WorldWideScience

Sample records for spatial resolution remote

  1. Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning

    Science.gov (United States)

    Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.

    2017-12-01

    Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.

  2. Automated Verification of Spatial Resolution in Remotely Sensed Imagery

    Science.gov (United States)

    Davis, Bruce; Ryan, Robert; Holekamp, Kara; Vaughn, Ronald

    2011-01-01

    Image spatial resolution characteristics can vary widely among sources. In the case of aerial-based imaging systems, the image spatial resolution characteristics can even vary between acquisitions. In these systems, aircraft altitude, speed, and sensor look angle all affect image spatial resolution. Image spatial resolution needs to be verified with estimators that include the ground sample distance (GSD), the modulation transfer function (MTF), and the relative edge response (RER), all of which are key components of image quality, along with signal-to-noise ratio (SNR) and dynamic range. Knowledge of spatial resolution parameters is important to determine if features of interest are distinguishable in imagery or associated products, and to develop image restoration algorithms. An automated Spatial Resolution Verification Tool (SRVT) was developed to rapidly determine the spatial resolution characteristics of remotely sensed aerial and satellite imagery. Most current methods for assessing spatial resolution characteristics of imagery rely on pre-deployed engineered targets and are performed only at selected times within preselected scenes. The SRVT addresses these insufficiencies by finding uniform, high-contrast edges from urban scenes and then using these edges to determine standard estimators of spatial resolution, such as the MTF and the RER. The SRVT was developed using the MATLAB programming language and environment. This automated software algorithm assesses every image in an acquired data set, using edges found within each image, and in many cases eliminating the need for dedicated edge targets. The SRVT automatically identifies high-contrast, uniform edges and calculates the MTF and RER of each image, and when possible, within sections of an image, so that the variation of spatial resolution characteristics across the image can be analyzed. The automated algorithm is capable of quickly verifying the spatial resolution quality of all images within a data

  3. A Method of Spatial Mapping and Reclassification for High-Spatial-Resolution Remote Sensing Image Classification

    Directory of Open Access Journals (Sweden)

    Guizhou Wang

    2013-01-01

    Full Text Available This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine. Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy.

  4. DIFET: DISTRIBUTED FEATURE EXTRACTION TOOL FOR HIGH SPATIAL RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    S. Eken

    2017-11-01

    Full Text Available In this paper, we propose distributed feature extraction tool from high spatial resolution remote sensing images. Tool is based on Apache Hadoop framework and Hadoop Image Processing Interface. Two corner detection (Harris and Shi-Tomasi algorithms and five feature descriptors (SIFT, SURF, FAST, BRIEF, and ORB are considered. Robustness of the tool in the task of feature extraction from LandSat-8 imageries are evaluated in terms of horizontal scalability.

  5. Difet: Distributed Feature Extraction Tool for High Spatial Resolution Remote Sensing Images

    Science.gov (United States)

    Eken, S.; Aydın, E.; Sayar, A.

    2017-11-01

    In this paper, we propose distributed feature extraction tool from high spatial resolution remote sensing images. Tool is based on Apache Hadoop framework and Hadoop Image Processing Interface. Two corner detection (Harris and Shi-Tomasi) algorithms and five feature descriptors (SIFT, SURF, FAST, BRIEF, and ORB) are considered. Robustness of the tool in the task of feature extraction from LandSat-8 imageries are evaluated in terms of horizontal scalability.

  6. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.

    Science.gov (United States)

    Fricker, Geoffrey A; Wolf, Jeffrey A; Saatchi, Sassan S; Gillespie, Thomas W

    2015-10-01

    There is an increasing interest in identifying theories, empirical data sets, and remote-sensing metrics that can quantify tropical forest alpha diversity at a landscape scale. Quantifying patterns of tree species richness in the field is time consuming, especially in regions with over 100 tree species/ha. We examine species richness in a 50-ha plot in Barro Colorado Island in Panama and test if biophysical measurements of canopy reflectance from high-resolution satellite imagery and detailed vertical forest structure and topography from light detection and ranging (lidar) are associated with species richness across four tree size classes (>1, 1-10, >10, and >20 cm dbh) and three spatial scales (1, 0.25, and 0.04 ha). We use the 2010 tree inventory, including 204,757 individuals belonging to 301 species of freestanding woody plants or 166 ± 1.5 species/ha (mean ± SE), to compare with remote-sensing data. All remote-sensing metrics became less correlated with species richness as spatial resolution decreased from 1.0 ha to 0.04 ha and tree size increased from 1 cm to 20 cm dbh. When all stems with dbh > 1 cm in 1-ha plots were compared to remote-sensing metrics, standard deviation in canopy reflectance explained 13% of the variance in species richness. The standard deviations of canopy height and the topographic wetness index (TWI) derived from lidar were the best metrics to explain the spatial variance in species richness (15% and 24%, respectively). Using multiple regression models, we made predictions of species richness across Barro Colorado Island (BCI) at the 1-ha spatial scale for different tree size classes. We predicted variation in tree species richness among all plants (adjusted r² = 0.35) and trees with dbh > 10 cm (adjusted r² = 0.25). However, the best model results were for understory trees and shrubs (dbh 1-10 cm) (adjusted r² = 0.52) that comprise the majority of species richness in tropical forests. Our results indicate that high-resolution

  7. Research on Horizontal Accuracy Method of High Spatial Resolution Remotely Sensed Orthophoto Image

    Science.gov (United States)

    Xu, Y. M.; Zhang, J. X.; Yu, F.; Dong, S.

    2018-04-01

    At present, in the inspection and acceptance of high spatial resolution remotly sensed orthophoto image, the horizontal accuracy detection is testing and evaluating the accuracy of images, which mostly based on a set of testing points with the same accuracy and reliability. However, it is difficult to get a set of testing points with the same accuracy and reliability in the areas where the field measurement is difficult and the reference data with high accuracy is not enough. So it is difficult to test and evaluate the horizontal accuracy of the orthophoto image. The uncertainty of the horizontal accuracy has become a bottleneck for the application of satellite borne high-resolution remote sensing image and the scope of service expansion. Therefore, this paper proposes a new method to test the horizontal accuracy of orthophoto image. This method using the testing points with different accuracy and reliability. These points' source is high accuracy reference data and field measurement. The new method solves the horizontal accuracy detection of the orthophoto image in the difficult areas and provides the basis for providing reliable orthophoto images to the users.

  8. Evaluating the effect of remote sensing image spatial resolution on soil exchangeable potassium prediction models in smallholder farm settings.

    Science.gov (United States)

    Xu, Yiming; Smith, Scot E; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P

    2017-09-15

    Major end users of Digital Soil Mapping (DSM) such as policy makers and agricultural extension workers are faced with choosing the appropriate remote sensing data. The objective of this research is to analyze the spatial resolution effects of different remote sensing images on soil prediction models in two smallholder farms in Southern India called Kothapally (Telangana State), and Masuti (Karnataka State), and provide empirical guidelines to choose the appropriate remote sensing images in DSM. Bayesian kriging (BK) was utilized to characterize the spatial pattern of exchangeable potassium (K ex ) in the topsoil (0-15 cm) at different spatial resolutions by incorporating spectral indices from Landsat 8 (30 m), RapidEye (5 m), and WorldView-2/GeoEye-1/Pleiades-1A images (2 m). Some spectral indices such as band reflectances, band ratios, Crust Index and Atmospherically Resistant Vegetation Index from multiple images showed relatively strong correlations with soil K ex in two study areas. The research also suggested that fine spatial resolution WorldView-2/GeoEye-1/Pleiades-1A-based and RapidEye-based soil prediction models would not necessarily have higher prediction performance than coarse spatial resolution Landsat 8-based soil prediction models. The end users of DSM in smallholder farm settings need select the appropriate spectral indices and consider different factors such as the spatial resolution, band width, spectral resolution, temporal frequency, cost, and processing time of different remote sensing images. Overall, remote sensing-based Digital Soil Mapping has potential to be promoted to smallholder farm settings all over the world and help smallholder farmers implement sustainable and field-specific soil nutrient management scheme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA (Final)

    Science.gov (United States)

    EPA announced the availability of the final report,Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result o...

  10. High Spatial Resolution Airborne Multispectral Thermal Infrared Remote Sensing Data for Analysis of Urban Landscape Characteristics

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.; Arnold, James E. (Technical Monitor)

    2000-01-01

    We have used airborne multispectral thermal infrared (TIR) remote sensing data collected at a high spatial resolution (i.e., 10m) over several cities in the United States to study thermal energy characteristics of the urban landscape. These TIR data provide a unique opportunity to quantify thermal responses from discrete surfaces typical of the urban landscape and to identify both the spatial arrangement and patterns of thermal processes across the city. The information obtained from these data is critical to understanding how urban surfaces drive or force development of the Urban Heat Island (UHI) effect, which exists as a dome of elevated air temperatures that presides over cities in contrast to surrounding non-urbanized areas. The UHI is most pronounced in the summertime where urban surfaces, such as rooftops and pavement, store solar radiation throughout the day, and release this stored energy slowly after sunset creating air temperatures over the city that are in excess of 2-4'C warmer in contrast with non-urban or rural air temperatures. The UHI can also exist as a daytime phenomenon with surface temperatures in downtown areas of cities exceeding 38'C. The implications of the UHI are significant, particularly as an additive source of thermal energy input that exacerbates the overall production of ground level ozone over cities. We have used the Airborne Thermal and Land Applications Sensor (ATLAS), flown onboard a Lear 23 jet aircraft from the NASA Stennis Space Center, to acquire high spatial resolution multispectral TIR data (i.e., 6 bandwidths between 8.2-12.2 (um) over Huntsville, Alabama, Atlanta, Georgia, Baton Rouge, Louisiana, Salt Lake City, Utah, and Sacramento, California. These TIR data have been used to produce maps and other products, showing the spatial distribution of heating and cooling patterns over these cities to better understand how the morphology of the urban landscape affects development of the UHI. In turn, these data have been used

  11. Wind turbine extraction from high spatial resolution remote sensing images based on saliency detection

    Science.gov (United States)

    Chen, Jingbo; Yue, Anzhi; Wang, Chengyi; Huang, Qingqing; Chen, Jiansheng; Meng, Yu; He, Dongxu

    2018-01-01

    The wind turbine is a device that converts the wind's kinetic energy into electrical power. Accurate and automatic extraction of wind turbine is instructive for government departments to plan wind power plant projects. A hybrid and practical framework based on saliency detection for wind turbine extraction, using Google Earth image at spatial resolution of 1 m, is proposed. It can be viewed as a two-phase procedure: coarsely detection and fine extraction. In the first stage, we introduced a frequency-tuned saliency detection approach for initially detecting the area of interest of the wind turbines. This method exploited features of color and luminance, was simple to implement, and was computationally efficient. Taking into account the complexity of remote sensing images, in the second stage, we proposed a fast method for fine-tuning results in frequency domain and then extracted wind turbines from these salient objects by removing the irrelevant salient areas according to the special properties of the wind turbines. Experiments demonstrated that our approach consistently obtains higher precision and better recall rates. Our method was also compared with other techniques from the literature and proves that it is more applicable and robust.

  12. Multi-granularity synthesis segmentation for high spatial resolution Remote sensing images

    International Nuclear Information System (INIS)

    Yi, Lina; Liu, Pengfei; Qiao, Xiaojun; Zhang, Xiaoning; Gao, Yuan; Feng, Boyan

    2014-01-01

    Traditional segmentation method can only partition an image in a single granularity space, with segmentation accuracy limited to the single granularity space. This paper proposes a multi-granularity synthesis segmentation method for high spatial resolution remote sensing images based on a quotient space model. Firstly, we divide the whole image area into multiple granules (regions), each region is consisted of ground objects that have similar optimal segmentation scale, and then select and synthesize the sub-optimal segmentations of each region to get the final segmentation result. To validate this method, the land cover category map is used to guide the scale synthesis of multi-scale image segmentations for Quickbird image land use classification. Firstly, the image is coarsely divided into multiple regions, each region belongs to a certain land cover category. Then multi-scale segmentation results are generated by the Mumford-Shah function based region merging method. For each land cover category, the optimal segmentation scale is selected by the supervised segmentation accuracy assessment method. Finally, the optimal scales of segmentation results are synthesized under the guide of land cover category. Experiments show that the multi-granularity synthesis segmentation can produce more accurate segmentation than that of a single granularity space and benefit the classification

  13. Autonomous agricultural remote sensing systems with high spatial and temporal resolutions

    Science.gov (United States)

    Xiang, Haitao

    In this research, two novel agricultural remote sensing (RS) systems, a Stand-alone Infield Crop Monitor RS System (SICMRS) and an autonomous Unmanned Aerial Vehicles (UAV) based RS system have been studied. A high-resolution digital color and multi-spectral camera was used as the image sensor for the SICMRS system. An artificially intelligent (AI) controller based on artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS) was developed. Morrow Plots corn field RS images in the 2004 and 2006 growing seasons were collected by the SICMRS system. The field site contained 8 subplots (9.14 m x 9.14 m) that were planted with corn and three different fertilizer treatments were used among those subplots. The raw RS images were geometrically corrected, resampled to 10cm resolution, removed soil background and calibrated to real reflectance. The RS images from two growing seasons were studied and 10 different vegetation indices were derived from each day's image. The result from the image processing demonstrated that the vegetation indices have temporal effects. To achieve high quality RS data, one has to utilize the right indices and capture the images at the right time in the growing season. Maximum variations among the image data set are within the V6-V10 stages, which indicated that these stages are the best period to identify the spatial variability caused by the nutrient stress in the corn field. The derived vegetation indices were also used to build yield prediction models via the linear regression method. At that point, all of the yield prediction models were evaluated by comparing the R2-value and the best index model from each day's image was picked based on the highest R 2-value. It was shown that the green normalized difference vegetation (GNDVI) based model is more sensitive to yield prediction than other indices-based models. During the VT-R4 stages, the GNDVI based models were able to explain more than 95% potential corn yield

  14. A novel airport extraction model based on saliency region detection for high spatial resolution remote sensing images

    Science.gov (United States)

    Lv, Wen; Zhang, Libao; Zhu, Yongchun

    2017-06-01

    The airport is one of the most crucial traffic facilities in military and civil fields. Automatic airport extraction in high spatial resolution remote sensing images has many applications such as regional planning and military reconnaissance. Traditional airport extraction strategies usually base on prior knowledge and locate the airport target by template matching and classification, which will cause high computation complexity and large costs of computing resources for high spatial resolution remote sensing images. In this paper, we propose a novel automatic airport extraction model based on saliency region detection, airport runway extraction and adaptive threshold segmentation. In saliency region detection, we choose frequency-tuned (FT) model for computing airport saliency using low level features of color and luminance that is easy and fast to implement and can provide full-resolution saliency maps. In airport runway extraction, Hough transform is adopted to count the number of parallel line segments. In adaptive threshold segmentation, the Otsu threshold segmentation algorithm is proposed to obtain more accurate airport regions. The experimental results demonstrate that the proposed model outperforms existing saliency analysis models and shows good performance in the extraction of the airport.

  15. Agro-hydrology and multi temporal high resolution remote sensing: toward an explicit spatial processes calibration

    Science.gov (United States)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-07-01

    The recent and forthcoming availability of high resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the perspective offered by improving the crop growth dynamic simulation using the distributed agro-hydrological model, Topography based Nitrogen transfer and Transformation (TNT2), using LAI map series derived from 105 Formosat-2 (F2) images during the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated with discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2006-2010 dataset (climate, land use, agricultural practices, discharge and nitrate fluxes at the outlet). A priori agricultural practices obtained from an extensive field survey such as seeding date, crop cultivar, and fertilizer amount were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics with a priori input parameters showed an temporal shift with observed LAI profiles irregularly distributed in space (between field crops) and time (between years). By re-setting seeding date at the crop field level, we proposed an optimization method to minimize efficiently this temporal shift and better fit the crop growth against the spatial observations as well as crop production. This optimization of simulated LAI has a negligible impact on water budget at the catchment scale (1 mm yr-1 in average) but a noticeable impact on in-stream nitrogen fluxes (around 12%) which is of interest considering nitrate stream contamination issues and TNT2 model objectives. This study demonstrates the contribution of forthcoming high spatial and temporal resolution products of Sentinel-2 satellite mission in improving agro-hydrological modeling by constraining the spatial representation of crop productivity.

  16. Monitoring of Vegetation Impact Due to Trampling on Cadillac Mountain Summit Using High Spatial Resolution Remote Sensing Data Sets

    Science.gov (United States)

    Kim, Min-Kook; Daigle, John J.

    2012-11-01

    Cadillac Mountain—the highest peak along the eastern seaboard of the United States—is a major tourist destination in Acadia National Park, Maine. Managing vegetation impact due to trampling on the Cadillac Mountain summit is extremely challenging because of the large number of visitors and the general open nature of landscape in this fragile subalpine environmental setting. Since 2000, more intensive management strategies—based on placing physical barriers and educational messages for visitors—have been employed to protect threatened vegetation, decrease vegetation impact, and enhance vegetation recovery in the vicinity of the summit loop trail. The primary purpose of this study was to evaluate the effect of the management strategies employed. For this purpose, vegetation cover changes between 2001 and 2007 were detected using multispectral high spatial resolution remote sensing data sets. A normalized difference vegetation index was employed to identify the rates of increase and decrease in the vegetation areas. Three buffering distances (30, 60, and 90 m) from the edges of the trail were used to define multiple spatial extents of the site, and the same spatial extents were employed at a nearby control site that had no visitors. No significant differences were detected between the mean rates of vegetation increase and decrease at the experimental site compared with a nearby control site in the case of a small spatial scale (≤30 m) comparison (in all cases P > 0.05). However, in the medium (≤60 m) and large (≤90 m) spatial scales, the rates of increased vegetation were significantly greater and rates of decreased vegetation significantly lower at the experimental site compared with the control site (in all cases P Management implications are explored in terms of the spatial strategies used to decrease the impact of trampling on vegetation.

  17. Ontology-Guided Image Interpretation for GEOBIA of High Spatial Resolution Remote Sense Imagery: A Coastal Area Case Study

    Directory of Open Access Journals (Sweden)

    Helingjie Huang

    2017-03-01

    Full Text Available Image interpretation is a major topic in the remote sensing community. With the increasing acquisition of high spatial resolution (HSR remotely sensed images, incorporating geographic object-based image analysis (GEOBIA is becoming an important sub-discipline for improving remote sensing applications. The idea of integrating the human ability to understand images inspires research related to introducing expert knowledge into image object–based interpretation. The relevant work involved three parts: (1 identification and formalization of domain knowledge; (2 image segmentation and feature extraction; and (3 matching image objects with geographic concepts. This paper presents a novel way that combines multi-scaled segmented image objects with geographic concepts to express context in an ontology-guided image interpretation. Spectral features and geometric features of a single object are extracted after segmentation and topological relationships are also used in the interpretation. Web ontology language–query language (OWL-QL formalize domain knowledge. Then the interpretation matching procedure is implemented by the OWL-QL query-answering. Compared with a supervised classification, which does not consider context, the proposed method validates two HSR images of coastal areas in China. Both the number of interpreted classes increased (19 classes over 10 classes in Case 1 and 12 classes over seven in Case 2, and the overall accuracy improved (0.77 over 0.55 in Case 1 and 0.86 over 0.65 in Case 2. The additional context of the image objects improved accuracy during image classification. The proposed approach shows the pivotal role of ontology for knowledge-guided interpretation.

  18. High Spatial resolution remote sensing for salt marsh change detection on Fire Island National Seashore

    Science.gov (United States)

    Campbell, A.; Wang, Y.

    2017-12-01

    Salt marshes are under increasing pressure due to anthropogenic stressors including sea level rise, nutrient enrichment, herbivory and disturbances. Salt marsh losses risk the important ecosystem services they provide including biodiversity, water filtration, wave attenuation, and carbon sequestration. This study determines salt marsh change on Fire Island National Seashore, a barrier island along the south shore of Long Island, New York. Object-based image analysis was used to classifying Worldview-2, high resolution satellite, and topobathymetric LiDAR. The site was impacted by Hurricane Sandy in October of 2012 causing a breach in the Barrier Island and extensive overwash. In situ training data from vegetation plots were used to train the Random Forest classifier. The object-based Worldview-2 classification achieved an overall classification accuracy of 92.75. Salt marsh change for the study site was determined by comparing the 2015 classification with a 1997 classification. The study found a shift from high marsh to low marsh and a reduction in Phragmites on Fire Island. Vegetation losses were observed along the edge of the marsh and in the marsh interior. The analysis agreed with many of the trends found throughout the region including the reduction of high marsh and decline of salt marsh. The reduction in Phragmites could be due to the species shrinking niche between rising seas and dune vegetation on barrier islands. The complex management issues facing salt marsh across the United States including sea level rise and eutrophication necessitate very high resolution classification and change detection of salt marsh to inform management decisions such as restoration, salt marsh migration, and nutrient inputs.

  19. Remote Sensing of River Delta Inundation: Exploiting the Potential of Coarse Spatial Resolution, Temporally-Dense MODIS Time Series

    Directory of Open Access Journals (Sweden)

    Claudia Kuenzer

    2015-07-01

    Full Text Available River deltas belong to the most densely settled places on earth. Although they only account for 5% of the global land surface, over 550 million people live in deltas. These preferred livelihood locations, which feature flat terrain, fertile alluvial soils, access to fluvial and marine resources, a rich wetland biodiversity and other advantages are, however, threatened by numerous internal and external processes. Socio-economic development, urbanization, climate change induced sea level rise, as well as flood pulse changes due to upstream water diversion all lead to changes in these highly dynamic systems. A thorough understanding of a river delta’s general setting and intra-annual as well as long-term dynamic is therefore crucial for an informed management of natural resources. Here, remote sensing can play a key role in analyzing and monitoring these vast areas at a global scale. The goal of this study is to demonstrate the potential of intra-annual time series analyses at dense temporal, but coarse spatial resolution for inundation characterization in five river deltas located in four different countries. Based on 250 m MODIS reflectance data we analyze inundation dynamics in four densely populated Asian river deltas—namely the Yellow River Delta (China, the Mekong Delta (Vietnam, the Irrawaddy Delta (Myanmar, and the Ganges-Brahmaputra (Bangladesh, India—as well as one very contrasting delta: the nearly uninhabited polar Mackenzie Delta Region in northwestern Canada for the complete time span of one year (2013. A complex processing chain of water surface derivation on a daily basis allows the generation of intra-annual time series, which indicate inundation duration in each of the deltas. Our analyses depict distinct inundation patterns within each of the deltas, which can be attributed to processes such as overland flooding, irrigation agriculture, aquaculture, or snowmelt and thermokarst processes. Clear differences between mid

  20. Prevalence of pure versus mixed snow cover pixels across spatial resolutions in alpine environments: implications for binary and fractional remote sensing approaches

    Science.gov (United States)

    Selkowitz, David J.; Forster, Richard; Caldwell, Megan K.

    2014-01-01

    Remote sensing of snow-covered area (SCA) can be binary (indicating the presence/absence of snow cover at each pixel) or fractional (indicating the fraction of each pixel covered by snow). Fractional SCA mapping provides more information than binary SCA, but is more difficult to implement and may not be feasible with all types of remote sensing data. The utility of fractional SCA mapping relative to binary SCA mapping varies with the intended application as well as by spatial resolution, temporal resolution and period of interest, and climate. We quantified the frequency of occurrence of partially snow-covered (mixed) pixels at spatial resolutions between 1 m and 500 m over five dates at two study areas in the western U.S., using 0.5 m binary SCA maps derived from high spatial resolution imagery aggregated to fractional SCA at coarser spatial resolutions. In addition, we used in situ monitoring to estimate the frequency of partially snow-covered conditions for the period September 2013–August 2014 at 10 60-m grid cell footprints at two study areas with continental snow climates. Results from the image analysis indicate that at 40 m, slightly above the nominal spatial resolution of Landsat, mixed pixels accounted for 25%–93% of total pixels, while at 500 m, the nominal spatial resolution of MODIS bands used for snow cover mapping, mixed pixels accounted for 67%–100% of total pixels. Mixed pixels occurred more commonly at the continental snow climate site than at the maritime snow climate site. The in situ data indicate that some snow cover was present between 186 and 303 days, and partial snow cover conditions occurred on 10%–98% of days with snow cover. Four sites remained partially snow-free throughout most of the winter and spring, while six sites were entirely snow covered throughout most or all of the winter and spring. Within 60 m grid cells, the late spring/summer transition from snow-covered to snow-free conditions lasted 17–56 days and averaged 37

  1. Constraining the dynamics of the water budget at high spatial resolution in the world's water towers using models and remote sensing data; Snake River Basin, USA

    Science.gov (United States)

    Watson, K. A.; Masarik, M. T.; Flores, A. N.

    2016-12-01

    Mountainous, snow-dominated basins are often referred to as the water towers of the world because they store precipitation in seasonal snowpacks, which gradually melt and provide water supplies to downstream communities. Yet significant uncertainties remain in terms of quantifying the stores and fluxes of water in these regions as well as the associated energy exchanges. Constraining these stores and fluxes is crucial for advancing process understanding and managing these water resources in a changing climate. Remote sensing data are particularly important to these efforts due to the remoteness of these landscapes and high spatial variability in water budget components. We have developed a high resolution regional climate dataset extending from 1986 to the present for the Snake River Basin in the northwestern USA. The Snake River Basin is the largest tributary of the Columbia River by volume and a critically important basin for regional economies and communities. The core of the dataset was developed using a regional climate model, forced by reanalysis data. Specifically the Weather Research and Forecasting (WRF) model was used to dynamically downscale the North American Regional Reanalysis (NARR) over the region at 3 km horizontal resolution for the period of interest. A suite of satellite remote sensing products provide independent, albeit uncertain, constraint on a number of components of the water and energy budgets for the region across a range of spatial and temporal scales. For example, GRACE data are used to constrain basinwide terrestrial water storage and MODIS products are used to constrain the spatial and temporal evolution of evapotranspiration and snow cover. The joint use of both models and remote sensing products allows for both better understanding of water cycle dynamics and associated hydrometeorologic processes, and identification of limitations in both the remote sensing products and regional climate simulations.

  2. An Improved STARFM with Help of an Unmixing-Based Method to Generate High Spatial and Temporal Resolution Remote Sensing Data in Complex Heterogeneous Regions.

    Science.gov (United States)

    Xie, Dengfeng; Zhang, Jinshui; Zhu, Xiufang; Pan, Yaozhong; Liu, Hongli; Yuan, Zhoumiqi; Yun, Ya

    2016-02-05

    Remote sensing technology plays an important role in monitoring rapid changes of the Earth's surface. However, sensors that can simultaneously provide satellite images with both high temporal and spatial resolution haven't been designed yet. This paper proposes an improved spatial and temporal adaptive reflectance fusion model (STARFM) with the help of an Unmixing-based method (USTARFM) to generate the high spatial and temporal data needed for the study of heterogeneous areas. The results showed that the USTARFM had higher accuracy than STARFM methods in two aspects of analysis: individual bands and of heterogeneity analysis. Taking the predicted NIR band as an example, the correlation coefficients (r) for the USTARFM, STARFM and unmixing methods were 0.96, 0.95, 0.90, respectively (p-value data fusion problems faced when using STARFM. Additionally, the USTARFM method could help researchers achieve better performance than STARFM at a smaller window size from its heterogeneous land surface quantitative representation.

  3. Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery

    Science.gov (United States)

    Zhong, Yanfei; Han, Xiaobing; Zhang, Liangpei

    2018-04-01

    Multi-class geospatial object detection from high spatial resolution (HSR) remote sensing imagery is attracting increasing attention in a wide range of object-related civil and engineering applications. However, the distribution of objects in HSR remote sensing imagery is location-variable and complicated, and how to accurately detect the objects in HSR remote sensing imagery is a critical problem. Due to the powerful feature extraction and representation capability of deep learning, the deep learning based region proposal generation and object detection integrated framework has greatly promoted the performance of multi-class geospatial object detection for HSR remote sensing imagery. However, due to the translation caused by the convolution operation in the convolutional neural network (CNN), although the performance of the classification stage is seldom influenced, the localization accuracies of the predicted bounding boxes in the detection stage are easily influenced. The dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage has not been addressed for HSR remote sensing imagery, and causes position accuracy problems for multi-class geospatial object detection with region proposal generation and object detection. In order to further improve the performance of the region proposal generation and object detection integrated framework for HSR remote sensing imagery object detection, a position-sensitive balancing (PSB) framework is proposed in this paper for multi-class geospatial object detection from HSR remote sensing imagery. The proposed PSB framework takes full advantage of the fully convolutional network (FCN), on the basis of a residual network, and adopts the PSB framework to solve the dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage. In addition, a pre-training mechanism is utilized to accelerate the training procedure

  4. Particle detector spatial resolution

    International Nuclear Information System (INIS)

    Perez-Mendez, V.

    1992-01-01

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs

  5. Agro-hydrology and multi-temporal high-resolution remote sensing: toward an explicit spatial processes calibration

    Science.gov (United States)

    Ferrant, S.; Gascoin, S.; Veloso, A.; Salmon-Monviola, J.; Claverie, M.; Rivalland, V.; Dedieu, G.; Demarez, V.; Ceschia, E.; Probst, J.-L.; Durand, P.; Bustillo, V.

    2014-12-01

    The growing availability of high-resolution satellite image series offers new opportunities in agro-hydrological research and modeling. We investigated the possibilities offered for improving crop-growth dynamic simulation with the distributed agro-hydrological model: topography-based nitrogen transfer and transformation (TNT2). We used a leaf area index (LAI) map series derived from 105 Formosat-2 (F2) images covering the period 2006-2010. The TNT2 model (Beaujouan et al., 2002), calibrated against discharge and in-stream nitrate fluxes for the period 1985-2001, was tested on the 2005-2010 data set (climate, land use, agricultural practices, and discharge and nitrate fluxes at the outlet). Data from the first year (2005) were used to initialize the hydrological model. A priori agricultural practices obtained from an extensive field survey, such as seeding date, crop cultivar, and amount of fertilizer, were used as input variables. Continuous values of LAI as a function of cumulative daily temperature were obtained at the crop-field level by fitting a double logistic equation against discrete satellite-derived LAI. Model predictions of LAI dynamics using the a priori input parameters displayed temporal shifts from those observed LAI profiles that are irregularly distributed in space (between field crops) and time (between years). By resetting the seeding date at the crop-field level, we have developed an optimization method designed to efficiently minimize this temporal shift and better fit the crop growth against both the spatial observations and crop production. This optimization of simulated LAI has a negligible impact on water budgets at the catchment scale (1 mm yr-1 on average) but a noticeable impact on in-stream nitrogen fluxes (around 12%), which is of interest when considering nitrate stream contamination issues and the objectives of TNT2 modeling. This study demonstrates the potential contribution of the forthcoming high spatial and temporal resolution

  6. Combining Remote Sensing imagery of both fine and coarse spatial resolution to Estimate Crop Evapotranspiration and quantifying its Influence on Crop Growth Monitoring.

    Science.gov (United States)

    Sepulcre-Cantó, Guadalupe; Gellens-Meulenberghs, Françoise; Arboleda, Alirio; Duveiller, Gregory; Piccard, Isabelle; de Wit, Allard; Tychon, Bernard; Bakary, Djaby; Defourny, Pierre

    2010-05-01

    This study has been carried out in the framework of the GLOBAM -Global Agricultural Monitoring system by integration of earth observation and modeling techniques- project whose objective is to fill the methodological gap between the state of the art of local crop monitoring and the operational requirements of the global monitoring system programs. To achieve this goal, the research aims to develop an integrated approach using remote sensing and crop growth modeling. Evapotranspiration (ET) is a valuable parameter in the crop monitoring context since it provides information on the plant water stress status, which strongly influences crop development and, by extension, crop yield. To assess crop evapotranspiration over the GLOBAM study areas (300x300 km sites in Northern Europe and Central Ethiopia), a Soil-Vegetation-Atmosphere Transfer (SVAT) model forced with remote sensing and numerical weather prediction data has been used. This model runs at pre-operational level in the framework of the EUMETSAT LSA-SAF (Land Surface Analysis Satellite Application Facility) using SEVIRI and ECMWF data, as well as the ECOCLIMAP database to characterize the vegetation. The model generates ET images at the Meteosat Second Generation (MSG) spatial resolution (3 km at subsatellite point),with a temporal resolution of 30 min and monitors the entire MSG disk which covers Europe, Africa and part of Sud America . The SVAT model was run for 2007 using two approaches. The first approach is at the standard pre-operational mode. The second incorporates remote sensing information at various spatial resolutions going from LANDSAT (30m) to SEVIRI (3-5 km) passing by AWIFS (56m) and MODIS (250m). Fine spatial resolution data consists of crop type classification which enable to identify areas where pure crop specific MODIS time series can be compiled and used to derive Leaf Area Index estimations for the most important crops (wheat and maize). The use of this information allowed to characterize

  7. Spatial and temporal remote sensing data fusion for vegetation monitoring

    Science.gov (United States)

    The suite of available remote sensing instruments varies widely in terms of sensor characteristics, spatial resolution and acquisition frequency. For example, the Moderate-resolution Imaging Spectroradiometer (MODIS) provides daily global observations at 250m to 1km spatial resolution. While imagery...

  8. Using high-resolution soil moisture modelling to assess the uncertainty of microwave remotely sensed soil moisture products at the correct spatial and temporal support

    Science.gov (United States)

    Wanders, N.; Karssenberg, D.; Bierkens, M. F. P.; Van Dam, J. C.; De Jong, S. M.

    2012-04-01

    Soil moisture is a key variable in the hydrological cycle and important in hydrological modelling. When assimilating soil moisture into flood forecasting models, the improvement of forecasting skills depends on the ability to accurately estimate the spatial and temporal patterns of soil moisture content throughout the river basin. Space-borne remote sensing may provide this information with a high temporal and spatial resolution and with a global coverage. Currently three microwave soil moisture products are available: AMSR-E, ASCAT and SMOS. The quality of these satellite-based products is often assessed by comparing them with in-situ observations of soil moisture. This comparison is however hampered by the difference in spatial and temporal support (i.e., resolution, scale), because the spatial resolution of microwave satellites is rather low compared to in-situ field measurements. Thus, the aim of this study is to derive a method to assess the uncertainty of microwave satellite soil moisture products at the correct spatial support. To overcome the difference in support size between in-situ soil moisture observations and remote sensed soil moisture, we used a stochastic, distributed unsaturated zone model (SWAP, van Dam (2000)) that is upscaled to the support of different satellite products. A detailed assessment of the SWAP model uncertainty is included to ensure that the uncertainty in satellite soil moisture is not overestimated due to an underestimation of the model uncertainty. We simulated unsaturated water flow up to a depth of 1.5m with a vertical resolution of 1 to 10 cm and on a horizontal grid of 1 km2 for the period Jan 2010 - Jun 2011. The SWAP model was first calibrated and validated on in-situ data of the REMEDHUS soil moisture network (Spain). Next, to evaluate the satellite products, the model was run for areas in the proximity of 79 meteorological stations in Spain, where model results were aggregated to the correct support of the satellite

  9. Spatial dynamics of thermokarst and thermo-erosion at lakes and ponds in North Siberia and Northwest Alaska using high-resolution remote sensing

    Science.gov (United States)

    Grosse, G.; Tillapaugh, M.; Romanovsky, V. E.; Walter, K. M.; Plug, L. J.

    2008-12-01

    Formation, growth, and drainage of thermokarst lakes in ice-rich permafrost deposits are important factors of landscape dynamics in extent Arctic lowlands. Monitoring of spatial and temporal dynamics of such lakes will allow an assessment of permafrost stability and enhance the capabilities for modelling and quantifying biogeochemical processes related to permafrost degradation in a warming Arctic. In this study we use high-resolution remote sensing and GIS to analyze the development of thermokarst lakes and ponds in two study regions in North Siberia and Northwest Alaska. The sites are 1) the Cherskii region in the Kolyma lowland (Siberia) and 2) the Kitluk River area on the northern Seward Peninsula (Alaska). Both regions are characterized by continuous permafrost, a highly dissected and dynamic thermokarst landscape, uplands of Late Pleistocene permafrost deposits with high excess ice contents, and a large total volume of permafrost-stored carbon. These ice-rich Yedoma or Yedoma-like deposits are highly vulnerable to permafrost degradation forced by climate warming or other surface disturbance. Time series of high- resolution imagery (aerial, Corona, Ikonos, Alos Prism) covering more than 50 years of lake dynamics allow detailed assessments of processes and spatial patterns of thermokarst lake expansion and drainage in continuous permafrost. Time series of high-resolution imagery (aerial, Corona, Ikonos, Alos Prism) covering more than 50 years of lake dynamics allow detailed assessments of processes and spatial patterns of thermokarst lake expansion and drainage in continuous permafrost. Processes identified include thaw slumping, wave undercutting of frozen sediments or peat blocks and subsequent mass wasting, thaw collapse of near-shore zones, sinkhole formation and ice-wedge tunnelling, and gully formation by thermo-erosion. We use GIS-based tools to relate the remote sensing results to field data (ground ice content, topography, lithology, and relative age

  10. Remote state preparation of spatial qubits

    Energy Technology Data Exchange (ETDEWEB)

    Solis-Prosser, M. A.; Neves, L. [Center for Optics and Photonics, Universidad de Concepcion, Casilla 4016, Concepcion (Chile) and Departamento de Fisica, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)

    2011-07-15

    We study the quantum communication protocol of remote state preparation (RSP) for pure states of qubits encoded in single photons transmitted through a double slit, the so-called spatial qubits. Two measurement strategies that one can adopt to remotely prepare the states are discussed. The first strategy is the well-known spatial postselection, where a single-pixel detector measures the transverse position of the photon between the focal and the image plane of a lens. The second strategy, proposed by ourselves, is a generalized measurement divided into two steps: the implementation of a two-outcome positive operator-valued measurement (POVM) followed by the spatial postselection at the focal plane of the lens by a two-pixel detector in each output of the POVM. In both cases we analyze the effects of the finite spatial resolution of the detectors over three figures of merit of the protocol, namely, the probability of preparation, the fidelity, and purity of the remotely prepared states. It is shown that our strategy improves these figures compared with spatial postselection, at the expense of increasing the classical communication cost as well as the required experimental resources. In addition, we present a modified version of our strategy for RSP of spatial qudits which is able to prepare arbitrary pure states, unlike spatial postselection alone. We expect that our study may also be extended for RSP of the angular spectrum of a single-photon field as an alternative for quantum teleportation which requires very inefficient nonlinear interactions.

  11. Remote state preparation of spatial qubits

    International Nuclear Information System (INIS)

    Solis-Prosser, M. A.; Neves, L.

    2011-01-01

    We study the quantum communication protocol of remote state preparation (RSP) for pure states of qubits encoded in single photons transmitted through a double slit, the so-called spatial qubits. Two measurement strategies that one can adopt to remotely prepare the states are discussed. The first strategy is the well-known spatial postselection, where a single-pixel detector measures the transverse position of the photon between the focal and the image plane of a lens. The second strategy, proposed by ourselves, is a generalized measurement divided into two steps: the implementation of a two-outcome positive operator-valued measurement (POVM) followed by the spatial postselection at the focal plane of the lens by a two-pixel detector in each output of the POVM. In both cases we analyze the effects of the finite spatial resolution of the detectors over three figures of merit of the protocol, namely, the probability of preparation, the fidelity, and purity of the remotely prepared states. It is shown that our strategy improves these figures compared with spatial postselection, at the expense of increasing the classical communication cost as well as the required experimental resources. In addition, we present a modified version of our strategy for RSP of spatial qudits which is able to prepare arbitrary pure states, unlike spatial postselection alone. We expect that our study may also be extended for RSP of the angular spectrum of a single-photon field as an alternative for quantum teleportation which requires very inefficient nonlinear interactions.

  12. Spatial Variability in Column CO2 Inferred from High Resolution GEOS-5 Global Model Simulations: Implications for Remote Sensing and Inversions

    Science.gov (United States)

    Ott, L.; Putman, B.; Collatz, J.; Gregg, W.

    2012-01-01

    Column CO2 observations from current and future remote sensing missions represent a major advancement in our understanding of the carbon cycle and are expected to help constrain source and sink distributions. However, data assimilation and inversion methods are challenged by the difference in scale of models and observations. OCO-2 footprints represent an area of several square kilometers while NASA s future ASCENDS lidar mission is likely to have an even smaller footprint. In contrast, the resolution of models used in global inversions are typically hundreds of kilometers wide and often cover areas that include combinations of land, ocean and coastal areas and areas of significant topographic, land cover, and population density variations. To improve understanding of scales of atmospheric CO2 variability and representativeness of satellite observations, we will present results from a global, 10-km simulation of meteorology and atmospheric CO2 distributions performed using NASA s GEOS-5 general circulation model. This resolution, typical of mesoscale atmospheric models, represents an order of magnitude increase in resolution over typical global simulations of atmospheric composition allowing new insight into small scale CO2 variations across a wide range of surface flux and meteorological conditions. The simulation includes high resolution flux datasets provided by NASA s Carbon Monitoring System Flux Pilot Project at half degree resolution that have been down-scaled to 10-km using remote sensing datasets. Probability distribution functions are calculated over larger areas more typical of global models (100-400 km) to characterize subgrid-scale variability in these models. Particular emphasis is placed on coastal regions and regions containing megacities and fires to evaluate the ability of coarse resolution models to represent these small scale features. Additionally, model output are sampled using averaging kernels characteristic of OCO-2 and ASCENDS measurement

  13. Towards high temporal and moderate spatial resolutions in the remote sensing retrieval of evapotranspiration by combining geostationary and polar orbit satellite data

    Science.gov (United States)

    Barrios, José Miguel; Ghilain, Nicolas; Arboleda, Alirio; Gellens-Meulenberghs, Françoise

    2014-05-01

    Evapotranspiration (ET) is the water flux going from the surface into the atmosphere as result of soil and surface water evaporation and plant transpiration. It constitutes a key component of the water cycle and its quantification is of crucial importance for a number of applications like water management, climatic modelling, agriculture monitoring and planning, etc. Estimating ET is not an easy task; specially if large areas are envisaged and various spatio-temporal patterns of ET are present as result of heterogeneity in land cover, land use and climatic conditions. In this respect, spaceborne remote sensing (RS) provides the only alternative to continuously measure surface parameters related to ET over large areas. The Royal Meteorological Institute (RMI) of Belgium, in the framework of EUMETSAT's "Land Surface Analysis-Satellite Application Facility" (LSA-SAF), has developed a model for the estimation of ET. The model is forced by RS data, numerical weather predictions and land cover information. The RS forcing is derived from measurements by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellite. This ET model is operational and delivers ET estimations over the whole field of view of the MSG satellite (Europe, Africa and Eastern South America) (http://landsaf.meteo.pt) every 30 minutes. The spatial resolution of MSG is 3 x 3 km at subsatellite point and about 4 x 5 km in continental Europe. The spatial resolution of this product may constrain its full exploitation as the interest of potential users (farmers and natural resources scientists) may lie on smaller spatial units. This study aimed at testing methodological alternatives to combine RS imagery (geostationary and polar orbit satellites) for the estimation of ET such that the spatial resolution of the final product is improved. In particular, the study consisted in the implementation of two approaches for combining the current ET estimations with

  14. Optimization of the resolution of remotely sensed digital elevation model to facilitate the simulation and spatial propagation of flood events in flat areas

    Science.gov (United States)

    Karapetsas, Nikolaos; Skoulikaris, Charalampos; Katsogiannos, Fotis; Zalidis, George; Alexandridis, Thomas

    2013-04-01

    The use of satellite remote sensing products, such as Digital Elevation Models (DEMs), under specific computational interfaces of Geographic Information Systems (GIS) has fostered and facilitated the acquisition of data on specific hydrologic features, such as slope, flow direction and flow accumulation, which are crucial inputs to hydrology or hydraulic models at the river basin scale. However, even though DEMs of different resolution varying from a few km up to 20m are freely available for the European continent, these remotely sensed elevation data are rather coarse in cases where large flat areas are dominant inside a watershed, resulting in an unsatisfactory representation of the terrain characteristics. This scientific work aims at implementing a combing interpolation technique for the amelioration of the analysis of a DEM in order to be used as the input ground model to a hydraulic model for the assessment of potential flood events propagation in plains. More specifically, the second version of the ASTER Global Digital Elevation Model (GDEM2), which has an overall accuracy of around 20 meters, was interpolated with a vast number of aerial control points available from the Hellenic Mapping and Cadastral Organization (HMCO). The uncertainty that was inherent in both the available datasets (ASTER & HMCO) and the appearance of uncorrelated errors and artifacts was minimized by incorporating geostatistical filtering. The resolution of the produced DEM was approximately 10 meters and its validation was conducted with the use of an external dataset of 220 geodetic survey points. The derived DEM was then used as an input to the hydraulic model InfoWorks RS, whose operation is based on the relief characteristics contained in the ground model, for defining, in an automated way, the cross section parameters and simulating the flood spatial distribution. The plain of Serres, which is located in the downstream part of the Struma/Strymon transboundary river basin shared

  15. Remote detection of fluid-related diagenetic mineralogical variations in the Wingate Sandstone at different spatial and spectral resolutions

    Science.gov (United States)

    Okyay, Unal; Khan, Shuhab D.

    2016-02-01

    Well-exposed eolian units of the Jurassic system on the Colorado Plateau including the Wingate Sandstone, show prominent color variations throughout southeastern Utah due to diagenetic changes that include precipitation and/or removal of iron oxide, clay, and carbonate cement. Spatially variable characteristic diagenetic changes suggest fluid-rock interactions through the sandstone. Distinctive spectral signatures of diagenetic minerals can be used to map diagenetic mineral variability and possibly fluid-flow pathways. The main objective of this work was to identify characteristic diagenetic minerals, and map their spatial variability from regional to outcrop scale in Wingate Sandstone exposures of Lisbon Valley, Utah. Laboratory reflectance spectroscopy analysis of the samples facilitated identification of diagnostic spectral characteristics of the common diagenetic minerals and their relative abundances between altered and unaltered Wingate Sandstone. Comparison of reflectance spectroscopy with satellite, airborne, and ground-based imaging spectroscopy data provided a method for mapping and evaluating spatial variations of diagenetic minerals. The Feature-oriented Principal Component Selection method was used on Advanced Spaceborne Thermal Emission and Reflection Radiometer data so as to map common mineral groups throughout the broader Wingate Sandstone exposure in the area. The Minimum Noise Fraction and Spectral Angle Mapper methods were applied on airborne HyMap and ground-based hyperspectral imaging data to identify and map mineralogical changes. The satellite and airborne data showed that out of 25.55 km2 total exposure of Wingate Sandstone in Lisbon Valley, unaltered sandstone cover 12.55 km2, and altered sandstone cover 8.90 km2 in the northwest flank and 5.09 km2 in the southern flank of the anticline. The ground-based hyperspectral data demonstrated the ability to identify and map mineral assemblages with two-dimensional lateral continuity on near

  16. A Sparse Dictionary Learning-Based Adaptive Patch Inpainting Method for Thick Clouds Removal from High-Spatial Resolution Remote Sensing Imagery.

    Science.gov (United States)

    Meng, Fan; Yang, Xiaomei; Zhou, Chenghu; Li, Zhi

    2017-09-15

    Cloud cover is inevitable in optical remote sensing (RS) imagery on account of the influence of observation conditions, which limits the availability of RS data. Therefore, it is of great significance to be able to reconstruct the cloud-contaminated ground information. This paper presents a sparse dictionary learning-based image inpainting method for adaptively recovering the missing information corrupted by thick clouds patch-by-patch. A feature dictionary was learned from exemplars in the cloud-free regions, which was later utilized to infer the missing patches via sparse representation. To maintain the coherence of structures, structure sparsity was brought in to encourage first filling-in of missing patches on image structures. The optimization model of patch inpainting was formulated under the adaptive neighborhood-consistency constraint, which was solved by a modified orthogonal matching pursuit (OMP) algorithm. In light of these ideas, the thick-cloud removal scheme was designed and applied to images with simulated and true clouds. Comparisons and experiments show that our method can not only keep structures and textures consistent with the surrounding ground information, but also yield rare smoothing effect and block effect, which is more suitable for the removal of clouds from high-spatial resolution RS imagery with salient structures and abundant textured features.

  17. Spatial Growth Modeling and High Resolution Remote Sensing Data Coupled with Air Quality Modeling to Assess the Impact of Atlanta, Georgia on the Local and Regional Environment

    Science.gov (United States)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Johnson, Hoyt; Khan, Maudood

    2006-01-01

    The growth of cities, both in population and areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 60 percent of the world s population will live in cities. Urban expansion has profound impacts on a host of biophysical, environmental, and atmospheric processes within an urban ecosystems perspective. A reduction in air quality over cities is a major result of these impacts. Because of its complexity, the urban landscape is not adequately captured in air quality models such as the Community Multiscale Air Quality (CMAQ) model that is used to assess whether urban areas are in attainment of EPA air quality standards, primarily for ground level ozone. This inadequacy of the CMAQ model to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well the model predicts ozone levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban spatial growth modeling (SGM) projections as improved inputs to a meteorological/air quality modeling system focusing on the Atlanta, Georgia metropolitan area as a case study. These growth projections include business as usual and smart growth scenarios out to 2030. The growth projections illustrate the effects of employing urban heat island mitigation strategies, such as increasing tree canopy and albedo across the Atlanta metro area, which in turn, are used to model how air temperature can potentially be moderated as impacts on elevating ground-level ozone, as opposed to not utilizing heat island mitigation strategies. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the CMAQ modeling schemes. Use of these data has been found to better characterize low density/suburban development as compared

  18. Remote sensing of potential lunar resources. 2: High spatial resolution mapping of spectral reflectance ratios and implications for nearside mare TiO2 content`

    Science.gov (United States)

    Melendrez, David E.; Johnson, Jeffrey R.; Larson, Stephen M.; Singer, Robert B.

    1994-01-01

    High spatial resolution maps illustrating variations in spectral reflectance 400/560 nm ratio values have been generated for the following mare regions: (1) the border between southern Mare Serenitatis and northern Mare Tranquillitatis (including the MS-2 standard area and Apollo 17 landing site), (2) central Mare Tranquillitatis, (3) Oceanus Procellarum near Seleucus, and (4) southern Oceanus Procellarum and Flamsteed. We have also obtained 320-1000 nm reflectance spectra of several sites relative to MS-2 to facilitate scaling of the images and provide additional information on surface composition. Inferred TiO2 abundances for these mare regions have been determined using an empirical calibration which relates the weight percent TiO2 in mature mare regolith to the observed 400/560 nm ratio. Mare areas with high TiO2 abundances are probably rich in ilmenite (FeTiO3) a potential lunar resource. The highest potential TiO2 concentrations we have identified in the nearside maria occur in central Mare Tranquillitatis. Inferred TiO2 contents for these areas are greater than 9 wt% and are spatially consistent with the highest-TiO2 regions mapped previously at lower spatial resolution. We note that the morphology of surface units with high 400/560 nm ratio values increases in complexity at higher spatial resolutions. Comparisons have been made with previously published geologic maps, Lunar Orbiter IV, and ground-based images, and some possible morphologic correlatins have been found between our mapped 400/560 nm ratio values and volcanic landforms such as lava flows, mare domes, and collapse pits.

  19. Spatial resolution in visual memory.

    Science.gov (United States)

    Ben-Shalom, Asaf; Ganel, Tzvi

    2015-04-01

    Representations in visual short-term memory are considered to contain relatively elaborated information on object structure. Conversely, representations in earlier stages of the visual hierarchy are thought to be dominated by a sensory-based, feed-forward buildup of information. In four experiments, we compared the spatial resolution of different object properties between two points in time along the processing hierarchy in visual short-term memory. Subjects were asked either to estimate the distance between objects or to estimate the size of one of the objects' features under two experimental conditions, of either a short or a long delay period between the presentation of the target stimulus and the probe. When different objects were referred to, similar spatial resolution was found for the two delay periods, suggesting that initial processing stages are sensitive to object-based properties. Conversely, superior resolution was found for the short, as compared with the long, delay when features were referred to. These findings suggest that initial representations in visual memory are hybrid in that they allow fine-grained resolution for object features alongside normal visual sensitivity to the segregation between objects. The findings are also discussed in reference to the distinction made in earlier studies between visual short-term memory and iconic memory.

