1992. This report documents the implementation of the NAWQA guidelines by describing the sampling design and procedures for collecting surface-water samples in the GAFL study unit in 1993. This documentation is provided for agencies that use water-quality data and for future study units that will be entering the intensive phase of data collection. The sampling design is intended to account for large- and small-scale spatial variations, and temporal variations in water quality for the study area. Nine fixed sites were selected in drainage basins of different sizes and different land-use characteristics located in different land-resource provinces. Each of the nine fixed sites was sampled regularly for a combination of six constituent groups composed of physical and chemical constituents: field measurements, major ions and metals, nutrients, organic carbon, pesticides, and suspended sediments. Some sites were also sampled during high-flow conditions and storm events. Discussion of the sampling procedure is divided into three phases: sample collection, sample splitting, and sample processing. A cone splitter was used to split water samples for the analysis of the sampling constituent groups except organic carbon from approximately nine liters of stream water collected at four fixed sites that were sampled intensively. An example of the sample splitting schemes designed to provide the sample volumes required for each sample constituent group is described in detail. Information about onsite sample processing has been organized into a flowchart that describes a pathway for each of

  2. Studying visual and spatial reasoning for design creativity

    CERN Document Server

    2015-01-01

    Creativity and design creativity in particular are being recognized as playing an increasing role in the social and economic wellbeing of a society. As a consequence creativity is becoming a focus of research. However, much of this burgeoning research is distributed across multiple disciplines that normally do not intersect with each other and researchers in one discipline are often unaware of related research in another discipline.  This volume brings together contributions from design science, computer science, cognitive science and neuroscience on studying visual and spatial reasoning applicable to design creativity. The book is the result of a unique NSF-funded workshop held in Aix-en-Provence, France. The aim of the workshop and the resulting volume was to allow researchers in disparate disciplines to be exposed to the other’s research, research methods and research results within the context of design creativity. Fifteen of the papers presented and discussed at the workshop are contained in this volu...

  3. The effects of computer-aided design software on engineering students' spatial visualisation skills

    Science.gov (United States)

    Kösa, Temel; Karakuş, Fatih

    2018-03-01

    The purpose of this study was to determine the influence of computer-aided design (CAD) software-based instruction on the spatial visualisation skills of freshman engineering students in a computer-aided engineering drawing course. A quasi-experimental design was applied, using the Purdue Spatial Visualization Test-Visualization of Rotations (PSVT:R) for both the pre- and the post-test. The participants were 116 freshman students in the first year of their undergraduate programme in the Department of Mechanical Engineering at a university in Turkey. A total of 72 students comprised the experimental group; they were instructed with CAD-based activities in an engineering drawing course. The control group consisted of 44 students who did not attend this course. The results of the study showed that a CAD-based engineering drawing course had a positive effect on developing engineering students' spatial visualisation skills. Additionally, the results of the study showed that spatial visualisation skills can be a predictor for success in a computer-aided engineering drawing course.

  4. Virtual Reality As A Spatial Experience For Architecture Design: A Study of Effectiveness for Architecture Students

    Directory of Open Access Journals (Sweden)

    Sapto Pamungkas Luhur

    2018-01-01

    Full Text Available Studios. This ability gained through visual design thinking. The spatial experience honed by three dimensional thinking from the medium diversity. The spatial experience learned through a room layout, proportion, and composition. This research used an experimental method and the primary data obtained by a “Likert” scale questionnaire. The Respondents are 50 students of the Architectural Design Studio. Moreover, the analysis focuses on the VR for spatial experience. The result was a descriptive explanation of the effectiveness of Virtual Reality for a spatial experience of architecture students at Technology University of Yogyakarta.

  5. On efficiency of some ratio estimators in double sampling design ...

    African Journals Online (AJOL)

    In this paper, three sampling ratio estimators in double sampling design were proposed with the intention of finding an alternative double sampling design estimator to the conventional ratio estimator in double sampling design discussed by Cochran (1997), Okafor (2002) , Raj (1972) and Raj and Chandhok (1999).

  6. 3D-CAD Effects on Creative Design Performance of Different Spatial Abilities Students

    Science.gov (United States)

    Chang, Y.

    2014-01-01

    Students' creativity is an important focus globally and is interrelated with students' spatial abilities. Additionally, three-dimensional computer-assisted drawing (3D-CAD) overcomes barriers to spatial expression during the creative design process. Does 3D-CAD affect students' creative abilities? The purpose of this study was to explore the…

  7. A stratified two-stage sampling design for digital soil mapping in a Mediterranean basin

    Science.gov (United States)

    Blaschek, Michael; Duttmann, Rainer

    2015-04-01

    The quality of environmental modelling results often depends on reliable soil information. In order to obtain soil data in an efficient manner, several sampling strategies are at hand depending on the level of prior knowledge and the overall objective of the planned survey. This study focuses on the collection of soil samples considering available continuous secondary information in an undulating, 16 km²-sized river catchment near Ussana in southern Sardinia (Italy). A design-based, stratified, two-stage sampling design has been applied aiming at the spatial prediction of soil property values at individual locations. The stratification based on quantiles from density functions of two land-surface parameters - topographic wetness index and potential incoming solar radiation - derived from a digital elevation model. Combined with four main geological units, the applied procedure led to 30 different classes in the given test site. Up to six polygons of each available class were selected randomly excluding those areas smaller than 1ha to avoid incorrect location of the points in the field. Further exclusion rules were applied before polygon selection masking out roads and buildings using a 20m buffer. The selection procedure was repeated ten times and the set of polygons with the best geographical spread were chosen. Finally, exact point locations were selected randomly from inside the chosen polygon features. A second selection based on the same stratification and following the same methodology (selecting one polygon instead of six) was made in order to create an appropriate validation set. Supplementary samples were obtained during a second survey focusing on polygons that have either not been considered during the first phase at all or were not adequately represented with respect to feature size. In total, both field campaigns produced an interpolation set of 156 samples and a validation set of 41 points. The selection of sample point locations has been done using

  8. Sampling effects on the identification of roadkill hotspots: Implications for survey design.

    Science.gov (United States)

    Santos, Sara M; Marques, J Tiago; Lourenço, André; Medinas, Denis; Barbosa, A Márcia; Beja, Pedro; Mira, António

    2015-10-01

    Although locating wildlife roadkill hotspots is essential to mitigate road impacts, the influence of study design on hotspot identification remains uncertain. We evaluated how sampling frequency affects the accuracy of hotspot identification, using a dataset of vertebrate roadkills (n = 4427) recorded over a year of daily surveys along 37 km of roads. "True" hotspots were identified using this baseline dataset, as the 500-m segments where the number of road-killed vertebrates exceeded the upper 95% confidence limit of the mean, assuming a Poisson distribution of road-kills per segment. "Estimated" hotspots were identified likewise, using datasets representing progressively lower sampling frequencies, which were produced by extracting data from the baseline dataset at appropriate time intervals (1-30 days). Overall, 24.3% of segments were "true" hotspots, concentrating 40.4% of roadkills. For different groups, "true" hotspots accounted from 6.8% (bats) to 29.7% (small birds) of road segments, concentrating from 60% (lizards, lagomorphs, carnivores) of roadkills. Spatial congruence between "true" and "estimated" hotspots declined rapidly with increasing time interval between surveys, due primarily to increasing false negatives (i.e., missing "true" hotspots). There were also false positives (i.e., wrong "estimated" hotspots), particularly at low sampling frequencies. Spatial accuracy decay with increasing time interval between surveys was higher for smaller-bodied (amphibians, reptiles, small birds, small mammals) than for larger-bodied species (birds of prey, hedgehogs, lagomorphs, carnivores). Results suggest that widely used surveys at weekly or longer intervals may produce poor estimates of roadkill hotspots, particularly for small-bodied species. Surveying daily or at two-day intervals may be required to achieve high accuracy in hotspot identification for multiple species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Design compliance matrix waste sample container filling system for nested, fixed-depth sampling system

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    This design compliance matrix document provides specific design related functional characteristics, constraints, and requirements for the container filling system that is part of the nested, fixed-depth sampling system. This document addresses performance, external interfaces, ALARA, Authorization Basis, environmental and design code requirements for the container filling system. The container filling system will interface with the waste stream from the fluidic pumping channels of the nested, fixed-depth sampling system and will fill containers with waste that meet the Resource Conservation and Recovery Act (RCRA) criteria for waste that contains volatile and semi-volatile organic materials. The specifications for the nested, fixed-depth sampling system are described in a Level 2 Specification document (HNF-3483, Rev. 1). The basis for this design compliance matrix document is the Tank Waste Remediation System (TWRS) desk instructions for design Compliance matrix documents (PI-CP-008-00, Rev. 0)

  10. Scanning SQUID susceptometers with sub-micron spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kirtley, John R., E-mail: jkirtley@stanford.edu; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A. [Department of Applied Physics, Stanford University, Stanford, California 94305-4045 (United States); Paulius, Lisa [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States); Spanton, Eric M. [Department of Physics, Stanford University, Stanford, California 94305-4045 (United States); Schiessl, Daniel [Attocube Systems AG, Königinstraße 11A, 80539 Munich (Germany); Jermain, Colin L.; Gibbons, Jonathan [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Fung, Y.-K.K.; Gibson, Gerald W. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Huber, Martin E. [Department of Physics, University of Colorado Denver, Denver, Colorado 80217-3364 (United States); Ralph, Daniel C. [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Kavli Institute at Cornell, Ithaca, New York 14853 (United States); Ketchen, Mark B. [OcteVue, Hadley, Massachusetts 01035 (United States)

    2016-09-15

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ{sub 0}/Hz{sup 1/2}. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  11. Scanning SQUID susceptometers with sub-micron spatial resolution

    International Nuclear Information System (INIS)

    Kirtley, John R.; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A.; Paulius, Lisa; Spanton, Eric M.; Schiessl, Daniel; Jermain, Colin L.; Gibbons, Jonathan; Fung, Y.-K.K.; Gibson, Gerald W.; Huber, Martin E.; Ralph, Daniel C.; Ketchen, Mark B.

    2016-01-01

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ_0/Hz"1"/"2. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  12. Investigating the tradeoffs between spatial resolution and diffusion sampling for brain mapping with diffusion tractography: time well spent?

    Science.gov (United States)

    Calabrese, Evan; Badea, Alexandra; Coe, Christopher L; Lubach, Gabriele R; Styner, Martin A; Johnson, G Allan

    2014-11-01

    Interest in mapping white matter pathways in the brain has peaked with the recognition that altered brain connectivity may contribute to a variety of neurologic and psychiatric diseases. Diffusion tractography has emerged as a popular method for postmortem brain mapping initiatives, including the ex-vivo component of the human connectome project, yet it remains unclear to what extent computer-generated tracks fully reflect the actual underlying anatomy. Of particular concern is the fact that diffusion tractography results vary widely depending on the choice of acquisition protocol. The two major acquisition variables that consume scan time, spatial resolution, and diffusion sampling, can each have profound effects on the resulting tractography. In this analysis, we determined the effects of the temporal tradeoff between spatial resolution and diffusion sampling on tractography in the ex-vivo rhesus macaque brain, a close primate model for the human brain. We used the wealth of autoradiography-based connectivity data available for the rhesus macaque brain to assess the anatomic accuracy of six time-matched diffusion acquisition protocols with varying balance between spatial and diffusion sampling. We show that tractography results vary greatly, even when the subject and the total acquisition time are held constant. Further, we found that focusing on either spatial resolution or diffusion sampling at the expense of the other is counterproductive. A balanced consideration of both sampling domains produces the most anatomically accurate and consistent results. Copyright © 2014 Wiley Periodicals, Inc.

  13. NEON terrestrial field observations: designing continental scale, standardized sampling

    Science.gov (United States)

    R. H. Kao; C.M. Gibson; R. E. Gallery; C. L. Meier; D. T. Barnett; K. M. Docherty; K. K. Blevins; P. D. Travers; E. Azuaje; Y. P. Springer; K. M. Thibault; V. J. McKenzie; M. Keller; L. F. Alves; E. L. S. Hinckley; J. Parnell; D. Schimel

    2012-01-01

    Rapid changes in climate and land use and the resulting shifts in species distributions and ecosystem functions have motivated the development of the National Ecological Observatory Network (NEON). Integrating across spatial scales from ground sampling to remote sensing, NEON will provide data for users to address ecological responses to changes in climate, land use,...

  14. Assessment of long-term gas sampling design at two commercial manure-belt layer barns.

    Science.gov (United States)

    Chai, Li-Long; Ni, Ji-Qin; Chen, Yan; Diehl, Claude A; Heber, Albert J; Lim, Teng T

    2010-06-01

    Understanding temporal and spatial variations of aerial pollutant concentrations is important for designing air quality monitoring systems. In long-term and continuous air quality monitoring in large livestock and poultry barns, these systems usually use location-shared analyzers and sensors and can only sample air at limited number of locations. To assess the validity of the gas sampling design at a commercial layer farm, a new methodology was developed to map pollutant gas concentrations using portable sensors under steady-state or quasi-steady-state barn conditions. Three assessment tests were conducted from December 2008 to February 2009 in two manure-belt layer barns. Each barn was 140.2 m long and 19.5 m wide and had 250,000 birds. Each test included four measurements of ammonia and carbon dioxide concentrations at 20 locations that covered all operating fans, including six of the fans used in the long-term sampling that represented three zones along the lengths of the barns, to generate data for complete-barn monitoring. To simulate the long-term monitoring, gas concentrations from the six long-term sampling locations were extracted from the 20 assessment locations. Statistical analyses were performed to test the variances (F-test) and sample means (t test) between the 6- and 20-sample data. The study clearly demonstrated ammonia and carbon dioxide concentration gradients that were characterized by increasing concentrations from the west to east ends of the barns following the under-cage manure-belt travel direction. Mean concentrations increased from 7.1 to 47.7 parts per million (ppm) for ammonia and from 2303 to 3454 ppm for carbon dioxide from the west to east of the barns. Variations of mean gas concentrations were much less apparent between the south and north sides of the barns, because they were 21.2 and 20.9 ppm for ammonia and 2979 and 2951 ppm for carbon dioxide, respectively. The null hypotheses that the variances and means between the 6- and 20

  15. Designs of Optoelectronic Trinary Signed-Digit Multiplication by use of Joint Spatial Encodings and Optical Correlation

    Science.gov (United States)

    Cherri, Abdallah K.

    1999-02-01

    Trinary signed-digit (TSD) symbolic-substitution-based (SS-based) optical adders, which were recently proposed, are used as the basic modules for designing highly parallel optical multiplications by use of cascaded optical correlators. The proposed multiplications perform carry-free generation of the multiplication partial products of two words in constant time. Also, three different multiplication designs are presented, and new joint spatial encodings for the TSD numbers are introduced. The proposed joint spatial encodings allow one to reduce the SS computation rules involved in optical multiplication. In addition, the proposed joint spatial encodings increase the space bandwidth product of the spatial light modulators of the optical system. This increase is achieved by reduction of the numbers of pixels in the joint spatial encodings for the input TSD operands as well as reduction of the number of pixels used in the proposed matched spatial filters for the optical multipliers.

  16. Sample design for the residential energy consumption survey

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    The purpose of this report is to provide detailed information about the multistage area-probability sample design used for the Residential Energy Consumption Survey (RECS). It is intended as a technical report, for use by statisticians, to better understand the theory and procedures followed in the creation of the RECS sample frame. For a more cursory overview of the RECS sample design, refer to the appendix entitled ``How the Survey was Conducted,`` which is included in the statistical reports produced for each RECS survey year.

  17. Spatial and temporal variations in cadmium concentrations and burdens in the Pacific oyster (Crassostrea gigas) sampled from the Pacific north-west

    International Nuclear Information System (INIS)

    Bendell, Leah I.; Feng, Cindy

    2009-01-01

    Oysters from the north-west coast of Canada contain high levels of cadmium, a toxic metal, in amounts that exceed food safety guidelines for international markets. A first required step to determine the sources of cadmium is to identify possible spatial and temporal trends in the accumulation of cadmium by the oyster. To meet this objective, rather than sample wild and cultured oysters of unknown age and origin, an oyster 'grow-out' experiment was initiated. Cultured oyster seed was suspended in the water column up to a depth of 7 m and the oyster seed allowed to mature a period of 3 years until market size. Oysters were sampled bimonthly and at time of sampling, temperature, chlorophyll-a, turbidity and salinity were measured. Oyster total shell length, dry tissue weights, cadmium concentrations (μg g -1 ) and burdens (μg of cadmium oyster -1 ) were determined. Oyster cadmium concentrations and burdens were then interpreted with respect to the spatial and temporal sampling design as well as to the measured physio-chemical and biotic variables. When expressed as a concentration, there was a marked seasonality with concentrations being greater in winter as compared in summer; however no spatial trend was evident. When expressed as a burden which corrects for differences in tissue mass, there was no seasonality, however cadmium oyster burdens increased from south to north. Comparison of cadmium accumulation rates oyster -1 among sites indicated three locations, Webster Island, on the west side of Vancouver Island, and two within Desolation Sound, Teakerne Arm and Redonda Bay, where point sources of cadmium which are not present at all other sampling locations may be contributing to overall oyster cadmium burdens. Of the four physio-chemical factors measured only temperature and turbidity weakly correlated with tissue cadmium concentrations (r 2 = -0.13; p < 0.05). By expressing oyster cadmium both as concentration and burden, regional and temporal patterns were

  18. Spatial and temporal variations in cadmium concentrations and burdens in the Pacific oyster (Crassostrea gigas) sampled from the Pacific north-west.

    Science.gov (United States)

    Bendell, Leah I; Feng, Cindy

    2009-08-01

    Oysters from the north-west coast of Canada contain high levels of cadmium, a toxic metal, in amounts that exceed food safety guidelines for international markets. A first required step to determine the sources of cadmium is to identify possible spatial and temporal trends in the accumulation of cadmium by the oyster. To meet this objective, rather than sample wild and cultured oysters of unknown age and origin, an oyster "grow-out" experiment was initiated. Cultured oyster seed was suspended in the water column up to a depth of 7 m and the oyster seed allowed to mature a period of 3 years until market size. Oysters were sampled bimonthly and at time of sampling, temperature, chlorophyll-a, turbidity and salinity were measured. Oyster total shell length, dry tissue weights, cadmium concentrations (microg g(-1)) and burdens (microg of cadmium oyster(-1)) were determined. Oyster cadmium concentrations and burdens were then interpreted with respect to the spatial and temporal sampling design as well as to the measured physio-chemical and biotic variables. When expressed as a concentration, there was a marked seasonality with concentrations being greater in winter as compared in summer; however no spatial trend was evident. When expressed as a burden which corrects for differences in tissue mass, there was no seasonality, however cadmium oyster burdens increased from south to north. Comparison of cadmium accumulation rates oyster(-1) among sites indicated three locations, Webster Island, on the west side of Vancouver Island, and two within Desolation Sound, Teakerne Arm and Redonda Bay, where point sources of cadmium which are not present at all other sampling locations may be contributing to overall oyster cadmium burdens. Of the four physio-chemical factors measured only temperature and turbidity weakly correlated with tissue cadmium concentrations (r(2)=-0.13; p<0.05). By expressing oyster cadmium both as concentration and burden, regional and temporal patterns were

  19. System design description for sampling fuel in K basins

    International Nuclear Information System (INIS)

    Baker, R.B.

    1996-01-01

    This System Design Description provides: (1) statements of the Spent Nuclear Fuel Projects (SNFP) needs requiring sampling of fuel in the K East and K West Basins, (2) the sampling equipment functions and requirements, (3) a general work plan and the design logic being followed to develop the equipment, and (4) a summary description of the design for the sampling equipment. The report summarizes the integrated application of both the subject equipment and the canister sludge sampler in near-term characterization campaigns at K Basins

  20. Sampling design for use by the soil decontamination project

    International Nuclear Information System (INIS)

    Rutherford, D.W.; Stevens, J.R.

    1981-01-01

    This report proposes a general approach to the problem and discusses sampling of soil to map the contaminated area and to provide samples for characterizaton of soil components and contamination. Basic concepts in sample design are reviewed with reference to environmental transuranic studies. Common designs are reviewed and evaluated for use with specific objectives that might be required by the soil decontamination project. Examples of a hierarchial design pilot study and a combined hierarchial and grid study are proposed for the Rocky Flats 903 pad area

  1. [Saarland Growth Study: sampling design].

    Science.gov (United States)

    Danker-Hopfe, H; Zabransky, S

    2000-01-01

    The use of reference data to evaluate the physical development of children and adolescents is part of the daily routine in the paediatric ambulance. The construction of such reference data is based on the collection of extensive reference data. There are different kinds of reference data: cross sectional references, which are based on data collected from a big representative cross-sectional sample of the population, longitudinal references, which are based on follow-up surveys of usually smaller samples of individuals from birth to maturity, and mixed longitudinal references, which are a combination of longitudinal and cross-sectional reference data. The advantages and disadvantages of the different methods of data collection and the resulting reference data are discussed. The Saarland Growth Study was conducted for several reasons: growth processes are subject to secular changes, there are no specific reference data for children and adolescents from this part of the country and the growth charts in use in the paediatric praxis are possibly not appropriate any more. Therefore, the Saarland Growth Study served two purposes a) to create actual regional reference data and b) to create a database for future studies on secular trends in growth processes of children and adolescents from Saarland. The present contribution focusses on general remarks on the sampling design of (cross-sectional) growth surveys and its inferences for the design of the present study.

  2. Spatial filtring and thermocouple spatial filter

    International Nuclear Information System (INIS)

    Han Bing; Tong Yunxian

    1989-12-01

    The design and study on thermocouple spatial filter have been conducted for the flow measurement of integrated reactor coolant. The fundamental principle of spatial filtring, mathematical descriptions and analyses of thermocouple spatial filter are given

  3. Design and development of multiple sample counting setup

    International Nuclear Information System (INIS)

    Rath, D.P.; Murali, S.; Babu, D.A.R.

    2010-01-01

    Full text: The analysis of active samples on regular basis for ambient air activity and floor contamination from radio chemical lab accounts for major chunk of the operational activity in Health Physicist's responsibility. The requirement for daily air sample analysis on immediate counting and delayed counting from various labs in addition to samples of smear swipe check of lab led to the urge for development of system that could cater multiple sample analysis in a time programmed manner on a single sample loading. A multiple alpha/beta counting system for counting was designed and fabricated. It has arrangements for loading 10 samples in slots in order, get counted in a time programmed manner with results displayed and records maintained in PC. The paper describes the design and development of multiple sample counting setup presently in use at the facility has resulted in reduction of man-hour consumption in counting and recording of the results

  4. Investigating the spatial anisotropy of soil radioactivity in the region of Vinaninkarena, Antsirabe-Madagascar

    International Nuclear Information System (INIS)

    Rabesiranana, N.; Rasolonirina, M.; Solonjara, A.F.; Raoelina Andriambololona

    2009-01-01

    A study was conducted in the region of Vinaninkarena-Antsirabe, to investigate the spatial distrubition of the environmental radioactivity. Forty-two (42) top soil samples were collected from two different sampling points. They were analyzed for uranium and thorium series by gamma spectrometry. In order to determine radioactivity spatial structure, semi-variance analysis was used. From 82 samples and 840 paired data, semi-variances were computed, variograms charted and modelled. Results showed that spatial dependance ranges vary from 100 m to 300m. Moreover, spatial anisotropy is also detected. Such result allows optimizing sampling design for future mapping of the environmental radioactivity of the region.

  5. SAMPLING ADAPTIVE STRATEGY AND SPATIAL ORGANISATION ESTIMATION OF SOIL ANIMAL COMMUNITIES AT VARIOUS HIERARCHICAL LEVELS OF URBANISED TERRITORIES

    Directory of Open Access Journals (Sweden)

    Baljuk J.A.

    2014-12-01

    Full Text Available In work the algorithm of adaptive strategy of optimum spatial sampling for studying of the spatial organisation of communities of soil animals in the conditions of an urbanization have been presented. As operating variables the principal components obtained as a result of the analysis of the field data on soil penetration resistance, soils electrical conductivity and density of a forest stand, collected on a quasiregular grid have been used. The locations of experimental polygons have been stated by means of program ESAP. The sampling has been made on a regular grid within experimental polygons. The biogeocoenological estimation of experimental polygons have been made on a basis of A.L.Belgard's ecomorphic analysis. The spatial configuration of biogeocoenosis types has been established on the basis of the data of earth remote sensing and the analysis of digital elevation model. The algorithm was suggested which allows to reveal the spatial organisation of soil animal communities at investigated point, biogeocoenosis, and landscape.

  6. Probability sampling design in ethnobotanical surveys of medicinal plants

    Directory of Open Access Journals (Sweden)

    Mariano Martinez Espinosa

    2012-07-01

    Full Text Available Non-probability sampling design can be used in ethnobotanical surveys of medicinal plants. However, this method does not allow statistical inferences to be made from the data generated. The aim of this paper is to present a probability sampling design that is applicable in ethnobotanical studies of medicinal plants. The sampling design employed in the research titled "Ethnobotanical knowledge of medicinal plants used by traditional communities of Nossa Senhora Aparecida do Chumbo district (NSACD, Poconé, Mato Grosso, Brazil" was used as a case study. Probability sampling methods (simple random and stratified sampling were used in this study. In order to determine the sample size, the following data were considered: population size (N of 1179 families; confidence coefficient, 95%; sample error (d, 0.05; and a proportion (p, 0.5. The application of this sampling method resulted in a sample size (n of at least 290 families in the district. The present study concludes that probability sampling methods necessarily have to be employed in ethnobotanical studies of medicinal plants, particularly where statistical inferences have to be made using data obtained. This can be achieved by applying different existing probability sampling methods, or better still, a combination of such methods.

  7. Approximating the variance of estimated means for systematic random sampling, illustrated with data of the French Soil Monitoring Network

    NARCIS (Netherlands)

    Brus, D.J.; Saby, N.P.A.

    2016-01-01

    In France like in many other countries, the soil is monitored at the locations of a regular, square grid thus forming a systematic sample (SY). This sampling design leads to good spatial coverage, enhancing the precision of design-based estimates of spatial means and totals. Design-based

  8. Designing an enhanced groundwater sample collection system

    International Nuclear Information System (INIS)

    Schalla, R.

    1994-10-01

    As part of an ongoing technical support mission to achieve excellence and efficiency in environmental restoration activities at the Laboratory for Energy and Health-Related Research (LEHR), Pacific Northwest Laboratory (PNL) provided guidance on the design and construction of monitoring wells and identified the most suitable type of groundwater sampling pump and accessories for monitoring wells. The goal was to utilize a monitoring well design that would allow for hydrologic testing and reduce turbidity to minimize the impact of sampling. The sampling results of the newly designed monitoring wells were clearly superior to those of the previously installed monitoring wells. The new wells exhibited reduced turbidity, in addition to improved access for instrumentation and hydrologic testing. The variable frequency submersible pump was selected as the best choice for obtaining groundwater samples. The literature references are listed at the end of this report. Despite some initial difficulties, the actual performance of the variable frequency, submersible pump and its accessories was effective in reducing sampling time and labor costs, and its ease of use was preferred over the previously used bladder pumps. The surface seals system, called the Dedicator, proved to be useful accessory to prevent surface contamination while providing easy access for water-level measurements and for connecting the pump. Cost savings resulted from the use of the pre-production pumps (beta units) donated by the manufacturer for the demonstration. However, larger savings resulted from shortened field time due to the ease in using the submersible pumps and the surface seal access system. Proper deployment of the monitoring wells also resulted in cost savings and ensured representative samples

  9. Objective assessment and design improvement of a staring, sparse transducer array by the spatial crosstalk matrix for 3D photoacoustic tomography.

    Directory of Open Access Journals (Sweden)

    Philip Wong

    Full Text Available Accurate reconstruction of 3D photoacoustic (PA images requires detection of photoacoustic signals from many angles. Several groups have adopted staring ultrasound arrays, but assessment of array performance has been limited. We previously reported on a method to calibrate a 3D PA tomography (PAT staring array system and analyze system performance using singular value decomposition (SVD. The developed SVD metric, however, was impractical for large system matrices, which are typical of 3D PAT problems. The present study consisted of two main objectives. The first objective aimed to introduce the crosstalk matrix concept to the field of PAT for system design. Figures-of-merit utilized in this study were root mean square error, peak signal-to-noise ratio, mean absolute error, and a three dimensional structural similarity index, which were derived between the normalized spatial crosstalk matrix and the identity matrix. The applicability of this approach for 3D PAT was validated by observing the response of the figures-of-merit in relation to well-understood PAT sampling characteristics (i.e. spatial and temporal sampling rate. The second objective aimed to utilize the figures-of-merit to characterize and improve the performance of a near-spherical staring array design. Transducer arrangement, array radius, and array angular coverage were the design parameters examined. We observed that the performance of a 129-element staring transducer array for 3D PAT could be improved by selection of optimal values of the design parameters. The results suggested that this formulation could be used to objectively characterize 3D PAT system performance and would enable the development of efficient strategies for system design optimization.

  10. Bayesian Geostatistical Design

    DEFF Research Database (Denmark)

    Diggle, Peter; Lophaven, Søren Nymand

    2006-01-01

    locations to, or deletion of locations from, an existing design, and prospective design, which consists of choosing positions for a new set of sampling locations. We propose a Bayesian design criterion which focuses on the goal of efficient spatial prediction whilst allowing for the fact that model...

  11. Spatial analysis of NDVI readings with difference sampling density

    Science.gov (United States)

    Advanced remote sensing technologies provide research an innovative way of collecting spatial data for use in precision agriculture. Sensor information and spatial analysis together allow for a complete understanding of the spatial complexity of a field and its crop. The objective of the study was...

  12. Extending cluster lot quality assurance sampling designs for surveillance programs.

    Science.gov (United States)

    Hund, Lauren; Pagano, Marcello

    2014-07-20

    Lot quality assurance sampling (LQAS) has a long history of applications in industrial quality control. LQAS is frequently used for rapid surveillance in global health settings, with areas classified as poor or acceptable performance on the basis of the binary classification of an indicator. Historically, LQAS surveys have relied on simple random samples from the population; however, implementing two-stage cluster designs for surveillance sampling is often more cost-effective than simple random sampling. By applying survey sampling results to the binary classification procedure, we develop a simple and flexible nonparametric procedure to incorporate clustering effects into the LQAS sample design to appropriately inflate the sample size, accommodating finite numbers of clusters in the population when relevant. We use this framework to then discuss principled selection of survey design parameters in longitudinal surveillance programs. We apply this framework to design surveys to detect rises in malnutrition prevalence in nutrition surveillance programs in Kenya and South Sudan, accounting for clustering within villages. By combining historical information with data from previous surveys, we design surveys to detect spikes in the childhood malnutrition rate. Copyright © 2014 John Wiley & Sons, Ltd.

  13. OpenMSI Arrayed Analysis Toolkit: Analyzing Spatially Defined Samples Using Mass Spectrometry Imaging

    DEFF Research Database (Denmark)

    de Raad, Markus; de Rond, Tristan; Rübel, Oliver

    2017-01-01

    ://openmsinersc.gov), a platform for storing, sharing, and analyzing MSI data. By using a web-based python notebook (Jupyter), OMAAT is accessible to anyone without programming experience yet allows experienced users to leverage all features. OMAAT was :evaluated by analyzing an MSI data set of a high-throughput glycoside...... processing tools for the analysis of large arrayed MSI sample sets. The OpenMSI Arrayed Analysis Toolkit (OMAAT) is a software package that addresses the challenges of analyzing spatially defined samples in MSI data sets. OMAAT is written in Python and is integrated with OpenMSI (http...

  14. Thermal probe design for Europa sample acquisition

    Science.gov (United States)

    Horne, Mera F.

    2018-01-01

    The planned lander missions to the surface of Europa will access samples from the subsurface of the ice in a search for signs of life. A small thermal drill (probe) is proposed to meet the sample requirement of the Science Definition Team's (SDT) report for the Europa mission. The probe is 2 cm in diameter and 16 cm in length and is designed to access the subsurface to 10 cm deep and to collect five ice samples of 7 cm3 each, approximately. The energy required to penetrate the top 10 cm of ice in a vacuum is 26 Wh, approximately, and to melt 7 cm3 of ice is 1.2 Wh, approximately. The requirement stated in the SDT report of collecting samples from five different sites can be accommodated with repeated use of the same thermal drill. For smaller sample sizes, a smaller probe of 1.0 cm in diameter with the same length of 16 cm could be utilized that would require approximately 6.4 Wh to penetrate the top 10 cm of ice, and 0.02 Wh to collect 0.1 g of sample. The thermal drill has the advantage of simplicity of design and operations and the ability to penetrate ice over a range of densities and hardness while maintaining sample integrity.

  15. Research on test of product based on spatial sampling criteria and variable step sampling mechanism

    Science.gov (United States)

    Li, Ruihong; Han, Yueping

    2014-09-01

    This paper presents an effective approach for online testing the assembly structures inside products using multiple views technique and X-ray digital radiography system based on spatial sampling criteria and variable step sampling mechanism. Although there are some objects inside one product to be tested, there must be a maximal rotary step for an object within which the least structural size to be tested is predictable. In offline learning process, Rotating the object by the step and imaging it and so on until a complete cycle is completed, an image sequence is obtained that includes the full structural information for recognition. The maximal rotary step is restricted by the least structural size and the inherent resolution of the imaging system. During online inspection process, the program firstly finds the optimum solutions to all different target parts in the standard sequence, i.e., finds their exact angles in one cycle. Aiming at the issue of most sizes of other targets in product are larger than that of the least structure, the paper adopts variable step-size sampling mechanism to rotate the product specific angles with different steps according to different objects inside the product and match. Experimental results show that the variable step-size method can greatly save time compared with the traditional fixed-step inspection method while the recognition accuracy is guaranteed.

  16. Spatial orientation in bone samples and Young's modulus

    NARCIS (Netherlands)

    Geraets, W.G.M.; van Ruijven, L.J.; Verheij, H.G.C.; van der Stelt, P.F.; van Eijden, T.M.G.J.

    2008-01-01

    Bone mass is the most important determinant of the mechanical strength of bones, and spatial structure is the second. In general, the spatial structure and mechanical properties of bones such as the breaking strength are direction dependent. The mean intercept length (MIL) and line frequency

  17. Analysis of spatial patterns informs community assembly and sampling requirements for Collembola in forest soils

    Science.gov (United States)

    Dirilgen, Tara; Juceviča, Edite; Melecis, Viesturs; Querner, Pascal; Bolger, Thomas

    2018-01-01

    The relative importance of niche separation, non-equilibrial and neutral models of community assembly has been a theme in community ecology for many decades with none appearing to be applicable under all circumstances. In this study, Collembola species abundances were recorded over eleven consecutive years in a spatially explicit grid and used to examine (i) whether observed beta diversity differed from that expected under conditions of neutrality, (ii) whether sampling points differed in their relative contributions to overall beta diversity, and (iii) the number of samples required to provide comparable estimates of species richness across three forest sites. Neutrality could not be rejected for 26 of the forest by year combinations. However, there is a trend toward greater structure in the oldest forest, where beta diversity was greater than predicted by neutrality on five of the eleven sampling dates. The lack of difference in individual- and sample-based rarefaction curves also suggests randomness in the system at this particular scale of investigation. It seems that Collembola communities are not spatially aggregated and assembly is driven primarily by neutral processes particularly in the younger two sites. Whether this finding is due to small sample size or unaccounted for environmental variables cannot be determined. Variability between dates and sites illustrates the potential of drawing incorrect conclusions if data are collected at a single site and a single point in time.

  18. The impact of design-based modeling instruction on seventh graders' spatial abilities and model-based argumentation

    Science.gov (United States)

    McConnell, William J.

    Due to the call of current science education reform for the integration of engineering practices within science classrooms, design-based instruction is receiving much attention in science education literature. Although some aspect of modeling is often included in well-known design-based instructional methods, it is not always a primary focus. The purpose of this study was to better understand how design-based instruction with an emphasis on scientific modeling might impact students' spatial abilities and their model-based argumentation abilities. In the following mixed-method multiple case study, seven seventh grade students attending a secular private school in the Mid-Atlantic region of the United States underwent an instructional intervention involving design-based instruction, modeling and argumentation. Through the course of a lesson involving students in exploring the interrelatedness of the environment and an animal's form and function, students created and used multiple forms of expressed models to assist them in model-based scientific argument. Pre/post data were collected through the use of The Purdue Spatial Visualization Test: Rotation, the Mental Rotation Test and interviews. Other data included a spatial activities survey, student artifacts in the form of models, notes, exit tickets, and video recordings of students throughout the intervention. Spatial abilities tests were analyzed using descriptive statistics while students' arguments were analyzed using the Instrument for the Analysis of Scientific Curricular Arguments and a behavior protocol. Models were analyzed using content analysis and interviews and all other data were coded and analyzed for emergent themes. Findings in the area of spatial abilities included increases in spatial reasoning for six out of seven participants, and an immense difference in the spatial challenges encountered by students when using CAD software instead of paper drawings to create models. Students perceived 3D printed

  19. Optimal Spatial Design of Capacity and Quantity of Rainwater Harvesting Systems for Urban Flood Mitigation

    Directory of Open Access Journals (Sweden)

    Chien-Lin Huang

    2015-09-01

    Full Text Available This study adopts rainwater harvesting systems (RWHS into a stormwater runoff management model (SWMM for the spatial design of capacities and quantities of rain barrel for urban flood mitigation. A simulation-optimization model is proposed for effectively identifying the optimal design. First of all, we particularly classified the characteristic zonal subregions for spatial design by using fuzzy C-means clustering with the investigated data of urban roof, land use and drainage system. In the simulation method, a series of regular spatial arrangements specification are designed by using statistical quartiles analysis for rooftop area and rainfall frequency analysis; accordingly, the corresponding reduced flooding circumstances can be simulated by SWMM. Moreover, the most effective solution for the simulation method is identified from the calculated net benefit, which is equivalent to the subtraction of the facility cost from the decreased inundation loss. It serves as the initially identified solution for the optimization model. In the optimization method, backpropagation neural network (BPNN are first applied for developing a water level simulation model of urban drainage systems to substitute for SWMM to conform to newly considered interdisciplinary multi-objective optimization model, and a tabu search-based algorithm is used with the embedded BPNN-based SWMM to optimize the planning solution. The developed method is applied to the Zhong-He District, Taiwan. Results demonstrate that the application of tabu search and the BPNN-based simulation model into the optimization model can effectively, accurately and fast search optimal design considering economic net benefit. Furthermore, the optimized spatial rain barrel design could reduce 72% of inundation losses according to the simulated flood events.

  20. Modern survey sampling

    CERN Document Server

    Chaudhuri, Arijit

    2014-01-01

    Exposure to SamplingAbstract Introduction Concepts of Population, Sample, and SamplingInitial RamificationsAbstract Introduction Sampling Design, Sampling SchemeRandom Numbers and Their Uses in Simple RandomSampling (SRS)Drawing Simple Random Samples with and withoutReplacementEstimation of Mean, Total, Ratio of Totals/Means:Variance and Variance EstimationDetermination of Sample SizesA.2 Appendix to Chapter 2 A.More on Equal Probability Sampling A.Horvitz-Thompson EstimatorA.SufficiencyA.LikelihoodA.Non-Existence Theorem More Intricacies Abstract Introduction Unequal Probability Sampling StrategiesPPS Sampling Exploring Improved WaysAbstract Introduction Stratified Sampling Cluster SamplingMulti-Stage SamplingMulti-Phase Sampling: Ratio and RegressionEstimationviiviii ContentsControlled SamplingModeling Introduction Super-Population ModelingPrediction Approach Model-Assisted Approach Bayesian Methods Spatial SmoothingSampling on Successive Occasions: Panel Rotation Non-Response and Not-at-Homes Weighting Adj...

  1. Spatial distribution of grape root borer (Lepidoptera: Sesiidae) infestations in Virginia vineyards and implications for sampling.

    Science.gov (United States)

    Rijal, J P; Brewster, C C; Bergh, J C

    2014-06-01

    Grape root borer, Vitacea polistiformis (Harris) (Lepidoptera: Sesiidae) is a potentially destructive pest of grape vines, Vitis spp. in the eastern United States. After feeding on grape roots for ≍2 yr in Virginia, larvae pupate beneath the soil surface around the vine base. Adults emerge during July and August, leaving empty pupal exuviae on or protruding from the soil. Weekly collections of pupal exuviae from an ≍1-m-diameter weed-free zone around the base of a grid of sample vines in Virginia vineyards were conducted in July and August, 2008-2012, and their distribution was characterized using both nonspatial (dispersion) and spatial techniques. Taylor's power law showed a significant aggregation of pupal exuviae, based on data from 19 vineyard blocks. Combined use of geostatistical and Spatial Analysis by Distance IndicEs methods indicated evidence of an aggregated pupal exuviae distribution pattern in seven of the nine blocks used for those analyses. Grape root borer pupal exuviae exhibited spatial dependency within a mean distance of 8.8 m, based on the range values of best-fitted variograms. Interpolated and clustering index-based infestation distribution maps were developed to show the spatial pattern of the insect within the vineyard blocks. The temporal distribution of pupal exuviae showed that the majority of moths emerged during the 3-wk period spanning the third week of July and the first week of August. The spatial distribution of grape root borer pupal exuviae was used in combination with temporal moth emergence patterns to develop a quantitative and efficient sampling scheme to assess infestations.

  2. High spatial sampling global mode structure measurements via multichannel reflectometry in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, N A; Peebles, W A; Kubota, S; Zhang, J [Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, CA 90095-7099 (United States); Bell, R E; Fredrickson, E D; Gorelenkov, N N; LeBlanc, B P; Menard, J E; Podesta, M [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543-0451 (United States); Sabbagh, S A [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States); Tritz, K [Johns Hopkins University, Baltimore, MD 21218 (United States); Yuh, H [Nova Photonics, Princeton, NJ 08540 (United States)

    2011-10-15

    Global modes-including kinks and tearing modes (f <{approx} 50 kHz), toroidicity-induced Alfven eigenmodes (TAE; f {approx} 50-250 kHz) and global and compressional Alfven eigenmodes (GAE and CAE; f >{approx} 400 kHz)-play critical roles in many aspects of plasma performance. Their investigation on NSTX is aided by an array of fixed-frequency quadrature reflectometers used to determine their radial density perturbation structure. The array has been recently upgraded to 16 channels spanning 30-75 GHz (n{sub cutoff} = (1.1-6.9) x 10{sup 19} m{sup -3} in O-mode), improving spatial sampling and access to the core of H-mode plasmas. The upgrade has yielded significant new results that advance the understanding of global modes in NSTX. The GAE and CAE structures have been measured for the first time in the core of an NSTX high-power (6 MW) beam-heated H-mode plasma. The CAE structure is strongly core-localized, which has important implications for electron thermal transport. The TAE structure has been measured with greatly improved spatial sampling, and measurements of the TAE phase, the first in NSTX, show strong radial variation near the midplane, indicating radial propagation caused by non-ideal MHD effects. Finally, the tearing mode structure measurements provide unambiguous evidence of coupling to an external kink.

  3. Improving the accuracy of livestock distribution estimates through spatial interpolation.

    Science.gov (United States)

    Bryssinckx, Ward; Ducheyne, Els; Muhwezi, Bernard; Godfrey, Sunday; Mintiens, Koen; Leirs, Herwig; Hendrickx, Guy

    2012-11-01

    Animal distribution maps serve many purposes such as estimating transmission risk of zoonotic pathogens to both animals and humans. The reliability and usability of such maps is highly dependent on the quality of the input data. However, decisions on how to perform livestock surveys are often based on previous work without considering possible consequences. A better understanding of the impact of using different sample designs and processing steps on the accuracy of livestock distribution estimates was acquired through iterative experiments using detailed survey. The importance of sample size, sample design and aggregation is demonstrated and spatial interpolation is presented as a potential way to improve cattle number estimates. As expected, results show that an increasing sample size increased the precision of cattle number estimates but these improvements were mainly seen when the initial sample size was relatively low (e.g. a median relative error decrease of 0.04% per sampled parish for sample sizes below 500 parishes). For higher sample sizes, the added value of further increasing the number of samples declined rapidly (e.g. a median relative error decrease of 0.01% per sampled parish for sample sizes above 500 parishes. When a two-stage stratified sample design was applied to yield more evenly distributed samples, accuracy levels were higher for low sample densities and stabilised at lower sample sizes compared to one-stage stratified sampling. Aggregating the resulting cattle number estimates yielded significantly more accurate results because of averaging under- and over-estimates (e.g. when aggregating cattle number estimates from subcounty to district level, P interpolation to fill in missing values in non-sampled areas, accuracy is improved remarkably. This counts especially for low sample sizes and spatially even distributed samples (e.g. P <0.001 for a sample of 170 parishes using one-stage stratified sampling and aggregation on district level

  4. ACS sampling system: design, implementation, and performance evaluation

    Science.gov (United States)

    Di Marcantonio, Paolo; Cirami, Roberto; Chiozzi, Gianluca

    2004-09-01

    By means of ACS (ALMA Common Software) framework we designed and implemented a sampling system which allows sampling of every Characteristic Component Property with a specific, user-defined, sustained frequency limited only by the hardware. Collected data are sent to various clients (one or more Java plotting widgets, a dedicated GUI or a COTS application) using the ACS/CORBA Notification Channel. The data transport is optimized: samples are cached locally and sent in packets with a lower and user-defined frequency to keep network load under control. Simultaneous sampling of the Properties of different Components is also possible. Together with the design and implementation issues we present the performance of the sampling system evaluated on two different platforms: on a VME based system using VxWorks RTOS (currently adopted by ALMA) and on a PC/104+ embedded platform using Red Hat 9 Linux operating system. The PC/104+ solution offers, as an alternative, a low cost PC compatible hardware environment with free and open operating system.

  5. SADA: A FREEWARE DECISION SUPPORT TOOL INTEGRATING GIS, SAMPLE DESIGN, SPATIAL MODELING AND RISK ASSESSMENT (SLIDE PRESENTATION)

    Science.gov (United States)

    Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates tools from environmental assessment into an effective problem-solving environment. SADA was developed by the Institute for Environmental Modeling at the University of Tennessee and inc...

  6. Mobile Variable Depth Sampling System Design Study

    International Nuclear Information System (INIS)

    BOGER, R.M.

    2000-01-01

    A design study is presented for a mobile, variable depth sampling system (MVDSS) that will support the treatment and immobilization of Hanford LAW and HLW. The sampler can be deployed in a 4-inch tank riser and has a design that is based on requirements identified in the Level 2 Specification (latest revision). The waste feed sequence for the MVDSS is based on Phase 1, Case 3S6 waste feed sequence. Technical information is also presented that supports the design study

  7. Mobile Variable Depth Sampling System Design Study

    Energy Technology Data Exchange (ETDEWEB)

    BOGER, R.M.

    2000-08-25

    A design study is presented for a mobile, variable depth sampling system (MVDSS) that will support the treatment and immobilization of Hanford LAW and HLW. The sampler can be deployed in a 4-inch tank riser and has a design that is based on requirements identified in the Level 2 Specification (latest revision). The waste feed sequence for the MVDSS is based on Phase 1, Case 3S6 waste feed sequence. Technical information is also presented that supports the design study.

  8. Visualization techniques for spatial probability density function data

    Directory of Open Access Journals (Sweden)

    Udeepta D Bordoloi

    2006-01-01

    Full Text Available Novel visualization methods are presented for spatial probability density function data. These are spatial datasets, where each pixel is a random variable, and has multiple samples which are the results of experiments on that random variable. We use clustering as a means to reduce the information contained in these datasets; and present two different ways of interpreting and clustering the data. The clustering methods are used on two datasets, and the results are discussed with the help of visualization techniques designed for the spatial probability data.

  9. Spatial Distribution of Stony Desertification and Key Influencing Factors on Different Sampling Scales in Small Karst Watersheds

    Science.gov (United States)

    Zhang, Zhenming; Zhou, Yunchao; Wang, Shijie

    2018-01-01

    Karst areas are typical ecologically fragile areas, and stony desertification has become the most serious ecological and economic problems in these areas worldwide as well as a source of disasters and poverty. A reasonable sampling scale is of great importance for research on soil science in karst areas. In this paper, the spatial distribution of stony desertification characteristics and its influencing factors in karst areas are studied at different sampling scales using a grid sampling method based on geographic information system (GIS) technology and geo-statistics. The rock exposure obtained through sampling over a 150 m × 150 m grid in the Houzhai River Basin was utilized as the original data, and five grid scales (300 m × 300 m, 450 m × 450 m, 600 m × 600 m, 750 m × 750 m, and 900 m × 900 m) were used as the subsample sets. The results show that the rock exposure does not vary substantially from one sampling scale to another, while the average values of the five subsamples all fluctuate around the average value of the entire set. As the sampling scale increases, the maximum value and the average value of the rock exposure gradually decrease, and there is a gradual increase in the coefficient of variability. At the scale of 150 m × 150 m, the areas of minor stony desertification, medium stony desertification, and major stony desertification in the Houzhai River Basin are 7.81 km2, 4.50 km2, and 1.87 km2, respectively. The spatial variability of stony desertification at small scales is influenced by many factors, and the variability at medium scales is jointly influenced by gradient, rock content, and rock exposure. At large scales, the spatial variability of stony desertification is mainly influenced by soil thickness and rock content. PMID:29652811

  10. Spatial Distribution of Stony Desertification and Key Influencing Factors on Different Sampling Scales in Small Karst Watersheds

    Directory of Open Access Journals (Sweden)

    Zhenming Zhang

    2018-04-01

    Full Text Available Karst areas are typical ecologically fragile areas, and stony desertification has become the most serious ecological and economic problems in these areas worldwide as well as a source of disasters and poverty. A reasonable sampling scale is of great importance for research on soil science in karst areas. In this paper, the spatial distribution of stony desertification characteristics and its influencing factors in karst areas are studied at different sampling scales using a grid sampling method based on geographic information system (GIS technology and geo-statistics. The rock exposure obtained through sampling over a 150 m × 150 m grid in the Houzhai River Basin was utilized as the original data, and five grid scales (300 m × 300 m, 450 m × 450 m, 600 m × 600 m, 750 m × 750 m, and 900 m × 900 m were used as the subsample sets. The results show that the rock exposure does not vary substantially from one sampling scale to another, while the average values of the five subsamples all fluctuate around the average value of the entire set. As the sampling scale increases, the maximum value and the average value of the rock exposure gradually decrease, and there is a gradual increase in the coefficient of variability. At the scale of 150 m × 150 m, the areas of minor stony desertification, medium stony desertification, and major stony desertification in the Houzhai River Basin are 7.81 km2, 4.50 km2, and 1.87 km2, respectively. The spatial variability of stony desertification at small scales is influenced by many factors, and the variability at medium scales is jointly influenced by gradient, rock content, and rock exposure. At large scales, the spatial variability of stony desertification is mainly influenced by soil thickness and rock content.

  11. Spatial Distribution of Stony Desertification and Key Influencing Factors on Different Sampling Scales in Small Karst Watersheds.

    Science.gov (United States)

    Zhang, Zhenming; Zhou, Yunchao; Wang, Shijie; Huang, Xianfei

    2018-04-13

    Karst areas are typical ecologically fragile areas, and stony desertification has become the most serious ecological and economic problems in these areas worldwide as well as a source of disasters and poverty. A reasonable sampling scale is of great importance for research on soil science in karst areas. In this paper, the spatial distribution of stony desertification characteristics and its influencing factors in karst areas are studied at different sampling scales using a grid sampling method based on geographic information system (GIS) technology and geo-statistics. The rock exposure obtained through sampling over a 150 m × 150 m grid in the Houzhai River Basin was utilized as the original data, and five grid scales (300 m × 300 m, 450 m × 450 m, 600 m × 600 m, 750 m × 750 m, and 900 m × 900 m) were used as the subsample sets. The results show that the rock exposure does not vary substantially from one sampling scale to another, while the average values of the five subsamples all fluctuate around the average value of the entire set. As the sampling scale increases, the maximum value and the average value of the rock exposure gradually decrease, and there is a gradual increase in the coefficient of variability. At the scale of 150 m × 150 m, the areas of minor stony desertification, medium stony desertification, and major stony desertification in the Houzhai River Basin are 7.81 km², 4.50 km², and 1.87 km², respectively. The spatial variability of stony desertification at small scales is influenced by many factors, and the variability at medium scales is jointly influenced by gradient, rock content, and rock exposure. At large scales, the spatial variability of stony desertification is mainly influenced by soil thickness and rock content.

  12. Development of Spatial Scaling Technique of Forest Health Sample Point Information

    Science.gov (United States)

    Lee, J. H.; Ryu, J. E.; Chung, H. I.; Choi, Y. Y.; Jeon, S. W.; Kim, S. H.

    2018-04-01

    Forests provide many goods, Ecosystem services, and resources to humans such as recreation air purification and water protection functions. In rececnt years, there has been an increase in the factors that threaten the health of forests such as global warming due to climate change, environmental pollution, and the increase in interest in forests, and efforts are being made in various countries for forest management. Thus, existing forest ecosystem survey method is a monitoring method of sampling points, and it is difficult to utilize forests for forest management because Korea is surveying only a small part of the forest area occupying 63.7 % of the country (Ministry of Land Infrastructure and Transport Korea, 2016). Therefore, in order to manage large forests, a method of interpolating and spatializing data is needed. In this study, The 1st Korea Forest Health Management biodiversity Shannon;s index data (National Institute of Forests Science, 2015) were used for spatial interpolation. Two widely used methods of interpolation, Kriging method and IDW(Inverse Distance Weighted) method were used to interpolate the biodiversity index. Vegetation indices SAVI, NDVI, LAI and SR were used. As a result, Kriging method was the most accurate method.

  13. DEVELOPMENT OF SPATIAL SCALING TECHNIQUE OF FOREST HEALTH SAMPLE POINT INFORMATION

    Directory of Open Access Journals (Sweden)

    J. H. Lee

    2018-04-01

    Full Text Available Forests provide many goods, Ecosystem services, and resources to humans such as recreation air purification and water protection functions. In rececnt years, there has been an increase in the factors that threaten the health of forests such as global warming due to climate change, environmental pollution, and the increase in interest in forests, and efforts are being made in various countries for forest management. Thus, existing forest ecosystem survey method is a monitoring method of sampling points, and it is difficult to utilize forests for forest management because Korea is surveying only a small part of the forest area occupying 63.7 % of the country (Ministry of Land Infrastructure and Transport Korea, 2016. Therefore, in order to manage large forests, a method of interpolating and spatializing data is needed. In this study, The 1st Korea Forest Health Management biodiversity Shannon;s index data (National Institute of Forests Science, 2015 were used for spatial interpolation. Two widely used methods of interpolation, Kriging method and IDW(Inverse Distance Weighted method were used to interpolate the biodiversity index. Vegetation indices SAVI, NDVI, LAI and SR were used. As a result, Kriging method was the most accurate method.