  20. Advancing High Spatial and Spectral Resolution Remote Sensing for Observing Plant Community Response to Environmental Variability and Change in the Alaskan Arctic

    Science.gov (United States)

    Vargas Zesati, Sergio A.

    landscape level ecosystem structure and phenological dynamics at multiple temporal scales. Overall, this study has furthered our knowledge of how tundra ecosystems in the Arctic change seasonally and how such change could impact remote sensing studies conducted from multiple platforms and across multiple spatial scales. Additionally, this study also highlights the urgent need for research into the validation of satellite products in order to better understand the causes and consequences of the changing Arctic and its potential effects on global processes. This study focused on sites located in northern Alaska and was formed in collaboration with Florida International University (FIU) and Grand Valley State University (GVSU) as a contribution to the US Arctic Observing Network (AON). All efforts were supported through the National Science Foundation (NSF), the Cyber-ShARE Center of Excellence, and the International Tundra Experiment (ITEX).

  1. Classification of High Spatial Resolution, Hyperspectral ...

    Science.gov (United States)

    EPA announced the availability of the final report,Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result of a collaborative effort among an interdisciplinary team of scientists with the U.S. Environmental Protection Agency's (U.S. EPA's) Office of Research and Development in Cincinnati, Ohio. A primary goal of this project is to enhance the use of geography and spatial analytic tools in risk assessment, and to improve the scientific basis for risk management decisions affecting drinking water and water quality. The land use/land cover classification is derived from 82 flight lines of Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery acquired from July 24 through August 9, 2002 via fixed-wing aircraft.

  2. Spatial resolution in Micromegas detectors

    CERN Document Server

    Bayb, A; Giomataris, Ioanis; Zaccone, Henri; Bay, A; Perroud, Jean-Pierre; Ronga, F

    2001-01-01

    The performance of a telescope of Micromegas detectors has been studied in a pion beam at the CERN PS. With a gas filling of CF/sub 4 / and 20% isobutane and with a strip pitch of 100 mu m an accuracy of 14+or-3 mu m on the spatial resolution has been measured at normal incidence. A simulation demonstrates that the resolution is limited by the size of the holes of the mesh of the detector and could be reduced to 11 mu m in the same conditions with smaller holes. Even further improvement down to 8.5 mu m is feasible for the same gas with an optimized 75 mu m strip pitch. (5 refs).

  3. Spatial Resolution Assessment of the Telops Airborne TIR Imagery

    Science.gov (United States)

    Mousakhani, S.; Eslami, M.; Saadatseresht, M.

    2017-09-01

    Having a high spatial resolution of Thermal InfraRed (TIR) Sensors is a challenge in remote sensing applications. Airborne high spatial resolution TIR is a novel source of data that became available lately. Recent developments in spatial resolution of the TIR sensors have been an interesting topic for scientists. TIR sensors are very sensitive to the energies emitted from objects. Past researches have been shown that increasing the spatial resolution of an airborne image will decrease the spectral content of the data and will reduce the Signal to Noise Ratio (SNR). Therefore, in this paper a comprehensive assessment is adapted to estimate an appropriate spatial resolution of the TIR data (TELOPS TIR data), in consideration of the SNR. So, firstly, a low-pass filter is applied on TIR data and the achieved products fed to a classification method for analysing of the accuracy improvement. The obtained results show that, there is no significant change in classification accuracy by applying low-pass filter. Furthermore, estimation of the appropriate spatial resolution of the TIR data is evaluated for obtaining higher spectral content and SNR. For this purpose, different resolutions of the TIR data are created and fed to the maximum likelihood classification method separately. The results illustrated in the case of using images with ground pixel size four times greater than the original image, the classification accuracy is not reduced. Also, SNR and spectral contents are improved. But the corners sharpening is declined.

  4. SAGA GIS based processing of spatial high resolution temperature data

    International Nuclear Information System (INIS)

    Gerlitz, Lars; Bechtel, Benjamin; Kawohl, Tobias; Boehner, Juergen; Zaksek, Klemen

    2013-01-01

    Many climate change impact studies require surface and near surface temperature data with high spatial and temporal resolution. The resolution of state of the art climate models and remote sensing data is often by far to coarse to represent the meso- and microscale distinctions of temperatures. This is particularly the case for regions with a huge variability of topoclimates, such as mountainous or urban areas. Statistical downscaling techniques are promising methods to refine gridded temperature data with limited spatial resolution, particularly due to their low demand for computer capacity. This paper presents two downscaling approaches - one for climate model output and one for remote sensing data. Both are methodically based on the FOSS-GIS platform SAGA. (orig.)

  5. Spatially resolved remote measurement of temperature by neutron resonance absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [Space Sciences Laboratory, University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Kockelmann, W.; Pooley, D.E. [STFC, Rutherford Appleton Laboratory, ISIS Facility, Didcot OX11 0QX (United Kingdom); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Road, Sturbridge, MA 01566 (United States)

    2015-12-11

    Deep penetration of neutrons into most engineering materials enables non-destructive studies of their bulk properties. The existence of sharp resonances in neutron absorption spectra enables isotopically-resolved imaging of elements present in a sample, as demonstrated by previous studies. At the same time the Doppler broadening of resonance peaks provides a method of remote measurement of temperature distributions within the same sample. This technique can be implemented at a pulsed neutron source with a short initial pulse allowing for the measurement of the energy of each registered neutron by the time of flight technique. A neutron counting detector with relatively high timing and spatial resolution is used to demonstrate the possibility to obtain temperature distributions across a 100 µm Ta foil with ~millimeter spatial resolution. Moreover, a neutron transmission measurement over a wide energy range can provide spatially resolved sample information such as temperature, elemental composition and microstructure properties simultaneously.

  6. Using high-resolution soil moisture modelling to assess the uncertainty of microwave remotely sensed soil moisture products at the correct spatial and temporal support

    NARCIS (Netherlands)

    Wanders, N.; Karssenberg, D.; Bierkens, M. F. P.; Van Dam, J. C.; De Jong, S. M.

    Soil moisture is a key variable in the hydrological cycle and important in hydrological modelling. When assimilating soil moisture into flood forecasting models, the improvement of forecasting skills depends on the ability to accurately estimate the spatial and temporal patterns of soil moisture

  7. The spatial resolution of epidemic peaks.

    Directory of Open Access Journals (Sweden)

    Harriet L Mills

    2014-04-01

    Full Text Available The emergence of novel respiratory pathogens can challenge the capacity of key health care resources, such as intensive care units, that are constrained to serve only specific geographical populations. An ability to predict the magnitude and timing of peak incidence at the scale of a single large population would help to accurately assess the value of interventions designed to reduce that peak. However, current disease-dynamic theory does not provide a clear understanding of the relationship between: epidemic trajectories at the scale of interest (e.g. city; population mobility; and higher resolution spatial effects (e.g. transmission within small neighbourhoods. Here, we used a spatially-explicit stochastic meta-population model of arbitrary spatial resolution to determine the effect of resolution on model-derived epidemic trajectories. We simulated an influenza-like pathogen spreading across theoretical and actual population densities and varied our assumptions about mobility using Latin-Hypercube sampling. Even though, by design, cumulative attack rates were the same for all resolutions and mobilities, peak incidences were different. Clear thresholds existed for all tested populations, such that models with resolutions lower than the threshold substantially overestimated population-wide peak incidence. The effect of resolution was most important in populations which were of lower density and lower mobility. With the expectation of accurate spatial incidence datasets in the near future, our objective was to provide a framework for how to use these data correctly in a spatial meta-population model. Our results suggest that there is a fundamental spatial resolution for any pathogen-population pair. If underlying interactions between pathogens and spatially heterogeneous populations are represented at this resolution or higher, accurate predictions of peak incidence for city-scale epidemics are feasible.

  8. Spatial resolution requirements for digital radiology

    International Nuclear Information System (INIS)

    Seeley, G.W.; Dallas, W.J.; Guillian, J.; Ovitt, T.; Standen, J.

    1990-01-01

    This paper describes research to define the needed spatial resolution for maintaining diagnostic accuracy in digital systems. Posteroanterior images from 30 normal and 30 abnormal studies of patients with various stages of interstitial disease were digitized at 51 p/mm with 12 bits of gray level and then processed in a computer to reduce spatial resolution from 5.0 to 2.5, 1.875, and in 1.25 Ip/mm. A Kodak laser writer using a LUT devised to ensure the copies had equal densities to those measured from the original images was used to write the images back to film. These film images were then shown to radiologists (one resolution level per radiologist). They were asked to give their diagnosis and certainty for each image (receiver operating characteristic [ROC] paradigm) and also to rate each image on overall spatial and contrast resolution as well as the visibility of seven diagnostically important structures

  9. Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features

    Directory of Open Access Journals (Sweden)

    Linyi Li

    2017-01-01

    Full Text Available In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images.

  10. Estimating Gross Primary Production in Cropland with High Spatial and Temporal Scale Remote Sensing Data

    Science.gov (United States)

    Lin, S.; Li, J.; Liu, Q.

    2018-04-01

    Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km). The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP) estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012) Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES) geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1) the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR) is about 50 % (R2 = 0.52) and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64); 2) estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE MODIS 1-km NDVI/EVI product import; 3) using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.

  11. Classification of high resolution remote sensing image based on geo-ontology and conditional random fields

    Science.gov (United States)

    Hong, Liang

    2013-10-01

    The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.

  12. Edge Detection from High Resolution Remote Sensing Images using Two-Dimensional log Gabor Filter in Frequency Domain

    International Nuclear Information System (INIS)

    Wang, K; Yu, T; Meng, Q Y; Wang, G K; Li, S P; Liu, S H

    2014-01-01

    Edges are vital features to describe the structural information of images, especially high spatial resolution remote sensing images. Edge features can be used to define the boundaries between different ground objects in high spatial resolution remote sensing images. Thus edge detection is important in the remote sensing image processing. Even though many different edge detection algorithms have been proposed, it is difficult to extract the edge features from high spatial resolution remote sensing image including complex ground objects. This paper introduces a novel method to detect edges from the high spatial resolution remote sensing image based on frequency domain. Firstly, the high spatial resolution remote sensing images are Fourier transformed to obtain the magnitude spectrum image (frequency image) by FFT. Then, the frequency spectrum is analyzed by using the radius and angle sampling. Finally, two-dimensional log Gabor filter with optimal parameters is designed according to the result of spectrum analysis. Finally, dot product between the result of Fourier transform and the log Gabor filter is inverse Fourier transformed to obtain the detections. The experimental result shows that the proposed algorithm can detect edge features from the high resolution remote sensing image commendably

  13. Integrating remote sensing and spatially explicit epidemiological modeling

    Science.gov (United States)

    Finger, Flavio; Knox, Allyn; Bertuzzo, Enrico; Mari, Lorenzo; Bompangue, Didier; Gatto, Marino; Rinaldo, Andrea

    2015-04-01

    Spatially explicit epidemiological models are a crucial tool for the prediction of epidemiological patterns in time and space as well as for the allocation of health care resources. In addition they can provide valuable information about epidemiological processes and allow for the identification of environmental drivers of the disease spread. Most epidemiological models rely on environmental data as inputs. They can either be measured in the field by the means of conventional instruments or using remote sensing techniques to measure suitable proxies of the variables of interest. The later benefit from several advantages over conventional methods, including data availability, which can be an issue especially in developing, and spatial as well as temporal resolution of the data, which is particularly crucial for spatially explicit models. Here we present the case study of a spatially explicit, semi-mechanistic model applied to recurring cholera outbreaks in the Lake Kivu area (Democratic Republic of the Congo). The model describes the cholera incidence in eight health zones on the shore of the lake. Remotely sensed datasets of chlorophyll a concentration in the lake, precipitation and indices of global climate anomalies are used as environmental drivers. Human mobility and its effect on the disease spread is also taken into account. Several model configurations are tested on a data set of reported cases. The best models, accounting for different environmental drivers, and selected using the Akaike information criterion, are formally compared via cross validation. The best performing model accounts for seasonality, El Niño Southern Oscillation, precipitation and human mobility.

  14. High resolution remote sensing of water surface patterns

    Science.gov (United States)

    Woodget, A.; Visser, F.; Maddock, I.; Carbonneau, P.

    2012-12-01

    The assessment of in-stream habitat availability within fluvial environments in the UK traditionally includes the mapping of patterns which appear on the surface of the water, known as 'surface flow types' (SFTs). The UK's River Habitat Survey identifies ten key SFTs, including categories such as rippled flow, upwelling, broken standing waves and smooth flow. SFTs result from the interaction between the underlying channel morphology, water depth and velocity and reflect the local flow hydraulics. It has been shown that SFTs can be both biologically and hydraulically distinct. SFT mapping is usually conducted from the river banks where estimates of spatial coverage are made by eye. This approach is affected by user subjectivity and inaccuracies in the spatial extent of mapped units. Remote sensing and specifically the recent developments in unmanned aerial systems (UAS) may now offer an alternative approach for SFT mapping, with the capability for rapid and repeatable collection of very high resolution imagery from low altitudes, under bespoke flight conditions. This PhD research is aimed at investigating the mapping of SFTs using high resolution optical imagery (less than 10cm) collected from a helicopter-based UAS flown at low altitudes (less than 100m). This paper presents the initial findings from a series of structured experiments on the River Arrow, a small lowland river in Warwickshire, UK. These experiments investigate the potential for mapping SFTs from still and video imagery of different spatial resolutions collected at different flying altitudes and from different viewing angles (i.e. vertical and oblique). Imagery is processed using 3D mosaicking software to create orthophotos and digital elevation models (DEM). The types of image analysis which are tested include a simple, manual visual assessment undertaken in a GIS environment, based on the high resolution optical imagery. In addition, an object-based image analysis approach which makes use of the

  15. Tactile spatial resolution in blind braille readers.

    Science.gov (United States)

    Van Boven, R W; Hamilton, R H; Kauffman, T; Keenan, J P; Pascual-Leone, A

    2000-06-27

    To determine if blind people have heightened tactile spatial acuity. Recently, studies using magnetic source imaging and somatosensory evoked potentials have shown that the cortical representation of the reading fingers of blind Braille readers is expanded compared to that of fingers of sighted subjects. Furthermore, the visual cortex is activated during certain tactile tasks in blind subjects but not sighted subjects. The authors hypothesized that the expanded cortical representation of fingers used in Braille reading may reflect an enhanced fidelity in the neural transmission of spatial details of a stimulus. If so, the quantitative limit of spatial acuity would be superior in blind people. The authors employed a grating orientation discrimination task in which threshold performance is accounted for by the spatial resolution limits of the neural image evoked by a stimulus. The authors quantified the psychophysical limits of spatial acuity at the middle and index fingers of 15 blind Braille readers and 15 sighted control subjects. The mean grating orientation threshold was significantly (p = 0.03) lower in the blind group (1.04 mm) compared to the sighted group (1.46 mm). The self-reported dominant reading finger in blind subjects had a mean grating orientation threshold of 0.80 mm, which was significantly better than other fingers tested. Thresholds at non-Braille reading fingers in blind subjects averaged 1.12 mm, which were also superior to sighted subjects' performances. Superior tactile spatial acuity in blind Braille readers may represent an adaptive, behavioral correlate of cortical plasticity.

  16. A temporal and spatial scaling method for quantifying daily photosynthesis using remote sensing data

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Chen, W.; Sarich, M. [Intermap Technologies Ltd., Nepean, ON (Canada); Cihlar, J. [Canada Centre for Remote Sensing, Ottawa, ON (Canada); Goulden, M. [California Univ., Irvine, CA (United States)

    1998-06-01

    Remote sensing to monitor the behaviour of terrestrial ecosystems over large areas was discussed. For this type of application the boreal ecosystem productivity simulator (BEPS) was developed, with the subsequent incorporation of the more advanced photosynthetic model. The new model improves the methodology through analytical spatial and temporal integration of canopy photosynthesis processes, and is suitable for regional remote sensing applications at moderate resolutions of 250 to 1000 m. 10 refs., 1 tab., 3 figs.

  17. INTEGRATION OF SPATIAL INFORMATION WITH COLOR FOR CONTENT RETRIEVAL OF REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    Bikesh Kumar Singh

    2010-08-01

    Full Text Available There is rapid increase in image databases of remote sensing images due to image satellites with high resolution, commercial applications of remote sensing & high available bandwidth in last few years. The problem of content-based image retrieval (CBIR of remotely sensed images presents a major challenge not only because of the surprisingly increasing volume of images acquired from a wide range of sensors but also because of the complexity of images themselves. In this paper, a software system for content-based retrieval of remote sensing images using RGB and HSV color spaces is presented. Further, we also compare our results with spatiogram based content retrieval which integrates spatial information along with color histogram. Experimental results show that the integration of spatial information in color improves the image analysis of remote sensing data. In general, retrievals in HSV color space showed better performance than in RGB color space.

  18. Spatial Autocorrelation and Uncertainty Associated with Remotely-Sensed Data

    Directory of Open Access Journals (Sweden)

    Daniel A. Griffith

    2016-06-01

    Full Text Available Virtually all remotely sensed data contain spatial autocorrelation, which impacts upon their statistical features of uncertainty through variance inflation, and the compounding of duplicate information. Estimating the nature and degree of this spatial autocorrelation, which is usually positive and very strong, has been hindered by computational intensity associated with the massive number of pixels in realistically-sized remotely-sensed images, a situation that more recently has changed. Recent advances in spatial statistical estimation theory support the extraction of information and the distilling of knowledge from remotely-sensed images in a way that accounts for latent spatial autocorrelation. This paper summarizes an effective methodological approach to achieve this end, illustrating results with a 2002 remotely sensed-image of the Florida Everglades, and simulation experiments. Specifically, uncertainty of spatial autocorrelation parameter in a spatial autoregressive model is modeled with a beta-beta mixture approach and is further investigated with three different sampling strategies: coterminous sampling, random sub-region sampling, and increasing domain sub-regions. The results suggest that uncertainty associated with remotely-sensed data should be cast in consideration of spatial autocorrelation. It emphasizes that one remaining challenge is to better quantify the spatial variability of spatial autocorrelation estimates across geographic landscapes.

  19. X-ray diffractometry with spatial resolution

    International Nuclear Information System (INIS)

    Zeiner, K.

    1981-04-01

    X-ray diffractometry is one of the extensively used methods for investigation of the crystalline structure of materials. Line shape and position of a diffracted line are influenced by grain size, deformation and stress. Spatial resolution of one of these specimen characteristics is usually achieved by point-focused X-ray beams and subsequently analyzing different specimen positions. This work uses the method of image reconstruction from projections for the generation of distribution maps. Additional experimental requirements when using a conventional X-ray goniometer are a specimen scanning unit and a computer. The scanning unit repeatedly performs a number of translation steps followed by a rotation step in a fixed X-ray tube/detector (position sensitive detector) arrangement. At each specimen position a diffraction line is recorded using a line-shaped X-ray beam. This network of diffraction lines (showing line resolution) is mathematically converted to a distribution map of diffraction lines and going thus a point resolution. Specimen areas of up to several cm 2 may be analyzed with a linear resolution of 0.1 to 1 mm. Image reconstruction from projections must be modified for generation of ''function-maps''. This theory is discussed and demonstrated by computer simulations. Diffraction line analysis is done for specimen deformation using a deconvolution procedure. The theoretical considerations are experimentally verified. (author)

  20. ESTIMATING GROSS PRIMARY PRODUCTION IN CROPLAND WITH HIGH SPATIAL AND TEMPORAL SCALE REMOTE SENSING DATA

    Directory of Open Access Journals (Sweden)

    S. Lin

    2018-04-01

    Full Text Available Satellite remote sensing data provide spatially continuous and temporally repetitive observations of land surfaces, and they have become increasingly important for monitoring large region of vegetation photosynthetic dynamic. But remote sensing data have their limitation on spatial and temporal scale, for example, higher spatial resolution data as Landsat data have 30-m spatial resolution but 16 days revisit period, while high temporal scale data such as geostationary data have 30-minute imaging period, which has lower spatial resolution (> 1 km. The objective of this study is to investigate whether combining high spatial and temporal resolution remote sensing data can improve the gross primary production (GPP estimation accuracy in cropland. For this analysis we used three years (from 2010 to 2012 Landsat based NDVI data, MOD13 vegetation index product and Geostationary Operational Environmental Satellite (GOES geostationary data as input parameters to estimate GPP in a small region cropland of Nebraska, US. Then we validated the remote sensing based GPP with the in-situ measurement carbon flux data. Results showed that: 1 the overall correlation between GOES visible band and in-situ measurement photosynthesis active radiation (PAR is about 50 % (R2 = 0.52 and the European Center for Medium-Range Weather Forecasts ERA-Interim reanalysis data can explain 64 % of PAR variance (R2 = 0.64; 2 estimating GPP with Landsat 30-m spatial resolution data and ERA daily meteorology data has the highest accuracy(R2 = 0.85, RMSE < 3 gC/m2/day, which has better performance than using MODIS 1-km NDVI/EVI product import; 3 using daily meteorology data as input for GPP estimation in high spatial resolution data would have higher relevance than 8-day and 16-day input. Generally speaking, using the high spatial resolution and high frequency satellite based remote sensing data can improve GPP estimation accuracy in cropland.

  1. Advancements in Modelling of Land Surface Energy Fluxes with Remote Sensing at Different Spatial Scales

    DEFF Research Database (Denmark)

    Guzinski, Radoslaw

    uxes, such as sensible heat ux, ground heat ux and net radiation, are also necessary. While it is possible to measure those uxes with ground-based instruments at local scales, at region scales they usually need to be modelled or estimated with the help of satellite remote sensing data. Even though...... to increase the spatial resolution of the reliable DTD-modelled fluxes from 1 km to 30 m. Furthermore, synergies between remote sensing based models and distributed hydrological models were studied with the aim of improving spatial performance of the hydrological models through incorporation of remote sensing...... of this study was to look at, and improve, various approaches for modelling the land-surface energy uxes at different spatial scales. The work was done using physically-based Two-Source Energy Balance (TSEB) approach as well as semi-empirical \\Triangle" approach. The TSEB-based approach was the main focus...

  2. Remote parallel rendering for high-resolution tiled display walls

    KAUST Repository

    Nachbaur, Daniel

    2014-11-01

    © 2014 IEEE. We present a complete, robust and simple to use hardware and software stack delivering remote parallel rendering of complex geometrical and volumetric models to high resolution tiled display walls in a production environment. We describe the setup and configuration, present preliminary benchmarks showing interactive framerates, and describe our contributions for a seamless integration of all the software components.

  3. Remote parallel rendering for high-resolution tiled display walls

    KAUST Repository

    Nachbaur, Daniel; Dumusc, Raphael; Bilgili, Ahmet; Hernando, Juan; Eilemann, Stefan

    2014-01-01

    © 2014 IEEE. We present a complete, robust and simple to use hardware and software stack delivering remote parallel rendering of complex geometrical and volumetric models to high resolution tiled display walls in a production environment. We describe the setup and configuration, present preliminary benchmarks showing interactive framerates, and describe our contributions for a seamless integration of all the software components.

  4. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    Science.gov (United States)

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  5. Spatial resolution enhancement of satellite image data using fusion approach

    Science.gov (United States)

    Lestiana, H.; Sukristiyanti

    2018-02-01

    Object identification using remote sensing data has a problem when the spatial resolution is not in accordance with the object. The fusion approach is one of methods to solve the problem, to improve the object recognition and to increase the objects information by combining data from multiple sensors. The application of fusion image can be used to estimate the environmental component that is needed to monitor in multiple views, such as evapotranspiration estimation, 3D ground-based characterisation, smart city application, urban environments, terrestrial mapping, and water vegetation. Based on fusion application method, the visible object in land area has been easily recognized using the method. The variety of object information in land area has increased the variation of environmental component estimation. The difficulties in recognizing the invisible object like Submarine Groundwater Discharge (SGD), especially in tropical area, might be decreased by the fusion method. The less variation of the object in the sea surface temperature is a challenge to be solved.

  6. Towards breaking the spatial resolution barriers: An optical flow and super-resolution approach for sea ice motion estimation

    Science.gov (United States)

    Petrou, Zisis I.; Xian, Yang; Tian, YingLi

    2018-04-01

    Estimation of sea ice motion at fine scales is important for a number of regional and local level applications, including modeling of sea ice distribution, ocean-atmosphere and climate dynamics, as well as safe navigation and sea operations. In this study, we propose an optical flow and super-resolution approach to accurately estimate motion from remote sensing images at a higher spatial resolution than the original data. First, an external example learning-based super-resolution method is applied on the original images to generate higher resolution versions. Then, an optical flow approach is applied on the higher resolution images, identifying sparse correspondences and interpolating them to extract a dense motion vector field with continuous values and subpixel accuracies. Our proposed approach is successfully evaluated on passive microwave, optical, and Synthetic Aperture Radar data, proving appropriate for multi-sensor applications and different spatial resolutions. The approach estimates motion with similar or higher accuracy than the original data, while increasing the spatial resolution of up to eight times. In addition, the adopted optical flow component outperforms a state-of-the-art pattern matching method. Overall, the proposed approach results in accurate motion vectors with unprecedented spatial resolutions of up to 1.5 km for passive microwave data covering the entire Arctic and 20 m for radar data, and proves promising for numerous scientific and operational applications.

  7. Super-Resolution Reconstruction of Remote Sensing Images Using Multifractal Analysis

    Directory of Open Access Journals (Sweden)

    Mao-Gui Hu

    2009-10-01

    Full Text Available Satellite remote sensing (RS is an important contributor to Earth observation, providing various kinds of imagery every day, but low spatial resolution remains a critical bottleneck in a lot of applications, restricting higher spatial resolution analysis (e.g., intraurban. In this study, a multifractal-based super-resolution reconstruction method is proposed to alleviate this problem. The multifractal characteristic is common in Nature. The self-similarity or self-affinity presented in the image is useful to estimate details at larger and smaller scales than the original. We first look for the presence of multifractal characteristics in the images. Then we estimate parameters of the information transfer function and noise of the low resolution image. Finally, a noise-free, spatial resolutionenhanced image is generated by a fractal coding-based denoising and downscaling method. The empirical case shows that the reconstructed super-resolution image performs well indetail enhancement. This method is not only useful for remote sensing in investigating Earth, but also for other images with multifractal characteristics.

  8. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    Science.gov (United States)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  9. Enhanced spatial resolution on figures versus grounds.

    Science.gov (United States)

    Hecht, Lauren N; Cosman, Joshua D; Vecera, Shaun P

    2016-07-01

    Much is known about the cues that determine figure-ground assignment, but less is known about the consequences of figure-ground assignment on later visual processing. Previous work has demonstrated that regions assigned figural status are subjectively more shape-like and salient than background regions. The increase in subjective salience of figural regions could be caused by a number of processes, one of which may be enhanced perceptual processing (e.g., an enhanced neural representation) of figures relative to grounds. We explored this hypothesis by having observers perform a perceptually demanding spatial resolution task in which targets appeared on either figure or ground regions. To rule out a purely attentional account of figural salience, observers discriminated targets on the basis of a region's color (red or green), which was equally likely to define the figure or the ground. The results of our experiments showed that targets appearing on figures were discriminated more accurately than those appearing in ground regions. In addition, targets appearing on figures were discriminated better than those presented in regions considered figurally neutral, but targets appearing within ground regions were discriminated more poorly than those appearing in figurally neutral regions. Taken together, our findings suggest that when two regions share a contour, regions assigned as figure are perceptually enhanced, whereas regions assigned as ground are perceptually suppressed.

  10. Enhanced spatial resolution on figures versus grounds

    Science.gov (United States)

    Hecht, Lauren N.; Cosman, Joshua D.; Vecera, Shaun P.

    2016-01-01

    Much is known about the cues that determine figure-ground assignment, but less is known about the consequences of figure-ground assignment on later visual processing. Previous work has demonstrated that regions assigned figural status are subjectively more shape-like and salient than background regions. The increase in subjective salience of figural regions could be caused by a number of processes, one of which may be enhanced perceptual processing (e.g., an enhanced neural representation) of figures relative to grounds. We explored this hypothesis by having observers perform a perceptually demanding spatial resolution task in which targets appeared either on figure or ground regions. To rule out a purely attentional account of figural salience, observers discriminated targets on the basis of a region’s color (red or green), which was equally likely to define the figure or the ground. The results of our experiments show that targets appearing on figures were discriminated more accurately than those appearing in ground regions. In addition, targets appearing on figures were discriminated better than those presented in regions considered figurally neutral, but targets appearing within ground regions were discriminated more poorly than those appearing in figurally neutral regions. Taken together, our findings suggest that when two regions share a contour, regions assigned as figure are perceptually enhanced, whereas regions assigned as grounds are perceptually suppressed. PMID:27048441

  11. Deriving temporally continuous soil moisture estimations at fine resolution by downscaling remotely sensed product

    Science.gov (United States)

    Jin, Yan; Ge, Yong; Wang, Jianghao; Heuvelink, Gerard B. M.

    2018-06-01

    Land surface soil moisture (SSM) has important roles in the energy balance of the land surface and in the water cycle. Downscaling of coarse-resolution SSM remote sensing products is an efficient way for producing fine-resolution data. However, the downscaling methods used most widely require full-coverage visible/infrared satellite data as ancillary information. These methods are restricted to cloud-free days, making them unsuitable for continuous monitoring. The purpose of this study is to overcome this limitation to obtain temporally continuous fine-resolution SSM estimations. The local spatial heterogeneities of SSM and multiscale ancillary variables were considered in the downscaling process both to solve the problem of the strong variability of SSM and to benefit from the fusion of ancillary information. The generation of continuous downscaled remote sensing data was achieved via two principal steps. For cloud-free days, a stepwise hybrid geostatistical downscaling approach, based on geographically weighted area-to-area regression kriging (GWATARK), was employed by combining multiscale ancillary variables with passive microwave remote sensing data. Then, the GWATARK-estimated SSM and China Soil Moisture Dataset from Microwave Data Assimilation SSM data were combined to estimate fine-resolution data for cloudy days. The developed methodology was validated by application to the 25-km resolution daily AMSR-E SSM product to produce continuous SSM estimations at 1-km resolution over the Tibetan Plateau. In comparison with ground-based observations, the downscaled estimations showed correlation (R ≥ 0.7) for both ascending and descending overpasses. The analysis indicated the high potential of the proposed approach for producing a temporally continuous SSM product at fine spatial resolution.

  12. Spatial Analysis of Political Capital Citation Using Remote Sensing ...

    African Journals Online (AJOL)

    Spatial Analysis of Political Capital Citation Using Remote Sensing and GIS; A Case Study of Lokoja. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more information about how to print, save, ...

  13. Spatial Ensemble Postprocessing of Precipitation Forecasts Using High Resolution Analyses

    Science.gov (United States)

    Lang, Moritz N.; Schicker, Irene; Kann, Alexander; Wang, Yong

    2017-04-01

    Ensemble prediction systems are designed to account for errors or uncertainties in the initial and boundary conditions, imperfect parameterizations, etc. However, due to sampling errors and underestimation of the model errors, these ensemble forecasts tend to be underdispersive, and to lack both reliability and sharpness. To overcome such limitations, statistical postprocessing methods are commonly applied to these forecasts. In this study, a full-distributional spatial post-processing method is applied to short-range precipitation forecasts over Austria using Standardized Anomaly Model Output Statistics (SAMOS). Following Stauffer et al. (2016), observation and forecast fields are transformed into standardized anomalies by subtracting a site-specific climatological mean and dividing by the climatological standard deviation. Due to the need of fitting only a single regression model for the whole domain, the SAMOS framework provides a computationally inexpensive method to create operationally calibrated probabilistic forecasts for any arbitrary location or for all grid points in the domain simultaneously. Taking advantage of the INCA system (Integrated Nowcasting through Comprehensive Analysis), high resolution analyses are used for the computation of the observed climatology and for model training. The INCA system operationally combines station measurements and remote sensing data into real-time objective analysis fields at 1 km-horizontal resolution and 1 h-temporal resolution. The precipitation forecast used in this study is obtained from a limited area model ensemble prediction system also operated by ZAMG. The so called ALADIN-LAEF provides, by applying a multi-physics approach, a 17-member forecast at a horizontal resolution of 10.9 km and a temporal resolution of 1 hour. The performed SAMOS approach statistically combines the in-house developed high resolution analysis and ensemble prediction system. The station-based validation of 6 hour precipitation sums

  14. Beyond RGB: Very high resolution urban remote sensing with multimodal deep networks

    Science.gov (United States)

    Audebert, Nicolas; Le Saux, Bertrand; Lefèvre, Sébastien

    2018-06-01

    In this work, we investigate various methods to deal with semantic labeling of very high resolution multi-modal remote sensing data. Especially, we study how deep fully convolutional networks can be adapted to deal with multi-modal and multi-scale remote sensing data for semantic labeling. Our contributions are threefold: (a) we present an efficient multi-scale approach to leverage both a large spatial context and the high resolution data, (b) we investigate early and late fusion of Lidar and multispectral data, (c) we validate our methods on two public datasets with state-of-the-art results. Our results indicate that late fusion make it possible to recover errors steaming from ambiguous data, while early fusion allows for better joint-feature learning but at the cost of higher sensitivity to missing data.

  15. Pixel-Wise Classification Method for High Resolution Remote Sensing Imagery Using Deep Neural Networks

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2018-03-01

    Full Text Available Considering the classification of high spatial resolution remote sensing imagery, this paper presents a novel classification method for such imagery using deep neural networks. Deep learning methods, such as a fully convolutional network (FCN model, achieve state-of-the-art performance in natural image semantic segmentation when provided with large-scale datasets and respective labels. To use data efficiently in the training stage, we first pre-segment training images and their labels into small patches as supplements of training data using graph-based segmentation and the selective search method. Subsequently, FCN with atrous convolution is used to perform pixel-wise classification. In the testing stage, post-processing with fully connected conditional random fields (CRFs is used to refine results. Extensive experiments based on the Vaihingen dataset demonstrate that our method performs better than the reference state-of-the-art networks when applied to high-resolution remote sensing imagery classification.

  16. Challenges of Remote Sensing and Spatial Information Education and Technology Transfer in a Fast Developing Industry

    Science.gov (United States)

    Tsai, F.; Chen, L.-C.

    2014-04-01

    During the past decade, Taiwan has experienced an unusual and fast growing in the industry of mapping, remote sensing, spatial information and related markets. A successful space program and dozens of advanced airborne and ground-based remote sensing instruments as well as mobile mapping systems have been implemented and put into operation to support the vast demands of geospatial data acquisition. Moreover, in addition to the government agencies and research institutes, there are also tens of companies in the private sector providing geo-spatial data and services. However, the fast developing industry is also posing a great challenge to the education sector in Taiwan, especially the higher education for geo-spatial information. Facing this fast developing industry, the demands of skilled professionals and new technologies in order to address diversified needs are indubitably high. Consequently, while delighting in the expanding and prospering benefitted from the fast growing industry, how to fulfill these demands has become a challenge for the remote sensing and spatial information disciplines in the higher education institutes in Taiwan. This paper provides a brief insight into the status of the remote sensing and spatial information industry in Taiwan as well as the challenges of the education and technology transfer to support the increasing demands and to ensure the continuous development of the industry. In addition to the report of the current status of the remote sensing and spatial information related courses and programs in the colleges and universities, current and potential threatening issues and possible resolutions are also discussed in different points of view.

  17. Study of the spatial resolution for binary readout detectors

    Energy Technology Data Exchange (ETDEWEB)

    Yonamine, R., E-mail: ryo.yonamine@ulb.ac.be; Maerschalk, T.; Lentdecker, G. De

    2016-07-11

    Often the binary readout is proposed for high granularity detectors to reduce the generated data volume to be readout at the price of a somewhat reduced spatial resolution compared to an analogue readout. We have been studying single hit resolutions obtained with a binary readout using simulations as well as analytical approaches. In this note we show that the detector geometry could be optimized to offer an equivalent spatial resolution than with an analogue readout.

  18. The French proposal for a high spatial resolution Hyperspectral mission

    Science.gov (United States)

    Carrère, Véronique; Briottet, Xavier; Jacquemoud, Stéphane; Marion, Rodolphe; Bourguignon, Anne; Chami, Malik; Chanussot, Jocelyn; Chevrel, Stéphane; Deliot, Philippe; Dumont, Marie; Foucher, Pierre-Yves; Gomez, Cécile; Roman-Minghelli, Audrey; Sheeren, David; Weber, Christiane; Lefèvre, Marie-José; Mandea, Mioara

    2014-05-01

    More than 25 years of airborne imaging spectroscopy and spaceborne sensors such as Hyperion or HICO have clearly demonstrated the ability of such a remote sensing technique to produce value added information regarding surface composition and physical properties for a large variety of applications. Scheduled missions such as EnMAP and PRISMA prove the increased interest of the scientific community for such a type of remote sensing data. In France, a group of Science and Defence users of imaging spectrometry data (Groupe de Synthèse Hyperspectral, GSH) established an up-to-date review of possible applications, define instrument specifications required for accurate, quantitative retrieval of diagnostic parameters, and identify fields of application where imaging spectrometry is a major contribution. From these conclusions, CNES (French Space Agency) decided a phase 0 study for an hyperspectral mission concept, named at this time HYPXIM (HYPerspectral-X IMagery), the main fields of applications are vegetation biodiversity, coastal and inland waters, geosciences, urban environment, atmospheric sciences, cryosphere and Defence. Results pointed out applications where high spatial resolution was necessary and would not be covered by the other foreseen hyperspectral missions. The phase A started at the beginning of 2013 based on the following HYPXIM characteristics: a hyperspectral camera covering the [0.4 - 2.5 µm] spectral range with a 8 m ground sampling distance (GSD) and a PAN camera with a 1.85 m GSD, onboard a mini-satellite platform. This phase A is currently stopped due to budget constraints. Nevertheless, the Science team is currently focusing on the preparation for the next CNES prospective meeting (March, 2014), an important step for the future of the mission. This paper will provide an update of the status of this mission and of new results obtained by the Science team.

  19. Remote alignment of Low beta quadrupoles with micrometric resolution

    CERN Document Server

    Acar, M; Herty, A; Mainaud-Durand, H; Marin, A; Quesnel, J P

    2008-01-01

    Considering their location in a high radiation environment and the alignment tolerancesrequested, the low beta quadrupoles of LHC will be positioned remotely (controlling 5 degrees of freedom), with a displacement resolution of few microns in horizontal and vertical. Stepping motor gearbox assemblies are plugged into the jacks which support the cryomagnets in order to move them to the desired position regarding the quality of the beam collisions in the detectors. This displacement will be monitored in real time by the sensors located on the magnets. This paper describes the positioning strategy implemented as well as the software tools used to manage it.

  20. Scanning SQUID susceptometers with sub-micron spatial resolution

    International Nuclear Information System (INIS)

    Kirtley, John R.; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A.; Paulius, Lisa; Spanton, Eric M.; Schiessl, Daniel; Jermain, Colin L.; Gibbons, Jonathan; Fung, Y.-K.K.; Gibson, Gerald W.; Huber, Martin E.; Ralph, Daniel C.; Ketchen, Mark B.

    2016-01-01

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ_0/Hz"1"/"2. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  1. Scanning SQUID susceptometers with sub-micron spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kirtley, John R., E-mail: jkirtley@stanford.edu; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A. [Department of Applied Physics, Stanford University, Stanford, California 94305-4045 (United States); Paulius, Lisa [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States); Spanton, Eric M. [Department of Physics, Stanford University, Stanford, California 94305-4045 (United States); Schiessl, Daniel [Attocube Systems AG, Königinstraße 11A, 80539 Munich (Germany); Jermain, Colin L.; Gibbons, Jonathan [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Fung, Y.-K.K.; Gibson, Gerald W. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Huber, Martin E. [Department of Physics, University of Colorado Denver, Denver, Colorado 80217-3364 (United States); Ralph, Daniel C. [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Kavli Institute at Cornell, Ithaca, New York 14853 (United States); Ketchen, Mark B. [OcteVue, Hadley, Massachusetts 01035 (United States)

    2016-09-15

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ{sub 0}/Hz{sup 1/2}. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  2. Object-based vegetation classification with high resolution remote sensing imagery

    Science.gov (United States)

    Yu, Qian

    Vegetation species are valuable indicators to understand the earth system. Information from mapping of vegetation species and community distribution at large scales provides important insight for studying the phenological (growth) cycles of vegetation and plant physiology. Such information plays an important role in land process modeling including climate, ecosystem and hydrological models. The rapidly growing remote sensing technology has increased its potential in vegetation species mapping. However, extracting information at a species level is still a challenging research topic. I proposed an effective method for extracting vegetation species distribution from remotely sensed data and investigated some ways for accuracy improvement. The study consists of three phases. Firstly, a statistical analysis was conducted to explore the spatial variation and class separability of vegetation as a function of image scale. This analysis aimed to confirm that high resolution imagery contains the information on spatial vegetation variation and these species classes can be potentially separable. The second phase was a major effort in advancing classification by proposing a method for extracting vegetation species from high spatial resolution remote sensing data. The proposed classification employs an object-based approach that integrates GIS and remote sensing data and explores the usefulness of ancillary information. The whole process includes image segmentation, feature generation and selection, and nearest neighbor classification. The third phase introduces a spatial regression model for evaluating the mapping quality from the above vegetation classification results. The effects of six categories of sample characteristics on the classification uncertainty are examined: topography, sample membership, sample density, spatial composition characteristics, training reliability and sample object features. This evaluation analysis answered several interesting scientific questions

  3. The impact of spatial resolution on resolving spatial precipitation patterns in the Himalayas

    NARCIS (Netherlands)

    Bonekamp, P.N.J.; Collier, S.E.; Immerzeel, W.W.

    2017-01-01

    Frequently used gridded meteorological datasets poorly represent precipitation in the Himalaya due to their relatively low spatial resolution and the associated coarse representation of the complex topography. Dynamical downscaling using high-resolution atmospheric models may improve the accuracy

  4. High resolution color imagery for orthomaps and remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Fricker, Peter [Leica Geosystems GIS and Mapping, LLC (Switzerland); Gallo, M. Guillermo [Leica Geosystems GIS and Mapping, LLC (United States)

    2005-07-01

    The ADS40 Airborne Digital Pushbroom Sensor is currently the only commercial sensor capable of acquiring color and false color strip images in the low decimeter range at the same high resolution as the black and white stereo images. This high resolution of 12,000 pixels across the entire swath and 100% forward overlap in the image strips result in high quality DSM's, True Ortho's and at the same time allow unbiased remote sensing applications due to color strip images unchanged by pan-sharpening. The paper gives details on how the pushbroom sensor achieves these seemingly difficult technical challenges. It describes how a variety of mapping applications benefit from this sensor, a sensor which acts as a satellite pushbroom sensor within the airborne environment. (author)

  5. The fusion of satellite and UAV data: simulation of high spatial resolution band

    Science.gov (United States)

    Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata

    2017-10-01

    Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.

  6. A study of spatial resolution in pollution exposure modelling

    Directory of Open Access Journals (Sweden)

    Gustafsson Susanna

    2007-06-01

    Full Text Available Abstract Background This study is part of several ongoing projects concerning epidemiological research into the effects on health of exposure to air pollutants in the region of Scania, southern Sweden. The aim is to investigate the optimal spatial resolution, with respect to temporal resolution, for a pollutant database of NOx-values which will be used mainly for epidemiological studies with durations of days, weeks or longer periods. The fact that a pollutant database has a fixed spatial resolution makes the choice critical for the future use of the database. Results The results from the study showed that the accuracy between the modelled concentrations of the reference grid with high spatial resolution (100 m, denoted the fine grid, and the coarser grids (200, 400, 800 and 1600 meters improved with increasing spatial resolution. When the pollutant values were aggregated in time (from hours to days and weeks the disagreement between the fine grid and the coarser grids were significantly reduced. The results also illustrate a considerable difference in optimal spatial resolution depending on the characteristic of the study area (rural or urban areas. To estimate the accuracy of the modelled values comparison were made with measured NOx values. The mean difference between the modelled and the measured value were 0.6 μg/m3 and the standard deviation 5.9 μg/m3 for the daily difference. Conclusion The choice of spatial resolution should not considerably deteriorate the accuracy of the modelled NOx values. Considering the comparison between modelled and measured values we estimate that an error due to coarse resolution greater than 1 μg/m3 is inadvisable if a time resolution of one day is used. Based on the study of different spatial resolutions we conclude that for urban areas a spatial resolution of 200–400 m is suitable; and for rural areas the spatial resolution could be coarser (about 1600 m. This implies that we should develop a pollutant

  7. New device based on the super spatial resolution (SSR) method

    International Nuclear Information System (INIS)

    Soluri, A.; Atzeni, G.; Ucci, A.; Bellone, T.; Cusanno, F.; Rodilossi, G.; Massari, R.

    2013-01-01

    Recently it have been described that innovative methods, namely Super Spatial Resolution (SSR), can be used to improve the scintigraphic imaging. The aim of SSR techniques is the enhancement of the resolution of an imaging system, using information from several images. In this paper we describe a new experimental apparatus that could be used for molecular imaging and small animal imaging. In fact we present a new device, completely automated, that uses the SSR method and provides images with better spatial resolution in comparison to the original resolution. Preliminary small animal imaging studies confirm the feasibility of a very high resolution system in scintigraphic imaging and the possibility to have gamma cameras using the SSR method, to perform the applications on functional imaging. -- Highlights: • Super spatial resolution brings a high resolution image from scintigraphic images. • Resolution improvement depends on the signal to noise ratio of the original images. • The SSR shows significant improvement on spatial resolution in scintigraphic images. • The SSR method is potentially utilizable for all scintigraphic devices

  8. A temperature-compensated high spatial resolution distributed strain sensor

    International Nuclear Information System (INIS)

    Belal, Mohammad; Cho, Yuh Tat; Ibsen, Morten; Newson, Trevor P

    2010-01-01

    We propose and demonstrate a scheme which utilizes the temperature dependence of spontaneous Raman scattering to provide temperature compensation for a high spatial resolution Brillouin frequency-based strain sensor

  9. Scene Classification Using High Spatial Resolution Multispectral Data

    National Research Council Canada - National Science Library

    Garner, Jamada

    2002-01-01

    ...), High-spatial resolution (8-meter), 4-color MSI data from IKONOS provide a new tool for scene classification, The utility of these data are studied for the purpose of classifying the Elkhorn Slough and surrounding wetlands in central...

  10. Identifying Spatial Units of Human Occupation in the Brazilian Amazon Using Landsat and CBERS Multi-Resolution Imagery

    OpenAIRE

    Dal’Asta, Ana Paula; Brigatti, Newton; Amaral, Silvana; Escada, Maria Isabel Sobral; Monteiro, Antonio Miguel Vieira

    2012-01-01

    Every spatial unit of human occupation is part of a network structuring an extensive process of urbanization in the Amazon territory. Multi-resolution remote sensing data were used to identify and map human presence and activities in the Sustainable Forest District of Cuiabá-Santarém highway (BR-163), west of Pará, Brazil. The limits of spatial units of human occupation were mapped based on digital classification of Landsat-TM5 (Thematic Mapper 5) image (30m spatial resolution). High-spatial-...

  11. Selecting Appropriate Spatial Scale for Mapping Plastic-Mulched Farmland with Satellite Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Hasituya

    2017-03-01

    Full Text Available In recent years, the area of plastic-mulched farmland (PMF has undergone rapid growth and raised remarkable environmental problems. Therefore, mapping the PMF plays a crucial role in agricultural production, environmental protection and resource management. However, appropriate data selection criteria are currently lacking. Thus, this study was carried out in two main plastic-mulching practice regions, Jizhou and Guyuan, to look for an appropriate spatial scale for mapping PMF with remote sensing. The average local variance (ALV function was used to obtain the appropriate spatial scale for mapping PMF based on the GaoFen-1 (GF-1 satellite imagery. Afterwards, in order to validate the effectiveness of the selected method and to interpret the relationship between the appropriate spatial scale derived from the ALV and the spatial scale with the highest classification accuracy, we classified the imagery with varying spatial resolution by the Support Vector Machine (SVM algorithm using the spectral features, textural features and the combined spectral and textural features respectively. The results indicated that the appropriate spatial scales from the ALV lie between 8 m and 20 m for mapping the PMF both in Jizhou and Guyuan. However, there is a proportional relation: the spatial scale with the highest classification accuracy is at the 1/2 location of the appropriate spatial scale generated from the ALV in Jizhou and at the 2/3 location of the appropriate spatial scale generated from the ALV in Guyuan. Therefore, the ALV method for quantitatively selecting the appropriate spatial scale for mapping PMF with remote sensing imagery has theoretical and practical significance.

  12. Remote Raman microimaging using an AOTF and a spatially coherent microfiber optical probe

    International Nuclear Information System (INIS)

    Trey Skinner, H.; Cooney, T.F.; Sharma, S.K.; Angel, S.M.

    1996-01-01

    A fiber-optic Raman microimaging probe is described that is suitable for acquiring high-spatial-resolution Raman images in sampling situations with no clear line of sight. A high-power near-infrared diode laser combined with an acousto-optic tunable filter and a spatially coherent optical fiber bundle allow fluorescence-free Raman images of remotely located samples to be acquired at distances up to several meters. The feasibility of this technique is demonstrated with Raman images of (1) a pellet containing a mixture of a highly scattering sample, bis-methylstyrylbenzene (BMSB), KCl, and graphite, and (2) a partially graphitized diamond. These images clearly show phase boundaries over an area of approximately 0.1 mm 2 with ∼4-μm resolution. copyright 1996 Society for Applied Spectroscopy

  13. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites.

    Science.gov (United States)

    Maynard, Jonathan J; Karl, Jason W

    2017-01-01

    Ecological site classification has emerged as a highly effective land management framework, but its utility at a regional scale has been limited due to the spatial ambiguity of ecological site locations in the U.S. or the absence of ecological site maps in other regions of the world. In response to these shortcomings, this study evaluated the use of hyper-temporal remote sensing (i.e., hundreds of images) for high spatial resolution mapping of ecological sites. We posit that hyper-temporal remote sensing can provide novel insights into the spatial variability of ecological sites by quantifying the temporal response of land surface spectral properties. This temporal response provides a spectral 'fingerprint' of the soil-vegetation-climate relationship which is central to the concept of ecological sites. Consequently, the main objective of this study was to predict the spatial distribution of ecological sites in a semi-arid rangeland using a 28-year time series of normalized difference vegetation index from Landsat TM 5 data and modeled using support vector machine classification. Results from this study show that support vector machine classification using hyper-temporal remote sensing imagery was effective in modeling ecological site classes, with a 62% correct classification. These results were compared to Gridded Soil Survey Geographic database and expert delineated maps of ecological sites which had a 51 and 89% correct classification, respectively. An analysis of the effects of ecological state on ecological site misclassifications revealed that sites in degraded states (e.g., shrub-dominated/shrubland and bare/annuals) had a higher rate of misclassification due to their close spectral similarity with other ecological sites. This study identified three important factors that need to be addressed to improve future model predictions: 1) sampling designs need to fully represent the range of both within class (i.e., states) and between class (i.e., ecological sites

  14. Spatial scales of pollution from variable resolution satellite imaging

    International Nuclear Information System (INIS)

    Chudnovsky, Alexandra A.; Kostinski, Alex; Lyapustin, Alexei; Koutrakis, Petros

    2013-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not adequate for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM 2.5 as measured by the EPA ground monitoring stations was investigated at varying spatial scales. Our analysis suggested that the correlation between PM 2.5 and AOD decreased significantly as AOD resolution was degraded. This is so despite the intrinsic mismatch between PM 2.5 ground level measurements and AOD vertically integrated measurements. Furthermore, the fine resolution results indicated spatial variability in particle concentration at a sub-10 km scale. Finally, this spatial variability of AOD within the urban domain was shown to depend on PM 2.5 levels and wind speed. - Highlights: ► The correlation between PM 2.5 and AOD decreases as AOD resolution is degraded. ► High resolution MAIAC AOD 1 km retrieval can be used to investigate within-city PM 2.5 variability. ► Low pollution days exhibit higher spatial variability of AOD and PM 2.5 then moderate pollution days. ► AOD spatial variability within urban area is higher during the lower wind speed conditions. - The correlation between PM 2.5 and AOD decreases as AOD resolution is degraded. The new high-resolution MAIAC AOD retrieval has the potential to capture PM 2.5 variability at the intra-urban scale.

  15. The impact of spatial resolution on resolving spatial precipitation patterns in the Himalayas

    OpenAIRE

    Bonekamp, P.N.J.; Collier, S.E.; Immerzeel, W.W.

    2017-01-01

    Frequently used gridded meteorological datasets poorly represent precipitation in the Himalaya due to their relatively low spatial resolution and the associated coarse representation of the complex topography. Dynamical downscaling using high-resolution atmospheric models may improve the accuracy and quality of the precipitation fields, as simulations at higher spatial resolution are more capable of resolving the interaction between the topography and the atmosphere. However, most physics par...

  16. Remote spatial memory in aging: all is not lost

    Directory of Open Access Journals (Sweden)

    R Shayna eRosenbaum

    2012-09-01

    Full Text Available The ability to acquire and retain spatial memories in order to navigate in new environments is known to decline with age, but little is known about the effect of aging on representations of environments learned long ago, in the remote past. To investigate the status of remote spatial memory in old age, we tested healthy young and older adults on a variety of mental navigation tests based on a large-scale city environment that was very familiar to participants but rarely visited by the older adults in recent years. We show that whereas performance on a route learning test of new spatial learning was significantly worse in older than younger adults, performance was comparable or better in the older adults on mental navigation tests based on a well-known environment learned long ago. An exception was in the older adults’ ability to vividly re-experience the well-known environment, and recognize and represent the visual details contained within it. The results are seen as analogous to the pattern of better semantic than episodic memory that has been found to accompany healthy aging.

  17. Prevalence of Pure Versus Mixed Snow Cover Pixels across Spatial Resolutions in Alpine Environments

    Directory of Open Access Journals (Sweden)

    David J. Selkowitz

    2014-12-01

    Full Text Available Remote sensing of snow-covered area (SCA can be binary (indicating the presence/absence of snow cover at each pixel or fractional (indicating the fraction of each pixel covered by snow. Fractional SCA mapping provides more information than binary SCA, but is more difficult to implement and may not be feasible with all types of remote sensing data. The utility of fractional SCA mapping relative to binary SCA mapping varies with the intended application as well as by spatial resolution, temporal resolution and period of interest, and climate. We quantified the frequency of occurrence of partially snow-covered (mixed pixels at spatial resolutions between 1 m and 500 m over five dates at two study areas in the western U.S., using 0.5 m binary SCA maps derived from high spatial resolution imagery aggregated to fractional SCA at coarser spatial resolutions. In addition, we used in situ monitoring to estimate the frequency of partially snow-covered conditions for the period September 2013–August 2014 at 10 60-m grid cell footprints at two study areas with continental snow climates. Results from the image analysis indicate that at 40 m, slightly above the nominal spatial resolution of Landsat, mixed pixels accounted for 25%–93% of total pixels, while at 500 m, the nominal spatial resolution of MODIS bands used for snow cover mapping, mixed pixels accounted for 67%–100% of total pixels. Mixed pixels occurred more commonly at the continental snow climate site than at the maritime snow climate site. The in situ data indicate that some snow cover was present between 186 and 303 days, and partial snow cover conditions occurred on 10%–98% of days with snow cover. Four sites remained partially snow-free throughout most of the winter and spring, while six sites were entirely snow covered throughout most or all of the winter and spring. Within 60 m grid cells, the late spring/summer transition from snow-covered to snow-free conditions lasted 17–56 days

  18. Low-Cost Ultra-High Spatial and Temporal Resolution Mapping of Intertidal Rock Platforms

    Science.gov (United States)

    Bryson, M.; Johnson-Roberson, M.; Murphy, R.

    2012-07-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time which could compliment field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at relatively course, sub-meter resolutions or with limited temporal resolutions and relatively high costs for small-scale environmental science and ecology studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric pipeline that was developed for constructing highresolution, 3D, photo-realistic terrain models of intertidal rocky shores. The processing pipeline uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine colour and topographic information at sub-centimeter resolutions over an area of approximately 100m, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rock platform at Cape Banks, Sydney, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.

  19. A Very High Spatial Resolution Detector for Small Animal PET

    International Nuclear Information System (INIS)

    Kanai Shah, M.S.

    2007-01-01

    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated

  20. High Resolution Satellite Remote Sensing of the 2013-2014 Eruption of Sinabung Volcano, Sumatra, Indonesia

    Science.gov (United States)

    Wessels, R. L.; Griswold, J. P.

    2014-12-01

    Satellite remote sensing provided timely observations of the volcanic unrest and several months-long eruption at Sinabung Volcano, Indonesia. Visible to thermal optical and synthetic aperture radar (SAR) systems provided frequent observations of Sinabung. High resolution image data with spatial resolutions from 0.5 to 1.5m offered detailed measurements of early summit deformation and subsequent lava dome and lava flow extrusion. The high resolution data were captured by commercial satellites such as WorldView-1 and -2 visible to near-infrared (VNIR) sensors and by CosmoSkyMed, Radarsat-2, and TerraSar-X SAR systems. Less frequent 90 to 100m spatial resolution night time thermal infrared (TIR) observations were provided by ASTER and Landsat-8. The combination of data from multiple sensors allowed us to construct a more complete timeline of volcanic activity than was available via only ground-based observations. This satellite observation timeline documents estimates of lava volume and effusion rates and major explosive and lava collapse events. Frequent, repeat volume estimates suggest at least three high effusion rate pulses of up to 20 m3/s occurred during the first three months of lava effusion with an average effusion rate of 6m3/s from January 2014 to August 2014. Many of these rates and events show some correlation to variations in the Real-time Seismic-Amplitude Measurement (RSAM) documented by the Indonesian Center for Volcanology and Geologic Hazard Mitigation (CVGHM).

  1. GIS and remote sensing components of a spatial decision system in support of sustainable forest management

    Energy Technology Data Exchange (ETDEWEB)

    St-Onge, B.A.; Waaub, J.P.; Alleaume, S.; Couture, M. [Quebec Univ., Dept. of Geography, Montreal, PQ (Canada)

    1999-05-01

    The development of a tool used in decision making processes in forest management was discussed with special focus on two critical aspects of the decision aid system which pertain to spatial information. These are: (1) the use of up-to-date precise information, and (2) the accessibility of this information. This paper focuses on two approaches designed to provide accessible high quality information to the users of the decision aid system: i.e. the development of high resolution remote sensing methods, and a GIS data warehouse accessible over the Internet. 4 refs., 2 figs.

  2. Impaired temporal, not just spatial, resolution in amblyopia.

    Science.gov (United States)

    Spang, Karoline; Fahle, Manfred

    2009-11-01

    In amblyopia, neuronal deficits deteriorate spatial vision including visual acuity, possibly because of a lack of use-dependent fine-tuning of afferents to the visual cortex during infancy; but temporal processing may deteriorate as well. Temporal, rather than spatial, resolution was investigated in patients with amblyopia by means of a task based on time-defined figure-ground segregation. Patients had to indicate the quadrant of the visual field where a purely time-defined square appeared. The results showed a clear decrease in temporal resolution of patients' amblyopic eyes compared with the dominant eyes in this task. The extent of this decrease in figure-ground segregation based on time of motion onset only loosely correlated with the decrease in spatial resolution and spanned a smaller range than did the spatial loss. Control experiments with artificially induced blur in normal observers confirmed that the decrease in temporal resolution was not simply due to the acuity loss. Amblyopia not only decreases spatial resolution, but also temporal factors such as time-based figure-ground segregation, even at high stimulus contrasts. This finding suggests that the realm of neuronal processes that may be disturbed in amblyopia is larger than originally thought.

  3. High resolution remote sensing of densely urbanised regions: a case study of Hong Kong.

    Science.gov (United States)

    Nichol, Janet E; Wong, Man Sing

    2009-01-01

    Data on the urban environment such as climate or air quality is usually collected at a few point monitoring stations distributed over a city. However, the synoptic viewpoint of satellites where a whole city is visible on a single image permits the collection of spatially comprehensive data at city-wide scale. In spite of rapid developments in remote sensing systems, deficiencies in image resolution and algorithm development still exist for applications such as air quality monitoring and urban heat island analysis. This paper describes state-of-the-art techniques for enhancing and maximising the spatial detail available from satellite images, and demonstrates their applications to the densely urbanised environment of Hong Kong. An Emissivity Modulation technique for spatial enhancement of thermal satellite images permits modelling of urban microclimate in combination with other urban structural parameters at local scale. For air quality monitoring, a Minimum Reflectance Technique (MRT) has been developed for MODIS 500 m images. The techniques described can promote the routine utilization of remotely sensed images for environmental monitoring in cities of the 21(st) century.

  4. Remote distractor effects and saccadic inhibition: spatial and temporal modulation.

    Science.gov (United States)

    Walker, Robin; Benson, Valerie

    2013-09-12

    The onset of a visual distractor remote from a saccade target is known to increase saccade latency (the remote distractor effect [RDE]). In addition, distractors may also selectively inhibit saccades that would be initiated about 90 ms after distractor onset (termed saccadic inhibition [SI]). Recently, it has been proposed that the transitory inhibition of saccades (SI) may underlie the increase in mean latency (RDE). In a first experiment, the distractor eccentricity was manipulated, and a robust RDE that was strongly modulated by distractor eccentricity was observed. However, the underlying latency distributions did not reveal clear evidence of SI. A second experiment manipulated distractor spatial location and the timing of the distractor onset in relation to the target. An RDE was again observed with remote distractors away from the target axis and under conditions with early-onset distractors that would be unlikely to produce SI, whereas later distractor onsets produced an RDE along with some evidence of an SI effect. A third experiment using a mixed block of target-distractor stimulus-onset asynchronies (SOAs) revealed an RDE that varied with both distractor eccentricity and SOA and changes to latency distributions consistent with the timing of SI. We argue that the notion that SI underpins the RDE is similar to the earlier argument that express saccades underlie the fixation offset (gap) effect and that changes in mean latency and to the shape of the underlying latency distributions following a visual onset may involve more than one inhibitory process.

  5. Classification of Volcanic Eruptions on Io and Earth Using Low-Resolution Remote Sensing Data

    Science.gov (United States)

    Davies, A. G.; Keszthelyi, L. P.

    2005-01-01

    Two bodies in the Solar System exhibit high-temperature active volcanism: Earth and Io. While there are important differences in the eruptions on Earth and Io, in low-spatial-resolution data (corresponding to the bulk of available and foreseeable data of Io), similar styles of effusive and explosive volcanism yield similar thermal flux densities. For example, a square metre of an active pahoehoe flow on Io looks very similar to a square metre of an active pahoehoe flow on Earth. If, from observed thermal emission as a function of wavelength and change in thermal emission with time, the eruption style of an ionian volcano can be constrained, estimates of volumetric fluxes can be made and compared with terrestrial volcanoes using techniques derived for analysing terrestrial remotely-sensed data. In this way we find that ionian volcanoes fundamentally differ from their terrestrial counterparts only in areal extent, with Io volcanoes covering larger areas, with higher volumetric flux. Io outbursts eruptions have enormous implied volumetric fluxes, and may scale with terrestrial flood basalt eruptions. Even with the low-spatial resolution data available it is possible to sometimes constrain and classify eruption style both on Io and Earth from the integrated thermal emission spectrum. Plotting 2 and 5 m fluxes reveals the evolution of individual eruptions of different styles, as well as the relative intensity of eruptions, allowing comparison to be made from individual eruptions on both planets. Analyses like this can be used for interpretation of low-resolution data until the next mission to the jovian system. For a number of Io volcanoes (including Pele, Prometheus, Amirani, Zamama, Culann, Tohil and Tvashtar) we do have high/moderate resolution imagery to aid determination of eruption mode from analyses based only on low spatial-resolution data.

  6. Urban Spatial Ecological Performance Based on the Data of Remote Sensing of Guyuan

    Science.gov (United States)

    Ren, X.-J.; Chen, X.-J.; Ma, Q.

    2018-04-01

    The evolution analysis of urban landuse and spatial ecological performance are necessary and useful to recognizing the stage of urban development and revealing the regularity and connotation of urban spatial expansion. Moreover, it lies in the core that should be exmined in the urban sustainable development. In this paper, detailed information has been acquired from the high-resolution satellite imageries of Guyuan, China case study. With the support of GIS, the land-use mapping information and the land cover changes are analyzed, and the process of urban spatial ecological performance evolution by the hierarchical methodology is explored. Results demonstrate that in the past 11 years, the urban spatial ecological performance show an improved process with the dramatic landcover change in Guyuan. Firstly, the landuse structure of Guyuan changes significantly and shows an obvious stage characteristic. Secondly, the urban ecological performance of Guyuan continues to be optimized over the 11 years. Thirdly, the findings suggest that a dynamic monitoring mechanism of urban land use based on high-resolution remote sensing data should be established in urban development, and the rational development of urban land use should be guided by the spatial ecological performance as the basic value orientation.

  7. Monitoring crop leaf area index time variation from higher resolution remotely sensed data

    International Nuclear Information System (INIS)

    Jiao, Sihong

    2014-01-01

    The leaf area index (LAI) is significant for research on global climate change and ecological environment. China HJ-1 satellite has a revisit cycle of four days, providing CCD data (HJ-1 CCD) with a resolution of 30 m. However, the HJ-1 CCD is incapable of obtaining observations at multiple angles. This is problematic because single angle observations provide insufficient data for determining the LAI. This article proposes a new method for determining LAI using HJ-1 CCD data. The proposed method uses background knowledge of dynamic land surface processes that are extracted from MODerate resolution Imaging Spectroradiometer (MODIS) LAI 1-km resolution data. To process the uncertainties that arise from using two data sources with different spatial resolutions, the proposed method is implemented in a dynamitic Bayesian network scheme by integrating a LAI dynamic process model and a canopy reflectance model with remotely sensed data. Validation results showed that the determination coefficient between estimated and measured LAI was 0.791, and the RMSE was 0.61. This method can enhance the accuracy of the retrieval results while retaining the time series variation characteristics of the vegetation LAI. The results suggest that this algorithm can be widely applied to determining high-resolution leaf area indices using data from China HJ-1 satellite even if information from single angle observations are insufficient for quantitative application

  8. Lenses and effective spatial resolution in macroscopic optical mapping

    International Nuclear Information System (INIS)

    Bien, Harold; Parikh, Puja; Entcheva, Emilia

    2007-01-01

    Optical mapping of excitation dynamically tracks electrical waves travelling through cardiac or brain tissue by the use of fluorescent dyes. There are several characteristics that set optical mapping apart from other imaging modalities: dynamically changing signals requiring short exposure times, dim fluorescence demanding sensitive sensors and wide fields of view (low magnification) resulting in poor optical performance. These conditions necessitate the use of optics with good light gathering ability, i.e. lenses having high numerical aperture. Previous optical mapping studies often used sensor resolution to estimate the minimum spatial feature resolvable, assuming perfect optics and infinite contrast. We examine here the influence of finite contrast and real optics on the effective spatial resolution in optical mapping under broad-field illumination for both lateral (in-plane) resolution and axial (depth) resolution of collected fluorescence signals

  9. Remotely Sensed Data for High Resolution Agro-Environmental Policy Analysis

    Science.gov (United States)

    Welle, Paul

    Policy analyses of agricultural and environmental systems are often limited due to data constraints. Measurement campaigns can be costly, especially when the area of interest includes oceans, forests, agricultural regions or other dispersed spatial domains. Satellite based remote sensing offers a way to increase the spatial and temporal resolution of policy analysis concerning these systems. However, there are key limitations to the implementation of satellite data. Uncertainty in data derived from remote-sensing can be significant, and traditional methods of policy analysis for managing uncertainty on large datasets can be computationally expensive. Moreover, while satellite data can increasingly offer estimates of some parameters such as weather or crop use, other information regarding demographic or economic data is unlikely to be estimated using these techniques. Managing these challenges in practical policy analysis remains a challenge. In this dissertation, I conduct five case studies which rely heavily on data sourced from orbital sensors. First, I assess the magnitude of climate and anthropogenic stress on coral reef ecosystems. Second, I conduct an impact assessment of soil salinity on California agriculture. Third, I measure the propensity of growers to adapt their cropping practices to soil salinization in agriculture. Fourth, I analyze whether small-scale desalination units could be applied on farms in California in order mitigate the effects of drought and salinization as well as prevent agricultural drainage from entering vulnerable ecosystems. And fifth, I assess the feasibility of satellite-based remote sensing for salinity measurement at global scale. Through these case studies, I confront both the challenges and benefits associated with implementing satellite based-remote sensing for improved policy analysis.

  10. High resolution or optimum resolution? Spatial analysis of the Federmesser site at Andernach, Germany

    NARCIS (Netherlands)

    Stapert, D; Street, M

    1997-01-01

    This paper discusses spatial analysis at site level. It is suggested that spatial analysis has to proceed in several levels, from global to more detailed questions, and that optimum resolution should be established when applying any quantitative methods in this field. As an example, the ring and

  11. Interactions of collimation, sampling and filtering on spect spatial resolution

    International Nuclear Information System (INIS)

    Tsui, B.M.W.; Jaszczak, R.J.

    1984-01-01

    The major factors which affect the spatial resolution of single-photon emission computer tomography (SPECT) include collimation, sampling and filtering. A theoretical formulation is presented to describe the relationship between these factors and their effects on the projection data. Numerical calculations were made using commercially available SPECT systems and imaging parameters. The results provide an important guide for proper selection of the collimator-detector design, the imaging and the reconstruction parameters to avoid unnecessary spatial resolution degradation and aliasing artifacts in the reconstructed image. In addition, the understanding will help in the fair evaluation of different SPECT systems under specific imaging conditions

  12. Spatial Resolution of the ECE for JET Typical Parameters

    International Nuclear Information System (INIS)

    Tribaldos, V.

    2000-01-01

    The purpose of this report is to obtain estimations of the spatial resolution of the electron cyclotron emission (ECE) phenomena for the typical plasmas found in JET tokamak. The analysis of the spatial resolution of the ECE is based on the underlying physical process of emission and a working definition is presented and discussed. In making these estimations a typical JET pulse is being analysed taking into account the magnetic configuration, the density and temperature profiles, obtained with the EFIT code and from the LIDAR diagnostic. Ray tracing simulations are performed for a Maxwellian plasma taking into account the antenna pattern. (Author) 5 refs

  13. Reconstructed Image Spatial Resolution of Multiple Coincidences Compton Imager

    Science.gov (United States)

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2010-02-01

    We study the multiple coincidences Compton imager (MCCI) which is based on a simultaneous acquisition of several photons emitted in cascade from a single nuclear decay. Theoretically, this technique should provide a major improvement in localization of a single radioactive source as compared to a standard Compton camera. In this work, we investigated the performance and limitations of MCCI using Monte Carlo computer simulations. Spatial resolutions of the reconstructed point source have been studied as a function of the MCCI parameters, including geometrical dimensions and detector characteristics such as materials, energy and spatial resolutions.

  14. High spatial resolution CT image reconstruction using parallel computing

    International Nuclear Information System (INIS)

    Yin Yin; Liu Li; Sun Gongxing

    2003-01-01

    Using the PC cluster system with 16 dual CPU nodes, we accelerate the FBP and OR-OSEM reconstruction of high spatial resolution image (2048 x 2048). Based on the number of projections, we rewrite the reconstruction algorithms into parallel format and dispatch the tasks to each CPU. By parallel computing, the speedup factor is roughly equal to the number of CPUs, which can be up to about 25 times when 25 CPUs used. This technique is very suitable for real-time high spatial resolution CT image reconstruction. (authors)

  15. Spatial scales of pollution from variable resolution satellite imaging.

    Science.gov (United States)

    Chudnovsky, Alexandra A; Kostinski, Alex; Lyapustin, Alexei; Koutrakis, Petros

    2013-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global coverage, but the 10 km resolution of its aerosol optical depth (AOD) product is not adequate for studying spatial variability of aerosols in urban areas. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS which provides AOD at 1 km resolution. Using MAIAC data, the relationship between MAIAC AOD and PM(2.5) as measured by the EPA ground monitoring stations was investigated at varying spatial scales. Our analysis suggested that the correlation between PM(2.5) and AOD decreased significantly as AOD resolution was degraded. This is so despite the intrinsic mismatch between PM(2.5) ground level measurements and AOD vertically integrated measurements. Furthermore, the fine resolution results indicated spatial variability in particle concentration at a sub-10 km scale. Finally, this spatial variability of AOD within the urban domain was shown to depend on PM(2.5) levels and wind speed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Gamma-Ray Imager With High Spatial And Spectral Resolution

    Science.gov (United States)

    Callas, John L.; Varnell, Larry S.; Wheaton, William A.; Mahoney, William A.

    1996-01-01

    Gamma-ray instrument developed to enable both two-dimensional imaging at relatively high spatial resolution and spectroscopy at fractional-photon-energy resolution of about 10 to the negative 3rd power in photon-energy range from 10 keV to greater than 10 MeV. In its spectroscopic aspect, instrument enables identification of both narrow and weak gamma-ray spectral peaks.

  17. Effective spatial database support for acquiring spatial information from remote sensing images

    Science.gov (United States)

    Jin, Peiquan; Wan, Shouhong; Yue, Lihua

    2009-12-01

    In this paper, a new approach to maintain spatial information acquiring from remote-sensing images is presented, which is based on Object-Relational DBMS. According to this approach, the detected and recognized results of targets are stored and able to be further accessed in an ORDBMS-based spatial database system, and users can access the spatial information using the standard SQL interface. This approach is different from the traditional ArcSDE-based method, because the spatial information management module is totally integrated into the DBMS and becomes one of the core modules in the DBMS. We focus on three issues, namely the general framework for the ORDBMS-based spatial database system, the definitions of the add-in spatial data types and operators, and the process to develop a spatial Datablade on Informix. The results show that the ORDBMS-based spatial database support for image-based target detecting and recognition is easy and practical to be implemented.

  18. A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification

    Science.gov (United States)

    Zhang, Ce; Pan, Xin; Li, Huapeng; Gardiner, Andy; Sargent, Isabel; Hare, Jonathon; Atkinson, Peter M.

    2018-06-01

    The contextual-based convolutional neural network (CNN) with deep architecture and pixel-based multilayer perceptron (MLP) with shallow structure are well-recognized neural network algorithms, representing the state-of-the-art deep learning method and the classical non-parametric machine learning approach, respectively. The two algorithms, which have very different behaviours, were integrated in a concise and effective way using a rule-based decision fusion approach for the classification of very fine spatial resolution (VFSR) remotely sensed imagery. The decision fusion rules, designed primarily based on the classification confidence of the CNN, reflect the generally complementary patterns of the individual classifiers. In consequence, the proposed ensemble classifier MLP-CNN harvests the complementary results acquired from the CNN based on deep spatial feature representation and from the MLP based on spectral discrimination. Meanwhile, limitations of the CNN due to the adoption of convolutional filters such as the uncertainty in object boundary partition and loss of useful fine spatial resolution detail were compensated. The effectiveness of the ensemble MLP-CNN classifier was tested in both urban and rural areas using aerial photography together with an additional satellite sensor dataset. The MLP-CNN classifier achieved promising performance, consistently outperforming the pixel-based MLP, spectral and textural-based MLP, and the contextual-based CNN in terms of classification accuracy. This research paves the way to effectively address the complicated problem of VFSR image classification.

  19. Spatial resolution influence on the identification of land cover classes in the Amazon environment

    Directory of Open Access Journals (Sweden)

    PONZONI FLÁVIO J.

    2002-01-01

    Full Text Available To evaluate the role played by the spatial resolution in distinguishing land cover classes in the Amazon region, different levels of spatial resolution (60, 100, 120, 200 and 250 meters were simulated from a Landsat_5 Thematic Mapper (TM image. Thematic maps were produced by visual interpretation from the original (30 x 30 meters and simulated set of images. The map legend included primary forest, old and young woody secondary succession, and non-forest. The results indicated that for the discrimination between primary forest and non-forest, spatial resolution did not have great influence for pixel size equal or lower than 200 meters. The contrary was verified for the identification of old and young woody secondary vegetation due to their occurrence in small polygons. To avoid significant changes in the calculated area of these land cover types, a spatial resolution better than 100 meters is required. This result is an indication that the use of the future Brazilian remote sensing satellite (SSR-1 for secondary succession identification may be unreliable, especially for latitudes between S10degrees and S15degrees where critical areas of deforestation are located and pixel size is expected to vary within the same scene from 100 meters (S10degrees to 200 meters (S15degrees.

  20. Resolution enhancement of tri-stereo remote sensing images by super resolution methods

    Science.gov (United States)

    Tuna, Caglayan; Akoguz, Alper; Unal, Gozde; Sertel, Elif

    2016-10-01

    Super resolution (SR) refers to generation of a High Resolution (HR) image from a decimated, blurred, low-resolution (LR) image set, which can be either a single frame or multi-frame that contains a collection of several images acquired from slightly different views of the same observation area. In this study, we propose a novel application of tri-stereo Remote Sensing (RS) satellite images to the super resolution problem. Since the tri-stereo RS images of the same observation area are acquired from three different viewing angles along the flight path of the satellite, these RS images are properly suited to a SR application. We first estimate registration between the chosen reference LR image and other LR images to calculate the sub pixel shifts among the LR images. Then, the warping, blurring and down sampling matrix operators are created as sparse matrices to avoid high memory and computational requirements, which would otherwise make the RS-SR solution impractical. Finally, the overall system matrix, which is constructed based on the obtained operator matrices is used to obtain the estimate HR image in one step in each iteration of the SR algorithm. Both the Laplacian and total variation regularizers are incorporated separately into our algorithm and the results are presented to demonstrate an improved quantitative performance against the standard interpolation method as well as improved qualitative results due expert evaluations.

  1. Using Remote Sensing to Determine the Spatial Scales of Estuaries

    Science.gov (United States)

    Davis, C. O.; Tufillaro, N.; Nahorniak, J.

    2016-02-01

    One challenge facing Earth system science is to understand and quantify the complexity of rivers, estuaries, and coastal zone regions. Earlier studies using data from airborne hyperspectral imagers (Bissett et al., 2004, Davis et al., 2007) demonstrated from a very limited data set that the spatial scales of the coastal ocean could be resolved with spatial sampling of 100 m Ground Sample Distance (GSD) or better. To develop a much larger data set (Aurin et al., 2013) used MODIS 250 m data for a wide range of coastal regions. Their conclusion was that farther offshore 500 m GSD was adequate to resolve large river plume features while nearshore regions (a few kilometers from the coast) needed higher spatial resolution data not available from MODIS. Building on our airborne experience, the Hyperspectral Imager for the Coastal Ocean (HICO, Lucke et al., 2011) was designed to provide hyperspectral data for the coastal ocean at 100 m GSD. HICO operated on the International Space Station for 5 years and collected over 10,000 scenes of the coastal ocean and other regions around the world. Here we analyze HICO data from an example set of major river delta regions to assess the spatial scales of variability in those systems. In one system, the San Francisco Bay and Delta, we also analyze Landsat 8 OLI data at 30 m and 15 m to validate the 100 m GSD sampling scale for the Bay and assess spatial sampling needed as you move up river.

  2. Modeling Surface Energy Fluxes over a Dehesa (Oak Savanna Ecosystem Using a Thermal Based Two Source Energy Balance Model (TSEB II—Integration of Remote Sensing Medium and Low Spatial Resolution Satellite Images

    Directory of Open Access Journals (Sweden)

    Ana Andreu

    2018-04-01

    Full Text Available Dehesas are highly valuable agro-forestry ecosystems, widely distributed over Mediterranean-type climate areas, which play a key role in rural development, basing their productivity on a sustainable use of multiple resources (crops, livestock, wildlife, etc.. The information derived from remote sensing based models addressing ecosystem water consumption, at different scales, can be used by institutions and private landowners to support management decisions. In this study, the Two-Source Energy Balance (TSEB model is analyzed over two Spanish dehesa areas integrating multiple satellites (MODIS and Landsat for estimating water use (ET, vegetation ground cover, leaf area and phenology. Instantaneous latent heat (LE values are derived on a regional scale and compared with eddy covariance tower (ECT measurements, yielding accurate results (RMSDMODIS Las Majadas 44 Wm−2, Santa Clotilde RMSDMODIS 47 Wm−2 and RMSDLandsat 64 Wm−2. Daily ET(mm is estimated using daily return interval of MODIS for both study sites and compared with the flux measurements of the ECTs, with RMSD of 1 mm day−1 over Las Majadas and 0.99 mm day−1 over Santa Clotilde. Distributed ET over Andalusian dehesa (15% of the region is successfully mapped using MODIS images, as an approach to monitor the ecosystem status and the vegetation water stress on a regular basis.

  3. An Object-Based Image Analysis Approach for Detecting Penguin Guano in very High Spatial Resolution Satellite Images

    OpenAIRE

    Chandi Witharana; Heather J. Lynch

    2016-01-01

    The logistical challenges of Antarctic field work and the increasing availability of very high resolution commercial imagery have driven an interest in more efficient search and classification of remotely sensed imagery. This exploratory study employed geographic object-based analysis (GEOBIA) methods to classify guano stains, indicative of chinstrap and Adélie penguin breeding areas, from very high spatial resolution (VHSR) satellite imagery and closely examined the transferability of knowle...

  4. Evaluation of the Chinese Fine Spatial Resolution Hyperspectral Satellite TianGong-1 in Urban Land-Cover Classification

    OpenAIRE

    Xueke Li; Taixia Wu; Kai Liu; Yao Li; Lifu Zhang

    2016-01-01

    The successful launch of the Chinese high spatial resolution hyperspectral satellite TianGong-1 (TG-1) opens up new possibilities for applications of remotely-sensed satellite imagery. One of the main goals of the TG-1 mission is to provide observations of surface attributes at local and landscape spatial scales to map urban land cover accurately using the hyperspectral technique. This study attempted to evaluate the TG-1 datasets for urban feature analysis, using existing data over Beijing, ...

  5. Global spectroscopic survey of cloud thermodynamic phase at high spatial resolution, 2005-2015

    Science.gov (United States)

    Thompson, David R.; Kahn, Brian H.; Green, Robert O.; Chien, Steve A.; Middleton, Elizabeth M.; Tran, Daniel Q.

    2018-02-01

    The distribution of ice, liquid, and mixed phase clouds is important for Earth's planetary radiation budget, impacting cloud optical properties, evolution, and solar reflectivity. Most remote orbital thermodynamic phase measurements observe kilometer scales and are insensitive to mixed phases. This under-constrains important processes with outsize radiative forcing impact, such as spatial partitioning in mixed phase clouds. To date, the fine spatial structure of cloud phase has not been measured at global scales. Imaging spectroscopy of reflected solar energy from 1.4 to 1.8 µm can address this gap: it directly measures ice and water absorption, a robust indicator of cloud top thermodynamic phase, with spatial resolution of tens to hundreds of meters. We report the first such global high spatial resolution survey based on data from 2005 to 2015 acquired by the Hyperion imaging spectrometer onboard NASA's Earth Observer 1 (EO-1) spacecraft. Seasonal and latitudinal distributions corroborate observations by the Atmospheric Infrared Sounder (AIRS). For extratropical cloud systems, just 25 % of variance observed at GCM grid scales of 100 km was related to irreducible measurement error, while 75 % was explained by spatial correlations possible at finer resolutions.

  6. The cognitive neuroscience of remote episodic, semantic and spatial memory.

    Science.gov (United States)

    Moscovitch, Morris; Nadel, Lynn; Winocur, Gordon; Gilboa, Asaf; Rosenbaum, R Shayna

    2006-04-01

    The processes and mechanisms implicated in retention and retrieval of memories as they age is an enduring problem in cognitive neuroscience. Research from lesion and functional neuroimaging studies on remote episodic, semantic and spatial memory in humans is crucial for evaluating three theories of hippocampal and/or medial temporal lobe-neocortical interaction in memory retention and retrieval: cognitive map theory, standard consolidation theory and multiple trace theory. Each theory makes different predictions regarding first, the severity and extent of retrograde amnesia following lesions to some or all of the structures mentioned; second, the extent of activation of these structures to retrieval of memory across time; and third, the type of memory being retrieved. Each of these theories has strengths and weaknesses, and there are various unresolved issues. We propose a unified account based on multiple trace theory. This theory states that the hippocampus is needed for re-experiencing detailed episodic and spatial memories no matter how old they are, and that it contributes to the formation and assimilation of semantic memories and schematic spatial maps.

  7. Accessing High Spatial Resolution in Astronomy Using Interference Methods

    Science.gov (United States)

    Carbonel, Cyril; Grasset, Sébastien; Maysonnave, Jean

    2018-01-01

    In astronomy, methods such as direct imaging or interferometry-based techniques (Michelson stellar interferometry for example) are used for observations. A particular advantage of interferometry is that it permits greater spatial resolution compared to direct imaging with a single telescope, which is limited by diffraction owing to the aperture of…

  8. Spatial Resolution of a Wedge Shaped MSGC Module

    CERN Document Server

    Bachmann, Sebastian

    1997-01-01

    A banana shaped closed design MSGC detector module was tested together with silicon detectors and other MSGCs in a 100 GeV muon beam. Despite of an undesirable geometry of the test setup, a spatial resolution below 40 micron m was reached. The efficiency of the module, defined by track reconstruction, shows to be 95,6 percent

  9. Study of spatial resolution in three-dimensional rotational angiography

    International Nuclear Information System (INIS)

    Enoki, Takuya; Nasada, Toshiya; Matsumoto, Kazuma; Umehara, Takayoshi

    2006-01-01

    In interventional radiology (IVR) of cerebral aneurysms, it is important to understand the form and physical relationships between the cerebral aneurysm and the surrounding vessels. However, because the vessels in the head area are highly complex, it can be difficult to comprehend the structure using conventional angiography. Therefore, three-dimensional rotational angiography (3D-RA) has been used in recent years. This article discusses studies of the spatial resolution of 3D-RA. We reconstructed 3D-RA of an acrylic slit phantom (slit widths: 0.5, 0.75, 1.0, 1.5 mm) and examined spatial resolution by visual evaluation and profile curves. When the slit phantom was arranged to avoid the effect of beam hardening, the spatial resolution of 3D-RA was found to be as high as 0.75 mm. When the slit phantom was placed orthogonal to the rotational axis of the C-arm, the spatial resolution of 3D-RA was decreased because of the cone angle effect of X-rays. However, it was considered within the allowable range for clinical study. Consequently, 3D-RA is valuable in IVR. (author)

  10. Linear and nonlinear optical spectroscopy: Spectral, temporal and spatial resolution

    DEFF Research Database (Denmark)

    Hvam, Jørn Marcher

    1997-01-01

    Selected linear and nonlinear optical spectroscopies are being described with special emphasis on the possibility of obtaining simultaneous spectral, temporal and spatial resolution. The potential of various experimental techniques is being demonstrated by specific examples mostly taken from inve...... investigations of the electronic, and opto-electronic, properties of semiconductor nanostructures....

  11. A research of road centerline extraction algorithm from high resolution remote sensing images

    Science.gov (United States)

    Zhang, Yushan; Xu, Tingfa

    2017-09-01

    Satellite remote sensing technology has become one of the most effective methods for land surface monitoring in recent years, due to its advantages such as short period, large scale and rich information. Meanwhile, road extraction is an important field in the applications of high resolution remote sensing images. An intelligent and automatic road extraction algorithm with high precision has great significance for transportation, road network updating and urban planning. The fuzzy c-means (FCM) clustering segmentation algorithms have been used in road extraction, but the traditional algorithms did not consider spatial information. An improved fuzzy C-means clustering algorithm combined with spatial information (SFCM) is proposed in this paper, which is proved to be effective for noisy image segmentation. Firstly, the image is segmented using the SFCM. Secondly, the segmentation result is processed by mathematical morphology to remover the joint region. Thirdly, the road centerlines are extracted by morphology thinning and burr trimming. The average integrity of the centerline extraction algorithm is 97.98%, the average accuracy is 95.36% and the average quality is 93.59%. Experimental results show that the proposed method in this paper is effective for road centerline extraction.

  12. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions.

    Directory of Open Access Journals (Sweden)

    Adam M Wilson

    2016-03-01

    Full Text Available Cloud cover can influence numerous important ecological processes, including reproduction, growth, survival, and behavior, yet our assessment of its importance at the appropriate spatial scales has remained remarkably limited. If captured over a large extent yet at sufficiently fine spatial grain, cloud cover dynamics may provide key information for delineating a variety of habitat types and predicting species distributions. Here, we develop new near-global, fine-grain (≈1 km monthly cloud frequencies from 15 y of twice-daily Moderate Resolution Imaging Spectroradiometer (MODIS satellite images that expose spatiotemporal cloud cover dynamics of previously undocumented global complexity. We demonstrate that cloud cover varies strongly in its geographic heterogeneity and that the direct, observation-based nature of cloud-derived metrics can improve predictions of habitats, ecosystem, and species distributions with reduced spatial autocorrelation compared to commonly used interpolated climate data. These findings support the fundamental role of remote sensing as an effective lens through which to understand and globally monitor the fine-grain spatial variability of key biodiversity and ecosystem properties.

  13. Spatial-Spectral Approaches to Edge Detection in Hyperspectral Remote Sensing

    Science.gov (United States)

    Cox, Cary M.

    This dissertation advances geoinformation science at the intersection of hyperspectral remote sensing and edge detection methods. A relatively new phenomenology among its remote sensing peers, hyperspectral imagery (HSI) comprises only about 7% of all remote sensing research - there are five times as many radar-focused peer reviewed journal articles than hyperspectral-focused peer reviewed journal articles. Similarly, edge detection studies comprise only about 8% of image processing research, most of which is dedicated to image processing techniques most closely associated with end results, such as image classification and feature extraction. Given the centrality of edge detection to mapping, that most important of geographic functions, improving the collective understanding of hyperspectral imagery edge detection methods constitutes a research objective aligned to the heart of geoinformation sciences. Consequently, this dissertation endeavors to narrow the HSI edge detection research gap by advancing three HSI edge detection methods designed to leverage HSI's unique chemical identification capabilities in pursuit of generating accurate, high-quality edge planes. The Di Zenzo-based gradient edge detection algorithm, an innovative version of the Resmini HySPADE edge detection algorithm and a level set-based edge detection algorithm are tested against 15 traditional and non-traditional HSI datasets spanning a range of HSI data configurations, spectral resolutions, spatial resolutions, bandpasses and applications. This study empirically measures algorithm performance against Dr. John Canny's six criteria for a good edge operator: false positives, false negatives, localization, single-point response, robustness to noise and unbroken edges. The end state is a suite of spatial-spectral edge detection algorithms that produce satisfactory edge results against a range of hyperspectral data types applicable to a diverse set of earth remote sensing applications. This work

  14. Analysis of smear in high-resolution remote sensing satellites

    Science.gov (United States)

    Wahballah, Walid A.; Bazan, Taher M.; El-Tohamy, Fawzy; Fathy, Mahmoud

    2016-10-01

    High-resolution remote sensing satellites (HRRSS) that use time delay and integration (TDI) CCDs have the potential to introduce large amounts of image smear. Clocking and velocity mismatch smear are two of the key factors in inducing image smear. Clocking smear is caused by the discrete manner in which the charge is clocked in the TDI-CCDs. The relative motion between the HRRSS and the observed object obliges that the image motion velocity must be strictly synchronized with the velocity of the charge packet transfer (line rate) throughout the integration time. During imaging an object off-nadir, the image motion velocity changes resulting in asynchronization between the image velocity and the CCD's line rate. A Model for estimating the image motion velocity in HRRSS is derived. The influence of this velocity mismatch combined with clocking smear on the modulation transfer function (MTF) is investigated by using Matlab simulation. The analysis is performed for cross-track and along-track imaging with different satellite attitude angles and TDI steps. The results reveal that the velocity mismatch ratio and the number of TDI steps have a serious impact on the smear MTF; a velocity mismatch ratio of 2% degrades the MTFsmear by 32% at Nyquist frequency when the TDI steps change from 32 to 96. In addition, the results show that to achieve the requirement of MTFsmear >= 0.95 , for TDI steps of 16 and 64, the allowable roll angles are 13.7° and 6.85° and the permissible pitch angles are no more than 9.6° and 4.8°, respectively.

  15. SPMK AND GRABCUT BASED TARGET EXTRACTION FROM HIGH RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    W. Cui

    2016-06-01

    Full Text Available Target detection and extraction from high resolution remote sensing images is a basic and wide needed application. In this paper, to improve the efficiency of image interpretation, we propose a detection and segmentation combined method to realize semi-automatic target extraction. We introduce the dense transform color scale invariant feature transform (TC-SIFT descriptor and the histogram of oriented gradients (HOG & HSV descriptor to characterize the spatial structure and color information of the targets. With the k-means cluster method, we get the bag of visual words, and then, we adopt three levels’ spatial pyramid (SP to represent the target patch. After gathering lots of different kinds of target image patches from many high resolution UAV images, and using the TC-SIFT-SP and the multi-scale HOG & HSV feature, we constructed the SVM classifier to detect the target. In this paper, we take buildings as the targets. Experiment results show that the target detection accuracy of buildings can reach to above 90%. Based on the detection results which are a series of rectangle regions of the targets. We select the rectangle regions as candidates for foreground and adopt the GrabCut based and boundary regularized semi-auto interactive segmentation algorithm to get the accurate boundary of the target. Experiment results show its accuracy and efficiency. It can be an effective way for some special targets extraction.

  16. Spmk and Grabcut Based Target Extraction from High Resolution Remote Sensing Images

    Science.gov (United States)

    Cui, Weihong; Wang, Guofeng; Feng, Chenyi; Zheng, Yiwei; Li, Jonathan; Zhang, Yi

    2016-06-01

    Target detection and extraction from high resolution remote sensing images is a basic and wide needed application. In this paper, to improve the efficiency of image interpretation, we propose a detection and segmentation combined method to realize semi-automatic target extraction. We introduce the dense transform color scale invariant feature transform (TC-SIFT) descriptor and the histogram of oriented gradients (HOG) & HSV descriptor to characterize the spatial structure and color information of the targets. With the k-means cluster method, we get the bag of visual words, and then, we adopt three levels' spatial pyramid (SP) to represent the target patch. After gathering lots of different kinds of target image patches from many high resolution UAV images, and using the TC-SIFT-SP and the multi-scale HOG & HSV feature, we constructed the SVM classifier to detect the target. In this paper, we take buildings as the targets. Experiment results show that the target detection accuracy of buildings can reach to above 90%. Based on the detection results which are a series of rectangle regions of the targets. We select the rectangle regions as candidates for foreground and adopt the GrabCut based and boundary regularized semi-auto interactive segmentation algorithm to get the accurate boundary of the target. Experiment results show its accuracy and efficiency. It can be an effective way for some special targets extraction.

  17. Application of High Resolution Air-Borne Remote Sensing Observations for Monitoring NOx Emissions

    Science.gov (United States)

    Souri, A.; Choi, Y.; Pan, S.; Curci, G.; Janz, S. J.; Kowalewski, M. G.; Liu, J.; Herman, J. R.; Weinheimer, A. J.

    2017-12-01

    Nitrogen oxides (NOx=NO+NO2) are one of the air pollutants, responsible for the formation of tropospheric ozone, acid rain and particulate nitrate. The anthropogenic NOx emissions are commonly estimated based on bottom-up inventories which are complicated by many potential sources of error. One way to improve the emission inventories is to use relevant observations to constrain them. Fortunately, Nitrogen dioxide (NO2) is one of the most successful detected species from remote sensing. Although many studies have shown the capability of using space-borne remote sensing observations for monitoring emissions, the insufficient sample number and footprint of current measurements have introduced a burden to constrain emissions at fine scales. Promisingly, there are several air-borne sensors collected for NASA's campaigns providing high spatial resolution of NO2 columns. Here, we use the well-characterized NO2 columns from the Airborne Compact Atmospheric Mapper (ACAM) onboard NASA's B200 aircraft into a 1×1 km regional model to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. Firstly, in order to incorporate the data, we convert the NO2 slant column densities to vertical ones using a joint of a radiative transfer model and the 1x1 km regional model constrained by P3-B aircraft measurements. After conducting an inverse modeling method using the Kalman filter, we find the ACAM observations are resourceful at mitigating the overprediction of model in reproducing NO2 on regular days. Moreover, the ACAM provides a unique opportunity to detect an anomaly in emissions leading to strong air quality degradation that is lacking in previous works. Our study provides convincing evidence that future geostationary satellites with high spatial and temporal resolutions will give us insights into uncertainties associated with the emissions at regional scales.

  18. Remote sensing, geographical information systems, and spatial modeling for analyzing public transit services

    Science.gov (United States)

    Wu, Changshan

    Public transit service is a promising transportation mode because of its potential to address urban sustainability. Current ridership of public transit, however, is very low in most urban regions, particularly those in the United States. This woeful transit ridership can be attributed to many factors, among which poor service quality is key. Given this, there is a need for transit planning and analysis to improve service quality. Traditionally, spatially aggregate data are utilized in transit analysis and planning. Examples include data associated with the census, zip codes, states, etc. Few studies, however, address the influences of spatially aggregate data on transit planning results. In this research, previous studies in transit planning that use spatially aggregate data are reviewed. Next, problems associated with the utilization of aggregate data, the so-called modifiable areal unit problem (MAUP), are detailed and the need for fine resolution data to support public transit planning is argued. Fine resolution data is generated using intelligent interpolation techniques with the help of remote sensing imagery. In particular, impervious surface fraction, an important socio-economic indicator, is estimated through a fully constrained linear spectral mixture model using Landsat Enhanced Thematic Mapper Plus (ETM+) data within the metropolitan area of Columbus, Ohio in the United States. Four endmembers, low albedo, high albedo, vegetation, and soil are selected to model heterogeneous urban land cover. Impervious surface fraction is estimated by analyzing low and high albedo endmembers. With the derived impervious surface fraction, three spatial interpolation methods, spatial regression, dasymetric mapping, and cokriging, are developed to interpolate detailed population density. Results suggest that cokriging applied to impervious surface is a better alternative for estimating fine resolution population density. With the derived fine resolution data, a multiple

  19. Improving PET spatial resolution and detectability for prostate cancer imaging

    International Nuclear Information System (INIS)

    Bal, H; Guerin, L; Casey, M E; Conti, M; Eriksson, L; Michel, C; Fanti, S; Pettinato, C; Adler, S; Choyke, P

    2014-01-01

    Prostate cancer, one of the most common forms of cancer among men, can benefit from recent improvements in positron emission tomography (PET) technology. In particular, better spatial resolution, lower noise and higher detectability of small lesions could be greatly beneficial for early diagnosis and could provide a strong support for guiding biopsy and surgery. In this article, the impact of improved PET instrumentation with superior spatial resolution and high sensitivity are discussed, together with the latest development in PET technology: resolution recovery and time-of-flight reconstruction. Using simulated cancer lesions, inserted in clinical PET images obtained with conventional protocols, we show that visual identification of the lesions and detectability via numerical observers can already be improved using state of the art PET reconstruction methods. This was achieved using both resolution recovery and time-of-flight reconstruction, and a high resolution image with 2 mm pixel size. Channelized Hotelling numerical observers showed an increase in the area under the LROC curve from 0.52 to 0.58. In addition, a relationship between the simulated input activity and the area under the LROC curve showed that the minimum detectable activity was reduced by more than 23%. (paper)

  20. Quantification of upland thermokarst features with high resolution remote sensing

    International Nuclear Information System (INIS)

    Belshe, E F; Schuur, E A G; Grosse, G

    2013-01-01

    Climate-induced changes to permafrost are altering high latitude landscapes in ways that could increase the vulnerability of the vast soil carbon pools of the region. Permafrost thaw is temporally dynamic and spatially heterogeneous because, in addition to the thickening of the active layer, localized thermokarst features form when ice-rich permafrost thaws and the ground subsides. Thermokarst produces a diversity of landforms and alters the physical environment in dynamic ways. To estimate potential changes to the carbon cycle it is imperative to quantify the size and distribution of thermokarst landforms. By performing a supervised classification on a high resolution IKONOS image, we detected and mapped small, irregular thermokarst features occurring within an upland watershed in discontinuous permafrost of Interior Alaska. We found that 12% of the Eight Mile Lake (EML) watershed has undergone thermokarst, predominantly in valleys where tussock tundra resides. About 35% of the 3.7 km 2 tussock tundra class has likely transitioned to thermokarst. These landscape level changes created by permafrost thaw at EML have important implications for ecosystem carbon cycling because thermokarst features are forming in carbon-rich areas and are altering the hydrology in ways that increase seasonal thawing of the soil. (letter)

  1. Fusion of shallow and deep features for classification of high-resolution remote sensing images

    Science.gov (United States)

    Gao, Lang; Tian, Tian; Sun, Xiao; Li, Hang

    2018-02-01

    Effective spectral and spatial pixel description plays a significant role for the classification of high resolution remote sensing images. Current approaches of pixel-based feature extraction are of two main kinds: one includes the widelyused principal component analysis (PCA) and gray level co-occurrence matrix (GLCM) as the representative of the shallow spectral and shape features, and the other refers to the deep learning-based methods which employ deep neural networks and have made great promotion on classification accuracy. However, the former traditional features are insufficient to depict complex distribution of high resolution images, while the deep features demand plenty of samples to train the network otherwise over fitting easily occurs if only limited samples are involved in the training. In view of the above, we propose a GLCM-based convolution neural network (CNN) approach to extract features and implement classification for high resolution remote sensing images. The employment of GLCM is able to represent the original images and eliminate redundant information and undesired noises. Meanwhile, taking shallow features as the input of deep network will contribute to a better guidance and interpretability. In consideration of the amount of samples, some strategies such as L2 regularization and dropout methods are used to prevent over-fitting. The fine-tuning strategy is also used in our study to reduce training time and further enhance the generalization performance of the network. Experiments with popular data sets such as PaviaU data validate that our proposed method leads to a performance improvement compared to individual involved approaches.

  2. Mapping Entomological Dengue Risk Levels in Martinique Using High-Resolution Remote-Sensing Environmental Data

    Directory of Open Access Journals (Sweden)

    Vanessa Machault

    2014-12-01

    Full Text Available Controlling dengue virus transmission mainly involves integrated vector management. Risk maps at appropriate scales can provide valuable information for assessing entomological risk levels. Here, results from a spatio-temporal model of dwellings potentially harboring Aedes aegypti larvae from 2009 to 2011 in Tartane (Martinique, French Antilles using high spatial resolution remote-sensing environmental data and field entomological and meteorological information are presented. This tele-epidemiology methodology allows monitoring the dynamics of diseases closely related to weather/climate and environment variability. A Geoeye-1 image was processed to extract landscape elements that could surrogate societal or biological information related to the life cycle of Aedes vectors. These elements were subsequently included into statistical models with random effect. Various environmental and meteorological conditions have indeed been identified as risk/protective factors for the presence of Aedes aegypti immature stages in dwellings at a given date. These conditions were used to produce dynamic high spatio-temporal resolution maps from the presence of most containers harboring larvae. The produced risk maps are examples of modeled entomological maps at the housing level with daily temporal resolution. This finding is an important contribution to the development of targeted operational control systems for dengue and other vector-borne diseases, such as chikungunya, which is also present in Martinique.

  3. HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, David H.; Ugarte-Urra, Ignacio [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States)

    2013-08-01

    Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

  4. High spatial resolution Kelvin probe force microscopy with coaxial probes

    International Nuclear Information System (INIS)

    Brown, Keith A; Westervelt, Robert M; Satzinger, Kevin J

    2012-01-01

    Kelvin probe force microscopy (KPFM) is a widely used technique to measure the local contact potential difference (CPD) between an AFM probe and the sample surface via the electrostatic force. The spatial resolution of KPFM is intrinsically limited by the long range of the electrostatic interaction, which includes contributions from the macroscopic cantilever and the conical tip. Here, we present coaxial AFM probes in which the cantilever and cone are shielded by a conducting shell, confining the tip–sample electrostatic interaction to a small region near the end of the tip. We have developed a technique to measure the true CPD despite the presence of the shell electrode. We find that the behavior of these probes agrees with an electrostatic model of the force, and we observe a factor of five improvement in spatial resolution relative to unshielded probes. Our discussion centers on KPFM, but the field confinement offered by these probes may improve any variant of electrostatic force microscopy. (paper)

  5. Incoherent improvement of the spatial resolution in digital holography

    International Nuclear Information System (INIS)

    Garcia-Sucerquia, J.; Herrera-Ramirez, J.; Castaneda, R.