  14. Reliability of impingement sampling designs: An example from the Indian Point station

    International Nuclear Information System (INIS)

    Mattson, M.T.; Waxman, J.B.; Watson, D.A.

    1988-01-01

    A 4-year data base (1976-1979) of daily fish impingement counts at the Indian Point electric power station on the Hudson River was used to compare the precision and reliability of three random-sampling designs: (1) simple random, (2) seasonally stratified, and (3) empirically stratified. The precision of daily impingement estimates improved logarithmically for each design as more days in the year were sampled. Simple random sampling was the least, and empirically stratified sampling was the most precise design, and the difference in precision between the two stratified designs was small. Computer-simulated sampling was used to estimate the reliability of the two stratified-random-sampling designs. A seasonally stratified sampling design was selected as the most appropriate reduced-sampling program for Indian Point station because: (1) reasonably precise and reliable impingement estimates were obtained using this design for all species combined and for eight common Hudson River fish by sampling only 30% of the days in a year (110 d); and (2) seasonal strata may be more precise and reliable than empirical strata if future changes in annual impingement patterns occur. The seasonally stratified design applied to the 1976-1983 Indian Point impingement data showed that selection of sampling dates based on daily species-specific impingement variability gave results that were more precise, but not more consistently reliable, than sampling allocations based on the variability of all fish species combined. 14 refs., 1 fig., 6 tabs

  15. Conditional estimation of exponential random graph models from snowball sampling designs

    NARCIS (Netherlands)

    Pattison, Philippa E.; Robins, Garry L.; Snijders, Tom A. B.; Wang, Peng

    2013-01-01

    A complete survey of a network in a large population may be prohibitively difficult and costly. So it is important to estimate models for networks using data from various network sampling designs, such as link-tracing designs. We focus here on snowball sampling designs, designs in which the members

  16. Photography activities for developing students’ spatial orientation and spatial visualization

    Science.gov (United States)

    Hendroanto, Aan; van Galen, Frans; van Eerde, D.; Prahmana, R. C. I.; Setyawan, F.; Istiandaru, A.

    2017-12-01

    Spatial orientation and spatial visualization are the foundation of students’ spatial ability. They assist students’ performance in learning mathematics, especially geometry. Considering its importance, the present study aims to design activities to help young learners developing their spatial orientation and spatial visualization ability. Photography activity was chosen as the context of the activity to guide and support the students. This is a design research study consisting of three phases: 1) preparation and designing 2) teaching experiment, and 3) retrospective analysis. The data is collected by tests and interview and qualitatively analyzed. We developed two photography activities to be tested. In the teaching experiments, 30 students of SD Laboratorium UNESA, Surabaya were involved. The results showed that the activities supported the development of students’ spatial orientation and spatial visualization indicated by students’ learning progresses, answers, and strategies when they solved the problems in the activities.

  17. A spatially augmented reality sketching interface for architectural daylighting design.

    Science.gov (United States)

    Sheng, Yu; Yapo, Theodore C; Young, Christopher; Cutler, Barbara

    2011-01-01

    We present an application of interactive global illumination and spatially augmented reality to architectural daylight modeling that allows designers to explore alternative designs and new technologies for improving the sustainability of their buildings. Images of a model in the real world, captured by a camera above the scene, are processed to construct a virtual 3D model. To achieve interactive rendering rates, we use a hybrid rendering technique, leveraging radiosity to simulate the interreflectance between diffuse patches and shadow volumes to generate per-pixel direct illumination. The rendered images are then projected on the real model by four calibrated projectors to help users study the daylighting illumination. The virtual heliodon is a physical design environment in which multiple designers, a designer and a client, or a teacher and students can gather to experience animated visualizations of the natural illumination within a proposed design by controlling the time of day, season, and climate. Furthermore, participants may interactively redesign the geometry and materials of the space by manipulating physical design elements and see the updated lighting simulation. © 2011 IEEE Published by the IEEE Computer Society

  18. Fiber Bragg grating based spatially resolved characterization of flux-pinning induced strain of rectangular-shaped bulk YBCO samples

    International Nuclear Information System (INIS)

    Latka, Ines; Habisreuther, Tobias; Litzkendorf, Doris

    2011-01-01

    Highlights: → Fiber Bragg gratings (FBG) act as strain sensors, also at cryogenic temperatures. → FBGs are not sensitive to magnetic fields. → Local, shape dependent magnetostriction was detected on rectangular samples. → Magnetostrictive effects of the top surface and in a gap between two samples are different. - Abstract: We report on measurements of the spatially resolved characterization of flux-pinning induced strain of rectangular-shaped bulk YBCO samples. The spatially resolved strain measurements are accomplished by the use 2 fiber Bragg grating arrays, which are with an included angle of 45 o fixed to the surface. In this paper first attempts to confirm the shape distortions caused by the flux-pinning induced strain as predicted in will be presented. Two sample setups, a single bulk and a 'mirror' arrangement, will be compared. This mirror setup represents a model configuration for a measurement inside the superconductor, where demagnetization effects can be neglected and the magnetic field merely has a z-component.

  19. ANL small-sample calorimeter system design and operation

    International Nuclear Information System (INIS)

    Roche, C.T.; Perry, R.B.; Lewis, R.N.; Jung, E.A.; Haumann, J.R.

    1978-07-01

    The Small-Sample Calorimetric System is a portable instrument designed to measure the thermal power produced by radioactive decay of plutonium-containing fuels. The small-sample calorimeter is capable of measuring samples producing power up to 32 milliwatts at a rate of one sample every 20 min. The instrument is contained in two packages: a data-acquisition module consisting of a microprocessor with an 8K-byte nonvolatile memory, and a measurement module consisting of the calorimeter and a sample preheater. The total weight of the system is 18 kg

  20. Spatial Distribution and Sampling Plans With Fixed Level of Precision for Citrus Aphids (Hom., Aphididae) on Two Orange Species.

    Science.gov (United States)

    Kafeshani, Farzaneh Alizadeh; Rajabpour, Ali; Aghajanzadeh, Sirous; Gholamian, Esmaeil; Farkhari, Mohammad

    2018-04-02

    Aphis spiraecola Patch, Aphis gossypii Glover, and Toxoptera aurantii Boyer de Fonscolombe are three important aphid pests of citrus orchards. In this study, spatial distributions of the aphids on two orange species, Satsuma mandarin and Thomson navel, were evaluated using Taylor's power law and Iwao's patchiness. In addition, a fixed-precision sequential sampling plant was developed for each species on the host plant by Green's model at precision levels of 0.25 and 0.1. The results revealed that spatial distribution parameters and therefore the sampling plan were significantly different according to aphid and host plant species. Taylor's power law provides a better fit for the data than Iwao's patchiness regression. Except T. aurantii on Thomson navel orange, spatial distribution patterns of the aphids were aggregative on both citrus. T. aurantii had regular dispersion pattern on Thomson navel orange. Optimum sample size of the aphids varied from 30-2061 and 1-1622 shoots on Satsuma mandarin and Thomson navel orange based on aphid species and desired precision level. Calculated stop lines of the aphid species on Satsuma mandarin and Thomson navel orange ranged from 0.48 to 19 and 0.19 to 80.4 aphids per 24 shoots according to aphid species and desired precision level. The performance of the sampling plan was validated by resampling analysis using resampling for validation of sampling plans (RVSP) software. This sampling program is useful for IPM program of the aphids in citrus orchards.

  1. Adaptive designs for the one-sample log-rank test.

    Science.gov (United States)

    Schmidt, Rene; Faldum, Andreas; Kwiecien, Robert

    2017-09-22

    Traditional designs in phase IIa cancer trials are single-arm designs with a binary outcome, for example, tumor response. In some settings, however, a time-to-event endpoint might appear more appropriate, particularly in the presence of loss to follow-up. Then the one-sample log-rank test might be the method of choice. It allows to compare the survival curve of the patients under treatment to a prespecified reference survival curve. The reference curve usually represents the expected survival under standard of the care. In this work, convergence of the one-sample log-rank statistic to Brownian motion is proven using Rebolledo's martingale central limit theorem while accounting for staggered entry times of the patients. On this basis, a confirmatory adaptive one-sample log-rank test is proposed where provision is made for data dependent sample size reassessment. The focus is to apply the inverse normal method. This is done in two different directions. The first strategy exploits the independent increments property of the one-sample log-rank statistic. The second strategy is based on the patient-wise separation principle. It is shown by simulation that the proposed adaptive test might help to rescue an underpowered trial and at the same time lowers the average sample number (ASN) under the null hypothesis as compared to a single-stage fixed sample design. © 2017, The International Biometric Society.

  2. Baseline Design Compliance Matrix for the Rotary Mode Core Sampling System

    International Nuclear Information System (INIS)

    LECHELT, J.A.

    2000-01-01

    The purpose of the design compliance matrix (DCM) is to provide a single-source document of all design requirements associated with the fifteen subsystems that make up the rotary mode core sampling (RMCS) system. It is intended to be the baseline requirement document for the RMCS system and to be used in governing all future design and design verification activities associated with it. This document is the DCM for the RMCS system used on Hanford single-shell radioactive waste storage tanks. This includes the Exhauster System, Rotary Mode Core Sample Trucks, Universal Sampling System, Diesel Generator System, Distribution Trailer, X-Ray Cart System, Breathing Air Compressor, Nitrogen Supply Trailer, Casks and Cask Truck, Service Trailer, Core Sampling Riser Equipment, Core Sampling Support Trucks, Foot Clamp, Ramps and Platforms and Purged Camera System. Excluded items are tools such as light plants and light stands. Other items such as the breather inlet filter are covered by a different design baseline. In this case, the inlet breather filter is covered by the Tank Farms Design Compliance Matrix

  3. Outcome-Dependent Sampling Design and Inference for Cox's Proportional Hazards Model.

    Science.gov (United States)

    Yu, Jichang; Liu, Yanyan; Cai, Jianwen; Sandler, Dale P; Zhou, Haibo

    2016-11-01

    We propose a cost-effective outcome-dependent sampling design for the failure time data and develop an efficient inference procedure for data collected with this design. To account for the biased sampling scheme, we derive estimators from a weighted partial likelihood estimating equation. The proposed estimators for regression parameters are shown to be consistent and asymptotically normally distributed. A criteria that can be used to optimally implement the ODS design in practice is proposed and studied. The small sample performance of the proposed method is evaluated by simulation studies. The proposed design and inference procedure is shown to be statistically more powerful than existing alternative designs with the same sample sizes. We illustrate the proposed method with an existing real data from the Cancer Incidence and Mortality of Uranium Miners Study.

  4. Use of spatially distributed time-integrated sediment sampling networks and distributed fine sediment modelling to inform catchment management.

    Science.gov (United States)

    Perks, M T; Warburton, J; Bracken, L J; Reaney, S M; Emery, S B; Hirst, S

    2017-11-01

    Under the EU Water Framework Directive, suspended sediment is omitted from environmental quality standards and compliance targets. This omission is partly explained by difficulties in assessing the complex dose-response of ecological communities. But equally, it is hindered by a lack of spatially distributed estimates of suspended sediment variability across catchments. In this paper, we demonstrate the inability of traditional, discrete sampling campaigns for assessing exposure to fine sediment. Sampling frequencies based on Environmental Quality Standard protocols, whilst reflecting typical manual sampling constraints, are unable to determine the magnitude of sediment exposure with an acceptable level of precision. Deviations from actual concentrations range between -35 and +20% based on the interquartile range of simulations. As an alternative, we assess the value of low-cost, suspended sediment sampling networks for quantifying suspended sediment transfer (SST). In this study of the 362 km 2 upland Esk catchment we observe that spatial patterns of sediment flux are consistent over the two year monitoring period across a network of 17 monitoring sites. This enables the key contributing sub-catchments of Butter Beck (SST: 1141 t km 2 yr -1 ) and Glaisdale Beck (SST: 841 t km 2 yr -1 ) to be identified. The time-integrated samplers offer a feasible alternative to traditional infrequent and discrete sampling approaches for assessing spatio-temporal changes in contamination. In conjunction with a spatially distributed diffuse pollution model (SCIMAP), time-integrated sediment sampling is an effective means of identifying critical sediment source areas in the catchment, which can better inform sediment management strategies for pollution prevention and control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The effects of environmental variability and spatial sampling on the three-dimensional inversion problem.

    Science.gov (United States)

    Bender, Christopher M; Ballard, Megan S; Wilson, Preston S

    2014-06-01

    The overall goal of this work is to quantify the effects of environmental variability and spatial sampling on the accuracy and uncertainty of estimates of the three-dimensional ocean sound-speed field. In this work, ocean sound speed estimates are obtained with acoustic data measured by a sparse autonomous observing system using a perturbative inversion scheme [Rajan, Lynch, and Frisk, J. Acoust. Soc. Am. 82, 998-1017 (1987)]. The vertical and horizontal resolution of the solution depends on the bandwidth of acoustic data and on the quantity of sources and receivers, respectively. Thus, for a simple, range-independent ocean sound speed profile, a single source-receiver pair is sufficient to estimate the water-column sound-speed field. On the other hand, an environment with significant variability may not be fully characterized by a large number of sources and receivers, resulting in uncertainty in the solution. This work explores the interrelated effects of environmental variability and spatial sampling on the accuracy and uncertainty of the inversion solution though a set of case studies. Synthetic data representative of the ocean variability on the New Jersey shelf are used.

  6. Comparison of Three Plot Selection Methods for Estimating Change in Temporally Variable, Spatially Clustered Populations.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, William L. [Bonneville Power Administration, Portland, OR (US). Environment, Fish and Wildlife

    2001-07-01

    Monitoring population numbers is important for assessing trends and meeting various legislative mandates. However, sampling across time introduces a temporal aspect to survey design in addition to the spatial one. For instance, a sample that is initially representative may lose this attribute if there is a shift in numbers and/or spatial distribution in the underlying population that is not reflected in later sampled plots. Plot selection methods that account for this temporal variability will produce the best trend estimates. Consequently, I used simulation to compare bias and relative precision of estimates of population change among stratified and unstratified sampling designs based on permanent, temporary, and partial replacement plots under varying levels of spatial clustering, density, and temporal shifting of populations. Permanent plots produced more precise estimates of change than temporary plots across all factors. Further, permanent plots performed better than partial replacement plots except for high density (5 and 10 individuals per plot) and 25% - 50% shifts in the population. Stratified designs always produced less precise estimates of population change for all three plot selection methods, and often produced biased change estimates and greatly inflated variance estimates under sampling with partial replacement. Hence, stratification that remains fixed across time should be avoided when monitoring populations that are likely to exhibit large changes in numbers and/or spatial distribution during the study period. Key words: bias; change estimation; monitoring; permanent plots; relative precision; sampling with partial replacement; temporary plots.

  7. Design of Capillary Flows with Spatially Graded Porous Films

    Science.gov (United States)

    Joung, Young Soo; Figliuzzi, Bruno Michel; Buie, Cullen

    2013-11-01

    We have developed a new capillary tube model, consisting of multi-layered capillary tubes oriented in the direction of flow, to predict capillary speeds on spatially graded porous films. Capillary flows through thin porous media have been widely utilized for small size liquid transport systems. However, for most media it is challenging to realize arbitrary shapes and spatially functionalized micro-structures with variable flow properties. Therefore, conventional media can only be used for capillary flows obeying Washburn's equation and the modifications thereof. Given this background, we recently developed a method called breakdown anodization (BDA) to produce highly wetting porous films. The resulting surfaces show nearly zero contact angles and fast water spreading speed. Furthermore, capillary pressure and spreading diffusivity can be expressed as functions of capillary height when customized electric fields are used in BDA. From the capillary tube model, we derived a general capillary flow equation of motion in terms of capillary pressure and spreading diffusivity. The theoretical model shows good agreement with experimental capillary flows. The study will provide novel design methodologies for paper-based microfluidic devices.

  8. Insights into a spatially embedded social network from a large-scale snowball sample

    Science.gov (United States)

    Illenberger, J.; Kowald, M.; Axhausen, K. W.; Nagel, K.

    2011-12-01

    Much research has been conducted to obtain insights into the basic laws governing human travel behaviour. While the traditional travel survey has been for a long time the main source of travel data, recent approaches to use GPS data, mobile phone data, or the circulation of bank notes as a proxy for human travel behaviour are promising. The present study proposes a further source of such proxy-data: the social network. We collect data using an innovative snowball sampling technique to obtain details on the structure of a leisure-contacts network. We analyse the network with respect to its topology, the individuals' characteristics, and its spatial structure. We further show that a multiplication of the functions describing the spatial distribution of leisure contacts and the frequency of physical contacts results in a trip distribution that is consistent with data from the Swiss travel survey.

  9. A Frequency Domain Design Method For Sampled-Data Compensators

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Jannerup, Ole Erik

    1990-01-01

    A new approach to the design of a sampled-data compensator in the frequency domain is investigated. The starting point is a continuous-time compensator for the continuous-time system which satisfy specific design criteria. The new design method will graphically show how the discrete...

  10. An instrument design and sample strategy for measuring soil respiration in the coastal temperate rain forest

    Science.gov (United States)

    Nay, S. M.; D'Amore, D. V.

    2009-12-01

    The coastal temperate rainforest (CTR) along the northwest coast of North America is a large and complex mosaic of forests and wetlands located on an undulating terrain ranging from sea level to thousands of meters in elevation. This biome stores a dynamic portion of the total carbon stock of North America. The fate of the terrestrial carbon stock is of concern due to the potential for mobilization and export of this store to both the atmosphere as carbon respiration flux and ocean as dissolved organic and inorganic carbon flux. Soil respiration is the largest export vector in the system and must be accurately measured to gain any comprehensive understanding of how carbon moves though this system. Suitable monitoring tools capable of measuring carbon fluxes at small spatial scales are essential for our understanding of carbon dynamics at larger spatial scales within this complex assemblage of ecosystems. We have adapted instrumentation and developed a sampling strategy for optimizing replication of soil respiration measurements to quantify differences among spatially complex landscape units of the CTR. We start with the design of the instrument to ease the technological, ergonomic and financial barriers that technicians encounter in monitoring the efflux of CO2 from the soil. Our sampling strategy optimizes the physical efforts of the field work and manages for the high variation of flux measurements encountered in this difficult environment of rough terrain, dense vegetation and wet climate. Our soil respirometer incorporates an infra-red gas analyzer (LiCor Inc. LI-820) and an 8300 cm3 soil respiration chamber; the device is durable, lightweight, easy to operate and can be built for under $5000 per unit. The modest unit price allows for a multiple unit fleet to be deployed and operated in an intensive field monitoring campaign. We use a large 346 cm2 collar to accommodate as much micro spatial variation as feasible and to facilitate repeated measures for tracking

  11. A new formulation of the linear sampling method: spatial resolution and post-processing

    International Nuclear Information System (INIS)

    Piana, M; Aramini, R; Brignone, M; Coyle, J

    2008-01-01

    A new formulation of the linear sampling method is described, which requires the regularized solution of a single functional equation set in a direct sum of L 2 spaces. This new approach presents the following notable advantages: it is computationally more effective than the traditional implementation, since time consuming samplings of the Tikhonov minimum problem and of the generalized discrepancy equation are avoided; it allows a quantitative estimate of the spatial resolution achievable by the method; it facilitates a post-processing procedure for the optimal selection of the scatterer profile by means of edge detection techniques. The formulation is described in a two-dimensional framework and in the case of obstacle scattering, although generalizations to three dimensions and penetrable inhomogeneities are straightforward

  12. Enhancing sampling design in mist-net bat surveys by accounting for sample size optimization

    OpenAIRE

    Trevelin, Leonardo Carreira; Novaes, Roberto Leonan Morim; Colas-Rosas, Paul François; Benathar, Thayse Cristhina Melo; Peres, Carlos A.

    2017-01-01

    The advantages of mist-netting, the main technique used in Neotropical bat community studies to date, include logistical implementation, standardization and sampling representativeness. Nonetheless, study designs still have to deal with issues of detectability related to how different species behave and use the environment. Yet there is considerable sampling heterogeneity across available studies in the literature. Here, we approach the problem of sample size optimization. We evaluated the co...

  13. Test Sample for the Spatially Resolved Quantification of Illicit Drugs on Fingerprints Using Imaging Mass Spectrometry

    NARCIS (Netherlands)

    Muramoto, S.; Forbes, T.P.; van Asten, A.C.; Gillen, G.

    2015-01-01

    A novel test sample for the spatially resolved quantification of illicit drugs on the surface of a fingerprint using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and desorption electrospray ionization mass spectrometry (DESI-MS) was demonstrated. Calibration curves relating the signal

  14. Sample design considerations of indoor air exposure surveys

    International Nuclear Information System (INIS)

    Cox, B.G.; Mage, D.T.; Immerman, F.W.

    1988-01-01

    Concern about the potential for indoor air pollution has prompted recent surveys of radon and NO 2 concentrations in homes and personal exposure studies of volatile organics, carbon monoxide and pesticides, to name a few. The statistical problems in designing sample surveys that measure the physical environment are diverse and more complicated than those encountered in traditional surveys of human attitudes and attributes. This paper addresses issues encountered when designing indoor air quality (IAQ) studies. General statistical concepts related to target population definition, frame creation, and sample selection for area household surveys and telephone surveys are presented. The implications of different measurement approaches are discussed, and response rate considerations are described

  15. Fine-Scale Spatial Heterogeneity in the Distribution of Waterborne Protozoa in a Drinking Water Reservoir.

    Science.gov (United States)

    Burnet, Jean-Baptiste; Ogorzaly, Leslie; Penny, Christian; Cauchie, Henry-Michel

    2015-09-23

    The occurrence of faecal pathogens in drinking water resources constitutes a threat to the supply of safe drinking water, even in industrialized nations. To efficiently assess and monitor the risk posed by these pathogens, sampling deserves careful design, based on preliminary knowledge on their distribution dynamics in water. For the protozoan pathogens Cryptosporidium and Giardia, only little is known about their spatial distribution within drinking water supplies, especially at fine scale. Two-dimensional distribution maps were generated by sampling cross-sections at meter resolution in two different zones of a drinking water reservoir. Samples were analysed for protozoan pathogens as well as for E. coli, turbidity and physico-chemical parameters. Parasites displayed heterogeneous distribution patterns, as reflected by significant (oo)cyst density gradients along reservoir depth. Spatial correlations between parasites and E. coli were observed near the reservoir inlet but were absent in the downstream lacustrine zone. Measurements of surface and subsurface flow velocities suggest a role of local hydrodynamics on these spatial patterns. This fine-scale spatial study emphasizes the importance of sampling design (site, depth and position on the reservoir) for the acquisition of representative parasite data and for optimization of microbial risk assessment and monitoring. Such spatial information should prove useful to the modelling of pathogen transport dynamics in drinking water supplies.

  16. A neural network-based optimal spatial filter design method for motor imagery classification.

    Directory of Open Access Journals (Sweden)

    Ayhan Yuksel

    Full Text Available In this study, a novel spatial filter design method is introduced. Spatial filtering is an important processing step for feature extraction in motor imagery-based brain-computer interfaces. This paper introduces a new motor imagery signal classification method combined with spatial filter optimization. We simultaneously train the spatial filter and the classifier using a neural network approach. The proposed spatial filter network (SFN is composed of two layers: a spatial filtering layer and a classifier layer. These two layers are linked to each other with non-linear mapping functions. The proposed method addresses two shortcomings of the common spatial patterns (CSP algorithm. First, CSP aims to maximize the between-classes variance while ignoring the minimization of within-classes variances. Consequently, the features obtained using the CSP method may have large within-classes variances. Second, the maximizing optimization function of CSP increases the classification accuracy indirectly because an independent classifier is used after the CSP method. With SFN, we aimed to maximize the between-classes variance while minimizing within-classes variances and simultaneously optimizing the spatial filter and the classifier. To classify motor imagery EEG signals, we modified the well-known feed-forward structure and derived forward and backward equations that correspond to the proposed structure. We tested our algorithm on simple toy data. Then, we compared the SFN with conventional CSP and its multi-class version, called one-versus-rest CSP, on two data sets from BCI competition III. The evaluation results demonstrate that SFN is a good alternative for classifying motor imagery EEG signals with increased classification accuracy.

  17. Spatial patterns of antimicrobial resistance genes in a cross-sectional sample of pig farms with indoor non-organic production of finishers

    DEFF Research Database (Denmark)

    Birkegård, Anna Camilla; Ersbøll, Annette Kjær; Hisham Beshara Halasa, Tariq

    2017-01-01

    Antimicrobial resistance (AMR) in pig populations is a public health concern. There is a lack of information of spatial distributions of AMR genes in pig populations at large scales. The objective of the study was to describe the spatial pattern of AMR genes in faecal samples from pig farms...... spatial clusters were identified for ermB, ermF, sulII and tet(W). The broad spatial trends in AMR resistance evident in the risk maps were in agreement with the results of the cluster analysis. However, they also showed that there were only small scale spatial differences in the gene levels. We conclude...

  18. The backbone of a City Information Model (CIM) : Implementing a spatial data model for urban design

    NARCIS (Netherlands)

    Gil, J.A.; Almeida, J.; Duarte, J.P.

    2011-01-01

    We have been witnessing an increased interest in a more holistic approach to urban design practice and education. In this paper we present a spatial data model for urban design that proposes the combination of urban environment feature classes with design process feature classes. This data model is

  19. Estimating HIES Data through Ratio and Regression Methods for Different Sampling Designs

    Directory of Open Access Journals (Sweden)

    Faqir Muhammad

    2007-01-01

    Full Text Available In this study, comparison has been made for different sampling designs, using the HIES data of North West Frontier Province (NWFP for 2001-02 and 1998-99 collected from the Federal Bureau of Statistics, Statistical Division, Government of Pakistan, Islamabad. The performance of the estimators has also been considered using bootstrap and Jacknife. A two-stage stratified random sample design is adopted by HIES. In the first stage, enumeration blocks and villages are treated as the first stage Primary Sampling Units (PSU. The sample PSU’s are selected with probability proportional to size. Secondary Sampling Units (SSU i.e., households are selected by systematic sampling with a random start. They have used a single study variable. We have compared the HIES technique with some other designs, which are: Stratified Simple Random Sampling. Stratified Systematic Sampling. Stratified Ranked Set Sampling. Stratified Two Phase Sampling. Ratio and Regression methods were applied with two study variables, which are: Income (y and Household sizes (x. Jacknife and Bootstrap are used for variance replication. Simple Random Sampling with sample size (462 to 561 gave moderate variances both by Jacknife and Bootstrap. By applying Systematic Sampling, we received moderate variance with sample size (467. In Jacknife with Systematic Sampling, we obtained variance of regression estimator greater than that of ratio estimator for a sample size (467 to 631. At a sample size (952 variance of ratio estimator gets greater than that of regression estimator. The most efficient design comes out to be Ranked set sampling compared with other designs. The Ranked set sampling with jackknife and bootstrap, gives minimum variance even with the smallest sample size (467. Two Phase sampling gave poor performance. Multi-stage sampling applied by HIES gave large variances especially if used with a single study variable.

  20. Creel survey sampling designs for estimating effort in short-duration Chinook salmon fisheries

    Science.gov (United States)

    McCormick, Joshua L.; Quist, Michael C.; Schill, Daniel J.

    2013-01-01

    Chinook Salmon Oncorhynchus tshawytscha sport fisheries in the Columbia River basin are commonly monitored using roving creel survey designs and require precise, unbiased catch estimates. The objective of this study was to examine the relative bias and precision of total catch estimates using various sampling designs to estimate angling effort under the assumption that mean catch rate was known. We obtained information on angling populations based on direct visual observations of portions of Chinook Salmon fisheries in three Idaho river systems over a 23-d period. Based on the angling population, Monte Carlo simulations were used to evaluate the properties of effort and catch estimates for each sampling design. All sampling designs evaluated were relatively unbiased. Systematic random sampling (SYS) resulted in the most precise estimates. The SYS and simple random sampling designs had mean square error (MSE) estimates that were generally half of those observed with cluster sampling designs. The SYS design was more efficient (i.e., higher accuracy per unit cost) than a two-cluster design. Increasing the number of clusters available for sampling within a day decreased the MSE of estimates of daily angling effort, but the MSE of total catch estimates was variable depending on the fishery. The results of our simulations provide guidelines on the relative influence of sample sizes and sampling designs on parameters of interest in short-duration Chinook Salmon fisheries.

  1. A Geostatistical Approach to Indoor Surface Sampling Strategies

    DEFF Research Database (Denmark)

    Schneider, Thomas; Petersen, Ole Holm; Nielsen, Allan Aasbjerg

    1990-01-01

    Particulate surface contamination is of concern in production industries such as food processing, aerospace, electronics and semiconductor manufacturing. There is also an increased awareness that surface contamination should be monitored in industrial hygiene surveys. A conceptual and theoretical...... framework for designing sampling strategies is thus developed. The distribution and spatial correlation of surface contamination can be characterized using concepts from geostatistical science, where spatial applications of statistics is most developed. The theory is summarized and particulate surface...... contamination, sampled from small areas on a table, have been used to illustrate the method. First, the spatial correlation is modelled and the parameters estimated from the data. Next, it is shown how the contamination at positions not measured can be estimated with kriging, a minimum mean square error method...

  2. Sampling designs matching species biology produce accurate and affordable abundance indices

    Directory of Open Access Journals (Sweden)

    Grant Harris

    2013-12-01

    Full Text Available Wildlife biologists often use grid-based designs to sample animals and generate abundance estimates. Although sampling in grids is theoretically sound, in application, the method can be logistically difficult and expensive when sampling elusive species inhabiting extensive areas. These factors make it challenging to sample animals and meet the statistical assumption of all individuals having an equal probability of capture. Violating this assumption biases results. Does an alternative exist? Perhaps by sampling only where resources attract animals (i.e., targeted sampling, it would provide accurate abundance estimates more efficiently and affordably. However, biases from this approach would also arise if individuals have an unequal probability of capture, especially if some failed to visit the sampling area. Since most biological programs are resource limited, and acquiring abundance data drives many conservation and management applications, it becomes imperative to identify economical and informative sampling designs. Therefore, we evaluated abundance estimates generated from grid and targeted sampling designs using simulations based on geographic positioning system (GPS data from 42 Alaskan brown bears (Ursus arctos. Migratory salmon drew brown bears from the wider landscape, concentrating them at anadromous streams. This provided a scenario for testing the targeted approach. Grid and targeted sampling varied by trap amount, location (traps placed randomly, systematically or by expert opinion, and traps stationary or moved between capture sessions. We began by identifying when to sample, and if bears had equal probability of capture. We compared abundance estimates against seven criteria: bias, precision, accuracy, effort, plus encounter rates, and probabilities of capture and recapture. One grid (49 km2 cells and one targeted configuration provided the most accurate results. Both placed traps by expert opinion and moved traps between capture

  3. Sampling designs matching species biology produce accurate and affordable abundance indices.

    Science.gov (United States)

    Harris, Grant; Farley, Sean; Russell, Gareth J; Butler, Matthew J; Selinger, Jeff

    2013-01-01

    Wildlife biologists often use grid-based designs to sample animals and generate abundance estimates. Although sampling in grids is theoretically sound, in application, the method can be logistically difficult and expensive when sampling elusive species inhabiting extensive areas. These factors make it challenging to sample animals and meet the statistical assumption of all individuals having an equal probability of capture. Violating this assumption biases results. Does an alternative exist? Perhaps by sampling only where resources attract animals (i.e., targeted sampling), it would provide accurate abundance estimates more efficiently and affordably. However, biases from this approach would also arise if individuals have an unequal probability of capture, especially if some failed to visit the sampling area. Since most biological programs are resource limited, and acquiring abundance data drives many conservation and management applications, it becomes imperative to identify economical and informative sampling designs. Therefore, we evaluated abundance estimates generated from grid and targeted sampling designs using simulations based on geographic positioning system (GPS) data from 42 Alaskan brown bears (Ursus arctos). Migratory salmon drew brown bears from the wider landscape, concentrating them at anadromous streams. This provided a scenario for testing the targeted approach. Grid and targeted sampling varied by trap amount, location (traps placed randomly, systematically or by expert opinion), and traps stationary or moved between capture sessions. We began by identifying when to sample, and if bears had equal probability of capture. We compared abundance estimates against seven criteria: bias, precision, accuracy, effort, plus encounter rates, and probabilities of capture and recapture. One grid (49 km(2) cells) and one targeted configuration provided the most accurate results. Both placed traps by expert opinion and moved traps between capture sessions

  4. Sampling designs matching species biology produce accurate and affordable abundance indices

    Science.gov (United States)

    Farley, Sean; Russell, Gareth J.; Butler, Matthew J.; Selinger, Jeff

    2013-01-01

    Wildlife biologists often use grid-based designs to sample animals and generate abundance estimates. Although sampling in grids is theoretically sound, in application, the method can be logistically difficult and expensive when sampling elusive species inhabiting extensive areas. These factors make it challenging to sample animals and meet the statistical assumption of all individuals having an equal probability of capture. Violating this assumption biases results. Does an alternative exist? Perhaps by sampling only where resources attract animals (i.e., targeted sampling), it would provide accurate abundance estimates more efficiently and affordably. However, biases from this approach would also arise if individuals have an unequal probability of capture, especially if some failed to visit the sampling area. Since most biological programs are resource limited, and acquiring abundance data drives many conservation and management applications, it becomes imperative to identify economical and informative sampling designs. Therefore, we evaluated abundance estimates generated from grid and targeted sampling designs using simulations based on geographic positioning system (GPS) data from 42 Alaskan brown bears (Ursus arctos). Migratory salmon drew brown bears from the wider landscape, concentrating them at anadromous streams. This provided a scenario for testing the targeted approach. Grid and targeted sampling varied by trap amount, location (traps placed randomly, systematically or by expert opinion), and traps stationary or moved between capture sessions. We began by identifying when to sample, and if bears had equal probability of capture. We compared abundance estimates against seven criteria: bias, precision, accuracy, effort, plus encounter rates, and probabilities of capture and recapture. One grid (49 km2 cells) and one targeted configuration provided the most accurate results. Both placed traps by expert opinion and moved traps between capture sessions, which

  5. Linear chirped slope profile for spatial calibration in slope measuring deflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Siewert, F., E-mail: frank.siewert@helmholtz-berlin.de; Zeschke, T. [Helmholtz Zentrum Berlin für Materialien und Energie, Institut für Nanometer Optik und Technologie, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Arnold, T.; Paetzelt, H. [Leibnitz Institut für Oberflächen Modifizierung Leipzig e.V., IOM, Permoserstr. 15, 04318 Leipzig (Germany); Yashchuk, V. V. [Lawerence Berkeley National Laboratory, Advanced Light Source, 1 Cyclotron Road, Berkeley, California 94720 (United States)

    2016-05-15

    Slope measuring deflectometry is commonly used by the X-ray optics community to measure the long-spatial-wavelength surface figure error of optical components dedicated to guide and focus X-rays under grazing incidence condition at synchrotron and free electron laser beamlines. The best performing instruments of this kind are capable of absolute accuracy on the level of 30-50 nrad. However, the exact bandwidth of the measurements, determined at the higher spatial frequencies by the instrument’s spatial resolution, or more generally by the instrument’s modulation transfer function (MTF) is hard to determine. An MTF calibration method based on application of a test surface with a one-dimensional (1D) chirped height profile of constant amplitude was suggested in the past. In this work, we propose a new approach to designing the test surfaces with a 2D-chirped topography, specially optimized for MTF characterization of slope measuring instruments. The design of the developed MTF test samples based on the proposed linear chirped slope profiles (LCSPs) is free of the major drawback of the 1D chirped height profiles, where in the slope domain, the amplitude strongly increases with the local spatial frequency of the profile. We provide the details of fabrication of the LCSP samples. The results of first application of the developed test samples to measure the spatial resolution of the BESSY-NOM at different experimental arrangements are also presented and discussed.

  6. Lagoa Real design. Description and evaluation of sampling system

    International Nuclear Information System (INIS)

    Hashizume, B.K.

    1982-10-01

    This report describes the samples preparation system of drilling from Lagoa Real Design, aiming obtainment representative fraction of the half from drilling outlier. The error of sampling + analysis and analytical accuracy was obtainment by delayed neutron analysis. (author)

  7. [Sampling optimization for tropical invertebrates: an example using dung beetles (Coleoptera: Scarabaeinae) in Venezuela].

    Science.gov (United States)

    Ferrer-Paris, José Rafael; Sánchez-Mercado, Ada; Rodríguez, Jon Paul

    2013-03-01

    The development of efficient sampling protocols is an essential prerequisite to evaluate and identify priority conservation areas. There are f ew protocols for fauna inventory and monitoring in wide geographical scales for the tropics, where the complexity of communities and high biodiversity levels, make the implementation of efficient protocols more difficult. We proposed here a simple strategy to optimize the capture of dung beetles, applied to sampling with baited traps and generalizable to other sampling methods. We analyzed data from eight transects sampled between 2006-2008 withthe aim to develop an uniform sampling design, that allows to confidently estimate species richness, abundance and composition at wide geographical scales. We examined four characteristics of any sampling design that affect the effectiveness of the sampling effort: the number of traps, sampling duration, type and proportion of bait, and spatial arrangement of the traps along transects. We used species accumulation curves, rank-abundance plots, indicator species analysis, and multivariate correlograms. We captured 40 337 individuals (115 species/morphospecies of 23 genera). Most species were attracted by both dung and carrion, but two thirds had greater relative abundance in traps baited with human dung. Different aspects of the sampling design influenced each diversity attribute in different ways. To obtain reliable richness estimates, the number of traps was the most important aspect. Accurate abundance estimates were obtained when the sampling period was increased, while the spatial arrangement of traps was determinant to capture the species composition pattern. An optimum sampling strategy for accurate estimates of richness, abundance and diversity should: (1) set 50-70 traps to maximize the number of species detected, (2) get samples during 48-72 hours and set trap groups along the transect to reliably estimate species abundance, (3) set traps in groups of at least 10 traps to

  8. Design of a distributed system of exploration and spatial communication - PiBots

    International Nuclear Information System (INIS)

    Loria Gamboa, Monica; Castro Leiva, Luis; Garro Ruiz, Ricardo

    2012-01-01

    The design and implementation of a prototype robot PiBots has been suggested in Costa Rica for exploration in an alien environment to land. The design has been addressed PiBots considering the resources and the use of current technology for initial exploratory prototype. A real model and the ideal model of a PiBot were prepared. The actual design of a prototype pursued, has provided the testing of theoretical concepts and the collection of recommendations for the development of robots with constructed parts and appropriate materials specified of a spatial mission. The ideal design has resulted from the elaboration of the program that has allowed the selection of components to assist in the design stage, with special emphasis on the size, autonomy and power of PiBots with a functional and efficient energy system [es

  9. Estimating the encounter rate variance in distance sampling

    Science.gov (United States)

    Fewster, R.M.; Buckland, S.T.; Burnham, K.P.; Borchers, D.L.; Jupp, P.E.; Laake, J.L.; Thomas, L.

    2009-01-01

    The dominant source of variance in line transect sampling is usually the encounter rate variance. Systematic survey designs are often used to reduce the true variability among different realizations of the design, but estimating the variance is difficult and estimators typically approximate the variance by treating the design as a simple random sample of lines. We explore the properties of different encounter rate variance estimators under random and systematic designs. We show that a design-based variance estimator improves upon the model-based estimator of Buckland et al. (2001, Introduction to Distance Sampling. Oxford: Oxford University Press, p. 79) when transects are positioned at random. However, if populations exhibit strong spatial trends, both estimators can have substantial positive bias under systematic designs. We show that poststratification is effective in reducing this bias. ?? 2008, The International Biometric Society.

  10. Spatial statistics of hydrography and water chemistry in a eutrophic boreal lake based on sounding and water samples.

    Science.gov (United States)

    Leppäranta, Matti; Lewis, John E; Heini, Anniina; Arvola, Lauri

    2018-06-04

    Spatial variability, an essential characteristic of lake ecosystems, has often been neglected in field research and monitoring. In this study, we apply spatial statistical methods for the key physics and chemistry variables and chlorophyll a over eight sampling dates in two consecutive years in a large (area 103 km 2 ) eutrophic boreal lake in southern Finland. In the four summer sampling dates, the water body was vertically and horizontally heterogenic except with color and DOC, in the two winter ice-covered dates DO was vertically stratified, while in the two autumn dates, no significant spatial differences in any of the measured variables were found. Chlorophyll a concentration was one order of magnitude lower under the ice cover than in open water. The Moran statistic for spatial correlation was significant for chlorophyll a and NO 2 +NO 3 -N in all summer situations and for dissolved oxygen and pH in three cases. In summer, the mass centers of the chemicals were within 1.5 km from the geometric center of the lake, and the 2nd moment radius ranged in 3.7-4.1 km respective to 3.9 km for the homogeneous situation. The lateral length scales of the studied variables were 1.5-2.5 km, about 1 km longer in the surface layer. The detected spatial "noise" strongly suggests that besides vertical variation also the horizontal variation in eutrophic lakes, in particular, should be considered when the ecosystems are monitored.

  11. Children's Spatial Thinking: Does Talk about the Spatial World Matter?

    Science.gov (United States)

    Pruden, Shannon M.; Levine, Susan C.; Huttenlocher, Janellen

    2011-01-01

    In this paper we examine the relations between parent spatial language input, children's own production of spatial language, and children's later spatial abilities. Using a longitudinal study design, we coded the use of spatial language (i.e. words describing the spatial features and properties of objects; e.g. big, tall, circle, curvy, edge) from…

  12. Design review report for rotary mode core sample truck (RMCST) modifications for flammable gas tanks, preliminary design

    International Nuclear Information System (INIS)

    Corbett, J.E.

    1996-02-01

    This report documents the completion of a preliminary design review for the Rotary Mode Core Sample Truck (RMCST) modifications for flammable gas tanks. The RMCST modifications are intended to support core sampling operations in waste tanks requiring flammable gas controls. The objective of this review was to validate basic design assumptions and concepts to support a path forward leading to a final design. The conclusion reached by the review committee was that the design was acceptable and efforts should continue toward a final design review

  13. Determination of the complex refractive index segments of turbid sample with multispectral spatially modulated structured light and models approximation

    Science.gov (United States)

    Meitav, Omri; Shaul, Oren; Abookasis, David

    2017-09-01

    Spectral data enabling the derivation of a biological tissue sample's complex refractive index (CRI) can provide a range of valuable information in the clinical and research contexts. Specifically, changes in the CRI reflect alterations in tissue morphology and chemical composition, enabling its use as an optical marker during diagnosis and treatment. In the present work, we report a method for estimating the real and imaginary parts of the CRI of a biological sample using Kramers-Kronig (KK) relations in the spatial frequency domain. In this method, phase-shifted sinusoidal patterns at single high spatial frequency are serially projected onto the sample surface at different near-infrared wavelengths while a camera mounted normal to the sample surface acquires the reflected diffuse light. In the offline analysis pipeline, recorded images at each wavelength are converted to spatial phase maps using KK analysis and are then calibrated against phase-models derived from diffusion approximation. The amplitude of the reflected light, together with phase data, is then introduced into Fresnel equations to resolve both real and imaginary segments of the CRI at each wavelength. The technique was validated in tissue-mimicking phantoms with known optical parameters and in mouse models of ischemic injury and heat stress. Experimental data obtained indicate variations in the CRI among brain tissue suffering from injury. CRI fluctuations correlated with alterations in the scattering and absorption coefficients of the injured tissue are demonstrated. This technique for deriving dynamic changes in the CRI of tissue may be further developed as a clinical diagnostic tool and for biomedical research applications. To the best of our knowledge, this is the first report of the estimation of the spectral CRI of a mouse head following injury obtained in the spatial frequency domain.

  14. Mechanical design and simulation of an automatized sample exchanger

    International Nuclear Information System (INIS)

    Lopez, Yon; Gora, Jimmy; Bedregal, Patricia; Hernandez, Yuri; Baltuano, Oscar; Gago, Javier

    2013-01-01

    The design of a turntable type sample exchanger for irradiation and with a capacity for up to 20 capsules was performed. Its function is the automatic sending of samples contained in polyethylene capsules, for irradiation in the grid position of the reactor core, using a pneumatic system and further analysis by neutron activation. This study shows the structural design analysis and calculations in selecting motors and actuators. This development will improve efficiency in the analysis, reducing the contribution of the workers and also the radiation exposure time. (authors).

  15. Simplified methods for spatial sampling: application to first-phase data of Italian National Forest Inventory (INFC in Sicily

    Directory of Open Access Journals (Sweden)

    Cullotta S

    2006-01-01

    Full Text Available Methodological approaches able to integrate data from sample plots with cartographic processes are widely applied. Based on mathematic-statistical techniques, the spatial analysis allows the exploration and spatialization of geographic data. Starting from the punctual information on land use types obtained from the dataset of the first phase of the ongoing new Italian NFI (INFC, a spatialization of land cover classes was carried out using the Inverse Distance Weighting (IDW method. In order to validate the obtained results, an overlay with other vectorial land use data was carried out. In particular, the overlay compared data at different scales, evaluating differences in terms of degree of correspondence between the interpolated and reference land cover.

  16. Network-scale spatial and temporal variation in Chinook salmon (Oncorhynchus tshawytscha) redd distributions: patterns inferred from spatially continuous replicate surveys

    Science.gov (United States)

    Daniel J. Isaak; Russell F. Thurow

    2006-01-01

    Spatially continuous sampling designs, when temporally replicated, provide analytical flexibility and are unmatched in their ability to provide a dynamic system view. We have compiled such a data set by georeferencing the network-scale distribution of Chinook salmon (Oncorhynchus tshawytscha) redds across a large wilderness basin (7330 km2) in...

  17. Design and study of a coplanar grid array CdZnTe detector for improved spatial resolution

    International Nuclear Information System (INIS)

    Ma, Yuedong; Xiao, Shali; Yang, Guoqiang; Zhang, Liuqiang

    2014-01-01

    Coplanar grid (CPG) CdZnTe detectors have been used as gamma-ray spectrometers for years. Comparing with pixelated CdZnTe detectors, CPG CdZnTe detectors have either no or poor spatial resolution, which directly limits its use in imaging applications. To address the issue, a 2×2 CPG array CdZnTe detector with dimensions of 7×7×5 mm 3 was fabricated. Each of the CPG pairs in the detector was moderately shrunk in size and precisely designed to improve the spatial resolution while maintaining good energy resolution, considering the charge loss at the surface between the strips of each CPG pairs. Preliminary measurements were demonstrated at an energy resolution of 2.7–3.9% for the four CPG pairs using 662 keV gamma rays and with a spatial resolution of 3.3 mm, which is the best spatial resolution ever achieved for CPG CdZnTe detectors. The results reveal that the CPG CdZnTe detector can also be applied to imaging applications at a substantially higher spatial resolution. - Highlights: • A novel structure of coplanar grid CdZnTe detector was designed to evaluate the possibility of applying the detector to gamma-ray imaging applications. • The best spatial resolution of coplanar grid CdZnTe detectors ever reported has been achieved, along with good spectroscopic performance. • Depth correction of the energy spectra using a new algorithm is presented

  18. Outcome-Dependent Sampling Design and Inference for Cox’s Proportional Hazards Model

    Science.gov (United States)

    Yu, Jichang; Liu, Yanyan; Cai, Jianwen; Sandler, Dale P.; Zhou, Haibo

    2016-01-01

    We propose a cost-effective outcome-dependent sampling design for the failure time data and develop an efficient inference procedure for data collected with this design. To account for the biased sampling scheme, we derive estimators from a weighted partial likelihood estimating equation. The proposed estimators for regression parameters are shown to be consistent and asymptotically normally distributed. A criteria that can be used to optimally implement the ODS design in practice is proposed and studied. The small sample performance of the proposed method is evaluated by simulation studies. The proposed design and inference procedure is shown to be statistically more powerful than existing alternative designs with the same sample sizes. We illustrate the proposed method with an existing real data from the Cancer Incidence and Mortality of Uranium Miners Study. PMID:28090134

  19. A census-weighted, spatially-stratified household sampling strategy for urban malaria epidemiology

    Directory of Open Access Journals (Sweden)

    Slutsker Laurence

    2008-02-01

    Full Text Available Abstract Background Urban malaria is likely to become increasingly important as a consequence of the growing proportion of Africans living in cities. A novel sampling strategy was developed for urban areas to generate a sample simultaneously representative of population and inhabited environments. Such a strategy should facilitate analysis of important epidemiological relationships in this ecological context. Methods Census maps and summary data for Kisumu, Kenya, were used to create a pseudo-sampling frame using the geographic coordinates of census-sampled structures. For every enumeration area (EA designated as urban by the census (n = 535, a sample of structures equal to one-tenth the number of households was selected. In EAs designated as rural (n = 32, a geographically random sample totalling one-tenth the number of households was selected from a grid of points at 100 m intervals. The selected samples were cross-referenced to a geographic information system, and coordinates transferred to handheld global positioning units. Interviewers found the closest eligible household to the sampling point and interviewed the caregiver of a child aged Results 4,336 interviews were completed in 473 of the 567 study area EAs from June 2002 through February 2003. EAs without completed interviews were randomly distributed, and non-response was approximately 2%. Mean distance from the assigned sampling point to the completed interview was 74.6 m, and was significantly less in urban than rural EAs, even when controlling for number of households. The selected sample had significantly more children and females of childbearing age than the general population, and fewer older individuals. Conclusion This method selected a sample that was simultaneously population-representative and inclusive of important environmental variation. The use of a pseudo-sampling frame and pre-programmed handheld GPS units is more efficient and may yield a more complete sample than

  20. Objective sampling design in a highly heterogeneous landscape - characterizing environmental determinants of malaria vector distribution in French Guiana, in the Amazonian region.

    Science.gov (United States)

    Roux, Emmanuel; Gaborit, Pascal; Romaña, Christine A; Girod, Romain; Dessay, Nadine; Dusfour, Isabelle

    2013-12-01

    Sampling design is a key issue when establishing species inventories and characterizing habitats within highly heterogeneous landscapes. Sampling efforts in such environments may be constrained and many field studies only rely on subjective and/or qualitative approaches to design collection strategy. The region of Cacao, in French Guiana, provides an excellent study site to understand the presence and abundance of Anopheles mosquitoes, their species dynamics and the transmission risk of malaria across various environments. We propose an objective methodology to define a stratified sampling design. Following thorough environmental characterization, a factorial analysis of mixed groups allows the data to be reduced and non-collinear principal components to be identified while balancing the influences of the different environmental factors. Such components defined new variables which could then be used in a robust k-means clustering procedure. Then, we identified five clusters that corresponded to our sampling strata and selected sampling sites in each stratum. We validated our method by comparing the species overlap of entomological collections from selected sites and the environmental similarities of the same sites. The Morisita index was significantly correlated (Pearson linear correlation) with environmental similarity based on i) the balanced environmental variable groups considered jointly (p = 0.001) and ii) land cover/use (p-value sampling approach. Land cover/use maps (based on high spatial resolution satellite images) were shown to be particularly useful when studying the presence, density and diversity of Anopheles mosquitoes at local scales and in very heterogeneous landscapes.

  1. Optimal Spatial Design of Capacity and Quantity of Rainwater Catchment Systems for Urban Flood Mitigation

    Science.gov (United States)

    Huang, C.; Hsu, N.

    2013-12-01

    This study imports Low-Impact Development (LID) technology of rainwater catchment systems into a Storm-Water runoff Management Model (SWMM) to design the spatial capacity and quantity of rain barrel for urban flood mitigation. This study proposes a simulation-optimization model for effectively searching the optimal design. In simulation method, we design a series of regular spatial distributions of capacity and quantity of rainwater catchment facilities, and thus the reduced flooding circumstances using a variety of design forms could be simulated by SWMM. Moreover, we further calculate the net benefit that is equal to subtract facility cost from decreasing inundation loss and the best solution of simulation method would be the initial searching solution of the optimization model. In optimizing method, first we apply the outcome of simulation method and Back-Propagation Neural Network (BPNN) for developing a water level simulation model of urban drainage system in order to replace SWMM which the operating is based on a graphical user interface and is hard to combine with optimization model and method. After that we embed the BPNN-based simulation model into the developed optimization model which the objective function is minimizing the negative net benefit. Finally, we establish a tabu search-based algorithm to optimize the planning solution. This study applies the developed method in Zhonghe Dist., Taiwan. Results showed that application of tabu search and BPNN-based simulation model into the optimization model not only can find better solutions than simulation method in 12.75%, but also can resolve the limitations of previous studies. Furthermore, the optimized spatial rain barrel design can reduce 72% of inundation loss according to historical flood events.

  2. Patchiness of Ciliate Communities Sampled at Varying Spatial Scales along the New England Shelf.

    Directory of Open Access Journals (Sweden)

    Jean-David Grattepanche

    Full Text Available Although protists (microbial eukaryotes provide an important link between bacteria and Metazoa in food webs, we do not yet have a clear understanding of the spatial scales on which protist diversity varies. Here, we use a combination of DNA fingerprinting (denaturant gradient gel electrophoresis or DGGE and high-throughput sequencing (HTS to assess the ciliate community in the class Spirotrichea at varying scales of 1-3 km sampled in three locations separated by at least 25 km-offshore, midshelf and inshore-along the New England shelf. Analyses of both abundant community (DGGE and the total community (HTS members reveal that: 1 ciliate communities are patchily distributed inshore (i.e. the middle station of a transect is distinct from its two neighboring stations, whereas communities are more homogeneous among samples within the midshelf and offshore stations; 2 a ciliate closely related to Pelagostrobilidium paraepacrum 'blooms' inshore and; 3 environmental factors may differentially impact the distributions of individual ciliates (i.e. OTUs rather than the community as a whole as OTUs tend to show distinct biogeographies (e.g. some OTUs are restricted to the offshore locations, some to the surface, etc.. Together, these data show the complexity underlying the spatial distributions of marine protists, and suggest that biogeography may be a property of ciliate species rather than communities.

  3. Green Infrastructure Design Based on Spatial Conservation Prioritization and Modeling of Biodiversity Features and Ecosystem Services.

    Science.gov (United States)

    Snäll, Tord; Lehtomäki, Joona; Arponen, Anni; Elith, Jane; Moilanen, Atte

    2016-02-01

    There is high-level political support for the use of green infrastructure (GI) across Europe, to maintain viable populations and to provide ecosystem services (ES). Even though GI is inherently a spatial concept, the modern tools for spatial planning have not been recognized, such as in the recent European Environment Agency (EEA) report. We outline a toolbox of methods useful for GI design that explicitly accounts for biodiversity and ES. Data on species occurrence, habitats, and environmental variables are increasingly available via open-access internet platforms. Such data can be synthesized by statistical species distribution modeling, producing maps of biodiversity features. These, together with maps of ES, can form the basis for GI design. We argue that spatial conservation prioritization (SCP) methods are effective tools for GI design, as the overall SCP goal is cost-effective allocation of conservation efforts. Corridors are currently promoted by the EEA as the means for implementing GI design, but they typically target the needs of only a subset of the regional species pool. SCP methods would help to ensure that GI provides a balanced solution for the requirements of many biodiversity features (e.g., species, habitat types) and ES simultaneously in a cost-effective manner. Such tools are necessary to make GI into an operational concept for combating biodiversity loss and promoting ES.

  4. Using experimental design and spatial analyses to improve the precision of NDVI estimates in upland cotton field trials

    Science.gov (United States)

    Controlling for spatial variability is important in high-throughput phenotyping studies that enable large numbers of genotypes to be evaluated across time and space. In the current study, we compared the efficacy of different experimental designs and spatial models in the analysis of canopy spectral...

  5. Interface Design Implications for Recalling the Spatial Configuration of Virtual Auditory Environments

    Science.gov (United States)

    McMullen, Kyla A.

    study also found that the presence of visual reference frames significantly increased recall accuracy. Additionally, the incorporation of drastic attenuation significantly improved environment recall accuracy. Through investigating the aforementioned concerns, the present study made initial footsteps guiding the design of virtual auditory environments that support spatial configuration recall.

  6. Design development of robotic system for on line sampling in fuel reprocessing

    International Nuclear Information System (INIS)

    Balasubramanian, G.R.; Venugopal, P.R.; Padmashali, G.K.

    1990-01-01

    This presentation describes the design and developmental work that is being carried out for the design of an automated sampling system for fast reactor fuel reprocessing plants. The plant proposes to use integrated sampling system. The sample is taken across regular process streams from any intermediate hold up pot. A robot system is planned to take the sample from the sample pot, transfer it to the sample bottle, cap the bottle and transfer the bottle to a pneumatic conveying station. The system covers a large number of sample pots. Alternate automated systems are also examined (1). (author). 4 refs., 2 figs

  7. Toolbox for super-structured and super-structure free multi-disciplinary building spatial design optimisation

    NARCIS (Netherlands)

    Boonstra, S.; van der Blom, K.; Hofmeyer, H.; Emmerich, M.T.M.; van Schijndel, A.W.M.; de Wilde, P.

    2018-01-01

    Multi-disciplinary optimisation of building spatial designs is characterised by large solution spaces. Here two approaches are introduced, one being super-structured and the other super-structure free. Both are different in nature and perform differently for large solution spaces and each requires

  8. Stratified sampling design based on data mining.

    Science.gov (United States)

    Kim, Yeonkook J; Oh, Yoonhwan; Park, Sunghoon; Cho, Sungzoon; Park, Hayoung

    2013-09-01

    To explore classification rules based on data mining methodologies which are to be used in defining strata in stratified sampling of healthcare providers with improved sampling efficiency. We performed k-means clustering to group providers with similar characteristics, then, constructed decision trees on cluster labels to generate stratification rules. We assessed the variance explained by the stratification proposed in this study and by conventional stratification to evaluate the performance of the sampling design. We constructed a study database from health insurance claims data and providers' profile data made available to this study by the Health Insurance Review and Assessment Service of South Korea, and population data from Statistics Korea. From our database, we used the data for single specialty clinics or hospitals in two specialties, general surgery and ophthalmology, for the year 2011 in this study. Data mining resulted in five strata in general surgery with two stratification variables, the number of inpatients per specialist and population density of provider location, and five strata in ophthalmology with two stratification variables, the number of inpatients per specialist and number of beds. The percentages of variance in annual changes in the productivity of specialists explained by the stratification in general surgery and ophthalmology were 22% and 8%, respectively, whereas conventional stratification by the type of provider location and number of beds explained 2% and 0.2% of variance, respectively. This study demonstrated that data mining methods can be used in designing efficient stratified sampling with variables readily available to the insurer and government; it offers an alternative to the existing stratification method that is widely used in healthcare provider surveys in South Korea.

  9. MEETING IN CHICAGO: SADA: A FREEWARE DECISION SUPPORT TOOL INTEGRATING GIS, SAMPLE DESIGN, SPATIAL MODELING, AND ENVIRONMENTAL RISK ASSESSMENT

    Science.gov (United States)

    Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates tools from environmental assessment into an effective problem-solving environment. SADA was developed by the Institute for Environmental Modeling at the University of Tennessee and inc...

  10. MEETING IN CZECH REPUBLIC: SADA: A FREEWARE DECISION SUPPORT TOOL INTEGRATING GIS, SAMPLE DESIGN, SPATIAL MODELING, AND RISK ASSESSMENT

    Science.gov (United States)

    Spatial Analysis and Decision Assistance (SADA) is a Windows freeware program that incorporates tools from environmental assessment into an effective problem-solving environment. SADA was developed by the Institute for Environmental Modeling at the University of Tennessee and inc...

  11. Spatial distribution and sequential sampling plans for Tuta absoluta (Lepidoptera: Gelechiidae) in greenhouse tomato crops.

    Science.gov (United States)

    Cocco, Arturo; Serra, Giuseppe; Lentini, Andrea; Deliperi, Salvatore; Delrio, Gavino

    2015-09-01

    The within- and between-plant distribution of the tomato leafminer, Tuta absoluta (Meyrick), was investigated in order to define action thresholds based on leaf infestation and to propose enumerative and binomial sequential sampling plans for pest management applications in protected crops. The pest spatial distribution was aggregated between plants, and median leaves were the most suitable sample to evaluate the pest density. Action thresholds of 36 and 48%, 43 and 56% and 60 and 73% infested leaves, corresponding to economic thresholds of 1 and 3% damaged fruits, were defined for tomato cultivars with big, medium and small fruits respectively. Green's method was a more suitable enumerative sampling plan as it required a lower sampling effort. Binomial sampling plans needed lower average sample sizes than enumerative plans to make a treatment decision, with probabilities of error of sampling plan required 87 or 343 leaves to estimate the population density in extensive or intensive ecological studies respectively. Binomial plans would be more practical and efficient for control purposes, needing average sample sizes of 17, 20 and 14 leaves to take a pest management decision in order to avoid fruit damage higher than 1% in cultivars with big, medium and small fruits respectively. © 2014 Society of Chemical Industry.

  12. Visuo-Spatial Performance in Autism: A Meta-analysis

    OpenAIRE

    Muth, Anne; Honekopp, Johannes; Falter, Christine

    2014-01-01

    Visuo-spatial skills are believed to be enhanced in autism spectrum disorders (ASDs). This meta-analysis tests the current state of evidence for Figure Disembedding, Block Design, Mental Rotation and Navon tasks in ASD and neurotypicals. Block Design (d = 0.32) and Figure Disembedding (d = 0.26) showed superior performance for ASD with large heterogeneity that is unaccounted for. No clear differences were found for Mental Rotation. ASD samples showed a stronger local processing preference for...

  13. Design of the driving system for visible near-infrared spatial programmable push-broom remote CCD sensor

    Science.gov (United States)

    Xu, Zhipeng; Wei, Jun; Zhou, Qianting; Weng, Dongshan; Li, Jianwei

    2010-11-01

    VNIR multi-spectral image sensor has wide applications in remote sensing and imaging spectroscopy. An image spectrometer of a spatial remote programmable push-broom sensing satellite requires visible near infrared band ranges from 0.4μm to 1.04μm which is one of the most important bands in remote sensing. This paper introduces a method of design the driving system for 1024x1024 VNIR CCD sensor for programmable push-broom remote sensing. The digital driving signal is generated by the FPGA device. There are seven modules in the FPGA program and all the modules are coded by VHDL. The driving system have five mainly functions: drive the sensor as the demand of timing schedule, control the AD convert device to work, get the parameter via RS232 from control platform, process the data input from the AD device, output the processed data to PCI sample card to display in computer end. All the modules above succeed working on FPGA device APA600. This paper also introduced several important keys when designing the driving system including module synchronization, critical path optimization.

  14. Visual Sample Plan (VSP) Software: Designs and Data Analyses for Sampling Contaminated Buildings

    International Nuclear Information System (INIS)

    Pulsipher, Brent A.; Wilson, John E.; Gilbert, Richard O.; Nuffer, Lisa L.; Hassig, Nancy L.

    2005-01-01

    A new module of the Visual Sample Plan (VSP) software has been developed to provide sampling designs and data analyses for potentially contaminated buildings. An important application is assessing levels of contamination in buildings after a terrorist attack. This new module, funded by DHS through the Combating Terrorism Technology Support Office, Technical Support Working Group, was developed to provide a tailored, user-friendly and visually-orientated buildings module within the existing VSP software toolkit, the latest version of which can be downloaded from http://dqo.pnl.gov/vsp. In case of, or when planning against, a chemical, biological, or radionuclide release within a building, the VSP module can be used to quickly and easily develop and visualize technically defensible sampling schemes for walls, floors, ceilings, and other surfaces to statistically determine if contamination is present, its magnitude and extent throughout the building and if decontamination has been effective. This paper demonstrates the features of this new VSP buildings module, which include: the ability to import building floor plans or to easily draw, manipulate, and view rooms in several ways; being able to insert doors, windows and annotations into a room; 3-D graphic room views with surfaces labeled and floor plans that show building zones that have separate air handing units. The paper will also discuss the statistical design and data analysis options available in the buildings module. Design objectives supported include comparing an average to a threshold when the data distribution is normal or unknown, and comparing measurements to a threshold to detect hotspots or to insure most of the area is uncontaminated when the data distribution is normal or unknown

  15. A sodar for profiling in a spatially inhomogeneous urban environment

    Directory of Open Access Journals (Sweden)

    Stuart Bradley

    2015-11-01

    Full Text Available The urban boundary layer, above the canopy, is still poorly understood. One of the challenges is obtaining data by sampling more than a few meters above the rooftops, given the spatial and temporal inhomogeneities in both horizontal and vertical. Sodars are generally useful tools for ground-based remote sensing of winds and turbulence, but rely on horizontal homogeneity (as do lidars in building up 3-component wind vectors from sampling three or more spatially separated volumes. The time taken for sound to travel to a typical range of 200 m and back is also a limitation. A sodar of radically different design is investigated, aimed at addressing these problems. It has a single vertical transmitted sound pulse. Doppler shifted signals are received from a number of volumes around the periphery of the transmitted beam with microphones which each having tight angular sensitivity at zenith angles slightly off-vertical. The spatial spread of sampled volumes is therefore smaller. By having more receiver microphones than a conventional sodar, the effect of smaller zenith angle is offset. More rapid profiling is also possible with a single vertical transmitted beam, instead of the usual multiple beams.A prototype design is described, together with initial field measurements. It is found that the beam forming using a single dish antenna and the drift of the sound pulse downwind both give rise to reduced performance compared with expectations. It is concluded that, while the new sodar works in principle, the compromises arising in the design mean that the expected advantages have not been realized

  16. Rapid Sampling of Hydrogen Bond Networks for Computational Protein Design.

    Science.gov (United States)

    Maguire, Jack B; Boyken, Scott E; Baker, David; Kuhlman, Brian

    2018-05-08

    Hydrogen bond networks play a critical role in determining the stability and specificity of biomolecular complexes, and the ability to design such networks is important for engineering novel structures, interactions, and enzymes. One key feature of hydrogen bond networks that makes them difficult to rationally engineer is that they are highly cooperative and are not energetically favorable until the hydrogen bonding potential has been satisfied for all buried polar groups in the network. Existing computational methods for protein design are ill-equipped for creating these highly cooperative networks because they rely on energy functions and sampling strategies that are focused on pairwise interactions. To enable the design of complex hydrogen bond networks, we have developed a new sampling protocol in the molecular modeling program Rosetta that explicitly searches for sets of amino acid mutations that can form self-contained hydrogen bond networks. For a given set of designable residues, the protocol often identifies many alternative sets of mutations/networks, and we show that it can readily be applied to large sets of residues at protein-protein interfaces or in the interior of proteins. The protocol builds on a recently developed method in Rosetta for designing hydrogen bond networks that has been experimentally validated for small symmetric systems but was not extensible to many larger protein structures and complexes. The sampling protocol we describe here not only recapitulates previously validated designs with performance improvements but also yields viable hydrogen bond networks for cases where the previous method fails, such as the design of large, asymmetric interfaces relevant to engineering protein-based therapeutics.

  17. Implications of sensor design for coral reef detection: Upscaling ground hyperspectral imagery in spatial and spectral scales

    Science.gov (United States)

    Caras, Tamir; Hedley, John; Karnieli, Arnon

    2017-12-01

    Remote sensing offers a potential tool for large scale environmental surveying and monitoring. However, remote observations of coral reefs are difficult especially due to the spatial and spectral complexity of the target compared to sensor specifications as well as the environmental implications of the water medium above. The development of sensors is driven by technological advances and the desired products. Currently, spaceborne systems are technologically limited to a choice between high spectral resolution and high spatial resolution, but not both. The current study explores the dilemma of whether future sensor design for marine monitoring should prioritise on improving their spatial or spectral resolution. To address this question, a spatially and spectrally resampled ground-level hyperspectral image was used to test two classification elements: (1) how the tradeoff between spatial and spectral resolutions affects classification; and (2) how a noise reduction by majority filter might improve classification accuracy. The studied reef, in the Gulf of Aqaba (Eilat), Israel, is heterogeneous and complex so the local substrate patches are generally finer than currently available imagery. Therefore, the tested spatial resolution was broadly divided into four scale categories from five millimeters to one meter. Spectral resolution resampling aimed to mimic currently available and forthcoming spaceborne sensors such as (1) Environmental Mapping and Analysis Program (EnMAP) that is characterized by 25 bands of 6.5 nm width; (2) VENμS with 12 narrow bands; and (3) the WorldView series with broadband multispectral resolution. Results suggest that spatial resolution should generally be prioritized for coral reef classification because the finer spatial scale tested (pixel size mind, while the focus in this study was on the technologically limited spaceborne design, aerial sensors may presently provide an opportunity to implement the suggested setup.

  18. Random sampling or geostatistical modelling? Choosing between design-based and model-based sampling strategies for soil (with discussion)

    NARCIS (Netherlands)

    Brus, D.J.; Gruijter, de J.J.

    1997-01-01

    Classical sampling theory has been repeatedly identified with classical statistics which assumes that data are identically and independently distributed. This explains the switch of many soil scientists from design-based sampling strategies, based on classical sampling theory, to the model-based

  19. Prospective and retrospective spatial sampling scheme to characterize geochemicals in a mine tailings area

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-07-01

    Full Text Available This study demonstrates that designing sampling schemes using simulated annealing results in much better selection of samples from an existing scheme in terms of prediction accuracy. The presentation to the SASA Eastern Cape Chapter as an invited...

  20. The spatial resolution of epidemic peaks.

    Directory of Open Access Journals (Sweden)

    Harriet L Mills

    2014-04-01

    Full Text Available The emergence of novel respiratory pathogens can challenge the capacity of key health care resources, such as intensive care units, that are constrained to serve only specific geographical populations. An ability to predict the magnitude and timing of peak incidence at the scale of a single large population would help to accurately assess the value of interventions designed to reduce that peak. However, current disease-dynamic theory does not provide a clear understanding of the relationship between: epidemic trajectories at the scale of interest (e.g. city; population mobility; and higher resolution spatial effects (e.g. transmission within small neighbourhoods. Here, we used a spatially-explicit stochastic meta-population model of arbitrary spatial resolution to determine the effect of resolution on model-derived epidemic trajectories. We simulated an influenza-like pathogen spreading across theoretical and actual population densities and varied our assumptions about mobility using Latin-Hypercube sampling. Even though, by design, cumulative attack rates were the same for all resolutions and mobilities, peak incidences were different. Clear thresholds existed for all tested populations, such that models with resolutions lower than the threshold substantially overestimated population-wide peak incidence. The effect of resolution was most important in populations which were of lower density and lower mobility. With the expectation of accurate spatial incidence datasets in the near future, our objective was to provide a framework for how to use these data correctly in a spatial meta-population model. Our results suggest that there is a fundamental spatial resolution for any pathogen-population pair. If underlying interactions between pathogens and spatially heterogeneous populations are represented at this resolution or higher, accurate predictions of peak incidence for city-scale epidemics are feasible.

  1. Secondary Analysis under Cohort Sampling Designs Using Conditional Likelihood

    Directory of Open Access Journals (Sweden)

    Olli Saarela

    2012-01-01

    Full Text Available Under cohort sampling designs, additional covariate data are collected on cases of a specific type and a randomly selected subset of noncases, primarily for the purpose of studying associations with a time-to-event response of interest. With such data available, an interest may arise to reuse them for studying associations between the additional covariate data and a secondary non-time-to-event response variable, usually collected for the whole study cohort at the outset of the study. Following earlier literature, we refer to such a situation as secondary analysis. We outline a general conditional likelihood approach for secondary analysis under cohort sampling designs and discuss the specific situations of case-cohort and nested case-control designs. We also review alternative methods based on full likelihood and inverse probability weighting. We compare the alternative methods for secondary analysis in two simulated settings and apply them in a real-data example.

  2. Biased representation of disturbance rates in the roadside sampling frame in boreal forests: implications for monitoring design

    Directory of Open Access Journals (Sweden)

    Steven L. Van Wilgenburg

    2015-12-01

    Full Text Available The North American Breeding Bird Survey (BBS is the principal source of data to inform researchers about the status of and trend for boreal forest birds. Unfortunately, little BBS coverage is available in the boreal forest, where increasing concern over the status of species breeding there has increased interest in northward expansion of the BBS. However, high disturbance rates in the boreal forest may complicate roadside monitoring. If the roadside sampling frame does not capture variation in disturbance rates because of either road placement or the use of roads for resource extraction, biased trend estimates might result. In this study, we examined roadside bias in the proportional representation of habitat disturbance via spatial data on forest "loss," forest fires, and anthropogenic disturbance. In each of 455 BBS routes, the area disturbed within multiple buffers away from the road was calculated and compared against the area disturbed in degree blocks and BBS strata. We found a nonlinear relationship between bias and distance from the road, suggesting forest loss and forest fires were underrepresented below 75 and 100 m, respectively. In contrast, anthropogenic disturbance was overrepresented at distances below 500 m and underrepresented thereafter. After accounting for distance from road, BBS routes were reasonably representative of the degree blocks they were within, with only a few strata showing biased representation. In general, anthropogenic disturbance is overrepresented in southern strata, and forest fires are underrepresented in almost all strata. Similar biases exist when comparing the entire road network and the subset sampled by BBS routes against the amount of disturbance within BBS strata; however, the magnitude of biases differed. Based on our results, we recommend that spatial stratification and rotating panel designs be used to spread limited BBS and off-road sampling effort in an unbiased fashion and that new BBS routes

  3. Seasonal phenology, spatial distribution, and sampling plan for the invasive mealybug Phenacoccus peruvianus (Hemiptera: Pseudococcidae).

    Science.gov (United States)

    Beltrá, A; Garcia-Marí, F; Soto, A

    2013-06-01

    Phlenacoccus peruvianus Granara de Willink (Hemiptera: Pseudococcidae) is an invasive mealybug of Neotropical origin. In recent years it has invaded the Mediterranean Basin causing significant damages in bougainvillea and other ornamental plants. This article examines its phenology, location on the plant and spatial distribution, and presents a sampling plan to determine P. peruvianus population density for the management of this mealybug in southern Europe. Six urban green spaces with bougainvillea plants were periodically surveyed between March 2008 and September 2010 in eastern Spain, sampling bracts, leaves, and twigs. Our results show that P. peruvianus abundance was high in spring and summer, declining to almost undetectable levels in autumn and winter. The mealybugs showed a preference for settling on bracts and there were no significant migrations between plant organs. P. peruvianus showed a highly aggregated distribution on bracts, leaves, and twigs. We recommend abinomial sampling of 200 leaves and an action threshold of 55% infested leaves for integrated pest management purposes on urban landscapes and enumerative sampling for ornamental nursery management and additional biological studies.

  4. Optimization of Apparatus Design and Behavioral Measures for the Assessment of Visuo-Spatial Learning and Memory of Mice on the Barnes Maze

    Science.gov (United States)

    O'Leary, Timothy P.; Brown, Richard E.

    2013-01-01

    We have previously shown that apparatus design can affect visual-spatial cue use and memory performance of mice on the Barnes maze. The present experiment extends these findings by determining the optimal behavioral measures and test procedure for analyzing visuo-spatial learning and memory in three different Barnes maze designs. Male and female…

  5. Effects of Spatial Sampling Interval on Roughness Parameters and Microwave Backscatter over Agricultural Soil Surfaces

    Directory of Open Access Journals (Sweden)

    Matías Ernesto Barber

    2016-06-01

    Full Text Available The spatial sampling interval, as related to the ability to digitize a soil profile with a certain number of features per unit length, depends on the profiling technique itself. From a variety of profiling techniques, roughness parameters are estimated at different sampling intervals. Since soil profiles have continuous spectral components, it is clear that roughness parameters are influenced by the sampling interval of the measurement device employed. In this work, we contributed to answer which sampling interval the profiles needed to be measured at to accurately account for the microwave response of agricultural surfaces. For this purpose, a 2-D laser profiler was built and used to measure surface soil roughness at field scale over agricultural sites in Argentina. Sampling intervals ranged from large (50 mm to small ones (1 mm, with several intermediate values. Large- and intermediate-sampling-interval profiles were synthetically derived from nominal, 1 mm ones. With these data, the effect of sampling-interval-dependent roughness parameters on backscatter response was assessed using the theoretical backscatter model IEM2M. Simulations demonstrated that variations of roughness parameters depended on the working wavelength and was less important at L-band than at C- or X-band. In any case, an underestimation of the backscattering coefficient of about 1-4 dB was observed at larger sampling intervals. As a general rule a sampling interval of 15 mm can be recommended for L-band and 5 mm for C-band.

  6. Using Remote Sensing to Determine the Spatial Scales of Estuaries

    Science.gov (United States)

    Davis, C. O.; Tufillaro, N.; Nahorniak, J.

    2016-02-01

    One challenge facing Earth system science is to understand and quantify the complexity of rivers, estuaries, and coastal zone regions. Earlier studies using data from airborne hyperspectral imagers (Bissett et al., 2004, Davis et al., 2007) demonstrated from a very limited data set that the spatial scales of the coastal ocean could be resolved with spatial sampling of 100 m Ground Sample Distance (GSD) or better. To develop a much larger data set (Aurin et al., 2013) used MODIS 250 m data for a wide range of coastal regions. Their conclusion was that farther offshore 500 m GSD was adequate to resolve large river plume features while nearshore regions (a few kilometers from the coast) needed higher spatial resolution data not available from MODIS. Building on our airborne experience, the Hyperspectral Imager for the Coastal Ocean (HICO, Lucke et al., 2011) was designed to provide hyperspectral data for the coastal ocean at 100 m GSD. HICO operated on the International Space Station for 5 years and collected over 10,000 scenes of the coastal ocean and other regions around the world. Here we analyze HICO data from an example set of major river delta regions to assess the spatial scales of variability in those systems. In one system, the San Francisco Bay and Delta, we also analyze Landsat 8 OLI data at 30 m and 15 m to validate the 100 m GSD sampling scale for the Bay and assess spatial sampling needed as you move up river.

  7. Sampling designs and methods for estimating fish-impingement losses at cooling-water intakes

    International Nuclear Information System (INIS)

    Murarka, I.P.; Bodeau, D.J.

    1977-01-01

    Several systems for estimating fish impingement at power plant cooling-water intakes are compared to determine the most statistically efficient sampling designs and methods. Compared to a simple random sampling scheme the stratified systematic random sampling scheme, the systematic random sampling scheme, and the stratified random sampling scheme yield higher efficiencies and better estimators for the parameters in two models of fish impingement as a time-series process. Mathematical results and illustrative examples of the applications of the sampling schemes to simulated and real data are given. Some sampling designs applicable to fish-impingement studies are presented in appendixes

  8. A sero-survey of rinderpest in nomadic pastoral systems in central and southern Somalia from 2002 to 2003, using a spatially integrated random sampling approach.

    Science.gov (United States)

    Tempia, S; Salman, M D; Keefe, T; Morley, P; Freier, J E; DeMartini, J C; Wamwayi, H M; Njeumi, F; Soumaré, B; Abdi, A M

    2010-12-01

    A cross-sectional sero-survey, using a two-stage cluster sampling design, was conducted between 2002 and 2003 in ten administrative regions of central and southern Somalia, to estimate the seroprevalence and geographic distribution of rinderpest (RP) in the study area, as well as to identify potential risk factors for the observed seroprevalence distribution. The study was also used to test the feasibility of the spatially integrated investigation technique in nomadic and semi-nomadic pastoral systems. In the absence of a systematic list of livestock holdings, the primary sampling units were selected by generating random map coordinates. A total of 9,216 serum samples were collected from cattle aged 12 to 36 months at 562 sampling sites. Two apparent clusters of RP seroprevalence were detected. Four potential risk factors associated with the observed seroprevalence were identified: the mobility of cattle herds, the cattle population density, the proximity of cattle herds to cattle trade routes and cattle herd size. Risk maps were then generated to assist in designing more targeted surveillance strategies. The observed seroprevalence in these areas declined over time. In subsequent years, similar seroprevalence studies in neighbouring areas of Kenya and Ethiopia also showed a very low seroprevalence of RP or the absence of antibodies against RP. The progressive decline in RP antibody prevalence is consistent with virus extinction. Verification of freedom from RP infection in the Somali ecosystem is currently in progress.

  9. Extending cluster Lot Quality Assurance Sampling designs for surveillance programs

    OpenAIRE

    Hund, Lauren; Pagano, Marcello

    2014-01-01

    Lot quality assurance sampling (LQAS) has a long history of applications in industrial quality control. LQAS is frequently used for rapid surveillance in global health settings, with areas classified as poor or acceptable performance based on the binary classification of an indicator. Historically, LQAS surveys have relied on simple random samples from the population; however, implementing two-stage cluster designs for surveillance sampling is often more cost-effective than ...

  10. Spatial Data Management

    CERN Document Server

    Mamoulis, Nikos

    2011-01-01

    Spatial database management deals with the storage, indexing, and querying of data with spatial features, such as location and geometric extent. Many applications require the efficient management of spatial data, including Geographic Information Systems, Computer Aided Design, and Location Based Services. The goal of this book is to provide the reader with an overview of spatial data management technology, with an emphasis on indexing and search techniques. It first introduces spatial data models and queries and discusses the main issues of extending a database system to support spatial data.

  11. Bionic Design for Mars Sampling Scoop Inspired by Himalayan Marmot Claw

    Directory of Open Access Journals (Sweden)

    Long Xue

    2016-01-01

    Full Text Available Cave animals are often adapted to digging and life underground, with claw toes similar in structure and function to a sampling scoop. In this paper, the clawed toes of the Himalayan marmot were selected as a biological prototype for bionic research. Based on geometric parameter optimization of the clawed toes, a bionic sampling scoop for use on Mars was designed. Using a 3D laser scanner, the point cloud data of the second front claw toe was acquired. Parametric equations and contour curves for the claw were then built with cubic polynomial fitting. We obtained 18 characteristic curve equations for the internal and external contours of the claw. A bionic sampling scoop was designed according to the structural parameters of Curiosity’s sampling shovel and the contours of the Himalayan marmot’s claw. Verifying test results showed that when the penetration angle was 45° and the sampling speed was 0.33 r/min, the bionic sampling scoops’ resistance torque was 49.6% less than that of the prototype sampling scoop. When the penetration angle was 60° and the sampling speed was 0.22 r/min, the resistance torque of the bionic sampling scoop was 28.8% lower than that of the prototype sampling scoop.

  12. Latin hypercube sampling and geostatistical modeling of spatial uncertainty in a spatially explicit forest landscape model simulation

    Science.gov (United States)

    Chonggang Xu; Hong S. He; Yuanman Hu; Yu Chang; Xiuzhen Li; Rencang Bu

    2005-01-01

    Geostatistical stochastic simulation is always combined with Monte Carlo method to quantify the uncertainty in spatial model simulations. However, due to the relatively long running time of spatially explicit forest models as a result of their complexity, it is always infeasible to generate hundreds or thousands of Monte Carlo simulations. Thus, it is of great...

  13. Evaluation of optimized bronchoalveolar lavage sampling designs for characterization of pulmonary drug distribution.

    Science.gov (United States)

    Clewe, Oskar; Karlsson, Mats O; Simonsson, Ulrika S H

    2015-12-01

    Bronchoalveolar lavage (BAL) is a pulmonary sampling technique for characterization of drug concentrations in epithelial lining fluid and alveolar cells. Two hypothetical drugs with different pulmonary distribution rates (fast and slow) were considered. An optimized BAL sampling design was generated assuming no previous information regarding the pulmonary distribution (rate and extent) and with a maximum of two samples per subject. Simulations were performed to evaluate the impact of the number of samples per subject (1 or 2) and the sample size on the relative bias and relative root mean square error of the parameter estimates (rate and extent of pulmonary distribution). The optimized BAL sampling design depends on a characterized plasma concentration time profile, a population plasma pharmacokinetic model, the limit of quantification (LOQ) of the BAL method and involves only two BAL sample time points, one early and one late. The early sample should be taken as early as possible, where concentrations in the BAL fluid ≥ LOQ. The second sample should be taken at a time point in the declining part of the plasma curve, where the plasma concentration is equivalent to the plasma concentration in the early sample. Using a previously described general pulmonary distribution model linked to a plasma population pharmacokinetic model, simulated data using the final BAL sampling design enabled characterization of both the rate and extent of pulmonary distribution. The optimized BAL sampling design enables characterization of both the rate and extent of the pulmonary distribution for both fast and slowly equilibrating drugs.

  14. Spatially-resolved measurement of optically stimulated luminescence and time-resolved luminescence

    International Nuclear Information System (INIS)

    Bailiff, I.K.; Mikhailik, V.B.

    2003-01-01

    Spatially-resolved measurements of optically stimulated luminescence (OSL) were performed using a two-dimensional scanning system designed for use with planar samples. The scanning system employs a focused laser beam to stimulate a selected area of the sample, which is moved under the beam by a motorised stage. Exposure of the sample is controlled by an electronic shutter. Mapping of the distribution of OSL using a continuous wave laser source was obtained with sub-millimeter resolution for samples of sliced brick, synthetic single crystal quartz, concrete and dental ceramic. These revealed sporadic emission in the case of brick or concrete and significant spatial variation of emission for quartz and dental ceramic slices. Determinations of absorbed dose were performed for quartz grains within a slice of modern brick. Reconfiguration of the scanner with a pulsed laser source enabled quartz and feldspathic minerals within a ceramic sample to be thinner region. about 6 nm from the extrapolation of themeasuring the time-resolved luminescence spectrum

  15. Optimal experiment design in a filtering context with application to sampled network data

    OpenAIRE

    Singhal, Harsh; Michailidis, George

    2010-01-01

    We examine the problem of optimal design in the context of filtering multiple random walks. Specifically, we define the steady state E-optimal design criterion and show that the underlying optimization problem leads to a second order cone program. The developed methodology is applied to tracking network flow volumes using sampled data, where the design variable corresponds to controlling the sampling rate. The optimal design is numerically compared to a myopic and a naive strategy. Finally, w...

  16. Analysis of Regularly and Irregularly Sampled Spatial, Multivariate, and Multi-temporal Data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    1994-01-01

    This thesis describes different methods that are useful in the analysis of multivariate data. Some methods focus on spatial data (sampled regularly or irregularly), others focus on multitemporal data or data from multiple sources. The thesis covers selected and not all aspects of relevant data......-variograms are described. As a new way of setting up a well-balanced kriging support the Delaunay triangulation is suggested. Two case studies show the usefulness of 2-D semivariograms of geochemical data from areas in central Spain (with a geologist's comment) and South Greenland, and kriging/cokriging of an undersampled...... are considered as repetitions. Three case studies show the strength of the methods; one uses SPOT High Resolution Visible (HRV) multispectral (XS) data covering economically important pineapple and coffee plantations near Thika, Kiambu District, Kenya, the other two use Landsat Thematic Mapper (TM) data covering...

  17. Design of an omnidirectional single-point photodetector for large-scale spatial coordinate measurement

    Science.gov (United States)

    Xie, Hongbo; Mao, Chensheng; Ren, Yongjie; Zhu, Jigui; Wang, Chao; Yang, Lei

    2017-10-01

    In high precision and large-scale coordinate measurement, one commonly used approach to determine the coordinate of a target point is utilizing the spatial trigonometric relationships between multiple laser transmitter stations and the target point. A light receiving device at the target point is the key element in large-scale coordinate measurement systems. To ensure high-resolution and highly sensitive spatial coordinate measurement, a high-performance and miniaturized omnidirectional single-point photodetector (OSPD) is greatly desired. We report one design of OSPD using an aspheric lens, which achieves an enhanced reception angle of -5 deg to 45 deg in vertical and 360 deg in horizontal. As the heart of our OSPD, the aspheric lens is designed in a geometric model and optimized by LightTools Software, which enables the reflection of a wide-angle incident light beam into the single-point photodiode. The performance of home-made OSPD is characterized with working distances from 1 to 13 m and further analyzed utilizing developed a geometric model. The experimental and analytic results verify that our device is highly suitable for large-scale coordinate metrology. The developed device also holds great potential in various applications such as omnidirectional vision sensor, indoor global positioning system, and optical wireless communication systems.

  18. Effects of Spatial Distribution of Trees on Density Estimation by Nearest Individual Sampling Method: Case Studies in Zagros Wild Pistachio Woodlands and Simulated Stands

    Directory of Open Access Journals (Sweden)

    Y. Erfanifard

    2014-06-01

    Full Text Available Distance methods and their estimators of density may have biased measurements unless the studied stand of trees has a random spatial pattern. This study aimed at assessing the effect of spatial arrangement of wild pistachio trees on the results of density estimation by using the nearest individual sampling method in Zagros woodlands, Iran, and applying a correction factor based on the spatial pattern of trees. A 45 ha clumped stand of wild pistachio trees was selected in Zagros woodlands and two random and dispersed stands with similar density and area were simulated. Distances from the nearest individual and neighbour at 40 sample points in a 100 × 100 m grid were measured in the three stands. The results showed that the nearest individual method with Batcheler estimator could not calculate density correctly in all stands. However, applying the correction factor based on the spatial pattern of the trees, density was measured with no significant difference in terms of the real density of the stands. This study showed that considering the spatial arrangement of trees can improve the results of the nearest individual method with Batcheler estimator in density measurement.

  19. Design/Operations review of core sampling trucks and associated equipment

    International Nuclear Information System (INIS)

    Shrivastava, H.P.

    1996-01-01

    A systematic review of the design and operations of the core sampling trucks was commissioned by Characterization Equipment Engineering of the Westinghouse Hanford Company in October 1995. The review team reviewed the design documents, specifications, operating procedure, training manuals and safety analysis reports. The review process, findings and corrective actions are summarized in this supporting document

  20. Practical iterative learning control with frequency domain design and sampled data implementation

    CERN Document Server

    Wang, Danwei; Zhang, Bin

    2014-01-01

    This book is on the iterative learning control (ILC) with focus on the design and implementation. We approach the ILC design based on the frequency domain analysis and address the ILC implementation based on the sampled data methods. This is the first book of ILC from frequency domain and sampled data methodologies. The frequency domain design methods offer ILC users insights to the convergence performance which is of practical benefits. This book presents a comprehensive framework with various methodologies to ensure the learnable bandwidth in the ILC system to be set with a balance between learning performance and learning stability. The sampled data implementation ensures effective execution of ILC in practical dynamic systems. The presented sampled data ILC methods also ensure the balance of performance and stability of learning process. Furthermore, the presented theories and methodologies are tested with an ILC controlled robotic system. The experimental results show that the machines can work in much h...

  1. Design of sampling tools for Monte Carlo particle transport code JMCT

    International Nuclear Information System (INIS)

    Shangguan Danhua; Li Gang; Zhang Baoyin; Deng Li

    2012-01-01

    A class of sampling tools for general Monte Carlo particle transport code JMCT is designed. Two ways are provided to sample from distributions. One is the utilization of special sampling methods for special distribution; the other is the utilization of general sampling methods for arbitrary discrete distribution and one-dimensional continuous distribution on a finite interval. Some open source codes are included in the general sampling method for the maximum convenience of users. The sampling results show sampling correctly from distribution which are popular in particle transport can be achieved with these tools, and the user's convenience can be assured. (authors)

  2. Spatial Variation of Soil Lead in an Urban Community Garden: Implications for Risk-Based Sampling.

    Science.gov (United States)

    Bugdalski, Lauren; Lemke, Lawrence D; McElmurry, Shawn P

    2014-01-01

    Soil lead pollution is a recalcitrant problem in urban areas resulting from a combination of historical residential, industrial, and transportation practices. The emergence of urban gardening movements in postindustrial cities necessitates accurate assessment of soil lead levels to ensure safe gardening. In this study, we examined small-scale spatial variability of soil lead within a 15 × 30 m urban garden plot established on two adjacent residential lots located in Detroit, Michigan, USA. Eighty samples collected using a variably spaced sampling grid were analyzed for total, fine fraction (less than 250 μm), and bioaccessible soil lead. Measured concentrations varied at sampling scales of 1-10 m and a hot spot exceeding 400 ppm total soil lead was identified in the northwest portion of the site. An interpolated map of total lead was treated as an exhaustive data set, and random sampling was simulated to generate Monte Carlo distributions and evaluate alternative sampling strategies intended to estimate the average soil lead concentration or detect hot spots. Increasing the number of individual samples decreases the probability of overlooking the hot spot (type II error). However, the practice of compositing and averaging samples decreased the probability of overestimating the mean concentration (type I error) at the expense of increasing the chance for type II error. The results reported here suggest a need to reconsider U.S. Environmental Protection Agency sampling objectives and consequent guidelines for reclaimed city lots where soil lead distributions are expected to be nonuniform. © 2013 Society for Risk Analysis.

  3. Evaluating Motion. Spatial User Behavior in Virtual Environments

    DEFF Research Database (Denmark)

    Drachen, Anders; Canossa, Alessandro

    2011-01-01

    User-behaviour analysis has only recently been adapted to the context of the virtual world domain and remains limited in its application. Behaviour analysis is based on instrumentation data, automated, detailed, quantitative information about user behaviour within the virtual environment (VE......) of digital games. A key advantage of the method in comparison with existing user-research methods, such as usability- and playability-testing is that it permits very large sample sizes. Furthermore, games are in the vast majority of cases based on spatial, VEs within which the players operate and through...... which they experience the games. Therefore, spatial behaviour analyses are useful to game research and design. In this paper, spatial analysis methods are introduced and arguments posed for their use in user-behaviour analysis. Case studies involving data from thousands of players are used to exemplify...

  4. Optimizing incomplete sample designs for item response model parameters

    NARCIS (Netherlands)

    van der Linden, Willem J.

    Several models for optimizing incomplete sample designs with respect to information on the item parameters are presented. The following cases are considered: (1) known ability parameters; (2) unknown ability parameters; (3) item sets with multiple ability scales; and (4) response models with

  5. Determination of geostatistically representative sampling locations in Porsuk Dam Reservoir (Turkey)

    Science.gov (United States)

    Aksoy, A.; Yenilmez, F.; Duzgun, S.

    2013-12-01

    Several factors such as wind action, bathymetry and shape of a lake/reservoir, inflows, outflows, point and diffuse pollution sources result in spatial and temporal variations in water quality of lakes and reservoirs. The guides by the United Nations Environment Programme and the World Health Organization to design and implement water quality monitoring programs suggest that even a single monitoring station near the center or at the deepest part of a lake will be sufficient to observe long-term trends if there is good horizontal mixing. In stratified water bodies, several samples can be required. According to the guide of sampling and analysis under the Turkish Water Pollution Control Regulation, a minimum of five sampling locations should be employed to characterize the water quality in a reservoir or a lake. The European Union Water Framework Directive (2000/60/EC) states to select a sufficient number of monitoring sites to assess the magnitude and impact of point and diffuse sources and hydromorphological pressures in designing a monitoring program. Although existing regulations and guidelines include frameworks for the determination of sampling locations in surface waters, most of them do not specify a procedure in establishment of monitoring aims with representative sampling locations in lakes and reservoirs. In this study, geostatistical tools are used to determine the representative sampling locations in the Porsuk Dam Reservoir (PDR). Kernel density estimation and kriging were used in combination to select the representative sampling locations. Dissolved oxygen and specific conductivity were measured at 81 points. Sixteen of them were used for validation. In selection of the representative sampling locations, care was given to keep similar spatial structure in distributions of measured parameters. A procedure was proposed for that purpose. Results indicated that spatial structure was lost under 30 sampling points. This was as a result of varying water

  6. The Study on Mental Health at Work: Design and sampling.

    Science.gov (United States)

    Rose, Uwe; Schiel, Stefan; Schröder, Helmut; Kleudgen, Martin; Tophoven, Silke; Rauch, Angela; Freude, Gabriele; Müller, Grit

    2017-08-01

    The Study on Mental Health at Work (S-MGA) generates the first nationwide representative survey enabling the exploration of the relationship between working conditions, mental health and functioning. This paper describes the study design, sampling procedures and data collection, and presents a summary of the sample characteristics. S-MGA is a representative study of German employees aged 31-60 years subject to social security contributions. The sample was drawn from the employment register based on a two-stage cluster sampling procedure. Firstly, 206 municipalities were randomly selected from a pool of 12,227 municipalities in Germany. Secondly, 13,590 addresses were drawn from the selected municipalities for the purpose of conducting 4500 face-to-face interviews. The questionnaire covers psychosocial working and employment conditions, measures of mental health, work ability and functioning. Data from personal interviews were combined with employment histories from register data. Descriptive statistics of socio-demographic characteristics and logistic regressions analyses were used for comparing population, gross sample and respondents. In total, 4511 face-to-face interviews were conducted. A test for sampling bias revealed that individuals in older cohorts participated more often, while individuals with an unknown educational level, residing in major cities or with a non-German ethnic background were slightly underrepresented. There is no indication of major deviations in characteristics between the basic population and the sample of respondents. Hence, S-MGA provides representative data for research on work and health, designed as a cohort study with plans to rerun the survey 5 years after the first assessment.

  7. The Study on Mental Health at Work: Design and sampling

    Science.gov (United States)

    Rose, Uwe; Schiel, Stefan; Schröder, Helmut; Kleudgen, Martin; Tophoven, Silke; Rauch, Angela; Freude, Gabriele; Müller, Grit

    2017-01-01

    Aims: The Study on Mental Health at Work (S-MGA) generates the first nationwide representative survey enabling the exploration of the relationship between working conditions, mental health and functioning. This paper describes the study design, sampling procedures and data collection, and presents a summary of the sample characteristics. Methods: S-MGA is a representative study of German employees aged 31–60 years subject to social security contributions. The sample was drawn from the employment register based on a two-stage cluster sampling procedure. Firstly, 206 municipalities were randomly selected from a pool of 12,227 municipalities in Germany. Secondly, 13,590 addresses were drawn from the selected municipalities for the purpose of conducting 4500 face-to-face interviews. The questionnaire covers psychosocial working and employment conditions, measures of mental health, work ability and functioning. Data from personal interviews were combined with employment histories from register data. Descriptive statistics of socio-demographic characteristics and logistic regressions analyses were used for comparing population, gross sample and respondents. Results: In total, 4511 face-to-face interviews were conducted. A test for sampling bias revealed that individuals in older cohorts participated more often, while individuals with an unknown educational level, residing in major cities or with a non-German ethnic background were slightly underrepresented. Conclusions: There is no indication of major deviations in characteristics between the basic population and the sample of respondents. Hence, S-MGA provides representative data for research on work and health, designed as a cohort study with plans to rerun the survey 5 years after the first assessment. PMID:28673202

  8. Where spatial capacity building and spatial decision making meet. Publically debating participatory spatial planning via a newspaper.

    OpenAIRE

    Huybrechts, Liesbeth; Martens, Sarah; Devisch, Oswald

    2015-01-01

    This article reports on the in-between results of a Participatory Design research process in spatial planning in Godsheide, a small village in the Belgian Region of Limburg. The research explores how the language of newspapers enables citizens, policy makers, property developers and local organisations to build capacities (cfr. spatial capacity building) in ‘scripting’ their reflections on, but also actions in spatial change. In the heads of our participants, there existed a duality between -...

  9. Evaluating Bayesian spatial methods for modelling species distributions with clumped and restricted occurrence data.

    Directory of Open Access Journals (Sweden)

    David W Redding

    Full Text Available Statistical approaches for inferring the spatial distribution of taxa (Species Distribution Models, SDMs commonly rely on available occurrence data, which is often clumped and geographically restricted. Although available SDM methods address some of these factors, they could be more directly and accurately modelled using a spatially-explicit approach. Software to fit models with spatial autocorrelation parameters in SDMs are now widely available, but whether such approaches for inferring SDMs aid predictions compared to other methodologies is unknown. Here, within a simulated environment using 1000 generated species' ranges, we compared the performance of two commonly used non-spatial SDM methods (Maximum Entropy Modelling, MAXENT and boosted regression trees, BRT, to a spatial Bayesian SDM method (fitted using R-INLA, when the underlying data exhibit varying combinations of clumping and geographic restriction. Finally, we tested how any recommended methodological settings designed to account for spatially non-random patterns in the data impact inference. Spatial Bayesian SDM method was the most consistently accurate method, being in the top 2 most accurate methods in 7 out of 8 data sampling scenarios. Within high-coverage sample datasets, all methods performed fairly similarly. When sampling points were randomly spread, BRT had a 1-3% greater accuracy over the other methods and when samples were clumped, the spatial Bayesian SDM method had a 4%-8% better AUC score. Alternatively, when sampling points were restricted to a small section of the true range all methods were on average 10-12% less accurate, with greater variation among the methods. Model inference under the recommended settings to account for autocorrelation was not impacted by clumping or restriction of data, except for the complexity of the spatial regression term in the spatial Bayesian model. Methods, such as those made available by R-INLA, can be successfully used to account

  10. Evaluating Bayesian spatial methods for modelling species distributions with clumped and restricted occurrence data.

    Science.gov (United States)

    Redding, David W; Lucas, Tim C D; Blackburn, Tim M; Jones, Kate E

    2017-01-01

    Statistical approaches for inferring the spatial distribution of taxa (Species Distribution Models, SDMs) commonly rely on available occurrence data, which is often clumped and geographically restricted. Although available SDM methods address some of these factors, they could be more directly and accurately modelled using a spatially-explicit approach. Software to fit models with spatial autocorrelation parameters in SDMs are now widely available, but whether such approaches for inferring SDMs aid predictions compared to other methodologies is unknown. Here, within a simulated environment using 1000 generated species' ranges, we compared the performance of two commonly used non-spatial SDM methods (Maximum Entropy Modelling, MAXENT and boosted regression trees, BRT), to a spatial Bayesian SDM method (fitted using R-INLA), when the underlying data exhibit varying combinations of clumping and geographic restriction. Finally, we tested how any recommended methodological settings designed to account for spatially non-random patterns in the data impact inference. Spatial Bayesian SDM method was the most consistently accurate method, being in the top 2 most accurate methods in 7 out of 8 data sampling scenarios. Within high-coverage sample datasets, all methods performed fairly similarly. When sampling points were randomly spread, BRT had a 1-3% greater accuracy over the other methods and when samples were clumped, the spatial Bayesian SDM method had a 4%-8% better AUC score. Alternatively, when sampling points were restricted to a small section of the true range all methods were on average 10-12% less accurate, with greater variation among the methods. Model inference under the recommended settings to account for autocorrelation was not impacted by clumping or restriction of data, except for the complexity of the spatial regression term in the spatial Bayesian model. Methods, such as those made available by R-INLA, can be successfully used to account for spatial

  11. Parameterizing Spatial Models of Infectious Disease Transmission that Incorporate Infection Time Uncertainty Using Sampling-Based Likelihood Approximations.

    Directory of Open Access Journals (Sweden)

    Rajat Malik

    Full Text Available A class of discrete-time models of infectious disease spread, referred to as individual-level models (ILMs, are typically fitted in a Bayesian Markov chain Monte Carlo (MCMC framework. These models quantify probabilistic outcomes regarding the risk of infection of susceptible individuals due to various susceptibility and transmissibility factors, including their spatial distance from infectious individuals. The infectious pressure from infected individuals exerted on susceptible individuals is intrinsic to these ILMs. Unfortunately, quantifying this infectious pressure for data sets containing many individuals can be computationally burdensome, leading to a time-consuming likelihood calculation and, thus, computationally prohibitive MCMC-based analysis. This problem worsens when using data augmentation to allow for uncertainty in infection times. In this paper, we develop sampling methods that can be used to calculate a fast, approximate likelihood when fitting such disease models. A simple random sampling approach is initially considered followed by various spatially-stratified schemes. We test and compare the performance of our methods with both simulated data and data from the 2001 foot-and-mouth disease (FMD epidemic in the U.K. Our results indicate that substantial computation savings can be obtained--albeit, of course, with some information loss--suggesting that such techniques may be of use in the analysis of very large epidemic data sets.

  12. Static sampling of dynamic processes - a paradox?

    Science.gov (United States)

    Mälicke, Mirko; Neuper, Malte; Jackisch, Conrad; Hassler, Sibylle; Zehe, Erwin

    2017-04-01

    Environmental systems monitoring aims at its core at the detection of spatio-temporal patterns of processes and system states, which is a pre-requisite for understanding and explaining their baffling heterogeneity. Most observation networks rely on distributed point sampling of states and fluxes of interest, which is combined with proxy-variables from either remote sensing or near surface geophysics. The cardinal question on the appropriate experimental design of such a monitoring network has up to now been answered in many different ways. Suggested approaches range from sampling in a dense regular grid using for the so-called green machine, transects along typical catenas, clustering of several observations sensors in presumed functional units or HRUs, arrangements of those cluster along presumed lateral flow paths to last not least a nested, randomized stratified arrangement of sensors or samples. Common to all these approaches is that they provide a rather static spatial sampling, while state variables and their spatial covariance structure dynamically change in time. It is hence of key interest how much of our still incomplete understanding stems from inappropriate sampling and how much needs to be attributed to an inappropriate analysis of spatial data sets. We suggest that it is much more promising to analyze the spatial variability of processes, for instance changes in soil moisture values, than to investigate the spatial variability of soil moisture states themselves. This is because wetting of the soil, reflected in a soil moisture increase, is causes by a totally different meteorological driver - rainfall - than drying of the soil. We hence propose that the rising and the falling limbs of soil moisture time series belong essentially to different ensembles, as they are influenced by different drivers. Positive and negative temporal changes in soil moisture need, hence, to be analyzed separately. We test this idea using the CAOS data set as a benchmark

  13. Designing a socio-spatial need indicator for urban social services analysis and decision making. A case study

    Directory of Open Access Journals (Sweden)

    Antonio Morenos Jiménez

    2015-01-01

    Full Text Available Decision taking on social services requires, as a previous step, to appraise the human needs and their spatial distribution, a key issue particularly sensitive in less developed zones or during economic crisis periods, as far as socio-spatial cohesion is then strongly challenged. Vari-ous methods have been used for measuring social needs, provided that these are diverse in nature and sometimes elusive. Incorporating the spatial dimension in this task involves an additional challenge, but the results add meaningful value for socio-spatial planning. Along this concern, in this work it is tackled the problema of estimating the needs typically met by local social service centers (SSC. To this end, it is designed a novel statistical indicator for intra-urban zones, incorporating in the formula the main components of the actual observed de-mand as well as the per capita income, to take into account the relevant spatial equity principle. Using a geographical information systems (GIS, the indicator for estimating SSC need has been experimentally obtained for two types of spatial units in the city of Madrid: municipal districts and small statistical areas, looking for complementary applied uses. The results reveal the intra-urban inequalities for these types of needs and may support public decision making on spatial provision and location of this kind of social resources. In addition, a preliminary and statistically based exam of the indicator potentialities and limitations is carried out for both types of spatial units.