    2005-10-01

    We report on a technique for increasing the spatial resolution of digitally recorded and reconstructed holograms of macroscopic objects, via the reduction of the contrast of the speckle noise present in the coherent imaging techniques. The contrast of the speckle noise is reduced through the superposition on an intensity basis of digitally reconstructed holograms of the same static scene. The reconstruction of a very poor contrasted object illustrates the performance of the technique. (author)

  6. Spatial resolution of wedge shaped silicon microstrip detectors

    International Nuclear Information System (INIS)

    Anticic, T.; Barnett, B.; Blumenfeld, B.; Chien, C.Y.; Fisher, P.; Gougas, A.; Krizmanic, J.; Madansky, L.; Newman, D.; Orndorff, J.; Pevsner, A.; Spangler, J.

    1995-01-01

    Several wedge-shaped silicon microstrip detectors with pitches from 30 to 100 μm have been designed by our group and beam tested at the CERN SPS. We find the spatial resolution σ becomes larger at the rate of 0.21 μm per 1 μm increase in pitch, but the number of strips per cluster remains about the same as the pitch varies from 30 to 100 μm. (orig.)

  7. Benefits of GMR sensors for high spatial resolution NDT applications

    Science.gov (United States)

    Pelkner, M.; Stegemann, R.; Sonntag, N.; Pohl, R.; Kreutzbruck, M.

    2018-04-01

    Magneto resistance sensors like GMR (giant magneto resistance) or TMR (tunnel magneto resistance) are widely used in industrial applications; examples are position measurement and read heads of hard disk drives. However, in case of non-destructive testing (NDT) applications these sensors, although their properties are outstanding like high spatial resolution, high field sensitivity, low cost and low energy consumption, never reached a technical transfer to an application beyond scientific scope. This paper deals with benefits of GMR/TMR sensors in terms of high spatial resolution testing for different NDT applications. The first example demonstrates the preeminent advantages of MR-elements compared with conventional coils used in eddy current testing (ET). The probe comprises one-wire excitation with an array of MR elements. This led to a better spatial resolution in terms of neighboring defects. The second section concentrates on MFL-testing (magnetic flux leakage) with active field excitation during and before testing. The latter illustrated the capability of highly resolved crack detection of a crossed notch. This example is best suited to show the ability of tiny magnetic field sensors for magnetic material characterization of a sample surface. Another example is based on characterization of samples after tensile test. Here, no external field is applied. The magnetization is only changed due to external load and magnetostriction leading to a field signature which GMR sensors can resolve. This gives access to internal changes of the magnetization state of the sample under test.

  8. Remote sensing and modeling. A tool to provide the spatial information for biomass production potential

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, K.P.; Wisskirchen, K.; Schroedter-Homscheidt, M. [DLR, Wessling (Germany). German Remote Sensing Data Center; Borg, E.; Fichtelmann, B. [DLR, Neustrelitz (Germany). German Remote Sensing Data Center

    2006-07-01

    Earth observation from space has been successfully demonstrated over a wide range of monitoring activities, mostly with the aim of measuring the spatial and temporal distribution of biophysical and geophysical parameters as e.g. the Normalized Difference Vegetation Index (NDVI), the land surface temperature (LST) or the land use classification (LCC). With the growing need for more reliable information of global biomass activity in the frame of climate change, the identification and quantification of carbon sinks and sources got of importance. The goal of our activities is to use time series of remote sensing data and carbon modeling to assess the biomass of large regions. Future activities will be discussed as reprocessing of archived time series (e.g. 30 years) of remote sensing data, which will be used as input to biomass modeling, improving the spatial resolution of local, historic land use maps by processing archived Landsat data (30m), using an innovative classification processor for deriving actual multi-temporal land use maps based MERIS data (300m) and delivering a biomass equivalent indicator as productivity indicator. (orig.)

  9. Post-Processing Approach for Refining Raw Land Cover Change Detection of Very High-Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Zhiyong Lv

    2018-03-01

    Full Text Available In recent decades, land cover change detection (LCCD using very high-spatial resolution (VHR remote sensing images has been a major research topic. However, VHR remote sensing images usually lead to a large amount of noises in spectra, thereby reducing the reliability of the detected results. To solve this problem, this study proposes an object-based expectation maximization (OBEM post-processing approach for enhancing raw LCCD results. OBEM defines a refinement of the labeling in a detected map to enhance its raw detection accuracies. Current mainstream change detection (preprocessing techniques concentrate on proposing a change magnitude measurement or considering image spatial features to obtain a change detection map. The proposed OBEM approach is a new solution to enhance change detection accuracy by refining the raw result. Post-processing approaches can achieve competitive accuracies to the preprocessing methods, but in a direct and succinct manner. The proposed OBEM post-processing method synthetically considers multi-scale segmentation and expectation maximum algorithms to refine the raw change detection result. Then, the influence of the scale of segmentation on the LCCD accuracy of the proposed OBEM is investigated. Four pairs of remote sensing images, one of two pairs (aerial image with 0.5 m/pixel resolution which depict two landslide sites on Landtau Island, Hong Kong, China, are used in the experiments to evaluate the effectiveness of the proposed approach. In addition, the proposed approach is applied, and validated by two case studies, LCCD in Tianjin City China (SPOT-5 satellite image with 2.5 m/pixel resolution and Mexico forest fire case (Landsat TM images with 30 m/pixel resolution, respectively. Quantitative evaluations show that the proposed OBEM post-processing approach can achieve better performance and higher accuracies than several commonly used preprocessing methods. To the best of the authors’ knowledge, this type

  10. Science with High Spatial Resolution Far-Infrared Data

    Science.gov (United States)

    Terebey, Susan (Editor); Mazzarella, Joseph M. (Editor)

    1994-01-01

    The goal of this workshop was to discuss new science and techniques relevant to high spatial resolution processing of far-infrared data, with particular focus on high resolution processing of IRAS data. Users of the maximum correlation method, maximum entropy, and other resolution enhancement algorithms applicable to far-infrared data gathered at the Infrared Processing and Analysis Center (IPAC) for two days in June 1993 to compare techniques and discuss new results. During a special session on the third day, interested astronomers were introduced to IRAS HIRES processing, which is IPAC's implementation of the maximum correlation method to the IRAS data. Topics discussed during the workshop included: (1) image reconstruction; (2) random noise; (3) imagery; (4) interacting galaxies; (5) spiral galaxies; (6) galactic dust and elliptical galaxies; (7) star formation in Seyfert galaxies; (8) wavelet analysis; and (9) supernova remnants.

  11. EBSD spatial resolution for detecting sigma phase in steels

    Energy Technology Data Exchange (ETDEWEB)

    Bordín, S. Fernandez; Limandri, S. [Instituto de Física Enrique Gaviola, CONICET. M. Allende s/n, Ciudad Universitaria, 5000 Córdoba (Argentina); Ranalli, J.M. [Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, San Martín, 1650 Buenos Aires (Argentina); Castellano, G. [Instituto de Física Enrique Gaviola, CONICET. M. Allende s/n, Ciudad Universitaria, 5000 Córdoba (Argentina)

    2016-12-15

    The spatial resolution of the electron backscatter diffraction signal is explored by Monte Carlo simulation for the sigma phase in steel at a typical instrumental set-up. In order to estimate the active volume corresponding to the diffracted electrons, the fraction of the backscattered electrons contributing to the diffraction signal was inferred by extrapolating the Kikuchi pattern contrast measured by other authors, as a function of the diffracted electron energy. In the resulting estimation, the contribution of the intrinsic incident beam size and the software capability to deconvolve patterns were included. A strong influence of the beam size on the lateral resolution was observed, resulting in 20 nm for the aperture considered. For longitudinal and depth directions the resolutions obtained were 75 nm and 16 nm, respectively. The reliability of this last result is discussed in terms of the survey of the last large-angle deflection undergone by the backscattered electrons involved in the diffraction process. Bearing in mind the mean transversal resolution found, it was possible to detect small area grains of sigma phase by EBSD measurements, for a stabilized austenitic AISI 347 stainless steel under heat treatments, simulating post welding (40 h at 600 °C) and aging (284 h at 484 °C) effects—as usually occurring in nuclear reactor pressure vessels. - Highlights: • EBSD spatial resolution is studied by Monte Carlo simulation for σ-phase in steel. • The contribution of the intrinsic incident beam size was included. • A stabilized austenitic stainless steel under heat treatments was measured by EBSD. • With the transversal resolution found, small area σ-phase grains could be identified.

  12. Single Photon Counting Large Format Imaging Sensors with High Spatial and Temporal Resolution

    Science.gov (United States)

    Siegmund, O. H. W.; Ertley, C.; Vallerga, J. V.; Cremer, T.; Craven, C. A.; Lyashenko, A.; Minot, M. J.

    High time resolution astronomical and remote sensing applications have been addressed with microchannel plate based imaging, photon time tagging detector sealed tube schemes. These are being realized with the advent of cross strip readout techniques with high performance encoding electronics and atomic layer deposited (ALD) microchannel plate technologies. Sealed tube devices up to 20 cm square have now been successfully implemented with sub nanosecond timing and imaging. The objective is to provide sensors with large areas (25 cm2 to 400 cm2) with spatial resolutions of 5 MHz and event timing accuracy of 100 ps. High-performance ASIC versions of these electronics are in development with better event rate, power and mass suitable for spaceflight instruments.

  13. Remote Sensing of Spatial Distributions of Greenhouse Gases in the Los Angeles Basin

    Science.gov (United States)

    Fu, Dejian; Sander, Stanley P.; Pongetti, Thomas J.; Cheung, Ross; Stutz, Jochen

    2010-01-01

    The Los Angeles air basin is a significant anthropogenic source of greenhouse gasses and pollutants including CO2, CH4, N2O, and CO, contributing significantly to regional and global climate change. Recent legislation in California, the California Global Warning Solutions Act (AB32), established a statewide cap for greenhouse gas emissions for 2020 based on 1990 emissions. Verifying the effectiveness of regional greenhouse gas emissions controls requires high-precision, regional-scale measurement methods combined with models that capture the principal anthropogenic and biogenic sources and sinks. We present a novel approach for monitoring the spatial distribution of greenhouse gases in the Los Angeles basin using high resolution remote sensing spectroscopy. We participated in the CalNex 2010 campaign to provide greenhouse gas distributions for comparison between top-down and bottom-up emission estimates.

  14. An Updating System for the Gridded Population Database of China Based on Remote Sensing, GIS and Spatial Database Technologies

    Science.gov (United States)

    Yang, Xiaohuan; Huang, Yaohuan; Dong, Pinliang; Jiang, Dong; Liu, Honghui

    2009-01-01

    The spatial distribution of population is closely related to land use and land cover (LULC) patterns on both regional and global scales. Population can be redistributed onto geo-referenced square grids according to this relation. In the past decades, various approaches to monitoring LULC using remote sensing and Geographic Information Systems (GIS) have been developed, which makes it possible for efficient updating of geo-referenced population data. A Spatial Population Updating System (SPUS) is developed for updating the gridded population database of China based on remote sensing, GIS and spatial database technologies, with a spatial resolution of 1 km by 1 km. The SPUS can process standard Moderate Resolution Imaging Spectroradiometer (MODIS L1B) data integrated with a Pattern Decomposition Method (PDM) and an LULC-Conversion Model to obtain patterns of land use and land cover, and provide input parameters for a Population Spatialization Model (PSM). The PSM embedded in SPUS is used for generating 1 km by 1 km gridded population data in each population distribution region based on natural and socio-economic variables. Validation results from finer township-level census data of Yishui County suggest that the gridded population database produced by the SPUS is reliable. PMID:22399959

  15. An Updating System for the Gridded Population Database of China Based on Remote Sensing, GIS and Spatial Database Technologies

    Directory of Open Access Journals (Sweden)

    Xiaohuan Yang

    2009-02-01

    Full Text Available The spatial distribution of population is closely related to land use and land cover (LULC patterns on both regional and global scales. Population can be redistributed onto geo-referenced square grids according to this relation. In the past decades, various approaches to monitoring LULC using remote sensing and Geographic Information Systems (GIS have been developed, which makes it possible for efficient updating of geo-referenced population data. A Spatial Population Updating System (SPUS is developed for updating the gridded population database of China based on remote sensing, GIS and spatial database technologies, with a spatial resolution of 1 km by 1 km. The SPUS can process standard Moderate Resolution Imaging Spectroradiometer (MODIS L1B data integrated with a Pattern Decomposition Method (PDM and an LULC-Conversion Model to obtain patterns of land use and land cover, and provide input parameters for a Population Spatialization Model (PSM. The PSM embedded in SPUS is used for generating 1 km by 1 km gridded population data in each population distribution region based on natural and socio-economic variables. Validation results from finer township-level census data of Yishui County suggest that the gridded population database produced by the SPUS is reliable.

  16. SRXRF analysis with spatial resolution of dental calculus

    International Nuclear Information System (INIS)

    Sanchez, Hector Jorge; Perez, Carlos Alberto; Grenon, Miriam

    2000-01-01

    This work presents elemental-composition studies of dental calculus by X-ray fluorescence analysis using synchrotron radiation. The intrinsic characteristics of synchrotron light allow for a semi-quantitative analysis with spatial resolution. The experiments were carried out in the high-vacuum station of the XRF beamline at the Synchrotron Light National Laboratory (Campinas, Brazil). All the measurements were performed in conventional geometry (45 deg. + 45 deg.) and the micro-collimation was attained via a pair of orthogonal slits mounted in the beamline. In this way, pixels of 50 μmx50 μm were obtained keeping a high flux of photons on the sample. Samples of human dental calculus were measured in different positions along their growing axis, in order to determine variations of the compositions in the pattern of deposit. Intensity ratios of minor elements and traces were obtained, and linear profiles and surface distributions were determined. As a general summary, we can conclude that μXRF experiments with spatial resolution on dental calculus are feasible with simple collimation and adequate positioning systems, keeping a high flux of photon. These results open interesting perspectives for the future station of the line, devoted to μXRF, which will reach resolutions of the order of 10 μm

  17. SRXRF analysis with spatial resolution of dental calculus

    Science.gov (United States)

    Sánchez, Héctor Jorge; Pérez, Carlos Alberto; Grenón, Miriam

    2000-09-01

    This work presents elemental-composition studies of dental calculus by X-ray fluorescence analysis using synchrotron radiation. The intrinsic characteristics of synchrotron light allow for a semi-quantitative analysis with spatial resolution. The experiments were carried out in the high-vacuum station of the XRF beamline at the Synchrotron Light National Laboratory (Campinas, Brazil). All the measurements were performed in conventional geometry (45°+45°) and the micro-collimation was attained via a pair of orthogonal slits mounted in the beamline. In this way, pixels of 50 μm×50 μm were obtained keeping a high flux of photons on the sample. Samples of human dental calculus were measured in different positions along their growing axis, in order to determine variations of the compositions in the pattern of deposit. Intensity ratios of minor elements and traces were obtained, and linear profiles and surface distributions were determined. As a general summary, we can conclude that μXRF experiments with spatial resolution on dental calculus are feasible with simple collimation and adequate positioning systems, keeping a high flux of photon. These results open interesting perspectives for the future station of the line, devoted to μXRF, which will reach resolutions of the order of 10 μm.

  18. Spatial resolution and chest nodule detection: an interesting incidental finding

    Science.gov (United States)

    Toomey, R. J.; McEntee, M. F.; Ryan, J. T.; Evanoff, M. G.; Hayes, A.; Brennan, P. C.

    2010-02-01

    This study reports an incidental finding from a larger work. It examines the relationship between spatial resolution and nodule detection for chest radiographs. Twelve examining radiologists with the American Board of Radiology read thirty chest radiographs in two conditions - full (1500 × 1500 pixel) resolution, and 300 × 300 pixel resolution linearly interpolated to 1500 × 1500 pixels. All images were surrounded by a 10-pixel sharp grey border to aid in focussing the observer's eye when viewing the comparatively unsharp interpolated images. Fifteen of the images contained a single simulated pulmonary nodule. Observers were asked to rate their confidence that a nodule was present on each radiograph on a scale of 1 (least confidence, certain no lesion is present) to 6 (most confidence, certain a lesion was present). All other abnormalities were to be ignored. No windowing, levelling or magnification of the images was permitted and viewing distance was constrained to approximately 70cm. Images were displayed on a 3 megapixel greyscale monitor. Receiver operating characteristic (ROC) analysis was applied to the results of the readings using the Dorfman-Berbaum-Metz multiplereader, multiple-case method. No statistically significant differences were found with either readers and cases treated as random or with cases treated as fixed. Low spatial frequency information appears to be sufficient for the detection of chest lesion of the type used in this study.

  19. Spatial resolution test of a beam diagnostic system for DESIREE

    Science.gov (United States)

    Das, Susanta; Kallberg, A.

    2010-11-01

    A diagnostic system based on the observation of low energy ( ˜ 10 eV) secondary electrons (SE) produced by a beam, striking a metallic foil has been built to monitor and to cover the wide range of beam intensities and energies for Double ElectroStatic Ion Ring ExpEriment [1,2].The system consists of a Faraday cup to measure the beam current, a collimator with circular apertures of different diameters to measure the spatial resolution of the system, a beam profile monitoring system (BPMS), and a control unit. The BPMS, in turn, consists of an aluminim (Al) foil, a grid placed in front of the Al foil to accelerate the SE, position sensitive MCP, fluorescent screen, and a CCD camera to capture the images. The collimator contains a set of circular holes of different diameters and separations (d) between them. The collimator cuts out from the beam areas equal to the holes with separation d mm between the beams centers and creates well separated (distinguishable) narrow beams of approximately same intensity close to each other. A 10 keV proton beam was used. The spatial resolution of the system was tested for different Al plate and MCP voltages and resolution of better than 2 mm was achieved. Ref.: 1. K. Kruglov {et al}., NIM A 441 (2000) 595; 701 (2002) 193c, 2. MSL and Atomic Physics, Stockholm Univ.(www.msl.se, http://www.atom.physto.se/Cederquist/desiree/web/hc.html).

  20. The Analysis of Burrows Recognition Accuracy in XINJIANG'S Pasture Area Based on Uav Visible Images with Different Spatial Resolution

    Science.gov (United States)

    Sun, D.; Zheng, J. H.; Ma, T.; Chen, J. J.; Li, X.

    2018-04-01

    The rodent disaster is one of the main biological disasters in grassland in northern Xinjiang. The eating and digging behaviors will cause the destruction of ground vegetation, which seriously affected the development of animal husbandry and grassland ecological security. UAV low altitude remote sensing, as an emerging technique with high spatial resolution, can effectively recognize the burrows. However, how to select the appropriate spatial resolution to monitor the calamity of the rodent disaster is the first problem we need to pay attention to. The purpose of this study is to explore the optimal spatial scale on identification of the burrows by evaluating the impact of different spatial resolution for the burrows identification accuracy. In this study, we shoot burrows from different flight heights to obtain visible images of different spatial resolution. Then an object-oriented method is used to identify the caves, and we also evaluate the accuracy of the classification. We found that the highest classification accuracy of holes, the average has reached more than 80 %. At the altitude of 24 m and the spatial resolution of 1cm, the accuracy of the classification is the highest We have created a unique and effective way to identify burrows by using UAVs visible images. We draw the following conclusion: the best spatial resolution of burrows recognition is 1 cm using DJI PHANTOM-3 UAV, and the improvement of spatial resolution does not necessarily lead to the improvement of classification accuracy. This study lays the foundation for future research and can be extended to similar studies elsewhere.

  1. Change Detection in High-Resolution Remote Sensing Images Using Levene-Test and Fuzzy Evaluation

    Science.gov (United States)

    Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Liu, H. J.

    2018-04-01

    High-resolution remote sensing images possess complex spatial structure and rich texture information, according to these, this paper presents a new method of change detection based on Levene-Test and Fuzzy Evaluation. It first got map-spots by segmenting two overlapping images which had been pretreated, extracted features such as spectrum and texture. Then, changed information of all map-spots which had been treated by the Levene-Test were counted to obtain the candidate changed regions, hue information (H component) was extracted through the IHS Transform and conducted change vector analysis combined with the texture information. Eventually, the threshold was confirmed by an iteration method, the subject degrees of candidate changed regions were calculated, and final change regions were determined. In this paper experimental results on multi-temporal ZY-3 high-resolution images of some area in Jiangsu Province show that: Through extracting map-spots of larger difference as the candidate changed regions, Levene-Test decreases the computing load, improves the precision of change detection, and shows better fault-tolerant capacity for those unchanged regions which are of relatively large differences. The combination of Hue-texture features and fuzzy evaluation method can effectively decrease omissions and deficiencies, improve the precision of change detection.

  2. Beyond Population Distribution: Enhancing Sociocultural Resolution from Remote Sensing

    Science.gov (United States)

    Bhaduri, B. L.; Rose, A.

    2017-12-01

    At Oak Ridge National Laboratory, since late 1990s, we have focused on developing high resolution population distribution and dynamics data from local to global scales. Increasing resolutions of geographic data has been mirrored by population data sets developed across the community. However, attempts to increase temporal and sociocultural resolutions have been limited given the lack of high resolution data on human settlements and activities. While recent advancements in moderate to high resolution earth observation have led to better physiographic data, the approach of exploiting very high resolution (sub-meter resolution) imagery has also proven useful for generating accurate human settlement maps. It allows potential (social and vulnerability) characterization of population from settlement structures by exploiting image texture and spectral features. Our recent research utilizing machine learning and geocomputation has not only validated "poverty mapping from imagery" hypothesis, but has delineated a new paradigm of rapid analysis of high resolution imagery to enhance such "neighborhood" mapping techniques. Such progress in GIScience is allowing us to move towards the goal of creating a global foundation level database for impervious surfaces and "neighborhoods," and holds tremendous promise for key applications focusing on sustainable development including many social science applications.

  3. Kite aerial photography for low-cost, ultra-high spatial resolution multi-spectral mapping of intertidal landscapes.

    Directory of Open Access Journals (Sweden)

    Mitch Bryson

    Full Text Available Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae and animal (e.g. gastropods assemblages at multiple spatial and temporal scales.

  4. Kite aerial photography for low-cost, ultra-high spatial resolution multi-spectral mapping of intertidal landscapes.

    Science.gov (United States)

    Bryson, Mitch; Johnson-Roberson, Matthew; Murphy, Richard J; Bongiorno, Daniel

    2013-01-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.

  5. High spatial resolution soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy to use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.

  6. Neuromorphic model of magnocellular and parvocellular visual paths: spatial resolution

    International Nuclear Information System (INIS)

    Aguirre, Rolando C; Felice, Carmelo J; Colombo, Elisa M

    2007-01-01

    Physiological studies of the human retina show the existence of at least two visual information processing channels, the magnocellular and the parvocellular ones. Both have different spatial, temporal and chromatic features. This paper focuses on the different spatial resolution of these two channels. We propose a neuromorphic model, so that they match the retina's physiology. Considering the Deutsch and Deutsch model (1992), we propose two configurations (one for each visual channel) of the connection between the retina's different cell layers. The responses of the proposed model have similar behaviour to those of the visual cells: each channel has an optimum response corresponding to a given stimulus size which decreases for larger or smaller stimuli. This size is bigger for the magno path than for the parvo path and, in the end, both channels produce a magnifying of the borders of a stimulus

  7. Accessing High Spatial Resolution in Astronomy Using Interference Methods

    Science.gov (United States)

    Carbonel, Cyril; Grasset, Sébastien; Maysonnave, Jean

    2018-04-01

    In astronomy, methods such as direct imaging or interferometry-based techniques (Michelson stellar interferometry for example) are used for observations. A particular advantage of interferometry is that it permits greater spatial resolution compared to direct imaging with a single telescope, which is limited by diffraction owing to the aperture of the instrument as shown by Rueckner et al. in a lecture demonstration. The focus of this paper, addressed to teachers and/or students in high schools and universities, is to easily underline both an application of interferometry in astronomy and stress its interest for resolution. To this end very simple optical experiments are presented to explain all the concepts. We show how an interference pattern resulting from the combined signals of two telescopes allows us to measure the distance between two stars with a resolution beyond the diffraction limit. Finally this work emphasizes the breathtaking resolution obtained in state-of-the-art instruments such as the VLTi (Very Large Telescope interferometer).

  8. Spatial resolution in optical transition radiation (OTR) beam diagnostics

    International Nuclear Information System (INIS)

    Castellano, M.; Verzilov, V. A.

    1998-06-01

    An evaluation of the OTR single particle image dimension is obtained using diffraction theory based on a realistic description of the radiation source. This approach allows the analysis of the effect of the finite size of the emitting screen and of the imaging system. The role of practical experimental conditions in treating the intensity tail problem is estimated. It is shown that by exploiting the polarization properties of OTR, a considerable enhancement in the spatial resolution can be achieved, which becomes very similar to that of a standard point source

  9. Land cover mapping and change detection in urban watersheds using QuickBird high spatial resolution satellite imagery

    Science.gov (United States)

    Hester, David Barry

    The objective of this research was to develop methods for urban land cover analysis using QuickBird high spatial resolution satellite imagery. Such imagery has emerged as a rich commercially available remote sensing data source and has enjoyed high-profile broadcast news media and Internet applications, but methods of quantitative analysis have not been thoroughly explored. The research described here consists of three studies focused on the use of pan-sharpened 61-cm spatial resolution QuickBird imagery, the spatial resolution of which is the highest of any commercial satellite. In the first study, a per-pixel land cover classification method is developed for use with this imagery. This method utilizes a per-pixel classification approach to generate an accurate six-category high spatial resolution land cover map of a developing suburban area. The primary objective of the second study was to develop an accurate land cover change detection method for use with QuickBird land cover products. This work presents an efficient fuzzy framework for transforming map uncertainty into accurate and meaningful high spatial resolution land cover change analysis. The third study described here is an urban planning application of the high spatial resolution QuickBird-based land cover product developed in the first study. This work both meaningfully connects this exciting new data source to urban watershed management and makes an important empirical contribution to the study of suburban watersheds. Its analysis of residential roads and driveways as well as retail parking lots sheds valuable light on the impact of transportation-related land use on the suburban landscape. Broadly, these studies provide new methods for using state-of-the-art remote sensing data to inform land cover analysis and urban planning. These methods are widely adaptable and produce land cover products that are both meaningful and accurate. As additional high spatial resolution satellites are launched and the

  10. A ROUGH SET DECISION TREE BASED MLP-CNN FOR VERY HIGH RESOLUTION REMOTELY SENSED IMAGE CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2017-09-01

    Full Text Available Recent advances in remote sensing have witnessed a great amount of very high resolution (VHR images acquired at sub-metre spatial resolution. These VHR remotely sensed data has post enormous challenges in processing, analysing and classifying them effectively due to the high spatial complexity and heterogeneity. Although many computer-aid classification methods that based on machine learning approaches have been developed over the past decades, most of them are developed toward pixel level spectral differentiation, e.g. Multi-Layer Perceptron (MLP, which are unable to exploit abundant spatial details within VHR images. This paper introduced a rough set model as a general framework to objectively characterize the uncertainty in CNN classification results, and further partition them into correctness and incorrectness on the map. The correct classification regions of CNN were trusted and maintained, whereas the misclassification areas were reclassified using a decision tree with both CNN and MLP. The effectiveness of the proposed rough set decision tree based MLP-CNN was tested using an urban area at Bournemouth, United Kingdom. The MLP-CNN, well capturing the complementarity between CNN and MLP through the rough set based decision tree, achieved the best classification performance both visually and numerically. Therefore, this research paves the way to achieve fully automatic and effective VHR image classification.

  11. Towards understanding temporal and spatial dynamics of seagrass landscapes using time-series remote sensing

    Science.gov (United States)

    Lyons, Mitchell B.; Roelfsema, Chris M.; Phinn, Stuart R.

    2013-03-01

    The spatial and temporal dynamics of seagrasses have been well studied at the leaf to patch scales, however, the link to large spatial extent landscape and population dynamics is still unresolved in seagrass ecology. Traditional remote sensing approaches have lacked the temporal resolution and consistency to appropriately address this issue. This study uses two high temporal resolution time-series of thematic seagrass cover maps to examine the spatial and temporal dynamics of seagrass at both an inter- and intra-annual time scales, one of the first globally to do so at this scale. Previous work by the authors developed an object-based approach to map seagrass cover level distribution from a long term archive of Landsat TM and ETM+ images on the Eastern Banks (≈200 km2), Moreton Bay, Australia. In this work a range of trend and time-series analysis methods are demonstrated for a time-series of 23 annual maps from 1988 to 2010 and a time-series of 16 monthly maps during 2008-2010. Significant new insight was presented regarding the inter- and intra-annual dynamics of seagrass persistence over time, seagrass cover level variability, seagrass cover level trajectory, and change in area of seagrass and cover levels over time. Overall we found that there was no significant decline in total seagrass area on the Eastern Banks, but there was a significant decline in seagrass cover level condition. A case study of two smaller communities within the Eastern Banks that experienced a decline in both overall seagrass area and condition are examined in detail, highlighting possible differences in environmental and process drivers. We demonstrate how trend and time-series analysis enabled seagrass distribution to be appropriately assessed in context of its spatial and temporal history and provides the ability to not only quantify change, but also describe the type of change. We also demonstrate the potential use of time-series analysis products to investigate seagrass growth and

  12. High Spatial Resolution Visual Band Imagery Outperforms Medium Resolution Spectral Imagery for Ecosystem Assessment in the Semi-Arid Brazilian Sertão

    Directory of Open Access Journals (Sweden)

    Ran Goldblatt

    2017-12-01

    Full Text Available Semi-arid ecosystems play a key role in global agricultural production, seasonal carbon cycle dynamics, and longer-run climate change. Because semi-arid landscapes are heterogeneous and often sparsely vegetated, repeated and large-scale ecosystem assessments of these regions have to date been impossible. Here, we assess the potential of high-spatial resolution visible band imagery for semi-arid ecosystem mapping. We use WorldView satellite imagery at 0.3–0.5 m resolution to develop a reference data set of nearly 10,000 labeled examples of three classes—trees, shrubs/grasses, and bare land—across 1000 km 2 of the semi-arid Sertão region of northeast Brazil. Using Google Earth Engine, we show that classification with low-spectral but high-spatial resolution input (WorldView outperforms classification with the full spectral information available from Landsat 30 m resolution imagery as input. Classification with high spatial resolution input improves detection of sparse vegetation and distinction between trees and seasonal shrubs and grasses, two features which are lost at coarser spatial (but higher spectral resolution input. Our total tree cover estimates for the study area disagree with recent estimates using other methods that may underestimate treecover because they confuse trees with seasonal vegetation (shrubs and grasses. This distinction is important for monitoring seasonal and long-run carbon cycle and ecosystem health. Our results suggest that newer remote sensing products that promise high frequency global coverage at high spatial but lower spectral resolution may offer new possibilities for direct monitoring of the world’s semi-arid ecosystems, and we provide methods that could be scaled to do so.

  13. Estimating spatially distributed soil texture using time series of thermal remote sensing - a case study in central Europe

    Science.gov (United States)

    Müller, Benjamin; Bernhardt, Matthias; Jackisch, Conrad; Schulz, Karsten

    2016-09-01

    For understanding water and solute transport processes, knowledge about the respective hydraulic properties is necessary. Commonly, hydraulic parameters are estimated via pedo-transfer functions using soil texture data to avoid cost-intensive measurements of hydraulic parameters in the laboratory. Therefore, current soil texture information is only available at a coarse spatial resolution of 250 to 1000 m. Here, a method is presented to derive high-resolution (15 m) spatial topsoil texture patterns for the meso-scale Attert catchment (Luxembourg, 288 km2) from 28 images of ASTER (advanced spaceborne thermal emission and reflection radiometer) thermal remote sensing. A principle component analysis of the images reveals the most dominant thermal patterns (principle components, PCs) that are related to 212 fractional soil texture samples. Within a multiple linear regression framework, distributed soil texture information is estimated and related uncertainties are assessed. An overall root mean squared error (RMSE) of 12.7 percentage points (pp) lies well within and even below the range of recent studies on soil texture estimation, while requiring sparser sample setups and a less diverse set of basic spatial input. This approach will improve the generation of spatially distributed topsoil maps, particularly for hydrologic modeling purposes, and will expand the usage of thermal remote sensing products.

  14. Theme issue ;State-of-the-art in photogrammetry, remote sensing and spatial information science;

    Science.gov (United States)

    Heipke, Christian; Madden, Marguerite; Li, Zhilin; Dowman, Ian

    2016-05-01

    Over the past few years, photogrammetry, remote sensing and spatial information science have witnessed great changes in virtually every stage of information from imagery. Indeed, we have seen, for example, a sharply increased interest in unmanned aerial vehicles,

  15. Identifying Spatial Units of Human Occupation in the Brazilian Amazon Using Landsat and CBERS Multi-Resolution Imagery

    Directory of Open Access Journals (Sweden)

    Maria Isabel Sobral Escada

    2012-01-01

    Full Text Available Every spatial unit of human occupation is part of a network structuring an extensive process of urbanization in the Amazon territory. Multi-resolution remote sensing data were used to identify and map human presence and activities in the Sustainable Forest District of Cuiabá-Santarém highway (BR-163, west of Pará, Brazil. The limits of spatial units of human occupation were mapped based on digital classification of Landsat-TM5 (Thematic Mapper 5 image (30m spatial resolution. High-spatial-resolution CBERS-HRC (China-Brazil Earth Resources Satellite-High-Resolution Camera images (5 m merged with CBERS-CCD (Charge Coupled Device images (20 m were used to map spatial arrangements inside each populated unit, describing intra-urban characteristics. Fieldwork data validated and refined the classification maps that supported the categorization of the units. A total of 133 spatial units were individualized, comprising population centers as municipal seats, villages and communities, and units of human activities, such as sawmills, farmhouses, landing strips, etc. From the high-resolution analysis, 32 population centers were grouped in four categories, described according to their level of urbanization and spatial organization as: structured, recent, established and dependent on connectivity. This multi-resolution approach provided spatial information about the urbanization process and organization of the territory. It may be extended into other areas or be further used to devise a monitoring system, contributing to the discussion of public policy priorities for sustainable development in the Amazon.

  16. Improving spatial prioritisation for remote marine regions: optimising biodiversity conservation and sustainable development trade-offs

    Science.gov (United States)

    Moore, Cordelia H.; Radford, Ben T.; Possingham, Hugh P.; Heyward, Andrew J.; Stewart, Romola R.; Watts, Matthew E.; Prescott, Jim; Newman, Stephen J.; Harvey, Euan S.; Fisher, Rebecca; Bryce, Clay W.; Lowe, Ryan J.; Berry, Oliver; Espinosa-Gayosso, Alexis; Sporer, Errol; Saunders, Thor

    2016-08-01

    Creating large conservation zones in remote areas, with less intense stakeholder overlap and limited environmental information, requires periodic review to ensure zonation mitigates primary threats and fill gaps in representation, while achieving conservation targets. Follow-up reviews can utilise improved methods and data, potentially identifying new planning options yielding a desirable balance between stakeholder interests. This research explored a marine zoning system in north-west Australia-a biodiverse area with poorly documented biota. Although remote, it is economically significant (i.e. petroleum extraction and fishing). Stakeholder engagement was used to source the best available biodiversity and socio-economic data and advanced spatial analyses produced 765 high resolution data layers, including 674 species distributions representing 119 families. Gap analysis revealed the current proposed zoning system as inadequate, with 98.2% of species below the Convention on Biological Diversity 10% representation targets. A systematic conservation planning algorithm Maxan provided zoning options to meet representation targets while balancing this with industry interests. Resulting scenarios revealed that conservation targets could be met with minimal impacts on petroleum and fishing industries, with estimated losses of 4.9% and 7.2% respectively. The approach addressed important knowledge gaps and provided a powerful and transparent method to reconcile industry interests with marine conservation.

  17. CEST ANALYSIS: AUTOMATED CHANGE DETECTION FROM VERY-HIGH-RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    M. Ehlers

    2012-08-01

    Full Text Available A fast detection, visualization and assessment of change in areas of crisis or catastrophes are important requirements for coordination and planning of help. Through the availability of new satellites and/or airborne sensors with very high spatial resolutions (e.g., WorldView, GeoEye new remote sensing data are available for a better detection, delineation and visualization of change. For automated change detection, a large number of algorithms has been proposed and developed. From previous studies, however, it is evident that to-date no single algorithm has the potential for being a reliable change detector for all possible scenarios. This paper introduces the Combined Edge Segment Texture (CEST analysis, a decision-tree based cooperative suite of algorithms for automated change detection that is especially designed for the generation of new satellites with very high spatial resolution. The method incorporates frequency based filtering, texture analysis, and image segmentation techniques. For the frequency analysis, different band pass filters can be applied to identify the relevant frequency information for change detection. After transforming the multitemporal images via a fast Fourier transform (FFT and applying the most suitable band pass filter, different methods are available to extract changed structures: differencing and correlation in the frequency domain and correlation and edge detection in the spatial domain. Best results are obtained using edge extraction. For the texture analysis, different 'Haralick' parameters can be calculated (e.g., energy, correlation, contrast, inverse distance moment with 'energy' so far providing the most accurate results. These algorithms are combined with a prior segmentation of the image data as well as with morphological operations for a final binary change result. A rule-based combination (CEST of the change algorithms is applied to calculate the probability of change for a particular location. CEST

  18. Dynamic Raman imaging system with high spatial and temporal resolution

    Science.gov (United States)

    Wang, Lei; Dai, Yinzhen; He, Hao; Lv, Ruiqi; Zong, Cheng; Ren, Bin

    2017-09-01

    There is an increasing need to study dynamic changing systems with significantly high spatial and temporal resolutions. In this work, we integrated point-scanning, line-scanning, and wide-field Raman imaging techniques into a single system. By using an Electron Multiplying CCD (EMCCD) with a high gain and high frame rate, we significantly reduced the time required for wide-field imaging, making it possible to monitor the electrochemical reactions in situ. The highest frame rate of EMCDD was ˜50 fps, and the Raman images for a specific Raman peak can be obtained by passing the signal from the sample through the Liquid Crystal Tunable Filter. The spatial resolutions of scanning imaging and wide-field imaging with a 100× objective (NA = 0.9) are 0.5 × 0.5 μm2 and 0.36 × 0.36 μm2, respectively. The system was used to study the surface plasmon resonance of Au nanorods, the surface-enhanced Raman scattering signal distribution for Au Nanoparticle aggregates, and dynamic Raman imaging of an electrochemical reacting system.

  19. Monitoring of Antarctic moss ecosystems using a high spatial resolution imaging spectroscopy

    Science.gov (United States)

    Malenovsky, Zbynek; Lucieer, Arko; Robinson, Sharon; Harwin, Stephen; Turner, Darren; Veness, Tony

    2013-04-01

    The most abundant photosynthetically active plants growing along the rocky Antarctic shore are mosses of three species: Schistidium antarctici, Ceratodon purpureus, and Bryum pseudotriquetrum. Even though mosses are well adapted to the extreme climate conditions, their existence in Antarctica depends strongly on availability of liquid water from snowmelt during the short summer season. Recent changes in temperature, wind speed and stratospheric ozone are stimulating faster evaporation, which in turn influences moss growing rate, health state and abundance. This makes them an ideal bio-indicator of the Antarctic climate change. Very short growing season, lasting only about three months, requires a time efficient, easily deployable and spatially resolved method for monitoring the Antarctic moss beds. Ground and/or low-altitude airborne imaging spectroscopy (called also hyperspectral remote sensing) offers a fast and spatially explicit approach to investigate an actual spatial extent and physiological state of moss turfs. A dataset of ground-based spectral images was acquired with a mini-Hyperspec imaging spectrometer (Headwall Inc., the USA) during the Antarctic summer 2012 in the surroundings of the Australian Antarctic station Casey (Windmill Islands). The collection of high spatial resolution spectral images, with pixels about 2 cm in size containing from 162 up to 324 narrow spectral bands of wavelengths between 399 and 998 nm, was accompanied with point moss reflectance measurements recorded with the ASD HandHeld-2 spectroradiometer (Analytical Spectral Devices Inc., the USA). The first spectral analysis indicates significant differences in red-edge and near-infrared reflectance of differently watered moss patches. Contrary to high plants, where the Normalized Difference Vegetation Index (NDVI) represents an estimate of green biomass, NDVI of mosses indicates mainly the actual water content. Similarly to high plants, reflectance of visible wavelengths is

  20. Remote sensing and GIS integration: Towards intelligent imagery within a spatial data infrastructure

    Science.gov (United States)

    Abdelrahim, Mohamed Mahmoud Hosny

    2001-11-01

    times as much as the IKONOS GEOCARTERRA(TM) products. The developed IISP is a step closer towards the direct and active involvement of high-resolution remote sensing imagery in querying the real world and performing exploratory types of spatial analysis. (Abstract shortened by UMI.)

  1. A Global Survey of Cloud Thermodynamic Phase using High Spatial Resolution VSWIR Spectroscopy, 2005-2015

    Science.gov (United States)

    Thompson, D. R.; Kahn, B. H.; Green, R. O.; Chien, S.; Middleton, E.; Tran, D. Q.

    2017-12-01

    Clouds' variable ice and liquid content significantly influences their optical properties, evolution, and radiative forcing potential (Tan and Storelvmo, J. Atmos. Sci, 73, 2016). However, most remote measurements of thermodynamic phase have spatial resolutions of 1 km or more and are insensitive to mixed phases. This under-constrains important processes, such as spatial partitioning within mixed phase clouds, that carry outsize radiative forcing impacts. These uncertainties could shift Global Climate Model (GCM) predictions of future warming by over 1 degree Celsius (Tan et al., Science 352:6282, 2016). Imaging spectroscopy of reflected solar energy from the 1.4 - 1.8 μm shortwave infrared (SWIR) spectral range can address this observational gap. These observations can distinguish ice and water absorption, providing a robust and sensitive measurement of cloud top thermodynamic phase including mixed phases. Imaging spectrometers can resolve variations at scales of tens to hundreds of meters (Thompson et al., JGR-Atmospheres 121, 2016). We report the first such global high spatial resolution (30 m) survey, based on data from 2005-2015 acquired by the Hyperion imaging spectrometer onboard NASA's EO-1 spacecraft (Pearlman et al., Proc. SPIE 4135, 2001). Estimated seasonal and latitudinal distributions of cloud thermodynamic phase generally agree with observations made by other satellites such as the Atmospheric Infrared Sounder (AIRS). Variogram analyses reveal variability at different spatial scales. Our results corroborate previously observed zonal distributions, while adding insight into the spatial scales of processes governing cloud top thermodynamic phase. Figure: Thermodynamic phase retrievals. Top: Example of a cloud top thermodynamic phase map from the EO-1/Hyperion. Bottom: Latitudinal distributions of pure and mixed phase clouds, 2005-2015, showing Liquid Thickness Fraction (LTF). LTF=0 corresponds to pure ice absorption, while LTF=1 is pure liquid. The

  2. Fast Binary Coding for the Scene Classification of High-Resolution Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Fan Hu

    2016-06-01

    Full Text Available Scene classification of high-resolution remote sensing (HRRS imagery is an important task in the intelligent processing of remote sensing images and has attracted much attention in recent years. Although the existing scene classification methods, e.g., the bag-of-words (BOW model and its variants, can achieve acceptable performance, these approaches strongly rely on the extraction of local features and the complicated coding strategy, which are usually time consuming and demand much expert effort. In this paper, we propose a fast binary coding (FBC method, to effectively generate efficient discriminative scene representations of HRRS images. The main idea is inspired by the unsupervised feature learning technique and the binary feature descriptions. More precisely, equipped with the unsupervised feature learning technique, we first learn a set of optimal “filters” from large quantities of randomly-sampled image patches and then obtain feature maps by convolving the image scene with the learned filters. After binarizing the feature maps, we perform a simple hashing step to convert the binary-valued feature map to the integer-valued feature map. Finally, statistical histograms computed on the integer-valued feature map are used as global feature representations of the scenes of HRRS images, similar to the conventional BOW model. The analysis of the algorithm complexity and experiments on HRRS image datasets demonstrate that, in contrast with existing scene classification approaches, the proposed FBC has much faster computational speed and achieves comparable classification performance. In addition, we also propose two extensions to FBC, i.e., the spatial co-occurrence matrix and different visual saliency maps, for further improving its final classification accuracy.

  3. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA)

    Science.gov (United States)

    Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial

  4. Tactile feedback display with spatial and temporal resolutions.

    Science.gov (United States)

    Vishniakou, Siarhei; Lewis, Brian W; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-01-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.

  5. High spatial resolution infrared camera as ISS external experiment

    Science.gov (United States)

    Eckehard, Lorenz; Frerker, Hap; Fitch, Robert Alan

    High spatial resolution infrared camera as ISS external experiment for monitoring global climate changes uses ISS internal and external resources (eg. data storage). The optical experiment will consist of an infrared camera for monitoring global climate changes from the ISS. This technology was evaluated by the German small satellite mission BIRD and further developed in different ESA projects. Compared to BIRD the presended instrument uses proven sensor advanced technologies (ISS external) and ISS on board processing and storage capabili-ties (internal). The instrument will be equipped with a serial interfaces for TM/TC and several relay commands for the power supply. For data processing and storage a mass memory is re-quired. The access to actual attitude data is highly desired to produce geo referenced maps-if possible by an on board processing.

  6. Differential Search Coils Based Magnetometers: Conditioning, Magnetic Sensitivity, Spatial Resolution

    Directory of Open Access Journals (Sweden)

    Timofeeva Maria

    2012-03-01

    Full Text Available A theoretical and experimental comparison of optimized search coils based magnetometers, operating either in the Flux mode or in the classical Lenz-Faraday mode, is presented. The improvements provided by the Flux mode in terms of bandwidth and measuring range of the sensor are detailed. Theory, SPICE model and measurements are in good agreement. The spatial resolution of the sensor is studied which is an important parameter for applications in non destructive evaluation. A general expression of the magnetic sensitivity of search coils sensors is derived. Solutions are proposed to design magnetometers with reduced weight and volume without degrading the magnetic sensitivity. An original differential search coil based magnetometer, made of coupled coils, operating in flux mode and connected to a differential transimpedance amplifier is proposed. It is shown that this structure is better in terms of volume occupancy than magnetometers using two separated coils without any degradation in magnetic sensitivity. Experimental results are in good agreement with calculations.

  7. Characterizing Subpixel Spatial Resolution of a Hybrid CMOS Detector

    Science.gov (United States)

    Bray, Evan; Burrows, Dave; Chattopadhyay, Tanmoy; Falcone, Abraham; Hull, Samuel; Kern, Matthew; McQuaide, Maria; Wages, Mitchell

    2018-01-01

    The detection of X-rays is a unique process relative to other wavelengths, and allows for some novel features that increase the scientific yield of a single observation. Unlike lower photon energies, X-rays liberate a large number of electrons from the silicon absorber array of the detector. This number is usually on the order of several hundred to a thousand for moderate-energy X-rays. These electrons tend to diffuse outward into what is referred to as the charge cloud. This cloud can then be picked up by several pixels, forming a specific pattern based on the exact incident location. By conducting the first ever “mesh experiment" on a hybrid CMOS detector (HCD), we have experimentally determined the charge cloud shape and used it to characterize responsivity of the detector with subpixel spatial resolution.

  8. Tactile Feedback Display with Spatial and Temporal Resolutions

    Science.gov (United States)

    Vishniakou, Siarhei; Lewis, Brian W.; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-08-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.

  9. Remote-controlling chemical reactions by light: towards chemistry with high spatio-temporal resolution.

    Science.gov (United States)

    Göstl, Robert; Senf, Antti; Hecht, Stefan

    2014-03-21

    The foundation of the chemical enterprise has always been the creation of new molecular entities, such as pharmaceuticals or polymeric materials. Over the past decades, this continuing effort of designing compounds with improved properties has been complemented by a strong effort to render their preparation (more) sustainable by implementing atom as well as energy economic strategies. Therefore, synthetic chemistry is typically concerned with making specific bonds and connections in a highly selective and efficient manner. However, to increase the degree of sophistication and expand the scope of our work, we argue that the modern aspiring chemist should in addition be concerned with attaining (better) control over when and where chemical bonds are being made or broken. For this purpose, photoswitchable molecular systems, which allow for external modulation of chemical reactions by light, are being developed and in this review we are covering the current state of the art of this exciting new field. These "remote-controlled synthetic tools" provide a remarkable opportunity to perform chemical transformations with high spatial and temporal resolution and should therefore allow regulating biological processes as well as material and device performance.

  10. Functional classification of spatially heterogeneous environments: the Land Cover Mosaic approach in remote sensing

    NARCIS (Netherlands)

    Obbink, M.H.

    2011-01-01

    Tropical rainforest areas are difficult to classify in the digital analysis of remote sensing data because of spatial heterogeneity. Often many technical solutions are adopted to reduce the ‘problem’ of spatial heterogeneity. This thesis describes theory and methods that now use this

  11. APPLICATION OF CONVOLUTIONAL NEURAL NETWORK IN CLASSIFICATION OF HIGH RESOLUTION AGRICULTURAL REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    C. Yao

    2017-09-01

    Full Text Available With the rapid development of Precision Agriculture (PA promoted by high-resolution remote sensing, it makes significant sense in management and estimation of agriculture through crop classification of high-resolution remote sensing image. Due to the complex and fragmentation of the features and the surroundings in the circumstance of high-resolution, the accuracy of the traditional classification methods has not been able to meet the standard of agricultural problems. In this case, this paper proposed a classification method for high-resolution agricultural remote sensing images based on convolution neural networks(CNN. For training, a large number of training samples were produced by panchromatic images of GF-1 high-resolution satellite of China. In the experiment, through training and testing on the CNN under the toolbox of deep learning by MATLAB, the crop classification finally got the correct rate of 99.66 % after the gradual optimization of adjusting parameter during training. Through improving the accuracy of image classification and image recognition, the applications of CNN provide a reference value for the field of remote sensing in PA.

  12. Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters

    Science.gov (United States)

    Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei

    2016-01-01

    Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762

  13. Spatial resolution studies of a GEM-TPC

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Martin [TU Muenchen, 85748 Garching (Germany); Collaboration: GEM-TPC-Collaboration

    2015-07-01

    A GEM-TPC can exploit the intrinsic suppression of back drifting ions from the amplification stage of the GEM (Gas Electron Multiplier) foils to overcome the problem of drift-field distortions in an ungated operation. To explore the possibility of such a continuously running TPC (Time Projection Chamber) a large-size detector was built. This detector, with a drift length of 728 mm and a radius of 308 mm and a total of 10254 electronic channels, was designed as an upgrade for the FOPI experiment at GSI (Darmstadt, Germany) to improve the secondary vertex resolution especially for K{sup 0}{sub S}- and Λ-reconstruction and the PID capabilities. After commissioning a large statistics of cosmic data and beam-target reactions has been collected and the obtained tracks in the TPC have been used to improve the tracking algorithms. During the track finding and fitting procedure a clustering algorithm which takes into account the track topology as well as the full 3D spatial information is employed. The the clustering algorithm, the cluster error calculation and the tracking resolution are discussed in this contribution.

  14. Electroluminescent drift chamber with 16 μm spatial resolution

    International Nuclear Information System (INIS)

    Baskakov, V.I.; Dolgoshein, V.A.; Lebedenko, V.N.

    1978-01-01

    Studied are the characteristics of the dft electroluminscent chamber of an original design. For insuring high spatial resolution, the chamber has been filled with xenon to a pressure of 20 atm, which substantially decreases the electron diffusion during drift. Located at the end of the drift gap is an anode wire, 50 μm in dia. A strong electric field available near the thin wire causes electroluminescence of the electrons. The signal is localized within a small volume and contribution of the luminescence time in the total duration of a signal is small. In this case no electron multiplication occurs at all and, consequently, no space charge of positive ions takes place, which makes it possible to operate at very high loadings (2x10 6 particle/s). The characteristics of the chamber are measured in a beam of the Serpukhov accelerator. Use has been made of a model comprising two chambers, 5 mm thick, located successively along the beam with the effective area being 40x40 mm. The studies and analysis performed reveal that the drift electroluminescent chamber operates reliably in the wide range of the working gas pressure at an intensity of the incident particles up to 10 5 particle/s. The best resolution is obtained at a pressure of 20 atm and it equals 16 μm

  15. Development of an Objective High Spatial Resolution Soil Moisture Index

    Science.gov (United States)

    Zavodsky, B.; Case, J.; White, K.; Bell, J. R.