  14. Spatial resolution of 2D ionization chamber arrays for IMRT dose verification: single-detector size and sampling step width

    International Nuclear Information System (INIS)

    Poppe, Bjoern; Djouguela, Armand; Blechschmidt, Arne; Willborn, Kay; Ruehmann, Antje; Harder, Dietrich

    2007-01-01

    The spatial resolution of 2D detector arrays equipped with ionization chambers or diodes, used for the dose verification of IMRT treatment plans, is limited by the size of the single detector and the centre-to-centre distance between the detectors. Optimization criteria with regard to these parameters have been developed by combining concepts of dosimetry and pattern analysis. The 2D-ARRAY Type 10024 (PTW-Freiburg, Germany), single-chamber cross section 5 x 5 mm 2 , centre-to-centre distance between chambers in each row and column 10 mm, served as an example. Additional frames of given dose distributions can be taken by shifting the whole array parallel or perpendicular to the MLC leaves by, e.g., 5 mm. The size of the single detector is characterized by its lateral response function, a trapezoid with 5 mm top width and 9 mm base width. Therefore, values measured with the 2D array are regarded as sample values from the convolution product of the accelerator generated dose distribution and this lateral response function. Consequently, the dose verification, e.g., by means of the gamma index, is performed by comparing the measured values of the 2D array with the values of the convolution product of the treatment planning system (TPS) calculated dose distribution and the single-detector lateral response function. Sufficiently small misalignments of the measured dose distributions in comparison with the calculated ones can be detected since the lateral response function is symmetric with respect to the centre of the chamber, and the change of dose gradients due to the convolution is sufficiently small. The sampling step width of the 2D array should provide a set of sample values representative of the sampled distribution, which is achieved if the highest spatial frequency contained in this function does not exceed the 'Nyquist frequency', one half of the sampling frequency. Since the convolution products of IMRT-typical dose distributions and the single

  15. Sampling design for long-term regional trends in marine rocky intertidal communities

    Science.gov (United States)

    Irvine, Gail V.; Shelley, Alice

    2013-01-01

    Probability-based designs reduce bias and allow inference of results to the pool of sites from which they were chosen. We developed and tested probability-based designs for monitoring marine rocky intertidal assemblages at Glacier Bay National Park and Preserve (GLBA), Alaska. A multilevel design was used that varied in scale and inference. The levels included aerial surveys, extensive sampling of 25 sites, and more intensive sampling of 6 sites. Aerial surveys of a subset of intertidal habitat indicated that the original target habitat of bedrock-dominated sites with slope ≤30° was rare. This unexpected finding illustrated one value of probability-based surveys and led to a shift in the target habitat type to include steeper, more mixed rocky habitat. Subsequently, we evaluated the statistical power of different sampling methods and sampling strategies to detect changes in the abundances of the predominant sessile intertidal taxa: barnacles Balanomorpha, the mussel Mytilus trossulus, and the rockweed Fucus distichus subsp. evanescens. There was greatest power to detect trends in Mytilus and lesser power for barnacles and Fucus. Because of its greater power, the extensive, coarse-grained sampling scheme was adopted in subsequent years over the intensive, fine-grained scheme. The sampling attributes that had the largest effects on power included sampling of “vertical” line transects (vs. horizontal line transects or quadrats) and increasing the number of sites. We also evaluated the power of several management-set parameters. Given equal sampling effort, sampling more sites fewer times had greater power. The information gained through intertidal monitoring is likely to be useful in assessing changes due to climate, including ocean acidification; invasive species; trampling effects; and oil spills.

  16. Spatial heavy metals Zn and Cr distribution in soil samples taken from Tatra Mountains

    International Nuclear Information System (INIS)

    Stobinski, M.; Misiak, R.; Kubica, B.

    2008-03-01

    The basic issue of presented report is showing the spatial heavy metals (Zn and Cr) distribution in soil samples taken from High Mts area. The expertise was done using two analytical techniques: AAS (atomic absorption spectroscopy) and micro-PIXIE (proton induced X-ray emission).Given heavy metals concentration were originated either from soil surface (10 cm depth) or from the whole soil profile. Our evaluation indicates that the Zn and Cr levels measured for mountains region were comparable to the data presented by other authors. Furthermore, the amount of heavy metals is strongly correlated with its natural concentration in parental rock.We also observed that zinc was prone to accumulate in surface, rich in organic matter, soil levels. (author)

  17. Sampling scales define occupancy and underlying occupancy-abundance relationships in animals.

    Science.gov (United States)

    Steenweg, Robin; Hebblewhite, Mark; Whittington, Jesse; Lukacs, Paul; McKelvey, Kevin

    2018-01-01

    Occupancy-abundance (OA) relationships are a foundational ecological phenomenon and field of study, and occupancy models are increasingly used to track population trends and understand ecological interactions. However, these two fields of ecological inquiry remain largely isolated, despite growing appreciation of the importance of integration. For example, using occupancy models to infer trends in abundance is predicated on positive OA relationships. Many occupancy studies collect data that violate geographical closure assumptions due to the choice of sampling scales and application to mobile organisms, which may change how occupancy and abundance are related. Little research, however, has explored how different occupancy sampling designs affect OA relationships. We develop a conceptual framework for understanding how sampling scales affect the definition of occupancy for mobile organisms, which drives OA relationships. We explore how spatial and temporal sampling scales, and the choice of sampling unit (areal vs. point sampling), affect OA relationships. We develop predictions using simulations, and test them using empirical occupancy data from remote cameras on 11 medium-large mammals. Surprisingly, our simulations demonstrate that when using point sampling, OA relationships are unaffected by spatial sampling grain (i.e., cell size). In contrast, when using areal sampling (e.g., species atlas data), OA relationships are affected by spatial grain. Furthermore, OA relationships are also affected by temporal sampling scales, where the curvature of the OA relationship increases with temporal sampling duration. Our empirical results support these predictions, showing that at any given abundance, the spatial grain of point sampling does not affect occupancy estimates, but longer surveys do increase occupancy estimates. For rare species (low occupancy), estimates of occupancy will quickly increase with longer surveys, even while abundance remains constant. Our results

  18. CHARACTERIZING LANDSCAPE SPATIAL HETEROGENEITY USING SEMIVARIOGRAM PARAMETERS DERIVED FROM NDVI IMAGES

    Directory of Open Access Journals (Sweden)

    Eduarda Martiniano de Oliveira Silveira

    2017-12-01

    Full Text Available Assuming a relationship between landscape heterogeneity and measures of spatial dependence by using remotely sensed data, the aim of this work was to evaluate the potential of semivariogram parameters, derived from satellite images with different spatial resolutions, to characterize landscape spatial heterogeneity of forested and human modified areas. The NDVI (Normalized Difference Vegetation Index was generated in an area of Brazilian amazon tropical forest (1,000 km².We selected samples (1 x 1 km from forested and human modified areas distributed throughout the study area, to generate the semivariogram and extract the sill (σ²-overall spatial variability of the surface property and range (φ-the length scale of the spatial structures of objects parameters. The analysis revealed that image spatial resolution influenced the sill and range parameters. The average sill and range values increase from forested to human modified areas and the greatest between-class variation was found for LANDSAT 8 imagery, indicating that this image spatial resolution is the most appropriate for deriving sill and range parameters with the intention of describing landscape spatial heterogeneity. By combining remote sensing and geostatistical techniques, we have shown that the sill and range parameters of semivariograms derived from NDVI images are a simple indicator of landscape heterogeneity and can be used to provide landscape heterogeneity maps to enable researchers to design appropriate sampling regimes. In the future, more applications combining remote sensing and geostatistical features should be further investigated and developed, such as change detection and image classification using object-based image analysis (OBIA approaches.

  19. Identification and verification of ultrafine particle affinity zones in urban neighbourhoods: sample design and data pre-processing.

    LENUS (Irish Health Repository)

    Harris, Paul

    2009-01-01

    A methodology is presented and validated through which long-term fixed site air quality measurements are used to characterise and remove temporal signals in sample-based measurements which have good spatial coverage but poor temporal resolution. The work has been carried out specifically to provide a spatial dataset of atmospheric ultrafine particle (UFP < 100 nm) data for ongoing epidemiologic cohort analysis but the method is readily transferable to wider epidemiologic investigations and research into the health effects of other pollutant species.

  20. Graph-Based Semi-Supervised Hyperspectral Image Classification Using Spatial Information

    Science.gov (United States)

    Jamshidpour, N.; Homayouni, S.; Safari, A.

    2017-09-01

    Hyperspectral image classification has been one of the most popular research areas in the remote sensing community in the past decades. However, there are still some problems that need specific attentions. For example, the lack of enough labeled samples and the high dimensionality problem are two most important issues which degrade the performance of supervised classification dramatically. The main idea of semi-supervised learning is to overcome these issues by the contribution of unlabeled samples, which are available in an enormous amount. In this paper, we propose a graph-based semi-supervised classification method, which uses both spectral and spatial information for hyperspectral image classification. More specifically, two graphs were designed and constructed in order to exploit the relationship among pixels in spectral and spatial spaces respectively. Then, the Laplacians of both graphs were merged to form a weighted joint graph. The experiments were carried out on two different benchmark hyperspectral data sets. The proposed method performed significantly better than the well-known supervised classification methods, such as SVM. The assessments consisted of both accuracy and homogeneity analyses of the produced classification maps. The proposed spectral-spatial SSL method considerably increased the classification accuracy when the labeled training data set is too scarce.When there were only five labeled samples for each class, the performance improved 5.92% and 10.76% compared to spatial graph-based SSL, for AVIRIS Indian Pine and Pavia University data sets respectively.

  1. GRAPH-BASED SEMI-SUPERVISED HYPERSPECTRAL IMAGE CLASSIFICATION USING SPATIAL INFORMATION

    Directory of Open Access Journals (Sweden)

    N. Jamshidpour

    2017-09-01

    Full Text Available Hyperspectral image classification has been one of the most popular research areas in the remote sensing community in the past decades. However, there are still some problems that need specific attentions. For example, the lack of enough labeled samples and the high dimensionality problem are two most important issues which degrade the performance of supervised classification dramatically. The main idea of semi-supervised learning is to overcome these issues by the contribution of unlabeled samples, which are available in an enormous amount. In this paper, we propose a graph-based semi-supervised classification method, which uses both spectral and spatial information for hyperspectral image classification. More specifically, two graphs were designed and constructed in order to exploit the relationship among pixels in spectral and spatial spaces respectively. Then, the Laplacians of both graphs were merged to form a weighted joint graph. The experiments were carried out on two different benchmark hyperspectral data sets. The proposed method performed significantly better than the well-known supervised classification methods, such as SVM. The assessments consisted of both accuracy and homogeneity analyses of the produced classification maps. The proposed spectral-spatial SSL method considerably increased the classification accuracy when the labeled training data set is too scarce.When there were only five labeled samples for each class, the performance improved 5.92% and 10.76% compared to spatial graph-based SSL, for AVIRIS Indian Pine and Pavia University data sets respectively.

  2. Research on photodiode detector-based spatial transient light detection and processing system

    Science.gov (United States)

    Liu, Meiying; Wang, Hu; Liu, Yang; Zhao, Hui; Nan, Meng

    2016-10-01

    In order to realize real-time signal identification and processing of spatial transient light, the features and the energy of the captured target light signal are first described and quantitatively calculated. Considering that the transient light signal has random occurrence, a short duration and an evident beginning and ending, a photodiode detector based spatial transient light detection and processing system is proposed and designed in this paper. This system has a large field of view and is used to realize non-imaging energy detection of random, transient and weak point target under complex background of spatial environment. Weak signal extraction under strong background is difficult. In this paper, considering that the background signal changes slowly and the target signal changes quickly, filter is adopted for signal's background subtraction. A variable speed sampling is realized by the way of sampling data points with a gradually increased interval. The two dilemmas that real-time processing of large amount of data and power consumption required by the large amount of data needed to be stored are solved. The test results with self-made simulative signal demonstrate the effectiveness of the design scheme. The practical system could be operated reliably. The detection and processing of the target signal under the strong sunlight background was realized. The results indicate that the system can realize real-time detection of target signal's characteristic waveform and monitor the system working parameters. The prototype design could be used in a variety of engineering applications.

  3. Spatial electric load forecasting

    CERN Document Server

    Willis, H Lee

    2002-01-01

    Spatial Electric Load Forecasting Consumer Demand for Power and ReliabilityCoincidence and Load BehaviorLoad Curve and End-Use ModelingWeather and Electric LoadWeather Design Criteria and Forecast NormalizationSpatial Load Growth BehaviorSpatial Forecast Accuracy and Error MeasuresTrending MethodsSimulation Method: Basic ConceptsA Detailed Look at the Simulation MethodBasics of Computerized SimulationAnalytical Building Blocks for Spatial SimulationAdvanced Elements of Computerized SimulationHybrid Trending-Simulation MethodsAdvanced

  4. The contribution of spatial ability to mathematics achievement in middle childhood.

    Science.gov (United States)

    Gilligan, Katie A; Flouri, Eirini; Farran, Emily K

    2017-11-01

    Strong spatial skills are associated with success in science, technology, engineering, and mathematics (STEM) domains. Although there is convincing evidence that spatial skills are a reliable predictor of mathematical achievement in preschool children and in university students, there is a lack of research exploring associations between spatial and mathematics achievement during the primary school years. To address this question, this study explored associations between mathematics and spatial skills in children aged 5 and 7years. The study sample included 12,099 children who participated in both Wave 3 (mean age=5; 02 [years; months]) and Wave 4 (mean age=7; 03) of the Millennium Cohort Study. Measures included a standardised assessment of mathematics and the Pattern Construction subscale of the British Ability Scales II to assess intrinsic-dynamic spatial skills. Spatial skills at 5 and 7years of age explained a significant 8.8% of the variation in mathematics achievement at 7years, above that explained by other predictors of mathematics, including gender, socioeconomic status, ethnicity, and language skills. This percentage increased to 22.6% without adjustment for language skills. This study expands previous findings by using a large-scale longitudinal sample of primary school children, a population that has been largely omitted from previous research exploring associations between spatial ability and mathematics achievement. The finding that early and concurrent spatial skills contribute to mathematics achievement at 7years of age highlights the potential of spatial skills as a novel target in the design of mathematics interventions for children in this age range. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  5. Kolmogorov-Smirnov test for spatially correlated data

    Science.gov (United States)

    Olea, R.A.; Pawlowsky-Glahn, V.

    2009-01-01

    The Kolmogorov-Smirnov test is a convenient method for investigating whether two underlying univariate probability distributions can be regarded as undistinguishable from each other or whether an underlying probability distribution differs from a hypothesized distribution. Application of the test requires that the sample be unbiased and the outcomes be independent and identically distributed, conditions that are violated in several degrees by spatially continuous attributes, such as topographical elevation. A generalized form of the bootstrap method is used here for the purpose of modeling the distribution of the statistic D of the Kolmogorov-Smirnov test. The innovation is in the resampling, which in the traditional formulation of bootstrap is done by drawing from the empirical sample with replacement presuming independence. The generalization consists of preparing resamplings with the same spatial correlation as the empirical sample. This is accomplished by reading the value of unconditional stochastic realizations at the sampling locations, realizations that are generated by simulated annealing. The new approach was tested by two empirical samples taken from an exhaustive sample closely following a lognormal distribution. One sample was a regular, unbiased sample while the other one was a clustered, preferential sample that had to be preprocessed. Our results show that the p-value for the spatially correlated case is always larger that the p-value of the statistic in the absence of spatial correlation, which is in agreement with the fact that the information content of an uncorrelated sample is larger than the one for a spatially correlated sample of the same size. ?? Springer-Verlag 2008.

  6. Spatial Characterization of Polycyclic Aromatic Hydrocarbons in 2008 TC3 Samples

    Science.gov (United States)

    Sabbah, Hassan; Morrow, A.; Zare, R. N.; Jenniskens, P.

    2009-09-01

    Hassan Sabbah1, Amy L. Morrow1, Richard N. Zare1 and Petrus Jenniskens2 1Stanford University, Stanford, California 94305, 2 SETI Institute, Carl Sagan Center, 515 North Whisman Road, Mountain View, California 94043, USA. In October 2006 a small asteroid (2-3 meters) was observed in outer space. On October 7, 2008, it entered the Earth's atmosphere creating a fireball over Northern Sudan. Some 280 meteorites were collected by the University of Khartoum. In order to explore the existence of organic materials, specifically polycyclic aromatic hydrocarbons (PAHs), we applied two-step laser desorption laser ionization mass spectrometry (L2MS) to some selected fragments. This technique consists of desorbing with a pulsed infrared laser beam the solid materials into a gaseous phase with no fragmentation followed by resonance enhanced multiphoton ionization to analyze the PAH content. L2MS was already applied to an array of extraterrestrial objects including interplanetary dust particles IDPs, carbonaceous chondrites and comet coma particles. Moreover, spatial resolution of PAHs in 2008 TC3 samples was achieved to explore the heterogeneity within individual fragments. The results of these studies and their contribution to understanding the formation of this asteroid will be discussed.

  7. Design of a gravity corer for near shore sediment sampling

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.T.; Sonawane, A.V.; Nayak, B.U.

    For the purpose of geotechnical investigation a gravity corer has been designed and fabricated to obtain undisturbed sediment core samples from near shore waters. The corer was successfully operated at 75 stations up to water depth 30 m. Simplicity...

  8. Large sample hydrology in NZ: Spatial organisation in process diagnostics

    Science.gov (United States)

    McMillan, H. K.; Woods, R. A.; Clark, M. P.

    2013-12-01

    A key question in hydrology is how to predict the dominant runoff generation processes in any given catchment. This knowledge is vital for a range of applications in forecasting hydrological response and related processes such as nutrient and sediment transport. A step towards this goal is to map dominant processes in locations where data is available. In this presentation, we use data from 900 flow gauging stations and 680 rain gauges in New Zealand, to assess hydrological processes. These catchments range in character from rolling pasture, to alluvial plains, to temperate rainforest, to volcanic areas. By taking advantage of so many flow regimes, we harness the benefits of large-sample and comparative hydrology to study patterns and spatial organisation in runoff processes, and their relationship to physical catchment characteristics. The approach we use to assess hydrological processes is based on the concept of diagnostic signatures. Diagnostic signatures in hydrology are targeted analyses of measured data which allow us to investigate specific aspects of catchment response. We apply signatures which target the water balance, the flood response and the recession behaviour. We explore the organisation, similarity and diversity in hydrological processes across the New Zealand landscape, and how these patterns change with scale. We discuss our findings in the context of the strong hydro-climatic gradients in New Zealand, and consider the implications for hydrological model building on a national scale.

  9. A binary logistic regression model with complex sampling design of ...

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... Bi-variable and multi-variable binary logistic regression model with complex sampling design was fitted. .... Data was entered into STATA-12 and analyzed using. SPSS-21. .... lack of access/too far or costs too much. 35. 1.2.

  10. Spatial variability of caesium-137 activities in soils in the Jura mountains

    International Nuclear Information System (INIS)

    Pimou-Heumou, G.; Lucot, E.; Crini, N.; Briot, M.; Badot, P.M.

    2011-01-01

    275 soil samples were taken in the catchment area of the upper part of the Doubs river located in the Jura mountains according to a sampling strategy designed to evaluate the extent of the spatial variability of 137 Cs activities and to identify its main sources. 137 Cs activities ranged between about 1000 and 12000 Bq.m -2 with an average of approximately 3600 Bq.m -2 . The spatial variability of the contamination is high: 137 Cs activity shows statistically significant links with altitude, soil organic matter and land cover, whereas the other studied parameters, i.e. soil type and topographic position, do not constitute significant sources of variation. These results are discussed in terms of evaluation of the radioactive contamination on a regional scale. They show that to be satisfactory, a sampling strategy must necessarily take into account the various types of land cover. (authors)

  11. Estimating black bear density in New Mexico using noninvasive genetic sampling coupled with spatially explicit capture-recapture methods

    Science.gov (United States)

    Gould, Matthew J.; Cain, James W.; Roemer, Gary W.; Gould, William R.

    2016-01-01

    samples. We identified 725 (367 M, 358 F) individuals; the sex ratio for each study area was approximately equal. Our density estimates varied within and among mountain ranges with an estimated density of 21.86 bears/100 km2 (95% CI: 17.83 – 26.80) for the NSC, 19.74 bears/100 km2 (95% CI: 13.77 – 28.30) in the SSC, 25.75 bears/100 km2 (95% CI: 13.22 – 50.14) in the Sandias, 21.86 bears/100 km2 (95% CI: 17.83 – 26.80) in the NSacs, and 16.55 bears/100 km2 (95% CI: 11.64 – 23.53) in the SSacs. Overall detection probability for hair traps and bear rubs, combined, was low across all study areas and ranged from 0.00001 to 0.02. We speculate that detection probabilities were affected by failure of some hair samples to produce a complete genotype due to UV degradation of DNA, and our inability to set and check some sampling devices due to wildfires in the SSC. Ultraviolet radiation levels are particularly high in New Mexico compared to other states where NGS methods have been used because New Mexico receives substantial amounts of sunshine, is relatively high in elevation (1,200 m – 4,000 m), and is at a lower latitude. Despite these sampling difficulties, we were able to produce density estimates for New Mexico black bear populations with levels of precision comparable to estimated black bear densities made elsewhere in the U.S.Our ability to generate reliable black bear density estimates for 3 New Mexico mountain ranges is attributable to our use of a statistically robust study design and analytical method. There are multiple factors that need to be considered when developing future SECR-based density estimation projects. First, the spatial extent of the population of interest and the smallest average home range size must be determined; these will dictate size of the trapping array and spacing necessary between hair traps. The number of technicians needed and access to the study areas will also influence configuration of the trapping array. We believe shorter

  12. Interior-exterior connection in architectural design based on the incorporation of spatial in between layers. Study of four architectural projects

    Directory of Open Access Journals (Sweden)

    Krstić Hristina

    2016-01-01

    Full Text Available Different spatial layers in the architectural structure of a building can create particular spatial relations and an architectural space that cannot be defined as an inner space or as an outer space, but one which has the characteristics of both. This space, which can be called “in between space”, appears as the result of a specific design concept in which the architectural composition is created by gradual insertion of volumes one inside another, like a box that is placed inside a box, inside of which is placed another smaller box and so on. The incorporation of various layers in the spatial arrangement of volumes in certain architectural compositions can be conceived as a possible approach in connecting the interior and exterior. This kind of conceptual design distinguishes itself from the common approach by its specific architecture that offers richness, variety, complexity and unique perception of space, thereby increasing its value. The paper investigates this particular concept through the analysis of four residential houses (Villa Le Lac by Le Corbusier, Solar House by Oswald Mathias Ungers, House N by Sou Fujimoto and Guerrero House by Alberto Campo Baeza, and it strives to find out the concept’s use and advantages, all with the aim of opening up new possibilities in the design of buildings and enriching the design process.

  13. Parents' Spatial Language Mediates a Sex Difference in Preschoolers' Spatial-Language Use.

    Science.gov (United States)

    Pruden, Shannon M; Levine, Susan C

    2017-11-01

    Do boys produce more terms than girls to describe the spatial world-that is, dimensional adjectives (e.g., big, little, tall, short), shape terms (e.g., circle, square), and words describing spatial features and properties (e.g., bent, curvy, edge)? If a sex difference in children's spatial-language use exists, is it related to the spatial language that parents use when interacting with children? We longitudinally tracked the development of spatial-language production in children between the ages of 14 and 46 months in a diverse sample of 58 parent-child dyads interacting in their homes. Boys produced and heard more of these three categories of spatial words, which we call "what" spatial types (i.e., unique "what" spatial words), but not more of all other word types, than girls. Mediation analysis revealed that sex differences in children's spatial talk at 34 to 46 months of age were fully mediated by parents' earlier spatial-language use, when children were 14 to 26 months old, time points at which there was no sex difference in children's spatial-language use.

  14. Near-Infrared Spatially Resolved Spectroscopy for Tablet Quality Determination.

    Science.gov (United States)

    Igne, Benoît; Talwar, Sameer; Feng, Hanzhou; Drennen, James K; Anderson, Carl A

    2015-12-01

    Near-infrared (NIR) spectroscopy has become a well-established tool for the characterization of solid oral dosage forms manufacturing processes and finished products. In this work, the utility of a traditional single-point NIR measurement was compared with that of a spatially resolved spectroscopic (SRS) measurement for the determination of tablet assay. Experimental designs were used to create samples that allowed for calibration models to be developed and tested on both instruments. Samples possessing a poor distribution of ingredients (highly heterogeneous) were prepared by under-blending constituents prior to compaction to compare the analytical capabilities of the two NIR methods. The results indicate that SRS can provide spatial information that is usually obtainable only through imaging experiments for the determination of local heterogeneity and detection of abnormal tablets that would not be detected with single-point spectroscopy, thus complementing traditional NIR measurement systems for in-line, and in real-time tablet analysis. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  15. Constant Flux of Spatial Niche Partitioning through High-Resolution Sampling of Magnetotactic Bacteria.

    Science.gov (United States)

    He, Kuang; Gilder, Stuart A; Orsi, William D; Zhao, Xiangyu; Petersen, Nikolai

    2017-10-15

    Magnetotactic bacteria (MTB) swim along magnetic field lines in water. They are found in aquatic habitats throughout the world, yet knowledge of their spatial and temporal distribution remains limited. To help remedy this, we took MTB-bearing sediment from a natural pond, mixed the thoroughly homogenized sediment into two replicate aquaria, and then counted three dominant MTB morphotypes (coccus, spirillum, and rod-shaped MTB cells) at a high spatiotemporal sampling resolution: 36 discrete points in replicate aquaria were sampled every ∼30 days over 198 days. Population centers of the MTB coccus and MTB spirillum morphotypes moved in continual flux, yet they consistently inhabited separate locations, displaying significant anticorrelation. Rod-shaped MTB were initially concentrated toward the northern end of the aquaria, but at the end of the experiment, they were most densely populated toward the south. The finding that the total number of MTB cells increased over time during the experiment argues that population reorganization arose from relative changes in cell division and death and not from migration. The maximum net growth rates were 10, 3, and 1 doublings day -1 and average net growth rates were 0.24, 0.11, and 0.02 doublings day -1 for MTB cocci, MTB spirilla, and rod-shaped MTB, respectively; minimum growth rates for all three morphotypes were -0.03 doublings day -1 Our results suggest that MTB cocci and MTB spirilla occupy distinctly different niches: their horizontal positioning in sediment is anticorrelated and under constant flux. IMPORTANCE Little is known about the horizontal distribution of magnetotactic bacteria in sediment or how the distribution changes over time. We therefore measured three dominant magnetotactic bacterium morphotypes at 36 places in two replicate aquaria each month for 7 months. We found that the spatial positioning of population centers changed over time and that the two most abundant morphotypes (MTB cocci and MTB spirilla

  16. Are quantitative trait-dependent sampling designs cost-effective for analysis of rare and common variants?

    Science.gov (United States)

    Yilmaz, Yildiz E; Bull, Shelley B

    2011-11-29

    Use of trait-dependent sampling designs in whole-genome association studies of sequence data can reduce total sequencing costs with modest losses of statistical efficiency. In a quantitative trait (QT) analysis of data from the Genetic Analysis Workshop 17 mini-exome for unrelated individuals in the Asian subpopulation, we investigate alternative designs that sequence only 50% of the entire cohort. In addition to a simple random sampling design, we consider extreme-phenotype designs that are of increasing interest in genetic association analysis of QTs, especially in studies concerned with the detection of rare genetic variants. We also evaluate a novel sampling design in which all individuals have a nonzero probability of being selected into the sample but in which individuals with extreme phenotypes have a proportionately larger probability. We take differential sampling of individuals with informative trait values into account by inverse probability weighting using standard survey methods which thus generalizes to the source population. In replicate 1 data, we applied the designs in association analysis of Q1 with both rare and common variants in the FLT1 gene, based on knowledge of the generating model. Using all 200 replicate data sets, we similarly analyzed Q1 and Q4 (which is known to be free of association with FLT1) to evaluate relative efficiency, type I error, and power. Simulation study results suggest that the QT-dependent selection designs generally yield greater than 50% relative efficiency compared to using the entire cohort, implying cost-effectiveness of 50% sample selection and worthwhile reduction of sequencing costs.

  17. Study the effects of varying interference upon the optical properties of turbid samples using NIR spatial light modulation

    Science.gov (United States)

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A.; Abookasis, David

    2018-03-01

    Optical properties of biological tissues are valuable diagnostic parameters which can provide necessary information regarding tissue state during disease pathogenesis and therapy. However, different sources of interference, such as temperature changes may modify these properties, introducing confounding factors and artifacts to data, consequently skewing their interpretation and misinforming clinical decision-making. In the current study, we apply spatial light modulation, a type of diffuse reflectance hyperspectral imaging technique, to monitor the variation in optical properties of highly scattering turbid media in the presence varying levels of the following sources of interference: scattering concentration, temperature, and pressure. Spatial near-infrared (NIR) light modulation is a wide-field, non-contact emerging optical imaging platform capable of separating the effects of tissue scattering from those of absorption, thereby accurately estimating both parameters. With this technique, periodic NIR illumination patterns at alternately low and high spatial frequencies, at six discrete wavelengths between 690 to 970 nm, were sequentially projected upon the medium while a CCD camera collects the diffusely reflected light. Data analysis based assumptions is then performed off-line to recover the medium's optical properties. We conducted a series of experiments demonstrating the changes in absorption and reduced scattering coefficients of commercially available fresh milk and chicken breast tissue under different interference conditions. In addition, information on the refractive index was study under increased pressure. This work demonstrates the utility of NIR spatial light modulation to detect varying sources of interference upon the optical properties of biological samples.

  18. Spatial-structural interaction and strain energy structural optimisation

    NARCIS (Netherlands)

    Hofmeyer, H.; Davila Delgado, J.M.; Borrmann, A.; Geyer, P.; Rafiq, Y.; Wilde, de P.

    2012-01-01

    A research engine iteratively transforms spatial designs into structural designs and vice versa. Furthermore, spatial and structural designs are optimised. It is suggested to optimise a structural design by evaluating the strain energy of its elements and by then removing, adding, or changing the

  19. Some design aspects of transuranic field studies

    International Nuclear Information System (INIS)

    Gilbert, R.O.; Eberhardt, L.L.

    1977-01-01

    In this paper, we discuss some design aspects of transuranic field studies. Some of the principal steps in the design of such studies are given and illustrated using examples. This is followed by a review of sampling designs that have been used at nuclear detonation and safety-shot sites on the Nevada Test Site and elsewhere for estimating spatial pattern and total amounts in soil. Some design aspects of ecosystem-type transuranic studies for estimating total amounts as well as movement of transuranics between ecosystem components are also discussed. Acceptance sampling using either attributes or measurements is considered as a possible approach for deciding whether to clean up a contaminated site. Three general guidelines for the design of efficient transuranic studies are presented

  20. Precision of systematic and random sampling in clustered populations: habitat patches and aggregating organisms.

    Science.gov (United States)

    McGarvey, Richard; Burch, Paul; Matthews, Janet M

    2016-01-01

    Natural populations of plants and animals spatially cluster because (1) suitable habitat is patchy, and (2) within suitable habitat, individuals aggregate further into clusters of higher density. We compare the precision of random and systematic field sampling survey designs under these two processes of species clustering. Second, we evaluate the performance of 13 estimators for the variance of the sample mean from a systematic survey. Replicated simulated surveys, as counts from 100 transects, allocated either randomly or systematically within the study region, were used to estimate population density in six spatial point populations including habitat patches and Matérn circular clustered aggregations of organisms, together and in combination. The standard one-start aligned systematic survey design, a uniform 10 x 10 grid of transects, was much more precise. Variances of the 10 000 replicated systematic survey mean densities were one-third to one-fifth of those from randomly allocated transects, implying transect sample sizes giving equivalent precision by random survey would need to be three to five times larger. Organisms being restricted to patches of habitat was alone sufficient to yield this precision advantage for the systematic design. But this improved precision for systematic sampling in clustered populations is underestimated by standard variance estimators used to compute confidence intervals. True variance for the survey sample mean was computed from the variance of 10 000 simulated survey mean estimates. Testing 10 published and three newly proposed variance estimators, the two variance estimators (v) that corrected for inter-transect correlation (ν₈ and ν(W)) were the most accurate and also the most precise in clustered populations. These greatly outperformed the two "post-stratification" variance estimators (ν₂ and ν₃) that are now more commonly applied in systematic surveys. Similar variance estimator performance rankings were found with

  1. Spatial Domain Adaptive Control of Nonlinear Rotary Systems Subject to Spatially Periodic Disturbances

    Directory of Open Access Journals (Sweden)

    Yen-Hsiu Yang

    2012-01-01

    Full Text Available We propose a generic spatial domain control scheme for a class of nonlinear rotary systems of variable speeds and subject to spatially periodic disturbances. The nonlinear model of the rotary system in time domain is transformed into one in spatial domain employing a coordinate transformation with respect to angular displacement. Under the circumstances that measurement of the system states is not available, a nonlinear state observer is established for providing the estimated states. A two-degree-of-freedom spatial domain control configuration is then proposed to stabilize the system and improve the tracking performance. The first control module applies adaptive backstepping with projected parametric update and concentrates on robust stabilization of the closed-loop system. The second control module introduces an internal model of the periodic disturbances cascaded with a loop-shaping filter, which not only further reduces the tracking error but also improves parametric adaptation. The overall spatial domain output feedback adaptive control system is robust to model uncertainties and state estimated error and capable of rejecting spatially periodic disturbances under varying system speeds. Stability proof of the overall system is given. A design example with simulation demonstrates the applicability of the proposed design.

  2. Ant mosaics in Bornean primary rain forest high canopy depend on spatial scale, time of day, and sampling method

    Directory of Open Access Journals (Sweden)

    Kalsum M. Yusah

    2018-01-01

    Full Text Available Background Competitive interactions in biological communities can be thought of as giving rise to “assembly rules” that dictate the species that are able to co-exist. Ant communities in tropical canopies often display a particular pattern, an “ant mosaic”, in which competition between dominant ant species results in a patchwork of mutually exclusive territories. Although ant mosaics have been well-documented in plantation landscapes, their presence in pristine tropical forests remained contentious until recently. Here we assess presence of ant mosaics in a hitherto under-investigated forest stratum, the emergent trees of the high canopy in primary tropical rain forest, and explore how the strength of any ant mosaics is affected by spatial scale, time of day, and sampling method. Methods To test whether these factors might impact the detection of ant mosaics in pristine habitats, we sampled ant communities from emergent trees, which rise above the highest canopy layers in lowland dipterocarp rain forests in North Borneo (38.8–60.2 m, using both baiting and insecticide fogging. Critically, we restricted sampling to only the canopy of each focal tree. For baiting, we carried out sampling during both the day and the night. We used null models of species co-occurrence to assess patterns of segregation at within-tree and between-tree scales. Results The numerically dominant ant species on the emergent trees sampled formed a diverse community, with differences in the identity of dominant species between times of day and sampling methods. Between trees, we found patterns of ant species segregation consistent with the existence of ant mosaics using both methods. Within trees, fogged ants were segregated, while baited ants were segregated only at night. Discussion We conclude that ant mosaics are present within the emergent trees of the high canopy of tropical rain forest in Malaysian Borneo, and that sampling technique, spatial scale, and time

  3. Phylogenetic congruence of lichenised fungi and algae is affected by spatial scale and taxonomic diversity

    Directory of Open Access Journals (Sweden)

    Hannah L. Buckley

    2014-09-01

    their phylogenetic congruence and spatial genetic patterns and where greater sample replication was used, the amount of variation explained by partner genetic variation increased. Our results suggest that the phylogenetic congruence pattern, at least at small spatial scales, is likely due to reciprocal co-adaptation or co-dispersal. However, the detection of these patterns varies among different lichen taxa, across spatial scales and with different levels of sample replication. This work provides insight into the complexities faced in determining how evolutionary and ecological processes may interact to generate diversity in symbiotic association patterns at the population and community levels. Further, it highlights the critical importance of considering sample replication, taxonomic diversity and spatial scale in designing studies of co-diversification.

  4. Phylogenetic congruence of lichenised fungi and algae is affected by spatial scale and taxonomic diversity.

    Science.gov (United States)

    Buckley, Hannah L; Rafat, Arash; Ridden, Johnathon D; Cruickshank, Robert H; Ridgway, Hayley J; Paterson, Adrian M

    2014-01-01

    and spatial genetic patterns and where greater sample replication was used, the amount of variation explained by partner genetic variation increased. Our results suggest that the phylogenetic congruence pattern, at least at small spatial scales, is likely due to reciprocal co-adaptation or co-dispersal. However, the detection of these patterns varies among different lichen taxa, across spatial scales and with different levels of sample replication. This work provides insight into the complexities faced in determining how evolutionary and ecological processes may interact to generate diversity in symbiotic association patterns at the population and community levels. Further, it highlights the critical importance of considering sample replication, taxonomic diversity and spatial scale in designing studies of co-diversification.

  5. Sample size reassessment for a two-stage design controlling the false discovery rate.

    Science.gov (United States)

    Zehetmayer, Sonja; Graf, Alexandra C; Posch, Martin

    2015-11-01

    Sample size calculations for gene expression microarray and NGS-RNA-Seq experiments are challenging because the overall power depends on unknown quantities as the proportion of true null hypotheses and the distribution of the effect sizes under the alternative. We propose a two-stage design with an adaptive interim analysis where these quantities are estimated from the interim data. The second stage sample size is chosen based on these estimates to achieve a specific overall power. The proposed procedure controls the power in all considered scenarios except for very low first stage sample sizes. The false discovery rate (FDR) is controlled despite of the data dependent choice of sample size. The two-stage design can be a useful tool to determine the sample size of high-dimensional studies if in the planning phase there is high uncertainty regarding the expected effect sizes and variability.

  6. Relationship between Academic Performance, Spatial Competence, Learning Styles and Attrition

    Directory of Open Access Journals (Sweden)

    Marianela Noriega Biggio

    2013-04-01

    Full Text Available This paper discusses the results of research on factors affecting academic performance and attrition in a sample of 1,500 freshman students majoring in architecture, design and urbanism at the Universidad de Buenos Aires, Argentina [University of Buenos Aires, Argentina] who were enrolled in a drafting course. The hypotheses we tested concern the mediating role of learning styles on the relationship between spatial competence and academic performance, learning-style differences by gender and cohort, and the relationship between attrition, spatial competence level and learning style. Statistical analysis of the data was performed and spatial competence enhanced by motivational profile was found to predict final achievement. Educational implications are identified, highlighting the need to promote in students those academic behaviors that characterize a self-regulated learning style and encourage the use of specific intellectual abilities.

  7. Spatial Processing in Infancy Predicts Both Spatial and Mathematical Aptitude in Childhood.

    Science.gov (United States)

    Lauer, Jillian E; Lourenco, Stella F

    2016-10-01

    Despite considerable interest in the role of spatial intelligence in science, technology, engineering, and mathematics (STEM) achievement, little is known about the ontogenetic origins of individual differences in spatial aptitude or their relation to later accomplishments in STEM disciplines. The current study provides evidence that spatial processes present in infancy predict interindividual variation in both spatial and mathematical competence later in development. Using a longitudinal design, we found that children's performance on a brief visuospatial change-detection task administered between 6 and 13 months of age was related to their spatial aptitude (i.e., mental-transformation skill) and mastery of symbolic-math concepts at 4 years of age, even when we controlled for general cognitive abilities and spatial memory. These results suggest that nascent spatial processes present in the first year of life not only act as precursors to later spatial intelligence but also predict math achievement during childhood.

  8. Spatially variant periodic structures in electromagnetics

    Science.gov (United States)

    Rumpf, Raymond C.; Pazos, Javier J.; Digaum, Jennefir L.; Kuebler, Stephen M.

    2015-01-01

    Spatial transforms are a popular technique for designing periodic structures that are macroscopically inhomogeneous. The structures are often required to be anisotropic, provide a magnetic response, and to have extreme values for the constitutive parameters in Maxwell's equations. Metamaterials and photonic crystals are capable of providing these, although sometimes only approximately. The problem still remains about how to generate the geometry of the final lattice when it is functionally graded, or spatially varied. This paper describes a simple numerical technique to spatially vary any periodic structure while minimizing deformations to the unit cells that would weaken or destroy the electromagnetic properties. New developments in this algorithm are disclosed that increase efficiency, improve the quality of the lattices and provide the ability to design aplanatic metasurfaces. The ability to spatially vary a lattice in this manner enables new design paradigms that are not possible using spatial transforms, three of which are discussed here. First, spatially variant self-collimating photonic crystals are shown to flow unguided waves around very tight bends using ordinary materials with low refractive index. Second, multi-mode waveguides in spatially variant band gap materials are shown to guide waves around bends without mixing power between the modes. Third, spatially variant anisotropic materials are shown to sculpt the near-field around electric components. This can be used to improve electromagnetic compatibility between components in close proximity. PMID:26217058

  9. A spatial multi-objective optimization model for sustainable urban wastewater system layout planning.

    Science.gov (United States)

    Dong, X; Zeng, S; Chen, J

    2012-01-01

    Design of a sustainable city has changed the traditional centralized urban wastewater system towards a decentralized or clustering one. Note that there is considerable spatial variability of the factors that affect urban drainage performance including urban catchment characteristics. The potential options are numerous for planning the layout of an urban wastewater system, which are associated with different costs and local environmental impacts. There is thus a need to develop an approach to find the optimal spatial layout for collecting, treating, reusing and discharging the municipal wastewater of a city. In this study, a spatial multi-objective optimization model, called Urban wastewateR system Layout model (URL), was developed. It is solved by a genetic algorithm embedding Monte Carlo sampling and a series of graph algorithms. This model was illustrated by a case study in a newly developing urban area in Beijing, China. Five optimized system layouts were recommended to the local municipality for further detailed design.

  10. BAYESIAN ENTROPY FOR SPATIAL SAMPLING DESIGN OF ENVIRONMENTAL DATA

    Science.gov (United States)

    Particulate Matter (PM) has been linked to widespread public health effects, including a range of serious respiratory and cardiovascular problems, and to reduced visibility in may parts of the United States, see the Environmental Protection Agency (EPA) report (2004) and relevant...

  11. Improving neutron multiplicity counting for the spatial dependence of multiplication: Results for spherical plutonium samples

    Energy Technology Data Exchange (ETDEWEB)

    Göttsche, Malte, E-mail: malte.goettsche@physik.uni-hamburg.de; Kirchner, Gerald

    2015-10-21

    The fissile mass deduced from a neutron multiplicity counting measurement of high mass dense items is underestimated if the spatial dependence of the multiplication is not taken into account. It is shown that an appropriate physics-based correction successfully removes the bias. It depends on four correction coefficients which can only be exactly determined if the sample geometry and composition are known. In some cases, for example in warhead authentication, available information on the sample will be very limited. MCNPX-PoliMi simulations have been performed to obtain the correction coefficients for a range of spherical plutonium metal geometries, with and without polyethylene reflection placed around the spheres. For hollow spheres, the analysis shows that the correction coefficients can be approximated with high accuracy as a function of the sphere's thickness depending only slightly on the radius. If the thickness remains unknown, less accurate estimates of the correction coefficients can be obtained from the neutron multiplication. The influence of isotopic composition is limited. The correction coefficients become somewhat smaller when reflection is present.

  12. Spatial capture–recapture with partial identity: An application to camera traps

    Science.gov (United States)

    Augustine, Ben C.; Royle, J. Andrew; Kelly, Marcella J.; Satter, Christopher B.; Alonso, Robert S.; Boydston, Erin E.; Crooks, Kevin R.

    2018-01-01

    Camera trapping surveys frequently capture individuals whose identity is only known from a single flank. The most widely used methods for incorporating these partial identity individuals into density analyses discard some of the partial identity capture histories, reducing precision, and, while not previously recognized, introducing bias. Here, we present the spatial partial identity model (SPIM), which uses the spatial location where partial identity samples are captured to probabilistically resolve their complete identities, allowing all partial identity samples to be used in the analysis. We show that the SPIM outperforms other analytical alternatives. We then apply the SPIM to an ocelot data set collected on a trapping array with double-camera stations and a bobcat data set collected on a trapping array with single-camera stations. The SPIM improves inference in both cases and, in the ocelot example, individual sex is determined from photographs used to further resolve partial identities—one of which is resolved to near certainty. The SPIM opens the door for the investigation of trapping designs that deviate from the standard two camera design, the combination of other data types between which identities cannot be deterministically linked, and can be extended to the problem of partial genotypes.

  13. NMR with generalized dynamics of spin and spatial coordinates

    International Nuclear Information System (INIS)

    Lee, Chang Jae.

    1987-11-01

    This work is concerned with theoretical and experimental aspects of the generalized dynamics of nuclear spin and spatial coordinates under magnetic-field pulses and mechanical motions. The main text begins with an introduction to the concept of ''fictitious'' interactions. A systematic method for constructing fictitious spin-1/2 operators is given. The interaction of spins with a quantized-field is described. The concept of the fictitious interactions under the irradiation of multiple pulses is utilized to design sequences for selectively averaging linear and bilinear operators. Relations between the low-field sequences and high-field iterative schemes are clarified. These relations and the transformation properties of the spin operators are exploited to develop schemes for heteronuclear decoupling of multi-level systems. The resulting schemes are evaluated for heteronuclear decoupling of a dilute spin-1/2 from a spin-1 in liquid crystal samples and from a homonuclear spin-1/2 pair in liquids. A relation between the spin and the spatial variables is discussed. The transformation properties of the spin operators are applied to spatial coordinates and utilized to develop methods for removing the orientational dependence responsible for line broadening in a powder sample. Elimination of the second order quadrupole effects, as well as the first order anisotropies is discussed. It is shown that various sources of line broadening can effectively be eliminated by spinning and/or hopping the sample about judiciously chosen axes along with appropriate radio-frequency pulse sequences

  14. Implication of the first decision on visual information-sampling in the spatial frequency domain in pulmonary nodule recognition

    Science.gov (United States)

    Pietrzyk, Mariusz W.; Manning, David; Donovan, Tim; Dix, Alan

    2010-02-01

    Aim: To investigate the impact on visual sampling strategy and pulmonary nodule recognition of image-based properties of background locations in dwelled regions where the first overt decision was made. . Background: Recent studies in mammography show that the first overt decision (TP or FP) has an influence on further image reading including the correctness of the following decisions. Furthermore, the correlation between the spatial frequency properties of the local background following decision sites and the first decision correctness has been reported. Methods: Subjects with different radiological experience were eye tracked during detection of pulmonary nodules from PA chest radiographs. Number of outcomes and the overall quality of performance are analysed in terms of the cases where correct or incorrect decisions were made. JAFROC methodology is applied. The spatial frequency properties of selected local backgrounds related to a certain decisions were studied. ANOVA was used to compare the logarithmic values of energy carried by non redundant stationary wavelet packet coefficients. Results: A strong correlation has been found between the number of TP as a first decision and the JAFROC score (r = 0.74). The number of FP as a first decision was found negatively correlated with JAFROC (r = -0.75). Moreover, the differential spatial frequency profiles outcomes depend on the first choice correctness.

  15. Integrated conservation planning for coral reefs: Designing conservation zones for multiple conservation objectives in spatial prioritisation

    Directory of Open Access Journals (Sweden)

    Rafael A. Magris

    2017-07-01

    Full Text Available Decision-makers focus on representing biodiversity pattern, maintaining connectivity, and strengthening resilience to global warming when designing marine protected area (MPA systems, especially in coral reef ecosystems. The achievement of these broad conservation objectives will likely require large areas, and stretch limited funds for MPA implementation. We undertook a spatial prioritisation of Brazilian coral reefs that considered two types of conservation zones (i.e. no-take and multiple use areas and integrated multiple conservation objectives into MPA planning, while assessing the potential impact of different sets of objectives on implementation costs. We devised objectives for biodiversity, connectivity, and resilience to global warming, determined the extent to which existing MPAs achieved them, and designed complementary zoning to achieve all objectives combined in expanded MPA systems. In doing so, we explored interactions between different sets of objectives, determined whether refinements to the existing spatial arrangement of MPAs were necessary, and tested the utility of existing MPAs by comparing their cost effectiveness with an MPA system designed from scratch. We found that MPAs in Brazil protect some aspects of coral reef biodiversity pattern (e.g. threatened fauna and ecosystem types more effectively than connectivity or resilience to global warming. Expanding the existing MPA system was as cost-effective as designing one from scratch only when multiple objectives were considered and management costs were accounted for. Our approach provides a comprehensive assessment of the benefits of integrating multiple objectives in the initial stages of conservation planning, and yields insights for planners of MPAs tackling multiple objectives in other regions.

  16. A cautionary note on substituting spatial subunits for repeated temporal sampling in studies of site occupancy

    Science.gov (United States)

    Kendall, William L.; White, Gary C.

    2009-01-01

    1. Assessing the probability that a given site is occupied by a species of interest is important to resource managers, as well as metapopulation or landscape ecologists. Managers require accurate estimates of the state of the system, in order to make informed decisions. Models that yield estimates of occupancy, while accounting for imperfect detection, have proven useful by removing a potentially important source of bias. To account for detection probability, multiple independent searches per site for the species are required, under the assumption that the species is available for detection during each search of an occupied site. 2. We demonstrate that when multiple samples per site are defined by searching different locations within a site, absence of the species from a subset of these spatial subunits induces estimation bias when locations are exhaustively assessed or sampled without replacement. 3. We further demonstrate that this bias can be removed by choosing sampling locations with replacement, or if the species is highly mobile over a short period of time. 4. Resampling an existing data set does not mitigate bias due to exhaustive assessment of locations or sampling without replacement. 5. Synthesis and applications. Selecting sampling locations for presence/absence surveys with replacement is practical in most cases. Such an adjustment to field methods will prevent one source of bias, and therefore produce more robust statistical inferences about species occupancy. This will in turn permit managers to make resource decisions based on better knowledge of the state of the system.

  17. Design for mosquito abundance, diversity, and phenology sampling within the National Ecological Observatory Network

    Science.gov (United States)

    Hoekman, D.; Springer, Yuri P.; Barker, C.M.; Barrera, R.; Blackmore, M.S.; Bradshaw, W.E.; Foley, D. H.; Ginsberg, Howard; Hayden, M. H.; Holzapfel, C. M.; Juliano, S. A.; Kramer, L. D.; LaDeau, S. L.; Livdahl, T. P.; Moore, C. G.; Nasci, R.S.; Reisen, W.K.; Savage, H. M.

    2016-01-01

    The National Ecological Observatory Network (NEON) intends to monitor mosquito populations across its broad geographical range of sites because of their prevalence in food webs, sensitivity to abiotic factors and relevance for human health. We describe the design of mosquito population sampling in the context of NEON’s long term continental scale monitoring program, emphasizing the sampling design schedule, priorities and collection methods. Freely available NEON data and associated field and laboratory samples, will increase our understanding of how mosquito abundance, demography, diversity and phenology are responding to land use and climate change.

  18. [Characterizing spatial patterns of NO(x), SO2 and O3 in Pearl River Delta by passive sampling].

    Science.gov (United States)

    Zhao, Yang; Shao, Min; Wang, Chen; Wang, Bo-Guang; Lu, Si-Hua; Zhong, Liu-Ju

    2011-02-01

    Concentrations of NO(x), SO2 and O3 were measured by passive sampling within 200km x 200km grid in Pearl River Delta (PRD). Sampling period was two weeks in November, 2009. Spatial distributions of NO(x), SO2 and O3 were obtained by Kriging interpolation method. The results were compared with emission inventories and modeling results. The transportations of O3 were evaluated by using backward trajectories of air parcels. During the sampling period, the mean concentrations of NO(x), SO2 and O3 were 75.9 microg/m3, 37.3 microg/m3 and 36.2 microg/m3, respectively. And the highest concentrations of NO(x), SO2 and O3 were 195.7 microg/m3, 95.9 microg/m3 and 81.8 microg/m3. Comparing with routine measurements from the regional monitoring network in PRD, the results by passive method were 18.6%, 33.5% and 37.5% lower for NO(x), SO2 and O3, respectively. The spatial patterns demonstrated that higher NO(x) concentrations often appeared in cities such as Guangzhou, Foshan and Shenzhen. SO2 concentrations were higher in west and lower in east. High SO2 concentrations are mainly from emission of power plants and industrial sources. Concentrations of O3 showed the highest levels in the south of PRD. Backward trajectory analysis for higher ozone areas indicated that 53% of the air masses were from the region with high concentration of NO(x). The horizontal transportation caused higher ozone in the south while lower in north in PRD.

  19. Multi-saline sample distillation apparatus for hydrogen isotope analyses : design and accuracy

    Science.gov (United States)

    Hassan, Afifa Afifi

    1981-01-01

    A distillation apparatus for saline water samples was designed and tested. Six samples may be distilled simultaneously. The temperature was maintained at 400 C to ensure complete dehydration of the precipitating salts. Consequently, the error in the measured ratio of stable hydrogen isotopes resulting from incomplete dehydration of hydrated salts during distillation was eliminated. (USGS)

  20. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments

    International Nuclear Information System (INIS)

    Gopalakrishnan, V.; Subramanian, V.; Baskaran, R.; Venkatraman, B.

    2015-01-01

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging

  1. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Gopalakrishnan, V.; Subramanian, V.; Baskaran, R.; Venkatraman, B. [Radiation Impact Assessment Section, Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2015-07-15

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.

  2. Spatial and temporal variance in fatty acid and stable isotope signatures across trophic levels in large river systems

    Science.gov (United States)

    Fritts, Andrea; Knights, Brent C.; Lafrancois, Toben D.; Bartsch, Lynn; Vallazza, Jon; Bartsch, Michelle; Richardson, William B.; Karns, Byron N.; Bailey, Sean; Kreiling, Rebecca

    2018-01-01

    Fatty acid and stable isotope signatures allow researchers to better understand food webs, food sources, and trophic relationships. Research in marine and lentic systems has indicated that the variance of these biomarkers can exhibit substantial differences across spatial and temporal scales, but this type of analysis has not been completed for large river systems. Our objectives were to evaluate variance structures for fatty acids and stable isotopes (i.e. δ13C and δ15N) of seston, threeridge mussels, hydropsychid caddisflies, gizzard shad, and bluegill across spatial scales (10s-100s km) in large rivers of the Upper Mississippi River Basin, USA that were sampled annually for two years, and to evaluate the implications of this variance on the design and interpretation of trophic studies. The highest variance for both isotopes was present at the largest spatial scale for all taxa (except seston δ15N) indicating that these isotopic signatures are responding to factors at a larger geographic level rather than being influenced by local-scale alterations. Conversely, the highest variance for fatty acids was present at the smallest spatial scale (i.e. among individuals) for all taxa except caddisflies, indicating that the physiological and metabolic processes that influence fatty acid profiles can differ substantially between individuals at a given site. Our results highlight the need to consider the spatial partitioning of variance during sample design and analysis, as some taxa may not be suitable to assess ecological questions at larger spatial scales.

  3. Bias expansion of spatial statistics and approximation of differenced ...

    Indian Academy of Sciences (India)

    Investigations of spatial statistics, computed from lattice data in the plane, can lead to a special lattice point counting problem. The statistical goal is to expand the asymptotic expectation or large-sample bias of certain spatial covariance estimators, where this bias typically depends on the shape of a spatial sampling region.

  4. Shielding design of highly activated sample storage at reactor TRIGA PUSPATI

    International Nuclear Information System (INIS)

    Naim Syauqi Hamzah; Julia Abdul Karim; Mohamad Hairie Rabir; Muhd Husamuddin Abdul Khalil; Mohd Amin Sharifuldin Salleh

    2010-01-01

    Radiation protection has always been one of the most important things considered in Reaktor Triga PUSPATI (RTP) management. Currently, demands on sample activation were increased from variety of applicant in different research field area. Radiological hazard may occur if the samples evaluation done were misjudge or miscalculated. At present, there is no appropriate storage for highly activated samples. For that purpose, special irradiated samples storage box should be provided in order to segregate highly activated samples that produce high dose level and typical activated samples that produce lower dose level (1 - 2 mR/ hr). In this study, thickness required by common shielding material such as lead and concrete to reduce highly activated radiotracer sample (potassium bromide) with initial exposure dose of 5 R/ hr to background level (0.05 mR/ hr) were determined. Analyses were done using several methods including conventional shielding equation, half value layer calculation and Micro shield computer code. Design of new irradiated samples storage box for RTP that capable to contain high level gamma radioactivity were then proposed. (author)

  5. Variability of the raindrop size distribution at small spatial scales

    Science.gov (United States)

    Berne, A.; Jaffrain, J.