    2015-12-01

    Drought detection, analysis, and mitigation has become a key challenge for a diverse set of decision makers, including but not limited to operational weather forecasters, climatologists, agricultural interests, and water resource management. One tool that is heavily used is the United States Drought Monitor (USDM), which is derived from a complex blend of objective data and subjective analysis on a state-by-state basis using a variety of modeled and observed precipitation, soil moisture, hydrologic, and vegetation and crop health data. The NASA Short-term Prediction Research and Transition (SPoRT) Center currently runs a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework. The LIS-Noah is run at 3-km resolution for local numerical weather prediction (NWP) and situational awareness applications at select NOAA/National Weather Service (NWS) forecast offices over the Continental U.S. (CONUS). To enhance the practicality of the LIS-Noah output for drought monitoring and assessing flood potential, a 30+-year soil moisture climatology has been developed in an attempt to place near real-time soil moisture values in historical context at county- and/or watershed-scale resolutions. This LIS-Noah soil moisture climatology and accompanying anomalies is intended to complement the current suite of operational products, such as the North American Land Data Assimilation System phase 2 (NLDAS-2), which are generated on a coarser-resolution grid that may not capture localized, yet important soil moisture features. Daily soil moisture histograms are used to identify the real-time soil moisture percentiles at each grid point according to the county or watershed in which the grid point resides. Spatial plots are then produced that map the percentiles as proxies to the different USDM categories. This presentation will highlight recent developments of this gridded, objective soil moisture index, comparison to subjective

  16. Spatial pattern evaluation of a calibrated national hydrological model - a remote-sensing-based diagnostic approach

    Science.gov (United States)

    Mendiguren, Gorka; Koch, Julian; Stisen, Simon

    2017-11-01

    Distributed hydrological models are traditionally evaluated against discharge stations, emphasizing the temporal and neglecting the spatial component of a model. The present study widens the traditional paradigm by highlighting spatial patterns of evapotranspiration (ET), a key variable at the land-atmosphere interface, obtained from two different approaches at the national scale of Denmark. The first approach is based on a national water resources model (DK-model), using the MIKE-SHE model code, and the second approach utilizes a two-source energy balance model (TSEB) driven mainly by satellite remote sensing data. Ideally, the hydrological model simulation and remote-sensing-based approach should present similar spatial patterns and driving mechanisms of ET. However, the spatial comparison showed that the differences are significant and indicate insufficient spatial pattern performance of the hydrological model.The differences in spatial patterns can partly be explained by the fact that the hydrological model is configured to run in six domains that are calibrated independently from each other, as it is often the case for large-scale multi-basin calibrations. Furthermore, the model incorporates predefined temporal dynamics of leaf area index (LAI), root depth (RD) and crop coefficient (Kc) for each land cover type. This zonal approach of model parameterization ignores the spatiotemporal complexity of the natural system. To overcome this limitation, this study features a modified version of the DK-model in which LAI, RD and Kc are empirically derived using remote sensing data and detailed soil property maps in order to generate a higher degree of spatiotemporal variability and spatial consistency between the six domains. The effects of these changes are analyzed by using empirical orthogonal function (EOF) analysis to evaluate spatial patterns. The EOF analysis shows that including remote-sensing-derived LAI, RD and Kc in the distributed hydrological model adds

  17. Estimating NOx emissions and surface concentrations at high spatial resolution using OMI

    Science.gov (United States)

    Goldberg, D. L.; Lamsal, L. N.; Loughner, C.; Swartz, W. H.; Saide, P. E.; Carmichael, G. R.; Henze, D. K.; Lu, Z.; Streets, D. G.

    2017-12-01

    In many instances, NOx emissions are not measured at the source. In these cases, remote sensing techniques are extremely useful in quantifying NOx emissions. Using an exponential modified Gaussian (EMG) fitting of oversampled Ozone Monitoring Instrument (OMI) NO2 data, we estimate NOx emissions and lifetimes in regions where these emissions are uncertain. This work also presents a new high-resolution OMI NO2 dataset derived from the NASA retrieval that can be used to estimate surface level concentrations in the eastern United States and South Korea. To better estimate vertical profile shape factors, we use high-resolution model simulations (Community Multi-scale Air Quality (CMAQ) and WRF-Chem) constrained by in situ aircraft observations to re-calculate tropospheric air mass factors and tropospheric NO2 vertical columns during summertime. The correlation between our satellite product and ground NO2 monitors in urban areas has improved dramatically: r2 = 0.60 in new product, r2 = 0.39 in operational product, signifying that this new product is a better indicator of surface concentrations than the operational product. Our work emphasizes the need to use both high-resolution and high-fidelity models in order to re-calculate vertical column data in areas with large spatial heterogeneities in NOx emissions. The methodologies developed in this work can be applied to other world regions and other satellite data sets to produce high-quality region-specific emissions estimates.

  18. INTERACTIVE CHANGE DETECTION USING HIGH RESOLUTION REMOTE SENSING IMAGES BASED ON ACTIVE LEARNING WITH GAUSSIAN PROCESSES

    Directory of Open Access Journals (Sweden)

    H. Ru

    2016-06-01

    Full Text Available Although there have been many studies for change detection, the effective and efficient use of high resolution remote sensing images is still a problem. Conventional supervised methods need lots of annotations to classify the land cover categories and detect their changes. Besides, the training set in supervised methods often has lots of redundant samples without any essential information. In this study, we present a method for interactive change detection using high resolution remote sensing images with active learning to overcome the shortages of existing remote sensing image change detection techniques. In our method, there is no annotation of actual land cover category at the beginning. First, we find a certain number of the most representative objects in unsupervised way. Then, we can detect the change areas from multi-temporal high resolution remote sensing images by active learning with Gaussian processes in an interactive way gradually until the detection results do not change notably. The artificial labelling can be reduced substantially, and a desirable detection result can be obtained in a few iterations. The experiments on Geo-Eye1 and WorldView2 remote sensing images demonstrate the effectiveness and efficiency of our proposed method.

  19. High resolution remote sensing for reducing uncertainties in urban forest carbon offset life cycle assessments.

    Science.gov (United States)

    Tigges, Jan; Lakes, Tobia

    2017-10-04

    Urban forests reduce greenhouse gas emissions by storing and sequestering considerable amounts of carbon. However, few studies have considered the local scale of urban forests to effectively evaluate their potential long-term carbon offset. The lack of precise, consistent and up-to-date forest details is challenging for long-term prognoses. Therefore, this review aims to identify uncertainties in urban forest carbon offset assessment and discuss the extent to which such uncertainties can be reduced by recent progress in high resolution remote sensing. We do this by performing an extensive literature review and a case study combining remote sensing and life cycle assessment of urban forest carbon offset in Berlin, Germany. Recent progress in high resolution remote sensing and methods is adequate for delivering more precise details on the urban tree canopy, individual tree metrics, species, and age structures compared to conventional land use/cover class approaches. These area-wide consistent details can update life cycle inventories for more precise future prognoses. Additional improvements in classification accuracy can be achieved by a higher number of features derived from remote sensing data of increasing resolution, but first studies on this subject indicated that a smart selection of features already provides sufficient data that avoids redundancies and enables more efficient data processing. Our case study from Berlin could use remotely sensed individual tree species as consistent inventory of a life cycle assessment. However, a lack of growth, mortality and planting data forced us to make assumptions, therefore creating uncertainty in the long-term prognoses. Regarding temporal changes and reliable long-term estimates, more attention is required to detect changes of gradual growth, pruning and abrupt changes in tree planting and mortality. As such, precise long-term urban ecological monitoring using high resolution remote sensing should be intensified

  20. High-Resolution Remote Sensing Image Building Extraction Based on Markov Model

    Science.gov (United States)

    Zhao, W.; Yan, L.; Chang, Y.; Gong, L.

    2018-04-01

    With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.

  1. Accelerator-based single-shot ultrafast transmission electron microscope with picosecond temporal resolution and nanometer spatial resolution

    Science.gov (United States)

    Xiang, D.; Fu, F.; Zhang, J.; Huang, X.; Wang, L.; Wang, X.; Wan, W.

    2014-09-01

    We present feasibility study of an accelerator-based ultrafast transmission electron microscope (u-TEM) capable of producing a full field image in a single-shot with simultaneous picosecond temporal resolution and nanometer spatial resolution. We study key physics related to performance of u-TEMs and discuss major challenges as well as possible solutions for practical realization of u-TEMs. The feasibility of u-TEMs is confirmed through simulations using realistic electron beam parameters. We anticipate that u-TEMs with a product of temporal and spatial resolution beyond 10-19 ms will open up new opportunities in probing matter at ultrafast temporal and ultrasmall spatial scales.

  2. Trade-off between angular and spatial resolutions in in vivo fiber tractography

    OpenAIRE

    Vos, Sjoerd B.; Aksoy, Murat; Han, Zhaoying; Holdsworth, Samantha J.; Maclaren, Julian; Viergever, Max A.; Leemans, Alexander; Bammer, Roland

    2016-01-01

    Tractography is becoming an increasingly popular method to reconstruct white matter connections in vivo. The diffusion MRI data that tractography is based on requires a high angular resolution to resolve crossing fibers whereas high spatial resolution is required to distinguish kissing from crossing fibers. However, scan time increases with increasing spatial and angular resolutions, which can become infeasible in clinical settings. Here we investigated the trade-off between spatial and angul...

  3. Development of a large-area Multigap RPC with adequate spatial resolution for muon tomography

    Science.gov (United States)

    Wang, J.; Wang, Y.; Wang, X.; Zeng, M.; Xie, B.; Han, D.; Lyu, P.; Wang, F.; Li, Y.

    2016-11-01

    We study the performance of a large-area 2-D Multigap Resistive Plate Chamber (MRPC) designed for muon tomography with high spatial resolution. An efficiency up to 98% and a spatial resolution of around 270 μ m are obtained in cosmic ray and X-ray tests. The performance of the MRPC is also investigated for two working gases: standard gas and pure Freon. The result shows that the MRPC working in pure Freon can provide higher efficiency and better spatial resolution.

  4. Evaluation of the Chinese Fine Spatial Resolution Hyperspectral Satellite TianGong-1 in Urban Land-Cover Classification

    Directory of Open Access Journals (Sweden)

    Xueke Li

    2016-05-01

    Full Text Available The successful launch of the Chinese high spatial resolution hyperspectral satellite TianGong-1 (TG-1 opens up new possibilities for applications of remotely-sensed satellite imagery. One of the main goals of the TG-1 mission is to provide observations of surface attributes at local and landscape spatial scales to map urban land cover accurately using the hyperspectral technique. This study attempted to evaluate the TG-1 datasets for urban feature analysis, using existing data over Beijing, China, by comparing the TG-1 (with a spatial resolution of 10 m to EO-1 Hyperion (with a spatial resolution of 30 m. The spectral feature of TG-1 was first analyzed and, thus, finding out optimal hyperspectral wavebands useful for the discrimination of urban areas. Based on this, the pixel-based maximum likelihood classifier (PMLC, pixel-based support vector machine (PSVM, hybrid maximum likelihood classifier (HMLC, and hybrid support vector machine (HSVM were implemented, as well as compared in the application of mapping urban land cover types. The hybrid classifier approach, which integrates the pixel-based classifier and the object-based segmentation approach, was demonstrated as an effective alternative to the conventional pixel-based classifiers for processing the satellite hyperspectral data, especially the fine spatial resolution data. For TG-1 imagery, the pixel-based urban classification was obtained with an average overall accuracy of 89.1%, whereas the hybrid urban classification was obtained with an average overall accuracy of 91.8%. For Hyperion imagery, the pixel-based urban classification was obtained with an average overall accuracy of 85.9%, whereas the hybrid urban classification was obtained with an average overall accuracy of 86.7%. Overall, it can be concluded that the fine spatial resolution satellite hyperspectral data TG-1 is promising in delineating complex urban scenes, especially when using an appropriate classifier, such as the

  5. Palm Swamp Wetland Ecosystems of the Upper Amazon: Characterizing their Distribution and Inundation State Using Multiple Resolution Microwave Remote Sensing

    Science.gov (United States)

    Podest, E.; McDonald, K. C.; Schröder, R.; Pinto, N.; Zimmermann, R.; Horna, V.

    2011-12-01

    Palm swamp wetlands are prevalent in the Amazon basin, including extensive regions in northern Peru. These ecosystems are characterized by constant surface inundation and moderate seasonal water level variation. The combination of constantly saturated soils, giving rise to low oxygen conditions, and warm temperatures year-round can lead to considerable methane release to the atmosphere. Because of the widespread occurrence and expected sensitivity of these ecosystems to climate change, knowledge of their spatial extent and inundation state is crucial for assessing the associated land-atmosphere carbon exchange. Precise spatio-temporal information on palm swamps is difficult to gather because of their remoteness and difficult accessibility. Spaceborne microwave remote sensing is an effective tool for characterizing these ecosystems since it is sensitive to surface water and vegetation structure and allows monitoring large inaccessible areas on a temporal basis regardless of atmospheric conditions or solar illumination. We are developing a remote sensing methodology using multiple resolution microwave remote sensing data to determine palm swamp distribution and inundation state over focus regions in the Amazon basin in northern Peru. For this purpose, two types of multi-temporal microwave data are used: 1) high-resolution (100 m) data from the Advanced Land Observing Satellite (ALOS) Phased Array L-Band Synthetic Aperture Radar (PALSAR) to derive maps of palm swamp extent and inundation from dual-polarization fine-beam and multi-temporal HH-polarized ScanSAR, and 2) coarse resolution (25 km) combined active and passive microwave data from QuikSCAT and AMSR-E to derive inundated area fraction on a weekly basis. We compare information content and accuracy of the coarse resolution products to the PALSAR-based datasets to ensure information harmonization. The synergistic combination of high and low resolution datasets will allow for characterization of palm swamps and

  6. Rural and remote dental services shortages: filling the gaps through geo-spatial analysis evidence-based targeting.

    Science.gov (United States)

    Shiika, Yulia; Kruger, Estie; Tennant, Marc

    Australia has a significant mal-distribution of its limited dental workforce. Outside the major capital cities, the distribution of accessible dental care is at best patchy. This study applied geo-spatial analysis technology to locate gaps in dental service accessibility for rural and remote dwelling Australians, in order to test the hypothesis that there are a few key location points in Australia where further dental services could make a significant contribution to ameliorating the immediate shortage crisis. A total of 2,086 dental practices were located in country areas, covering a combined catchment area of 1.84 million square kilometers, based on 50 km catchment zones around each clinic. Geo-spatial analysis technology was used to identify gaps in the accessibility of dental services for rural and remote dwelling Australians. An extraction of data was obtained to analyse the integrated geographically-aligned database. Results: Resolution of the lack of dental practices for 74 townships (of greater than 500 residents) across Australia could potentially address access for 104,000 people. An examination of the socio-economic mix found that the majority of the dental practices (84%) are located in areas classified as less disadvantaged. Output from the study provided a cohesive national map that has identified locations that could have health improvement via the targeting of dental services to that location. The study identified potential location sites for dental clinics, to address the current inequity in accessing dental services in rural and remote Australia.

  7. The edge-preservation multi-classifier relearning framework for the classification of high-resolution remotely sensed imagery

    Science.gov (United States)

    Han, Xiaopeng; Huang, Xin; Li, Jiayi; Li, Yansheng; Yang, Michael Ying; Gong, Jianya

    2018-04-01

    In recent years, the availability of high-resolution imagery has enabled more detailed observation of the Earth. However, it is imperative to simultaneously achieve accurate interpretation and preserve the spatial details for the classification of such high-resolution data. To this aim, we propose the edge-preservation multi-classifier relearning framework (EMRF). This multi-classifier framework is made up of support vector machine (SVM), random forest (RF), and sparse multinomial logistic regression via variable splitting and augmented Lagrangian (LORSAL) classifiers, considering their complementary characteristics. To better characterize complex scenes of remote sensing images, relearning based on landscape metrics is proposed, which iteratively quantizes both the landscape composition and spatial configuration by the use of the initial classification results. In addition, a novel tri-training strategy is proposed to solve the over-smoothing effect of relearning by means of automatic selection of training samples with low classification certainties, which always distribute in or near the edge areas. Finally, EMRF flexibly combines the strengths of relearning and tri-training via the classification certainties calculated by the probabilistic output of the respective classifiers. It should be noted that, in order to achieve an unbiased evaluation, we assessed the classification accuracy of the proposed framework using both edge and non-edge test samples. The experimental results obtained with four multispectral high-resolution images confirm the efficacy of the proposed framework, in terms of both edge and non-edge accuracy.

  8. Optimizing Spatial Resolution of Imagery for Urban Form Detection—The Cases of France and Vietnam

    Directory of Open Access Journals (Sweden)

    Christiane Weber

    2011-09-01

    Full Text Available The multitude of satellite data products available offers a large choice for urban studies. Urban space is known for its high heterogeneity in structure, shape and materials. To approach this heterogeneity, finding the optimal spatial resolution (OSR is needed for urban form detection from remote sensing imagery. By applying the local variance method to our datasets (pan-sharpened images, we can identify OSR at two levels of observation: individual urban elements and urban districts in two agglomerations in West Europe (Strasbourg, France and in Southeast Asia (Da Nang, Vietnam. The OSR corresponds to the minimal variance of largest number of spectral bands. We carry out three categories of interval values of spatial resolutions for identifying OSR: from 0.8 m to 3 m for isolated objects, from 6 m to 8 m for vegetation area and equal or higher than 20 m for urban district. At the urban district level, according to spatial patterns, form, size and material of elements, we propose the range of OSR between 30 m and 40 m for detecting administrative districts, new residential districts and residential discontinuous districts. The detection of industrial districts refers to a coarser OSR from 50 m to 60 m. The residential continuous dense districts effectively need a finer OSR of between 20 m and 30 m for their optimal identification. We also use fractal dimensions to identify the threshold of homogeneity/heterogeneity of urban structure at urban district level. It seems therefore that our approaches are robust and transferable to different urban contexts.

  9. Ultra-High Resolution Spectroscopic Remote Sensing: A Microscope on Planetary Atmospheres

    Science.gov (United States)

    Kostiuk, Theodor

    2010-01-01

    Remote sensing of planetary atmospheres is not complete without studies of all levels of the atmosphere, including the dense cloudy- and haze filled troposphere, relatively clear and important stratosphere and the upper atmosphere, which are the first levels to experience the effects of solar radiation. High-resolution spectroscopy can provide valuable information on these regions of the atmosphere. Ultra-high spectral resolution studies can directly measure atmospheric winds, composition, temperature and non-thermal phenomena, which describe the physics and chemistry of the atmosphere. Spectroscopy in the middle to long infrared wavelengths can also probe levels where dust of haze limit measurements at shorter wavelength or can provide ambiguous results on atmospheric species abundances or winds. A spectroscopic technique in the middle infrared wavelengths analogous to a radio receiver. infrared heterodyne spectroscopy [1], will be describe and used to illustrate the detailed study of atmospheric phenomena not readily possible with other methods. The heterodyne spectral resolution with resolving power greater than 1,000.000 measures the true line shapes of emission and absorption lines in planetary atmospheres. The information on the region of line formation is contained in the line shapes. The absolute frequency of the lines can be measured to I part in 100 ,000,000 and can be used to accurately measure the Doppler frequency shift of the lines, directly measuring the line-of-sight velocity of the gas to --Im/s precision (winds). The technical and analytical methods developed and used to measure and analyze infrared heterodyne measurements will be described. Examples of studies on Titan, Venus, Mars, Earth, and Jupiter will be presented. 'These include atmospheric dynamics on slowly rotating bodies (Titan [2] and Venus [3] and temperature, composition and chemistry on Mars 141, Venus and Earth. The discovery and studies of unique atmospheric phenomena will also be

  10. Thematic and spatial resolutions affect model-based predictions of tree species distribution.

    Science.gov (United States)

    Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.

  11. Remote sensing inputs to landscape models which predict future spatial land use patterns for hydrologic models

    Science.gov (United States)

    Miller, L. D.; Tom, C.; Nualchawee, K.

    1977-01-01

    A tropical forest area of Northern Thailand provided a test case of the application of the approach in more natural surroundings. Remote sensing imagery subjected to proper computer analysis has been shown to be a very useful means of collecting spatial data for the science of hydrology. Remote sensing products provide direct input to hydrologic models and practical data bases for planning large and small-scale hydrologic developments. Combining the available remote sensing imagery together with available map information in the landscape model provides a basis for substantial improvements in these applications.

  12. Methods for Enhancing Geological Structures in Spectral Spatial Difference-Based on Remote-Sensing Image

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@In this paper, some image processing methods such as directional template (mask) matching enhancement, pseudocolor or false color enhancement, K-L transform enhancement are used to enhance a geological structure, one of important ore-controlling factors, shown in the remote-sensing images.This geological structure is regarded as image anomaly in the remote-sensing image, since considerable differences, based on the spatial spectral distribution pattern, in gray values (spectral), color tones and texture, are always present between the geological structure and background. Therefore,the enhancement of the geological structure in the remotesensing image is that of the spectral spatial difference.

  13. Optimization of Decision-Making for Spatial Sampling in the North China Plain, Based on Remote-Sensing a Priori Knowledge

    Science.gov (United States)

    Feng, J.; Bai, L.; Liu, S.; Su, X.; Hu, H.

    2012-07-01

    In this paper, the MODIS remote sensing data, featured with low-cost, high-timely and moderate/low spatial resolutions, in the North China Plain (NCP) as a study region were firstly used to carry out mixed-pixel spectral decomposition to extract an useful regionalized indicator parameter (RIP) (i.e., an available ratio, that is, fraction/percentage, of winter wheat planting area in each pixel as a regionalized indicator variable (RIV) of spatial sampling) from the initial selected indicators. Then, the RIV values were spatially analyzed, and the spatial structure characteristics (i.e., spatial correlation and variation) of the NCP were achieved, which were further processed to obtain the scalefitting, valid a priori knowledge or information of spatial sampling. Subsequently, founded upon an idea of rationally integrating probability-based and model-based sampling techniques and effectively utilizing the obtained a priori knowledge or information, the spatial sampling models and design schemes and their optimization and optimal selection were developed, as is a scientific basis of improving and optimizing the existing spatial sampling schemes of large-scale cropland remote sensing monitoring. Additionally, by the adaptive analysis and decision strategy the optimal local spatial prediction and gridded system of extrapolation results were able to excellently implement an adaptive report pattern of spatial sampling in accordance with report-covering units in order to satisfy the actual needs of sampling surveys.

  14. CYBERNETIC BASIS AND SYSTEM PRACTICE OF REMOTE SENSING AND SPATIAL INFORMATION SCIENCE

    Directory of Open Access Journals (Sweden)

    X. Tan

    2017-09-01

    Full Text Available Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level.

  15. Cybernetic Basis and System Practice of Remote Sensing and Spatial Information Science

    Science.gov (United States)

    Tan, X.; Jing, X.; Chen, R.; Ming, Z.; He, L.; Sun, Y.; Sun, X.; Yan, L.

    2017-09-01

    Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level.

  16. Projections onto Convex Sets Super-Resolution Reconstruction Based on Point Spread Function Estimation of Low-Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Chong Fan

    2017-02-01

    Full Text Available To solve the problem on inaccuracy when estimating the point spread function (PSF of the ideal original image in traditional projection onto convex set (POCS super-resolution (SR reconstruction, this paper presents an improved POCS SR algorithm based on PSF estimation of low-resolution (LR remote sensing images. The proposed algorithm can improve the spatial resolution of the image and benefit agricultural crop visual interpolation. The PSF of the highresolution (HR image is unknown in reality. Therefore, analysis of the relationship between the PSF of the HR image and the PSF of the LR image is important to estimate the PSF of the HR image by using multiple LR images. In this study, the linear relationship between the PSFs of the HR and LR images can be proven. In addition, the novel slant knife-edge method is employed, which can improve the accuracy of the PSF estimation of LR images. Finally, the proposed method is applied to reconstruct airborne digital sensor 40 (ADS40 three-line array images and the overlapped areas of two adjacent GF-2 images by embedding the estimated PSF of the HR image to the original POCS SR algorithm. Experimental results show that the proposed method yields higher quality of reconstructed images than that produced by the blind SR method and the bicubic interpolation method.

  17. MULTI-SCALE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING IMAGES BY INTEGRATING MULTIPLE FEATURES

    Directory of Open Access Journals (Sweden)

    Y. Di

    2017-05-01

    Full Text Available Most of multi-scale segmentation algorithms are not aiming at high resolution remote sensing images and have difficulty to communicate and use layers’ information. In view of them, we proposes a method of multi-scale segmentation of high resolution remote sensing images by integrating multiple features. First, Canny operator is used to extract edge information, and then band weighted distance function is built to obtain the edge weight. According to the criterion, the initial segmentation objects of color images can be gained by Kruskal minimum spanning tree algorithm. Finally segmentation images are got by the adaptive rule of Mumford–Shah region merging combination with spectral and texture information. The proposed method is evaluated precisely using analog images and ZY-3 satellite images through quantitative and qualitative analysis. The experimental results show that the multi-scale segmentation of high resolution remote sensing images by integrating multiple features outperformed the software eCognition fractal network evolution algorithm (highest-resolution network evolution that FNEA on the accuracy and slightly inferior to FNEA on the efficiency.

  18. Neutron resonance transmission spectroscopy with high spatial and energy resolution at the J-PARC pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Shinohara, T.; Kai, T.; Ooi, M. [Japan Atomic Energy Agency, 2–4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kamiyama, T.; Kiyanagi, Y.; Shiota, Y. [Hokkaido University, Kita 13 Nishi 8 Kita-ku, Sapporo-shi, Hokkaido 060-8628 (Japan); McPhate, J.B.; Vallerga, J.V.; Siegmund, O.H.W. [University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Rd., Sturbridge, MA 01566 (United States)

    2014-05-11

    The sharp variation of neutron attenuation at certain energies specific to particular nuclides (the lower range being from ∼1 eV up to ∼1 keV), can be exploited for the remote mapping of element and/or isotope distributions, as well as temperature probing, within relatively thick samples. Intense pulsed neutron beam-lines at spallation sources combined with a high spatial, high-timing resolution neutron counting detector, provide a unique opportunity to measure neutron transmission spectra through the time-of-flight technique. We present the results of experiments where spatially resolved neutron resonances were measured, at energies up to 50 keV. These experiments were performed with the intense flux low background NOBORU neutron beamline at the J-PARC neutron source and the high timing resolution (∼20 ns at epithermal neutron energies) and spatial resolution (∼55 µm) neutron counting detector using microchannel plates coupled to a Timepix electronic readout. Simultaneous element-specific imaging was carried out for several materials, at a spatial resolution of ∼150 µm. The high timing resolution of our detector combined with the low background beamline, also enabled characterization of the neutron pulse itself – specifically its pulse width, which varies with neutron energy. The results of our measurements are in good agreement with the predicted results for the double pulse structure of the J-PARC facility, which provides two 100 ns-wide proton pulses separated by 600 ns, broadened by the neutron energy moderation process. Thermal neutron radiography can be conducted simultaneously with resonance transmission spectroscopy, and can reveal the internal structure of the samples. The transmission spectra measured in our experiments demonstrate the feasibility of mapping elemental distributions using this non-destructive technique, for those elements (and in certain cases, specific isotopes), which have resonance energies below a few keV, and with lower

  19. Breast density estimation from high spectral and spatial resolution MRI

    Science.gov (United States)

    Li, Hui; Weiss, William A.; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M.; Karczmar, Gregory S.; Giger, Maryellen L.

    2016-01-01

    Abstract. A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists’ breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 (pdensity estimations. An interclass correlation coefficient of 0.99 (pdensity estimations. A moderate correlation coefficient of 0.55 (p=0.0076) was observed between HiSS-based breast density estimations and radiologists’ BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy. PMID:28042590

  20. Comparison of alternative spatial resolutions in the application of a spatially distributed biogeochemical model over complex terrain

    Science.gov (United States)

    Turner, D.P.; Dodson, R.; Marks, D.

    1996-01-01

    Spatially distributed biogeochemical models may be applied over grids at a range of spatial resolutions, however, evaluation of potential errors and loss of information at relatively coarse resolutions is rare. In this study, a georeferenced database at the 1-km spatial resolution was developed to initialize and drive a process-based model (Forest-BGC) of water and carbon balance over a gridded 54976 km2 area covering two river basins in mountainous western Oregon. Corresponding data sets were also prepared at 10-km and 50-km spatial resolutions using commonly employed aggregation schemes. Estimates were made at each grid cell for climate variables including daily solar radiation, air temperature, humidity, and precipitation. The topographic structure, water holding capacity, vegetation type and leaf area index were likewise estimated for initial conditions. The daily time series for the climatic drivers was developed from interpolations of meteorological station data for the water year 1990 (1 October 1989-30 September 1990). Model outputs at the 1-km resolution showed good agreement with observed patterns in runoff and productivity. The ranges for model inputs at the 10-km and 50-km resolutions tended to contract because of the smoothed topography. Estimates for mean evapotranspiration and runoff were relatively insensitive to changing the spatial resolution of the grid whereas estimates of mean annual net primary production varied by 11%. The designation of a vegetation type and leaf area at the 50-km resolution often subsumed significant heterogeneity in vegetation, and this factor accounted for much of the difference in the mean values for the carbon flux variables. Although area wide means for model outputs were generally similar across resolutions, difference maps often revealed large areas of disagreement. Relatively high spatial resolution analyses of biogeochemical cycling are desirable from several perspectives and may be particularly important in the

  1. Comparative study between ultrahigh spatial frequency algorithm and high spatial frequency algorithm in high-resolution CT of the lungs

    International Nuclear Information System (INIS)

    Oh, Yu Whan; Kim, Jung Kyuk; Suh, Won Hyuck

    1994-01-01

    To date, the high spatial frequency algorithm (HSFA) which reduces image smoothing and increases spatial resolution has been used for the evaluation of parenchymal lung diseases in thin-section high-resolution CT. In this study, we compared the ultrahigh spatial frequency algorithm (UHSFA) with the high spatial frequency algorithm in the assessment of thin section images of the lung parenchyma. Three radiologists compared the UHSFA and HSFA on identical CT images in a line-pair resolution phantom, one lung specimen, 2 patients with normal lung and 18 patients with abnormal lung parenchyma. Scanning of a line-pair resolution phantom demonstrated no difference in resolution between two techniques but it showed that outer lines of the line pairs with maximal resolution looked thicker on UHSFA than those on HSFA. Lung parenchymal detail with UHSFA was judged equal or superior to HSFA in 95% of images. Lung parenchymal sharpness was improved with UHSFA in all images. Although UHSFA resulted in an increase in visible noise, observers did not found that image noise interfered with image interpretation. The visual CT attenuation of normal lung parenchyma is minimally increased in images with HSFA. The overall visual preference of the images reconstructed on UHSFA was considered equal to or greater than that of those reconstructed on HSFA in 78% of images. The ultrahigh spatial frequency algorithm improved the overall visual quality of the images in pulmonary parenchymal high-resolution CT

  2. Comparative analysis of time efficiency and spatial resolution between different EIT reconstruction algorithms

    International Nuclear Information System (INIS)

    Kacarska, Marija; Loskovska, Suzana

    2002-01-01

    In this paper comparative analysis between different EIT algorithms is presented. Analysis is made for spatial and temporal resolution of obtained images by several different algorithms. Discussions consider spatial resolution dependent on data acquisition method, too. Obtained results show that conventional applied-current EIT is more powerful compared to induced-current EIT. (Author)

  3. Detector Motion Method to Increase Spatial Resolution in Photon-Counting Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Daehee; Park, Kyeongjin; Lim, Kyung Taek; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejon (Korea, Republic of)

    2017-03-15

    Medical imaging requires high spatial resolution of an image to identify fine lesions. Photoncounting detectors in medical imaging have recently been rapidly replacing energy-integrating detectors due to the former's high spatial resolution, high efficiency and low noise. Spatial resolution in a photon counting image is determined by the pixel size. Therefore, the smaller the pixel size, the higher the spatial resolution that can be obtained in an image. However, detector redesigning is required to reduce pixel size, and an expensive fine process is required to integrate a signal processing unit with reduced pixel size. Furthermore, as the pixel size decreases, charge sharing severely deteriorates spatial resolution. To increase spatial resolution, we propose a detector motion method using a large pixel detector that is less affected by charge sharing. To verify the proposed method, we utilized a UNO-XRI photon-counting detector (1-mm CdTe, Timepix chip) at the maximum X-ray tube voltage of 80 kVp. A similar spatial resolution of a 55-μm-pixel image was achieved by application of the proposed method to a 110-μm-pixel detector with a higher signal-to-noise ratio. The proposed method could be a way to increase spatial resolution without a pixel redesign when pixels severely suffer from charge sharing as pixel size is reduced.

  4. Measurement of the spatial resolution and rate capability of an induction drift chamber

    International Nuclear Information System (INIS)

    Roderburg, E.; Broeders, R.; Dahmen, M.; Decker, G.; Kilian, K.; Kurtenbach, A.; Lippert, C.; Oelert, W.; Sehl, G.; Steinkamp, O.; Stratmann, R.; Walsh, S.; Ziolkowski, M.

    1992-01-01

    The limits of spatial resolution of an induction drift chamber (IDC) lead to the concept of an asymmetric IDC with Flash ADC readout. The construction of a chamber is described. The results of two measurements concerning the spatial resolution and the rate capability are reported. (orig.)

  5. The effects of transient attention on spatial resolution and the size of the attentional cue.

    Science.gov (United States)

    Yeshurun, Yaffa; Carrasco, Marisa

    2008-01-01

    It has been shown that transient attention enhances spatial resolution, but is the effect of transient attention on spatial resolution modulated by the size of the attentional cue? Would a gradual increase in the size of the cue lead to a gradual decrement in spatial resolution? To test these hypotheses, we used a texture segmentation task in which performance depends on spatial resolution, and systematically manipulated the size of the attentional cue: A bar of different lengths (Experiment 1) or a frame of different sizes (Experiments 2-3) indicated the target region in a texture segmentation display. Observers indicated whether a target patch region (oriented line elements in a background of an orthogonal orientation), appearing at a range of eccentricities, was present in the first or the second interval. We replicated the attentional enhancement of spatial resolution found with small cues; attention improved performance at peripheral locations but impaired performance at central locations. However, there was no evidence of gradual resolution decrement with large cues. Transient attention enhanced spatial resolution at the attended location when it was attracted to that location by a small cue but did not affect resolution when it was attracted by a large cue. These results indicate that transient attention cannot adapt its operation on spatial resolution on the basis of the size of the attentional cue.

  6. Estimation of the distribution of Tabebuia guayacan (Bignoniaceae) using high-resolution remote sensing imagery.

    Science.gov (United States)

    Sánchez-Azofeifa, Arturo; Rivard, Benoit; Wright, Joseph; Feng, Ji-Lu; Li, Peijun; Chong, Mei Mei; Bohlman, Stephanie A

    2011-01-01

    Species identification and characterization in tropical environments is an emerging field in tropical remote sensing. Significant efforts are currently aimed at the detection of tree species, of levels of forest successional stages, and the extent of liana occurrence at the top of canopies. In this paper we describe our use of high resolution imagery from the Quickbird Satellite to estimate the flowering population of Tabebuia guayacan trees at Barro Colorado Island (BCI), in Panama. The imagery was acquired on 29 April 2002 and 21 March 2004. Spectral Angle Mapping via a One-Class Support Vector machine was used to detect the presence of 422 and 557 flowering tress in the April 2002 and March 2004 imagery. Of these, 273 flowering trees are common to both dates. This study presents a new perspective on the effectiveness of high resolution remote sensing for monitoring a phenological response and its use as a tool for potential conservation and management of natural resources in tropical environments.

  7. Remote classification from an airborne camera using image super-resolution.

    Science.gov (United States)

    Woods, Matthew; Katsaggelos, Aggelos

    2017-02-01

    The image processing technique known as super-resolution (SR), which attempts to increase the effective pixel sampling density of a digital imager, has gained rapid popularity over the last decade. The majority of literature focuses on its ability to provide results that are visually pleasing to a human observer. In this paper, we instead examine the ability of SR to improve the resolution-critical capability of an imaging system to perform a classification task from a remote location, specifically from an airborne camera. In order to focus the scope of the study, we address and quantify results for the narrow case of text classification. However, we expect the results generalize to a large set of related, remote classification tasks. We generate theoretical results through simulation, which are corroborated by experiments with a camera mounted on a DJI Phantom 3 quadcopter.

  8. Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2002-07

    Science.gov (United States)

    Pearson, D.K.; Gary, R.H.; Wilson, Z.D.

    2007-01-01

    Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is particularly useful when analyzing a wide variety of spatial data such as with remote sensing and spatial analysis. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This document presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup from 2002 through 2007.

  9. Emotional cues enhance the attentional effects on spatial and temporal resolution.

    Science.gov (United States)

    Bocanegra, Bruno R; Zeelenberg, René

    2011-12-01

    In the present study, we demonstrated that the emotional significance of a spatial cue enhances the effect of covert attention on spatial and temporal resolution (i.e., our ability to discriminate small spatial details and fast temporal flicker). Our results indicated that fearful face cues, as compared with neutral face cues, enhanced the attentional benefits in spatial resolution but also enhanced the attentional deficits in temporal resolution. Furthermore, we observed that the overall magnitudes of individuals' attentional effects correlated strongly with the magnitude of the emotion × attention interaction effect. Combined, these findings provide strong support for the idea that emotion enhances the strength of a cue's attentional response.

  10. Context-dependent modulation of hippocampal and cortical recruitment during remote spatial memory retrieval.

    Science.gov (United States)

    Lopez, Joëlle; Herbeaux, Karin; Cosquer, Brigitte; Engeln, Michel; Muller, Christophe; Lazarus, Christine; Kelche, Christian; Bontempi, Bruno; Cassel, Jean-Christophe; de Vasconcelos, Anne Pereira

    2012-04-01

    According to systems consolidation, as hippocampal-dependent memories mature over time, they become additionally (or exclusively) dependent on extra-hippocampal structures. We assessed the recruitment of hippocampal and cortical structures on remote memory retrieval in a performance-degradation resistant (PDR; no performance degradation with time) versus performance-degradation prone (PDP; performance degraded with time) context. Using a water-maze task in two contexts with a hidden platform and three control conditions (home cage, visible platform with or without access to distal cues), we compared neuronal activation (c-Fos imaging) patterns in the dorsal hippocampus and the medial prefrontal cortex (mPFC) after the retrieval of recent (5 days) versus remote (25 days) spatial memory. In the PDR context, the hippocampus exhibited greater c-Fos protein expression on remote than recent memory retrieval, be it in the visible or hidden platform group. In the PDP context, hippocampal activation increased at the remote time point and only in the hidden platform group. In the anterior cingulate cortex, c-Fos expression was greater for remote than for recent memory retrieval and only in the PDR context. The necessity of the mPFC for remote memory retrieval in the PDR context was confirmed using region-specific lidocaine inactivation, which had no impact on recent memory. Conversely, inactivation of the dorsal hippocampus impaired both recent and remote memory in the PDR context, and only recent memory in the PDP context, in which remote memory performance was degraded. While confirming that neuronal circuits supporting spatial memory consolidation are reorganized in a time-dependent manner, our findings further indicate that mPFC and hippocampus recruitment (i) depends on the content and perhaps the strength of the memory and (ii) may be influenced by the environmental conditions (e.g., cue saliency, complexity) in which memories are initially formed and subsequently

  11. Extraction of Urban Water Bodies from High-Resolution Remote-Sensing Imagery Using Deep Learning

    Directory of Open Access Journals (Sweden)

    Yang Chen

    2018-05-01

    Full Text Available Accurate information on urban surface water is important for assessing the role it plays in urban ecosystem services in the context of human survival and climate change. The precise extraction of urban water bodies from images is of great significance for urban planning and socioeconomic development. In this paper, a novel deep-learning architecture is proposed for the extraction of urban water bodies from high-resolution remote sensing (HRRS imagery. First, an adaptive simple linear iterative clustering algorithm is applied for segmentation of the remote-sensing image into high-quality superpixels. Then, a new convolutional neural network (CNN architecture is designed that can extract useful high-level features of water bodies from input data in a complex urban background and mark the superpixel as one of two classes: an including water or no-water pixel. Finally, a high-resolution image of water-extracted superpixels is generated. Experimental results show that the proposed method achieved higher accuracy for water extraction from the high-resolution remote-sensing images than traditional approaches, and the average overall accuracy is 99.14%.

  12. High-resolution remotely sensed small target detection by imitating fly visual perception mechanism.

    Science.gov (United States)

    Huang, Fengchen; Xu, Lizhong; Li, Min; Tang, Min

    2012-01-01

    The difficulty and limitation of small target detection methods for high-resolution remote sensing data have been a recent research hot spot. Inspired by the information capture and processing theory of fly visual system, this paper endeavors to construct a characterized model of information perception and make use of the advantages of fast and accurate small target detection under complex varied nature environment. The proposed model forms a theoretical basis of small target detection for high-resolution remote sensing data. After the comparison of prevailing simulation mechanism behind fly visual systems, we propose a fly-imitated visual system method of information processing for high-resolution remote sensing data. A small target detector and corresponding detection algorithm are designed by simulating the mechanism of information acquisition, compression, and fusion of fly visual system and the function of pool cell and the character of nonlinear self-adaption. Experiments verify the feasibility and rationality of the proposed small target detection model and fly-imitated visual perception method.

  13. High-Resolution Remotely Sensed Small Target Detection by Imitating Fly Visual Perception Mechanism

    Directory of Open Access Journals (Sweden)

    Fengchen Huang

    2012-01-01

    Full Text Available The difficulty and limitation of small target detection methods for high-resolution remote sensing data have been a recent research hot spot. Inspired by the information capture and processing theory of fly visual system, this paper endeavors to construct a characterized model of information perception and make use of the advantages of fast and accurate small target detection under complex varied nature environment. The proposed model forms a theoretical basis of small target detection for high-resolution remote sensing data. After the comparison of prevailing simulation mechanism behind fly visual systems, we propose a fly-imitated visual system method of information processing for high-resolution remote sensing data. A small target detector and corresponding detection algorithm are designed by simulating the mechanism of information acquisition, compression, and fusion of fly visual system and the function of pool cell and the character of nonlinear self-adaption. Experiments verify the feasibility and rationality of the proposed small target detection model and fly-imitated visual perception method.

  14. Learning Low Dimensional Convolutional Neural Networks for High-Resolution Remote Sensing Image Retrieval

    Directory of Open Access Journals (Sweden)

    Weixun Zhou

    2017-05-01

    Full Text Available Learning powerful feature representations for image retrieval has always been a challenging task in the field of remote sensing. Traditional methods focus on extracting low-level hand-crafted features which are not only time-consuming but also tend to achieve unsatisfactory performance due to the complexity of remote sensing images. In this paper, we investigate how to extract deep feature representations based on convolutional neural networks (CNNs for high-resolution remote sensing image retrieval (HRRSIR. To this end, several effective schemes are proposed to generate powerful feature representations for HRRSIR. In the first scheme, a CNN pre-trained on a different problem is treated as a feature extractor since there are no sufficiently-sized remote sensing datasets to train a CNN from scratch. In the second scheme, we investigate learning features that are specific to our problem by first fine-tuning the pre-trained CNN on a remote sensing dataset and then proposing a novel CNN architecture based on convolutional layers and a three-layer perceptron. The novel CNN has fewer parameters than the pre-trained and fine-tuned CNNs and can learn low dimensional features from limited labelled images. The schemes are evaluated on several challenging, publicly available datasets. The results indicate that the proposed schemes, particularly the novel CNN, achieve state-of-the-art performance.

  15. Charge-coupled devices for particle detection with high spatial resolution

    International Nuclear Information System (INIS)

    Farley, F.J.; Damerell, C.J.S.; Gillman, A.R.; Wickens, F.J.

    1980-10-01

    The results of a study of the possible application of a thin microelectronic device (the charge-coupled device) to high energy physics as particle detectors with good spatial resolution which can distinguish between tracks emerging from the primary vertex and those from secondary vertices due to the decay of short lived particles with higher flavours, are reported. Performance characteristics indicating the spatial resolution, particle discrimination, time resolution, readout time and lifetime of such detectors have been obtained. (U.K.)

  16. Spatially explicit rangeland erosion monitoring using high-resolution digital aerial imagery

    Science.gov (United States)

    Gillan, Jeffrey K.; Karl, Jason W.; Barger, Nichole N.; Elaksher, Ahmed; Duniway, Michael C.

    2016-01-01

    Nearly all of the ecosystem services supported by rangelands, including production of livestock forage, carbon sequestration, and provisioning of clean water, are negatively impacted by soil erosion. Accordingly, monitoring the severity, spatial extent, and rate of soil erosion is essential for long-term sustainable management. Traditional field-based methods of monitoring erosion (sediment traps, erosion pins, and bridges) can be labor intensive and therefore are generally limited in spatial intensity and/or extent. There is a growing effort to monitor natural resources at broad scales, which is driving the need for new soil erosion monitoring tools. One remote-sensing technique that can be used to monitor soil movement is a time series of digital elevation models (DEMs) created using aerial photogrammetry methods. By geographically coregistering the DEMs and subtracting one surface from the other, an estimate of soil elevation change can be created. Such analysis enables spatially explicit quantification and visualization of net soil movement including erosion, deposition, and redistribution. We constructed DEMs (12-cm ground sampling distance) on the basis of aerial photography immediately before and 1 year after a vegetation removal treatment on a 31-ha Piñon-Juniper woodland in southeastern Utah to evaluate the use of aerial photography in detecting soil surface change. On average, we were able to detect surface elevation change of ± 8−9cm and greater, which was sufficient for the large amount of soil movement exhibited on the study area. Detecting more subtle soil erosion could be achieved using the same technique with higher-resolution imagery from lower-flying aircraft such as unmanned aerial vehicles. DEM differencing and process-focused field methods provided complementary information and a more complete assessment of soil loss and movement than any single technique alone. Photogrammetric DEM differencing could be used as a technique to

  17. Estimating Vegetation Rainfall Interception Using Remote Sensing Observations at Very High Resolution

    Science.gov (United States)

    Cui, Y.; Zhao, P.; Hong, Y.; Fan, W.; Yan, B.; Xie, H.

    2017-12-01

    Abstract: As an important compont of evapotranspiration, vegetation rainfall interception is the proportion of gross rainfall that is intercepted, stored and subsequently evaporated from all parts of vegetation during or following rainfall. Accurately quantifying the vegetation rainfall interception at a high resolution is critical for rainfall-runoff modeling and flood forecasting, and is also essential for understanding its further impact on local, regional, and even global water cycle dynamics. In this study, the Remote Sensing-based Gash model (RS-Gash model) is developed based on a modified Gash model for interception loss estimation using remote sensing observations at the regional scale, and has been applied and validated in the upper reach of the Heihe River Basin of China for different types of vegetation. To eliminate the scale error and the effect of mixed pixels, the RS-Gash model is applied at a fine scale of 30 m with the high resolution vegetation area index retrieved by using the unified model of bidirectional reflectance distribution function (BRDF-U) for the vegetation canopy. Field validation shows that the RMSE and R2 of the interception ratio are 3.7% and 0.9, respectively, indicating the model's strong stability and reliability at fine scale. The temporal variation of vegetation rainfall interception loss and its relationship with precipitation are further investigated. In summary, the RS-Gash model has demonstrated its effectiveness and reliability in estimating vegetation rainfall interception. When compared to the coarse resolution results, the application of this model at 30-m fine resolution is necessary to resolve the scaling issues as shown in this study. Keywords: rainfall interception; remote sensing; RS-Gash analytical model; high resolution

  18. Illumination invariant feature point matching for high-resolution planetary remote sensing images

    Science.gov (United States)

    Wu, Bo; Zeng, Hai; Hu, Han

    2018-03-01

    Despite its success with regular close-range and remote-sensing images, the scale-invariant feature transform (SIFT) algorithm is essentially not invariant to illumination differences due to the use of gradients for feature description. In planetary remote sensing imagery, which normally lacks sufficient textural information, salient regions are generally triggered by the shadow effects of keypoints, reducing the matching performance of classical SIFT. Based on the observation of dual peaks in a histogram of the dominant orientations of SIFT keypoints, this paper proposes an illumination-invariant SIFT matching method for high-resolution planetary remote sensing images. First, as the peaks in the orientation histogram are generally aligned closely with the sub-solar azimuth angle at the time of image collection, an adaptive suppression Gaussian function is tuned to level the histogram and thereby alleviate the differences in illumination caused by a changing solar angle. Next, the suppression function is incorporated into the original SIFT procedure for obtaining feature descriptors, which are used for initial image matching. Finally, as the distribution of feature descriptors changes after anisotropic suppression, and the ratio check used for matching and outlier removal in classical SIFT may produce inferior results, this paper proposes an improved matching procedure based on cross-checking and template image matching. The experimental results for several high-resolution remote sensing images from both the Moon and Mars, with illumination differences of 20°-180°, reveal that the proposed method retrieves about 40%-60% more matches than the classical SIFT method. The proposed method is of significance for matching or co-registration of planetary remote sensing images for their synergistic use in various applications. It also has the potential to be useful for flyby and rover images by integrating with the affine invariant feature detectors.

  19. Hippocampal activation during the recall of remote spatial memories in radial maze tasks.

    Science.gov (United States)

    Schlesiger, Magdalene I; Cressey, John C; Boublil, Brittney; Koenig, Julie; Melvin, Neal R; Leutgeb, Jill K; Leutgeb, Stefan

    2013-11-01

    Temporally graded retrograde amnesia is observed in human patients with medial temporal lobe lesions as well as in animal models of medial temporal lobe lesions. A time-limited role for these structures in memory recall has also been suggested by the observation that the rodent hippocampus and entorhinal cortex are activated during the retrieval of recent but not of remote memories. One notable exception is the recall of remote memories for platform locations in the water maze, which requires an intact hippocampus and results in hippocampal activation irrespective of the age of the memory. These findings raise the question whether the hippocampus is always involved in the recall of spatial memories or, alternatively, whether it might be required for procedural computations in the water maze task, such as for calculating a path to a hidden platform. We performed spatial memory testing in radial maze tasks to distinguish between these possibilities. Radial maze tasks require a choice between spatial locations on a center platform and thus have a lesser requirement for navigation than the water maze. However, we used a behavioral design in the radial maze that retained other aspects of the standard water maze task, such as the use of multiple start locations and retention testing in a single trial. Using the immediate early gene c-fos as a marker for neuronal activation, we found that all hippocampal subregions were more activated during the recall of remote compared to recent spatial memories. In areas CA3 and CA1, activation during remote memory testing was higher than in rats that were merely reexposed to the testing environment after the same time interval. Conversely, Fos levels in the dentate gyrus were increased after retention testing to the extent that was also observed in the corresponding exposure control group. This pattern of hippocampal activation was also obtained in a second version of the task that only used a single start arm instead of multiple

  20. On the feasibility of comprehensive high-resolution 3D remote dosimetry

    International Nuclear Information System (INIS)

    Juang, Titania; Grant, Ryan; Adamovics, John; Ibbott, Geoffrey; Oldham, Mark

    2014-01-01

    Purpose: This study investigates the feasibility of remote high-resolution 3D dosimetry with the PRESAGE®/Optical-CT system. In remote dosimetry, dosimeters are shipped out from a central base institution to a remote institution for irradiation, then shipped back to the base institution for subsequent readout and analysis. Methods: Two nominally identical optical-CT scanners for 3D dosimetry were constructed and placed at the base (Duke University) and remote (Radiological Physics Center) institutions. Two formulations of PRESAGE® (SS1, SS2) radiochromic dosimeters were investigated. Higher sensitivity was expected in SS1, which had higher initiator content (0.25% bromotrichloromethane), while greater temporal stability was expected in SS2. Four unirradiated PRESAGE® dosimeters (two per formulation, cylindrical dimensions 11 cm diameter, 8.5–9.5 cm length) were imaged at the base institution, then shipped to the remote institution for planning and irradiation. Each dosimeter was irradiated with the same simple treatment plan: an isocentric 3-field “cross” arrangement of 4 × 4 cm open 6 MV beams configured as parallel opposed laterals with an anterior beam. This simple plan was amenable to accurate and repeatable setup, as well as accurate dose modeling by a commissioned treatment planning system (Pinnacle). After irradiation and subsequent (within 1 h) optical-CT readout at the remote institution, the dosimeters were shipped back to the base institution for remote dosimetry readout 3 days postirradiation. Measured on-site and remote relative 3D dose distributions were registered to the Pinnacle dose calculation, which served as the reference distribution for 3D gamma calculations with passing criteria of 5%/2 mm, 3%/3 mm, and 3%/2 mm with a 10% dose threshold. Gamma passing rates, dose profiles, and color-maps were all used to assess and compare the performance of both PRESAGE® formulations for remote dosimetry. Results: The best agreements between the

  1. Remote sensing data handling to improve the system integration of indonesian national spatial data infrastructure

    International Nuclear Information System (INIS)

    Hari, G. R. V.

    2010-01-01

    With the usage of metadata as a reference for spatial data query, remote sensing images and other spatial datasets have been linked to their related semantic information. In the current catalogue systems, like those or satellite data provides, or clearinghouses, each remote sensing image is maintained as an independent entity. There is a very limited possibility to know the linkage of one image to another, even if one image has actually been derived from the other. It is an advantage for many purposes if the linkage among remote sensing image or other spatial data can be maintained or at least reconstructed. This research will explore how an image is linked to its related information, and how an image can be linked to another images. By exploring links among remote sensing images, a query of remote sensing data collection can be extended, for example, to find the answer of the query: 'which images are used to create certain dataset?', or 'which images have been created from a concrete dataset?', or 'is there a relationship between image A and image B based on their processing steps?'. By building links among spatial datasets in a collection based on their creation process, a further possibility of spatial data organization can be supported. The applicability and compatibility of the proposed method with the current platform is also considered. The proposed method can be implemented using the same standard and protocol and using the same metadata file as used by the existing system. This approach makes it also possible to be implemented in many countries which use the same infrastructure. To prove this purpose, we develop a prototype based on open source platform, including PostgreSQL, Apache Webserver, Mapserver WebGIS, and PHP programming environment. The output of this research leads to an improvement of spatial data handling, where an adjacency list is used to maintain spatial dataset history link. This improvement can enhance the query of spatial data in a

  2. Positron flight in human tissues and its influence on PET image spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Crespo, Alejandro; Larsson, Stig A. [Section of Nuclear Medicine, Department of Hospital Physics, Karolinska Hospital, 176 76, Stockholm (Sweden); Medical Radiation Physics, Department of Oncology-Pathology, Stockholm University and Karolinska Institute, Stockholm (Sweden); Andreo, Pedro [Medical Radiation Physics, Department of Oncology-Pathology, Stockholm University and Karolinska Institute, Stockholm (Sweden)

    2004-01-01

    The influence of the positron distance of flight in various human tissues on the spatial resolution in positron emission tomography (PET) was assessed for positrons from carbon-11, nitrogen-13, oxygen-15, fluorine-18, gallium-68 and rubidium-82. The investigation was performed using the Monte Carlo code PENELOPE to simulate the transport of positrons within human compact bone, adipose, soft and lung tissue. The simulations yielded 3D distributions of annihilation origins that were projected on the image plane in order to assess their impact on PET spatial resolution. The distributions obtained were cusp-shaped with long tails rather than Gaussian shaped, thus making conventional full width at half maximum (FWHM) measures uncertain. The full width at 20% of the maximum amplitude (FW20M) of the annihilation distributions yielded more appropriate values for root mean square addition of spatial resolution loss components. Large differences in spatial resolution losses due to the positron flight in various human tissues were found for the selected radionuclides. The contribution to image blur was found to be up to three times larger in lung tissue than in soft tissue or fat and five times larger than in bone tissue. For {sup 18}F, the spatial resolution losses were 0.54 mm in soft tissue and 1.52 mm in lung tissue, compared with 4.10 and 10.5 mm, respectively, for {sup 82}Rb. With lung tissue as a possible exception, the image blur due to the positron flight in all human tissues has a minor impact as long as PET cameras with a spatial resolution of 5-7 mm are used in combination with {sup 18}F-labelled radiopharmaceuticals. However, when ultra-high spatial resolution PET cameras, with 3-4 mm spatial resolution, are applied, especially in combination with other radionuclides, the positron flight may enter as a limiting factor for the total PET spatial resolution - particularly in lung tissue. (orig.)

  3. Positron flight in human tissues and its influence on PET image spatial resolution

    International Nuclear Information System (INIS)

    Sanchez-Crespo, Alejandro; Larsson, Stig A.; Andreo, Pedro

    2004-01-01

    The influence of the positron distance of flight in various human tissues on the spatial resolution in positron emission tomography (PET) was assessed for positrons from carbon-11, nitrogen-13, oxygen-15, fluorine-18, gallium-68 and rubidium-82. The investigation was performed using the Monte Carlo code PENELOPE to simulate the transport of positrons within human compact bone, adipose, soft and lung tissue. The simulations yielded 3D distributions of annihilation origins that were projected on the image plane in order to assess their impact on PET spatial resolution. The distributions obtained were cusp-shaped with long tails rather than Gaussian shaped, thus making conventional full width at half maximum (FWHM) measures uncertain. The full width at 20% of the maximum amplitude (FW20M) of the annihilation distributions yielded more appropriate values for root mean square addition of spatial resolution loss components. Large differences in spatial resolution losses due to the positron flight in various human tissues were found for the selected radionuclides. The contribution to image blur was found to be up to three times larger in lung tissue than in soft tissue or fat and five times larger than in bone tissue. For 18 F, the spatial resolution losses were 0.54 mm in soft tissue and 1.52 mm in lung tissue, compared with 4.10 and 10.5 mm, respectively, for 82 Rb. With lung tissue as a possible exception, the image blur due to the positron flight in all human tissues has a minor impact as long as PET cameras with a spatial resolution of 5-7 mm are used in combination with 18 F-labelled radiopharmaceuticals. However, when ultra-high spatial resolution PET cameras, with 3-4 mm spatial resolution, are applied, especially in combination with other radionuclides, the positron flight may enter as a limiting factor for the total PET spatial resolution - particularly in lung tissue. (orig.)

  4. Passive Standoff Super Resolution Imaging using Spatial-Spectral Multiplexing

    Science.gov (United States)

    2017-08-14

    OPD is mainly influenced by the indices of refraction and thicknesses for the two glass plates/fluids (n1/t1 and n2/t2) and the angle of incidence...the algorithm’s robustness. To be specific, this reconstruction algorithm is shown to be effective on both smoothly varying and point cloud objects...applications in the field of hydrology, oceanography, glaciology, forest, climate , urban, military and meteorology [62]. With remotely sensed images

  5. Change of spatial information under rescaling: A case study using multi-resolution image series

    Science.gov (United States)

    Chen, Weirong; Henebry, Geoffrey M.

    Spatial structure in imagery depends on a complicated interaction between the observational regime and the types and arrangements of entities within the scene that the image portrays. Although block averaging of pixels has commonly been used to simulate coarser resolution imagery, relatively little attention has been focused on the effects of simple rescaling on spatial structure and the explanation and a possible solution to the problem. Yet, if there are significant differences in spatial variance between rescaled and observed images, it may affect the reliability of retrieved biogeophysical quantities. To investigate these issues, a nested series of high spatial resolution digital imagery was collected at a research site in eastern Nebraska in 2001. An airborne Kodak DCS420IR camera acquired imagery at three altitudes, yielding nominal spatial resolutions ranging from 0.187 m to 1 m. The red and near infrared (NIR) bands of the co-registered image series were normalized using pseudo-invariant features, and the normalized difference vegetation index (NDVI) was calculated. Plots of grain sorghum planted in orthogonal crop row orientations were extracted from the image series. The finest spatial resolution data were then rescaled by averaging blocks of pixels to produce a rescaled image series that closely matched the spatial resolution of the observed image series. Spatial structures of the observed and rescaled image series were characterized using semivariogram analysis. Results for NDVI and its component bands show, as expected, that decreasing spatial resolution leads to decreasing spatial variability and increasing spatial dependence. However, compared to the observed data, the rescaled images contain more persistent spatial structure that exhibits limited variation in both spatial dependence and spatial heterogeneity. Rescaling via simple block averaging fails to consider the effect of scene object shape and extent on spatial information. As the features

  6. High-resolution space-time characterization of convective rain cells: implications on spatial aggregation and temporal sampling operated by coarser resolution instruments

    Science.gov (United States)

    Marra, Francesco; Morin, Efrat

    2017-04-01

    Forecasting the occurrence of flash floods and debris flows is fundamental to save lives and protect infrastructures and properties. These natural hazards are generated by high-intensity convective storms, on space-time scales that cannot be properly monitored by conventional instrumentation. Consequently, a number of early-warning systems are nowadays based on remote sensing precipitation observations, e.g. from weather radars or satellites, that proved effective in a wide range of situations. However, the uncertainty affecting rainfall estimates represents an important issue undermining the operational use of early-warning systems. The uncertainty related to remote sensing estimates results from (a) an instrumental component, intrinsic of the measurement operation, and (b) a discretization component, caused by the discretization of the continuous rainfall process. Improved understanding on these sources of uncertainty will provide crucial information to modelers and decision makers. This study aims at advancing knowledge on the (b) discretization component. To do so, we take advantage of an extremely-high resolution X-Band weather radar (60 m, 1 min) recently installed in the Eastern Mediterranean. The instrument monitors a semiarid to arid transition area also covered by an accurate C-Band weather radar and by a relatively sparse rain gauge network ( 1 gauge/ 450 km2). Radar quantitative precipitation estimation includes corrections reducing the errors due to ground echoes, orographic beam blockage and attenuation of the signal in heavy rain. Intense, convection-rich, flooding events recently occurred in the area serve as study cases. We (i) describe with very high detail the spatiotemporal characteristics of the convective cores, and (ii) quantify the uncertainty due to spatial aggregation (spatial discretization) and temporal sampling (temporal discretization) operated by coarser resolution remote sensing instruments. We show that instantaneous rain intensity

  7. A DATA FIELD METHOD FOR URBAN REMOTELY SENSED IMAGERY CLASSIFICATION CONSIDERING SPATIAL CORRELATION

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2016-06-01

    Full Text Available Spatial correlation between pixels is important information for remotely sensed imagery classification. Data field method and spatial autocorrelation statistics have been utilized to describe and model spatial information of local pixels. The original data field method can represent the spatial interactions of neighbourhood pixels effectively. However, its focus on measuring the grey level change between the central pixel and the neighbourhood pixels results in exaggerating the contribution of the central pixel to the whole local window. Besides, Geary’s C has also been proven to well characterise and qualify the spatial correlation between each pixel and its neighbourhood pixels. But the extracted object is badly delineated with the distracting salt-and-pepper effect of isolated misclassified pixels. To correct this defect, we introduce the data field method for filtering and noise limitation. Moreover, the original data field method is enhanced by considering each pixel in the window as the central pixel to compute statistical characteristics between it and its neighbourhood pixels. The last step employs a support vector machine (SVM for the classification of multi-features (e.g. the spectral feature and spatial correlation feature. In order to validate the effectiveness of the developed method, experiments are conducted on different remotely sensed images containing multiple complex object classes inside. The results show that the developed method outperforms the traditional method in terms of classification accuracies.

  8. Accelerator-based Single-shot Ultrafast Transmission Electron Microscope with Picosecond Temporal Resolution and Nanometer Spatial Resolution

    OpenAIRE

    Xiang, D.; Fu, F.; Zhang, J.; Huang, X.; Wang, L.; Wang, X.; Wan, W.

    2014-01-01

    We present feasibility study of an accelerator-based ultrafast transmission electron microscope (u-TEM) capable of producing a full field image in a single-shot with simultaneous picosecond temporal resolution and nanometer spatial resolution. We study key physics related to performance of u-TEMs, and discuss major challenges as well as possible solutions for practical realization of u-TEMs. The feasibility of u-TEMs is confirmed through simulations using realistic electron beam parameters. W...

  9. Research of building information extraction and evaluation based on high-resolution remote-sensing imagery

    Science.gov (United States)

    Cao, Qiong; Gu, Lingjia; Ren, Ruizhi; Wang, Lang

    2016-09-01

    Building extraction currently is important in the application of high-resolution remote sensing imagery. At present, quite a few algorithms are available for detecting building information, however, most of them still have some obvious disadvantages, such as the ignorance of spectral information, the contradiction between extraction rate and extraction accuracy. The purpose of this research is to develop an effective method to detect building information for Chinese GF-1 data. Firstly, the image preprocessing technique is used to normalize the image and image enhancement is used to highlight the useful information in the image. Secondly, multi-spectral information is analyzed. Subsequently, an improved morphological building index (IMBI) based on remote sensing imagery is proposed to get the candidate building objects. Furthermore, in order to refine building objects and further remove false objects, the post-processing (e.g., the shape features, the vegetation index and the water index) is employed. To validate the effectiveness of the proposed algorithm, the omission errors (OE), commission errors (CE), the overall accuracy (OA) and Kappa are used at final. The proposed method can not only effectively use spectral information and other basic features, but also avoid extracting excessive interference details from high-resolution remote sensing images. Compared to the original MBI algorithm, the proposed method reduces the OE by 33.14% .At the same time, the Kappa increase by 16.09%. In experiments, IMBI achieved satisfactory results and outperformed other algorithms in terms of both accuracies and visual inspection

  10. Object-based Morphological Building Index for Building Extraction from High Resolution Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    LIN Xiangguo

    2017-06-01

    Full Text Available Building extraction from high resolution remote sensing images is a hot research topic in the field of photogrammetry and remote sensing. In this article, an object-based morphological building index (OBMBI is constructed based on both image segmentation and graph-based top-hat reconstruction, and OBMBI is used for building extraction from high resolution remote sensing images. First, bidirectional mapping relationship between pixels, objects and graph-nodes are constructed. Second, the OBMBI image is built based on both graph-based top-hat reconstruction and the above mapping relationship. Third, a binary thresholding is performed on the OBMBI image, and the binary image is converted into vector format to derive the building polygons. Finally, the post-processing is made to optimize the extracted building polygons. Two images, including an aerial image and a panchromatic satellite image, are used to test both the proposed method and classic PanTex method. The experimental results suggest that our proposed method has a higher accuracy in building extraction than the classic PanTex method. On average, the correctness, the completeness and the quality of our method are respectively 9.49%, 11.26% and 14.11% better than those of the PanTex.

  11. Calibration of remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush-steppe ecosystem

    Science.gov (United States)

    Wylie, B.K.; Johnson, D.A.; Laca, Emilio; Saliendra, Nicanor Z.; Gilmanov, T.G.; Reed, B.C.; Tieszen, L.L.; Worstell, B.B.

    2003-01-01

    The net ecosystem exchange (NEE) of carbon flux can be partitioned into gross primary productivity (GPP) and respiration (R). The contribution of remote sensing and modeling holds the potential to predict these components and map them spatially and temporally. This has obvious utility to quantify carbon sink and source relationships and to identify improved land management strategies for optimizing carbon sequestration. The objective of our study was to evaluate prediction of 14-day average daytime CO2 fluxes (Fday) and nighttime CO2 fluxes (Rn) using remote sensing and other data. Fday and Rn were measured with a Bowen ratio-energy balance (BREB) technique in a sagebrush (Artemisia spp.)-steppe ecosystem in northeast Idaho, USA, during 1996-1999. Micrometeorological variables aggregated across 14-day periods and time-integrated Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (iNDVI) were determined during four growing seasons (1996-1999) and used to predict Fday and Rn. We found that iNDVI was a strong predictor of Fday (R2 = 0.79, n = 66, P improved predictions of Fday (R2= 0.82, n = 66, P management strategies, carbon certification, and validation and calibration of carbon flux models. ?? 2003 Elsevier Science Inc. All rights reserved.

  12. Calibration of remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush–steppe ecosystem

    Science.gov (United States)

    Wylie, Bruce K.; Johnson, Douglas A.; Laca, Emilio; Saliendra, Nicanor Z.; Gilmanov, Tagir G.; Reed, Bradley C.; Tieszen, Larry L.; Worstell, Bruce B.

    2003-01-01

    The net ecosystem exchange (NEE) of carbon flux can be partitioned into gross primary productivity (GPP) and respiration (R). The contribution of remote sensing and modeling holds the potential to predict these components and map them spatially and temporally. This has obvious utility to quantify carbon sink and source relationships and to identify improved land management strategies for optimizing carbon sequestration. The objective of our study was to evaluate prediction of 14-day average daytime CO2 fluxes (Fday) and nighttime CO2 fluxes (Rn) using remote sensing and other data. Fday and Rnwere measured with a Bowen ratio–energy balance (BREB) technique in a sagebrush (Artemisia spp.)–steppe ecosystem in northeast Idaho, USA, during 1996–1999. Micrometeorological variables aggregated across 14-day periods and time-integrated Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (iNDVI) were determined during four growing seasons (1996–1999) and used to predict Fday and Rn. We found that iNDVI was a strong predictor of Fday(R2=0.79, n=66, Pimproved predictions of Fday (R2=0.82, n=66, Pmanagement strategies, carbon certification, and validation and calibration of carbon flux models.

  13. Random Access Memories: A New Paradigm for Target Detection in High Resolution Aerial Remote Sensing Images.

    Science.gov (United States)

    Zou, Zhengxia; Shi, Zhenwei

    2018-03-01

    We propose a new paradigm for target detection in high resolution aerial remote sensing images under small target priors. Previous remote sensing target detection methods frame the detection as learning of detection model + inference of class-label and bounding-box coordinates. Instead, we formulate it from a Bayesian view that at inference stage, the detection model is adaptively updated to maximize its posterior that is determined by both training and observation. We call this paradigm "random access memories (RAM)." In this paradigm, "Memories" can be interpreted as any model distribution learned from training data and "random access" means accessing memories and randomly adjusting the model at detection phase to obtain better adaptivity to any unseen distribution of test data. By leveraging some latest detection techniques e.g., deep Convolutional Neural Networks and multi-scale anchors, experimental results on a public remote sensing target detection data set show our method outperforms several other state of the art methods. We also introduce a new data set "LEarning, VIsion and Remote sensing laboratory (LEVIR)", which is one order of magnitude larger than other data sets of this field. LEVIR consists of a large set of Google Earth images, with over 22 k images and 10 k independently labeled targets. RAM gives noticeable upgrade of accuracy (an mean average precision improvement of 1% ~ 4%) of our baseline detectors with acceptable computational overhead.

  14. Building Extraction in Very High Resolution Remote Sensing Imagery Using Deep Learning and Guided Filters

    Directory of Open Access Journals (Sweden)

    Yongyang Xu

    2018-01-01

    Full Text Available Very high resolution (VHR remote sensing imagery has been used for land cover classification, and it tends to a transition from land-use classification to pixel-level semantic segmentation. Inspired by the recent success of deep learning and the filter method in computer vision, this work provides a segmentation model, which designs an image segmentation neural network based on the deep residual networks and uses a guided filter to extract buildings in remote sensing imagery. Our method includes the following steps: first, the VHR remote sensing imagery is preprocessed and some hand-crafted features are calculated. Second, a designed deep network architecture is trained with the urban district remote sensing image to extract buildings at the pixel level. Third, a guided filter is employed to optimize the classification map produced by deep learning; at the same time, some salt-and-pepper noise is removed. Experimental results based on the Vaihingen and Potsdam datasets demonstrate that our method, which benefits from neural networks and guided filtering, achieves a higher overall accuracy when compared with other machine learning and deep learning methods. The method proposed shows outstanding performance in terms of the building extraction from diversified objects in the urban district.

  15. Spatial probabilistic approach on landslide susceptibility assessment from high resolution sensors derived parameters

    International Nuclear Information System (INIS)

    Aman, S N A; Latif, Z Abd; Pradhan, B

    2014-01-01

    Landslide occurrence depends on various interrelating factors which consequently initiate to massive mass of soil and rock debris that move downhill due to the gravity action. LiDAR has come with a progressive approach in mitigating landslide by permitting the formation of more accurate DEM compared to other active space borne and airborne remote sensing techniques. The objective of this research is to assess the susceptibility of landslide in Ulu Klang area by investigating the correlation between past landslide events with geo environmental factors. A high resolution LiDAR DEM was constructed to produce topographic attributes such as slope, curvature and aspect. These data were utilized to derive second deliverables of landslide parameters such as topographic wetness index (TWI), surface area ratio (SAR) and stream power index (SPI) as well as NDVI generated from IKONOS imagery. Subsequently, a probabilistic based frequency ratio model was applied to establish the spatial relationship between the landslide locations and each landslide related factor. Factor ratings were summed up to obtain Landslide Susceptibility Index (LSI) to construct the landslide susceptibility map

  16. Development and features of an X-ray detector with high spatial resolution

    International Nuclear Information System (INIS)

    Hartmann, H.

    1979-09-01

    A laboratory model of an X-ray detector with high spatial resolution was developed and constructed. It has no spectral resolution, but a local resolution of 20 μm which is about ten times as high as that of position-sensitive proportional counters and satisfies the requirements of the very best Wolter telescopes with regard to spatial resolution. The detector will be used for laboratory tests of the 80 cm Wolter telescope which is being developed for Spacelab flights. The theory of the wire grid detector and the physics of the photoelectric effect has been developed, and model calculations and numerical calculations have been carried out. (orig./WB) [de

  17. Remote Sensing of Vegetation Nitrogen Content for Spatially Explicit Carbon and Water Cycle Estimation

    Science.gov (United States)

    Zhang, Y. L.; Miller, J. R.; Chen, J. M.

    2009-05-01

    Foliage nitrogen concentration is a determinant of photosynthetic capacity of leaves, thereby an important input to ecological models for estimating terrestrial carbon and water budgets. Recently, spectrally continuous airborne hyperspectral remote sensing imagery has proven to be useful for retrieving an important related parameter, total chlorophyll content at both leaf and canopy scales. Thus remote sensing of vegetation biochemical parameters has promising potential for improving the prediction of global carbon and water balance patterns. In this research, we explored the feasibility of estimating leaf nitrogen content using hyperspectral remote sensing data for spatially explicit estimation of carbon and water budgets. Multi-year measurements of leaf biochemical contents of seven major boreal forest species were carried out in northeastern Ontario, Canada. The variation of leaf chlorophyll and nitrogen content in response to various growth conditions, and the relationship between them,were investigated. Despite differences in plant type (deciduous and evergreen), leaf age, stand growth conditions and developmental stages, leaf nitrogen content was strongly correlated with leaf chlorophyll content on a mass basis during the active growing season (r2=0.78). With this general correlation, leaf nitrogen content was estimated from leaf chlorophyll content at an accuracy of RMSE=2.2 mg/g, equivalent to 20.5% of the average measured leaf nitrogen content. Based on this correlation and a hyperspectral remote sensing algorithm for leaf chlorophyll content retrieval, the spatial variation of leaf nitrogen content was inferred from the airborne hyperspectral remote sensing imagery acquired by Compact Airborne Spectrographic Imager (CASI). A process-based ecological model Boreal Ecosystem Productivity Simulator (BEPS) was used for estimating terrestrial carbon and water budgets. In contrast to the scenario with leaf nitrogen content assigned as a constant value without

  18. An evaluation for spatial resolution, using a single target on a medical image

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Sung [Dept. of Radiotechnology, Cheju Halla University, Cheju (Korea, Republic of)

    2016-12-15

    Hitherto, spatial resolution has commonly been evaluated by test patterns or phantoms built on some specific distances (from close to far) between two objects (or double targets). This evaluation method's shortcoming is that resolution is restricted to target distances of phantoms made for test. Therefore, in order to solve the problem, this study proposes and verifies a new method to efficiently test spatial resolution with a single target. For the research I used PSF and JND to propose an idea to measure spatial resolution. After that, I made experiments by commonly used phantoms to verify my new evaluation hypothesis inferred from the above method. To analyse the hypothesis, I used LabVIEW program and got a line pixel from digital image. The result was identical to my spatial-resolution hypothesis inferred from a single target. The findings of the experiment proves only a single target can be enough to relatively evaluate spatial resolution on a digital image. In other words, the limit of the traditional spatial-resolution evaluation method, based on double targets, can be overcome by my new evaluation one using a single target.

  19. Pyramidal Watershed Segmentation Algorithm for High-Resolution Remote Sensing Images Using Discrete Wavelet Transforms

    Directory of Open Access Journals (Sweden)

    K. Parvathi

    2009-01-01

    Full Text Available The watershed transformation is a useful morphological segmentation tool for a variety of grey-scale images. However, over segmentation and under segmentation have become the key problems for the conventional algorithm. In this paper, an efficient segmentation method for high-resolution remote sensing image analysis is presented. Wavelet analysis is one of the most popular techniques that can be used to detect local intensity variation and hence the wavelet transformation is used to analyze the image. Wavelet transform is applied to the image, producing detail (horizontal, vertical, and diagonal and Approximation coefficients. The image gradient with selective regional minima is estimated with the grey-scale morphology for the Approximation image at a suitable resolution, and then the watershed is applied to the gradient image to avoid over segmentation. The segmented image is projected up to high resolutions using the inverse wavelet transform. The watershed segmentation is applied to small subset size image, demanding less computational time. We have applied our new approach to analyze remote sensing images. The algorithm was implemented in MATLAB. Experimental results demonstrated the method to be effective.

  20. Investigation of spatial resolution characteristics of an in vivo microcomputed tomography system

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, Muhammad U. [Center for Biomedical engineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019 (United States); Zhou, Zhongxing [Center for Biomedical engineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019 (United States); School of Precision and Optoelectronics Engineering, Tianjin University, Tianjin 300072 (China); Ren, Liqiang; Wong, Molly; Li, Yuhua; Zheng, Bin [Center for Biomedical engineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019 (United States); Yang, Kai [Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 (United States); Liu, Hong, E-mail: liu@ou.edu [Center for Biomedical engineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019 (United States)

    2016-01-21

    The spatial resolution characteristics of an in vivo microcomputed tomography (CT) system was investigated in the in-plane (x–y), cross plane (z) and projection imaging modes. The microCT system utilized in this study employs a flat panel detector with a 127 µm pixel pitch, a microfocus x-ray tube with a focal spot size ranging from 5–30 µm, and accommodates three geometric magnifications (M) of 1.72, 2.54 and 5.10. The in-plane modulation transfer function (MTF) curves were measured as a function of the number of projections, geometric magnification (M), detector binning and reconstruction magnification (M{sub Recon}). The in plane cutoff frequency (10% MTF) ranged from 2.31 lp/mm (M=1.72, 2×2 binning) to 12.56 lp/mm (M=5.10, 1×1 binning) and a bar pattern phantom validated those measurements. A slight degradation in the spatial resolution was observed when comparing the image reconstruction with 511 and 918 projections, whose effect was visible at the lower frequencies. Small value of M{sub Recon} has little or no impact on the in-plane spatial resolution owning to a stable system. Large value of M{sub Recon} has implications on the spatial resolution and it was evident when comparing the bar pattern images reconstructed with M{sub Recon}=1.25 and 2.5. The cross plane MTF curves showed that the spatial resolution increased as the slice thickness decreased. The cutoff frequencies in the projection imaging mode yielded slightly higher values as compared to the in-plane and cross plane modes at all the geometric magnifications (M). At M=5.10, the cutoff resolution of the projection and cross plane on an ultra-high contrast resolution bar chip phantom were 14.9 lp/mm and 13–13.5 lp/mm. Due to the finite focal spot size of the x-ray tube, the detector blur and the reconstruction kernel functions, the system's spatial resolution does not reach the limiting spatial resolution as defined by the Nyquist's detector criteria with an ideal point source

  1. A global map of mangrove forest soil carbon at 30 m spatial resolution

    Science.gov (United States)

    Sanderman, Jonathan; Hengl, Tomislav; Fiske, Greg; Solvik, Kylen; Adame, Maria Fernanda; Benson, Lisa; Bukoski, Jacob J.; Carnell, Paul; Cifuentes-Jara, Miguel; Donato, Daniel; Duncan, Clare; Eid, Ebrahem M.; Ermgassen, Philine zu; Ewers Lewis, Carolyn J.; Macreadie, Peter I.; Glass, Leah; Gress, Selena; Jardine, Sunny L.; Jones, Trevor G.; Ndemem Nsombo, Eugéne; Mizanur Rahman, Md; Sanders, Christian J.; Spalding, Mark; Landis, Emily

    2018-05-01

    With the growing recognition that effective action on climate change will require a combination of emissions reductions and carbon sequestration, protecting, enhancing and restoring natural carbon sinks have become political priorities. Mangrove forests are considered some of the most carbon-dense ecosystems in the world with most of the carbon stored in the soil. In order for mangrove forests to be included in climate mitigation efforts, knowledge of the spatial distribution of mangrove soil carbon stocks are critical. Current global estimates do not capture enough of the finer scale variability that would be required to inform local decisions on siting protection and restoration projects. To close this knowledge gap, we have compiled a large georeferenced database of mangrove soil carbon measurements and developed a novel machine-learning based statistical model of the distribution of carbon density using spatially comprehensive data at a 30 m resolution. This model, which included a prior estimate of soil carbon from the global SoilGrids 250 m model, was able to capture 63% of the vertical and horizontal variability in soil organic carbon density (RMSE of 10.9 kg m‑3). Of the local variables, total suspended sediment load and Landsat imagery were the most important variable explaining soil carbon density. Projecting this model across the global mangrove forest distribution for the year 2000 yielded an estimate of 6.4 Pg C for the top meter of soil with an 86–729 Mg C ha‑1 range across all pixels. By utilizing remotely-sensed mangrove forest cover change data, loss of soil carbon due to mangrove habitat loss between 2000 and 2015 was 30–122 Tg C with >75% of this loss attributable to Indonesia, Malaysia and Myanmar. The resulting map products from this work are intended to serve nations seeking to include mangrove habitats in payment-for- ecosystem services projects and in designing effective mangrove conservation strategies.

  2. Automated road network extraction from high spatial resolution multi-spectral imagery

    Science.gov (United States)

    Zhang, Qiaoping

    road network. The extracted road network is evaluated against a reference dataset using a line segment matching algorithm. The entire process is unsupervised and fully automated. Based on extensive experimentation on a variety of remotely-sensed multi-spectral images, the proposed methodology achieves a moderate success in automating road network extraction from high spatial resolution multi-spectral imagery.

  3. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision and hobbyist unmanned aerial vehicles

    Science.gov (United States)

    Dandois, J. P.; Ellis, E. C.

    2013-12-01

    High spatial resolution three-dimensional (3D) measurements of vegetation by remote sensing are advancing ecological research and environmental management. However, substantial economic and logistical costs limit this application, especially for observing phenological dynamics in ecosystem structure and spectral traits. Here we demonstrate a new aerial remote sensing system enabling routine and inexpensive aerial 3D measurements of canopy structure and spectral attributes, with properties similar to those of LIDAR, but with RGB (red-green-blue) spectral attributes for each point, enabling high frequency observations within a single growing season. This 'Ecosynth' methodology applies photogrammetric ''Structure from Motion'' computer vision algorithms to large sets of highly overlapping low altitude (USA. Ecosynth canopy height maps (CHMs) were strong predictors of field-measured tree heights (R2 0.63 to 0.84) and were highly correlated with a LIDAR CHM (R 0.87) acquired 4 days earlier, though Ecosynth-based estimates of aboveground biomass densities included significant errors (31 - 36% of field-based estimates). Repeated scanning of a 0.25 ha forested area at six different times across a 16 month period revealed ecologically significant dynamics in canopy color at different heights and a structural shift upward in canopy density, as demonstrated by changes in vertical height profiles of point density and relative RGB brightness. Changes in canopy relative greenness were highly correlated (R2 = 0.88) with MODIS NDVI time series for the same area and vertical differences in canopy color revealed the early green up of the dominant canopy species, Liriodendron tulipifera, strong evidence that Ecosynth time series measurements capture vegetation structural and spectral dynamics at the spatial scale of individual trees. Observing canopy phenology in 3D at high temporal resolutions represents a breakthrough in forest ecology. Inexpensive user-deployed technologies for

  4. Impact of precipitation spatial resolution on the hydrological response of an integrated distributed water resources model

    DEFF Research Database (Denmark)

    Fu, Suhua; Sonnenborg, Torben; Jensen, Karsten Høgh

    2011-01-01

    Precipitation is a key input variable to hydrological models, and the spatial variability of the input is expected to impact the hydrological response predicted by a distributed model. In this study, the effect of spatial resolution of precipitation on runoff , recharge and groundwater head...... of the total catchment and runoff discharge hydrograph at watershed outlet. On the other hand, groundwater recharge and groundwater head were both aff ected. The impact of the spatial resolution of precipitation input is reduced with increasing catchment size. The effect on stream discharge is relatively low...... was analyzed in the Alergaarde catchment in Denmark. Six different precipitation spatial resolutions were used as inputs to a physically based, distributed hydrological model, the MIKE SHE model. The results showed that the resolution of precipitation input had no apparent effect on annual water balance...

  5. Single-acquisition method for simultaneous determination of extrinsic gamma-camera sensitivity and spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Santos, J.A.M. [Servico de Fisica Medica, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal)], E-mail: a.miranda@portugalmail.pt; Sarmento, S. [Servico de Fisica Medica, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Alves, P.; Torres, M.C. [Departamento de Fisica da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Bastos, A.L. [Servico de Medicina Nuclear, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal); Ponte, F. [Servico de Fisica Medica, Instituto Portugues de Oncologia Francisco Gentil do Porto, E.P.E., Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto (Portugal)

    2008-01-15

    A new method for measuring simultaneously both the extrinsic sensitivity and spatial resolution of a gamma-camera in a single planar acquisition was implemented. A dual-purpose phantom (SR phantom; sensitivity/resolution) was developed, tested and the results compared with other conventional methods used for separate determination of these two important image quality parameters. The SR phantom yielded reproducible and accurate results, allowing an immediate visual inspection of the spatial resolution as well as the quantitative determination of the contrast for six different spatial frequencies. It also proved to be useful in the estimation of the modulation transfer function (MTF) of the image formation collimator/detector system at six different frequencies and can be used to estimate the spatial resolution as function of the direction relative to the digital matrix of the detector.

  6. Single-acquisition method for simultaneous determination of extrinsic gamma-camera sensitivity and spatial resolution

    International Nuclear Information System (INIS)

    Santos, J.A.M.; Sarmento, S.; Alves, P.; Torres, M.C.; Bastos, A.L.; Ponte, F.

    2008-01-01

    A new method for measuring simultaneously both the extrinsic sensitivity and spatial resolution of a gamma-camera in a single planar acquisition was implemented. A dual-purpose phantom (SR phantom; sensitivity/resolution) was developed, tested and the results compared with other conventional methods used for separate determination of these two important image quality parameters. The SR phantom yielded reproducible and accurate results, allowing an immediate visual inspection of the spatial resolution as well as the quantitative determination of the contrast for six different spatial frequencies. It also proved to be useful in the estimation of the modulation transfer function (MTF) of the image formation collimator/detector system at six different frequencies and can be used to estimate the spatial resolution as function of the direction relative to the digital matrix of the detector

  7. Megapixel Longwave Infrared SLS FPAs for High Spatial Resolution Earth Observing Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth observing missions like NASA's LANDSAT Data Continuity Mission - Thermal Infrared Sensor (LDCM-TIRS) require greater spatial resolution of the earth than the ~...

  8. Megapixel Longwave Infrared SLS FPAs for High Spatial Resolution Earth Observing Missions, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth observing missions like NASA's LANDSAT Data Continuity Mission - Thermal Infrared Sensor (LDCM-TIRS) require greater spatial resolution of the earth than the ~...

  9. A Multi-Resolution Spatial Model for Large Datasets Based on the Skew-t Distribution

    KAUST Repository

    Tagle, Felipe; Castruccio, Stefano; Genton, Marc G.

    2017-01-01

    recently begun to appear in the spatial statistics literature, without much consideration, however, for the ability to capture dependence at multiple resolutions, and simultaneously achieve feasible inference for increasingly large data sets. This article

  10. Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography

    International Nuclear Information System (INIS)

    Chen Guanghong; Zambelli, Joseph; Li Ke; Bevins, Nicholas; Qi Zhihua

    2011-01-01

    Purpose: The noise variance versus spatial resolution relationship in differential phase contrast (DPC) projection imaging and computed tomography (CT) are derived and compared to conventional absorption-based x-ray projection imaging and CT. Methods: The scaling law for DPC-CT is theoretically derived and subsequently validated with phantom results from an experimental Talbot-Lau interferometer system. Results: For the DPC imaging method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both in theory and experimental results, in DPC-CT the noise variance scales with spatial resolution following an inverse linear relationship with fixed slice thickness. Conclusions: The scaling law in DPC-CT implies a lesser noise, and therefore dose, penalty for moving to higher spatial resolutions when compared to conventional absorption-based CT in order to maintain the same contrast-to-noise ratio.

  11. Improving the spatial resolution of the multiple multiwire proportional chamber gamma camera

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.

    1978-03-01

    Results are presented showing how the spatial resolution of the multiple multiwire proportional chamber (MMPC) gamma camera may be improved. Under the best conditions 1.6 mm bars can be resolved. (author)

  12. Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2008-09

    Science.gov (United States)

    ,

    2009-01-01

    Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is useful for analyzing a wide variety of spatial data. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This fact sheet presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup during 2008 and 2009. After a summary of GIS Workgroup capabilities, brief descriptions of activities by project at the local and national levels are presented. Projects are grouped by the fiscal year (October-September 2008 or 2009) the project ends and include overviews, project images, and Internet links to additional project information and related publications or articles.

  13. A high time and spatial resolution MRPC designed for muon tomography

    Science.gov (United States)

    Shi, L.; Wang, Y.; Huang, X.; Wang, X.; Zhu, W.; Li, Y.; Cheng, J.

    2014-12-01

    A prototype of cosmic muon scattering tomography system has been set up in Tsinghua University in Beijing. Multi-gap Resistive Plate Chamber (MRPC) is used in the system to get the muon tracks. Compared with other detectors, MRPC can not only provide the track but also the Time of Flight (ToF) between two detectors which can estimate the energy of particles. To get a more accurate track and higher efficiency of the tomography system, a new type of high time and two-dimensional spatial resolution MRPC has been developed. A series of experiments have been done to measure the efficiency, time resolution and spatial resolution. The results show that the efficiency can reach 95% and its time resolution is around 65 ps. The cluster size is around 4 and the spatial resolution can reach 200 μ m.

  14. Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks

    Science.gov (United States)

    Gul, M. Shahzeb Khan; Gunturk, Bahadir K.

    2018-05-01

    Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.

  15. Linking terrace geomorphology and canopy characteristics in the Peruvian Amazon using high resolution airborne remote sensing (Invited)

    Science.gov (United States)

    Chadwick, K.; Asner, G. P.

    2013-12-01

    The Peruvian Amazon is home to over half a million square kilometers of forest, nearly three quarters of which is supported by terrace landforms with variable histories. Characteristics of these terrace ecosystems have been contrasted with neighboring floodplain systems along riverine transportation corridors, but the ecological complexity within these terrace landscapes has remained largely unexplored. Airborne remote measurements provide an opportunity to consider the relationship between forest canopy characteristics and geomorphic gradients at high resolution over large spatial extents. In 2011 the Carnegie Airborne Observatory (CAO) was used to map a large section of intact lowland humid tropical forest in the southwestern Peruvian Amazon, including over nine thousand hectares of terrace forest. The CAO collected high-fidelity imaging spectroscopy data with its Visible-Shortwave Imaging Spectrometer (VSWIR) and digital elevation and canopy structure data with its high-resolution dual waveform LiDAR. These data, supplemented with field data collection, were used to quantify relationships between forest canopy traits and geomorphic gradients. Results suggest that both spectral properties of the canopy with known relationships to canopy chemistry, including pigment and nutrient concentrations, and canopy structural traits, including vegetation height and leaf area, are associated with geomorphic characteristics of this terrace landscape.

  16. Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex.

    Science.gov (United States)

    Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-10-01

    Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. © The Author 2014. Published by Oxford University Press.

  17. The spatial resolution of silicon-based electron detectors in beta-autoradiography.

    Science.gov (United States)

    Cabello, Jorge; Wells, Kevin

    2010-03-21

    Thin tissue autoradiography is an imaging modality where ex-vivo tissue sections are placed in direct contact with autoradiographic film. These tissue sections contain a radiolabelled ligand bound to a specific biomolecule under study. This radioligand emits beta - or beta+ particles ionizing silver halide crystals in the film. High spatial resolution autoradiograms are obtained using low energy radioisotopes, such as (3)H where an intrinsic 0.1-1 microm spatial resolution can be achieved. Several digital alternatives have been presented over the past few years to replace conventional film but their spatial resolution has yet to equal film, although silicon-based imaging technologies have demonstrated higher sensitivity compared to conventional film. It will be shown in this work how pixel size is a critical parameter for achieving high spatial resolution for low energy uncollimated beta imaging. In this work we also examine the confounding factors impeding silicon-based technologies with respect to spatial resolution. The study considers charge diffusion in silicon and detector noise, and this is applied to a range of radioisotopes typically used in autoradiography. Finally an optimal detector geometry to obtain the best possible spatial resolution for a specific technology and a specific radioisotope is suggested.

  18. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, M. [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain); Laser Processing Group, Instituto de Óptica “Daza de Valdés,” CSIC, 28006-Madrid (Spain); Fuentes, L. M. [Departamento de Física Aplicada, Universidad de Valladolid, 47011-Valladolid (Spain); Grützmacher, K.; Pérez, C., E-mail: concha@opt.uva.es; Rosa, M. I. de la [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain)

    2014-10-07

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.

  19. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    International Nuclear Information System (INIS)

    Garcia-Lechuga, M.; Fuentes, L. M.; Grützmacher, K.; Pérez, C.; Rosa, M. I. de la

    2014-01-01

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.

  20. Modelling the soil microclimate: does the spatial or temporal resolution of input parameters matter?

    Directory of Open Access Journals (Sweden)

    Anna Carter

    2016-01-01

    Full Text Available The urgency of predicting future impacts of environmental change on vulnerable populations is advancing the development of spatially explicit habitat models. Continental-scale climate and microclimate layers are now widely available. However, most terrestrial organisms exist within microclimate spaces that are very small, relative to the spatial resolution of those layers. We examined the effects of multi-resolution, multi-extent topographic and climate inputs on the accuracy of hourly soil temperature predictions for a small island generated at a very high spatial resolution (<1 m2 using the mechanistic microclimate model in NicheMapR. Achieving an accuracy comparable to lower-resolution, continental-scale microclimate layers (within about 2–3°C of observed values required the use of daily weather data as well as high resolution topographic layers (elevation, slope, aspect, horizon angles, while inclusion of site-specific soil properties did not markedly improve predictions. Our results suggest that large-extent microclimate layers may not provide accurate estimates of microclimate conditions when the spatial extent of a habitat or other area of interest is similar to or smaller than the spatial resolution of the layers themselves. Thus, effort in sourcing model inputs should be focused on obtaining high resolution terrain data, e.g., via LiDAR or photogrammetry, and local weather information rather than in situ sampling of microclimate characteristics.

  1. Optical remote sensing

    CERN Document Server

    Prasad, Saurabh; Chanussot, Jocelyn

    2011-01-01

    Optical remote sensing relies on exploiting multispectral and hyper spectral imagery possessing high spatial and spectral resolutions respectively. These modalities, although useful for most remote sensing tasks, often present challenges that must be addressed for their effective exploitation. This book presents current state-of-the-art algorithms that address the following key challenges encountered in representation and analysis of such optical remotely sensed data: challenges in pre-processing images, storing and representing high dimensional data, fusing different sensor modalities, patter

  2. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    Directory of Open Access Journals (Sweden)

    C. M. R. Mateo

    2017-10-01

    Full Text Available Global-scale river models (GRMs are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC is assumed, simulation results deteriorate with finer spatial resolution; Nash–Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.

  3. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    Science.gov (United States)

    Mateo, Cherry May R.; Yamazaki, Dai; Kim, Hyungjun; Champathong, Adisorn; Vaze, Jai; Oki, Taikan

    2017-10-01

    Global-scale river models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC) is assumed, simulation results deteriorate with finer spatial resolution; Nash-Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC) is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.

  4. Spatial resolution limits for the isotropic-3D PET detector X’tal cube

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Hirano, Yoshiyuki; Inadama, Naoko; Nishikido, Fumihiko; Murayama, Hideo; Yamaya, Taiga

    2013-11-11

    Positron emission tomography (PET) has become a popular imaging method in metabolism, neuroscience, and molecular imaging. For dedicated human brain and small animal PET scanners, high spatial resolution is needed to visualize small objects. To improve the spatial resolution, we are developing the X’tal cube, which is our new PET detector to achieve isotropic 3D positioning detectability. We have shown that the X’tal cube can achieve 1 mm{sup 3} uniform crystal identification performance with the Anger-type calculation even at the block edges. We plan to develop the X’tal cube with even smaller 3D grids for sub-millimeter crystal identification. In this work, we investigate spatial resolution of a PET scanner based on the X’tal cube using Monte Carlo simulations for predicting resolution performance in smaller 3D grids. For spatial resolution evaluation, a point source emitting 511 keV photons was simulated by GATE for all physical processes involved in emission and interaction of positrons. We simulated two types of animal PET scanners. The first PET scanner had a detector ring 14.6 cm in diameter composed of 18 detectors. The second PET scanner had a detector ring 7.8 cm in diameter composed of 12 detectors. After the GATE simulations, we converted the interacting 3D position information to digitalized positions for realistic segmented crystals. We simulated several X’tal cubes with cubic crystals from (0.5 mm){sup 3} to (2 mm){sup 3} in size. Also, for evaluating the effect of DOI resolution, we simulated several X’tal cubes with crystal thickness from (0.5 mm){sup 3} to (9 mm){sup 3}. We showed that sub-millimeter spatial resolution was possible using cubic crystals smaller than (1.0 mm){sup 3} even with the assumed physical processes. Also, the weighted average spatial resolutions of both PET scanners with (0.5 mm){sup 3} cubic crystals were 0.53 mm (14.6 cm ring diameter) and 0.48 mm (7.8 cm ring diameter). For the 7.8 cm ring diameter, spatial

  5. Spatial resolution of the HRRT PET scanner using 3D-OSEM PSF reconstruction

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Sibomana, Merence; Keller, Sune Høgild

    2009-01-01

    The spatial resolution of the Siemens High Resolution Research Tomograph (HRRT) dedicated brain PET scanner installed at Copenhagen University Hospital (Rigshospitalet) was measured using a point-source phantom with high statistics. Further, it was demonstrated how the newly developed 3D-OSEM PSF...

  6. Improving spatial resolution in quantum imaging beyond the Rayleigh diffraction limit using multiphoton W entangled states

    Energy Technology Data Exchange (ETDEWEB)

    Wen Jianming, E-mail: jianming.wen@gmail.co [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Department of Physics, University of Arkansas, Fayetteville, AR 72701 (United States); Du, Shengwang [Department of Physics, Hong Kong University of Science and Technology, Clear Bay (Hong Kong); Xiao Min [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Department of Physics, University of Arkansas, Fayetteville, AR 72701 (United States); School of Modern Engineering and Applied Science, Nanjing University, Nanjing 210093 (China)

    2010-08-23

    Using multiphoton entangled states, we demonstrate improving spatial imaging resolution beyond the Rayleigh diffraction limit in the quantum imaging process. In particular, we examine resolution enhancement using triphoton W state and a factor of 2 is achievable as with the use of the Greenberger-Horne-Zeilinger state, compared to using a classical-light source.

  7. Effects of satellite image spatial aggregation and resolution on estimates of forest land area

    Science.gov (United States)

    M.D. Nelson; R.E. McRoberts; G.R. Holden; M.E. Bauer

    2009-01-01

    Satellite imagery is being used increasingly in association with national forest inventories (NFIs) to produce maps and enhance estimates of forest attributes. We simulated several image spatial resolutions within sparsely and heavily forested study areas to assess resolution effects on estimates of forest land area, independent of other sensor characteristics. We...

  8. AN ACTIVE-PASSIVE COMBINED ALGORITHM FOR HIGH SPATIAL RESOLUTION RETRIEVAL OF SOIL MOISTURE FROM SATELLITE SENSORS (Invited)

    Science.gov (United States)

    Lakshmi, V.; Mladenova, I. E.; Narayan, U.

    2009-12-01

    Soil moisture is known to be an essential factor in controlling the partitioning of rainfall into surface runoff and infiltration and solar energy into latent and sensible heat fluxes. Remote sensing has long proven its capability to obtain soil moisture in near real-time. However, at the present time we have the Advanced Scanning Microwave Radiometer (AMSR-E) on board NASA’s AQUA platform is the only satellite sensor that supplies a soil moisture product. AMSR-E coarse spatial resolution (~ 50 km at 6.9 GHz) strongly limits its applicability for small scale studies. A very promising technique for spatial disaggregation by combining radar and radiometer observations has been demonstrated by the authors using a methodology is based on the assumption that any change in measured brightness temperature and backscatter from one to the next time step is due primarily to change in soil wetness. The approach uses radiometric estimates of soil moisture at a lower resolution to compute the sensitivity of radar to soil moisture at the lower resolution. This estimate of sensitivity is then disaggregated using vegetation water content, vegetation type and soil texture information, which are the variables on which determine the radar sensitivity to soil moisture and are generally available at a scale of radar observation. This change detection algorithm is applied to several locations. We have used aircraft observed active and passive data over Walnut Creek watershed in Central Iowa in 2002; the Little Washita Watershed in Oklahoma in 2003 and the Murrumbidgee Catchment in southeastern Australia for 2006. All of these locations have different soils and land cover conditions which leads to a rigorous test of the disaggregation algorithm. Furthermore, we compare the derived high spatial resolution soil moisture to in-situ sampling and ground observation networks

  9. A Saliency Guided Semi-Supervised Building Change Detection Method for High Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Bin Hou

    2016-08-01

    Full Text Available Characterizations of up to date information of the Earth’s surface are an important application providing insights to urban planning, resources monitoring and environmental studies. A large number of change detection (CD methods have been developed to solve them by utilizing remote sensing (RS images. The advent of high resolution (HR remote sensing images further provides challenges to traditional CD methods and opportunities to object-based CD methods. While several kinds of geospatial objects are recognized, this manuscript mainly focuses on buildings. Specifically, we propose a novel automatic approach combining pixel-based strategies with object-based ones for detecting building changes with HR remote sensing images. A multiresolution contextual morphological transformation called extended morphological attribute profiles (EMAPs allows the extraction of geometrical features related to the structures within the scene at different scales. Pixel-based post-classification is executed on EMAPs using hierarchical fuzzy clustering. Subsequently, the hierarchical fuzzy frequency vector histograms are formed based on the image-objects acquired by simple linear iterative clustering (SLIC segmentation. Then, saliency and morphological building index (MBI extracted on difference images are used to generate a pseudo training set. Ultimately, object-based semi-supervised classification is implemented on this training set by applying random forest (RF. Most of the important changes are detected by the proposed method in our experiments. This study was checked for effectiveness using visual evaluation and numerical evaluation.

  10. Detection of the power lines in UAV remote sensed images using spectral-spatial methods.

    Science.gov (United States)

    Bhola, Rishav; Krishna, Nandigam Hari; Ramesh, K N; Senthilnath, J; Anand, Gautham

    2018-01-15

    In this paper, detection of the power lines on images acquired by Unmanned Aerial Vehicle (UAV) based remote sensing is carried out using spectral-spatial methods. Spectral clustering was performed using Kmeans and Expectation Maximization (EM) algorithm to classify the pixels into the power lines and non-power lines. The spectral clustering methods used in this study are parametric in nature, to automate the number of clusters Davies-Bouldin index (DBI) is used. The UAV remote sensed image is clustered into the number of clusters determined by DBI. The k clustered image is merged into 2 clusters (power lines and non-power lines). Further, spatial segmentation was performed using morphological and geometric operations, to eliminate the non-power line regions. In this study, UAV images acquired at different altitudes and angles were analyzed to validate the robustness of the proposed method. It was observed that the EM with spatial segmentation (EM-Seg) performed better than the Kmeans with spatial segmentation (Kmeans-Seg) on most of the UAV images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Water Extraction in High Resolution Remote Sensing Image Based on Hierarchical Spectrum and Shape Features

    International Nuclear Information System (INIS)

    Li, Bangyu; Zhang, Hui; Xu, Fanjiang

    2014-01-01

    This paper addresses the problem of water extraction from high resolution remote sensing images (including R, G, B, and NIR channels), which draws considerable attention in recent years. Previous work on water extraction mainly faced two difficulties. 1) It is difficult to obtain accurate position of water boundary because of using low resolution images. 2) Like all other image based object classification problems, the phenomena of ''different objects same image'' or ''different images same object'' affects the water extraction. Shadow of elevated objects (e.g. buildings, bridges, towers and trees) scattered in the remote sensing image is a typical noise objects for water extraction. In many cases, it is difficult to discriminate between water and shadow in a remote sensing image, especially in the urban region. We propose a water extraction method with two hierarchies: the statistical feature of spectral characteristic based on image segmentation and the shape feature based on shadow removing. In the first hierarchy, the Statistical Region Merging (SRM) algorithm is adopted for image segmentation. The SRM includes two key steps: one is sorting adjacent regions according to a pre-ascertained sort function, and the other one is merging adjacent regions based on a pre-ascertained merging predicate. The sort step is done one time during the whole processing without considering changes caused by merging which may cause imprecise results. Therefore, we modify the SRM with dynamic sort processing, which conducts sorting step repetitively when there is large adjacent region changes after doing merging. To achieve robust segmentation, we apply the merging region with six features (four remote sensing image bands, Normalized Difference Water Index (NDWI), and Normalized Saturation-value Difference Index (NSVDI)). All these features contribute to segment image into region of object. NDWI and NSVDI are discriminate between water and

  12. Rapid Target Detection in High Resolution Remote Sensing Images Using Yolo Model

    Science.gov (United States)

    Wu, Z.; Chen, X.; Gao, Y.; Li, Y.