    2010-12-01

    Because of the interactions between atmospheric turbulence and cloud microphysics, the raindrop size distribution (DSD) is strongly variable in space and time. The spatial variability of the DSD at small spatial scales (below a few km) is not well documented and not well understood, mainly because of a lack of adequate measurements at the appropriate resolutions. A network of 16 disdrometers (Parsivels) has been designed and set up over EPFL campus in Lausanne, Switzerland. This network covers a typical operational weather radar pixel of 1x1 km2. The question of the significance of the variability of the DSD at such small scales is relevant for radar remote sensing of rainfall because the DSD is often assumed to be uniform within a radar sample volume and because the Z-R relationships used to convert the measured radar reflectivity Z into rain rate R are usually derived from point measurements. Thanks to the number of disdrometers, it was possible to quantify the spatial variability of the DSD at the radar pixel scale and to show that it can be significant. In this contribution, we show that the variability of the total drop concentration, of the median volume diameter and of the rain rate are significant, taking into account the sampling uncertainty associated with disdrometer measurements. The influence of this variability on the Z-R relationship can be non-negligible. Finally, the spatial structure of the DSD is quantified using a geostatistical tool, the variogram, and indicates high spatial correlation within a radar pixel.

  6. Design and Development Computer-Based E-Learning Teaching Material for Improving Mathematical Understanding Ability and Spatial Sense of Junior High School Students

    Science.gov (United States)

    Nurjanah; Dahlan, J. A.; Wibisono, Y.

    2017-02-01

    This paper aims to make a design and development computer-based e-learning teaching material for improving mathematical understanding ability and spatial sense of junior high school students. Furthermore, the particular aims are (1) getting teaching material design, evaluation model, and intrument to measure mathematical understanding ability and spatial sense of junior high school students; (2) conducting trials computer-based e-learning teaching material model, asessment, and instrument to develop mathematical understanding ability and spatial sense of junior high school students; (3) completing teaching material models of computer-based e-learning, assessment, and develop mathematical understanding ability and spatial sense of junior high school students; (4) resulting research product is teaching materials of computer-based e-learning. Furthermore, the product is an interactive learning disc. The research method is used of this study is developmental research which is conducted by thought experiment and instruction experiment. The result showed that teaching materials could be used very well. This is based on the validation of computer-based e-learning teaching materials, which is validated by 5 multimedia experts. The judgement result of face and content validity of 5 validator shows that the same judgement result to the face and content validity of each item test of mathematical understanding ability and spatial sense. The reliability test of mathematical understanding ability and spatial sense are 0,929 and 0,939. This reliability test is very high. While the validity of both tests have a high and very high criteria.

  7. Two specialized delayed-neutron detector designs for assays of fissionable elements in water and sediment samples

    International Nuclear Information System (INIS)

    Balestrini, S.J.; Balagna, J.P.; Menlove, H.O.

    1976-01-01

    Two specialized neutron-sensitive detectors are described which are employed for rapid assays of fissionable elements by sensing for delayed neutrons emitted by samples after they have been irradiated in a nuclear reactor. The more sensitive of the two detectors, designed to assay for uranium in water samples, is 40% efficient; the other, designed for sediment sample assays, is 27% efficient. These detectors are also designed to operate under water as an inexpensive shielding against neutron leakage from the reactor and neutrons from cosmic rays. (Auth.)

  8. The Effect of Origami-Based Instruction on Spatial Visualization, Geometry Achievement, and Geometric Reasoning

    Science.gov (United States)

    Arici, Sevil; Aslan-Tutak, Fatma

    2015-01-01

    This research study examined the effect of origami-based geometry instruction on spatial visualization, geometry achievement, and geometric reasoning of tenth-grade students in Turkey. The sample ("n" = 184) was chosen from a tenth-grade population of a public high school in Turkey. It was a quasi-experimental pretest/posttest design. A…

  9. Quality-control design for surface-water sampling in the National Water-Quality Network

    Science.gov (United States)

    Riskin, Melissa L.; Reutter, David C.; Martin, Jeffrey D.; Mueller, David K.

    2018-04-10

    The data-quality objectives for samples collected at surface-water sites in the National Water-Quality Network include estimating the extent to which contamination, matrix effects, and measurement variability affect interpretation of environmental conditions. Quality-control samples provide insight into how well the samples collected at surface-water sites represent the true environmental conditions. Quality-control samples used in this program include field blanks, replicates, and field matrix spikes. This report describes the design for collection of these quality-control samples and the data management needed to properly identify these samples in the U.S. Geological Survey’s national database.

  10. Planning Considerations for a Mars Sample Receiving Facility: Summary and Interpretation of Three Design Studies

    Science.gov (United States)

    Beaty, David W.; Allen, Carlton C.; Bass, Deborah S.; Buxbaum, Karen L.; Campbell, James K.; Lindstrom, David J.; Miller, Sylvia L.; Papanastassiou, Dimitri A.

    2009-10-01

    It has been widely understood for many years that an essential component of a Mars Sample Return mission is a Sample Receiving Facility (SRF). The purpose of such a facility would be to take delivery of the flight hardware that lands on Earth, open the spacecraft and extract the sample container and samples, and conduct an agreed-upon test protocol, while ensuring strict containment and contamination control of the samples while in the SRF. Any samples that are found to be non-hazardous (or are rendered non-hazardous by sterilization) would then be transferred to long-term curation. Although the general concept of an SRF is relatively straightforward, there has been considerable discussion about implementation planning. The Mars Exploration Program carried out an analysis of the attributes of an SRF to establish its scope, including minimum size and functionality, budgetary requirements (capital cost, operating costs, cost profile), and development schedule. The approach was to arrange for three independent design studies, each led by an architectural design firm, and compare the results. While there were many design elements in common identified by each study team, there were significant differences in the way human operators were to interact with the systems. In aggregate, the design studies provided insight into the attributes of a future SRF and the complex factors to consider for future programmatic planning.

  11. The effect of the spatial positioning of items on the reliability of questionnaires measuring affect

    Directory of Open Access Journals (Sweden)

    Leigh Leo

    2016-08-01

    Full Text Available Orientation: Extant research has shown that the relationship between spatial location and affect may have pervasive effects on evaluation. In particular, experimental findings on embodied cognition indicate that a person is spatially orientated to position what is positive at the top and what is negative at the bottom (vertical spatial orientation, and to a lesser extent, to position what is positive on the left and what is negative on the right (horizontal spatial orientation. It is therefore hypothesised, that when there is congruence between a respondent’s spatial orientation (related to affect and the spatial positioning (layout of a questionnaire, the reliability will be higher than in the case of incongruence. Research purpose: The principal objective of the two studies reported here was to ascertain the extent to which congruence between a respondent’s spatial orientation (related to affect and the layout of the questionnaire (spatial positioning of questionnaire items may impact on the reliability of a questionnaire measuring affect. Motivation for the study: The spatial position of items on a questionnaire measuring affect may indirectly impact on the reliability of the questionnaire. Research approach, design and method: In both studies, a controlled experimental research design was conducted using a sample of university students (n = 1825. Major findings: In both experiments, evidence was found to support the hypothesis that greater congruence between a respondent’s spatial orientation (related to affect and the spatial positioning (layout of a questionnaire leads to higher reliability on a questionnaire measuring affect. Practical implications: These findings may serve to create awareness of the influence of the spatial positioning of items as a confounding variable in questionnaire design. Contribution/value-add: Overall, this research complements previous studies by confirming the metaphorical representation of affect and

  12. Low-sensitivity H ∞ filter design for linear delta operator systems with sampling time jitter

    Science.gov (United States)

    Guo, Xiang-Gui; Yang, Guang-Hong

    2012-04-01

    This article is concerned with the problem of designing H ∞ filters for a class of linear discrete-time systems with low-sensitivity to sampling time jitter via delta operator approach. Delta-domain model is used to avoid the inherent numerical ill-condition resulting from the use of the standard shift-domain model at high sampling rates. Based on projection lemma in combination with the descriptor system approach often used to solve problems related to delay, a novel bounded real lemma with three slack variables for delta operator systems is presented. A sensitivity approach based on this novel lemma is proposed to mitigate the effects of sampling time jitter on system performance. Then, the problem of designing a low-sensitivity filter can be reduced to a convex optimisation problem. An important consideration in the design of correlation filters is the optimal trade-off between the standard H ∞ criterion and the sensitivity of the transfer function with respect to sampling time jitter. Finally, a numerical example demonstrating the validity of the proposed design method is given.

  13. Canceling the momentum in a phase-shifting algorithm to eliminate spatially uniform errors.

    Science.gov (United States)

    Hibino, Kenichi; Kim, Yangjin

    2016-08-10

    In phase-shifting interferometry, phase modulation nonlinearity causes both spatially uniform and nonuniform errors in the measured phase. Conventional linear-detuning error-compensating algorithms only eliminate the spatially variable error component. The uniform error is proportional to the inertial momentum of the data-sampling weight of a phase-shifting algorithm. This paper proposes a design approach to cancel the momentum by using characteristic polynomials in the Z-transform space and shows that an arbitrary M-frame algorithm can be modified to a new (M+2)-frame algorithm that acquires new symmetry to eliminate the uniform error.

  14. Visual Sample Plan (VSP) - FIELDS Integration

    Energy Technology Data Exchange (ETDEWEB)

    Pulsipher, Brent A.; Wilson, John E.; Gilbert, Richard O.; Hassig, Nancy L.; Carlson, Deborah K.; Bing-Canar, John; Cooper, Brian; Roth, Chuck

    2003-04-19

    Two software packages, VSP 2.1 and FIELDS 3.5, are being used by environmental scientists to plan the number and type of samples required to meet project objectives, display those samples on maps, query a database of past sample results, produce spatial models of the data, and analyze the data in order to arrive at defensible decisions. VSP 2.0 is an interactive tool to calculate optimal sample size and optimal sample location based on user goals, risk tolerance, and variability in the environment and in lab methods. FIELDS 3.0 is a set of tools to explore the sample results in a variety of ways to make defensible decisions with quantified levels of risk and uncertainty. However, FIELDS 3.0 has a small sample design module. VSP 2.0, on the other hand, has over 20 sampling goals, allowing the user to input site-specific assumptions such as non-normality of sample results, separate variability between field and laboratory measurements, make two-sample comparisons, perform confidence interval estimation, use sequential search sampling methods, and much more. Over 1,000 copies of VSP are in use today. FIELDS is used in nine of the ten U.S. EPA regions, by state regulatory agencies, and most recently by several international countries. Both software packages have been peer-reviewed, enjoy broad usage, and have been accepted by regulatory agencies as well as site project managers as key tools to help collect data and make environmental cleanup decisions. Recently, the two software packages were integrated, allowing the user to take advantage of the many design options of VSP, and the analysis and modeling options of FIELDS. The transition between the two is simple for the user – VSP can be called from within FIELDS, automatically passing a map to VSP and automatically retrieving sample locations and design information when the user returns to FIELDS. This paper will describe the integration, give a demonstration of the integrated package, and give users download

  15. Quantifying spatial heterogeneity from images

    International Nuclear Information System (INIS)

    Pomerantz, Andrew E; Song Yiqiao

    2008-01-01

    Visualization techniques are extremely useful for characterizing natural materials with complex spatial structure. Although many powerful imaging modalities exist, simple display of the images often does not convey the underlying spatial structure. Instead, quantitative image analysis can extract the most important features of the imaged object in a manner that is easier to comprehend and to compare from sample to sample. This paper describes the formulation of the heterogeneity spectrum to show the extent of spatial heterogeneity as a function of length scale for all length scales to which a particular measurement is sensitive. This technique is especially relevant for describing materials that simultaneously present spatial heterogeneity at multiple length scales. In this paper, the heterogeneity spectrum is applied for the first time to images from optical microscopy. The spectrum is measured for thin section images of complex carbonate rock cores showing heterogeneity at several length scales in the range 10-10 000 μm.

  16. Architectural Design Space Exploration of an FPGA-based Compressed Sampling Engine

    DEFF Research Database (Denmark)

    El-Sayed, Mohammad; Koch, Peter; Le Moullec, Yannick

    2015-01-01

    We present the architectural design space exploration of a compressed sampling engine for use in a wireless heart-rate monitoring system. We show how parallelism affects execution time at the register transfer level. Furthermore, two example solutions (modified semi-parallel and full...

  17. New adaptive sampling method in particle image velocimetry

    International Nuclear Information System (INIS)

    Yu, Kaikai; Xu, Jinglei; Tang, Lan; Mo, Jianwei

    2015-01-01

    This study proposes a new adaptive method to enable the number of interrogation windows and their positions in a particle image velocimetry (PIV) image interrogation algorithm to become self-adapted according to the seeding density. The proposed method can relax the constraint of uniform sampling rate and uniform window size commonly adopted in the traditional PIV algorithm. In addition, the positions of the sampling points are redistributed on the basis of the spring force generated by the sampling points. The advantages include control of the number of interrogation windows according to the local seeding density and smoother distribution of sampling points. The reliability of the adaptive sampling method is illustrated by processing synthetic and experimental images. The synthetic example attests to the advantages of the sampling method. Compared with that of the uniform interrogation technique in the experimental application, the spatial resolution is locally enhanced when using the proposed sampling method. (technical design note)

  18. Design of 2D time-varying vector fields.

    Science.gov (United States)

    Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D; Zhang, Eugene

    2012-10-01

    Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects.

  19. Integration of electromagnetic induction sensor data in soil sampling scheme optimization using simulated annealing.

    Science.gov (United States)

    Barca, E; Castrignanò, A; Buttafuoco, G; De Benedetto, D; Passarella, G

    2015-07-01

    Soil survey is generally time-consuming, labor-intensive, and costly. Optimization of sampling scheme allows one to reduce the number of sampling points without decreasing or even increasing the accuracy of investigated attribute. Maps of bulk soil electrical conductivity (EC a ) recorded with electromagnetic induction (EMI) sensors could be effectively used to direct soil sampling design for assessing spatial variability of soil moisture. A protocol, using a field-scale bulk EC a survey, has been applied in an agricultural field in Apulia region (southeastern Italy). Spatial simulated annealing was used as a method to optimize spatial soil sampling scheme taking into account sampling constraints, field boundaries, and preliminary observations. Three optimization criteria were used. the first criterion (minimization of mean of the shortest distances, MMSD) optimizes the spreading of the point observations over the entire field by minimizing the expectation of the distance between an arbitrarily chosen point and its nearest observation; the second criterion (minimization of weighted mean of the shortest distances, MWMSD) is a weighted version of the MMSD, which uses the digital gradient of the grid EC a data as weighting function; and the third criterion (mean of average ordinary kriging variance, MAOKV) minimizes mean kriging estimation variance of the target variable. The last criterion utilizes the variogram model of soil water content estimated in a previous trial. The procedures, or a combination of them, were tested and compared in a real case. Simulated annealing was implemented by the software MSANOS able to define or redesign any sampling scheme by increasing or decreasing the original sampling locations. The output consists of the computed sampling scheme, the convergence time, and the cooling law, which can be an invaluable support to the process of sampling design. The proposed approach has found the optimal solution in a reasonable computation time. The

  20. GIS-assisted spatial analysis for urban regulatory detailed planning: designer's dimension in the Chinese code system

    Science.gov (United States)

    Yu, Yang; Zeng, Zheng

    2009-10-01

    By discussing the causes behind the high amendments ratio in the implementation of urban regulatory detailed plans in China despite its law-ensured status, the study aims to reconcile conflict between the legal authority of regulatory detailed planning and the insufficient scientific support in its decision-making and compilation by introducing into the process spatial analysis based on GIS technology and 3D modeling thus present a more scientific and flexible approach to regulatory detailed planning in China. The study first points out that the current compilation process of urban regulatory detailed plan in China employs mainly an empirical approach which renders it constantly subjected to amendments; the study then discusses the need and current utilization of GIS in the Chinese system and proposes the framework of a GIS-assisted 3D spatial analysis process from the designer's perspective which can be regarded as an alternating processes between the descriptive codes and physical design in the compilation of regulatory detailed planning. With a case study of the processes and results from the application of the framework, the paper concludes that the proposed framework can be an effective instrument which provides more rationality, flexibility and thus more efficiency to the compilation and decision-making process of urban regulatory detailed plan in China.

  1. Impact of preferential sampling on exposure prediction and health effect inference in the context of air pollution epidemiology.

    Science.gov (United States)

    Lee, A; Szpiro, A; Kim, S Y; Sheppard, L

    2015-06-01

    Preferential sampling has been defined in the context of geostatistical modeling as the dependence between the sampling locations and the process that describes the spatial structure of the data. It can occur when networks are designed to find high values. For example, in networks based on the U.S. Clean Air Act monitors are sited to determine whether air quality standards are exceeded. We study the impact of the design of monitor networks in the context of air pollution epidemiology studies. The effect of preferential sampling has been illustrated in the literature by highlighting its impact on spatial predictions. In this paper, we use these predictions as input in a second stage analysis, and we assess how they affect health effect inference. Our work is motivated by data from two United States regulatory networks and health data from the Multi-Ethnic Study of Atherosclerosis and Air Pollution. The two networks were designed to monitor air pollution in urban and rural areas respectively, and we found that the health analysis results based on the two networks can lead to different scientific conclusions. We use preferential sampling to gain insight into these differences. We designed a simulation study, and found that the validity and reliability of the health effect estimate can be greatly affected by how we sample the monitor locations. To better understand its effect on second stage inference, we identify two components of preferential sampling that shed light on how preferential sampling alters the properties of the health effect estimate.

  2. Impact of preferential sampling on exposure prediction and health effect inference in the context of air pollution epidemiology

    Science.gov (United States)

    Lee, A.; Szpiro, A.; Kim, S.Y.; Sheppard, L.

    2018-01-01

    Summary Preferential sampling has been defined in the context of geostatistical modeling as the dependence between the sampling locations and the process that describes the spatial structure of the data. It can occur when networks are designed to find high values. For example, in networks based on the U.S. Clean Air Act monitors are sited to determine whether air quality standards are exceeded. We study the impact of the design of monitor networks in the context of air pollution epidemiology studies. The effect of preferential sampling has been illustrated in the literature by highlighting its impact on spatial predictions. In this paper, we use these predictions as input in a second stage analysis, and we assess how they affect health effect inference. Our work is motivated by data from two United States regulatory networks and health data from the Multi-Ethnic Study of Atherosclerosis and Air Pollution. The two networks were designed to monitor air pollution in urban and rural areas respectively, and we found that the health analysis results based on the two networks can lead to different scientific conclusions. We use preferential sampling to gain insight into these differences. We designed a simulation study, and found that the validity and reliability of the health effect estimate can be greatly affected by how we sample the monitor locations. To better understand its effect on second stage inference, we identify two components of preferential sampling that shed light on how preferential sampling alters the properties of the health effect estimate. PMID:29576734

  3. Determination of the spatial resolution of an aperture-type near-field scanning optical microscope using a standard sample of a quantum-dot-embedded polymer film

    International Nuclear Information System (INIS)

    Kim, J. Y.; Kim, D. C.; Nakajima, K.; Mitsui, T.; Aoki, H.

    2010-01-01

    The near-field scanning optical microscope (NSOM) is a form of scanning probe microscope that achieves, through the use of the near-field, a spatial resolution significantly superior to that defined by the Abbe diffraction limit. Although the term spatial resolution has a clear meaning, it is often used in different ways in characterizing the NSOM instrument. In this paper, we describe the concept, the cautions, and the general guidelines of a method to measure the spatial resolution of an aperture-type NSOM instrument. As an example, a quantum dot embedded polymer film was prepared and imaged as a test sample, and the determination of the lateral resolution was demonstrated using the described method.

  4. On spatial coalescents with multiple mergers in two dimensions.

    Science.gov (United States)

    Heuer, Benjamin; Sturm, Anja

    2013-08-01

    We consider the genealogy of a sample of individuals taken from a spatially structured population when the variance of the offspring distribution is relatively large. The space is structured into discrete sites of a graph G. If the population size at each site is large, spatial coalescents with multiple mergers, so called spatial Λ-coalescents, for which ancestral lines migrate in space and coalesce according to some Λ-coalescent mechanism, are shown to be appropriate approximations to the genealogy of a sample of individuals. We then consider as the graph G the two dimensional torus with side length 2L+1 and show that as L tends to infinity, and time is rescaled appropriately, the partition structure of spatial Λ-coalescents of individuals sampled far enough apart converges to the partition structure of a non-spatial Kingman coalescent. From a biological point of view this means that in certain circumstances both the spatial structure as well as larger variances of the underlying offspring distribution are harder to detect from the sample. However, supplemental simulations show that for moderately large L the different structure is still evident. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. UTOOLS: microcomputer software for spatial analysis and landscape visualization.

    Science.gov (United States)

    Alan A. Ager; Robert J. McGaughey

    1997-01-01

    UTOOLS is a collection of programs designed to integrate various spatial data in a way that allows versatile spatial analysis and visualization. The programs were designed for watershed-scale assessments in which a wide array of resource data must be integrated, analyzed, and interpreted. UTOOLS software combines raster, attribute, and vector data into "spatial...

  6. High-resolution room-temperature sample scanning superconducting quantum interference device microscope configurable for geological and biomagnetic applications

    Science.gov (United States)

    Fong, L. E.; Holzer, J. R.; McBride, K. K.; Lima, E. A.; Baudenbacher, F.; Radparvar, M.

    2005-05-01

    We have developed a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with submillimeter resolution. The low-critical-temperature (Tc) niobium-based monolithic SQUID sensors are mounted on the tip of a sapphire and thermally anchored to the helium reservoir. A 25μm sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows us to adjust the sample-to-sensor spacing from the top of the Dewar. We achieved a sensor-to-sample spacing of 100μm, which could be maintained for periods of up to four weeks. Different SQUID sensor designs are necessary to achieve the best combination of spatial resolution and field sensitivity for a given source configuration. For imaging thin sections of geological samples, we used a custom-designed monolithic low-Tc niobium bare SQUID sensor, with an effective diameter of 80μm, and achieved a field sensitivity of 1.5pT/Hz1/2 and a magnetic moment sensitivity of 5.4×10-18Am2/Hz1/2 at a sensor-to-sample spacing of 100μm in the white noise region for frequencies above 100Hz. Imaging action currents in cardiac tissue requires a higher field sensitivity, which can only be achieved by compromising spatial resolution. We developed a monolithic low-Tc niobium multiloop SQUID sensor, with sensor sizes ranging from 250μm to 1mm, and achieved sensitivities of 480-180fT /Hz1/2 in the white noise region for frequencies above 100Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography to magnetic field maps in thin sections of geological samples.

  7. Spatial Autocorrelation and Uncertainty Associated with Remotely-Sensed Data

    Directory of Open Access Journals (Sweden)

    Daniel A. Griffith

    2016-06-01

    Full Text Available Virtually all remotely sensed data contain spatial autocorrelation, which impacts upon their statistical features of uncertainty through variance inflation, and the compounding of duplicate information. Estimating the nature and degree of this spatial autocorrelation, which is usually positive and very strong, has been hindered by computational intensity associated with the massive number of pixels in realistically-sized remotely-sensed images, a situation that more recently has changed. Recent advances in spatial statistical estimation theory support the extraction of information and the distilling of knowledge from remotely-sensed images in a way that accounts for latent spatial autocorrelation. This paper summarizes an effective methodological approach to achieve this end, illustrating results with a 2002 remotely sensed-image of the Florida Everglades, and simulation experiments. Specifically, uncertainty of spatial autocorrelation parameter in a spatial autoregressive model is modeled with a beta-beta mixture approach and is further investigated with three different sampling strategies: coterminous sampling, random sub-region sampling, and increasing domain sub-regions. The results suggest that uncertainty associated with remotely-sensed data should be cast in consideration of spatial autocorrelation. It emphasizes that one remaining challenge is to better quantify the spatial variability of spatial autocorrelation estimates across geographic landscapes.

  8. Precision, time, and cost: a comparison of three sampling designs in an emergency setting

    Science.gov (United States)

    Deitchler, Megan; Deconinck, Hedwig; Bergeron, Gilles

    2008-01-01

    The conventional method to collect data on the health, nutrition, and food security status of a population affected by an emergency is a 30 × 30 cluster survey. This sampling method can be time and resource intensive and, accordingly, may not be the most appropriate one when data are needed rapidly for decision making. In this study, we compare the precision, time and cost of the 30 × 30 cluster survey with two alternative sampling designs: a 33 × 6 cluster design (33 clusters, 6 observations per cluster) and a 67 × 3 cluster design (67 clusters, 3 observations per cluster). Data for each sampling design were collected concurrently in West Darfur, Sudan in September-October 2005 in an emergency setting. Results of the study show the 30 × 30 design to provide more precise results (i.e. narrower 95% confidence intervals) than the 33 × 6 and 67 × 3 design for most child-level indicators. Exceptions are indicators of immunization and vitamin A capsule supplementation coverage which show a high intra-cluster correlation. Although the 33 × 6 and 67 × 3 designs provide wider confidence intervals than the 30 × 30 design for child anthropometric indicators, the 33 × 6 and 67 × 3 designs provide the opportunity to conduct a LQAS hypothesis test to detect whether or not a critical threshold of global acute malnutrition prevalence has been exceeded, whereas the 30 × 30 design does not. For the household-level indicators tested in this study, the 67 × 3 design provides the most precise results. However, our results show that neither the 33 × 6 nor the 67 × 3 design are appropriate for assessing indicators of mortality. In this field application, data collection for the 33 × 6 and 67 × 3 designs required substantially less time and cost than that required for the 30 × 30 design. The findings of this study suggest the 33 × 6 and 67 × 3 designs can provide useful time- and resource-saving alternatives to the 30 × 30 method of data collection in emergency

  9. Precision, time, and cost: a comparison of three sampling designs in an emergency setting

    Directory of Open Access Journals (Sweden)

    Deconinck Hedwig

    2008-05-01

    Full Text Available Abstract The conventional method to collect data on the health, nutrition, and food security status of a population affected by an emergency is a 30 × 30 cluster survey. This sampling method can be time and resource intensive and, accordingly, may not be the most appropriate one when data are needed rapidly for decision making. In this study, we compare the precision, time and cost of the 30 × 30 cluster survey with two alternative sampling designs: a 33 × 6 cluster design (33 clusters, 6 observations per cluster and a 67 × 3 cluster design (67 clusters, 3 observations per cluster. Data for each sampling design were collected concurrently in West Darfur, Sudan in September-October 2005 in an emergency setting. Results of the study show the 30 × 30 design to provide more precise results (i.e. narrower 95% confidence intervals than the 33 × 6 and 67 × 3 design for most child-level indicators. Exceptions are indicators of immunization and vitamin A capsule supplementation coverage which show a high intra-cluster correlation. Although the 33 × 6 and 67 × 3 designs provide wider confidence intervals than the 30 × 30 design for child anthropometric indicators, the 33 × 6 and 67 × 3 designs provide the opportunity to conduct a LQAS hypothesis test to detect whether or not a critical threshold of global acute malnutrition prevalence has been exceeded, whereas the 30 × 30 design does not. For the household-level indicators tested in this study, the 67 × 3 design provides the most precise results. However, our results show that neither the 33 × 6 nor the 67 × 3 design are appropriate for assessing indicators of mortality. In this field application, data collection for the 33 × 6 and 67 × 3 designs required substantially less time and cost than that required for the 30 × 30 design. The findings of this study suggest the 33 × 6 and 67 × 3 designs can provide useful time- and resource-saving alternatives to the 30 × 30 method of data

  10. Systematic sampling with errors in sample locations

    DEFF Research Database (Denmark)

    Ziegel, Johanna; Baddeley, Adrian; Dorph-Petersen, Karl-Anton

    2010-01-01

    analysis using point process methods. We then analyze three different models for the error process, calculate exact expressions for the variances, and derive asymptotic variances. Errors in the placement of sample points can lead to substantial inflation of the variance, dampening of zitterbewegung......Systematic sampling of points in continuous space is widely used in microscopy and spatial surveys. Classical theory provides asymptotic expressions for the variance of estimators based on systematic sampling as the grid spacing decreases. However, the classical theory assumes that the sample grid...... is exactly periodic; real physical sampling procedures may introduce errors in the placement of the sample points. This paper studies the effect of errors in sample positioning on the variance of estimators in the case of one-dimensional systematic sampling. First we sketch a general approach to variance...

  11. Improved Density Based Spatial Clustering of Applications of Noise Clustering Algorithm for Knowledge Discovery in Spatial Data

    Directory of Open Access Journals (Sweden)

    Arvind Sharma

    2016-01-01

    Full Text Available There are many techniques available in the field of data mining and its subfield spatial data mining is to understand relationships between data objects. Data objects related with spatial features are called spatial databases. These relationships can be used for prediction and trend detection between spatial and nonspatial objects for social and scientific reasons. A huge data set may be collected from different sources as satellite images, X-rays, medical images, traffic cameras, and GIS system. To handle this large amount of data and set relationship between them in a certain manner with certain results is our primary purpose of this paper. This paper gives a complete process to understand how spatial data is different from other kinds of data sets and how it is refined to apply to get useful results and set trends to predict geographic information system and spatial data mining process. In this paper a new improved algorithm for clustering is designed because role of clustering is very indispensable in spatial data mining process. Clustering methods are useful in various fields of human life such as GIS (Geographic Information System, GPS (Global Positioning System, weather forecasting, air traffic controller, water treatment, area selection, cost estimation, planning of rural and urban areas, remote sensing, and VLSI designing. This paper presents study of various clustering methods and algorithms and an improved algorithm of DBSCAN as IDBSCAN (Improved Density Based Spatial Clustering of Application of Noise. The algorithm is designed by addition of some important attributes which are responsible for generation of better clusters from existing data sets in comparison of other methods.

  12. Spatial capture-recapture design and modelling for the study of small mammals.

    Directory of Open Access Journals (Sweden)

    Juan Romairone

    Full Text Available Spatial capture-recapture modelling (SCR is a powerful analytical tool to estimate density and derive information on space use and behaviour of elusive animals. Yet, SCR has been seldom applied to the study of ecologically keystone small mammals. Here we highlight its potential and requirements with a case study on common voles (Microtus arvalis. First, we address mortality associated with live-trapping, which can be high in small mammals, and must be kept minimal. We designed and tested a nest box coupled with a classic Sherman trap and show that it allows a 5-fold reduction of mortality in traps. Second, we address the need to adjust the trapping grid to the individual home range to maximize spatial recaptures. In May-June 2016, we captured and tagged with transponders 227 voles in a 1.2-ha area during two monthly sessions. Using a Bayesian SCR with a multinomial approach, we estimated: (1 the baseline detection rate and investigated variation according to sex, time or behaviour (aversion/attraction after a previous capture; (2 the parameter sigma that describes how detection probability declines as a function of the distance to an individual´s activity centre, and investigated variation according to sex; and (3 density and population sex-ratio. We show that reducing the maximum distance between traps from 12 to 9.6m doubled spatial recaptures and improved model predictions. Baseline detection rate increased over time (after overcoming a likely aversion to entering new odourless traps and was greater for females than males in June. The sigma parameter of males was twice that of females, indicating larger home ranges. Density estimates were of 142.92±38.50 and 168.25±15.79 voles/ha in May and June, respectively, with 2-3 times more females than males. We highlight the potential and broad applicability that SCR offers and provide specific recommendations for using it to study small mammals like voles.

  13. SYNTHESIS OF ACTIVE SCREENING SYSTEM OF MAGNETIC FIELD OF HIGH VOLTAGE POWER LINES OF DIFFERENT DESIGN TAKING INTO ACCOUNT SPATIAL AND TEMPORAL DISTRIBUTION OF MAGNETIC FIELD

    Directory of Open Access Journals (Sweden)

    B.I. Kuznetsov

    2017-04-01

    Full Text Available Purpose. Analyze the spatial and temporal distribution of the magnetic field of high voltage power lines with different design allowing and development of recommendations for the design of active screening systems by magnetic field of high voltage power lines. Methodology. Analysis of the spatial and temporal distribution of the magnetic field of high voltage power lines of different design allowing is made on the basis of Maxwell's equations solutions in the quasi-stationary approximation. Determination of the number, configuration, spatial arrangement and the compensation coil currents is formulated in the form of multiobjective optimization problem that is solved by multi-agent multiswarm stochastic optimization based on Pareto optimal solutions. Results of active screening system for the synthesis of various types of transmission lines with different numbers of windings controlled. The possibility of a significant reduction in the level of the flux density of the magnetic field source within a given region of space. Originality. For the first time an analysis of the spatial and temporal distribution of the magnetic field of power lines with different types and based on findings developed recommendations for the design of active screening system by magnetic field of high voltage power lines. Practical value. Practical recommendations on reasonable choice of the number and spatial arrangement of compensating windings of active screening system by magnetic field of high voltage power lines of different design allowing for the spatial and temporal distribution of the magnetic field. Results of active screening system synthesis of the magnetic field of industrial frequency generated by single-circuit 110 kV high voltage power lines with the supports have 330 - 1T «triangle» rotating magnetic field with full polarization in a residential five-storey building, located near the power lines. The system contains three compensating coil and reduces

  14. Spatial and Social Comparison of the Traditional Neighbourhood and the Modern Gated Community: Eskisehir Sample

    Science.gov (United States)

    Koca, Güler; Kayılıoğlu, Begüm

    2017-10-01

    People’s expectations from the city have changed with the transformation of urban life. Urban space is not the only place where structures are formed. Urban space also consists of a combination of public spaces, semi-public spaces, and private spaces. As social and cultural phenomena, social events occur and people communicate with each other in these spaces. Therefore, streets and neighbourhoods composed of houses are not only physical spaces, but they also have important social and cultural dimensions. Modern life has brought a plethora of changes that affected the cities. Due to rapid changes today, the urban space forms in the conversion process are also designed differently. Historically, the space organization based on the streets of the semi-public life in Turkish cities has been transformed into mass housing and housing estate-style life in recent years. This transformation has been expressed differently in urban life not only physically, but also socially and culturally. The street which is regarded as a public space was a place where people communicated and social events happened in the past; but today, the streets are rife with security problems and they have become a concept evoking an image of street that is bordered with buildings. Spatial separation has emerged with middle and upper classes isolating themselves from the streets and heading towards gated communities, especially for security reasons. This social and spatial separation has begun to lead to various problems in cities. Eskisehir is an important Anatolian city located between Ankara, the capital of Turkey, and Istanbul. This research was conducted in two research sites in Eskisehir: one is a gated community where middle and upper-income groups reside, and the other is a residential neighbourhood where middle-income groups live. These groups were studied through a survey. The spatial preferences of the residents in these two areas and their relation with the neighbourhood are examined

  15. Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes

    International Nuclear Information System (INIS)

    Bachoc, Francois

    2014-01-01

    Covariance parameter estimation of Gaussian processes is analyzed in an asymptotic framework. The spatial sampling is a randomly perturbed regular grid and its deviation from the perfect regular grid is controlled by a single scalar regularity parameter. Consistency and asymptotic normality are proved for the Maximum Likelihood and Cross Validation estimators of the covariance parameters. The asymptotic covariance matrices of the covariance parameter estimators are deterministic functions of the regularity parameter. By means of an exhaustive study of the asymptotic covariance matrices, it is shown that the estimation is improved when the regular grid is strongly perturbed. Hence, an asymptotic confirmation is given to the commonly admitted fact that using groups of observation points with small spacing is beneficial to covariance function estimation. Finally, the prediction error, using a consistent estimator of the covariance parameters, is analyzed in detail. (authors)

  16. Spatial cluster modelling

    CERN Document Server

    Lawson, Andrew B

    2002-01-01

    Research has generated a number of advances in methods for spatial cluster modelling in recent years, particularly in the area of Bayesian cluster modelling. Along with these advances has come an explosion of interest in the potential applications of this work, especially in epidemiology and genome research. In one integrated volume, this book reviews the state-of-the-art in spatial clustering and spatial cluster modelling, bringing together research and applications previously scattered throughout the literature. It begins with an overview of the field, then presents a series of chapters that illuminate the nature and purpose of cluster modelling within different application areas, including astrophysics, epidemiology, ecology, and imaging. The focus then shifts to methods, with discussions on point and object process modelling, perfect sampling of cluster processes, partitioning in space and space-time, spatial and spatio-temporal process modelling, nonparametric methods for clustering, and spatio-temporal ...

  17. Spatial distribution of Munida intermedia and M. sarsi (crustacea: Anomura) on the Galician continental shelf (NW Spain): Application of geostatistical analysis

    Science.gov (United States)

    Freire, J.; González-Gurriarán, E.; Olaso, I.

    1992-12-01

    Geostatistical methodology was used to analyse spatial structure and distribution of the epibenthic crustaceans Munida intermedia and M. sarsi within sets of data which had been collected during three survey cruises carried out on the Galician continental shelf (1983 and 1984). This study investigates the feasibility of using geostatistics for data collected according to traditional methods and of enhancing such methodology. The experimental variograms were calculated (pooled variance minus spatial covariance between samples taken one pair at a time vs. distance) and fitted to a 'spherical' model. The spatial structure model was used to estimate the abundance and distribution of the populations studied using the technique of kriging. The species display spatial structures, which are well marked during high density periods and in some areas (especially northern shelf). Geostatistical analysis allows identification of the density gradients in space as well as the patch grain along the continental shelf of 16-25 km diameter for M. intermedia and 12-20 km for M. sarsi. Patches of both species have a consistent location throughout the different cruises. As in other geographical areas, M. intermedia and M. sarsi usually appear at depths ranging from 200 to 500 m, with the highest densities in the continental shelf area located between Fisterra and Estaca de Bares. Althouh sampling was not originally designed specifically for geostatistics, this assay provides a measurement of spatial covariance, and shows variograms with variable structure depending on population density and geographical area. These ideas are useful in improving the design of future sampling cruises.

  18. Spatial data infrastructures at work analysing the spatial enablement of public sector processes

    CERN Document Server

    Dessers, Ezra

    2013-01-01

    In 'Spatial Data Infrastructures at Work', Ezra Dessers introduces spatial enablement as a key concept to describe the realisation of SDI objectives in the context of individual public sector processes. Drawing on four years of research, Dessers argues that it has become essential, even unavoidable, to manage and (re)design inter-organisational process chains in order to further advance the role of SDIs as an enabling platform for a spatially enabled society. Detailed case studies illustrate that the process he describes is the setting in which one can see the SDI at work.

  19. Sex effects on spatial learning but not on spatial memory retrieval in healthy young adults.

    Science.gov (United States)

    Piber, Dominique; Nowacki, Jan; Mueller, Sven C; Wingenfeld, Katja; Otte, Christian

    2018-01-15

    Sex differences have been found in spatial learning and spatial memory, with several studies indicating that males outperform females. We tested in the virtual Morris Water Maze (vMWM) task, whether sex differences in spatial cognitive processes are attributable to differences in spatial learning or spatial memory retrieval in a large student sample. We tested 90 healthy students (45 women and 45 men) with a mean age of 23.5 years (SD=3.5). Spatial learning and spatial memory retrieval were measured by using the vMWM task, during which participants had to search a virtual pool for a hidden platform, facilitated by visual cues surrounding the pool. Several learning trials assessed spatial learning, while a separate probe trial assessed spatial memory retrieval. We found a significant sex effect during spatial learning, with males showing shorter latency and shorter path length, as compared to females (all pretrieval (p=0.615). Furthermore, post-hoc analyses revealed significant sex differences in spatial search strategies (pretrieval. Our study raises the question, whether men and women use different learning strategies, which nevertheless result in equal performances of spatial memory retrieval. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Brain-grounded theory of temporal and spatial design in architecture and the environment

    CERN Document Server

    Ando, Yoichi

    2016-01-01

    In this book, brain-grounded theory of temporal and spatial design in architecture and the environment is discussed. The author believes that it is a key to solving such global problems as environmental disorders and severe climate change as well as conflicts that are caused by the ill-conceived notion of “time is money”. There are three phases or aspects of a person’s life: the physical life, the spiritual or mental life, and the third stage of life, when a person moves from middle age into old age and can choose what he or she wishes to do instead of simply what must be done. This book describes the temporal design of the environment based on the theory of subjective preference, which could make it possible for an individual to realize a healthy life in all three phases. In his previously published work, the present author wrote that the theory of subjective preference has been established for the sound and visual fields based on neural evidence, and that subjective preference is an overall response o...

  1. Dealing with trade-offs in destructive sampling designs for occupancy surveys.

    Directory of Open Access Journals (Sweden)

    Stefano Canessa

    Full Text Available Occupancy surveys should be designed to minimise false absences. This is commonly achieved by increasing replication or increasing the efficiency of surveys. In the case of destructive sampling designs, in which searches of individual microhabitats represent the repeat surveys, minimising false absences leads to an inherent trade-off. Surveyors can sample more low quality microhabitats, bearing the resultant financial costs and producing wider-spread impacts, or they can target high quality microhabitats were the focal species is more likely to be found and risk more severe impacts on local habitat quality. We show how this trade-off can be solved with a decision-theoretic approach, using the Millewa Skink Hemiergis millewae from southern Australia as a case study. Hemiergis millewae is an endangered reptile that is best detected using destructive sampling of grass hummocks. Within sites that were known to be occupied by H. millewae, logistic regression modelling revealed that lizards were more frequently detected in large hummocks. If this model is an accurate representation of the detection process, searching large hummocks is more efficient and requires less replication, but this strategy also entails destruction of the best microhabitats for the species. We developed an optimisation tool to calculate the minimum combination of the number and size of hummocks to search to achieve a given cumulative probability of detecting the species at a site, incorporating weights to reflect the sensitivity of the results to a surveyor's priorities. The optimisation showed that placing high weight on minimising volume necessitates impractical replication, whereas placing high weight on minimising replication requires searching very large hummocks which are less common and may be vital for H. millewae. While destructive sampling methods are sometimes necessary, surveyors must be conscious of the ecological impacts of these methods. This study provides a

  2. A novel sampling design to explore gene-longevity associations

    DEFF Research Database (Denmark)

    De Rango, Francesco; Dato, Serena; Bellizzi, Dina

    2008-01-01

    To investigate the genetic contribution to familial similarity in longevity, we set up a novel experimental design where cousin-pairs born from siblings who were concordant or discordant for the longevity trait were analyzed. To check this design, two chromosomal regions already known to encompass...... from concordant and discordant siblings. In addition, we analyzed haplotype transmission from centenarians to offspring, and a statistically significant Transmission Ratio Distortion (TRD) was observed for both chromosomal regions in the discordant families (P=0.007 for 6p21.3 and P=0.015 for 11p15.......5). In concordant families, a marginally significant TRD was observed at 6p21.3 only (P=0.06). Although no significant difference emerged between the two groups of cousin-pairs, our study gave new insights on the hindrances to recruiting a suitable sample to obtain significant IBD data on longevity...

  3. [Application of simulated annealing method and neural network on optimizing soil sampling schemes based on road distribution].

    Science.gov (United States)

    Han, Zong-wei; Huang, Wei; Luo, Yun; Zhang, Chun-di; Qi, Da-cheng

    2015-03-01

    Taking the soil organic matter in eastern Zhongxiang County, Hubei Province, as a research object, thirteen sample sets from different regions were arranged surrounding the road network, the spatial configuration of which was optimized by the simulated annealing approach. The topographic factors of these thirteen sample sets, including slope, plane curvature, profile curvature, topographic wetness index, stream power index and sediment transport index, were extracted by the terrain analysis. Based on the results of optimization, a multiple linear regression model with topographic factors as independent variables was built. At the same time, a multilayer perception model on the basis of neural network approach was implemented. The comparison between these two models was carried out then. The results revealed that the proposed approach was practicable in optimizing soil sampling scheme. The optimal configuration was capable of gaining soil-landscape knowledge exactly, and the accuracy of optimal configuration was better than that of original samples. This study designed a sampling configuration to study the soil attribute distribution by referring to the spatial layout of road network, historical samples, and digital elevation data, which provided an effective means as well as a theoretical basis for determining the sampling configuration and displaying spatial distribution of soil organic matter with low cost and high efficiency.

  4. The Bayesian group lasso for confounded spatial data

    Science.gov (United States)

    Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin E.; Walsh, Daniel P.

    2017-01-01

    Generalized linear mixed models for spatial processes are widely used in applied statistics. In many applications of the spatial generalized linear mixed model (SGLMM), the goal is to obtain inference about regression coefficients while achieving optimal predictive ability. When implementing the SGLMM, multicollinearity among covariates and the spatial random effects can make computation challenging and influence inference. We present a Bayesian group lasso prior with a single tuning parameter that can be chosen to optimize predictive ability of the SGLMM and jointly regularize the regression coefficients and spatial random effect. We implement the group lasso SGLMM using efficient Markov chain Monte Carlo (MCMC) algorithms and demonstrate how multicollinearity among covariates and the spatial random effect can be monitored as a derived quantity. To test our method, we compared several parameterizations of the SGLMM using simulated data and two examples from plant ecology and disease ecology. In all examples, problematic levels multicollinearity occurred and influenced sampling efficiency and inference. We found that the group lasso prior resulted in roughly twice the effective sample size for MCMC samples of regression coefficients and can have higher and less variable predictive accuracy based on out-of-sample data when compared to the standard SGLMM.

  5. Design of 2D Time-Varying Vector Fields

    KAUST Repository

    Chen, Guoning

    2012-10-01

    Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects. © 1995-2012 IEEE.

  6. Design of 2D Time-Varying Vector Fields

    KAUST Repository

    Chen, Guoning; Kwatra, Vivek; Wei, Li-Yi; Hansen, Charles D.; Zhang, Eugene

    2012-01-01

    Design of time-varying vector fields, i.e., vector fields that can change over time, has a wide variety of important applications in computer graphics. Existing vector field design techniques do not address time-varying vector fields. In this paper, we present a framework for the design of time-varying vector fields, both for planar domains as well as manifold surfaces. Our system supports the creation and modification of various time-varying vector fields with desired spatial and temporal characteristics through several design metaphors, including streamlines, pathlines, singularity paths, and bifurcations. These design metaphors are integrated into an element-based design to generate the time-varying vector fields via a sequence of basis field summations or spatial constrained optimizations at the sampled times. The key-frame design and field deformation are also introduced to support other user design scenarios. Accordingly, a spatial-temporal constrained optimization and the time-varying transformation are employed to generate the desired fields for these two design scenarios, respectively. We apply the time-varying vector fields generated using our design system to a number of important computer graphics applications that require controllable dynamic effects, such as evolving surface appearance, dynamic scene design, steerable crowd movement, and painterly animation. Many of these are difficult or impossible to achieve via prior simulation-based methods. In these applications, the time-varying vector fields have been applied as either orientation fields or advection fields to control the instantaneous appearance or evolving trajectories of the dynamic effects. © 1995-2012 IEEE.

  7. Towards Representative Metallurgical Sampling and Gold Recovery Testwork Programmes

    Directory of Open Access Journals (Sweden)

    Simon C. Dominy

    2018-05-01

    Full Text Available When developing a process flowsheet, the risks in achieving positive financial outcomes are minimised by ensuring representative metallurgical samples and high quality testwork. The quality and type of samples used are as important as the testwork itself. The key characteristic required of any set of samples is that they represent a given domain and quantify its variability. There are those who think that stating a sample(s is representative makes it representative without justification. There is a need to consider both (1 in-situ and (2 testwork sub-sample representativity. Early ore/waste characterisation and domain definition are required, so that sampling and testwork protocols can be designed to suit the style of mineralisation in question. The Theory of Sampling (TOS provides an insight into the causes and magnitude of errors that may occur during the sampling of particulate materials (e.g., broken rock and is wholly applicable to metallurgical sampling. Quality assurance/quality control (QAQC is critical throughout all programmes. Metallurgical sampling and testwork should be fully integrated into geometallurgical studies. Traditional metallurgical testwork is critical for plant design and is an inherent part of geometallurgy. In a geometallurgical study, multiple spatially distributed small-scale tests are used as proxies for process parameters. These will be validated against traditional testwork results. This paper focusses on sampling and testwork for gold recovery determination. It aims to provide the reader with the background to move towards the design, implementation and reporting of representative and fit-for-purpose sampling and testwork programmes. While the paper does not intend to provide a definitive commentary, it critically assesses the hard-rock sampling methods used and their optimal collection and preparation. The need for representative sampling and quality testwork to avoid financial and intangible losses is

  8. Point process models for spatio-temporal distance sampling data from a large-scale survey of blue whales

    KAUST Repository

    Yuan, Yuan; Bachl, Fabian E.; Lindgren, Finn; Borchers, David L.; Illian, Janine B.; Buckland, Stephen T.; Rue, Haavard; Gerrodette, Tim

    2017-01-01

    Distance sampling is a widely used method for estimating wildlife population abundance. The fact that conventional distance sampling methods are partly design-based constrains the spatial resolution at which animal density can be estimated using these methods. Estimates are usually obtained at survey stratum level. For an endangered species such as the blue whale, it is desirable to estimate density and abundance at a finer spatial scale than stratum. Temporal variation in the spatial structure is also important. We formulate the process generating distance sampling data as a thinned spatial point process and propose model-based inference using a spatial log-Gaussian Cox process. The method adopts a flexible stochastic partial differential equation (SPDE) approach to model spatial structure in density that is not accounted for by explanatory variables, and integrated nested Laplace approximation (INLA) for Bayesian inference. It allows simultaneous fitting of detection and density models and permits prediction of density at an arbitrarily fine scale. We estimate blue whale density in the Eastern Tropical Pacific Ocean from thirteen shipboard surveys conducted over 22 years. We find that higher blue whale density is associated with colder sea surface temperatures in space, and although there is some positive association between density and mean annual temperature, our estimates are consistent with no trend in density across years. Our analysis also indicates that there is substantial spatially structured variation in density that is not explained by available covariates.

  9. Point process models for spatio-temporal distance sampling data from a large-scale survey of blue whales

    KAUST Repository

    Yuan, Yuan

    2017-12-28

    Distance sampling is a widely used method for estimating wildlife population abundance. The fact that conventional distance sampling methods are partly design-based constrains the spatial resolution at which animal density can be estimated using these methods. Estimates are usually obtained at survey stratum level. For an endangered species such as the blue whale, it is desirable to estimate density and abundance at a finer spatial scale than stratum. Temporal variation in the spatial structure is also important. We formulate the process generating distance sampling data as a thinned spatial point process and propose model-based inference using a spatial log-Gaussian Cox process. The method adopts a flexible stochastic partial differential equation (SPDE) approach to model spatial structure in density that is not accounted for by explanatory variables, and integrated nested Laplace approximation (INLA) for Bayesian inference. It allows simultaneous fitting of detection and density models and permits prediction of density at an arbitrarily fine scale. We estimate blue whale density in the Eastern Tropical Pacific Ocean from thirteen shipboard surveys conducted over 22 years. We find that higher blue whale density is associated with colder sea surface temperatures in space, and although there is some positive association between density and mean annual temperature, our estimates are consistent with no trend in density across years. Our analysis also indicates that there is substantial spatially structured variation in density that is not explained by available covariates.

  10. Micro-scale Spatial Clustering of Cholera Risk Factors in Urban Bangladesh.

    Science.gov (United States)

    Bi, Qifang; Azman, Andrew S; Satter, Syed Moinuddin; Khan, Azharul Islam; Ahmed, Dilruba; Riaj, Altaf Ahmed; Gurley, Emily S; Lessler, Justin

    2016-02-01

    population suggests a possible role for highly targeted interventions. Studies with cluster designs in areas with strong spatial clustering of exposures should increase sample size to account for the correlation of these exposures.

  11. Micro-scale Spatial Clustering of Cholera Risk Factors in Urban Bangladesh.

    Directory of Open Access Journals (Sweden)

    Qifang Bi

    2016-02-01

    cholera endemic population suggests a possible role for highly targeted interventions. Studies with cluster designs in areas with strong spatial clustering of exposures should increase sample size to account for the correlation of these exposures.

  12. Sampling design considerations for demographic studies: a case of colonial seabirds

    Science.gov (United States)

    Kendall, William L.; Converse, Sarah J.; Doherty, Paul F.; Naughton, Maura B.; Anders, Angela; Hines, James E.; Flint, Elizabeth

    2009-01-01

    For the purposes of making many informed conservation decisions, the main goal for data collection is to assess population status and allow prediction of the consequences of candidate management actions. Reducing the bias and variance of estimates of population parameters reduces uncertainty in population status and projections, thereby reducing the overall uncertainty under which a population manager must make a decision. In capture-recapture studies, imperfect detection of individuals, unobservable life-history states, local movement outside study areas, and tag loss can cause bias or precision problems with estimates of population parameters. Furthermore, excessive disturbance to individuals during capture?recapture sampling may be of concern because disturbance may have demographic consequences. We address these problems using as an example a monitoring program for Black-footed Albatross (Phoebastria nigripes) and Laysan Albatross (Phoebastria immutabilis) nesting populations in the northwestern Hawaiian Islands. To mitigate these estimation problems, we describe a synergistic combination of sampling design and modeling approaches. Solutions include multiple capture periods per season and multistate, robust design statistical models, dead recoveries and incidental observations, telemetry and data loggers, buffer areas around study plots to neutralize the effect of local movements outside study plots, and double banding and statistical models that account for band loss. We also present a variation on the robust capture?recapture design and a corresponding statistical model that minimizes disturbance to individuals. For the albatross case study, this less invasive robust design was more time efficient and, when used in combination with a traditional robust design, reduced the standard error of detection probability by 14% with only two hours of additional effort in the field. These field techniques and associated modeling approaches are applicable to studies of

  13. Building a Spatial Database for Romanian Archaeological Sites

    Directory of Open Access Journals (Sweden)

    Aura-Mihaela MOCANU

    2011-03-01

    Full Text Available Spatial databases are a new technology in the database systems which allow storing, retrieving and maintaining geospatial data. This paper describes the steps which we have followed to model, design and develop a spatial database for Romanian archaeological sites and their assemblies. The system analysis was made using the well known Entity-Relationship model; the system design included the conceptual, the external and the internal schemas design, and the system development meant developing the needed database objects and programs. The designed database allows users to load vector geospatial data about the archaeological sites in two distinct spatial reference systems WGS84 and STEREO70, temporal data about the historical periods and cultures, other descriptive data and documents as references to the archaeological objects.