    2018-04-01

    Object detection in high resolution remote sensing images is a fundamental and challenging problem in the field of remote sensing imagery analysis for civil and military application due to the complex neighboring environments, which can cause the recognition algorithms to mistake irrelevant ground objects for target objects. Deep Convolution Neural Network(DCNN) is the hotspot in object detection for its powerful ability of feature extraction and has achieved state-of-the-art results in Computer Vision. Common pipeline of object detection based on DCNN consists of region proposal, CNN feature extraction, region classification and post processing. YOLO model frames object detection as a regression problem, using a single CNN predicts bounding boxes and class probabilities in an end-to-end way and make the predict faster. In this paper, a YOLO based model is used for object detection in high resolution sensing images. The experiments on NWPU VHR-10 dataset and our airport/airplane dataset gain from GoogleEarth show that, compare with the common pipeline, the proposed model speeds up the detection process and have good accuracy.

  13. Joint Multi-scale Convolution Neural Network for Scene Classification of High Resolution Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    ZHENG Zhuo

    2018-05-01

    Full Text Available High resolution remote sensing imagery scene classification is important for automatic complex scene recognition, which is the key technology for military and disaster relief, etc. In this paper, we propose a novel joint multi-scale convolution neural network (JMCNN method using a limited amount of image data for high resolution remote sensing imagery scene classification. Different from traditional convolutional neural network, the proposed JMCNN is an end-to-end training model with joint enhanced high-level feature representation, which includes multi-channel feature extractor, joint multi-scale feature fusion and Softmax classifier. Multi-channel and scale convolutional extractors are used to extract scene middle features, firstly. Then, in order to achieve enhanced high-level feature representation in a limit dataset, joint multi-scale feature fusion is proposed to combine multi-channel and scale features using two feature fusions. Finally, enhanced high-level feature representation can be used for classification by Softmax. Experiments were conducted using two limit public UCM and SIRI datasets. Compared to state-of-the-art methods, the JMCNN achieved improved performance and great robustness with average accuracies of 89.3% and 88.3% on the two datasets.

  14. A method for examining temporal changes in cyanobacterial harmful algal bloom spatial extent using satellite remote sensing..

    Science.gov (United States)

    Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying...

  15. Health assessment and risk mitigation of railroad networks exposed to natural hazards using commercial remote sensing and spatial information technologies.

    Science.gov (United States)

    2017-05-31

    The overarching goal of this project was to integrate data from commercial remote sensing and spatial information (CRS&SI) technologies to create a novel data-driven decision making framework that empowers the railroad industry to monitor, assess, an...

  16. Assessment of Acacia koa forest health across environmental gradients in Hawai'i using fine resolution remote sensing and GIS.

    Science.gov (United States)

    Morales, Rodolfo Martinez; Idol, Travis; Friday, James B

    2011-01-01

    Koa (Acacia koa) forests are found across broad environmental gradients in the Hawai'ian Islands. Previous studies have identified koa forest health problems and dieback at the plot level, but landscape level patterns remain unstudied. The availability of high-resolution satellite images from the new GeoEye1 satellite offers the opportunity to conduct landscape-level assessments of forest health. The goal of this study was to develop integrated remote sensing and geographic information systems (GIS) methodologies to characterize the health of koa forests and model the spatial distribution and variability of koa forest dieback patterns across an elevation range of 600-1,000 m asl in the island of Kaua'i, which correspond to gradients of temperature and rainfall ranging from 17-20 °C mean annual temperature and 750-1,500 mm mean annual precipitation. GeoEye1 satellite imagery of koa stands was analyzed using supervised classification techniques based on the analysis of 0.5-m pixel multispectral bands. There was clear differentiation of native koa forest from areas dominated by introduced tree species and differentiation of healthy koa stands from those exhibiting dieback symptoms. The area ratio of healthy koa to koa dieback corresponded linearly to changes in temperature across the environmental gradient, with koa dieback at higher relative abundance in warmer areas. A landscape-scale map of healthy koa forest and dieback distribution demonstrated both the general trend with elevation and the small-scale heterogeneity that exists within particular elevations. The application of these classification techniques with fine spatial resolution imagery can improve the accuracy of koa forest inventory and mapping across the islands of Hawai'i. Such findings should also improve ecological restoration, conservation and silviculture of this important native tree species.

  17. Assessment of Acacia Koa Forest Health across Environmental Gradients in Hawai‘i Using Fine Resolution Remote Sensing and GIS

    Science.gov (United States)

    Morales, Rodolfo Martinez; Idol, Travis; Friday, James B.

    2011-01-01

    Koa (Acacia koa) forests are found across broad environmental gradients in the Hawai‘ian Islands. Previous studies have identified koa forest health problems and dieback at the plot level, but landscape level patterns remain unstudied. The availability of high-resolution satellite images from the new GeoEye1 satellite offers the opportunity to conduct landscape-level assessments of forest health. The goal of this study was to develop integrated remote sensing and geographic information systems (GIS) methodologies to characterize the health of koa forests and model the spatial distribution and variability of koa forest dieback patterns across an elevation range of 600–1,000 m asl in the island of Kaua‘i, which correspond to gradients of temperature and rainfall ranging from 17–20 °C mean annual temperature and 750–1,500 mm mean annual precipitation. GeoEye1 satellite imagery of koa stands was analyzed using supervised classification techniques based on the analysis of 0.5-m pixel multispectral bands. There was clear differentiation of native koa forest from areas dominated by introduced tree species and differentiation of healthy koa stands from those exhibiting dieback symptoms. The area ratio of healthy koa to koa dieback corresponded linearly to changes in temperature across the environmental gradient, with koa dieback at higher relative abundance in warmer areas. A landscape-scale map of healthy koa forest and dieback distribution demonstrated both the general trend with elevation and the small-scale heterogeneity that exists within particular elevations. The application of these classification techniques with fine spatial resolution imagery can improve the accuracy of koa forest inventory and mapping across the islands of Hawai‘i. Such findings should also improve ecological restoration, conservation and silviculture of this important native tree species. PMID:22163920

  18. Landform classification using a sub-pixel spatial attraction model to increase spatial resolution of digital elevation model (DEM

    Directory of Open Access Journals (Sweden)

    Marzieh Mokarrama

    2018-04-01

    Full Text Available The purpose of the present study is preparing a landform classification by using digital elevation model (DEM which has a high spatial resolution. To reach the mentioned aim, a sub-pixel spatial attraction model was used as a novel method for preparing DEM with a high spatial resolution in the north of Darab, Fars province, Iran. The sub-pixel attraction models convert the pixel into sub-pixels based on the neighboring pixels fraction values, which can only be attracted by a central pixel. Based on this approach, a mere maximum of eight neighboring pixels can be selected for calculating of the attraction value. In the mentioned model, other pixels are supposed to be far from the central pixel to receive any attraction. In the present study by using a sub-pixel attraction model, the spatial resolution of a DEM was increased. The design of the algorithm is accomplished by using a DEM with a spatial resolution of 30 m (the Advanced Space borne Thermal Emission and Reflection Radiometer; (ASTER and a 90 m (the Shuttle Radar Topography Mission; (SRTM. In the attraction model, scale factors of (S = 2, S = 3, and S = 4 with two neighboring methods of touching (T = 1 and quadrant (T = 2 are applied to the DEMs by using MATLAB software. The algorithm is evaluated by taking the best advantages of 487 sample points, which are measured by surveyors. The spatial attraction model with scale factor of (S = 2 gives better results compared to those scale factors which are greater than 2. Besides, the touching neighborhood method is turned to be more accurate than the quadrant method. In fact, dividing each pixel into more than two sub-pixels decreases the accuracy of the resulted DEM. On the other hand, in these cases DEM, is itself in charge of increasing the value of root-mean-square error (RMSE and shows that attraction models could not be used for S which is greater than 2. Thus considering results, the proposed model is highly capable of

  19. Objective Tuning of Model Parameters in CAM5 Across Different Spatial Resolutions

    Science.gov (United States)

    Bulaevskaya, V.; Lucas, D. D.

    2014-12-01

    Parameterizations of physical processes in climate models are highly dependent on the spatial and temporal resolution and must be tuned for each resolution under consideration. At high spatial resolutions, objective methods for parameter tuning are computationally prohibitive. Our work has focused on calibrating parameters in the Community Atmosphere Model 5 (CAM5) for three spatial resolutions: 1, 2, and 4 degrees. Using perturbed-parameter ensembles and uncertainty quantification methodology, we have identified input parameters that minimize discrepancies of energy fluxes simulated by CAM5 across the three resolutions and with respect to satellite observations. We are also beginning to exploit the parameter-resolution relationships to objectively tune parameters in a high-resolution version of CAM5 by leveraging cheaper, low-resolution simulations and statistical models. We will present our approach to multi-resolution climate model parameter tuning, as well as the key findings. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and was supported from the DOE Office of Science through the Scientific Discovery Through Advanced Computing (SciDAC) project on Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System.

  20. Local Optical Spectroscopies for Subnanometer Spatial Resolution Chemical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Paul

    2014-01-20

    The evanescently coupled photon scanning tunneling microscopes (STMs) have special requirements in terms of stability and optical access. We have made substantial improvements to the stability, resolution, and noise floor of our custom-built visible-photon STM, and will translate these advances to our infrared instrument. Double vibration isolation of the STM base with a damping system achieved increased rigidity, giving high tunneling junction stability for long-duration and high-power illumination. Light frequency modulation with an optical chopper and phase-sensitive detection now enhance the signal-to-noise ratio of the tunneling junction during irradiation.

  1. Extraction Method for Earthquake-Collapsed Building Information Based on High-Resolution Remote Sensing

    International Nuclear Information System (INIS)

    Chen, Peng; Wu, Jian; Liu, Yaolin; Wang, Jing

    2014-01-01

    At present, the extraction of earthquake disaster information from remote sensing data relies on visual interpretation. However, this technique cannot effectively and quickly obtain precise and efficient information for earthquake relief and emergency management. Collapsed buildings in the town of Zipingpu after the Wenchuan earthquake were used as a case study to validate two kinds of rapid extraction methods for earthquake-collapsed building information based on pixel-oriented and object-oriented theories. The pixel-oriented method is based on multi-layer regional segments that embody the core layers and segments of the object-oriented method. The key idea is to mask layer by layer all image information, including that on the collapsed buildings. Compared with traditional techniques, the pixel-oriented method is innovative because it allows considerably rapid computer processing. As for the object-oriented method, a multi-scale segment algorithm was applied to build a three-layer hierarchy. By analyzing the spectrum, texture, shape, location, and context of individual object classes in different layers, the fuzzy determined rule system was established for the extraction of earthquake-collapsed building information. We compared the two sets of results using three variables: precision assessment, visual effect, and principle. Both methods can extract earthquake-collapsed building information quickly and accurately. The object-oriented method successfully overcomes the pepper salt noise caused by the spectral diversity of high-resolution remote sensing data and solves the problem of same object, different spectrums and that of same spectrum, different objects. With an overall accuracy of 90.38%, the method achieves more scientific and accurate results compared with the pixel-oriented method (76.84%). The object-oriented image analysis method can be extensively applied in the extraction of earthquake disaster information based on high-resolution remote sensing

  2. Study and optimization of the spatial resolution for detectors with binary readout

    Energy Technology Data Exchange (ETDEWEB)

    Yonamine, R., E-mail: ryo.yonamine@ulb.ac.be; Maerschalk, T.; Lentdecker, G. De

    2016-09-11

    Using simulations and analytical approaches, we have studied single hit resolutions obtained with a binary readout, which is often proposed for high granularity detectors to reduce the generated data volume. Our simulations considering several parameters (e.g. strip pitch) show that the detector geometry and an electronics parameter of the binary readout chips could be optimized for binary readout to offer an equivalent spatial resolution to the one with an analog readout. To understand the behavior as a function of simulation parameters, we developed analytical models that reproduce simulation results with a few parameters. The models can be used to optimize detector designs and operation conditions with regard to the spatial resolution.

  3. Reprocessing the Historical Satellite Passive Microwave Record at Enhanced Spatial Resolutions using Image Reconstruction

    Science.gov (United States)

    Hardman, M.; Brodzik, M. J.; Long, D. G.; Paget, A. C.; Armstrong, R. L.

    2015-12-01

    Beginning in 1978, the satellite passive microwave data record has been a mainstay of remote sensing of the cryosphere, providing twice-daily, near-global spatial coverage for monitoring changes in hydrologic and cryospheric parameters that include precipitation, soil moisture, surface water, vegetation, snow water equivalent, sea ice concentration and sea ice motion. Currently available global gridded passive microwave data sets serve a diverse community of hundreds of data users, but do not meet many requirements of modern Earth System Data Records (ESDRs) or Climate Data Records (CDRs), most notably in the areas of intersensor calibration, quality-control, provenance and consistent processing methods. The original gridding techniques were relatively primitive and were produced on 25 km grids using the original EASE-Grid definition that is not easily accommodated in modern software packages. Further, since the first Level 3 data sets were produced, the Level 2 passive microwave data on which they were based have been reprocessed as Fundamental CDRs (FCDRs) with improved calibration and documentation. We are funded by NASA MEaSUREs to reprocess the historical gridded data sets as EASE-Grid 2.0 ESDRs, using the most mature available Level 2 satellite passive microwave (SMMR, SSM/I-SSMIS, AMSR-E) records from 1978 to the present. We have produced prototype data from SSM/I and AMSR-E for the year 2003, for review and feedback from our Early Adopter user community. The prototype data set includes conventional, low-resolution ("drop-in-the-bucket" 25 km) grids and enhanced-resolution grids derived from the two candidate image reconstruction techniques we are evaluating: 1) Backus-Gilbert (BG) interpolation and 2) a radiometer version of Scatterometer Image Reconstruction (SIR). We summarize our temporal subsetting technique, algorithm tuning parameters and computational costs, and include sample SSM/I images at enhanced resolutions of up to 3 km. We are actively

  4. Object-Based Change Detection Using High-Resolution Remotely Sensed Data and GIS

    Science.gov (United States)

    Sofina, N.; Ehlers, M.

    2012-08-01

    High resolution remotely sensed images provide current, detailed, and accurate information for large areas of the earth surface which can be used for change detection analyses. Conventional methods of image processing permit detection of changes by comparing remotely sensed multitemporal images. However, for performing a successful analysis it is desirable to take images from the same sensor which should be acquired at the same time of season, at the same time of a day, and - for electro-optical sensors - in cloudless conditions. Thus, a change detection analysis could be problematic especially for sudden catastrophic events. A promising alternative is the use of vector-based maps containing information about the original urban layout which can be related to a single image obtained after the catastrophe. The paper describes a methodology for an object-based search of destroyed buildings as a consequence of a natural or man-made catastrophe (e.g., earthquakes, flooding, civil war). The analysis is based on remotely sensed and vector GIS data. It includes three main steps: (i) generation of features describing the state of buildings; (ii) classification of building conditions; and (iii) data import into a GIS. One of the proposed features is a newly developed 'Detected Part of Contour' (DPC). Additionally, several features based on the analysis of textural information corresponding to the investigated vector objects are calculated. The method is applied to remotely sensed images of areas that have been subjected to an earthquake. The results show the high reliability of the DPC feature as an indicator for change.

  5. High spatial and temporal resolution cell manipulation techniques in microchannels.

    Science.gov (United States)

    Novo, Pedro; Dell'Aica, Margherita; Janasek, Dirk; Zahedi, René P

    2016-03-21

    The advent of microfluidics has enabled thorough control of cell manipulation experiments in so called lab on chips. Lab on chips foster the integration of actuation and detection systems, and require minute sample and reagent amounts. Typically employed microfluidic structures have similar dimensions as cells, enabling precise spatial and temporal control of individual cells and their local environments. Several strategies for high spatio-temporal control of cells in microfluidics have been reported in recent years, namely methods relying on careful design of the microfluidic structures (e.g. pinched flow), by integration of actuators (e.g. electrodes or magnets for dielectro-, acousto- and magneto-phoresis), or integrations thereof. This review presents the recent developments of cell experiments in microfluidics divided into two parts: an introduction to spatial control of cells in microchannels followed by special emphasis in the high temporal control of cell-stimulus reaction and quenching. In the end, the present state of the art is discussed in line with future perspectives and challenges for translating these devices into routine applications.

  6. Object-based methods for individual tree identification and tree species classification from high-spatial resolution imagery

    Science.gov (United States)

    Wang, Le

    2003-10-01

    Modern forest management poses an increasing need for detailed knowledge of forest information at different spatial scales. At the forest level, the information for tree species assemblage is desired whereas at or below the stand level, individual tree related information is preferred. Remote Sensing provides an effective tool to extract the above information at multiple spatial scales in the continuous time domain. To date, the increasing volume and readily availability of high-spatial-resolution data have lead to a much wider application of remotely sensed products. Nevertheless, to make effective use of the improving spatial resolution, conventional pixel-based classification methods are far from satisfactory. Correspondingly, developing object-based methods becomes a central challenge for researchers in the field of Remote Sensing. This thesis focuses on the development of methods for accurate individual tree identification and tree species classification. We develop a method in which individual tree crown boundaries and treetop locations are derived under a unified framework. We apply a two-stage approach with edge detection followed by marker-controlled watershed segmentation. Treetops are modeled from radiometry and geometry aspects. Specifically, treetops are assumed to be represented by local radiation maxima and to be located near the center of the tree-crown. As a result, a marker image was created from the derived treetop to guide a watershed segmentation to further differentiate overlapping trees and to produce a segmented image comprised of individual tree crowns. The image segmentation method developed achieves a promising result for a 256 x 256 CASI image. Then further effort is made to extend our methods to the multiscales which are constructed from a wavelet decomposition. A scale consistency and geometric consistency are designed to examine the gradients along the scale-space for the purpose of separating true crown boundary from unwanted

  7. Using High Resolution Commercial Satellite Imagery to Quantify Spatial Features of Urban Areas and their Relationship to Quality of Life Indicators in Accra, Ghana

    Science.gov (United States)

    Sandborn, A.; Engstrom, R.; Yu, Q.

    2014-12-01

    Mapping urban areas via satellite imagery is an important task for detecting and anticipating land cover and land use change at multiple scales. As developing countries experience substantial urban growth and expansion, remotely sensed based estimates of population and quality of life indicators can provide timely and spatially explicit information to researchers and planners working to determine how cities are changing. In this study, we use commercial high spatial resolution satellite imagery in combination with fine resolution census data to determine the ability of using remotely sensed data to reveal the spatial patterns of quality of life in Accra, Ghana. Traditionally, spectral characteristics are used on a per-pixel basis to determine land cover; however, in this study, we test a new methodology that quantifies spatial characteristics using a variety of spatial features observed in the imagery to determine the properties of an urban area. The spatial characteristics used in this study include histograms of oriented gradients, PanTex, Fourier transform, and line support regions. These spatial features focus on extracting structural and textural patterns of built-up areas, such as homogeneous building orientations and straight line indices. Information derived from aggregating the descriptive statistics of the spatial features at both the fine-resolution census unit and the larger neighborhood level are then compared to census derived quality of life indicators including information about housing, education, and population estimates. Preliminary results indicate that there are correlations between straight line indices and census data including available electricity and literacy rates. Results from this study will be used to determine if this methodology provides a new and improved way to measure a city structure in developing cities and differentiate between residential and commercial land use zones, as well as formal versus informal housing areas.

  8. Patient dose rate: An ultimate limit for spatial and density resolution of scanning systems

    International Nuclear Information System (INIS)

    Kowalski, G.; Wagner, W.

    1979-01-01

    In X-ray scanning systems, picture quality of the reconstructed slices is limited to a maximum spatial as well as density resolution by the applied radiation dose. Density resolution can be improved in proportion to the root of the patient dose, whereas a doubled spatial resolving power requires an eight times higher patient dose, assuming a fixed slice thickness. Only a careful trade-off between the applied patient dose, density resolution and spatial resolution yields a maximal diagnostic value for the physician. Specifications of a scanning system have to take into account these ultimate restrictions, so that picture quality really is limited by the patient's dose rather than by technical constraints. In addition a method is given by which the applied dose can be reduced by focusing the main intensity onto the region of interest, in case that region is known a priori. (orig.) [de

  9. Minimum detection limit and spatial resolution of thin-sample field-emission electron probe microanalysis

    International Nuclear Information System (INIS)

    Kubo, Yugo; Hamada, Kotaro; Urano, Akira

    2013-01-01

    The minimum detection limit and spatial resolution for a thinned semiconductor sample were determined by electron probe microanalysis (EPMA) using a Schottky field emission (FE) electron gun and wavelength dispersive X-ray spectrometry. Comparison of the FE-EPMA results with those obtained using energy dispersive X-ray spectrometry in conjunction with scanning transmission electron microscopy, confirmed that FE-EPMA is largely superior in terms of detection sensitivity. Thin-sample FE-EPMA is demonstrated as a very effective method for high resolution, high sensitivity analysis in a laboratory environment because a high probe current and high signal-to-noise ratio can be achieved. - Highlights: • Minimum detection limit and spatial resolution determined for FE-EPMA. • Detection sensitivity of FE-EPMA greatly superior to that of STEM-EDX. • Minimum detection limit and spatial resolution controllable by probe current

  10. Using remote sensing and machine learning for the spatial modelling of a bluetongue virus vector

    Science.gov (United States)

    Van doninck, J.; Peters, J.; De Baets, B.; Ducheyne, E.; Verhoest, N. E. C.

    2012-04-01

    Bluetongue is a viral vector-borne disease transmitted between hosts, mostly cattle and small ruminants, by some species of Culicoides midges. Within the Mediterranean basin, C. imicola is the main vector of the bluetongue virus. The spatial distribution of this species is limited by a number of environmental factors, including temperature, soil properties and land cover. The identification of zones at risk of bluetongue outbreaks thus requires detailed information on these environmental factors, as well as appropriate epidemiological modelling techniques. We here give an overview of the environmental factors assumed to be constraining the spatial distribution of C. imicola, as identified in different studies. Subsequently, remote sensing products that can be used as proxies for these environmental constraints are presented. Remote sensing data are then used together with species occurrence data from the Spanish Bluetongue National Surveillance Programme to calibrate a supervised learning model, based on Random Forests, to model the probability of occurrence of the C. imicola midge. The model will then be applied for a pixel-based prediction over the Iberian peninsula using remote sensing products for habitat characterization.

  11. Ultra high spatial and temporal resolution breast imaging at 7T.

    Science.gov (United States)

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Downscaling of coarse resolution LAI products to achieve both high spatial and temporal resolution for regions of interest

    KAUST Repository

    Houborg, Rasmus; McCabe, Matthew; Gao, Feng

    2015-01-01

    This paper presents a flexible tool for spatio-temporal enhancement of coarse resolution leaf area index (LAI) products, which is readily adaptable to different land cover types, landscape heterogeneities and cloud cover conditions. The framework integrates a rule-based regression tree approach for estimating Landsat-scale LAI from existing 1 km resolution LAI products, and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) to intelligently interpolate the downscaled LAI between Landsat acquisitions. Comparisons against in-situ records of LAI measured over corn and soybean highlights its utility for resolving sub-field LAI dynamics occurring over a range of plant development stages.

  13. Downscaling of coarse resolution LAI products to achieve both high spatial and temporal resolution for regions of interest

    KAUST Repository

    Houborg, Rasmus

    2015-11-12

    This paper presents a flexible tool for spatio-temporal enhancement of coarse resolution leaf area index (LAI) products, which is readily adaptable to different land cover types, landscape heterogeneities and cloud cover conditions. The framework integrates a rule-based regression tree approach for estimating Landsat-scale LAI from existing 1 km resolution LAI products, and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) to intelligently interpolate the downscaled LAI between Landsat acquisitions. Comparisons against in-situ records of LAI measured over corn and soybean highlights its utility for resolving sub-field LAI dynamics occurring over a range of plant development stages.

  14. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Michael R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)], E-mail: armstrong30@llnl.gov; Boyden, Ken [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Browning, Nigel D. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); Campbell, Geoffrey H.; Colvin, Jeffrey D.; De Hope, William J.; Frank, Alan M. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Gibson, David J.; Hartemann, Fred [N Division, Physics and Advanced Technologies Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-280, Livermore, CA 94550 (United States); Kim, Judy S. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); King, Wayne E.; La Grange, Thomas B.; Pyke, Ben J.; Reed, Bryan W.; Shuttlesworth, Richard M.; Stuart, Brent C.; Torralva, Ben R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)

    2007-04-15

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5x10{sup 7} electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution <10{sup -6} s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed.

  15. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy

    International Nuclear Information System (INIS)

    Armstrong, Michael R.; Boyden, Ken; Browning, Nigel D.; Campbell, Geoffrey H.; Colvin, Jeffrey D.; De Hope, William J.; Frank, Alan M.; Gibson, David J.; Hartemann, Fred; Kim, Judy S.; King, Wayne E.; La Grange, Thomas B.; Pyke, Ben J.; Reed, Bryan W.; Shuttlesworth, Richard M.; Stuart, Brent C.; Torralva, Ben R.

    2007-01-01

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5x10 7 electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution -6 s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed

  16. THE IDEA IS TO USEMODIS IN CONJUNCTION WITH THE CURRENT LIMITED LANDSAT CAPABILITY, COMMERCIAL SATELLITES, ANDUNMANNED AERIAL VEHICLES (UAV), IN A MULTI-STAGE APPROACH TO MEET EPA INFORMATION NEEDS.REMOTE SENSING OVERVIEW: EPA CAPABILITIES, PRIORITY AGENCY APPLICATIONS, SENSOR/AIRCRAFT CAPABILITIES, COST CONSIDERATIONS, SPECTRAL AND SPATIAL RESOLUTIONS, AND TEMPORAL CONSIDERATIONS

    Science.gov (United States)

    EPA remote sensing capabilities include applied research for priority applications and technology support for operational assistance to clients across the Agency. The idea is to use MODIS in conjunction with the current limited Landsat capability, commercial satellites, and Unma...

  17. Normal mitochondrial respiratory function is essential for spatial remote memory in mice

    Directory of Open Access Journals (Sweden)

    Tanaka Daisuke

    2008-12-01

    Full Text Available Abstract Background Mitochondrial DNA (mtDNA with pathogenic mutations has been found in patients with cognitive disorders. However, little is known about whether pathogenic mtDNA mutations and the resultant mitochondrial respiration deficiencies contribute to the expression of cognitive alterations, such as impairments of learning and memory. To address this point, we used two groups of trans-mitochondrial mice (mito-mice with heteroplasmy for wild-type and pathogenically deleted (Δ mtDNA; the "low" group carried 50% or less ΔmtDNA, and the "high" group carried more than 50% ΔmtDNA. Results Both groups had normal phenotypes for not only spatial learning, but also memory at short retention delays, indicating that ΔmtDNA load did not affect learning and temporal memory. The high group, however, showed severe impairment of memory at long retention delays. In the visual cortex and dentate gyrus of these mice, we observed mitochondrial respiration deficiencies, and reduced Ca2+/calmodulin-dependent kinase II-α (α-CaMKII, a protein important for the establishment of spatial remote memory. Conclusion Our results indicated that normal mitochondrial respiratory function is necessary for retention and consolidation of memory trace; deficiencies in this function due to high loads of pathogenically mutated mtDNA are responsible for the preferential impairment of spatial remote memory.

  18. Remote sensing and spatial statistical techniques for modelling Ommatissus lybicus (Hemiptera: Tropiduchidae) habitat and population densities.

    Science.gov (United States)

    Al-Kindi, Khalifa M; Kwan, Paul; R Andrew, Nigel; Welch, Mitchell

    2017-01-01

    In order to understand the distribution and prevalence of Ommatissus lybicus (Hemiptera: Tropiduchidae) as well as analyse their current biographical patterns and predict their future spread, comprehensive and detailed information on the environmental, climatic, and agricultural practices are essential. The spatial analytical techniques such as Remote Sensing and Spatial Statistics Tools, can help detect and model spatial links and correlations between the presence, absence and density of O. lybicus in response to climatic, environmental, and human factors. The main objective of this paper is to review remote sensing and relevant analytical techniques that can be applied in mapping and modelling the habitat and population density of O. lybicus . An exhaustive search of related literature revealed that there are very limited studies linking location-based infestation levels of pests like the O. lybicus with climatic, environmental, and human practice related variables. This review also highlights the accumulated knowledge and addresses the gaps in this area of research. Furthermore, it makes recommendations for future studies, and gives suggestions on monitoring and surveillance methods in designing both local and regional level integrated pest management strategies of palm tree and other affected cultivated crops.

  19. Remote sensing and spatial statistical techniques for modelling Ommatissus lybicus (Hemiptera: Tropiduchidae habitat and population densities

    Directory of Open Access Journals (Sweden)

    Khalifa M. Al-Kindi

    2017-08-01

    Full Text Available In order to understand the distribution and prevalence of Ommatissus lybicus (Hemiptera: Tropiduchidae as well as analyse their current biographical patterns and predict their future spread, comprehensive and detailed information on the environmental, climatic, and agricultural practices are essential. The spatial analytical techniques such as Remote Sensing and Spatial Statistics Tools, can help detect and model spatial links and correlations between the presence, absence and density of O. lybicus in response to climatic, environmental, and human factors. The main objective of this paper is to review remote sensing and relevant analytical techniques that can be applied in mapping and modelling the habitat and population density of O. lybicus. An exhaustive search of related literature revealed that there are very limited studies linking location-based infestation levels of pests like the O. lybicus with climatic, environmental, and human practice related variables. This review also highlights the accumulated knowledge and addresses the gaps in this area of research. Furthermore, it makes recommendations for future studies, and gives suggestions on monitoring and surveillance methods in designing both local and regional level integrated pest management strategies of palm tree and other affected cultivated crops.

  20. Spatial resolution of subsurface anthropogenic heat fluxes in cities

    Science.gov (United States)

    Benz, Susanne; Bayer, Peter; Menberg, Kathrin; Blum, Philipp

    2015-04-01

    Urban heat islands in the subsurface contain large quantities of energy in the form of elevated groundwater temperatures caused by anthropogenic heat fluxes (AHFS) into the subsurface. Hence, the objective of this study is to exemplarily quantify these AHFS and the generated thermal powers in two German cities, Karlsruhe and Cologne. A two-dimensional (2D) statistical analytical model of the vertical subsurface anthropogenic heat fluxes across the unsaturated zone was developed. The model consists of a so-called Local Monte Carlo approach that introduces a spatial representation of the following sources of AHFS: (1) elevated ground surface temperatures, (2) basements, (3) sewage systems, (4) sewage leakage, (5) subway tunnels, and (6) district heating networks. The results show that district heating networks induce the largest local AHFS with values larger than 60 W/m2 and one order of magnitude higher than the other evaluated heat sources. Only sewage pipes and basements reaching into the groundwater cause equally high heat fluxes, with maximal values of 40.37 W/m2 and 13.60 W/m2, respectively. While dominating locally, the district heating network is rather insignificant for the citywide energy budget in both urban subsurfaces. Heat from buildings (1.51 ± 1.36 PJ/a in Karlsruhe; 0.31 ± 0.14 PJ/a in Cologne) and elevated GST (0.34 ± 0.10 PJ/a in Karlsruhe; 0.42 ± 0.13 PJ/a in Cologne) are dominant contributors to the anthropogenic thermal power of the urban aquifer. In Karlsruhe, buildings are the source of 70% of the annual heat transported into the groundwater, which is mainly caused by basements reaching into the groundwater. A variance analysis confirms these findings: basement depth is the most influential factor to citywide thermal power in the studied cities with high groundwater levels. The spatial distribution of fluxes, however, is mostly influenced by the prevailing thermal gradient across the unsaturated zone. A relatively cold groundwater

  1. High spatial and time resolutions with gas ionization detectors

    International Nuclear Information System (INIS)

    Pouthas, J.

    2001-09-01

    This document presents the principles and the characteristics of the gaseous ionisation detectors used in position and timing measurements. The first two parts recall the main notions (electron and ion motions, gaseous amplification, signal formation) and their applications to the proportional counter and the wire chamber. The explanation of the signal formation makes use of the Ramo theorem. The third part is devoted to the different types of wire chambers: drift or cathode strip chambers, TPC (time projection chamber). Some aspects on construction and ageing are also presented. Part 4 is on the detectors in which the multiplication is performed by a 'Parallel Plate' system (PPAC, Pestov counter). Special attention is paid to the RPCs (Resistive Plate Chambers) and their timing resolutions. Part 5 concentrates on 'Micro-pattern detectors' which use different kinds of microstructure for gaseous amplification. The new detectors MICROMEGAS, CAT (compteur a trous) and GEM (gas electron multiplier) and some of their applications are presented. The last part is a bibliography including some comments on the documents. (author)

  2. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Venkat; Cole, Wesley

    2016-07-18

    This poster is based on the paper of the same name, presented at the IEEE Power & Energy Society General Meeting, July18, 2016. Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions - native resolution (134 BAs), state-level, and NERC region level - and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.

  3. Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography

    Science.gov (United States)

    Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.

    2014-11-01

    Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as "Muon Central Slice Theorem". Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction.

  4. Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography

    International Nuclear Information System (INIS)

    Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.

    2014-01-01

    Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as M uon Central Slice Theorem . Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction

  5. Study of spatial resolution of coordinate detectors based on Gas Electron Multipliers

    Science.gov (United States)

    Kudryavtsev, V. N.; Maltsev, T. V.; Shekhtman, L. I.

    2017-02-01

    Spatial resolution of GEM-based tracking detectors is determined in the simulation and measured in the experiments. The simulation includes GEANT4 implemented transport of high energy electrons with careful accounting of atomic relaxation processes including emission of fluorescent photons and Auger electrons and custom post-processing with accounting of diffusion, gas amplification fluctuations, distribution of signals on readout electrodes, electronics noise and particular algorithm of final coordinate calculation (center of gravity). The simulation demonstrates that the minimum of spatial resolution of about 10 μm can be achieved with a gas mixture of Ar -CO2 (75-25 %) at a strips pitch from 250 μm to 300 μm. At a larger pitch the resolution quickly degrades reaching 80-100 μm at a pitch of 460-500 μm. Spatial resolution of low-material triple-GEM detectors for the DEUTERON facility at the VEPP-3 storage ring is measured at the extracted beam facility of the VEPP-4 M collider. One-coordinate resolution of the DEUTERON detector is measured with electron beam of 500 MeV, 1 GeV and 3.5 GeV energies. The determined value of spatial resolution varies in the range from approximately 35 μm to 50 μm for orthogonal tracks in the experiments.

  6. Horizontal Residual Mean Circulation: Evaluation of Spatial Correlations in Coarse Resolution Ocean Models

    Science.gov (United States)

    Li, Y.; McDougall, T. J.

    2016-02-01

    Coarse resolution ocean models lack knowledge of spatial correlations between variables on scales smaller than the grid scale. Some researchers have shown that these spatial correlations play a role in the poleward heat flux. In order to evaluate the poleward transport induced by the spatial correlations at a fixed horizontal position, an equation is obtained to calculate the approximate transport from velocity gradients. The equation involves two terms that can be added to the quasi-Stokes streamfunction (based on temporal correlations) to incorporate the contribution of spatial correlations. Moreover, these new terms do not need to be parameterized and is ready to be evaluated by using model data directly. In this study, data from a high resolution ocean model have been used to estimate the accuracy of this HRM approach for improving the horizontal property fluxes in coarse-resolution ocean models. A coarse grid is formed by sub-sampling and box-car averaging the fine grid scale. The transport calculated on the coarse grid is then compared to the transport on original high resolution grid scale accumulated over a corresponding number of grid boxes. The preliminary results have shown that the estimate on coarse resolution grids roughly match the corresponding transports on high resolution grids.

  7. Anthropogenic heat flux: advisable spatial resolutions when input data are scarce

    Science.gov (United States)

    Gabey, A. M.; Grimmond, C. S. B.; Capel-Timms, I.

    2018-02-01

    Anthropogenic heat flux (QF) may be significant in cities, especially under low solar irradiance and at night. It is of interest to many practitioners including meteorologists, city planners and climatologists. QF estimates at fine temporal and spatial resolution can be derived from models that use varying amounts of empirical data. This study compares simple and detailed models in a European megacity (London) at 500 m spatial resolution. The simple model (LQF) uses spatially resolved population data and national energy statistics. The detailed model (GQF) additionally uses local energy, road network and workday population data. The Fractions Skill Score (FSS) and bias are used to rate the skill with which the simple model reproduces the spatial patterns and magnitudes of QF, and its sub-components, from the detailed model. LQF skill was consistently good across 90% of the city, away from the centre and major roads. The remaining 10% contained elevated emissions and "hot spots" representing 30-40% of the total city-wide energy. This structure was lost because it requires workday population, spatially resolved building energy consumption and/or road network data. Daily total building and traffic energy consumption estimates from national data were within ± 40% of local values. Progressively coarser spatial resolutions to 5 km improved skill for total QF, but important features (hot spots, transport network) were lost at all resolutions when residential population controlled spatial variations. The results demonstrate that simple QF models should be applied with conservative spatial resolution in cities that, like London, exhibit time-varying energy use patterns.

  8. Land Cover Change Detection in Urban Lake Areas Using Multi-Temporary Very High Spatial Resolution Aerial Images

    Directory of Open Access Journals (Sweden)

    Wenyuan Zhang

    2018-01-01

    Full Text Available The availability of very high spatial resolution (VHR remote sensing imagery provides unique opportunities to exploit meaningful change information in detail with object-oriented image analysis. This study investigated land cover (LC changes in Shahu Lake of Wuhan using multi-temporal VHR aerial images in the years 1978, 1981, 1989, 1995, 2003, and 2011. A multi-resolution segmentation algorithm and CART (classification and regression trees classifier were employed to perform highly accurate LC classification of the individual images, while a post-classification comparison method was used to detect changes. The experiments demonstrated that significant changes in LC occurred along with the rapid urbanization during 1978–2011. The dominant changes that took place in the study area were lake and vegetation shrinking, replaced by high density buildings and roads. The total area of Shahu Lake decreased from ~7.64 km2 to ~3.60 km2 during the past 33 years, where 52.91% of its original area was lost. The presented results also indicated that urban expansion and inadequate legislative protection are the main factors in Shahu Lake’s shrinking. The object-oriented change detection schema presented in this manuscript enables us to better understand the specific spatial changes of Shahu Lake, which can be used to make reasonable decisions for lake protection and urban development.

  9. An Object-Based Image Analysis Approach for Detecting Penguin Guano in very High Spatial Resolution Satellite Images

    Directory of Open Access Journals (Sweden)

    Chandi Witharana

    2016-04-01

    Full Text Available The logistical challenges of Antarctic field work and the increasing availability of very high resolution commercial imagery have driven an interest in more efficient search and classification of remotely sensed imagery. This exploratory study employed geographic object-based analysis (GEOBIA methods to classify guano stains, indicative of chinstrap and Adélie penguin breeding areas, from very high spatial resolution (VHSR satellite imagery and closely examined the transferability of knowledge-based GEOBIA rules across different study sites focusing on the same semantic class. We systematically gauged the segmentation quality, classification accuracy, and the reproducibility of fuzzy rules. A master ruleset was developed based on one study site and it was re-tasked “without adaptation” and “with adaptation” on candidate image scenes comprising guano stains. Our results suggest that object-based methods incorporating the spectral, textural, spatial, and contextual characteristics of guano are capable of successfully detecting guano stains. Reapplication of the master ruleset on candidate scenes without modifications produced inferior classification results, while adapted rules produced comparable or superior results compared to the reference image. This work provides a road map to an operational “image-to-assessment pipeline” that will enable Antarctic wildlife researchers to seamlessly integrate VHSR imagery into on-demand penguin population census.

  10. Identifying landscape features associated with Rift Valley fever virus transmission, Ferlo region, Senegal, using very high spatial resolution satellite imagery.

    Science.gov (United States)

    Soti, Valérie; Chevalier, Véronique; Maura, Jonathan; Bégué, Agnès; Lelong, Camille; Lancelot, Renaud; Thiongane, Yaya; Tran, Annelise

    2013-03-01

    Dynamics of most of vector-borne diseases are strongly linked to global and local environmental changes. Landscape changes are indicators of human activities or natural processes that are likely to modify the ecology of the diseases. Here, a landscape approach developed at a local scale is proposed for extracting mosquito favourable biotopes, and for testing ecological parameters when identifying risk areas of Rift Valley fever (RVF) transmission. The study was carried out around Barkedji village, Ferlo region, Senegal. In order to test whether pond characteristics may influence the density and the dispersal behaviour of RVF vectors, and thus the spatial variation in RVFV transmission, we used a very high spatial resolution remote sensing image (2.4 m resolution) provided by the Quickbird sensor to produce a detailed land-cover map of the study area. Based on knowledge of vector and disease ecology, seven landscape attributes were defined at the pond level and computed from the land-cover map. Then, the relationships between landscape attributes and RVF serologic incidence rates in small ruminants were analyzed through a beta-binomial regression. Finally, the best statistical model according to the Akaike Information Criterion corrected for small samples (AICC), was used to map areas at risk for RVF. Among the derived landscape variables, the vegetation density index (VDI) computed within a 500 m buffer around ponds was positively correlated with serologic incidence (premote sensing data for identifying environmental risk factors and mapping RVF risk areas at a local scale.

  11. A review of surface energy balance models for estimating actual evapotranspiration with remote sensing at high spatiotemporal resolution over large extents

    Science.gov (United States)

    McShane, Ryan R.; Driscoll, Katelyn P.; Sando, Roy

    2017-09-27

    Many approaches have been developed for measuring or estimating actual evapotranspiration (ETa), and research over many years has led to the development of remote sensing methods that are reliably reproducible and effective in estimating ETa. Several remote sensing methods can be used to estimate ETa at the high spatial resolution of agricultural fields and the large extent of river basins. More complex remote sensing methods apply an analytical approach to ETa estimation using physically based models of varied complexity that require a combination of ground-based and remote sensing data, and are grounded in the theory behind the surface energy balance model. This report, funded through cooperation with the International Joint Commission, provides an overview of selected remote sensing methods used for estimating water consumed through ETa and focuses on Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC) and Operational Simplified Surface Energy Balance (SSEBop), two energy balance models for estimating ETa that are currently applied successfully in the United States. The METRIC model can produce maps of ETa at high spatial resolution (30 meters using Landsat data) for specific areas smaller than several hundred square kilometers in extent, an improvement in practice over methods used more generally at larger scales. Many studies validating METRIC estimates of ETa against measurements from lysimeters have shown model accuracies on daily to seasonal time scales ranging from 85 to 95 percent. The METRIC model is accurate, but the greater complexity of METRIC results in greater data requirements, and the internalized calibration of METRIC leads to greater skill required for implementation. In contrast, SSEBop is a simpler model, having reduced data requirements and greater ease of implementation without a substantial loss of accuracy in estimating ETa. The SSEBop model has been used to produce maps of ETa over very large extents (the

  12. Hi-Res scan mode in clinical MDCT systems: Experimental assessment of spatial resolution performance.

    Science.gov (United States)

    Cruz-Bastida, Juan P; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P; Chen, Guang-Hong

    2016-05-01

    The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0-16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the

  13. Semantic risk estimation of suspected minefields based on spatial relationships analysis of minefield indicators from multi-level remote sensing imagery

    Science.gov (United States)

    Chan, Jonathan Cheung-Wai; Sahli, Hichem; Wang, Yuhang

    2005-06-01

    This paper presents semantic risk estimation of suspected minefields using spatial relationships of minefield indicators extracted from multi-level remote sensing. Both satellite image and pyramidal airborne acquisitions from 900m to 30m flying heights with resolutions from 1m to 2cm resolutions are used for identification of minefield indicators. R-Histogram [1] is a quantitative representation of spatial relationship between two objects in an image. Eight spatial relationships can be generated: 1) LEFT OF, 2) RIGHT OF, 3) ABOVE, 4) BELOW, 5) NEAR, 6) FAR, 7) INSIDE, 8) OUTSIDE. R-Histogram semantics are first generated from selected indicators and metrics such as topological proximity and directional relationships are trained for soft classification of risk index (normalized as 0-1). We presented a framework of how semantic metadata generated from remote sensing images are used in risk estimation. The resultant risk index identified seven out of twelve mine accidents occurred at high risk region. More importantly, comparison with ground truth obtained after mine clearance show that three out of the four identified pattern minefields falls into the area estimated at very high risk. A parcel-based per-field risk estimation can also be easily generated to show the usefulness of the risk index.

  14. S-CNN-BASED SHIP DETECTION FROM HIGH-RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    R. Zhang

    2016-06-01

    Full Text Available Reliable ship detection plays an important role in both military and civil fields. However, it makes the task difficult with high-resolution remote sensing images with complex background and various types of ships with different poses, shapes and scales. Related works mostly used gray and shape features to detect ships, which obtain results with poor robustness and efficiency. To detect ships more automatically and robustly, we propose a novel ship detection method based on the convolutional neural networks (CNNs, called SCNN, fed with specifically designed proposals extracted from the ship model combined with an improved saliency detection method. Firstly we creatively propose two ship models, the “V” ship head model and the “||” ship body one, to localize the ship proposals from the line segments extracted from a test image. Next, for offshore ships with relatively small sizes, which cannot be efficiently picked out by the ship models due to the lack of reliable line segments, we propose an improved saliency detection method to find these proposals. Therefore, these two kinds of ship proposals are fed to the trained CNN for robust and efficient detection. Experimental results on a large amount of representative remote sensing images with different kinds of ships with varied poses, shapes and scales demonstrate the efficiency and robustness of our proposed S-CNN-Based ship detector.

  15. A Method of Road Extraction from High-resolution Remote Sensing Images Based on Shape Features

    Directory of Open Access Journals (Sweden)

    LEI Xiaoqi

    2016-02-01

    Full Text Available Road extraction from high-resolution remote sensing image is an important and difficult task.Since remote sensing images include complicated information,the methods that extract roads by spectral,texture and linear features have certain limitations.Also,many methods need human-intervention to get the road seeds(semi-automatic extraction,which have the great human-dependence and low efficiency.The road-extraction method,which uses the image segmentation based on principle of local gray consistency and integration shape features,is proposed in this paper.Firstly,the image is segmented,and then the linear and curve roads are obtained by using several object shape features,so the method that just only extract linear roads are rectified.Secondly,the step of road extraction is carried out based on the region growth,the road seeds are automatic selected and the road network is extracted.Finally,the extracted roads are regulated by combining the edge information.In experiments,the images that including the better gray uniform of road and the worse illuminated of road surface were chosen,and the results prove that the method of this study is promising.

  16. A New Perspective: Assessing the Spatial Distribution of Coral Bleaching with Unmanned Low Altitude Remote Sensing Systems

    Science.gov (United States)

    Levy, J.; Franklin, E. C.; Hunter, C. L.

    2016-12-01

    Coral reefs are biodiversity hotspots that are vital to the function of global economic and biological processes. Coral bleaching is a significant contributor to the global decline of reefs and can impact an expansive reef area over short timescales. In order to understand the dynamics of coral bleaching and how these stress events impact reef ecosystems, it is important to conduct rapid bleaching surveys at functionally important spatial scales. Due to the inherent heterogeneity, size, and in some cases, remoteness of coral reefs, it is difficult to routinely monitor coral bleaching dynamics before, during, and after bleaching. Additionally, current in situ survey methods only collect snippets of discrete reef data over small reef areas, which are unable to accurately represent the reef as a whole. We present a new technique using small unmanned aerial systems (sUAS) as cost effective, efficient monitoring tools that target small to intermediate-scale reef dynamics to understand the spatial distribution of bleached coral colonies during the 2015 bleaching event on patch reefs in Kaneohe Bay, Oahu. Overlapping low altitude aerial images were collected at four reefs during the bleaching period and processed using Structure-from-Motion techniques to produce georeferenced and spatially accurate orthomosaics of complete reef areas. Mosaics were analyzed using manual and heuristic neural network classification schemes to identify comprehensive populations of bleached and live coral on each patch reef. We found that bleached colonies had random and clumped distributions on patch reefs in Kaneohe Bay depending on local environmental conditions. Our work demonstrates that sUAS provide a low cost, efficient platform that can rapidly and repeatedly collect high-resolution imagery (1 cm/pixel) and map large areas of shallow reef ecosystems (5 hectares). This study proves the feasibility of utilizing sUAS as a tool to collect spatially rich reef data that will provide reef

  17. HIGH SPATIAL-RESOLUTION IMAGING OF TE INCLUSIONS IN CZT MATERIAL

    International Nuclear Information System (INIS)

    CAMARDA, G.S.; BOLOTNIKOV, A.E.; CARINI, G.A.; CUI, Y.; KOHMAN, K.T.; LI, L.; JAMES, R.B.

    2006-01-01

    We present new results from our studies of defects in current single-crystal CdZnTe material. Our previous measurements, carried out on thin (∼1 mm) and long (>12 mm) CZT detectors, indicated that small (1-20 (micro)m) Te inclusions can significantly degrade the device's energy resolution and detection efficiency. We are conducting detailed studies of the effects of Te inclusions by employing different characterization techniques with better spatial resolution, such as quantitative fluorescence mapping, X-ray micro-diffraction, and TEM. Also, IR microscopy and gamma-mapping with pulse-shape analysis with higher spatial resolution generated more accurate results in the areas surrounding the micro-defects (Te inclusions). Our results reveal how the performance of CdZnTe detectors is influenced by Te inclusions, such as their spatial distribution, concentration, and size. We also discuss a model of charge transport through areas populated with Te inclusions

  18. Improvement of range spatial resolution of medical ultrasound imaging by element-domain signal processing

    Science.gov (United States)

    Hasegawa, Hideyuki

    2017-07-01

    The range spatial resolution is an important factor determining the image quality in ultrasonic imaging. The range spatial resolution in ultrasonic imaging depends on the ultrasonic pulse length, which is determined by the mechanical response of the piezoelectric element in an ultrasonic probe. To improve the range spatial resolution without replacing the transducer element, in the present study, methods based on maximum likelihood (ML) estimation and multiple signal classification (MUSIC) were proposed. The proposed methods were applied to echo signals received by individual transducer elements in an ultrasonic probe. The basic experimental results showed that the axial half maximum of the echo from a string phantom was improved from 0.21 mm (conventional method) to 0.086 mm (ML) and 0.094 mm (MUSIC).

  19. Real-time and quantitative isotropic spatial resolution susceptibility imaging for magnetic nanoparticles

    Science.gov (United States)

    Pi, Shiqiang; Liu, Wenzhong; Jiang, Tao

    2018-03-01

    The magnetic transparency of biological tissue allows the magnetic nanoparticle (MNP) to be a promising functional sensor and contrast agent. The complex susceptibility of MNPs, strongly influenced by particle concentration, excitation magnetic field and their surrounding microenvironment, provides significant implications for biomedical applications. Therefore, magnetic susceptibility imaging of high spatial resolution will give more detailed information during the process of MNP-aided diagnosis and therapy. In this study, we present a novel spatial magnetic susceptibility extraction method for MNPs under a gradient magnetic field, a low-frequency drive magnetic field, and a weak strength high-frequency magnetic field. Based on this novel method, a magnetic particle susceptibility imaging (MPSI) of millimeter-level spatial resolution (<3 mm) was achieved using our homemade imaging system. Corroborated by the experimental results, the MPSI shows real-time (1 s per frame acquisition) and quantitative abilities, and isotropic high resolution.