  14. Use of virtual steam generator cassette for tube spatial design and SGC assembling procedure

    International Nuclear Information System (INIS)

    Kim, Y. W.; Kim, J. I.; Ji, S. K.

    2003-01-01

    A method of determining spatial arrangement of tube connection and assembling procedure of once-through helical steam generator cassette utilizing three dimensional virtual steam generator cassette has been developed on the basis of recent 3-D modelling technology. One ends of the steam generator tubes are connected to the module feed water header and the other sides are connected to the module steam header. Due to the complex geometry of tube arrangement, it is very difficult to connect the tubes to the module headers without the help of a physical engineering mock up. A comparative study has been performed at each design step for the tube arrangement and heat transfer area. Heat transfer area computed from thermal sizing was 4% less than that of measured. Heat transfer area calculated from the virtual steam generator cassette mock up has only 0.2% difference with that of measured. Assembling procedure of the steam generator cassette also, can be developed in the design stage

  15. Classifier-guided sampling for discrete variable, discontinuous design space exploration: Convergence and computational performance

    Energy Technology Data Exchange (ETDEWEB)

    Backlund, Peter B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shahan, David W. [HRL Labs., LLC, Malibu, CA (United States); Seepersad, Carolyn Conner [Univ. of Texas, Austin, TX (United States)

    2014-04-22

    A classifier-guided sampling (CGS) method is introduced for solving engineering design optimization problems with discrete and/or continuous variables and continuous and/or discontinuous responses. The method merges concepts from metamodel-guided sampling and population-based optimization algorithms. The CGS method uses a Bayesian network classifier for predicting the performance of new designs based on a set of known observations or training points. Unlike most metamodeling techniques, however, the classifier assigns a categorical class label to a new design, rather than predicting the resulting response in continuous space, and thereby accommodates nondifferentiable and discontinuous functions of discrete or categorical variables. The CGS method uses these classifiers to guide a population-based sampling process towards combinations of discrete and/or continuous variable values with a high probability of yielding preferred performance. Accordingly, the CGS method is appropriate for discrete/discontinuous design problems that are ill-suited for conventional metamodeling techniques and too computationally expensive to be solved by population-based algorithms alone. In addition, the rates of convergence and computational properties of the CGS method are investigated when applied to a set of discrete variable optimization problems. Results show that the CGS method significantly improves the rate of convergence towards known global optima, on average, when compared to genetic algorithms.

  16. Designing a two-rank acceptance sampling plan for quality inspection of geospatial data products

    Science.gov (United States)

    Tong, Xiaohua; Wang, Zhenhua; Xie, Huan; Liang, Dan; Jiang, Zuoqin; Li, Jinchao; Li, Jun

    2011-10-01

    To address the disadvantages of classical sampling plans designed for traditional industrial products, we originally propose a two-rank acceptance sampling plan (TRASP) for the inspection of geospatial data outputs based on the acceptance quality level (AQL). The first rank sampling plan is to inspect the lot consisting of map sheets, and the second is to inspect the lot consisting of features in an individual map sheet. The TRASP design is formulated as an optimization problem with respect to sample size and acceptance number, which covers two lot size cases. The first case is for a small lot size with nonconformities being modeled by a hypergeometric distribution function, and the second is for a larger lot size with nonconformities being modeled by a Poisson distribution function. The proposed TRASP is illustrated through two empirical case studies. Our analysis demonstrates that: (1) the proposed TRASP provides a general approach for quality inspection of geospatial data outputs consisting of non-uniform items and (2) the proposed acceptance sampling plan based on TRASP performs better than other classical sampling plans. It overcomes the drawbacks of percent sampling, i.e., "strictness for large lot size, toleration for small lot size," and those of a national standard used specifically for industrial outputs, i.e., "lots with different sizes corresponding to the same sampling plan."

  17. An investigation of the effects of relevant samples and a comparison of verification versus discovery based lab design

    Science.gov (United States)

    Rieben, James C., Jr.

    This study focuses on the effects of relevance and lab design on student learning within the chemistry laboratory environment. A general chemistry conductivity of solutions experiment and an upper level organic chemistry cellulose regeneration experiment were employed. In the conductivity experiment, the two main variables studied were the effect of relevant (or "real world") samples on student learning and a verification-based lab design versus a discovery-based lab design. With the cellulose regeneration experiment, the effect of a discovery-based lab design vs. a verification-based lab design was the sole focus. Evaluation surveys consisting of six questions were used at three different times to assess student knowledge of experimental concepts. In the general chemistry laboratory portion of this study, four experimental variants were employed to investigate the effect of relevance and lab design on student learning. These variants consisted of a traditional (or verification) lab design, a traditional lab design using "real world" samples, a new lab design employing real world samples/situations using unknown samples, and the new lab design using real world samples/situations that were known to the student. Data used in this analysis were collected during the Fall 08, Winter 09, and Fall 09 terms. For the second part of this study a cellulose regeneration experiment was employed to investigate the effects of lab design. A demonstration creating regenerated cellulose "rayon" was modified and converted to an efficient and low-waste experiment. In the first variant students tested their products and verified a list of physical properties. In the second variant, students filled in a blank physical property chart with their own experimental results for the physical properties. Results from the conductivity experiment show significant student learning of the effects of concentration on conductivity and how to use conductivity to differentiate solution types with the

  18. Advancing the quantification of humid tropical forest cover loss with multi-resolution optical remote sensing data: Sampling & wall-to-wall mapping

    Science.gov (United States)

    Broich, Mark

    Humid tropical forest cover loss is threatening the sustainability of ecosystem goods and services as vast forest areas are rapidly cleared for industrial scale agriculture and tree plantations. Despite the importance of humid tropical forest in the provision of ecosystem services and economic development opportunities, the spatial and temporal distribution of forest cover loss across large areas is not well quantified. Here I improve the quantification of humid tropical forest cover loss using two remote sensing-based methods: sampling and wall-to-wall mapping. In all of the presented studies, the integration of coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data enable advances in quantifying forest cover loss in the humid tropics. Imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used as the source of coarse spatial resolution, high temporal resolution data and imagery from the Landsat Enhanced Thematic Mapper Plus (ETM+) sensor are used as the source of moderate spatial, low temporal resolution data. In a first study, I compare the precision of different sampling designs for the Brazilian Amazon using the annual deforestation maps derived by the Brazilian Space Agency for reference. I show that sampling designs can provide reliable deforestation estimates; furthermore, sampling designs guided by MODIS data can provide more efficient estimates than the systematic design used for the United Nations Food and Agricultural Organization Forest Resource Assessment 2010. Sampling approaches, such as the one demonstrated, are viable in regions where data limitations, such as cloud contamination, limit exhaustive mapping methods. Cloud-contaminated regions experiencing high rates of change include Insular Southeast Asia, specifically Indonesia and Malaysia. Due to persistent cloud cover, forest cover loss in Indonesia has only been mapped at a 5-10 year interval using photo interpretation of single

  19. Optimal sampling designs for large-scale fishery sample surveys in Greece

    Directory of Open Access Journals (Sweden)

    G. BAZIGOS

    2007-12-01

    The paper deals with the optimization of the following three large scale sample surveys: biological sample survey of commercial landings (BSCL, experimental fishing sample survey (EFSS, and commercial landings and effort sample survey (CLES.

  20. Fast Bayesian experimental design: Laplace-based importance sampling for the expected information gain

    KAUST Repository

    Beck, Joakim

    2018-02-19

    In calculating expected information gain in optimal Bayesian experimental design, the computation of the inner loop in the classical double-loop Monte Carlo requires a large number of samples and suffers from underflow if the number of samples is small. These drawbacks can be avoided by using an importance sampling approach. We present a computationally efficient method for optimal Bayesian experimental design that introduces importance sampling based on the Laplace method to the inner loop. We derive the optimal values for the method parameters in which the average computational cost is minimized for a specified error tolerance. We use three numerical examples to demonstrate the computational efficiency of our method compared with the classical double-loop Monte Carlo, and a single-loop Monte Carlo method that uses the Laplace approximation of the return value of the inner loop. The first demonstration example is a scalar problem that is linear in the uncertain parameter. The second example is a nonlinear scalar problem. The third example deals with the optimal sensor placement for an electrical impedance tomography experiment to recover the fiber orientation in laminate composites.

  1. Fast Bayesian experimental design: Laplace-based importance sampling for the expected information gain

    Science.gov (United States)

    Beck, Joakim; Dia, Ben Mansour; Espath, Luis F. R.; Long, Quan; Tempone, Raúl

    2018-06-01

    In calculating expected information gain in optimal Bayesian experimental design, the computation of the inner loop in the classical double-loop Monte Carlo requires a large number of samples and suffers from underflow if the number of samples is small. These drawbacks can be avoided by using an importance sampling approach. We present a computationally efficient method for optimal Bayesian experimental design that introduces importance sampling based on the Laplace method to the inner loop. We derive the optimal values for the method parameters in which the average computational cost is minimized according to the desired error tolerance. We use three numerical examples to demonstrate the computational efficiency of our method compared with the classical double-loop Monte Carlo, and a more recent single-loop Monte Carlo method that uses the Laplace method as an approximation of the return value of the inner loop. The first example is a scalar problem that is linear in the uncertain parameter. The second example is a nonlinear scalar problem. The third example deals with the optimal sensor placement for an electrical impedance tomography experiment to recover the fiber orientation in laminate composites.

  2. Single-subject withdrawal designs in delayed matching-to-sample procedures

    OpenAIRE

    Eilifsen, Christoffer; Arntzen, Erik

    2011-01-01

    In most studies of delayed matching-to-sample (DMTS) and stimulus equivalence, the delay has remained fixed throughout a single experimental condition. We wanted to expand on the DMTS and stimulus equivalence literature by examining the effects of using titrating delays with different starting points during the establishment of conditional discriminations prerequisite for stimulus equivalence. In Experiment 1, a variation of a single-subject withdrawal design was used. Ten adults were exposed...

  3. Sampling pig farms at the abattoir in a cross-sectional study - Evaluation of a sampling method.

    Science.gov (United States)

    Birkegård, Anna Camilla; Halasa, Tariq; Toft, Nils

    2017-09-15

    A cross-sectional study design is relatively inexpensive, fast and easy to conduct when compared to other study designs. Careful planning is essential to obtaining a representative sample of the population, and the recommended approach is to use simple random sampling from an exhaustive list of units in the target population. This approach is rarely feasible in practice, and other sampling procedures must often be adopted. For example, when slaughter pigs are the target population, sampling the pigs on the slaughter line may be an alternative to on-site sampling at a list of farms. However, it is difficult to sample a large number of farms from an exact predefined list, due to the logistics and workflow of an abattoir. Therefore, it is necessary to have a systematic sampling procedure and to evaluate the obtained sample with respect to the study objective. We propose a method for 1) planning, 2) conducting, and 3) evaluating the representativeness and reproducibility of a cross-sectional study when simple random sampling is not possible. We used an example of a cross-sectional study with the aim of quantifying the association of antimicrobial resistance and antimicrobial consumption in Danish slaughter pigs. It was not possible to visit farms within the designated timeframe. Therefore, it was decided to use convenience sampling at the abattoir. Our approach was carried out in three steps: 1) planning: using data from meat inspection to plan at which abattoirs and how many farms to sample; 2) conducting: sampling was carried out at five abattoirs; 3) evaluation: representativeness was evaluated by comparing sampled and non-sampled farms, and the reproducibility of the study was assessed through simulated sampling based on meat inspection data from the period where the actual data collection was carried out. In the cross-sectional study samples were taken from 681 Danish pig farms, during five weeks from February to March 2015. The evaluation showed that the sampling

  4. Spatial analysis of the distribution of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) and losses in maize crop productivity using geo statistics

    International Nuclear Information System (INIS)

    Farias, Paulo R.S.; Miranda, Vicente S.; Ribeiro, Susane M.; Barbosa, Jose C.; Busoli, Antonio C.; Overal, William L.

    2008-01-01

    The fall armyworm, Spodoptera frugiperda (J.E. Smith), is one of the chief pests of maize in the Americas. The study of its spatial distribution is fundamental for designing correct control strategies, improving sampling methods, determining actual and potential crop losses, and adopting precise agricultural techniques. In Sao Paulo state, Brazil, a maize field was sampled at weekly intervals, from germination through harvest, for caterpillar densities, using quadrates. In each of 200 quadrates, 10 plants were sampled per week. Harvest weights were obtained in the field for each quadrate, and ear diameters and lengths were also sampled (15 ears per quadrate) and used to estimate potential productivity of the quadrate. Geostatistical analyses of caterpillar densities showed greatest ranges for small caterpillars when semivariograms were adjusted for a spherical model that showed greatest fit. As the caterpillars developed in the field, their spatial distribution became increasingly random, as shown by a model adjusted to a straight line, indicating a lack of spatial dependence among samples. Harvest weight and ear length followed the spherical model, indicating the existence of spatial variability of the production parameters in the maize field. Geostatistics shows promise for the application of precise methods in the integrated control of pests. (author)

  5. Spatial analysis of the distribution of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) and losses in maize crop productivity using geo statistics

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Paulo R.S.; Miranda, Vicente S.; Ribeiro, Susane M. [Universidade Federal Rural da Amazonia (UFRA), Belem, PA (Brazil). Inst. de Ciencias Agrarias]. E-mail: paulo.farias@ufra.edu.br; Barbosa, Jose C. [UNESP, Jaboticabal, SP (Brazil). Faculdade de Ciencias Agrarias e Veterinarias. Dept. de Ciencias Exatas; Busoli, Antonio C. [UNESP, Jaboticabal, SP (Brazil). Faculdade de Ciencias Agrarias e Veterinarias. Dept. de Fitossanidade; Overal, William L. [Museu Paraense Emilio Goeldi (MPEG), Belem, PA (Brazil). Coordenacao de Zoologia

    2008-05-15

    The fall armyworm, Spodoptera frugiperda (J.E. Smith), is one of the chief pests of maize in the Americas. The study of its spatial distribution is fundamental for designing correct control strategies, improving sampling methods, determining actual and potential crop losses, and adopting precise agricultural techniques. In Sao Paulo state, Brazil, a maize field was sampled at weekly intervals, from germination through harvest, for caterpillar densities, using quadrates. In each of 200 quadrates, 10 plants were sampled per week. Harvest weights were obtained in the field for each quadrate, and ear diameters and lengths were also sampled (15 ears per quadrate) and used to estimate potential productivity of the quadrate. Geostatistical analyses of caterpillar densities showed greatest ranges for small caterpillars when semivariograms were adjusted for a spherical model that showed greatest fit. As the caterpillars developed in the field, their spatial distribution became increasingly random, as shown by a model adjusted to a straight line, indicating a lack of spatial dependence among samples. Harvest weight and ear length followed the spherical model, indicating the existence of spatial variability of the production parameters in the maize field. Geostatistics shows promise for the application of precise methods in the integrated control of pests. (author)

  6. The Design and Use of Planetary Science Video Games to Teach Content while Enhancing Spatial Reasoning Skills

    Science.gov (United States)

    Ziffer, Julie; Nadirli, Orkhan; Rudnick, Benjamin; Pinkham, Sunny; Montgomery, Benjamin

    2016-10-01

    Traditional teaching of Planetary Science requires students to possess well developed spatial reasoning skills (SRS). Recent research has demonstrated that SRS, long known to be crucial to math and science success, can be improved among students who lack these skills (Sorby et al., 2009). Teaching spatial reasoning is particularly valuable to women and minorities who, through societal pressure, often doubt their abilities (Hill et al., 2010). To address SRS deficiencies, our team is developing video games that embed SRS training into Planetary Science content. Our first game, on Moon Phases, addresses the two primary challenges faced by students trying to understand the Sun-Earth-Moon system: 1) visualizing the system (specifically the difference between the Sun-Earth orbital plane and the Earth-Moon orbital plane) and 2) comprehending the relationship between time and the position-phase of the Moon. In our second video game, the student varies an asteroid's rotational speed, shape, and orientation to the light source while observing how these changes effect the resulting light curve. To correctly pair objects to their light curves, students use spatial reasoning skills to imagine how light scattering off a three dimensional rotating object is imaged on a sensor plane and is then reduced to a series of points on a light curve plot. These two games represent the first of our developing suite of high-interest video games designed to teach content while increasing the student's competence in spatial reasoning.

  7. Designing efficient nitrous oxide sampling strategies in agroecosystems using simulation models

    Science.gov (United States)

    Debasish Saha; Armen R. Kemanian; Benjamin M. Rau; Paul R. Adler; Felipe Montes

    2017-01-01

    Annual cumulative soil nitrous oxide (N2O) emissions calculated from discrete chamber-based flux measurements have unknown uncertainty. We used outputs from simulations obtained with an agroecosystem model to design sampling strategies that yield accurate cumulative N2O flux estimates with a known uncertainty level. Daily soil N2O fluxes were simulated for Ames, IA (...

  8. An Alternative View of Some FIA Sample Design and Analysis Issues

    Science.gov (United States)

    Paul C. Van Deusen

    2005-01-01

    Sample design and analysis decisions are the result of compromises and inputs from many sources. The end result would likely change if different individuals or groups were involved in the planning process. Discussed here are some alternatives to the procedures that are currently being used for the annual inventory. The purpose is to indicate that alternatives exist and...

  9. Simulated optimization of crop yield through irrigation system design and operation based on the spatial variability of soil hydrodynamic properties

    International Nuclear Information System (INIS)

    Gurovich, L.; Stern, J.; Ramos, R.

    1983-01-01

    Spatial autocorrelation and kriging techniques were applied to soil infiltrability data from a 20 hectare field, to separate homogeneous irrigation units. Border irrigation systems were designed for each unit and combinations of units by using DESIGN, a computer model based on soil infiltrability and hydraulics of surface water flow, which enables optimal irrigation systems to be designed. Water depths effectively infiltrated at different points along the irrigation run were determined, and the agronomic irrigation efficiency of the unit evaluated. A modification of Hanks' evapotranspiration model, PLANTGRO, was used to evaluate plant growth, relative crop yield and soil-water economy throughout the growing season, at several points along each irrigation unit. The effect of different irrigation designs on total field yield and total water used for irrigation was evaluated by integrating yield values corresponding to each point, volume and inflow time during each irrigation. For relevant data from winter wheat grown in the central area of Chile during 1981, simulation by an interactive and sequentially recurrent use of DESIGN and PLANTGRO models, was carried out. The results obtained indicate that, when a field is separated into homogeneous irrigation units on the basis of the spatial variability of soil infiltrability and the border irrigation systems are designed according to soil characteristics, both a significant yield increase and less water use can be obtained by comparison with other criteria of field zonification for irrigation management. The use of neutrometric determinations to assess soil-water content during the growing season, as a validation of the results obtained in this work, is discussed. (author)

  10. A UAV-Based Fog Collector Design for Fine-Scale Aerobiological Sampling

    Science.gov (United States)

    Gentry, Diana; Guarro, Marcello; Demachkie, Isabella Siham; Stumfall, Isabel; Dahlgren, Robert P.

    2017-01-01

    Airborne microbes are found throughout the troposphere and into the stratosphere. Knowing how the activity of airborne microorganisms can alter water, carbon, and other geochemical cycles is vital to a full understanding of local and global ecosystems. Just as on the land or in the ocean, atmospheric regions vary in habitability; the underlying geochemical, climatic, and ecological dynamics must be characterized at different scales to be effectively modeled. Most aerobiological studies have focused on a high level: 'How high are airborne microbes found?' and 'How far can they travel?' Most fog and cloud water studies collect from stationary ground stations (point) or along flight transects (1D). To complement and provide context for this data, we have designed a UAV-based modified fog and cloud water collector to retrieve 4D-resolved samples for biological and chemical analysis.Our design uses a passive impacting collector hanging from a rigid rod suspended between two multi-rotor UAVs. The suspension design reduces the effect of turbulence and potential for contamination from the UAV downwash. The UAVs are currently modeled in a leader-follower configuration, taking advantage of recent advances in modular UAVs, UAV swarming, and flight planning.The collector itself is a hydrophobic mesh. Materials including Tyvek, PTFE, nylon, and polypropylene monofilament fabricated via laser cutting, CNC knife, or 3D printing were characterized for droplet collection efficiency using a benchtop atomizer and particle counter. Because the meshes can be easily and inexpensively fabricated, a set can be pre-sterilized and brought to the field for 'hot swapping' to decrease cross-contamination between flight sessions or use as negative controls.An onboard sensor and logging system records the time and location of each sample; when combined with flight tracking data, the samples can be resolved into a 4D volumetric map of the fog bank. Collected samples can be returned to the lab for

  11. Physical effects of mechanical design parameters on photon sensitivity and spatial resolution performance of a breast-dedicated PET system.

    Science.gov (United States)

    Spanoudaki, V C; Lau, F W Y; Vandenbroucke, A; Levin, C S

    2010-11-01

    This study aims to address design considerations of a high resolution, high sensitivity positron emission tomography scanner dedicated to breast imaging. The methodology uses a detailed Monte Carlo model of the system structures to obtain a quantitative evaluation of several performance parameters. Special focus was given to the effect of dense mechanical structures designed to provide mechanical robustness and thermal regulation to the minuscule and temperature sensitive detectors. For the energies of interest around the photopeak (450-700 keV energy window), the simulation results predict a 6.5% reduction in the single photon detection efficiency and a 12.5% reduction in the coincidence photon detection efficiency in the case that the mechanical structures are interspersed between the detectors. However for lower energies, a substantial increase in the number of detected events (approximately 14% and 7% for singles at a 100-200 keV energy window and coincidences at a lower energy threshold of 100 keV, respectively) was observed with the presence of these structures due to backscatter. The number of photon events that involve multiple interactions in various crystal elements is also affected by the presence of the structures. For photon events involving multiple interactions among various crystal elements, the coincidence photon sensitivity is reduced by as much as 20% for a point source at the center of the field of view. There is no observable effect on the intrinsic and the reconstructed spatial resolution and spatial resolution uniformity. Mechanical structures can have a considerable effect on system sensitivity, especially for systems processing multi-interaction photon events. This effect, however, does not impact the spatial resolution. Various mechanical structure designs are currently under evaluation in order to achieve optimum trade-off between temperature stability, accurate detector positioning, and minimum influence on system performance.

  12. Temporal and Spatial Variation of Soil Bacteria Richness, Composition, and Function in a Neotropical Rainforest.

    Science.gov (United States)

    Kivlin, Stephanie N; Hawkes, Christine V

    2016-01-01

    The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change.

  13. Monitoring oil persistence on beaches : SCAT versus stratified random sampling designs

    International Nuclear Information System (INIS)

    Short, J.W.; Lindeberg, M.R.; Harris, P.M.; Maselko, J.M.; Pella, J.J.; Rice, S.D.

    2003-01-01

    In the event of a coastal oil spill, shoreline clean-up assessment teams (SCAT) commonly rely on visual inspection of the entire affected area to monitor the persistence of the oil on beaches. Occasionally, pits are excavated to evaluate the persistence of subsurface oil. This approach is practical for directing clean-up efforts directly following a spill. However, sampling of the 1989 Exxon Valdez oil spill in Prince William Sound 12 years later has shown that visual inspection combined with pit excavation does not offer estimates of contaminated beach area of stranded oil volumes. This information is needed to statistically evaluate the significance of change with time. Assumptions regarding the correlation of visually-evident surface oil and cryptic subsurface oil are usually not evaluated as part of the SCAT mandate. Stratified random sampling can avoid such problems and could produce precise estimates of oiled area and volume that allow for statistical assessment of major temporal trends and the extent of the impact. The 2001 sampling of the shoreline of Prince William Sound showed that 15 per cent of surface oil occurrences were associated with subsurface oil. This study demonstrates the usefulness of the stratified random sampling method and shows how sampling design parameters impact statistical outcome. Power analysis based on the study results, indicate that optimum power is derived when unnecessary stratification is avoided. It was emphasized that sampling effort should be balanced between choosing sufficient beaches for sampling and the intensity of sampling

  14. A sample design for globally consistent biomass estimation using lidar data from the Geoscience Laser Altimeter System (GLAS)

    Science.gov (United States)

    Sean P. Healey; Paul L. Patterson; Sassan S. Saatchi; Michael A. Lefsky; Andrew J. Lister; Elizabeth A. Freeman

    2012-01-01

    Lidar height data collected by the Geosciences Laser Altimeter System (GLAS) from 2002 to 2008 has the potential to form the basis of a globally consistent sample-based inventory of forest biomass. GLAS lidar return data were collected globally in spatially discrete full waveform "shots," which have been shown to be strongly correlated with aboveground forest...

  15. A two-stage Bayesian design with sample size reestimation and subgroup analysis for phase II binary response trials.

    Science.gov (United States)

    Zhong, Wei; Koopmeiners, Joseph S; Carlin, Bradley P

    2013-11-01

    Frequentist sample size determination for binary outcome data in a two-arm clinical trial requires initial guesses of the event probabilities for the two treatments. Misspecification of these event rates may lead to a poor estimate of the necessary sample size. In contrast, the Bayesian approach that considers the treatment effect to be random variable having some distribution may offer a better, more flexible approach. The Bayesian sample size proposed by (Whitehead et al., 2008) for exploratory studies on efficacy justifies the acceptable minimum sample size by a "conclusiveness" condition. In this work, we introduce a new two-stage Bayesian design with sample size reestimation at the interim stage. Our design inherits the properties of good interpretation and easy implementation from Whitehead et al. (2008), generalizes their method to a two-sample setting, and uses a fully Bayesian predictive approach to reduce an overly large initial sample size when necessary. Moreover, our design can be extended to allow patient level covariates via logistic regression, now adjusting sample size within each subgroup based on interim analyses. We illustrate the benefits of our approach with a design in non-Hodgkin lymphoma with a simple binary covariate (patient gender), offering an initial step toward within-trial personalized medicine. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Geometrical superresolved imaging using nonperiodic spatial masking.

    Science.gov (United States)

    Borkowski, Amikam; Zalevsky, Zeev; Javidi, Bahram

    2009-03-01

    The resolution of every imaging system is limited either by the F-number of its optics or by the geometry of its detection array. The geometrical limitation is caused by lack of spatial sampling points as well as by the shape of every sampling pixel that generates spectral low-pass filtering. We present a novel approach to overcome the low-pass filtering that is due to the shape of the sampling pixels. The approach combines special algorithms together with spatial masking placed in the intermediate image plane and eventually allows geometrical superresolved imaging without relation to the actual shape of the pixels.

  17. Economic Design of Acceptance Sampling Plans in a Two-Stage Supply Chain

    Directory of Open Access Journals (Sweden)

    Lie-Fern Hsu

    2012-01-01

    Full Text Available Supply Chain Management, which is concerned with material and information flows between facilities and the final customers, has been considered the most popular operations strategy for improving organizational competitiveness nowadays. With the advanced development of computer technology, it is getting easier to derive an acceptance sampling plan satisfying both the producer's and consumer's quality and risk requirements. However, all the available QC tables and computer software determine the sampling plan on a noneconomic basis. In this paper, we design an economic model to determine the optimal sampling plan in a two-stage supply chain that minimizes the producer's and the consumer's total quality cost while satisfying both the producer's and consumer's quality and risk requirements. Numerical examples show that the optimal sampling plan is quite sensitive to the producer's product quality. The product's inspection, internal failure, and postsale failure costs also have an effect on the optimal sampling plan.

  18. The relationship between language and spatial ability an analysis of spatial language for reconstructing the solving of spatial tasks

    CERN Document Server

    Mizzi, Angel

    2017-01-01

    This work investigates how different fifth-grade students solve spatial-verbal tasks and the role of language in this process. Based on a synthesis of theoretical foundations and methodological issues for supporting the relationship between spatial ability and language, this present study examines and classifies strategies used by students as well as the obstacles they encounter when solving spatial tasks in the reconstruction method. Contents Theoretical Framework Design and Implementation Results and Discussion from the Inductive Data Analyses Target Groups Scholars and students of mathematics education Teachers of mathematics in primary and secondary schools About the Author Angel Mizzi works as a research assistant and lecturer at the University of Duisburg-Essen, where he has successfully completed his PhD studies in mathematics education.

  19. Optimizing trial design in pharmacogenetics research: comparing a fixed parallel group, group sequential, and adaptive selection design on sample size requirements.

    Science.gov (United States)

    Boessen, Ruud; van der Baan, Frederieke; Groenwold, Rolf; Egberts, Antoine; Klungel, Olaf; Grobbee, Diederick; Knol, Mirjam; Roes, Kit

    2013-01-01

    Two-stage clinical trial designs may be efficient in pharmacogenetics research when there is some but inconclusive evidence of effect modification by a genomic marker. Two-stage designs allow to stop early for efficacy or futility and can offer the additional opportunity to enrich the study population to a specific patient subgroup after an interim analysis. This study compared sample size requirements for fixed parallel group, group sequential, and adaptive selection designs with equal overall power and control of the family-wise type I error rate. The designs were evaluated across scenarios that defined the effect sizes in the marker positive and marker negative subgroups and the prevalence of marker positive patients in the overall study population. Effect sizes were chosen to reflect realistic planning scenarios, where at least some effect is present in the marker negative subgroup. In addition, scenarios were considered in which the assumed 'true' subgroup effects (i.e., the postulated effects) differed from those hypothesized at the planning stage. As expected, both two-stage designs generally required fewer patients than a fixed parallel group design, and the advantage increased as the difference between subgroups increased. The adaptive selection design added little further reduction in sample size, as compared with the group sequential design, when the postulated effect sizes were equal to those hypothesized at the planning stage. However, when the postulated effects deviated strongly in favor of enrichment, the comparative advantage of the adaptive selection design increased, which precisely reflects the adaptive nature of the design. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Connecting mathematics learning through spatial reasoning

    Science.gov (United States)

    Mulligan, Joanne; Woolcott, Geoffrey; Mitchelmore, Michael; Davis, Brent

    2018-03-01

    Spatial reasoning, an emerging transdisciplinary area of interest to mathematics education research, is proving integral to all human learning. It is particularly critical to science, technology, engineering and mathematics (STEM) fields. This project will create an innovative knowledge framework based on spatial reasoning that identifies new pathways for mathematics learning, pedagogy and curriculum. Novel analytical tools will map the unknown complex systems linking spatial and mathematical concepts. It will involve the design, implementation and evaluation of a Spatial Reasoning Mathematics Program (SRMP) in Grades 3 to 5. Benefits will be seen through development of critical spatial skills for students, increased teacher capability and informed policy and curriculum across STEM education.

  1. Spatial Intensity Duration Frequency Relationships Using Hierarchical Bayesian Analysis for Urban Areas

    Science.gov (United States)

    Rupa, Chandra; Mujumdar, Pradeep

    2016-04-01

    algorithm within a Gibbs sampler) is used to obtain the samples of parameters from the posterior distribution of parameters. The spatial maps of return levels for specified return periods, along with the associated uncertainties, are obtained for the summer, monsoon and annual maxima rainfall. Considering various covariates, the best fit model is selected using Deviance Information Criteria. It is observed that the geographical covariates outweigh the climatological covariates for the monsoon maxima rainfall (latitude and longitude). The best covariates for summer maxima and annual maxima rainfall are mean summer precipitation and mean monsoon precipitation respectively, including elevation for both the cases. The scale invariance theory, which states that statistical properties of a process observed at various scales are governed by the same relationship, is used to disaggregate the daily rainfall to hourly scales. The spatial maps of the scale are obtained for the study area. The spatial maps of IDF relationships thus generated are useful in storm water designs, adequacy analysis and identifying the vulnerable flooding areas.

  2. Design-based estimators for snowball sampling

    OpenAIRE

    Shafie, Termeh

    2010-01-01

    Snowball sampling, where existing study subjects recruit further subjects from amongtheir acquaintances, is a popular approach when sampling from hidden populations.Since people with many in-links are more likely to be selected, there will be a selectionbias in the samples obtained. In order to eliminate this bias, the sample data must beweighted. However, the exact selection probabilities are unknown for snowball samplesand need to be approximated in an appropriate way. This paper proposes d...

  3. GIS-facilitated spatial narratives

    DEFF Research Database (Denmark)

    Møller-Jensen, Lasse; Jeppesen, Henrik; Kofie, Richard Y.

    2008-01-01

    on the thematically and narrative linking of a set of locations within an area. A spatial narrative that describes the - largely unsuccessful - history of Danish plantations on the Gold Coast (1788-1850) is implemented through the Google Earth client. This client is seen both as a type of media in itself for ‘home......-based' exploration of sites related to the narrative and as a tool that facilitates the design of spatial narratives before implementation within portable GIS devices. The Google Earth-based visualization of the spatial narrative is created by a Python script that outputs a web-accessible KML format file. The KML...

  4. Reactor for in situ measurements of spatially resolved kinetic data in heterogeneous catalysis

    Science.gov (United States)

    Horn, R.; Korup, O.; Geske, M.; Zavyalova, U.; Oprea, I.; Schlögl, R.

    2010-06-01

    The present work describes a reactor that allows in situ measurements of spatially resolved kinetic data in heterogeneous catalysis. The reactor design allows measurements up to temperatures of 1300 °C and 45 bar pressure, i.e., conditions of industrial relevance. The reactor involves reactants flowing through a solid catalyst bed containing a sampling capillary with a side sampling orifice through which a small fraction of the reacting fluid (gas or liquid) is transferred into an analytical device (e.g., mass spectrometer, gas chromatograph, high pressure liquid chromatograph) for quantitative analysis. The sampling capillary can be moved with μm resolution in or against flow direction to measure species profiles through the catalyst bed. Rotation of the sampling capillary allows averaging over several scan lines. The position of the sampling orifice is such that the capillary channel through the catalyst bed remains always occupied by the capillary preventing flow disturbance and fluid bypassing. The second function of the sampling capillary is to provide a well which can accommodate temperature probes such as a thermocouple or a pyrometer fiber. If a thermocouple is inserted in the sampling capillary and aligned with the sampling orifice fluid temperature profiles can be measured. A pyrometer fiber can be used to measure the temperature profile of the solid catalyst bed. Spatial profile measurements are demonstrated for methane oxidation on Pt and methane oxidative coupling on Li/MgO, both catalysts supported on reticulated α -Al2O3 foam supports.

  5. Sampling and energy evaluation challenges in ligand binding protein design.

    Science.gov (United States)

    Dou, Jiayi; Doyle, Lindsey; Jr Greisen, Per; Schena, Alberto; Park, Hahnbeom; Johnsson, Kai; Stoddard, Barry L; Baker, David

    2017-12-01

    The steroid hormone 17α-hydroxylprogesterone (17-OHP) is a biomarker for congenital adrenal hyperplasia and hence there is considerable interest in development of sensors for this compound. We used computational protein design to generate protein models with binding sites for 17-OHP containing an extended, nonpolar, shape-complementary binding pocket for the four-ring core of the compound, and hydrogen bonding residues at the base of the pocket to interact with carbonyl and hydroxyl groups at the more polar end of the ligand. Eight of 16 designed proteins experimentally tested bind 17-OHP with micromolar affinity. A co-crystal structure of one of the designs revealed that 17-OHP is rotated 180° around a pseudo-two-fold axis in the compound and displays multiple binding modes within the pocket, while still interacting with all of the designed residues in the engineered site. Subsequent rounds of mutagenesis and binding selection improved the ligand affinity to nanomolar range, while appearing to constrain the ligand to a single bound conformation that maintains the same "flipped" orientation relative to the original design. We trace the discrepancy in the design calculations to two sources: first, a failure to model subtle backbone changes which alter the distribution of sidechain rotameric states and second, an underestimation of the energetic cost of desolvating the carbonyl and hydroxyl groups of the ligand. The difference between design model and crystal structure thus arises from both sampling limitations and energy function inaccuracies that are exacerbated by the near two-fold symmetry of the molecule. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  6. Evaluation of common methods for sampling invertebrate pollinator assemblages: net sampling out-perform pan traps.

    Science.gov (United States)

    Popic, Tony J; Davila, Yvonne C; Wardle, Glenda M

    2013-01-01

    Methods for sampling ecological assemblages strive to be efficient, repeatable, and representative. Unknowingly, common methods may be limited in terms of revealing species function and so of less value for comparative studies. The global decline in pollination services has stimulated surveys of flower-visiting invertebrates, using pan traps and net sampling. We explore the relative merits of these two methods in terms of species discovery, quantifying abundance, function, and composition, and responses of species to changing floral resources. Using a spatially-nested design we sampled across a 5000 km(2) area of arid grasslands, including 432 hours of net sampling and 1296 pan trap-days, between June 2010 and July 2011. Net sampling yielded 22% more species and 30% higher abundance than pan traps, and better reflected the spatio-temporal variation of floral resources. Species composition differed significantly between methods; from 436 total species, 25% were sampled by both methods, 50% only by nets, and the remaining 25% only by pans. Apart from being less comprehensive, if pan traps do not sample flower-visitors, the link to pollination is questionable. By contrast, net sampling functionally linked species to pollination through behavioural observations of flower-visitation interaction frequency. Netted specimens are also necessary for evidence of pollen transport. Benefits of net-based sampling outweighed minor differences in overall sampling effort. As pan traps and net sampling methods are not equivalent for sampling invertebrate-flower interactions, we recommend net sampling of invertebrate pollinator assemblages, especially if datasets are intended to document declines in pollination and guide measures to retain this important ecosystem service.

  7. Big Data analytics in the Geo-Spatial Domain

    NARCIS (Netherlands)

    R.A. Goncalves (Romulo); M.G. Ivanova (Milena); M.L. Kersten (Martin); H. Scholten; S. Zlatanova; F. Alvanaki (Foteini); P. Nourian (Pirouz); E. Dias

    2014-01-01

    htmlabstractBig data collections in many scientific domains have inherently rich spatial and geo-spatial features. Spatial location is among the core aspects of data in Earth observation sciences, astronomy, and seismology to name a few. The goal of our project is to design an efficient data

  8. Adaptive clinical trial designs with pre-specified rules for modifying the sample size: understanding efficient types of adaptation.

    Science.gov (United States)

    Levin, Gregory P; Emerson, Sarah C; Emerson, Scott S

    2013-04-15

    Adaptive clinical trial design has been proposed as a promising new approach that may improve the drug discovery process. Proponents of adaptive sample size re-estimation promote its ability to avoid 'up-front' commitment of resources, better address the complicated decisions faced by data monitoring committees, and minimize accrual to studies having delayed ascertainment of outcomes. We investigate aspects of adaptation rules, such as timing of the adaptation analysis and magnitude of sample size adjustment, that lead to greater or lesser statistical efficiency. Owing in part to the recent Food and Drug Administration guidance that promotes the use of pre-specified sampling plans, we evaluate alternative approaches in the context of well-defined, pre-specified adaptation. We quantify the relative costs and benefits of fixed sample, group sequential, and pre-specified adaptive designs with respect to standard operating characteristics such as type I error, maximal sample size, power, and expected sample size under a range of alternatives. Our results build on others' prior research by demonstrating in realistic settings that simple and easily implemented pre-specified adaptive designs provide only very small efficiency gains over group sequential designs with the same number of analyses. In addition, we describe optimal rules for modifying the sample size, providing efficient adaptation boundaries on a variety of scales for the interim test statistic for adaptation analyses occurring at several different stages of the trial. We thus provide insight into what are good and bad choices of adaptive sampling plans when the added flexibility of adaptive designs is desired. Copyright © 2012 John Wiley & Sons, Ltd.

  9. The Problem of English Spatial, Non-spatial and Idiomatic Adpositions in Iranian EFL Environment: A Prototypical Approach

    Directory of Open Access Journals (Sweden)

    Nassim Golaghaei

    2010-11-01

    Full Text Available Several studies of L2 learners’ interlanguage have addressed the complexity of the English adpositional system due to several reasons like L1 transfer, lack of knowledge in L2 and the strong collocational relations of prepositions with other elements of the English language. The major purpose of the present study is to evaluate the performance of Iranian students in dealing with three broad categories of spatial, non-spatial and idiomatic adpositions in English. To achieve the inclinations of the research project, 60 students majoring in TEFL at Roudehen University were selected. A paper-based TOEFL test of English Proficiency was administered to obtain some information about the participants’ general language proficiency. Three completion tasks with the division of spatial, non-spatial (nominal, adjectival and verbal and idiomatic adpositions were administered. The obtained results represented the fact that the Iranian participants were considerably inclined to transfer their L1 adpositional patterns to their L2 production. The correlational analyses indicated that whereas the scores related to adposition task in general, non-spatial as well as the idiomatic subtests were strongly correlated with the scores obtained from the TOEFL test, there was a moderate correlation between the spatial subtest and the TOEFL one. The independent sample t-test results between the freshmen and sophomores dealing with spatial, nominal and adjectival subtests were considered to be significant.  However, in reference to the verbal subtest, the difference between the two groups was not significant. The results obtained from the independent sample t-test indicated no significant differences between the freshmen and sophomores in their performance on idiomatic adpositions. Finally, the result of the correlation coefficients showed high correlation coefficients between the whole adposition test and the three subtests of spatial, non-spatial and idiomatic ones

  10. Filter Bank Regularized Common Spatial Pattern Ensemble for Small Sample Motor Imagery Classification.

    Science.gov (United States)

    Park, Sang-Hoon; Lee, David; Lee, Sang-Goog

    2018-02-01

    For the last few years, many feature extraction methods have been proposed based on biological signals. Among these, the brain signals have the advantage that they can be obtained, even by people with peripheral nervous system damage. Motor imagery electroencephalograms (EEG) are inexpensive to measure, offer a high temporal resolution, and are intuitive. Therefore, these have received a significant amount of attention in various fields, including signal processing, cognitive science, and medicine. The common spatial pattern (CSP) algorithm is a useful method for feature extraction from motor imagery EEG. However, performance degradation occurs in a small-sample setting (SSS), because the CSP depends on sample-based covariance. Since the active frequency range is different for each subject, it is also inconvenient to set the frequency range to be different every time. In this paper, we propose the feature extraction method based on a filter bank to solve these problems. The proposed method consists of five steps. First, motor imagery EEG is divided by a using filter bank. Second, the regularized CSP (R-CSP) is applied to the divided EEG. Third, we select the features according to mutual information based on the individual feature algorithm. Fourth, parameter sets are selected for the ensemble. Finally, we classify using ensemble based on features. The brain-computer interface competition III data set IVa is used to evaluate the performance of the proposed method. The proposed method improves the mean classification accuracy by 12.34%, 11.57%, 9%, 4.95%, and 4.47% compared with CSP, SR-CSP, R-CSP, filter bank CSP (FBCSP), and SR-FBCSP. Compared with the filter bank R-CSP ( , ), which is a parameter selection version of the proposed method, the classification accuracy is improved by 3.49%. In particular, the proposed method shows a large improvement in performance in the SSS.

  11. Decreasing spatial disorientation in care-home settings: How psychology can guide the development of dementia friendly design guidelines.

    Science.gov (United States)

    O'Malley, Mary; Innes, Anthea; Wiener, Jan M

    2017-04-01

    Alzheimer's disease results in marked declines in navigation skills that are particularly pronounced in unfamiliar environments. However, many people with Alzheimer's disease eventually face the challenge of having to learn their way around unfamiliar environments when moving into assisted living or care-homes. People with Alzheimer's disease would have an easier transition moving to new residences if these larger, and often more institutional, environments were designed to compensate for decreasing orientation skills. However, few existing dementia friendly design guidelines specifically address orientation and wayfinding. Those that do are often based on custom, practice or intuition and not well integrated with psychological and neuroscientific knowledge or navigation research, therefore often remaining unspecific. This paper discusses current dementia friendly design guidelines, reports findings from psychological and neuropsychological experiments on navigation and evaluates their potential for informing design guidelines that decrease spatial disorientation for people with dementia.

  12. Hybrid optimal design of the eco-hydrological wireless sensor network in the middle reach of the Heihe River Basin, China.

    Science.gov (United States)

    Kang, Jian; Li, Xin; Jin, Rui; Ge, Yong; Wang, Jinfeng; Wang, Jianghao

    2014-10-14

    The eco-hydrological wireless sensor network (EHWSN) in the middle reaches of the Heihe River Basin in China is designed to capture the spatial and temporal variability and to estimate the ground truth for validating the remote sensing productions. However, there is no available prior information about a target variable. To meet both requirements, a hybrid model-based sampling method without any spatial autocorrelation assumptions is developed to optimize the distribution of EHWSN nodes based on geostatistics. This hybrid model incorporates two sub-criteria: one for the variogram modeling to represent the variability, another for improving the spatial prediction to evaluate remote sensing productions. The reasonability of the optimized EHWSN is validated from representativeness, the variogram modeling and the spatial accuracy through using 15 types of simulation fields generated with the unconditional geostatistical stochastic simulation. The sampling design shows good representativeness; variograms estimated by samples have less than 3% mean error relative to true variograms. Then, fields at multiple scales are predicted. As the scale increases, estimated fields have higher similarities to simulation fields at block sizes exceeding 240 m. The validations prove that this hybrid sampling method is effective for both objectives when we do not know the characteristics of an optimized variables.

  13. Creating spatial organizations

    NARCIS (Netherlands)

    Lekanne Deprez, F.R.E.; Tissen, R.J.

    2009-01-01

    This paper addresses the spatial design of modern organizations in the context of a fundamental change which is currently taking place in the way companies view their organizations and the inherent performance expectations, requirements and results underlying these. This change involves a managerial

  14. OSIRIS-REx Touch-and-Go (TAG) Mission Design for Asteroid Sample Collection

    Science.gov (United States)

    May, Alexander; Sutter, Brian; Linn, Timothy; Bierhaus, Beau; Berry, Kevin; Mink, Ron

    2014-01-01

    The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in September 2016 to rendezvous with the near-Earth asteroid Bennu in October 2018. After several months of proximity operations to characterize the asteroid, OSIRIS-REx flies a Touch-And-Go (TAG) trajectory to the asteroid's surface to collect at least 60 g of pristine regolith sample for Earth return. This paper provides mission and flight system overviews, with more details on the TAG mission design and key events that occur to safely and successfully collect the sample. An overview of the navigation performed relative to a chosen sample site, along with the maneuvers to reach the desired site is described. Safety monitoring during descent is performed with onboard sensors providing an option to abort, troubleshoot, and try again if necessary. Sample collection occurs using a collection device at the end of an articulating robotic arm during a brief five second contact period, while a constant force spring mechanism in the arm assists to rebound the spacecraft away from the surface. Finally, the sample is measured quantitatively utilizing the law of conservation of angular momentum, along with qualitative data from imagery of the sampling device. Upon sample mass verification, the arm places the sample into the Stardust-heritage Sample Return Capsule (SRC) for return to Earth in September 2023.

  15. Robotic Irradiated Sample Handling Concept Design in Reactor TRIGA PUSPATI using Simulation Software

    International Nuclear Information System (INIS)

    Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat; Ridzuan Abdul Mutalib; Zareen Khan Abdul Jalil Khan; Nurfarhana Ayuni Joha

    2015-01-01

    This paper introduces the concept design of an Robotic Irradiated Sample Handling Machine using graphical software application, designed as a general, flexible and open platform to work on robotics. Webots has proven to be a useful tool in many fields of robotics, such as manipulator programming, mobile robots control (wheeled, sub-aquatic and walking robots), distance computation, sensor simulation, collision detection, motion planning and so on. Webots is used as the common interface for all the applications. Some practical cases and application for this concept design are illustrated on the paper to present the possibilities of this simulation software. (author)

  16. Holographic Fabrication of Designed Functional Defect Lines in Photonic Crystal Lattice Using a Spatial Light Modulator

    Directory of Open Access Journals (Sweden)

    Jeffrey Lutkenhaus

    2016-04-01

    Full Text Available We report the holographic fabrication of designed defect lines in photonic crystal lattices through phase engineering using a spatial light modulator (SLM. The diffracted beams from the SLM not only carry the defect’s content but also the defect related phase-shifting information. The phase-shifting induced lattice shifting in photonic lattices around the defects in three-beam interference is less than the one produced by five-beam interference due to the alternating shifting in lattice in three beam interference. By designing the defect line at a 45 degree orientation and using three-beam interference, the defect orientation can be aligned with the background photonic lattice, and the shifting is only in one side of the defect line, in agreement with the theory. Finally, a new design for the integration of functional defect lines in a background phase pattern reduces the relative phase shift of the defect and utilizes the different diffraction efficiency between the defect line and background phase pattern. We demonstrate that the desired and functional defect lattice can be registered into the background lattice through the direct imaging of designed phase patterns.

  17. Evaluating patterns of a white-band disease (WBD outbreak in Acropora palmata using spatial analysis: a comparison of transect and colony clustering.

    Directory of Open Access Journals (Sweden)

    Jennifer A Lentz

    Full Text Available BACKGROUND: Despite being one of the first documented, there is little known of the causative agent or environmental stressors that promote white-band disease (WBD, a major disease of Caribbean Acropora palmata. Likewise, there is little known about the spatiality of outbreaks. We examined the spatial patterns of WBD during a 2004 outbreak at Buck Island Reef National Monument in the US Virgin Islands. METHODOLOGY/PRINCIPAL FINDINGS: Ripley's K statistic was used to measure spatial dependence of WBD across scales. Localized clusters of WBD were identified using the DMAP spatial filtering technique. Statistics were calculated for colony- (number of A. palmata colonies with and without WBD within each transect and transect-level (presence/absence of WBD within transects data to evaluate differences in spatial patterns at each resolution of coral sampling. The Ripley's K plots suggest WBD does cluster within the study area, and approached statistical significance (p = 0.1 at spatial scales of 1100 m or less. Comparisons of DMAP results suggest the transect-level overestimated the prevalence and spatial extent of the outbreak. In contrast, more realistic prevalence estimates and spatial patterns were found by weighting each transect by the number of individual A. palmata colonies with and without WBD. CONCLUSIONS: As the search for causation continues, surveillance and proper documentation of the spatial patterns may inform etiology, and at the same time assist reef managers in allocating resources to tracking the disease. Our results indicate that the spatial scale of data collected can drastically affect the calculation of prevalence and spatial distribution of WBD outbreaks. Specifically, we illustrate that higher resolution sampling resulted in more realistic disease estimates. This should assist in selecting appropriate sampling designs for future outbreak investigations. The spatial techniques used here can be used to facilitate other

  18. Evaluating patterns of a white-band disease (WBD) outbreak in Acropora palmata using spatial analysis: a comparison of transect and colony clustering.

    Science.gov (United States)

    Lentz, Jennifer A; Blackburn, Jason K; Curtis, Andrew J

    2011-01-01

    Despite being one of the first documented, there is little known of the causative agent or environmental stressors that promote white-band disease (WBD), a major disease of Caribbean Acropora palmata. Likewise, there is little known about the spatiality of outbreaks. We examined the spatial patterns of WBD during a 2004 outbreak at Buck Island Reef National Monument in the US Virgin Islands. Ripley's K statistic was used to measure spatial dependence of WBD across scales. Localized clusters of WBD were identified using the DMAP spatial filtering technique. Statistics were calculated for colony- (number of A. palmata colonies with and without WBD within each transect) and transect-level (presence/absence of WBD within transects) data to evaluate differences in spatial patterns at each resolution of coral sampling. The Ripley's K plots suggest WBD does cluster within the study area, and approached statistical significance (p = 0.1) at spatial scales of 1100 m or less. Comparisons of DMAP results suggest the transect-level overestimated the prevalence and spatial extent of the outbreak. In contrast, more realistic prevalence estimates and spatial patterns were found by weighting each transect by the number of individual A. palmata colonies with and without WBD. As the search for causation continues, surveillance and proper documentation of the spatial patterns may inform etiology, and at the same time assist reef managers in allocating resources to tracking the disease. Our results indicate that the spatial scale of data collected can drastically affect the calculation of prevalence and spatial distribution of WBD outbreaks. Specifically, we illustrate that higher resolution sampling resulted in more realistic disease estimates. This should assist in selecting appropriate sampling designs for future outbreak investigations. The spatial techniques used here can be used to facilitate other coral disease studies, as well as, improve reef conservation and management.

  19. Sampling soils for 137Cs using various field-sampling volumes

    International Nuclear Information System (INIS)

    Nyhan, J.W.; Schofield, T.G.; White, G.C.; Trujillo, G.

    1981-10-01

    The sediments from a liquid effluent receiving area at the Los Alamos National Laboratory and soils from intensive study area in the fallout pathway of Trinity were sampled for 137 Cs using 25-, 500-, 2500-, and 12 500-cm 3 field sampling volumes. A highly replicated sampling program was used to determine mean concentrations and inventories of 137 Cs at each site, as well as estimates of spatial, aliquoting, and counting variance components of the radionuclide data. The sampling methods were also analyzed as a function of soil size fractions collected in each field sampling volume and of the total cost of the program for a given variation in the radionuclide survey results. Coefficients of variation (CV) of 137 Cs inventory estimates ranged from 0.063 to 0.14 for Mortandad Canyon sediments, where CV values for Trinity soils were observed from 0.38 to 0.57. Spatial variance components of 137 Cs concentration data were usually found to be larger than either the aliquoting or counting variance estimates and were inversely related to field sampling volume at the Trinity intensive site. Subsequent optimization studies of the sampling schemes demonstrated that each aliquot should be counted once, and that only 2 to 4 aliquots out of an many as 30 collected need be assayed for 137 Cs. The optimization studies showed that as sample costs increased to 45 man-hours of labor per sample, the variance of the mean 137 Cs concentration decreased dramatically, but decreased very little with additional labor

  20. A high time and spatial resolution MRPC designed for muon tomography

    Science.gov (United States)

    Shi, L.; Wang, Y.; Huang, X.; Wang, X.; Zhu, W.; Li, Y.; Cheng, J.

    2014-12-01

    A prototype of cosmic muon scattering tomography system has been set up in Tsinghua University in Beijing. Multi-gap Resistive Plate Chamber (MRPC) is used in the system to get the muon tracks. Compared with other detectors, MRPC can not only provide the track but also the Time of Flight (ToF) between two detectors which can estimate the energy of particles. To get a more accurate track and higher efficiency of the tomography system, a new type of high time and two-dimensional spatial resolution MRPC has been developed. A series of experiments have been done to measure the efficiency, time resolution and spatial resolution. The results show that the efficiency can reach 95% and its time resolution is around 65 ps. The cluster size is around 4 and the spatial resolution can reach 200 μ m.

  1. Augmented reality to training spatial skills

    OpenAIRE

    Martin-Gutierrez, Jorge; Contero, Manuel; Alcañiz Raya, Mariano Luis

    2015-01-01

    La Laguna University has been offering courses for the development of spatial skills since 2004. Each year since that time spatial ability of engineering students has been measured before and after the courses to check progress after each training session. We have developed a spatial skills training course based on augmented reality and graphic engineering contents, and designed the AR_Dehaes tool, which is based on its own library the uses computer vision techniques for incorporating vis...

  2. Design and characterization of poly(dimethylsiloxane)-based valves for interfacing continuous-flow sampling to microchip electrophoresis.

    Science.gov (United States)

    Li, Michelle W; Huynh, Bryan H; Hulvey, Matthew K; Lunte, Susan M; Martin, R Scott

    2006-02-15

    This work describes the fabrication and evaluation of a poly(dimethyl)siloxane (PDMS)-based device that enables the discrete injection of a sample plug from a continuous-flow stream into a microchannel for subsequent analysis by electrophoresis. Devices were fabricated by aligning valving and flow channel layers followed by plasma sealing the combined layers onto a glass plate that contained fittings for the introduction of liquid sample and nitrogen gas. The design incorporates a reduced-volume pneumatic valve that actuates (on the order of hundreds of milliseconds) to allow analyte from a continuously flowing sampling channel to be injected into a separation channel for electrophoresis. The injector design was optimized to include a pushback channel to flush away stagnant sample associated with the injector dead volume. The effect of the valve actuation time, the pushback voltage, and the sampling stream flow rate on the performance of the device was characterized. Using the optimized design and an injection frequency of 0.64 Hz showed that the injection process is reproducible (RSD of 1.77%, n = 15). Concentration change experiments using fluorescein as the analyte showed that the device could achieve a lag time as small as 14 s. Finally, to demonstrate the potential uses of this device, the microchip was coupled to a microdialysis probe to monitor a concentration change and sample a fluorescein dye mixture.

  3. Sampling design for the Study of Cardiovascular Risks in Adolescents (ERICA

    Directory of Open Access Journals (Sweden)

    Mauricio Teixeira Leite de Vasconcellos

    2015-05-01

    Full Text Available The Study of Cardiovascular Risk in Adolescents (ERICA aims to estimate the prevalence of cardiovascular risk factors and metabolic syndrome in adolescents (12-17 years enrolled in public and private schools of the 273 municipalities with over 100,000 inhabitants in Brazil. The study population was stratified into 32 geographical strata (27 capitals and five sets with other municipalities in each macro-region of the country and a sample of 1,251 schools was selected with probability proportional to size. In each school three combinations of shift (morning and afternoon and grade were selected, and within each of these combinations, one class was selected. All eligible students in the selected classes were included in the study. The design sampling weights were calculated by the product of the reciprocals of the inclusion probabilities in each sampling stage, and were later calibrated considering the projections of the numbers of adolescents enrolled in schools located in the geographical strata by sex and age.

  4. Sampling of temporal networks: Methods and biases

    Science.gov (United States)

    Rocha, Luis E. C.; Masuda, Naoki; Holme, Petter

    2017-11-01

    Temporal networks have been increasingly used to model a diversity of systems that evolve in time; for example, human contact structures over which dynamic processes such as epidemics take place. A fundamental aspect of real-life networks is that they are sampled within temporal and spatial frames. Furthermore, one might wish to subsample networks to reduce their size for better visualization or to perform computationally intensive simulations. The sampling method may affect the network structure and thus caution is necessary to generalize results based on samples. In this paper, we study four sampling strategies applied to a variety of real-life temporal networks. We quantify the biases generated by each sampling strategy on a number of relevant statistics such as link activity, temporal paths and epidemic spread. We find that some biases are common in a variety of networks and statistics, but one strategy, uniform sampling of nodes, shows improved performance in most scenarios. Given the particularities of temporal network data and the variety of network structures, we recommend that the choice of sampling methods be problem oriented to minimize the potential biases for the specific research questions on hand. Our results help researchers to better design network data collection protocols and to understand the limitations of sampled temporal network data.

  5. A design-based approximation to the Bayes Information Criterion in finite population sampling

    Directory of Open Access Journals (Sweden)

    Enrico Fabrizi

    2014-05-01

    Full Text Available In this article, various issues related to the implementation of the usual Bayesian Information Criterion (BIC are critically examined in the context of modelling a finite population. A suitable design-based approximation to the BIC is proposed in order to avoid the derivation of the exact likelihood of the sample which is often very complex in a finite population sampling. The approximation is justified using a theoretical argument and a Monte Carlo simulation study.

  6. Adaptation of G-TAG Software for Validating Touch-and-Go Comet Surface Sampling Design Methodology

    Science.gov (United States)

    Mandic, Milan; Acikmese, Behcet; Blackmore, Lars

    2011-01-01

    The G-TAG software tool was developed under the R&TD on Integrated Autonomous Guidance, Navigation, and Control for Comet Sample Return, and represents a novel, multi-body dynamics simulation software tool for studying TAG sampling. The G-TAG multi-body simulation tool provides a simulation environment in which a Touch-and-Go (TAG) sampling event can be extensively tested. TAG sampling requires the spacecraft to descend to the surface, contact the surface with a sampling collection device, and then to ascend to a safe altitude. The TAG event lasts only a few seconds but is mission-critical with potentially high risk. Consequently, there is a need for the TAG event to be well characterized and studied by simulation and analysis in order for the proposal teams to converge on a reliable spacecraft design. This adaptation of the G-TAG tool was developed to support the Comet Odyssey proposal effort, and is specifically focused to address comet sample return missions. In this application, the spacecraft descends to and samples from the surface of a comet. Performance of the spacecraft during TAG is assessed based on survivability and sample collection performance. For the adaptation of the G-TAG simulation tool to comet scenarios, models are developed that accurately describe the properties of the spacecraft, approach trajectories, and descent velocities, as well as the models of the external forces and torques acting on the spacecraft. The adapted models of the spacecraft, descent profiles, and external sampling forces/torques were more sophisticated and customized for comets than those available in the basic G-TAG simulation tool. Scenarios implemented include the study of variations in requirements, spacecraft design (size, locations, etc. of the spacecraft components), and the environment (surface properties, slope, disturbances, etc.). The simulations, along with their visual representations using G-View, contributed to the Comet Odyssey New Frontiers proposal

  7. Quantification of within-sample genetic heterogeneity from SNP-array data

    DEFF Research Database (Denmark)

    Martinez, Pierre; Kimberley, Christopher; Birkbak, Nicolai Juul

    2017-01-01

    Intra-tumour genetic heterogeneity (ITH) fosters drug resistance and is a critical hurdle to clinical treatment. ITH can be well-measured using multi-region sampling but this is costly and challenging to implement. There is therefore a need for tools to estimate ITH in individual samples, using...... standard genomic data such as SNP-arrays, that could be implemented routinely. We designed two novel scores S and R, respectively based on the Shannon diversity index and Ripley's L statistic of spatial homogeneity, to quantify ITH in single SNP-array samples. We created in-silico and in-vitro mixtures...... sequencing data but heterogeneity in the fraction of tumour cells present across samples hampered accurate quantification. The prognostic potential of both scores was moderate but significantly predictive of survival in several tumour types (corrected p = 0.03). Our work thus shows how individual SNP...

  8. Optical design of the lightning imager for MTG

    Science.gov (United States)

    Lorenzini, S.; Bardazzi, R.; Di Giampietro, M.; Feresin, F.; Taccola, M.; Cuevas, L. P.

    2017-11-01

    The Lightning Imager for Meteosat Third Generation is an optical payload with on-board data processing for the detection of lightning. The instrument will provide a global monitoring of lightning events over the full Earth disk from geostationary orbit and will operate in day and night conditions. The requirements of the large field of view together with the high detection efficiency with small and weak optical pulses superimposed to a much brighter and highly spatial and temporal variable background (full operation during day and night conditions, seasonal variations and different albedos between clouds oceans and lands) are driving the design of the optical instrument. The main challenge is to distinguish a true lightning from false events generated by random noise (e.g. background shot noise) or sun glints diffusion or signal variations originated by microvibrations. This can be achieved thanks to a `multi-dimensional' filtering, simultaneously working on the spectral, spatial and temporal domains. The spectral filtering is achieved with a very narrowband filter centred on the bright lightning O2 triplet line (777.4 nm +/- 0.17 nm). The spatial filtering is achieved with a ground sampling distance significantly smaller (between 4 and 5 km at sub satellite pointing) than the dimensions of a typical lightning pulse. The temporal filtering is achieved by sampling continuously the Earth disk within a period close to 1 ms. This paper presents the status of the optical design addressing the trade-off between different configurations and detailing the design and the analyses of the current baseline. Emphasis is given to the discussion of the design drivers and the solutions implemented in particular concerning the spectral filtering and the optimisation of the signal to noise ratio.

  9. Design, analysis, and interpretation of field quality-control data for water-sampling projects

    Science.gov (United States)

    Mueller, David K.; Schertz, Terry L.; Martin, Jeffrey D.; Sandstrom, Mark W.

    2015-01-01

    The process of obtaining and analyzing water samples from the environment includes a number of steps that can affect the reported result. The equipment used to collect and filter samples, the bottles used for specific subsamples, any added preservatives, sample storage in the field, and shipment to the laboratory have the potential to affect how accurately samples represent the environment from which they were collected. During the early 1990s, the U.S. Geological Survey implemented policies to include the routine collection of quality-control samples in order to evaluate these effects and to ensure that water-quality data were adequately representing environmental conditions. Since that time, the U.S. Geological Survey Office of Water Quality has provided training in how to design effective field quality-control sampling programs and how to evaluate the resultant quality-control data. This report documents that training material and provides a reference for methods used to analyze quality-control data.

  10. SPATIAL MODELLING FOR DESCRIBING SPATIAL VARIABILITY OF SOIL PHYSICAL PROPERTIES IN EASTERN CROATIA

    Directory of Open Access Journals (Sweden)

    Igor Bogunović

    2016-06-01

    Full Text Available The objectives of this study were to characterize the field-scale spatial variability and test several interpolation methods to identify the best spatial predictor of penetration resistance (PR, bulk density (BD and gravimetric water content (GWC in the silty loam soil in Eastern Croatia. The measurements were made on a 25 x 25-m grid which created 40 individual grid cells. Soil properties were measured at the center of the grid cell deep 0-10 cm and 10-20 cm. Results demonstrated that PR and GWC displayed strong spatial dependence at 0-10 cm BD, while there was moderate and weak spatial dependence of PR, BD and GWC at depth of 10-20 cm. Semi-variogram analysis suggests that future sampling intervals for investigated parameters can be increased to 35 m in order to reduce research costs. Additionally, interpolation models recorded similar root mean square values with high predictive accuracy. Results suggest that investigated properties do not have uniform interpolation method implying the need for spatial modelling in the evaluation of these soil properties in Eastern Croatia.

  11. Design and theoretical investigation of a digital x-ray detector with large area and high spatial resolution

    Science.gov (United States)

    Gui, Jianbao; Guo, Jinchuan; Yang, Qinlao; Liu, Xin; Niu, Hanben

    2007-05-01

    X-ray phase contrast imaging is a promising new technology today, but the requirements of a digital detector with large area, high spatial resolution and high sensitivity bring forward a large challenge to researchers. This paper is related to the design and theoretical investigation of an x-ray direct conversion digital detector based on mercuric iodide photoconductive layer with the latent charge image readout by photoinduced discharge (PID). Mercuric iodide has been verified having a good imaging performance (high sensitivity, low dark current, low voltage operation and good lag characteristics) compared with the other competitive materials (α-Se,PbI II,CdTe,CdZnTe) and can be easily deposited on large substrates in the manner of polycrystalline. By use of line scanning laser beam and parallel multi-electrode readout make the system have high spatial resolution and fast readout speed suitable for instant general radiography and even rapid sequence radiography.

  12. Design and characterization of 16-mode PANDA polarization-maintaining few-mode ring-core fiber for spatial division multiplexing

    Science.gov (United States)

    Cao, Yuan; Zhao, Yongli; Yu, Xiaosong; Han, Jiawei; Zhang, Jie

    2017-11-01

    A PANDA polarization-maintaining few-mode ring-core fiber (PM-FM-RCF) structure with two air holes around the ring core is proposed. The relative mode multiplicity factor (RMMF) is defined to evaluate the spatial efficiency of the designed PM-FM-RCF. The performance analysis and comparison of the proposed PANDA PM-FM-RCFs considering three different types of step-index profiles are detailed. Through modal characteristic analysis and numerical simulation, the PM-FM-RCF with a lower refractive index difference (Δnoi=1.5%) between the ring core and the inner central circle can support up to 16 polarization modes with large RMMF at C-band, which shows the optimum modal properties compared with the PM-FM-RCF with higher Δnoi. All the supported polarization modes are effectively separated from their adjacent polarization modes with effective refractive index differences (Δn) larger than 10-4, which also show relatively small chromatic dispersion (-20 to 25 ps/nm/km), low attenuation (<1.4 dB/km), and small bending radius (˜8 mm) over the C-band. The designed PM-FM-RCF can be compatible with standard single-mode fibers and applied in multiple-input multiple-output-free spatial division multiplexing optical networks for short-reach optical interconnection.

  13. Adaptive geostatistical sampling enables efficient identification of malaria hotspots in repeated cross-sectional surveys in rural Malawi.

    Directory of Open Access Journals (Sweden)

    Alinune N Kabaghe

    Full Text Available In the context of malaria elimination, interventions will need to target high burden areas to further reduce transmission. Current tools to monitor and report disease burden lack the capacity to continuously detect fine-scale spatial and temporal variations of disease distribution exhibited by malaria. These tools use random sampling techniques that are inefficient for capturing underlying heterogeneity while health facility data in resource-limited settings are inaccurate. Continuous community surveys of malaria burden provide real-time results of local spatio-temporal variation. Adaptive geostatistical design (AGD improves prediction of outcome of interest compared to current random sampling techniques. We present findings of continuous malaria prevalence surveys using an adaptive sampling design.We conducted repeated cross sectional surveys guided by an adaptive sampling design to monitor the prevalence of malaria parasitaemia and anaemia in children below five years old in the communities living around Majete Wildlife Reserve in Chikwawa district, Southern Malawi. AGD sampling uses previously collected data to sample new locations of high prediction variance or, where prediction exceeds a set threshold. We fitted a geostatistical model to predict malaria prevalence in the area.We conducted five rounds of sampling, and tested 876 children aged 6-59 months from 1377 households over a 12-month period. Malaria prevalence prediction maps showed spatial heterogeneity and presence of hotspots-where predicted malaria prevalence was above 30%; predictors of malaria included age, socio-economic status and ownership of insecticide-treated mosquito nets.Continuous malaria prevalence surveys using adaptive sampling increased malaria prevalence prediction accuracy. Results from the surveys were readily available after data collection. The tool can assist local managers to target malaria control interventions in areas with the greatest health impact and is

  14. Fostering Spatial Skill Acquisition by General Chemistry Students

    Science.gov (United States)

    Carlisle, Deborah; Tyson, Julian; Nieswandt, Martina

    2015-01-01

    The study of chemistry requires the understanding and use of spatial relationships, which can be challenging for many students. Prior research has shown that there is a need to develop students' spatial reasoning skills. To that end, this study implemented guided activities designed to strengthen students' spatial skills, with the aim of improving…

  15. Design and building of a homemade sample changer for automation of the irradiation in neutron activation analysis technique

    International Nuclear Information System (INIS)

    Gago, Javier; Hernandez, Yuri; Baltuano, Oscar; Bedregal, Patricia; Lopez, Yon; Urquizo, Rafael

    2014-01-01

    Because the RP-10 research reactor operates during weekends, it was necessary to design and build a sample changer for irradiation as part of the automation process of neutron activation analysis technique. The device is formed by an aluminum turntable disk which can accommodate 19 polyethylene capsules, containing samples to be sent using the pneumatic transfer system from the laboratory to the irradiation position. The system is operate by a control switchboard to send and return capsules in a variable preset time and by two different ways, allowing the determination of short, medium and long lived radionuclides. Also another mechanism is designed called 'exchange valve' for changing travel paths (pipelines) allowing the irradiated samples to be stored for a longer time in the reactor hall. The system design has allowed complete automation of this technique, enabling the irradiation of samples without the presence of an analyst. The design, construction and operation of the device is described and presented in this article. (authors).

  16. Design of a sample acquistion system for the Mars exobiological penetrator

    Science.gov (United States)

    Thomson, Ron; Gwynne, Owen

    1988-01-01

    The Mars Exobiological Penetrator will be imbedded into several locations on the Martian surface. It contains various scientific instruments, such as an Alpha-Particle Instrument (API), Differential Scanning Calorimeter (DSC), Evolved Gas Analyzer (EGA) and accelerometers. A sample is required for analysis in the API and DSC. To avoid impact contaminated material, this sample must be taken from soil greater than 2 cm away from the penetrator shell. This study examines the design of a dedicated sampling system including deployment, suspension, fore/after body coupling, sample gathering and placement. To prevent subsurface material from entering the penetrator sampling compartment during impact, a plug is placed in the exit hole of the wall. A U-lever device is used to hold this plug in the penetrator wall. The U-lever rotates upon initial motion of the core-grinder mechanism (CGM), releasing the plug. Research points to a combination of coring and grinding as a plausible solution to the problem of dry drilling. The CGM, driven by two compressed springs, will be deployed along a tracking system. A slowly varying load i.e., springs, is favored over a fixed displacement motion because of its adaptability to different material hardness. However, to accommodate sampling in a low density soil, two dash pots set a maximum transverse velocity. In addition, minimal power use is achieved by unidirectional motion of the CGM. The sample will be transported to the scientific instruments by means of a sample placement tray that is driven by a compressed spring to avoid unnecessary power usage. This paper also explores possible modifications for size, weight, and time as well as possible future studies.

  17. Optimization of sampling pattern and the design of Fourier ptychographic illuminator.

    Science.gov (United States)

    Guo, Kaikai; Dong, Siyuan; Nanda, Pariksheet; Zheng, Guoan

    2015-03-09

    Fourier ptychography (FP) is a recently developed imaging approach that facilitates high-resolution imaging beyond the cutoff frequency of the employed optics. In the original FP approach, a periodic LED array is used for sample illumination, and therefore, the scanning pattern is a uniform grid in the Fourier space. Such a uniform sampling scheme leads to 3 major problems for FP, namely: 1) it requires a large number of raw images, 2) it introduces the raster grid artefacts in the reconstruction process, and 3) it requires a high-dynamic-range detector. Here, we investigate scanning sequences and sampling patterns to optimize the FP approach. For most biological samples, signal energy is concentrated at low-frequency region, and as such, we can perform non-uniform Fourier sampling in FP by considering the signal structure. In contrast, conventional ptychography perform uniform sampling over the entire real space. To implement the non-uniform Fourier sampling scheme in FP, we have designed and built an illuminator using LEDs mounted on a 3D-printed plastic case. The advantages of this illuminator are threefold in that: 1) it reduces the number of image acquisitions by at least 50% (68 raw images versus 137 in the original FP setup), 2) it departs from the translational symmetry of sampling to solve the raster grid artifact problem, and 3) it reduces the dynamic range of the captured images 6 fold. The results reported in this paper significantly shortened acquisition time and improved quality of FP reconstructions. It may provide new insights for developing Fourier ptychographic imaging platforms and find important applications in digital pathology.

  18. GMDPtoolbox: A Matlab library for designing spatial management policies. Application to the long-term collective management of an airborne disease.

    Science.gov (United States)

    Cros, Marie-Josée; Aubertot, Jean-Noël; Peyrard, Nathalie; Sabbadin, Régis

    2017-01-01

    Designing management policies in ecology and agroecology is complex. Several components must be managed together while they strongly interact spatially. Decision choices must be made under uncertainty on the results of the actions and on the system dynamics. Furthermore, the objectives pursued when managing ecological systems or agroecosystems are usually long term objectives, such as biodiversity conservation or sustainable crop production. The framework of Graph-Based Markov Decision Processes (GMDP) is well adapted to the qualitative modeling of such problems of sequential decision under uncertainty. Spatial interactions are easily modeled and integrated control policies (combining several action levers) can be designed through optimization. The provided policies are adaptive, meaning that management actions are decided at each time step (for instance yearly) and the chosen actions depend on the current system state. This framework has already been successfully applied to forest management and invasive species management. However, up to now, no "easy-to-use" implementation of this framework was available. We present GMDPtoolbox, a Matlab toolbox which can be used both for the design of new management policies and for comparing policies by simulation. We provide an illustration of the use of the toolbox on a realistic crop disease management problem: the design of long term management policy of blackleg of canola using an optimal combination of three possible cultural levers. This example shows how GMDPtoolbox can be used as a tool to support expert thinking.

  19. Causality in Statistical Power: Isomorphic Properties of Measurement, Research Design, Effect Size, and Sample Size

    Directory of Open Access Journals (Sweden)

    R. Eric Heidel

    2016-01-01

    Full Text Available Statistical power is the ability to detect a significant effect, given that the effect actually exists in a population. Like most statistical concepts, statistical power tends to induce cognitive dissonance in hepatology researchers. However, planning for statistical power by an a priori sample size calculation is of paramount importance when designing a research study. There are five specific empirical components that make up an a priori sample size calculation: the scale of measurement of the outcome, the research design, the magnitude of the effect size, the variance of the effect size, and the sample size. A framework grounded in the phenomenon of isomorphism, or interdependencies amongst different constructs with similar forms, will be presented to understand the isomorphic effects of decisions made on each of the five aforementioned components of statistical power.

  20. Baseline Design Compliance Matrix for the Type 4 In Situ Vapor Samplers and Supernate and Sludge and Soft Saltcake Grab Sampling

    International Nuclear Information System (INIS)

    BOGER, R.M.

    2000-01-01

    The DOE has identified a need to sample vapor space, exhaust ducts, supernate, sludge, and soft saltcake in waste tanks that store radioactive waste. This document provides the Design Compliance Matrix (DCM) for the Type 4 In-Situ Vapor Sampling (ISVS) system and the Grab Sampling System that are used for completing this type of sampling function. The DCM identifies the design requirements and the source of the requirements for the Type 4 ISVS system and the Grab Sampling system. The DCM is a single-source compilation design requirements for sampling and sampling support equipment and supports the configuration management of these systems

  1. The Relation between Childhood Spatial Activities and Spatial Abilities in Adulthood

    Science.gov (United States)

    Doyle, Randi A.; Voyer, Daniel; Cherney, Isabelle D.

    2012-01-01

    This study investigated the relation between childhood spatial activities and cognitive gender differences in adults through the validation of the Childhood Activities Questionnaire developed by Cherney and Voyer (2010). A sample of 403 (133 males, 270 females) undergraduates in Introductory Psychology courses at University of New Brunswick, NB,…

  2. MUP, CEC-DES, STRADE. Codes for uncertainty propagation, experimental design and stratified random sampling techniques

    International Nuclear Information System (INIS)

    Amendola, A.; Astolfi, M.; Lisanti, B.

    1983-01-01

    The report describes the how-to-use of the codes: MUP (Monte Carlo Uncertainty Propagation) for uncertainty analysis by Monte Carlo simulation, including correlation analysis, extreme value identification and study of selected ranges of the variable space; CEC-DES (Central Composite Design) for building experimental matrices according to the requirements of Central Composite and Factorial Experimental Designs; and, STRADE (Stratified Random Design) for experimental designs based on the Latin Hypercube Sampling Techniques. Application fields, of the codes are probabilistic risk assessment, experimental design, sensitivity analysis and system identification problems

  3. [Design of standard voice sample text for subjective auditory perceptual evaluation of voice disorders].

    Science.gov (United States)

    Li, Jin-rang; Sun, Yan-yan; Xu, Wen

    2010-09-01

    To design a speech voice sample text with all phonemes in Mandarin for subjective auditory perceptual evaluation of voice disorders. The principles for design of a speech voice sample text are: The short text should include the 21 initials and 39 finals, this may cover all the phonemes in Mandarin. Also, the short text should have some meanings. A short text was made out. It had 155 Chinese words, and included 21 initials and 38 finals (the final, ê, was not included because it was rarely used in Mandarin). Also, the text covered 17 light tones and one "Erhua". The constituent ratios of the initials and finals presented in this short text were statistically similar as those in Mandarin according to the method of similarity of the sample and population (r = 0.742, P text were statistically not similar as those in Mandarin (r = 0.731, P > 0.05). A speech voice sample text with all phonemes in Mandarin was made out. The constituent ratios of the initials and finals presented in this short text are similar as those in Mandarin. Its value for subjective auditory perceptual evaluation of voice disorders need further study.

  4. Evaluation of common methods for sampling invertebrate pollinator assemblages: net sampling out-perform pan traps.

    Directory of Open Access Journals (Sweden)

    Tony J Popic

    Full Text Available Methods for sampling ecological assemblages strive to be efficient, repeatable, and representative. Unknowingly, common methods may be limited in terms of revealing species function and so of less value for comparative studies. The global decline in pollination services has stimulated surveys of flower-visiting invertebrates, using pan traps and net sampling. We explore the relative merits of these two methods in terms of species discovery, quantifying abundance, function, and composition, and responses of species to changing floral resources. Using a spatially-nested design we sampled across a 5000 km(2 area of arid grasslands, including 432 hours of net sampling and 1296 pan trap-days, between June 2010 and July 2011. Net sampling yielded 22% more species and 30% higher abundance than pan traps, and better reflected the spatio-temporal variation of floral resources. Species composition differed significantly between methods; from 436 total species, 25% were sampled by both methods, 50% only by nets, and the remaining 25% only by pans. Apart from being less comprehensive, if pan traps do not sample flower-visitors, the link to pollination is questionable. By contrast, net sampling functionally linked species to pollination through behavioural observations of flower-visitation interaction frequency. Netted specimens are also necessary for evidence of pollen transport. Benefits of net-based sampling outweighed minor differences in overall sampling effort. As pan traps and net sampling methods are not equivalent for sampling invertebrate-flower interactions, we recommend net sampling of invertebrate pollinator assemblages, especially if datasets are intended to document declines in pollination and guide measures to retain this important ecosystem service.

  5. The spatial rotator

    DEFF Research Database (Denmark)

    Rasmusson, Allan; Hahn, Ute; Larsen, Jytte Overgaard

    2013-01-01

    This paper presents a new local volume estimator, the spatial rotator, which is based on measurements on a virtual 3D probe, using computer assisted microscopy. The basic design of the probe builds upon the rotator principle which requires only a few manual intersection markings, thus making...

  6. Gas and liquid sampling for closed canisters in K-West basins - functional design criteria

    International Nuclear Information System (INIS)

    Pitkoff, C.C.

    1994-01-01

    The purpose of this document is to provide functions and requirements for the design and fabrication of equipment for sampling closed canisters in the K-West basin. The samples will be used to help determine the state of the fuel elements in closed canisters. The characterization information obtained will support evaluation and development of processes required for safe storage and disposition of Spent Nuclear Fuel (SNF) materials

  7. An in situ spatially resolved analytical technique to simultaneously probe gas phase reactions and temperature within the packed bed of a plug flow reactor.

    Science.gov (United States)

    Touitou, Jamal; Burch, Robbie; Hardacre, Christopher; McManus, Colin; Morgan, Kevin; Sá, Jacinto; Goguet, Alexandre

    2013-05-21

    This paper reports the detailed description and validation of a fully automated, computer controlled analytical method to spatially probe the gas composition and thermal characteristics in packed bed systems. As an exemplar, we have examined a heterogeneously catalysed gas phase reaction within the bed of a powdered oxide supported metal catalyst. The design of the gas sampling and the temperature recording systems are disclosed. A stationary capillary with holes drilled in its wall and a moveable reactor coupled with a mass spectrometer are used to enable sampling and analysis. This method has been designed to limit the invasiveness of the probe on the reactor by using the smallest combination of thermocouple and capillary which can be employed practically. An 80 μm (O.D.) thermocouple has been inserted in a 250 μm (O.D.) capillary. The thermocouple is aligned with the sampling holes to enable both the gas composition and temperature profiles to be simultaneously measured at equivalent spatially resolved positions. This analysis technique has been validated by studying CO oxidation over a 1% Pt/Al2O3 catalyst and the spatial resolution profiles of chemical species concentrations and temperature as a function of the axial position within the catalyst bed are reported.

  8. Design and implementation of visualization methods for the CHANGES Spatial Decision Support System

    Science.gov (United States)

    Cristal, Irina; van Westen, Cees; Bakker, Wim; Greiving, Stefan

    2014-05-01

    The CHANGES Spatial Decision Support System (SDSS) is a web-based system aimed for risk assessment and the evaluation of optimal risk reduction alternatives at local level as a decision support tool in long-term natural risk management. The SDSS use multidimensional information, integrating thematic, spatial, temporal and documentary data. The role of visualization in this context becomes of vital importance for efficiently representing each dimension. This multidimensional aspect of the required for the system risk information, combined with the diversity of the end-users imposes the use of sophisticated visualization methods and tools. The key goal of the present work is to exploit efficiently the large amount of data in relation to the needs of the end-user, utilizing proper visualization techniques. Three main tasks have been accomplished for this purpose: categorization of the end-users, the definition of system's modules and the data definition. The graphical representation of the data and the visualization tools were designed to be relevant to the data type and the purpose of the analysis. Depending on the end-users category, each user should have access to different modules of the system and thus, to the proper visualization environment. The technologies used for the development of the visualization component combine the latest and most innovative open source JavaScript frameworks, such as OpenLayers 2.13.1, ExtJS 4 and GeoExt 2. Moreover, the model-view-controller (MVC) pattern is used in order to ensure flexibility of the system at the implementation level. Using the above technologies, the visualization techniques implemented so far offer interactive map navigation, querying and comparison tools. The map comparison tools are of great importance within the SDSS and include the following: swiping tool for comparison of different data of the same location; raster subtraction for comparison of the same phenomena varying in time; linked views for comparison

  9. Evaluating Site-Specific and Generic Spatial Models of Aboveground Forest Biomass Based on Landsat Time-Series and LiDAR Strip Samples in the Eastern USA

    Science.gov (United States)

    Ram Deo; Matthew Russell; Grant Domke; Hans-Erik Andersen; Warren Cohen; Christopher Woodall

    2017-01-01

    Large-area assessment of aboveground tree biomass (AGB) to inform regional or national forest monitoring programs can be efficiently carried out by combining remotely sensed data and field sample measurements through a generic statistical model, in contrast to site-specific models. We integrated forest inventory plot data with spatial predictors from Landsat time-...

  10. Analysis of spatial distribution of land cover maps accuracy

    Science.gov (United States)

    Khatami, R.; Mountrakis, G.; Stehman, S. V.

    2017-12-01

    Land cover maps have become one of the most important products of remote sensing science. However, classification errors will exist in any classified map and affect the reliability of subsequent map usage. Moreover, classification accuracy often varies over different regions of a classified map. These variations of accuracy will affect the reliability of subsequent analyses of different regions based on the classified maps. The traditional approach of map accuracy assessment based on an error matrix does not capture the spatial variation in classification accuracy. Here, per-pixel accuracy prediction methods are proposed based on interpolating accuracy values from a test sample to produce wall-to-wall accuracy maps. Different accuracy prediction methods were developed based on four factors: predictive domain (spatial versus spectral), interpolation function (constant, linear, Gaussian, and logistic), incorporation of class information (interpolating each class separately versus grouping them together), and sample size. Incorporation of spectral domain as explanatory feature spaces of classification accuracy interpolation was done for the first time in this research. Performance of the prediction methods was evaluated using 26 test blocks, with 10 km × 10 km dimensions, dispersed throughout the United States. The performance of the predictions was evaluated using the area under the curve (AUC) of the receiver operating characteristic. Relative to existing accuracy prediction methods, our proposed methods resulted in improvements of AUC of 0.15 or greater. Evaluation of the four factors comprising the accuracy prediction methods demonstrated that: i) interpolations should be done separately for each class instead of grouping all classes together; ii) if an all-classes approach is used, the spectral domain will result in substantially greater AUC than the spatial domain; iii) for the smaller sample size and per-class predictions, the spectral and spatial domain

  11. Evaluation of design flood estimates with respect to sample size

    Science.gov (United States)

    Kobierska, Florian; Engeland, Kolbjorn

    2016-04-01

    Estimation of design floods forms the basis for hazard management related to flood risk and is a legal obligation when building infrastructure such as dams, bridges and roads close to water bodies. Flood inundation maps used for land use planning are also produced based on design flood estimates. In Norway, the current guidelines for design flood estimates give recommendations on which data, probability distribution, and method to use dependent on length of the local record. If less than 30 years of local data is available, an index flood approach is recommended where the local observations are used for estimating the index flood and regional data are used for estimating the growth curve. For 30-50 years of data, a 2 parameter distribution is recommended, and for more than 50 years of data, a 3 parameter distribution should be used. Many countries have national guidelines for flood frequency estimation, and recommended distributions include the log Pearson II, generalized logistic and generalized extreme value distributions. For estimating distribution parameters, ordinary and linear moments, maximum likelihood and Bayesian methods are used. The aim of this study is to r-evaluate the guidelines for local flood frequency estimation. In particular, we wanted to answer the following questions: (i) Which distribution gives the best fit to the data? (ii) Which estimation method provides the best fit to the data? (iii) Does the answer to (i) and (ii) depend on local data availability? To answer these questions we set up a test bench for local flood frequency analysis using data based cross-validation methods. The criteria were based on indices describing stability and reliability of design flood estimates. Stability is used as a criterion since design flood estimates should not excessively depend on the data sample. The reliability indices describe to which degree design flood predictions can be trusted.

  12. Design of sample analysis device for iodine adsorption efficiency test in NPPs

    International Nuclear Information System (INIS)

    Ji Jinnan

    2015-01-01

    In nuclear power plants, iodine adsorption efficiency test is used to check the iodine adsorption efficiency of the iodine adsorber. The iodine adsorption efficiency can be calculated through the analysis of the test sample, and thus to determine if the performance of the adsorber meets the requirement on the equipment operation and emission. Considering the process of test and actual demand, in this paper, a special device for the analysis of this kind of test sample is designed. The application shows that the device is with convenient operation and high reliability and accurate calculation, and improves the experiment efficiency and reduces the experiment risk. (author)

  13. Relative mass resolution technique for optimum design of a gamma nondestructive assay system

    International Nuclear Information System (INIS)

    Koh, Duck Joon

    1995-02-01

    Nondestructive assay(NDA) is a widely used nuclear technology for quantitative elemental and isotopic assay. Nondestructive assay is performed by the detection of an identifying radiation emerging from the sample, which can be unambiguously related to the element or isotope of interest. In every assay we can identify two distinct factors that lead to measurement uncertainty. We refer to these as statistical and spatial uncertainties. If the spatial distribution of the analyte and the matrix material in the sample are known and fairly constant from sample to sample, then the major source of measurement uncertainty is the statistical uncertainty resulting from randomness in the counting process. The spatial uncertainty is independent of the measurement time and therefore sets a lower limit to the measurement uncertainty, which is inherent in the assay system in conjunction with the population of samples to be measured. The only way to minimize the spatial uncertainty is an optimized design of the assay system. Therefore we have to decide on the type and number of detectors to be used, their deployment around the sample, the type of radiation to be measured, the duration of each measurement, the size and shape of the sample drum. The design procedure leading to the optimal assay system should be based on a quantitative(RMR:Relative Mass Resolution) comparison of the performance of each proposed design. For NDA system design of low level radwaste, a specific purpose Monte Carlo code has been developed to simulate point-source responses for sources within an assayed radwaste drum and to analyze the effect of scattered gammas from higher energy gammas on the spectrum of a low energy gamma-ray. We could use the well-known Monte Carlo code, such as MCNP for the simulation of NDA in the case of low level radwaste. But, MCNP is a multi-purpose Monte Carlo transport code for several geometries which requires large memory and long CPU time. For some cases in nuclear

  14. How Mobile App Design Impacts User Responses to Mixed Self-Tracking Outcomes: Randomized Online Experiment to Explore the Role of Spatial Distance for Hedonic Editing

    Science.gov (United States)

    Lorenz, Jana

    2018-01-01

    Background Goal setting is among the most common behavioral change techniques employed in contemporary self-tracking apps. For these techniques to be effective, it is relevant to understand how the visual presentation of goal-related outcomes employed in the app design affects users’ responses to their self-tracking outcomes. Objective This study examined whether a spatially close (vs distant) presentation of mixed positive and negative self-tracking outcomes from multiple domains (ie, activity, diet) on a digital device’s screen can provide users the opportunity to hedonically edit their self-tracking outcome profile (ie, to view their mixed self-tracking outcomes in the most positive light). Further, this study examined how the opportunity to hedonically edit one’s self-tracking outcome profile relates to users’ future health behavior intentions. Methods To assess users’ responses to a spatially close (vs distant) presentation of a mixed-gain (vs mixed-loss) self-tracking outcome profile, a randomized 2×2 between-subjects online experiment with a final sample of 397 participants (mean age 27.4, SD 7.2 years; 71.5%, 284/397 female) was conducted in Germany. The experiment started with a cover story about a fictitious self-tracking app. Thereafter, participants saw one of four manipulated self-tracking outcome profiles. Variables of interest measured were health behavior intentions, compensatory health beliefs, health motivation, and recall of the outcome profile. We analyzed data using chi-square tests (SPSS version 23) and moderated mediation analyses with the PROCESS macro 2.16.1. Results Spatial distance facilitated hedonic editing, which was indicated by systematic memory biases in users’ recall of positive and negative self-tracking outcomes. In the case of a mixed-gain outcome profile, a spatially close (vs distant) presentation tended to increase the underestimation of the negative outcome (P=.06). In the case of a mixed-loss outcome profile, a

  15. The spatial comfort study of shophouse at Kampung Madras

    Science.gov (United States)

    Ginting, Y. U. U.; Ginting, N.; Zahrah, W.

    2018-03-01

    This Research comes from the increasing quantity of shophouse in downtown Medan and the suburban area. The condition of shophouse tend to have narrowly spaced rooms, the middle area of the house are poorly lighted, and lots of space left unused. This research is supported by many spatial issues from previous studies. This study is conducted to determine the level of comfort of shophouse as a function of living space and focused on the spatial aspect namely anthropometry, indoor space circulation, space requirement and function, spatial design and indoor visual. This study uses the descriptive method with the qualitative and quantitative approach. Data collection technique is done by field observation, questionnaire method is also used to get the respondent perception of the spatial comfort of a shophouse. The result indicates that the level of spatial comfort of the shophouse is an uncomfort. So the improvements in the circulation of access to the building, spatial design, lighting, and aeration are needed to improve the spatial comfort of a shophouse.

  16. Latin Hypercube Sampling (LHS) at variable resolutions for enhanced watershed scale Soil Sampling and Digital Soil Mapping.

    Science.gov (United States)

    Hamalainen, Sampsa; Geng, Xiaoyuan; He, Juanxia

    2017-04-01

    Latin Hypercube Sampling (LHS) at variable resolutions for enhanced watershed scale Soil Sampling and Digital Soil Mapping. Sampsa Hamalainen, Xiaoyuan Geng, and Juanxia, He. AAFC - Agriculture and Agr-Food Canada, Ottawa, Canada. The Latin Hypercube Sampling (LHS) approach to assist with Digital Soil Mapping has been developed for some time now, however the purpose of this work was to complement LHS with use of multiple spatial resolutions of covariate datasets and variability in the range of sampling points produced. This allowed for specific sets of LHS points to be produced to fulfil the needs of various partners from multiple projects working in the Ontario and Prince Edward Island provinces of Canada. Secondary soil and environmental attributes are critical inputs that are required in the development of sampling points by LHS. These include a required Digital Elevation Model (DEM) and subsequent covariate datasets produced as a result of a Digital Terrain Analysis performed on the DEM. These additional covariates often include but are not limited to Topographic Wetness Index (TWI), Length-Slope (LS) Factor, and Slope which are continuous data. The range of specific points created in LHS included 50 - 200 depending on the size of the watershed and more importantly the number of soil types found within. The spatial resolution of covariates included within the work ranged from 5 - 30 m. The iterations within the LHS sampling were run at an optimal level so the LHS model provided a good spatial representation of the environmental attributes within the watershed. Also, additional covariates were included in the Latin Hypercube Sampling approach which is categorical in nature such as external Surficial Geology data. Some initial results of the work include using a 1000 iteration variable within the LHS model. 1000 iterations was consistently a reasonable value used to produce sampling points that provided a good spatial representation of the environmental

  17. 680 SPATIAL VARIATION IN GROUNDWATER POLLUTION BY ...

    African Journals Online (AJOL)

    Osondu

    higher in Group A water samples, and reduced slightly in the Group B and then the Group C samples, ... Keywords: Spatial variation, Groundwater, Pollution, Abattoir, Effluents, Water quality. ... situation which may likely pose a threat to the.

  18. A framework for inference about carnivore density from unstructured spatial sampling of scat using detector dogs

    Science.gov (United States)

    Thompson, Craig M.; Royle, J. Andrew; Garner, James D.

    2012-01-01

    Wildlife management often hinges upon an accurate assessment of population density. Although undeniably useful, many of the traditional approaches to density estimation such as visual counts, livetrapping, or mark–recapture suffer from a suite of methodological and analytical weaknesses. Rare, secretive, or highly mobile species exacerbate these problems through the reality of small sample sizes and movement on and off study sites. In response to these difficulties, there is growing interest in the use of non-invasive survey techniques, which provide the opportunity to collect larger samples with minimal increases in effort, as well as the application of analytical frameworks that are not reliant on large sample size arguments. One promising survey technique, the use of scat detecting dogs, offers a greatly enhanced probability of detection while at the same time generating new difficulties with respect to non-standard survey routes, variable search intensity, and the lack of a fixed survey point for characterizing non-detection. In order to account for these issues, we modified an existing spatially explicit, capture–recapture model for camera trap data to account for variable search intensity and the lack of fixed, georeferenced trap locations. We applied this modified model to a fisher (Martes pennanti) dataset from the Sierra National Forest, California, and compared the results (12.3 fishers/100 km2) to more traditional density estimates. We then evaluated model performance using simulations at 3 levels of population density. Simulation results indicated that estimates based on the posterior mode were relatively unbiased. We believe that this approach provides a flexible analytical framework for reconciling the inconsistencies between detector dog survey data and density estimation procedures.

  19. Design and Validation of a Cyclic Strain Bioreactor to Condition Spatially-Selective Scaffolds in Dual Strain Regimes

    Directory of Open Access Journals (Sweden)

    J. Matthew Goodhart

    2014-03-01

    Full Text Available The objective of this study was to design and validate a unique bioreactor design for applying spatially selective, linear, cyclic strain to degradable and non-degradable polymeric fabric scaffolds. This system uses a novel three-clamp design to apply cyclic strain via a computer controlled linear actuator to a specified zone of a scaffold while isolating the remainder of the scaffold from strain. Image analysis of polyethylene terephthalate (PET woven scaffolds subjected to a 3% mechanical stretch demonstrated that the stretched portion of the scaffold experienced 2.97% ± 0.13% strain (mean ± standard deviation while the unstretched portion experienced 0.02% ± 0.18% strain. NIH-3T3 fibroblast cells were cultured on the PET scaffolds and half of each scaffold was stretched 5% at 0.5 Hz for one hour per day for 14 days in the bioreactor. Cells were checked for viability and proliferation at the end of the 14 day period and levels of glycosaminoglycan (GAG and collagen (hydroxyproline were measured as indicators of extracellular matrix production. Scaffolds in the bioreactor showed a seven-fold increase in cell number over scaffolds cultured statically in tissue culture plastic petri dishes (control. Bioreactor scaffolds showed a lower concentration of GAG deposition per cell as compared to the control scaffolds largely due to the great increase in cell number. A 75% increase in hydroxyproline concentration per cell was seen in the bioreactor stretched scaffolds as compared to the control scaffolds. Surprisingly, little differences were experienced between the stretched and unstretched portions of the scaffolds for this study. This was largely attributed to the conditioned and shared media effect. Results indicate that the bioreactor system is capable of applying spatially-selective, linear, cyclic strain to cells growing on polymeric fabric scaffolds and evaluating the cellular and matrix responses to the applied strains.

  20. Components of Spatial Thinking: Evidence from a Spatial Thinking Ability Test

    Science.gov (United States)

    Lee, Jongwon; Bednarz, Robert

    2012-01-01

    This article introduces the development and validation of the spatial thinking ability test (STAT). The STAT consists of sixteen multiple-choice questions of eight types. The STAT was validated by administering it to a sample of 532 junior high, high school, and university students. Factor analysis using principal components extraction was applied…

  1. Spatial Game Analytics and Visualization

    DEFF Research Database (Denmark)

    Drachen, Anders; Schubert, Matthias

    2013-01-01

    , techniques for spatial analysis had their share in these developments. However, the methods for analyzing and visualizing spatial and spatio-temporal patterns in player behavior being used by the game industry are not as diverse as the range of techniques utilized in game research, leaving room...... for a continuing development. This paper presents a review of current work on spatial and spatio-temporal game analytics across industry and research, describing and defining the key terminology, outlining current techniques and their application. We summarize the current problems and challenges in the field......The recently emerged field of game analytics and the development and adaptation of business intelligence techniques to support game design and development has given data-driven techniques a direct role in game development. Given that all digital games contain some sort of spatial operation...

  2. Multi-saline sample distillation apparatus for hydrogen isotope analyses: design and accuracy. Water-resources investigations

    International Nuclear Information System (INIS)

    Hassan, A.A.

    1981-04-01

    A distillation apparatus for saline water samples was designed and tested. Six samples may be distilled simultaneously. The temperature was maintained at 400 degrees C to ensure complete dehydration of the precipitating salts. Consequently, the error in the measured ratio of stable hydrogen isotopes resulting from incomplete dehydration of hydrated salts during distillation was eliminated

  3. A random spatial sampling method in a rural developing nation

    Science.gov (United States)

    Michelle C. Kondo; Kent D.W. Bream; Frances K. Barg; Charles C. Branas

    2014-01-01

    Nonrandom sampling of populations in developing nations has limitations and can inaccurately estimate health phenomena, especially among hard-to-reach populations such as rural residents. However, random sampling of rural populations in developing nations can be challenged by incomplete enumeration of the base population. We describe a stratified random sampling method...

  4. Field Investigation Plan for 1301-N and 1325-N Facilities Sampling to Support Remedial Design

    International Nuclear Information System (INIS)

    Weiss, S. G.

    1998-01-01

    This field investigation plan (FIP) provides for the sampling and analysis activities supporting the remedial design planning for the planned removal action for the 1301-N and 1325-N Liquid Waste Disposal Facilities (LWDFs), which are treatment, storage,and disposal (TSD) units (cribs/trenches). The planned removal action involves excavation, transportation, and disposal of contaminated material at the Environmental Restoration Disposal Facility (ERDF).An engineering study (BHI 1997) was performed to develop and evaluate various options that are predominantly influenced by the volume of high- and low-activity contaminated soil requiring removal. The study recommended that additional sampling be performed to supplement historical data for use in the remedial design

  5. Linking Spatial Structure and Community-Level Biotic Interactions through Cooccurrence and Time Series Modeling of the Human Intestinal Microbiota.

    Science.gov (United States)

    de Muinck, Eric J; Lundin, Knut E A; Trosvik, Pål

    2017-01-01

    The gastrointestinal (GI) microbiome is a densely populated ecosystem where dynamics are determined by interactions between microbial community members, as well as host factors. The spatial organization of this system is thought to be important in human health, yet this aspect of our resident microbiome is still poorly understood. In this study, we report significant spatial structure of the GI microbiota, and we identify general categories of spatial patterning in the distribution of microbial taxa along a healthy human GI tract. We further estimate the biotic interaction structure in the GI microbiota, both through time series and cooccurrence modeling of microbial community data derived from a large number of sequentially collected fecal samples. Comparison of these two approaches showed that species pairs involved in significant negative interactions had strong positive contemporaneous correlations and vice versa, while for species pairs without significant interactions, contemporaneous correlations were distributed around zero. We observed similar patterns when comparing these models to the spatial correlations between taxa identified in the adherent microbiota. This suggests that colocalization of microbial taxon pairs, and thus the spatial organization of the GI microbiota, is driven, at least in part, by direct or indirect biotic interactions. Thus, our study can provide a basis for an ecological interpretation of the biogeography of the human gut. IMPORTANCE The human gut microbiome is the subject of intense study due to its importance in health and disease. The majority of these studies have been based on the analysis of feces. However, little is known about how the microbial composition in fecal samples relates to the spatial distribution of microbial taxa along the gastrointestinal tract. By characterizing the microbial content both in intestinal tissue samples and in fecal samples obtained daily, we provide a conceptual framework for how the spatial

  6. An architectural approach to level design

    CERN Document Server

    Totten, Christopher W

    2014-01-01

    Explore Level Design through the Lens of Architectural and Spatial Experience TheoryWritten by a game developer and professor trained in architecture, An Architectural Approach to Level Design is one of the first books to integrate architectural and spatial design theory with the field of level design. It explores the principles of level design through the context and history of architecture, providing information useful to both academics and game development professionals.Understand Spatial Design Principles for Game Levels in 2D, 3D, and Multiplayer ApplicationsThe book presents architectura

  7. Design of a volume-imaging positron emission tomograph

    International Nuclear Information System (INIS)

    Harrop, R.; Rogers, J.G.; Coombes, G.H.; Wilkinson, N.A.; Pate, B.D.; Morrison, K.S.; Stazyk, M.; Dykstra, C.J.; Barney, J.S.; Atkins, M.S.; Doherty, P.W.; Saylor, D.P.

    1988-11-01

    Progress is reported in several areas of design of a positron volume imaging tomograph. As a means of increasing the volume imaged and the detector packing fraction, a lens system of detector light coupling is considered. A prototype layered scintillator detector demonstrates improved spatial resolution due to a unique Compton rejection capability. The conceptual design of a new mechanism for measuring scattered radiation during emission scans has been tested by Monte Carlo simulation. The problem of how to use effectively the resulting sampled scattered radiation projections is presented and discussed

  8. Sensitizing Concepts for Socio-Spatial Literacy in HCI

    DEFF Research Database (Denmark)

    Krogh, Peter Gall; Petersen, Marianne Graves; O'Hara, Kenton

    2017-01-01

    People inherently share spaces with other people. Congenitally, interactive technologies and ubiquitous environments shape our opportunities for enacting social relations. Proxemics and Spatial Sharing have been suggested as foundations for our understanding of the socio-spatial aspects of comput...... in a design process. The proposed sensitizing concepts and the theoretical work of the paper contribute to enhanced Socio-spatial literacy in HCI....

  9. Designing and Developing an Augmented Reality Application: A Sample Of Chemistry Education

    Directory of Open Access Journals (Sweden)

    Zeynep Taçgın

    2016-09-01

    Full Text Available Augmented Reality has been accepted as an effective educational method and this review depends on philosophical background of cognitive science. This means, several channels –aural, visual, and interactivity, etc. - have been used to offer information in order to support individual learning styles. In this study, Natural User Interface- and Human Computer Interaction-based Augmented Reality application has been developed for the chemistry education. The purpose of this study is to design and develop a student-centered Augmented Reality environment to teach periodic table, and atomic structure of the elements and molecules. Head Mounted Display has been used to develop Augmented Reality system, and user control has been executed with hand motions (grab, drag, drop, select and rotate. The hand motion control has been used to improve spatial abilities of students in order to maximize the transferred knowledge. Use of the most common natural controlling tools (fingers and hands to interact with virtual objects instead of AR markers or other tools provides a more interactive, holistic, social and effective learning environment that authentically reflects the world around them. In this way, learners have an active role, and are not just passive receptors. Correspondingly, the developed NUI-based system has been constructed as design-based research and developed by using instructional design methods and principles to get reach of more effective and productive learning material. Features of this developed material consist of some fundamental components to create more intuitive and conductive tools in order to support Real World collaboration.

  10. DESIGN AND CALIBRATION OF A VIBRANT SAMPLE MAGNETOMETER: CHARACTERIZATION OF MAGNETIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Freddy P. Guachun

    2018-01-01

    Full Text Available This paper presents the process followed in the implementation of a vibrating sample magnetometer (VSM, constructed with materials commonly found in an electromagnetism laboratory. It describes the design, construction, calibration and use in the characterization of some magnetic materials. A VSM measures the magnetic moment of a sample when it is vibrated perpendicular to a uniform magnetic field; Magnetization and magnetic susceptibility can be determined from these readings. This instrument stands out for its simplicity, versatility and low cost, but it is very sensitive and capable of eliminating or minimizing many sources of error that are found in other methods of measurement, allowing to obtain very accurate and reliable results. Its operation is based on the law of magnetic induction of Lenz-Faraday that consists in measuring the induced voltage in coils of detection produced by the variation of the magnetic flux that crosses them. The calibration of the VSM was performed by means of a standard sample (Magnetite and verified by means of a test sample (Nickel.

  11. Design of modified annulus air sampling system for the detection of leakage in waste transfer line

    International Nuclear Information System (INIS)

    Deokar, U.V; Khot, A.R.; Mathew, P.; Ganesh, G.; Tripathi, R.M.; Srivastava, Srishti

    2018-01-01

    Various liquid waste streams are generated during the operation of reprocessing plant. The High Level (HL), Intermediate Level (IL) and Low Level (LL) liquid wastes generated, are transferred from reprocessing plant to Waste Management Facility. These respective waste streams are transferred through pipe-in-pipe lines along the shielded concrete trench. For detection of radioactive leakage from primary waste transfer line into secondary line, sampling of the annulus air between the two pipes is carried out. The currently installed pressurized annulus air sampling system did not have online leakage detection provision. Hence, there are chances of personal exposure and airborne activity in the working area. To overcome these design flaws, free air flow modified online annulus air sampling system with more safety features is designed

  12. Robust nonhomogeneous training samples detection method for space-time adaptive processing radar using sparse-recovery with knowledge-aided

    Science.gov (United States)

    Li, Zhihui; Liu, Hanwei; Zhang, Yongshun; Guo, Yiduo

    2017-10-01

    The performance of space-time adaptive processing (STAP) may degrade significantly when some of the training samples are contaminated by the signal-like components (outliers) in nonhomogeneous clutter environments. To remove the training samples contaminated by outliers in nonhomogeneous clutter environments, a robust nonhomogeneous training samples detection method using the sparse-recovery (SR) with knowledge-aided (KA) is proposed. First, the reduced-dimension (RD) overcomplete spatial-temporal steering dictionary is designed with the prior knowledge of system parameters and the possible target region. Then, the clutter covariance matrix (CCM) of cell under test is efficiently estimated using a modified focal underdetermined system solver (FOCUSS) algorithm, where a RD overcomplete spatial-temporal steering dictionary is applied. Third, the proposed statistics are formed by combining the estimated CCM with the generalized inner products (GIP) method, and the contaminated training samples can be detected and removed. Finally, several simulation results validate the effectiveness of the proposed KA-SR-GIP method.

  13. Essays on investments and environment: a spatial econometrics perspective

    OpenAIRE

    Monteiro, José-Antonio; Grether, Jean-Marie

    2011-01-01

    This PhD dissertation investigates the links between foreign direct investment (FDI), pollution and environmental policies in an interdependent world. To tackle the issue of spatial dependence, I propose to apply new spatial estimators. The thesis consists of four papers. The first chapter, entitled Spatial Dynamic Panel and System GMM: a Monte-Carlo Investigation, investigates the finite sample properties of estimators for spatial dynamic panel models in the presence of several endogenous va...

  14. The Spatial Variability of Beryllium-7 Depth Distribution Study

    International Nuclear Information System (INIS)

    Jalal Sharib; Zainudin Othman; Dainee Nor Fardzila Ahmad Tugi; Noor Fadzilah Yusof; Mohd Tarmizi Ishak

    2015-01-01

    The objective of this paper is to study the spatial variability of 7 Be depth evolution in soil profile at two different sampling sites. The soil samples have been collected by using metal core in bare area in Bangi, Selangor and Timah Tasoh, Perlis , Malaysia. Two composite core samples for each sampling sites has been sectioned into 2 mm increments to a depth of 4 cm and oven dried at 45- 60 degree Celsius and gently desegregated. These two composite spatial samples are passed through a < 2 mm sieve and packed into proper geometry plastic container for 7 Be analysis by using gamma spectrometry with a 24-hour count time. From the findings, the 7 Be content in the soil samples from Bangi, Selangor study area is distributed lower depth penetration into the soil profile than Timah Tasoh, Perlis catchment due to many factors such as precipitation (fallout) and others. However, the spatial variability from both samples study area is also decreases exponentially with depth and is confined within the top few centimeters and similar with other works been reported (Blake et al., (2000) and Walling et al.,(2008). Furthermore, a detailed discussion from this study findings will be in full papers. (author)

  15. Compatible Spatial Discretizations for Partial Differential Equations

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Douglas, N, ed.

    2004-11-25

    From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide variety of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical

  16. Sample Processor for Life on Icy Worlds (SPLIce): Design and Test Results

    Science.gov (United States)

    Chinn, Tori N.; Lee, Anthony K.; Boone, Travis D.; Tan, Ming X.; Chin, Matthew M.; McCutcheon, Griffin C.; Horne, Mera F.; Padgen, Michael R.; Blaich, Justin T.; Forgione, Joshua B.; hide

    2017-01-01

    We report the design, development, and testing of the Sample Processor for Life on Icy Worlds (SPLIce) system, a microfluidic sample processor to enable autonomous detection of signatures of life and measurements of habitability parameters in Ocean Worlds. This monolithic fluid processing-and-handling system (Figure 1; mass 0.5 kg) retrieves a 50-L-volume sample and prepares it to supply a suite of detection instruments, each with unique preparation needs. SPLIce has potential applications in orbiter missions that sample ocean plumes, such as found in Saturns icy moon Enceladus, or landed missions on the surface of icy satellites, such as Jupiters moon Europa. Answering the question Are we alone in the universe? is captivating and exceptionally challenging. Even general criteria that define life very broadly include a significant role for water [1,2]. Searches for extinct or extant life therefore prioritize locations of abundant water whether in ancient (Mars), or present (Europa and Enceladus) times. Only two previous planetary missions had onboard fluid processing: the Viking Biology Experiments [3] and Phoenixs Wet Chemistry Laboratory (WCL) [4]. SPLIce differs crucially from those systems, including its capability to process and distribute L-volume samples and the integration autonomous control of a wide range of fluidic functions, including: 1) retrieval of fluid samples from an evacuated sample chamber; 2) onboard multi-year storage of dehydrated reagents; 3) integrated pressure, pH, and conductivity measurement; 4) filtration and retention of insoluble particles for microscopy; 5) dilution or vacuum-driven concentration of samples to accommodate instrument working ranges; 6) removal of gas bubbles from sample aliquots; 7) unidirectional flow (check valves); 8) active flow-path selection (solenoid-actuated valves); 9) metered pumping in 100 nL volume increments. The SPLIce manifold, made of three thermally fused layers of precision-machined cyclo

  17. Design and use of the IR gas-cloud scanner for measurement and imaging of the spatial distribution of gases at workplaces

    Science.gov (United States)

    ter Kuile, Willem M.; van Veen, J. J.; Knoll, Bas

    1995-02-01

    Usual sampling methods and instruments for checking compliance with `threshold limit values' (TLV) of gaseous components do not provide much information on the mechanism which caused the measured workday average concentration. In the case of noncompliance this information is indispensable for the design of cost effective measures. The infrared gas cloud (IGC) scanner visualizes the spatial distribution of specific gases at a workplace in a quantitative image with a calibrated grayvalue scale. This helps to find the cause of an over- exposure, and so it permits effective abatement of high exposures in the working environment. This paper deals with the technical design of the IGC scanner. Its use is illustrated by some real-world problems. The measuring principle and the technical operation of the IGC-scanner are described. Special attention is given to the pros and cons of retro-reflector screens, the noise reduction methods and image presentation and interpretation. The latter is illustrated by the images produced by the measurements. Essentially the IGC scanner can be used for selective open-path measurement of all gases with a concentration in the ppm range and sufficiently strong distinct absorption lines in the infrared region between 2.5 micrometers and 14.0 micrometers . Further it could be useful for testing the efficiency of ventilation systems and the remote detection of gas leaks. We conclude that a new powerful technique has been added to the industrial hygiene facilities for controlling and improving the work environment.

  18. Reasoning with inaccurate spatial knowledge. [for Planetary Rover

    Science.gov (United States)

    Doshi, Rajkumar S.; White, James E.; Lam, Raymond; Atkinson, David J.

    1988-01-01

    This paper describes work in progress on spatial planning for a semiautonomous mobile robot vehicle. The overall objective is to design a semiautonomous rover to plan routes in unknown, natural terrains. The approach to spatial planning involves deduction of common-sense spatial knowledge using geographical information, natural terrain representations, and assimilation of new and possibly conflicting terrain information. This report describes the ongoing research and implementation.

  19. Sample requirements and design of an inter-laboratory trial for radiocarbon laboratories

    International Nuclear Information System (INIS)

    Bryant, Charlotte; Carmi, Israel; Cook, Gordon; Gulliksen, Steinar; Harkness, Doug; Heinemeier, Jan; McGee, Edward; Naysmith, Philip; Possnert, Goran; Scott, Marian; Plicht, Hans van der; Strydonck, Mark van

    2000-01-01

    An on-going inter-comparison programme which is focused on assessing and establishing consensus protocols to be applied in the identification, selection and sub-sampling of materials for subsequent 14 C analysis is described. The outcome of the programme will provide a detailed quantification of the uncertainties associated with 14 C measurements including the issues of accuracy and precision. Such projects have become recognised as a fundamental aspect of continuing laboratory quality assurance schemes, providing a mechanism for the harmonisation of measurements and for demonstrating the traceability of results. The design of this study and its rationale are described. In summary, a suite of core samples has been defined which will be made available to both AMS and radiometric laboratories. These core materials are representative of routinely dated material and their ages span the full range of the applied 14 C time-scale. Two of the samples are of wood from the German and Irish dendrochronologies, thus providing a direct connection to the master dendrochronological calibration curve. Further samples link this new inter-comparison to past studies. Sample size and precision have been identified as being of paramount importance in defining dating confidence, and so several core samples have been identified for more in-depth study of these practical issues. In addition to the core samples, optional samples have been identified and prepared specifically for either AMS and/or radiometric laboratories. For AMS laboratories, these include bone, textile, leather and parchment samples. Participation in the study requires a commitment to a minimum of 10 core analyses, with results to be returned within a year

  20. Spatial pattern of diarrhea based on regional economic and environment by spatial autoregressive model

    Science.gov (United States)

    Bekti, Rokhana Dwi; Nurhadiyanti, Gita; Irwansyah, Edy

    2014-10-01

    The diarrhea case pattern information, especially for toddler, is very important. It is used to show the distribution of diarrhea in every region, relationship among that locations, and regional economic characteristic or environmental behavior. So, this research uses spatial pattern to perform them. This method includes: Moran's I, Spatial Autoregressive Models (SAR), and Local Indicator of Spatial Autocorrelation (LISA). It uses sample from 23 sub districts of Bekasi Regency, West Java, Indonesia. Diarrhea case, regional economic, and environmental behavior of households have a spatial relationship among sub district. SAR shows that the percentage of Regional Gross Domestic Product is significantly effect on diarrhea at α = 10%. Therefore illiteracy and health center facilities are significant at α = 5%. With LISA test, sub districts in southern Bekasi have high dependencies with Cikarang Selatan, Serang Baru, and Setu. This research also builds development application that is based on java and R to support data analysis.

  1. Software documentation and user's manual for fish-impingement sampling design and estimation method computer programs

    International Nuclear Information System (INIS)

    Murarka, I.P.; Bodeau, D.J.

    1977-11-01

    This report contains a description of three computer programs that implement the theory of sampling designs and the methods for estimating fish-impingement at the cooling-water intakes of nuclear power plants as described in companion report ANL/ES-60. Complete FORTRAN listings of these programs, named SAMPLE, ESTIMA, and SIZECO, are given and augmented with examples of how they are used

  2. Bayesian Spatial Modelling with R-INLA

    Directory of Open Access Journals (Sweden)

    Finn Lindgren

    2015-02-01

    Full Text Available The principles behind the interface to continuous domain spatial models in the R- INLA software package for R are described. The integrated nested Laplace approximation (INLA approach proposed by Rue, Martino, and Chopin (2009 is a computationally effective alternative to MCMC for Bayesian inference. INLA is designed for latent Gaussian models, a very wide and flexible class of models ranging from (generalized linear mixed to spatial and spatio-temporal models. Combined with the stochastic partial differential equation approach (SPDE, Lindgren, Rue, and Lindstrm 2011, one can accommodate all kinds of geographically referenced data, including areal and geostatistical ones, as well as spatial point process data. The implementation interface covers stationary spatial mod- els, non-stationary spatial models, and also spatio-temporal models, and is applicable in epidemiology, ecology, environmental risk assessment, as well as general geostatistics.

  3. Spatial heterogeneity study of vegetation coverage at Heihe River Basin

    Science.gov (United States)

    Wu, Lijuan; Zhong, Bo; Guo, Liyu; Zhao, Xiangwei

    2014-11-01

    Spatial heterogeneity of the animal-landscape system has three major components: heterogeneity of resource distributions in the physical environment, heterogeneity of plant tissue chemistry, heterogeneity of movement modes by the animal. Furthermore, all three different types of heterogeneity interact each other and can either reinforce or offset one another, thereby affecting system stability and dynamics. In previous studies, the study areas are investigated by field sampling, which costs a large amount of manpower. In addition, uncertain in sampling affects the quality of field data, which leads to unsatisfactory results during the entire study. In this study, remote sensing data is used to guide the sampling for research on heterogeneity of vegetation coverage to avoid errors caused by randomness of field sampling. Semi-variance and fractal dimension analysis are used to analyze the spatial heterogeneity of vegetation coverage at Heihe River Basin. The spherical model with nugget is used to fit the semivariogram of vegetation coverage. Based on the experiment above, it is found, (1)there is a strong correlation between vegetation coverage and distance of vegetation populations within the range of 0-28051.3188m at Heihe River Basin, but the correlation loses suddenly when the distance greater than 28051.3188m. (2)The degree of spatial heterogeneity of vegetation coverage at Heihe River Basin is medium. (3)Spatial distribution variability of vegetation occurs mainly on small scales. (4)The degree of spatial autocorrelation is 72.29% between 25% and 75%, which means that spatial correlation of vegetation coverage at Heihe River Basin is medium high.

  4. Analysing designed experiments in distance sampling

    Science.gov (United States)

    Stephen T. Buckland; Robin E. Russell; Brett G. Dickson; Victoria A. Saab; Donal N. Gorman; William M. Block

    2009-01-01

    Distance sampling is a survey technique for estimating the abundance or density of wild animal populations. Detection probabilities of animals inherently differ by species, age class, habitats, or sex. By incorporating the change in an observer's ability to detect a particular class of animals as a function of distance, distance sampling leads to density estimates...

  5. Spectral-spatial classification of hyperspectral image using three-dimensional convolution network

    Science.gov (United States)

    Liu, Bing; Yu, Xuchu; Zhang, Pengqiang; Tan, Xiong; Wang, Ruirui; Zhi, Lu

    2018-01-01

    Recently, hyperspectral image (HSI) classification has become a focus of research. However, the complex structure of an HSI makes feature extraction difficult to achieve. Most current methods build classifiers based on complex handcrafted features computed from the raw inputs. The design of an improved 3-D convolutional neural network (3D-CNN) model for HSI classification is described. This model extracts features from both the spectral and spatial dimensions through the application of 3-D convolutions, thereby capturing the important discrimination information encoded in multiple adjacent bands. The designed model views the HSI cube data altogether without relying on any pre- or postprocessing. In addition, the model is trained in an end-to-end fashion without any handcrafted features. The designed model was applied to three widely used HSI datasets. The experimental results demonstrate that the 3D-CNN-based method outperforms conventional methods even with limited labeled training samples.

  6. Constrained optimisation of spatial sampling : a geostatistical approach

    NARCIS (Netherlands)

    Groenigen, van J.W.

    1999-01-01

    Aims

    This thesis aims at the development of optimal sampling strategies for geostatistical studies. Special emphasis is on the optimal use of ancillary data, such as co-related imagery, preliminary observations and historic knowledge. Although the object of all studies

  7. A simple and efficient alternative to implementing systematic random sampling in stereological designs without a motorized microscope stage.

    Science.gov (United States)

    Melvin, Neal R; Poda, Daniel; Sutherland, Robert J

    2007-10-01

    When properly applied, stereology is a very robust and efficient method to quantify a variety of parameters from biological material. A common sampling strategy in stereology is systematic random sampling, which involves choosing a random sampling [corrected] start point outside the structure of interest, and sampling relevant objects at [corrected] sites that are placed at pre-determined, equidistant intervals. This has proven to be a very efficient sampling strategy, and is used widely in stereological designs. At the microscopic level, this is most often achieved through the use of a motorized stage that facilitates the systematic random stepping across the structure of interest. Here, we report a simple, precise and cost-effective software-based alternative to accomplishing systematic random sampling under the microscope. We believe that this approach will facilitate the use of stereological designs that employ systematic random sampling in laboratories that lack the resources to acquire costly, fully automated systems.

  8. A Bayesian Justification for Random Sampling in Sample Survey

    Directory of Open Access Journals (Sweden)

    Glen Meeden

    2012-07-01

    Full Text Available In the usual Bayesian approach to survey sampling the sampling design, plays a minimal role, at best. Although a close relationship between exchangeable prior distributions and simple random sampling has been noted; how to formally integrate simple random sampling into the Bayesian paradigm is not clear. Recently it has been argued that the sampling design can be thought of as part of a Bayesian's prior distribution. We will show here that under this scenario simple random sample can be given a Bayesian justification in survey sampling.

  9. Integrating the statistical analysis of spatial data in ecology

    Science.gov (United States)

    A. M. Liebhold; J. Gurevitch

    2002-01-01

    In many areas of ecology there is an increasing emphasis on spatial relationships. Often ecologists are interested in new ways of analyzing data with the objective of quantifying spatial patterns, and in designing surveys and experiments in light of the recognition that there may be underlying spatial pattern in biotic responses. In doing so, ecologists have adopted a...

  10. HPLC/DAD determination of rosmarinic acid in Salvia officinalis: sample preparation optimization by factorial design

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Karina B. de [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Farmacia; Oliveira, Bras H. de, E-mail: bho@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica

    2013-01-15

    Sage (Salvia officinalis) contains high amounts of the biologically active rosmarinic acid (RA) and other polyphenolic compounds. RA is easily oxidized, and may undergo degradation during sample preparation for analysis. The objective of this work was to develop and validate an analytical procedure for determination of RA in sage, using factorial design of experiments for optimizing sample preparation. The statistically significant variables for improving RA extraction yield were determined initially and then used in the optimization step, using central composite design (CCD). The analytical method was then fully validated, and used for the analysis of commercial samples of sage. The optimized procedure involved extraction with aqueous methanol (40%) containing an antioxidant mixture (ascorbic acid and ethylenediaminetetraacetic acid (EDTA)), with sonication at 45 deg C for 20 min. The samples were then injected in a system containing a C{sub 18} column, using methanol (A) and 0.1% phosphoric acid in water (B) in step gradient mode (45A:55B, 0-5 min; 80A:20B, 5-10 min) with flow rate of 1.0 mL min-1 and detection at 330 nm. Using this conditions, RA concentrations were 50% higher when compared to extractions without antioxidants (98.94 {+-} 1.07% recovery). Auto-oxidation of RA during sample extraction was prevented by the use of antioxidants resulting in more reliable analytical results. The method was then used for the analysis of commercial samples of sage. (author)

  11. HPLC/DAD determination of rosmarinic acid in Salvia officinalis: sample preparation optimization by factorial design

    International Nuclear Information System (INIS)

    Oliveira, Karina B. de; Oliveira, Bras H. de

    2013-01-01

    Sage (Salvia officinalis) contains high amounts of the biologically active rosmarinic acid (RA) and other polyphenolic compounds. RA is easily oxidized, and may undergo degradation during sample preparation for analysis. The objective of this work was to develop and validate an analytical procedure for determination of RA in sage, using factorial design of experiments for optimizing sample preparation. The statistically significant variables for improving RA extraction yield were determined initially and then used in the optimization step, using central composite design (CCD). The analytical method was then fully validated, and used for the analysis of commercial samples of sage. The optimized procedure involved extraction with aqueous methanol (40%) containing an antioxidant mixture (ascorbic acid and ethylenediaminetetraacetic acid (EDTA)), with sonication at 45 deg C for 20 min. The samples were then injected in a system containing a C 18 column, using methanol (A) and 0.1% phosphoric acid in water (B) in step gradient mode (45A:55B, 0-5 min; 80A:20B, 5-10 min) with flow rate of 1.0 mL min−1 and detection at 330 nm. Using this conditions, RA concentrations were 50% higher when compared to extractions without antioxidants (98.94 ± 1.07% recovery). Auto-oxidation of RA during sample extraction was prevented by the use of antioxidants resulting in more reliable analytical results. The method was then used for the analysis of commercial samples of sage. (author)

  12. Design of an automatic sample changer for the measurement of neutron flux by gamma spectrometry

    International Nuclear Information System (INIS)

    Gago, Javier; Bruna, Ruben; Baltuano, Oscar; Montoya, Eduardo; Descreaux, Killian

    2014-01-01

    This paper presents calculus, selection and components design for the construction of an automatic system in order to measure neutron flux in a working nuclear reactor by the gamma spectrometry technique using samples irradiated on the RP-10 nucleus. This system will perform the measurement of interchanging 100 samples in a programed and automatic way, reducing operation time by the user and obtaining more accurate measures. (authors).

  13. Design and construction of a prototype vaporization calorimeter for the assay of radioisotopic samples

    International Nuclear Information System (INIS)

    Tormey, T.V.

    1979-10-01

    A prototype vaporization calorimeter has been designed and constructed for use in the assay of low power output radioisotopic samples. The prototype calorimeter design was based on that of a previous experimental instrument used by H.P. Stephens, to establish the feasibility of the vaporization calorimetry technique for this type of power measurement. The calorimeter is composed of a mechanical calorimeter assembly together with a data acquisition and control system. Detailed drawings of the calorimeter assembly are included and additional drawings are referenced. The data acquisition system is based on an HP 9825A programmable calculator. A description of the hardware is provided together with a listing of all system software programs. The operating procedure is outlined, including initial setup and operation of all related equipment. Preliminary system performance was evaluated by making a series of four measurements on two nominal 1.5W samples and on a nominal 0.75W sample. Data for these measurements indicate that the absolute accuracy (one standard deviation) is approx. = 0.0035W in this power range, resulting in an estimated relative one standard deviation accuracy of 0.24% at 1.5W and 0.48% at 0.75W

  14. Effects of data sampling rate on image quality in fan-beam-CT system

    International Nuclear Information System (INIS)

    Iwata, Akira; Yamagishi, Nobutoshi; Suzumura, Nobuo; Horiba, Isao.

    1984-01-01

    Investigation was made into the relationship between spatial resolution or artifacts and data sampling rate in order to pursue the causes of the degradation of CT image quality by computer simulation. First the generation of projection data and reconstruction calculating process are described, and then the results are shown about the relation between angular sampling interval and spatical resolution or artifacts, and about the relation between projection data sampling interval and spatial resolution or artifacts. It was clarified that the formulation of the relationship between spatial resolution and data sampling rate performed so far for parallel X-ray beam was able to be applied to fan beam. As a conclusion, when other reconstruction parameters are the same in fan beam CT systems, spatial resolution can be determined by projection data sampling rate rather than angular sampling rate. The mechanism of artifact generation due to the insufficient number of angular samples was made clear. It was also made clear that there was a definite relationship among measuring region, angular sampling rate and projection data sampling rate, and the amount of artifacts depending upon projection data sampling rate was proportional to the amount of spatial frequency components (Aliasing components) of a test object above the Nyquist frequency of projection data. (Wakatsuki, Y.)

  15. Reduction of spatial distribution of risk factors for transportation of contaminants released by coal mining activities.

    Science.gov (United States)

    Karan, Shivesh Kishore; Samadder, Sukha Ranjan

    2016-09-15

    It is reported that water-energy nexus composes two of the biggest development and human health challenges. In the present study we presented a Risk Potential Index (RPI) model which encapsulates Source, Vector (Transport), and Target risks for forecasting surface water contamination. The main aim of the model is to identify critical surface water risk zones for an open cast mining environment, taking Jharia Coalfield, India as the study area. The model also helps in feasible sampling design. Based on spatial analysis various risk zones were successfully delineated. Monthly RPI distribution revealed that the risk of surface water contamination was highest during the monsoon months. Surface water samples were analysed to validate the model. A GIS based alternative management option was proposed to reduce surface water contamination risk and observed 96% and 86% decrease in the spatial distribution of very high risk areas for the months June and July respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Planning spatial sampling of the soil from an uncertain reconnaissance variogram

    Science.gov (United States)

    Lark, R. Murray; Hamilton, Elliott M.; Kaninga, Belinda; Maseka, Kakoma K.; Mutondo, Moola; Sakala, Godfrey M.; Watts, Michael J.

    2017-12-01

    An estimated variogram of a soil property can be used to support a rational choice of sampling intensity for geostatistical mapping. However, it is known that estimated variograms are subject to uncertainty. In this paper we address two practical questions. First, how can we make a robust decision on sampling intensity, given the uncertainty in the variogram? Second, what are the costs incurred in terms of oversampling because of uncertainty in the variogram model used to plan sampling? To achieve this we show how samples of the posterior distribution of variogram parameters, from a computational Bayesian analysis, can be used to characterize the effects of variogram parameter uncertainty on sampling decisions. We show how one can select a sample intensity so that a target value of the kriging variance is not exceeded with some specified probability. This will lead to oversampling, relative to the sampling intensity that would be specified if there were no uncertainty in the variogram parameters. One can estimate the magnitude of this oversampling by treating the tolerable grid spacing for the final sample as a random variable, given the target kriging variance and the posterior sample values. We illustrate these concepts with some data on total uranium content in a relatively sparse sample of soil from agricultural land near mine tailings in the Copperbelt Province of Zambia.

  17. Designing a monitoring program to estimate estuarine survival of anadromous salmon smolts: simulating the effect of sample design on inference

    Science.gov (United States)

    Romer, Jeremy D.; Gitelman, Alix I.; Clements, Shaun; Schreck, Carl B.

    2015-01-01

    A number of researchers have attempted to estimate salmonid smolt survival during outmigration through an estuary. However, it is currently unclear how the design of such studies influences the accuracy and precision of survival estimates. In this simulation study we consider four patterns of smolt survival probability in the estuary, and test the performance of several different sampling strategies for estimating estuarine survival assuming perfect detection. The four survival probability patterns each incorporate a systematic component (constant, linearly increasing, increasing and then decreasing, and two pulses) and a random component to reflect daily fluctuations in survival probability. Generally, spreading sampling effort (tagging) across the season resulted in more accurate estimates of survival. All sampling designs in this simulation tended to under-estimate the variation in the survival estimates because seasonal and daily variation in survival probability are not incorporated in the estimation procedure. This under-estimation results in poorer performance of estimates from larger samples. Thus, tagging more fish may not result in better estimates of survival if important components of variation are not accounted for. The results of our simulation incorporate survival probabilities and run distribution data from previous studies to help illustrate the tradeoffs among sampling strategies in terms of the number of tags needed and distribution of tagging effort. This information will assist researchers in developing improved monitoring programs and encourage discussion regarding issues that should be addressed prior to implementation of any telemetry-based monitoring plan. We believe implementation of an effective estuary survival monitoring program will strengthen the robustness of life cycle models used in recovery plans by providing missing data on where and how much mortality occurs in the riverine and estuarine portions of smolt migration. These data

  18. Synthesis of spatially variant lattices.

    Science.gov (United States)

    Rumpf, Raymond C; Pazos, Javier

    2012-07-02

    It is often desired to functionally grade and/or spatially vary a periodic structure like a photonic crystal or metamaterial, yet no general method for doing this has been offered in the literature. A straightforward procedure is described here that allows many properties of the lattice to be spatially varied at the same time while producing a final lattice that is still smooth and continuous. Properties include unit cell orientation, lattice spacing, fill fraction, and more. This adds many degrees of freedom to a design such as spatially varying the orientation to exploit directional phenomena. The method is not a coordinate transformation technique so it can more easily produce complicated and arbitrary spatial variance. To demonstrate, the algorithm is used to synthesize a spatially variant self-collimating photonic crystal to flow a Gaussian beam around a 90° bend. The performance of the structure was confirmed through simulation and it showed virtually no scattering around the bend that would have arisen if the lattice had defects or discontinuities.

  19. Capturing spatial heterogeneity of soil organic carbon under changing climate

    Science.gov (United States)

    Mishra, U.; Fan, Z.; Jastrow, J. D.; Matamala, R.; Vitharana, U.

    2015-12-01

    The spatial heterogeneity of the land surface affects water, energy, and greenhouse gas exchanges with the atmosphere. Designing observation networks that capture land surface spatial heterogeneity is a critical scientific challenge. Here, we present a geospatial approach to capture the existing spatial heterogeneity of soil organic carbon (SOC) stocks across Alaska, USA. We used the standard deviation of 556 georeferenced SOC profiles previously compiled in Mishra and Riley (2015, Biogeosciences, 12:3993-4004) to calculate the number of observations that would be needed to reliably estimate Alaskan SOC stocks. This analysis indicated that 906 randomly distributed observation sites would be needed to quantify the mean value of SOC stocks across Alaska at a confidence interval of ± 5 kg m-2. We then used soil-forming factors (climate, topography, land cover types, surficial geology) to identify the locations of appropriately distributed observation sites by using the conditioned Latin hypercube sampling approach. Spatial correlation and variogram analyses demonstrated that the spatial structures of soil-forming factors were adequately represented by these 906 sites. Using the spatial correlation length of existing SOC observations, we identified 484 new observation sites would be needed to provide the best estimate of the present status of SOC stocks in Alaska. We then used average decadal projections (2020-2099) of precipitation, temperature, and length of growing season for three representative concentration pathway (RCP 4.5, 6.0, and 8.5) scenarios of the Intergovernmental Panel on Climate Change to investigate whether the location of identified observation sites will shift/change under future climate. Our results showed 12-41 additional observation sites (depending on emission scenarios) will be required to capture the impact of projected climatic conditions by 2100 on the spatial heterogeneity of Alaskan SOC stocks. Our results represent an ideal distribution

  20. The Spatial Politics of Spatial Representation

    DEFF Research Database (Denmark)

    Olesen, Kristian; Richardson, Tim

    2011-01-01

    spatial planning in Denmark reveals how fuzzy spatial representations and relational spatial concepts are being used to depoliticise strategic spatial planning processes and to camouflage spatial politics. The paper concludes that, while relational geography might play an important role in building......This paper explores the interplay between the spatial politics of new governance landscapes and innovations in the use of spatial representations in planning. The central premise is that planning experiments with new relational approaches become enmeshed in spatial politics. The case of strategic...

  1. Optimizing sampling design to deal with mist-net avoidance in Amazonian birds and bats.

    Directory of Open Access Journals (Sweden)

    João Tiago Marques

    Full Text Available Mist netting is a widely used technique to sample bird and bat assemblages. However, captures often decline with time because animals learn and avoid the locations of nets. This avoidance or net shyness can substantially decrease sampling efficiency. We quantified the day-to-day decline in captures of Amazonian birds and bats with mist nets set at the same location for four consecutive days. We also evaluated how net avoidance influences the efficiency of surveys under different logistic scenarios using re-sampling techniques. Net avoidance caused substantial declines in bird and bat captures, although more accentuated in the latter. Most of the decline occurred between the first and second days of netting: 28% in birds and 47% in bats. Captures of commoner species were more affected. The numbers of species detected also declined. Moving nets daily to minimize the avoidance effect increased captures by 30% in birds and 70% in bats. However, moving the location of nets may cause a reduction in netting time and captures. When moving the nets caused the loss of one netting day it was no longer advantageous to move the nets frequently. In bird surveys that could even decrease the number of individuals captured and species detected. Net avoidance can greatly affect sampling efficiency but adjustments in survey design can minimize this. Whenever nets can be moved without losing netting time and the objective is to capture many individuals, they should be moved daily. If the main objective is to survey species present then nets should still be moved for bats, but not for birds. However, if relocating nets causes a significant loss of netting time, moving them to reduce effects of shyness will not improve sampling efficiency in either group. Overall, our findings can improve the design of mist netting sampling strategies in other tropical areas.

  2. GSHR-Tree: a spatial index tree based on dynamic spatial slot and hash table in grid environments

    Science.gov (United States)

    Chen, Zhanlong; Wu, Xin-cai; Wu, Liang

    2008-12-01

    distributed operation, reduplication operation transfer operation of spatial index in the grid environment. The design of GSHR-Tree has ensured the performance of the load balance in the parallel computation. This tree structure is fit for the parallel process of the spatial information in the distributed network environments. Instead of spatial object's recursive comparison where original R tree has been used, the algorithm builds the spatial index by applying binary code operation in which computer runs more efficiently, and extended dynamic hash code for bit comparison. In GSHR-Tree, a new server is assigned to the network whenever a split of a full node is required. We describe a more flexible allocation protocol which copes with a temporary shortage of storage resources. It uses a distributed balanced binary spatial tree that scales with insertions to potentially any number of storage servers through splits of the overloaded ones. The application manipulates the GSHR-Tree structure from a node in the grid environment. The node addresses the tree through its image that the splits can make outdated. This may generate addressing errors, solved by the forwarding among the servers. In this paper, a spatial index data distribution algorithm that limits the number of servers has been proposed. We improve the storage utilization at the cost of additional messages. The structure of GSHR-Tree is believed that the scheme of this grid spatial index should fit the needs of new applications using endlessly larger sets of spatial data. Our proposal constitutes a flexible storage allocation method for a distributed spatial index. The insertion policy can be tuned dynamically to cope with periods of storage shortage. In such cases storage balancing should be favored for better space utilization, at the price of extra message exchanges between servers. This structure makes a compromise in the updating of the duplicated index and the transformation of the spatial index data. Meeting the

  3. Sampling procedures for inventory of commercial volume tree species in Amazon Forest.

    Science.gov (United States)

    Netto, Sylvio P; Pelissari, Allan L; Cysneiros, Vinicius C; Bonazza, Marcelo; Sanquetta, Carlos R

    2017-01-01

    The spatial distribution of tropical tree species can affect the consistency of the estimators in commercial forest inventories, therefore, appropriate sampling procedures are required to survey species with different spatial patterns in the Amazon Forest. For this, the present study aims to evaluate the conventional sampling procedures and introduce the adaptive cluster sampling for volumetric inventories of Amazonian tree species, considering the hypotheses that the density, the spatial distribution and the zero-plots affect the consistency of the estimators, and that the adaptive cluster sampling allows to obtain more accurate volumetric estimation. We use data from a census carried out in Jamari National Forest, Brazil, where trees with diameters equal to or higher than 40 cm were measured in 1,355 plots. Species with different spatial patterns were selected and sampled with simple random sampling, systematic sampling, linear cluster sampling and adaptive cluster sampling, whereby the accuracy of the volumetric estimation and presence of zero-plots were evaluated. The sampling procedures applied to species were affected by the low density of trees and the large number of zero-plots, wherein the adaptive clusters allowed concentrating the sampling effort in plots with trees and, thus, agglutinating more representative samples to estimate the commercial volume.

  4. Delineating Facies Spatial Distribution by Integrating Ensemble Data Assimilation and Indicator Geostatistics with Level Set Transformation.

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn Edward; Song, Xuehang; Ye, Ming; Dai, Zhenxue; Zachara, John; Chen, Xingyuan

    2017-03-01

    A new approach is developed to delineate the spatial distribution of discrete facies (geological units that have unique distributions of hydraulic, physical, and/or chemical properties) conditioned not only on direct data (measurements directly related to facies properties, e.g., grain size distribution obtained from borehole samples) but also on indirect data (observations indirectly related to facies distribution, e.g., hydraulic head and tracer concentration). Our method integrates for the first time ensemble data assimilation with traditional transition probability-based geostatistics. The concept of level set is introduced to build shape parameterization that allows transformation between discrete facies indicators and continuous random variables. The spatial structure of different facies is simulated by indicator models using conditioning points selected adaptively during the iterative process of data assimilation. To evaluate the new method, a two-dimensional semi-synthetic example is designed to estimate the spatial distribution and permeability of two distinct facies from transient head data induced by pumping tests. The example demonstrates that our new method adequately captures the spatial pattern of facies distribution by imposing spatial continuity through conditioning points. The new method also reproduces the overall response in hydraulic head field with better accuracy compared to data assimilation with no constraints on spatial continuity on facies.

  5. Design and implementation of a risk assessment module in a spatial decision support system

    Science.gov (United States)

    Zhang, Kaixi; van Westen, Cees; Bakker, Wim

    2014-05-01

    The spatial decision support system named 'Changes SDSS' is currently under development. The goal of this system is to analyze changing hydro-meteorological hazards and the effect of risk reduction alternatives to support decision makers in choosing the best alternatives. The risk assessment module within the system is to assess the current risk, analyze the risk after implementations of risk reduction alternatives, and analyze the risk in different future years when considering scenarios such as climate change, land use change and population growth. The objective of this work is to present the detailed design and implementation plan of the risk assessment module. The main challenges faced consist of how to shift the risk assessment from traditional desktop software to an open source web-based platform, the availability of input data and the inclusion of uncertainties in the risk analysis. The risk assessment module is developed using Ext JS library for the implementation of user interface on the client side, using Python for scripting, as well as PostGIS spatial functions for complex computations on the server side. The comprehensive consideration of the underlying uncertainties in input data can lead to a better quantification of risk assessment and a more reliable Changes SDSS, since the outputs of risk assessment module are the basis for decision making module within the system. The implementation of this module will contribute to the development of open source web-based modules for multi-hazard risk assessment in the future. This work is part of the "CHANGES SDSS" project, funded by the European Community's 7th Framework Program.

  6. Concepts: Integrating population survey data from different spatial scales, sampling methods, and species

    Science.gov (United States)

    Dorazio, Robert; Delampady, Mohan; Dey, Soumen; Gopalaswamy, Arjun M.; Karanth, K. Ullas; Nichols, James D.

    2017-01-01

    Conservationists and managers are continually under pressure from the public, the media, and political policy makers to provide “tiger numbers,” not just for protected reserves, but also for large spatial scales, including landscapes, regions, states, nations, and even globally. Estimating the abundance of tigers within relatively small areas (e.g., protected reserves) is becoming increasingly tractable (see Chaps. 9 and 10), but doing so for larger spatial scales still presents a formidable challenge. Those who seek “tiger numbers” are often not satisfied by estimates of tiger occupancy alone, regardless of the reliability of the estimates (see Chaps. 4 and 5). As a result, wherever tiger conservation efforts are underway, either substantially or nominally, scientists and managers are frequently asked to provide putative large-scale tiger numbers based either on a total count or on an extrapolation of some sort (see Chaps. 1 and 2).

  7. A simple homogeneous model for regular and irregular metallic wire media samples

    Science.gov (United States)

    Kosulnikov, S. Y.; Mirmoosa, M. S.; Simovski, C. R.

    2018-02-01

    To simplify the solution of electromagnetic problems with wire media samples, it is reasonable to treat them as the samples of a homogeneous material without spatial dispersion. The account of spatial dispersion implies additional boundary conditions and makes the solution of boundary problems difficult especially if the sample is not an infinitely extended layer. Moreover, for a novel type of wire media - arrays of randomly tilted wires - a spatially dispersive model has not been developed. Here, we introduce a simplistic heuristic model of wire media samples shaped as bricks. Our model covers WM of both regularly and irregularly stretched wires.

  8. GCCS Spatial Data Base Module

    National Research Council Canada - National Science Library

    Bell, Paul

    1998-01-01

    .... JMTK is divided into three primary areas: (1) Visual, (2) Analysis (non-visual), and (3) Spatial Data Base (SDBM). The primary objective of the SDBM effort is to define, design, develop and test mapping, charting and geodesy...

  9. Spatial patterns in occupancy and reproduction of Golden Eagles during drought: Prospects for conservation in changing environments

    Science.gov (United States)

    Wiens, David; Kolar, Patrick; Hunt, W. Grainger; Hunt, Teresa; Fuller, Mark R.; Bell, Douglas A.

    2018-01-01

    We used a broad-scale sampling design to investigate spatial patterns in occupancy and breeding success of territorial pairs of Golden Eagles (Aquila chrysaetos) in the Diablo Range, California, USA, during a period of exceptional drought (2014–2016). We surveyed 138 randomly selected sample sites over 4 occasions each year and identified 199 pairs of eagles, 100 of which were detected in focal sample sites. We then used dynamic multistate modeling to identify relationships between site occupancy and reproduction of Golden Eagles relative to spatial variability in landscape composition and drought conditions. We observed little variability among years in site occupancy (3-yr mean = 0.74), but the estimated annual probability of successful reproduction was relatively low during the study period and declined from 0.39 (± 0.08 SE) to 0.18 (± 0.07 SE). Probabilities of site occupancy and reproduction were substantially greater at sample sites that were occupied by successful breeders in the previous year, indicating the presence of sites that were consistently used by successfully reproducing eagles. We found strong evidence for nonrandom spatial distribution in both occupancy and reproduction: Sites with the greatest potential for occupancy were characterized by rugged terrain conditions with intermediate amounts of grassland interspersed with patches of oak woodland and coniferous forest, whereas successful reproduction was most strongly associated with the amount of precipitation that a site received during the nesting period. Our findings highlight the contribution of consistently occupied and productive breeding sites to overall productivity of the local breeding population, and show that both occupancy and reproduction at these sites were maintained even during a period of exceptional drought. Our approach to quantifying and mapping site quality should be especially useful for the spatial prioritization of compensation measures intended to help offset the

  10. An evaluation of soil sampling for 137Cs using various field-sampling volumes.

    Science.gov (United States)

    Nyhan, J W; White, G C; Schofield, T G; Trujillo, G

    1983-05-01

    The sediments from a liquid effluent receiving area at the Los Alamos National Laboratory and soils from an intensive study area in the fallout pathway of Trinity were sampled for 137Cs using 25-, 500-, 2500- and 12,500-cm3 field sampling volumes. A highly replicated sampling program was used to determine mean concentrations and inventories of 137Cs at each site, as well as estimates of spatial, aliquoting, and counting variance components of the radionuclide data. The sampling methods were also analyzed as a function of soil size fractions collected in each field sampling volume and of the total cost of the program for a given variation in the radionuclide survey results. Coefficients of variation (CV) of 137Cs inventory estimates ranged from 0.063 to 0.14 for Mortandad Canyon sediments, whereas CV values for Trinity soils were observed from 0.38 to 0.57. Spatial variance components of 137Cs concentration data were usually found to be larger than either the aliquoting or counting variance estimates and were inversely related to field sampling volume at the Trinity intensive site. Subsequent optimization studies of the sampling schemes demonstrated that each aliquot should be counted once, and that only 2-4 aliquots out of as many as 30 collected need be assayed for 137Cs. The optimization studies showed that as sample costs increased to 45 man-hours of labor per sample, the variance of the mean 137Cs concentration decreased dramatically, but decreased very little with additional labor.

  11. Landform classification using a sub-pixel spatial attraction model to increase spatial resolution of digital elevation model (DEM

    Directory of Open Access Journals (Sweden)

    Marzieh Mokarrama

    2018-04-01

    Full Text Available The purpose of the present study is preparing a landform classification by using digital elevation model (DEM which has a high spatial resolution. To reach the mentioned aim, a sub-pixel spatial attraction model was used as a novel method for preparing DEM with a high spatial resolution in the north of Darab, Fars province, Iran. The sub-pixel attraction models convert the pixel into sub-pixels based on the neighboring pixels fraction values, which can only be attracted by a central pixel. Based on this approach, a mere maximum of eight neighboring pixels can be selected for calculating of the attraction value. In the mentioned model, other pixels are supposed to be far from the central pixel to receive any attraction. In the present study by using a sub-pixel attraction model, the spatial resolution of a DEM was increased. The design of the algorithm is accomplished by using a DEM with a spatial resolution of 30 m (the Advanced Space borne Thermal Emission and Reflection Radiometer; (ASTER and a 90 m (the Shuttle Radar Topography Mission; (SRTM. In the attraction model, scale factors of (S = 2, S = 3, and S = 4 with two neighboring methods of touching (T = 1 and quadrant (T = 2 are applied to the DEMs by using MATLAB software. The algorithm is evaluated by taking the best advantages of 487 sample points, which are measured by surveyors. The spatial attraction model with scale factor of (S = 2 gives better results compared to those scale factors which are greater than 2. Besides, the touching neighborhood method is turned to be more accurate than the quadrant method. In fact, dividing each pixel into more than two sub-pixels decreases the accuracy of the resulted DEM. On the other hand, in these cases DEM, is itself in charge of increasing the value of root-mean-square error (RMSE and shows that attraction models could not be used for S which is greater than 2. Thus considering results, the proposed model is highly capable of

  12. Musical Applications and Design Techniques for the Gametrak Tethered Spatial Position Controller

    DEFF Research Database (Denmark)

    Freed, Adrian; Overholt, Daniel; Hansen, Anne-Marie

    2009-01-01

    The Gametrak spatial position controller has been saved from the fate of so many discontinued gaming controllers to become an attractive and increasingly popular platform for experimental musical controllers, math and science manipulatives, large scale interactive installations and as a playful...... tangible gaming interface that promotes inter-generational creative play and discovery . After introducing the peculiarities of the GameTrak and comparing it to related spatial position sensing systems we survey musical applications of the device. The short paper format cannot do justice to the depth...

  13. Scale-dependent approaches to modeling spatial epidemiology of chronic wasting disease.

    Science.gov (United States)

    Conner, Mary M.; Gross, John E.; Cross, Paul C.; Ebinger, Michael R.; Gillies, Robert; Samuel, Michael D.; Miller, Michael W.

    2007-01-01

    This e-book is the product of a second workshop that was funded and promoted by the United States Geological Survey to enhance cooperation between states for the management of chronic wasting disease (CWD). The first workshop addressed issues surrounding the statistical design and collection of surveillance data for CWD. The second workshop, from which this document arose, followed logically from the first workshop and focused on appropriate methods for analysis, interpretation, and use of CWD surveillance and related epidemiology data. Consequently, the emphasis of this e-book is on modeling approaches to describe and gain insight of the spatial epidemiology of CWD. We designed this e-book for wildlife managers and biologists who are responsible for the surveillance of CWD in their state or agency. We chose spatial methods that are popular or common in the spatial epidemiology literature and evaluated them for their relevance to modeling CWD. Our opinion of the usefulness and relevance of each method was based on the type of field data commonly collected as part of CWD surveillance programs and what we know about CWD biology, ecology, and epidemiology. Specifically, we expected the field data to consist primarily of the infection status of a harvested or culled sample along with its date of collection (not date of infection), location, and demographic status. We evaluated methods in light of the fact that CWD does not appear to spread rapidly through wild populations, relative to more highly contagious viruses, and can be spread directly from animal to animal or indirectly through environmental contamination.

  14. Spatial variation of electrode position in bioelectrochemical treatment system: Design consideration for azo dye remediation.

    Science.gov (United States)

    Yeruva, Dileep Kumar; Shanthi Sravan, J; Butti, Sai Kishore; Annie Modestra, J; Venkata Mohan, S

    2018-05-01

    In the present study, three bio-electrochemical treatment systems (BET) were designed with variations in cathode electrode placement [air exposed (BET1), partially submerged (BET2) and fully submerged (BET3)] to evaluate azo-dye based wastewater treatment at three dye loading concentrations (50, 250 and 500 mg L -1 ). Highest dye decolorization (94.5 ± 0.4%) and COD removal (62.2 ± 0.8%) efficiencies were observed in BET3 (fully submerged electrodes) followed by BET1 and BET2, while bioelectrogenic activity was highest in BET1 followed by BET2 and BET3. It was observed that competition among electron acceptors (electrode, dye molecules and intermediates) critically regulated the fate of bio-electrogenesis to be higher in BET1 and dye removal higher in BET3. Maximum half-cell potentials in BET3 depict higher electron acceptance by electrodes utilized for dye degradation. Study infers that spatial positioning of electrodes in BET3 is more suitable towards dye remediation, which can be considered for scaling-up/designing a treatment plant for large-scale industrial applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Spatial Frequency Discrimination: Effects of Age, Reward, and Practice.

    Directory of Open Access Journals (Sweden)

    Carlijn van den Boomen

    Full Text Available Social interaction starts with perception of the world around you. This study investigated two fundamental issues regarding the development of discrimination of higher spatial frequencies, which are important building blocks of perception. Firstly, it mapped the typical developmental trajectory of higher spatial frequency discrimination. Secondly, it developed and validated a novel design that could be applied to improve atypically developed vision. Specifically, this study examined the effect of age and reward on task performance, practice effects, and motivation (i.e., number of trials completed in a higher spatial frequency (reference frequency: 6 cycles per degree discrimination task. We measured discrimination thresholds in children aged between 7 to 12 years and adults (N = 135. Reward was manipulated by presenting either positive reinforcement or punishment. Results showed a decrease in discrimination thresholds with age, thus revealing that higher spatial frequency discrimination continues to develop after 12 years of age. This development continues longer than previously shown for discrimination of lower spatial frequencies. Moreover, thresholds decreased during the run, indicating that discrimination abilities improved. Reward did not affect performance or improvement. However, in an additional group of 5-6 year-olds (N = 28 punishments resulted in the completion of fewer trials compared to reinforcements. In both reward conditions children aged 5-6 years completed only a fourth or half of the run (64 to 128 out of 254 trials and were not motivated to continue. The design thus needs further adaptation before it can be applied to this age group. Children aged 7-12 years and adults completed the run, suggesting that the design is successful and motivating for children aged 7-12 years. This study thus presents developmental differences in higher spatial frequency discrimination thresholds. Furthermore, it presents a design that can be

  16. Spatial Frequency Discrimination: Effects of Age, Reward, and Practice.

    Science.gov (United States)

    van den Boomen, Carlijn; Peters, Judith Carolien

    2017-01-01

    Social interaction starts with perception of the world around you. This study investigated two fundamental issues regarding the development of discrimination of higher spatial frequencies, which are important building blocks of perception. Firstly, it mapped the typical developmental trajectory of higher spatial frequency discrimination. Secondly, it developed and validated a novel design that could be applied to improve atypically developed vision. Specifically, this study examined the effect of age and reward on task performance, practice effects, and motivation (i.e., number of trials completed) in a higher spatial frequency (reference frequency: 6 cycles per degree) discrimination task. We measured discrimination thresholds in children aged between 7 to 12 years and adults (N = 135). Reward was manipulated by presenting either positive reinforcement or punishment. Results showed a decrease in discrimination thresholds with age, thus revealing that higher spatial frequency discrimination continues to develop after 12 years of age. This development continues longer than previously shown for discrimination of lower spatial frequencies. Moreover, thresholds decreased during the run, indicating that discrimination abilities improved. Reward did not affect performance or improvement. However, in an additional group of 5-6 year-olds (N = 28) punishments resulted in the completion of fewer trials compared to reinforcements. In both reward conditions children aged 5-6 years completed only a fourth or half of the run (64 to 128 out of 254 trials) and were not motivated to continue. The design thus needs further adaptation before it can be applied to this age group. Children aged 7-12 years and adults completed the run, suggesting that the design is successful and motivating for children aged 7-12 years. This study thus presents developmental differences in higher spatial frequency discrimination thresholds. Furthermore, it presents a design that can be used in future

  17. Quantitative studies with the gamma-camera: correction for spatial and energy distortion

    International Nuclear Information System (INIS)

    Soussaline, F.; Todd-Pokropek, A.E.; Raynaud, C.

    1977-01-01

    The gamma camera sensitivity distribution is an important source of error in quantitative studies. In addition, spatial distortion produces apparent variations in count density which degrades quantitative studies. The flood field image takes into account both effects and is influenced by the pile-up of the tail distribution. It is essential to measure separately each of these parameters. These were investigated using a point source displaced by a special scanning table with two X, Y stepping motors of 10 micron precision. The spatial distribution of the sensitivity, spatial distortion and photopeak in the field of view were measured and compared for different setting-up of the camera and PM gains. For well-tuned cameras, the sensitivity is fairly constant, while the variations appearing in the flood field image are primarily due to spatial distortion, the former more dependent than the latter on the energy window setting. This indicates why conventional flood field uniformity correction must not be applied. A correction technique to improve the results in quantitative studies has been tested using a continuously matched energy window at every point within the field. A method for correcting spatial distortion is also proposed, where, after an adequately sampled measurement of this error, a transformation can be applied to calculate the true position of events. The knowledge of the magnitude of these parameters is essential in the routine use and design of detector systems

  18. Non-Monotonic Spatial Reasoning with Answer Set Programming Modulo Theories

    OpenAIRE

    Wałęga, Przemysław Andrzej; Schultz, Carl; Bhatt, Mehul

    2016-01-01

    The systematic modelling of dynamic spatial systems is a key requirement in a wide range of application areas such as commonsense cognitive robotics, computer-aided architecture design, and dynamic geographic information systems. We present ASPMT(QS), a novel approach and fully-implemented prototype for non-monotonic spatial reasoning -a crucial requirement within dynamic spatial systems- based on Answer Set Programming Modulo Theories (ASPMT). ASPMT(QS) consists of a (qualitative) spatial re...

  19. Fixed-location hydroacoustic monitoring designs for estimating fish passage using stratified random and systematic sampling

    International Nuclear Information System (INIS)

    Skalski, J.R.; Hoffman, A.; Ransom, B.H.; Steig, T.W.

    1993-01-01

    Five alternate sampling designs are compared using 15 d of 24-h continuous hydroacoustic data to identify the most favorable approach to fixed-location hydroacoustic monitoring of salmonid outmigrants. Four alternative aproaches to systematic sampling are compared among themselves and with stratified random sampling (STRS). Stratifying systematic sampling (STSYS) on a daily basis is found to reduce sampling error in multiday monitoring studies. Although sampling precision was predictable with varying levels of effort in STRS, neither magnitude nor direction of change in precision was predictable when effort was varied in systematic sampling (SYS). Furthermore, modifying systematic sampling to include replicated (e.g., nested) sampling (RSYS) is further shown to provide unbiased point and variance estimates as does STRS. Numerous short sampling intervals (e.g., 12 samples of 1-min duration per hour) must be monitored hourly using RSYS to provide efficient, unbiased point and interval estimates. For equal levels of effort, STRS outperformed all variations of SYS examined. Parametric approaches to confidence interval estimates are found to be superior to nonparametric interval estimates (i.e., bootstrap and jackknife) in estimating total fish passage. 10 refs., 1 fig., 8 tabs

  20. Monitoring forest areas from continental to territorial levels using a sample of medium spatial resolution satellite imagery

    Science.gov (United States)

    Eva, Hugh; Carboni, Silvia; Achard, Frédéric; Stach, Nicolas; Durieux, Laurent; Faure, Jean-François; Mollicone, Danilo

    protocol rules for its overseas department. The latter estimates come from a sample of nearly 17,000 plots analyzed from same spatial imagery acquired between year 1990 and year 2006. This sampling scheme is derived from the traditional forest inventory methods carried out by IFN (Inventaire Forestier National). Our intensified global sampling scheme leads to an estimate of 96,650 ha deforested between 1990 and 2006, which is within the 95% confidence interval of the IFN sampling scheme, which gives an estimate of 91,722 ha, representing a relative difference from the IFN of 5.4%. These results demonstrate that the intensification of the global sampling scheme can provide forest area change estimates close to those achieved by official forest inventories (<6%), with precisions of between 4% and 7%, although we only estimate errors from sampling, not from the use of surrogate data. Such methods could be used by developing countries to demonstrate that they are fulfilling requirements for reducing emissions from deforestation in the framework of an REDD (Reducing Emissions from Deforestation in Developing Countries) mechanism under discussion within the United Nations Framework Convention on Climate Change (UNFCCC). Monitoring systems at national levels in tropical countries can also benefit from pan-tropical and regional observations, to ensure consistency between different national monitoring systems.