  20. Crowding in Visual Working Memory Reveals Its Spatial Resolution and the Nature of Its Representations.

    Science.gov (United States)

    Tamber-Rosenau, Benjamin J; Fintzi, Anat R; Marois, René

    2015-09-01

    Spatial resolution fundamentally limits any image representation. Although this limit has been extensively investigated for perceptual representations by assessing how neighboring flankers degrade the perception of a peripheral target with visual crowding, the corresponding limit for representations held in visual working memory (VWM) is unknown. In the present study, we evoked crowding in VWM and directly compared resolution in VWM and perception. Remarkably, the spatial resolution of VWM proved to be no worse than that of perception. However, mixture modeling of errors caused by crowding revealed the qualitatively distinct nature of these representations. Perceptual crowding errors arose from both increased imprecision in target representations and substitution of flankers for targets. By contrast, VWM crowding errors arose exclusively from substitutions, which suggests that VWM transforms analog perceptual representations into discrete items. Thus, although perception and VWM share a common resolution limit, exceeding this limit reveals distinct mechanisms for perceiving images and holding them in mind. © The Author(s) 2015.

  1. Spatial interpolation of climate variables in Northern Germany—Influence of temporal resolution and network density

    Directory of Open Access Journals (Sweden)

    C. Berndt

    2018-02-01

    New hydrological insights: Geostatistical techniques provide a better performance for all climate variables compared to simple methods Radar data improves the estimation of rainfall with hourly temporal resolution, while topography is useful for weekly to yearly values and temperature in general. No helpful information was found for cloudiness, sunshine duration, and wind speed, while interpolation of humidity benefitted from additional temperature data. The influences of temporal resolution, spatial variability, and additional information appear to be stronger than station density effects. High spatial variability of hourly precipitation causes the highest error, followed by wind speed, cloud coverage and sunshine duration. Lowest errors occur for temperature and humidity.

  2. Iterative algorithm for reconstructing rotationally asymmetric surface deviation with pixel-level spatial resolution

    Science.gov (United States)

    Quan, Haiyang; Wu, Fan; Hou, Xi

    2015-10-01

    New method for reconstructing rotationally asymmetric surface deviation with pixel-level spatial resolution is proposed. It is based on basic iterative scheme and accelerates the Gauss-Seidel method by introducing an acceleration parameter. This modified Successive Over-relaxation (SOR) is effective for solving the rotationally asymmetric components with pixel-level spatial resolution, without the usage of a fitting procedure. Compared to the Jacobi and Gauss-Seidel method, the modified SOR method with an optimal relaxation factor converges much faster and saves more computational costs and memory space without reducing accuracy. It has been proved by real experimental results.

  3. PIV study of flow field in Rushton turbine stirred vessel influenced by spatial resolution

    Czech Academy of Sciences Publication Activity Database

    Kotek, M.; Jašíková, D.; Kysela, Bohuš; Šulc, R.; Kopecký, V.

    2017-01-01

    Roč. 2, č. 2017 (2017), s. 79-84 ISSN 2367-8992 R&D Projects: GA ČR GA16-20175S Grant - others:GA MŠk(CZ) LO1201 Institutional support: RVO:67985874 Keywords : mixing process * PIV measurement * spatial resolution Subject RIV: JP - Industrial Processing OBOR OECD: Fluids and plasma physics (including surface physics) http://www.iaras.org/iaras/home/caijtam/piv-study-of-flow-field-in-rushton-turbine-stirred-vessel-influenced-by-spatial-resolution

  4. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements

    DEFF Research Database (Denmark)

    Rowlands, D. D.; Luthcke, S. B.; Klosko, S. M.

    2005-01-01

    resolution. Using 4° × 4° blocks at 10-day intervals, we estimate the mass of surplus or deficit water over a 52° × 60° grid centered on the Amazon basin for July 2003. We demonstrate that the recovered signals are coherent and correlate well with the expected hydrological signal....... the estimation of static monthly parameters. Through an analysis of the GRACE data residuals, we show that the fundamental temporal and spatial resolution of the GRACE data is 10 days and 400 km. We present an approach similar in concept to altimetric methods that recovers submonthly mass flux at a high spatial...

  5. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples

    Science.gov (United States)

    Yan, Wei; Yang, Yanlong; Tan, Yu; Chen, Xun; Li, Yang; Qu, Junle; Ye, Tong

    2018-01-01

    Stimulated emission depletion microscopy (STED) is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of specimens’ optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the sever distortion of the depletion beam profile may cause complete loss of the super resolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is hard to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique (COAT). The full correction can effectively maintain and improve the spatial resolution in imaging thick samples. PMID:29400356

  6. Simulations of the temporal and spatial resolution for a compact time-resolved electron diffractometer

    Science.gov (United States)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.

    2016-02-01

    A novel compact electron gun for use in time-resolved gas electron diffraction experiments has recently been designed and commissioned. In this paper we present and discuss the extensive simulations that were performed to underpin the design in terms of the spatial and temporal qualities of the pulsed electron beam created by the ionisation of a gold photocathode using a femtosecond laser. The response of the electron pulses to a solenoid lens used to focus the electron beam has also been studied. The simulated results show that focussing the electron beam affects the overall spatial and temporal resolution of the experiment in a variety of ways, and that factors that improve the resolution of one parameter can often have a negative effect on the other. A balance must, therefore, be achieved between spatial and temporal resolution. The optimal experimental time resolution for the apparatus is predicted to be 416 fs for studies of gas-phase species, while the predicted spatial resolution of better than 2 nm-1 compares well with traditional time-averaged electron diffraction set-ups.

  7. Exploring the Spatial Resolution of the Photothermal Beam Deflection Technique in the Infrared Region

    CERN Document Server

    Seidel, Wolfgang

    2004-01-01

    In photothermal beam deflection spectroscopy (PTBD) generating and detection of thermal waves occur generally in the sub-millimeter length scale. Therefore, PTBD provides spatial information about the surface of the sample and permits imaging and/or microspectrometry. Recent results of PTBD experiments are presented with a high spatial resolution which is near the diffraction limit of the infrared pump beam (CLIO-FEL). We investigated germanium substrates showing restricted O+-doped regions with an infrared absorption line at a wavelength around 11.6 microns. The spatial resolution was obtained by strongly focusing the probe beam (i.e. a HeNe laser) on a sufficiently small spot. The strong divergence makes it necessary to refocus the probe beam in front of the position detector. The influence of the focusing elements on spatial resolution and signal-to-noise ratio is discussed. In future studies we expect an enhanced spatial resolution due to an extreme focusing of the probe beam leading to a highly sensitive...

  8. Magnetoacoustic Imaging of Electrical Conductivity of Biological Tissues at a Spatial Resolution Better than 2 mm

    OpenAIRE

    Hu, Gang; He, Bin

    2011-01-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is an emerging approach for noninvasively imaging electrical impedance properties of biological tissues. The MAT-MI imaging system measures ultrasound waves generated by the Lorentz force, having been induced by magnetic stimulation, which is related to the electrical conductivity distribution in tissue samples. MAT-MI promises to provide fine spatial resolution for biological tissue imaging as compared to ultrasound resolution. In t...

  9. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    OpenAIRE

    C. M. R. Mateo; C. M. R. Mateo; D. Yamazaki; D. Yamazaki; H. Kim; A. Champathong; J. Vaze; T. Oki; T. Oki

    2017-01-01

    Global-scale river models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development...

  10. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    OpenAIRE

    Mateo, Cherry May R.; Yamazaki, Dai; Kim, Hyungjun; Champathong, Adisorn; Vaze, Jai; Oki, Taikan

    2017-01-01

    Global-scale River Models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representation of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction,...

  11. Effects of high spatial and temporal resolution Earth observations on simulated hydrometeorological variables in a cropland (southwestern France

    Directory of Open Access Journals (Sweden)

    J. Etchanchu

    2017-11-01

    Full Text Available Agricultural landscapes are often constituted by a patchwork of crop fields whose seasonal evolution is dependent on specific crop rotation patterns and phenologies. This temporal and spatial heterogeneity affects surface hydrometeorological processes and must be taken into account in simulations of land surface and distributed hydrological models. The Sentinel-2 mission allows for the monitoring of land cover and vegetation dynamics at unprecedented spatial resolutions and revisit frequencies (20 m and 5 days, respectively that are fully compatible with such heterogeneous agricultural landscapes. Here, we evaluate the impact of Sentinel-2-like remote sensing data on the simulation of surface water and energy fluxes via the Interactions between the Surface Biosphere Atmosphere (ISBA land surface model included in the EXternalized SURface (SURFEX modeling platform. The study focuses on the effect of the leaf area index (LAI spatial and temporal variability on these fluxes. We compare the use of the LAI climatology from ECOCLIMAP-II, used by default in SURFEX-ISBA, and time series of LAI derived from the high-resolution Formosat-2 satellite data (8 m. The study area is an agricultural zone in southwestern France covering 576 km2 (24 km  ×  24 km. An innovative plot-scale approach is used, in which each computational unit has a homogeneous vegetation type. Evaluation of the simulations quality is done by comparing model outputs with in situ eddy covariance measurements of latent heat flux (LE. Our results show that the use of LAI derived from high-resolution remote sensing significantly improves simulated evapotranspiration with respect to ECOCLIMAP-II, especially when the surface is covered with summer crops. The comparison with in situ measurements shows an improvement of roughly 0.3 in the correlation coefficient and a decrease of around 30 % of the root mean square error (RMSE in the simulated evapotranspiration. This

  12. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak.

    Science.gov (United States)

    Truong, D D; Austin, M E

    2014-11-01

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of Te(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83-130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1-3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6-0.8 cm) resolution Te measurements. The high resolution subsystem branches off from the regular channels' IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2-4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters' center frequencies (250 MHz). This configuration allows for full coverage of the 83-130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a "zoomed-in" analysis of a ∼2-4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial Te measurements, which demonstrate that the desired resolution is achieved, are presented.

  13. Pushing the limits of spatial resolution with the Kuiper Airborne observatory

    Science.gov (United States)

    Lester, Daniel

    1994-01-01

    The study of astronomical objects at high spatial resolution in the far-IR is one of the most serious limitations to our work at these wavelengths, which carry information about the luminosity of dusty and obscured sources. At IR wavelengths shorter than 30 microns, ground based telescopes with large apertures at superb sites achieve diffraction-limited performance close to the seeing limit in the optical. At millimeter wavelengths, ground based interferometers achieve resolution that is close to this. The inaccessibility of the far-IR from the ground makes it difficult, however, to achieve complementary resolution in the far-IR. The 1983 IRAS survey, while extraordinarily sensitive, provides us with a sky map at a spatial resolution that is limited by detector size on a spatial scale that is far larger than that available in other wavelengths on the ground. The survey resolution is of order 4 min in the 100 micron bandpass, and 2 min at 60 microns (IRAS Explanatory Supplement, 1988). Information on a scale of 1' is available on some sources from the CPC. Deconvolution and image resolution using this database is one of the subjects of this workshop.

  14. Eigenvector Spatial Filtering Regression Modeling of Ground PM2.5 Concentrations Using Remotely Sensed Data

    Directory of Open Access Journals (Sweden)

    Jingyi Zhang

    2018-06-01

    Full Text Available This paper proposes a regression model using the Eigenvector Spatial Filtering (ESF method to estimate ground PM2.5 concentrations. Covariates are derived from remotely sensed data including aerosol optical depth, normal differential vegetation index, surface temperature, air pressure, relative humidity, height of planetary boundary layer and digital elevation model. In addition, cultural variables such as factory densities and road densities are also used in the model. With the Yangtze River Delta region as the study area, we constructed ESF-based Regression (ESFR models at different time scales, using data for the period between December 2015 and November 2016. We found that the ESFR models effectively filtered spatial autocorrelation in the OLS residuals and resulted in increases in the goodness-of-fit metrics as well as reductions in residual standard errors and cross-validation errors, compared to the classic OLS models. The annual ESFR model explained 70% of the variability in PM2.5 concentrations, 16.7% more than the non-spatial OLS model. With the ESFR models, we performed detail analyses on the spatial and temporal distributions of PM2.5 concentrations in the study area. The model predictions are lower than ground observations but match the general trend. The experiment shows that ESFR provides a promising approach to PM2.5 analysis and prediction.

  15. Eigenvector Spatial Filtering Regression Modeling of Ground PM2.5 Concentrations Using Remotely Sensed Data.

    Science.gov (United States)

    Zhang, Jingyi; Li, Bin; Chen, Yumin; Chen, Meijie; Fang, Tao; Liu, Yongfeng

    2018-06-11

    This paper proposes a regression model using the Eigenvector Spatial Filtering (ESF) method to estimate ground PM 2.5 concentrations. Covariates are derived from remotely sensed data including aerosol optical depth, normal differential vegetation index, surface temperature, air pressure, relative humidity, height of planetary boundary layer and digital elevation model. In addition, cultural variables such as factory densities and road densities are also used in the model. With the Yangtze River Delta region as the study area, we constructed ESF-based Regression (ESFR) models at different time scales, using data for the period between December 2015 and November 2016. We found that the ESFR models effectively filtered spatial autocorrelation in the OLS residuals and resulted in increases in the goodness-of-fit metrics as well as reductions in residual standard errors and cross-validation errors, compared to the classic OLS models. The annual ESFR model explained 70% of the variability in PM 2.5 concentrations, 16.7% more than the non-spatial OLS model. With the ESFR models, we performed detail analyses on the spatial and temporal distributions of PM 2.5 concentrations in the study area. The model predictions are lower than ground observations but match the general trend. The experiment shows that ESFR provides a promising approach to PM 2.5 analysis and prediction.

  16. MODELING AND SIMULATION OF HIGH RESOLUTION OPTICAL REMOTE SENSING SATELLITE GEOMETRIC CHAIN

    Directory of Open Access Journals (Sweden)

    Z. Xia

    2018-04-01

    Full Text Available The high resolution satellite with the longer focal length and the larger aperture has been widely used in georeferencing of the observed scene in recent years. The consistent end to end model of high resolution remote sensing satellite geometric chain is presented, which consists of the scene, the three line array camera, the platform including attitude and position information, the time system and the processing algorithm. The integrated design of the camera and the star tracker is considered and the simulation method of the geolocation accuracy is put forward by introduce the new index of the angle between the camera and the star tracker. The model is validated by the geolocation accuracy simulation according to the test method of the ZY-3 satellite imagery rigorously. The simulation results show that the geolocation accuracy is within 25m, which is highly consistent with the test results. The geolocation accuracy can be improved about 7 m by the integrated design. The model combined with the simulation method is applicable to the geolocation accuracy estimate before the satellite launching.

  17. A method for geological hazard extraction using high-resolution remote sensing

    International Nuclear Information System (INIS)

    Wang, Q J; Chen, Y; Bi, J T; Lin, Q Z; Li, M X

    2014-01-01

    Taking Yingxiu, the epicentre of the Wenchuan earthquake, as the study area, a method for geological disaster extraction using high-resolution remote sensing imagery was proposed in this study. A high-resolution Digital Elevation Model (DEM) was used to create mask imagery to remove interfering factors such as buildings and water at low altitudes. Then, the mask imagery was diced into several small parts to reduce the large images' inconsistency, and they were used as the sources to be classified. After that, vector conversion was done on the classified imagery in ArcGIS. Finally, to ensure accuracy, other interfering factors such as buildings at high altitudes, bare land, and land covered by little vegetation were removed manually. Because the method can extract geological hazards in a short time, it is of great importance for decision-makers and rescuers who need to know the degree of damage in the disaster area, especially within 72 hours after an earthquake. Therefore, the method will play an important role in decision making, rescue, and disaster response planning

  18. Preliminary work of mangrove ecosystem carbon stock mapping in small island using remote sensing: above and below ground carbon stock mapping on medium resolution satellite image

    Science.gov (United States)

    Wicaksono, Pramaditya; Danoedoro, Projo; Hartono, Hartono; Nehren, Udo; Ribbe, Lars

    2011-11-01

    Mangrove forest is an important ecosystem located in coastal area that provides various important ecological and economical services. One of the services provided by mangrove forest is the ability to act as carbon sink by sequestering CO2 from atmosphere through photosynthesis and carbon burial on the sediment. The carbon buried on mangrove sediment may persist for millennia before return to the atmosphere, and thus act as an effective long-term carbon sink. Therefore, it is important to understand the distribution of carbon stored within mangrove forest in a spatial and temporal context. In this paper, an effort to map carbon stocks in mangrove forest is presented using remote sensing technology to overcome the handicap encountered by field survey. In mangrove carbon stock mapping, the use of medium spatial resolution Landsat 7 ETM+ is emphasized. Landsat 7 ETM+ images are relatively cheap, widely available and have large area coverage, and thus provide a cost and time effective way of mapping mangrove carbon stocks. Using field data, two image processing techniques namely Vegetation Index and Linear Spectral Unmixing (LSU) were evaluated to find the best method to explain the variation in mangrove carbon stocks using remote sensing data. In addition, we also tried to estimate mangrove carbon sequestration rate via multitemporal analysis. Finally, the technique which produces significantly better result was used to produce a map of mangrove forest carbon stocks, which is spatially extensive and temporally repetitive.

  19. High time resolution boundary layer description using combined remote sensing instruments

    Directory of Open Access Journals (Sweden)

    C. Gaffard

    2008-09-01

    Full Text Available Ground based remote sensing systems for future observation operations will allow continuous monitoring of the lower troposphere at temporal resolutions much better than every 30 min. Observations which may be considered spurious from an individual instrument can be validated or eliminated when considered in conjunction with measurements from other instruments observing at the same location. Thus, improved quality control of atmospheric profiles from microwave radiometers and wind profilers should be sought by considering the measurements from different systems together rather than individually. In future test bed deployments for future operational observing systems, this should be aided by observations from laser ceilometers and cloud radars. Observations of changes in atmospheric profiles at high temporal resolution in the lower troposphere are presented from a 12 channel microwave radiometer and 1290 MHz UHF wind profiler deployed in southern England during the CSIP field experiment in July/August 2005. The observations chosen were from days when thunderstorms occurred in southern England. Rapid changes near the surface in dry layers are considered, both when rain/hail may be falling from above and where the dry air is associated with cold pools behind organised thunderstorms. Also, short term variations in atmospheric profiles and vertical stability are presented on a day with occasional low cloud, when thunderstorms triggered 50 km down wind of the observing site Improved quality control of the individual remote sensing systems need to be implemented, examining the basic quality of the underlying observations as well as the final outputs, and so for instance eliminating ground clutter as far as possible from the basic Doppler spectra measurements of the wind profiler. In this study, this was performed manually. The potential of incorporating these types of instruments in future upper air observational networks leads to the challenge to

  20. Electron energy-loss spectrometry at the frontier of spatial and energy resolution

    International Nuclear Information System (INIS)

    Hofer, F.; Grogger, W.; Kothleitner, G.

    2004-01-01

    Full text: Electron energy-loss spectroscopy (EELS) in the transmission electron microscope (TEM) is now used routinely as a means of measuring chemical and structural properties of very small regions of a thin specimen. The power of this technique depends significantly on two parameters: its spatial resolution and the energy resolution available in the spectrum and in the energy-filtered TEM (EFTEM) image. The cold field emission source and the Schottky emitter have made an energy resolution below 1 eV possible and it is now feasible to obtain data with a spatial resolution close to atomic dimensions, given the right instrumentation and specimen. EFTEM allows to record elemental maps at sub-nanometre resolution, being mainly limited by chromatic and spherical aberration of the objective lens and by delocalization of inelastic scattering. Recently the possibility of correcting spherical and even chromatic aberrations of electron lenses has become a practical reality thus improving the point resolution of the TEM to below 0.1 nm. The other limiting factor for EFTEM resolution is delocalization. However, recent measurements show that resolution values in the range of 1 nm and below can be achieved, even for energy-losses of only a few eV. In terms of energy-resolution, EELS and EFTEM compare less favourably with other spectroscopies. For common TEMs, the overall energy-resolution is mainly determined by the energy width of the electron source, typically between 0.5 and 1.5 eV. For comparison, synchrotron x-ray sources and beam line spectrometers, provide a resolution well below 0.1 eV for absorption spectroscopy. During the early sixties, the energy spread of an electron beam could be reduced by incorporating an energy-filter into the illumination system, but the system lacked spatial resolution. Later developments combined high energy resolution in the range of 0.1 eV with improved spatial resolution. Recently, FEI introduced a new high resolution EELS system based

  1. Estimation of the high-spatial-resolution variability in extreme wind speeds for forestry applications

    Directory of Open Access Journals (Sweden)

    A. Venäläinen

    2017-07-01

    Full Text Available The bioeconomy has an increasing role to play in climate change mitigation and the sustainable development of national economies. In Finland, a forested country, over 50 % of the current bioeconomy relies on the sustainable management and utilization of forest resources. Wind storms are a major risk that forests are exposed to and high-spatial-resolution analysis of the most vulnerable locations can produce risk assessment of forest management planning. In this paper, we examine the feasibility of the wind multiplier approach for downscaling of maximum wind speed, using 20 m spatial resolution CORINE land-use dataset and high-resolution digital elevation data. A coarse spatial resolution estimate of the 10-year return level of maximum wind speed was obtained from the ERA-Interim reanalyzed data. Using a geospatial re-mapping technique the data were downscaled to 26 meteorological station locations to represent very diverse environments. Applying a comparison, we find that the downscaled 10-year return levels represent 66 % of the observed variation among the stations examined. In addition, the spatial variation in wind-multiplier-downscaled 10-year return level wind was compared with the WAsP model-simulated wind. The heterogeneous test area was situated in northern Finland, and it was found that the major features of the spatial variation were similar, but in some locations, there were relatively large differences. The results indicate that the wind multiplier method offers a pragmatic and computationally feasible tool for identifying at a high spatial resolution those locations with the highest forest wind damage risks. It can also be used to provide the necessary wind climate information for wind damage risk model calculations, thus making it possible to estimate the probability of predicted threshold wind speeds for wind damage and consequently the probability (and amount of wind damage for certain forest stand configurations.

  2. Quantum phase amplification for temporal pulse shaping and super-resolution in remote sensing

    Science.gov (United States)

    Yin, Yanchun

    QPA in the spatial domain has also been studied as a method to enhance the spatial resolution of imaging systems. A detailed model has been developed for achieving both super-resolution and detection of phase-amplified light. The imaging resolution problem considered here is treated as a binary hypotheses testing problem. Resolution enhancement is achieved by magnification of the angular separation of two targets in the sub-Rayleigh regime. The detection model includes optimization of detector segmentation, detector noise, and detection in both the spatial and the spatial frequency domain, which provide strategies for the optimization of the signal-to-noise ratio that take advantage of both the change of the field distribution and the change of energy of the signal in the QPA process. Proof-of-principle experiments have been conducted in the spatial domain. For the first time, beam angular amplification has been demonstrated, and the experimental result is in good agreement with simulations. The experimental demonstration has been achieved by observing the correlation of amplitude and angular phase in the phase-sensitive three-wave mixing process using ultrashort laser pulses and utilizing a type I three-wave mixing process. Several diagnostics have been developed and employed in the experimental measurements, including the near-field diagnostic, the far-field diagnostic, and the interferometry diagnostic. They have all been used to confirm the existence and study the properties of the QPA process on a shot-to-shot basis. Specifically, amplitude was measured in the near-field diagnostic, while the angular phase was indirectly measured in the far-field diagnostic by determining the position of the beam centroid. Interferometric measurements have been found to be of insufficient accuracy for this measurement in the way they were implemented. The demonstration of beam angular amplification by use of QPA lays the foundation for future integrated demonstration of imaging

  3. Land Cover Classification Using Integrated Spectral, Temporal, and Spatial Features Derived from Remotely Sensed Images

    Directory of Open Access Journals (Sweden)

    Yongguang Zhai

    2018-03-01

    Full Text Available Obtaining accurate and timely land cover information is an important topic in many remote sensing applications. Using satellite image time series data should achieve high-accuracy land cover classification. However, most satellite image time-series classification methods do not fully exploit the available data for mining the effective features to identify different land cover types. Therefore, a classification method that can take full advantage of the rich information provided by time-series data to improve the accuracy of land cover classification is needed. In this paper, a novel method for time-series land cover classification using spectral, temporal, and spatial information at an annual scale was introduced. Based on all the available data from time-series remote sensing images, a refined nonlinear dimensionality reduction method was used to extract the spectral and temporal features, and a modified graph segmentation method was used to extract the spatial features. The proposed classification method was applied in three study areas with land cover complexity, including Illinois, South Dakota, and Texas. All the Landsat time series data in 2014 were used, and different study areas have different amounts of invalid data. A series of comparative experiments were conducted on the annual time-series images using training data generated from Cropland Data Layer. The results demonstrated higher overall and per-class classification accuracies and kappa index values using the proposed spectral-temporal-spatial method compared to spectral-temporal classification methods. We also discuss the implications of this study and possibilities for future applications and developments of the method.

  4. Content-Based High-Resolution Remote Sensing Image Retrieval via Unsupervised Feature Learning and Collaborative Affinity Metric Fusion

    Directory of Open Access Journals (Sweden)

    Yansheng Li

    2016-08-01

    Full Text Available With the urgent demand for automatic management of large numbers of high-resolution remote sensing images, content-based high-resolution remote sensing image retrieval (CB-HRRS-IR has attracted much research interest. Accordingly, this paper proposes a novel high-resolution remote sensing image retrieval approach via multiple feature representation and collaborative affinity metric fusion (IRMFRCAMF. In IRMFRCAMF, we design four unsupervised convolutional neural networks with different layers to generate four types of unsupervised features from the fine level to the coarse level. In addition to these four types of unsupervised features, we also implement four traditional feature descriptors, including local binary pattern (LBP, gray level co-occurrence (GLCM, maximal response 8 (MR8, and scale-invariant feature transform (SIFT. In order to fully incorporate the complementary information among multiple features of one image and the mutual information across auxiliary images in the image dataset, this paper advocates collaborative affinity metric fusion to measure the similarity between images. The performance evaluation of high-resolution remote sensing image retrieval is implemented on two public datasets, the UC Merced (UCM dataset and the Wuhan University (WH dataset. Large numbers of experiments show that our proposed IRMFRCAMF can significantly outperform the state-of-the-art approaches.

  5. Spatial variation and linkages of soil and vegetation in the Siberian Arctic tundra - coupling field observations with remote sensing data

    Science.gov (United States)

    Mikola, Juha; Virtanen, Tarmo; Linkosalmi, Maiju; Vähä, Emmi; Nyman, Johanna; Postanogova, Olga; Räsänen, Aleksi; Kotze, D. Johan; Laurila, Tuomas; Juutinen, Sari; Kondratyev, Vladimir; Aurela, Mika

    2018-05-01

    Arctic tundra ecosystems will play a key role in future climate change due to intensifying permafrost thawing, plant growth and ecosystem carbon exchange, but monitoring these changes may be challenging due to the heterogeneity of Arctic landscapes. We examined spatial variation and linkages of soil and plant attributes in a site of Siberian Arctic tundra in Tiksi, northeast Russia, and evaluated possibilities to capture this variation by remote sensing for the benefit of carbon exchange measurements and landscape extrapolation. We distinguished nine land cover types (LCTs) and to characterize them, sampled 92 study plots for plant and soil attributes in 2014. Moreover, to test if variation in plant and soil attributes can be detected using remote sensing, we produced a normalized difference vegetation index (NDVI) and topographical parameters for each study plot using three very high spatial resolution multispectral satellite images. We found that soils ranged from mineral soils in bare soil and lichen tundra LCTs to soils of high percentage of organic matter (OM) in graminoid tundra, bog, dry fen and wet fen. OM content of the top soil was on average 14 g dm-3 in bare soil and lichen tundra and 89 g dm-3 in other LCTs. Total moss biomass varied from 0 to 820 g m-2, total vascular shoot mass from 7 to 112 g m-2 and vascular leaf area index (LAI) from 0.04 to 0.95 among LCTs. In late summer, soil temperatures at 15 cm depth were on average 14 °C in bare soil and lichen tundra, and varied from 5 to 9 °C in other LCTs. On average, depth of the biologically active, unfrozen soil layer doubled from early July to mid-August. When contrasted across study plots, moss biomass was positively associated with soil OM % and OM content and negatively associated with soil temperature, explaining 14-34 % of variation. Vascular shoot mass and LAI were also positively associated with soil OM content, and LAI with active layer depth, but only explained 6-15 % of variation. NDVI

  6. Stimulated Emission Pumping Enablling Sub-Diffraction-Limited Spatial Resolution in CARS Microscopy

    NARCIS (Netherlands)

    Cleff, C.; Gross, P.; Fallnich, C.; Offerhaus, Herman L.; Herek, Jennifer Lynn; Kruse, K.; Beeker, W.P; Beeker, W.P.; Lee, Christopher James; Boller, Klaus J.; Dobner, S.

    2012-01-01

    Suppression of CARS signal generation is demonstrated by equalization of the ground and Raman states via a control state in a theoretical investigation. Using donut-shaped control light fields for population transfer results in sub-diffraction-limited spatial resolution CARS microscopy.

  7. Array diagnostics, spatial resolution, and filtering of undesired radiation with the 3D reconstruction algorithm

    DEFF Research Database (Denmark)

    Cappellin, C.; Pivnenko, Sergey; Jørgensen, E.

    2013-01-01

    This paper focuses on three important features of the 3D reconstruction algorithm of DIATOOL: the identification of array elements improper functioning and failure, the obtainable spatial resolution of the reconstructed fields and currents, and the filtering of undesired radiation and scattering...

  8. The spatial resolution of the porcine multifocal electroretinogram for detection of laser-induced retinal lesions

    DEFF Research Database (Denmark)

    Kyhn, Maria Voss; Kiilgaard, Jens Folke; Scherfig, Erik

    2008-01-01

    This study aimed to investigate the spatial resolution of a porcine multifocal electroretinogram (mfERG) protocol by testing its ability to detect laser-induced retinal lesions. Furthermore, we wanted to describe time-dependent changes in implicit time and amplitude of the different mfERG peaks...

  9. Total porosity of carbonate reservoir rocks by X-ray microtomography in two different spatial resolutions

    International Nuclear Information System (INIS)

    Nagata, Rodrigo; Appoloni, Carlos R.; Marques, Leonardo C.; Fernandes, Celso P.

    2011-01-01

    Carbonate reservoir rocks contain more than 50% of world's petroleum. To know carbonate rocks' structural properties is quite important to petroleum extraction. One of their main structural properties is the total porosity, which shows the rock's capacity to stock petroleum. In recent years, the X-ray microtomography had been used to analyze the structural parameters of reservoir rocks. Such nondestructive technique generates images of the samples' internal structure, allowing the evaluation of its properties. The spatial resolution is a measurement parameter that indicates the smallest structure size observable in a sample. It is possible to measure one sample using two or more different spatial resolutions in order to evaluate the samples' pore scale. In this work, two samples of the same sort of carbonate rock were measured, and in each measurement a different spatial resolution (17 μm and 7 μm) was applied. The obtained results showed that with the better resolution it was possible to measure 8% more pores than with the poorer resolution. Such difference provides us with good expectations about such approach to study the pore scale of carbonate rocks. (author)

  10. THE IMPACT OF SPATIAL AND TEMPORAL RESOLUTIONS IN TROPICAL SUMMER RAINFALL DISTRIBUTION: PRELIMINARY RESULTS

    Directory of Open Access Journals (Sweden)

    Q. Liu

    2017-10-01

    Full Text Available The abundance or lack of rainfall affects peoples’ life and activities. As a major component of the global hydrological cycle (Chokngamwong & Chiu, 2007, accurate representations at various spatial and temporal scales are crucial for a lot of decision making processes. Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG. However, the models’ resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation purposes. Hence disaggregation (downscaling procedures are needed to transfer the coarse scale products to higher spatial and temporal resolutions. The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA at 0.25 degree, 3 hourly grid rainfall data for a summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days and monthly resolutions. The probability distributions (PDF and cumulative distribution functions(CDF of rain amount at these resolutions are computed and modeled as a mixed distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS test, both for the mixed and the marginal distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions and it is found that the Gamma distributions fit much better than the Lognormal.

  11. The Impact of Spatial and Temporal Resolutions in Tropical Summer Rainfall Distribution: Preliminary Results

    Science.gov (United States)

    Liu, Q.; Chiu, L. S.; Hao, X.

    2017-10-01

    The abundance or lack of rainfall affects peoples' life and activities. As a major component of the global hydrological cycle (Chokngamwong & Chiu, 2007), accurate representations at various spatial and temporal scales are crucial for a lot of decision making processes. Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG). However, the models' resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation purposes. Hence disaggregation (downscaling) procedures are needed to transfer the coarse scale products to higher spatial and temporal resolutions. The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA) at 0.25 degree, 3 hourly grid rainfall data for a summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days) and monthly resolutions. The probability distributions (PDF) and cumulative distribution functions(CDF) of rain amount at these resolutions are computed and modeled as a mixed distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS) test, both for the mixed and the marginal distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions and it is found that the Gamma distributions fit much better than the Lognormal.

  12. High spatial resolution brain functional MRI using submillimeter balanced steady-state free precession acquisition

    International Nuclear Information System (INIS)

    Wu, Pei-Hsin; Chung, Hsiao-Wen; Tsai, Ping-Huei; Wu, Ming-Long; Chuang, Tzu-Chao; Shih, Yi-Yu; Huang, Teng-Yi

    2013-01-01

    Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm 3 achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm 3 voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations were given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm 3 to 0.43 × 0.43 × 2 mm 3 has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain

  13. High spatial resolution brain functional MRI using submillimeter balanced steady-state free precession acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Pei-Hsin; Chung, Hsiao-Wen [Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Tsai, Ping-Huei [Imaging Research Center, Taipei Medical University, Taipei 11031, Taiwan and Department of Medical Imaging, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan (China); Wu, Ming-Long, E-mail: minglong.wu@csie.ncku.edu.tw [Institute of Medical Informatics, National Cheng-Kung University, Tainan 70101, Taiwan and Department of Computer Science and Information Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China); Chuang, Tzu-Chao [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Shih, Yi-Yu [Siemens Limited Healthcare Sector, Taipei 11503, Taiwan (China); Huang, Teng-Yi [Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2013-12-15

    Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm{sup 3} achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm{sup 3} voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations were given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm{sup 3} to 0.43 × 0.43 × 2 mm{sup 3} has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain.

  14. Advancing the quantification of humid tropical forest cover loss with multi-resolution optical remote sensing data: Sampling & wall-to-wall mapping

    Science.gov (United States)

    Broich, Mark

    Humid tropical forest cover loss is threatening the sustainability of ecosystem goods and services as vast forest areas are rapidly cleared for industrial scale agriculture and tree plantations. Despite the importance of humid tropical forest in the provision of ecosystem services and economic development opportunities, the spatial and temporal distribution of forest cover loss across large areas is not well quantified. Here I improve the quantification of humid tropical forest cover loss using two remote sensing-based methods: sampling and wall-to-wall mapping. In all of the presented studies, the integration of coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data enable advances in quantifying forest cover loss in the humid tropics. Imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used as the source of coarse spatial resolution, high temporal resolution data and imagery from the Landsat Enhanced Thematic Mapper Plus (ETM+) sensor are used as the source of moderate spatial, low temporal resolution data. In a first study, I compare the precision of different sampling designs for the Brazilian Amazon using the annual deforestation maps derived by the Brazilian Space Agency for reference. I show that sampling designs can provide reliable deforestation estimates; furthermore, sampling designs guided by MODIS data can provide more efficient estimates than the systematic design used for the United Nations Food and Agricultural Organization Forest Resource Assessment 2010. Sampling approaches, such as the one demonstrated, are viable in regions where data limitations, such as cloud contamination, limit exhaustive mapping methods. Cloud-contaminated regions experiencing high rates of change include Insular Southeast Asia, specifically Indonesia and Malaysia. Due to persistent cloud cover, forest cover loss in Indonesia has only been mapped at a 5-10 year interval using photo interpretation of single

  15. Advancing Atmosphere-Ocean Remote Sensing with Spaceborne High Spectral Resolution Lidar

    Science.gov (United States)

    Hostetler, C. A.; Behrenfeld, M. J.; Chepfer, H.; Hu, Y.; Hair, J. W.; Trepte, C. R.; Winker, D. M.; Ferrare, R. A.; Burton, S. P.; Scarino, A. J.; Powell, K. A.; Michaud, J.

    2016-12-01

    More than 1600 publications employing observations from the CALIOP lidar on CALIPSO testify to the value of spaceborne lidar for aerosol and cloud remote sensing. Recent publications have shown the value of CALIOP data for retrievals of key ocean carbon cycle stocks. In this presentation we focus on the advantages of a more advanced technique, High Spectral Resolution Lidar (HSRL), for aerosol, cloud, and ocean remote sensing. An atmosphere-ocean optimized HSRL achieves greater accuracy over the standard backscatter lidar technique for retrievals of aerosol and cloud extinction and backscatter profiles, provides additional capability to retrieve aerosol and cloud microphysical parameters, and enables vertically-resolved characterization of scattering and absorption properties of suspended and dissolved materials in the ocean. Numerous publications highlight the synergy of coincident CALIOP and passive A-train observations for studies of aerosol-cloud radiative effects and cloud-climate feedback. Less appreciated is the complementarity that would exist between an optimized spaceborne lidar and passive ocean color. An optimized HSRL flown in formation with the Plankton, Aerosol, and ocean Ecosystem (PACE) mission would provide phytoplankton vertical distribution, which is needed for accurately estimating net primary productivity but absent in the PACE ocean color data. The HSRL would also provide data needed to improve atmospheric correction schemes in ocean color retrievals. Because lidar provides measurements both night and day, through tenuous clouds and aerosol layers, and in holes between clouds, the sampling achieved is highly complementary to passive radiometry, providing data in important high latitude regions where ocean color data are sparse or nonexistent. In this presentation we will discuss 1) relevant aerosol, cloud, and ocean retrievals from airborne HSRL field missions; 2) the advantages of an optimized spaceborne HSRL for aerosol, cloud, and ocean

  16. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Fan Hu

    2015-11-01

    Full Text Available Learning efficient image representations is at the core of the scene classification task of remote sensing imagery. The existing methods for solving the scene classification task, based on either feature coding approaches with low-level hand-engineered features or unsupervised feature learning, can only generate mid-level image features with limited representative ability, which essentially prevents them from achieving better performance. Recently, the deep convolutional neural networks (CNNs, which are hierarchical architectures trained on large-scale datasets, have shown astounding performance in object recognition and detection. However, it is still not clear how to use these deep convolutional neural networks for high-resolution remote sensing (HRRS scene classification. In this paper, we investigate how to transfer features from these successfully pre-trained CNNs for HRRS scene classification. We propose two scenarios for generating image features via extracting CNN features from different layers. In the first scenario, the activation vectors extracted from fully-connected layers are regarded as the final image features; in the second scenario, we extract dense features from the last convolutional layer at multiple scales and then encode the dense features into global image features through commonly used feature coding approaches. Extensive experiments on two public scene classification datasets demonstrate that the image features obtained by the two proposed scenarios, even with a simple linear classifier, can result in remarkable performance and improve the state-of-the-art by a significant margin. The results reveal that the features from pre-trained CNNs generalize well to HRRS datasets and are more expressive than the low- and mid-level features. Moreover, we tentatively combine features extracted from different CNN models for better performance.

  17. Analysing and Correcting the Differences between Multi-Source and Multi-Scale Spatial Remote Sensing Observations

    Science.gov (United States)

    Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun

    2014-01-01

    Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding

  18. High resolution land surface modeling utilizing remote sensing parameters and the Noah-UCM: a case study in the Los Angeles Basin

    Science.gov (United States)

    Vahmani, P.; Hogue, T. S.

    2014-07-01

    In the current work we investigate the utility of remote sensing based surface parameters in the Noah-UCM (urban canopy model) over a highly developed urban area. Landsat and fused Landsat-MODIS data are utilized to generate high resolution (30 m) monthly spatial maps of green vegetation fraction (GVF), impervious surface area (ISA), albedo, leaf area index (LAI), and emissivity in the Los Angeles metropolitan area. The gridded remotely sensed parameter datasets are directly substituted for the land-use/lookup-table values in the Noah-UCM modeling framework. Model performance in reproducing ET (evapotranspiration) and LST (land surface temperature) fields is evaluated utilizing Landsat-based LST and ET estimates from CIMIS (California Irrigation Management Information System) stations as well as in-situ measurements. Our assessment shows that the large deviations between the spatial distributions and seasonal fluctuations of the default and measured parameter sets lead to significant errors in the model predictions of monthly ET fields (RMSE = 22.06 mm month-1). Results indicate that implemented satellite derived parameter maps, particularly GVF, enhance the Noah-UCM capability to reproduce observed ET patterns over vegetated areas in the urban domains (RMSE = 11.77 mm month-1). GVF plays the most significant role in reproducing the observed ET fields, likely due to the interaction with other parameters in the model. Our analysis also shows that remotely sensed GVF and ISA improve the model capability to predict the LST differences between fully vegetated pixels and highly developed areas. However, the model still underestimates remotely sensed LST values over highly developed areas. We hypothesize that the LST underestimation is due to structural formulation in the UCM and cannot be immediately solved with available parameter choices.

  19. Linear mixing model applied to coarse spatial resolution data from multispectral satellite sensors

    Science.gov (United States)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1993-01-01

    A linear mixing model was applied to coarse spatial resolution data from the NOAA Advanced Very High Resolution Radiometer. The reflective component of the 3.55-3.95 micron channel was used with the two reflective channels 0.58-0.68 micron and 0.725-1.1 micron to run a constrained least squares model to generate fraction images for an area in the west central region of Brazil. The fraction images were compared with an unsupervised classification derived from Landsat TM data acquired on the same day. The relationship between the fraction images and normalized difference vegetation index images show the potential of the unmixing techniques when using coarse spatial resolution data for global studies.

  20. Analysis of laser-printed spatial resolution for mammographic microcalcification detection

    International Nuclear Information System (INIS)

    Smathers, R.L.; Kowarski, D.

    1987-01-01

    The detectability of microcalfications in mammograms was compared in Kodak Min-R screen-film mammograms versus digitized laser-printed films. Pulverized bone specks were used as the phantoms to produce the original mammograms. The mammograms were then digitized to a spatial resolution of 2,048 x, 2048 with 4,096 gray levels and laser-printed at spatial resolutions of 512 x 512, 1,024 x 1,024, and 2,048 x 2,048 with 256 gray levels. The number of bone specks was determined on a region-by region basis. The 512 x 512 resolution laser-printed images were nondiagnostic, 1,024 x 1,024 images were better, and 2,048 x 2,048 images were quite comparable to the original screen-film mammograms

  1. Fast Segmentation and Classification of Very High Resolution Remote Sensing Data Using SLIC Superpixels

    Directory of Open Access Journals (Sweden)

    Ovidiu Csillik

    2017-03-01

    Full Text Available Speed and accuracy are important factors when dealing with time-constraint events for disaster, risk, and crisis-management support. Object-based image analysis can be a time consuming task in extracting information from large images because most of the segmentation algorithms use the pixel-grid for the initial object representation. It would be more natural and efficient to work with perceptually meaningful entities that are derived from pixels using a low-level grouping process (superpixels. Firstly, we tested a new workflow for image segmentation of remote sensing data, starting the multiresolution segmentation (MRS, using ESP2 tool from the superpixel level and aiming at reducing the amount of time needed to automatically partition relatively large datasets of very high resolution remote sensing data. Secondly, we examined whether a Random Forest classification based on an oversegmentation produced by a Simple Linear Iterative Clustering (SLIC superpixel algorithm performs similarly with reference to a traditional object-based classification regarding accuracy. Tests were applied on QuickBird and WorldView-2 data with different extents, scene content complexities, and number of bands to assess how the computational time and classification accuracy are affected by these factors. The proposed segmentation approach is compared with the traditional one, starting the MRS from the pixel level, regarding geometric accuracy of the objects and the computational time. The computational time was reduced in all cases, the biggest improvement being from 5 h 35 min to 13 min, for a WorldView-2 scene with eight bands and an extent of 12.2 million pixels, while the geometric accuracy is kept similar or slightly better. SLIC superpixel-based classification had similar or better overall accuracy values when compared to MRS-based classification, but the results were obtained in a fast manner and avoiding the parameterization of the MRS. These two approaches

  2. Persistent increased PKMζ in long-term and remote spatial memory.

    Science.gov (United States)

    Hsieh, Changchi; Tsokas, Panayiotis; Serrano, Peter; Hernández, A Iván; Tian, Dezhi; Cottrell, James E; Shouval, Harel Z; Fenton, André Antonio; Sacktor, Todd Charlton

    2017-02-01

    PKMζ is an autonomously active PKC isoform that is thought to maintain both LTP and long-term memory. Whereas persistent increases in PKMζ protein sustain the kinase's action in LTP, the molecular mechanism for the persistent action of PKMζ during long-term memory has not been characterized. PKMζ inhibitors disrupt spatial memory when introduced into the dorsal hippocampus from 1day to 1month after training. Therefore, if the mechanisms of PKMζ's persistent action in LTP maintenance and long-term memory were similar, persistent increases in PKMζ would last for the duration of the memory, far longer than most other learning-induced gene products. Here we find that spatial conditioning by aversive active place avoidance or appetitive radial arm maze induces PKMζ increases in dorsal hippocampus that persist from 1day to 1month, coinciding with the strength and duration of memory retention. Suppressing the increase by intrahippocampal injections of PKMζ-antisense oligodeoxynucleotides prevents the formation of long-term memory. Thus, similar to LTP maintenance, the persistent increase in the amount of autonomously active PKMζ sustains the kinase's action during long-term and remote spatial memory maintenance. Copyright © 2016. Published by Elsevier Inc.

  3. HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS

    International Nuclear Information System (INIS)

    FISHER, R.K.

    2003-01-01

    OAK B202 HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS. Bubble detectors, which can detect neutrons with a spatial 5 to 30 (micro), are the most promising approach to imaging NIF target plasmas with the desired 5 (micro) spatial resolution in the target plane. Gel bubble detectors are being tested to record neutron images of ICF implosions in OMEGA experiments. By improving the noise reduction techniques used in analyzing the data taken in June 2000, we have been able to image the neutron emission from 6 · 10 13 yield DT target plasmas with a target plane spatial resolution of ∼ 140 (micro). As expected, the spatial resolution was limited by counting statistics as a result of the low neutron detection efficiency of the easy-to-use gel bubble detectors. The results have been submitted for publication and will be the subject of an invited talk at the October 2001 Meeting of the Division of Plasma Physics of the American Physical Society. To improve the counting statistics, data was taken in May 2001 using a stack of four gel detectors and integrated over a series of up to seven high-yield DT shots. Analysis of the 2001 data is still in its early stages. Gel detectors were chosen for these initial tests since the bubbles can be photographed several hours after the neutron exposure. They consist of ∼ 5000 drops (∼ 100 (micro) in diameter) of bubble detector liquid/cm 3 suspended in an inactive support gel that occupies ∼ 99% of the detector volume. Using a liquid bubble chamber detector and a light scattering system to record the bubble locations a few microseconds after the neutron exposure when the bubbles are ∼ 10 (micro) in diameter, should result in ∼ 1000 times higher neutron detection efficiency and a target plane resolution on OMEGA of ∼ 10 to 50 (micro)

  4. Basic examination of in-plane spatial resolution in multi-slice CT

    International Nuclear Information System (INIS)

    Hara, Takanori; Kato, Hideki; Akiyama, Mitsutoshi; Murata, Katsutoshi

    2002-01-01

    In computed tomography (single-slice spiral CT, conventional CT), in-plane (x-y plane) spatial resolution is consistently identified as depending on the detector density of the in-plane (x-y plane). However, we considered that the in-plane (x-y plane) spatial resolution of multi-slice CT (MSCT) was influenced by an error in the detector's sensitivity to the Z-axis and by the frequency of use of direct row data and complementary row data when the image of spiral pitches (SP) was reconstructed. Our goal in this experiment was to analyze the relationship of the in-plane (x-y plane) spatial resolution of an asymmetric-type detector in MSCT to SP, tube current, and rotation time. By employing a tungsten wire phantom of 0.2 mm in diameter, we examined modulation transfer functions (MTF) by point-spread functions (PSF) of CT-images. Next, using the mean-square-root bandwidth theory, we analyzed the MTF of wire phantoms. The analysis of in-plane (x-y plane) spatial resolution revealed that various tube currents had no effect on the value of the mean-square-root bandwidth. However, rotation time and high spiral pitch did have an effect on mean-square-root bandwidth. Considering the results mentioned above, spiral pitch (z-axis reconstruction algorithm) had a slight effect on in-plane (x-y plane) spatial resolution of asymmetric-type detectors in MSCT. Accordingly, we proposed a new general view of VDDz (view/mm) in MSCT that considered view data density on the Z-axis according to spiral pitch (mm/rotation), rotation time (view/rotation), and slice collimation. (author)

  5. High spatial resolution mapping of folds and fractures using Unmanned Aerial Vehicle (UAV) photogrammetry

    Science.gov (United States)

    Cruden, A. R.; Vollgger, S.

    2016-12-01

    The emerging capability of UAV photogrammetry combines a simple and cost-effective method to acquire digital aerial images with advanced computer vision algorithms that compute spatial datasets from a sequence of overlapping digital photographs from various viewpoints. Depending on flight altitude and camera setup, sub-centimeter spatial resolution orthophotographs and textured dense point clouds can be achieved. Orientation data can be collected for detailed structural analysis by digitally mapping such high-resolution spatial datasets in a fraction of time and with higher fidelity compared to traditional mapping techniques. Here we describe a photogrammetric workflow applied to a structural study of folds and fractures within alternating layers of sandstone and mudstone at a coastal outcrop in SE Australia. We surveyed this location using a downward looking digital camera mounted on commercially available multi-rotor UAV that autonomously followed waypoints at a set altitude and speed to ensure sufficient image overlap, minimum motion blur and an appropriate resolution. The use of surveyed ground control points allowed us to produce a geo-referenced 3D point cloud and an orthophotograph from hundreds of digital images at a spatial resolution automatically extracted from these high-resolution datasets using open-source software. This resulted in an extensive and statistically relevant orientation dataset that was used to 1) interpret the progressive development of folds and faults in the region, and 2) to generate a 3D structural model that underlines the complex internal structure of the outcrop and quantifies spatial variations in fold geometries. Overall, our work highlights how UAV photogrammetry can contribute to new insights in structural analysis.

  6. Limits of a spatial resolution of the cascaded GEM based detectors

    International Nuclear Information System (INIS)

    Kudryavtsev, V.N.; Maltsev, T.V.; Shekhtman, L.I.

    2017-01-01

    Spatial resolution of tracking detectors based on GEM cascades is determined in the simulation and measured. The simulation includes GEANT4 implemented transport of high energy electrons with careful accounting for atomic relaxation processes including emission of fluorescent photons and Auger electrons and custom post-processing taking into account diffusion, gas amplification fluctuations, the distribution of signals over readout electrodes, electronics noise and particular algorithm of final coordinate calculation (centre-of-gravity algorithm). The simulation demonstrates that the minimum of the spatial resolution of about 10–20 μm can be achieved with a gas mixture of Ar-CO 2 (75%–25%) at a strip pitch in the range from 250 μm to 300 μm. At a larger pitch the resolution quickly degrades reaching 70–100 μm at a pitch of 450–500 μm. The reasons of such behavior are discussed and corresponding hypothesis is tested. Particularly, the effect of electron cloud modification due to a GEM operation is considered using the ANSYS and Garfield++ simulation programs. The detection efficiency and spatial resolution of low-material triple-GEM detectors for the DEUTERON facility at BINP are measured at the extracted beam facility of the VEPP-4M collider. One-coordinate resolution of two detectors for the DEUTERON facility is measured with a 2 GeV electron beam. The determined values of the detectors' spatial resolution is equal to 46.6 ± 0.1 μm and 38.5 ± 0.2 μm for orthogonal tracks in two detectors, respectively.

  7. Limits of a spatial resolution of the cascaded GEM based detectors

    Science.gov (United States)

    Kudryavtsev, V. N.; Maltsev, T. V.; Shekhtman, L. I.

    2017-06-01

    Spatial resolution of tracking detectors based on GEM cascades is determined in the simulation and measured. The simulation includes GEANT4 implemented transport of high energy electrons with careful accounting for atomic relaxation processes including emission of fluorescent photons and Auger electrons and custom post-processing taking into account diffusion, gas amplification fluctuations, the distribution of signals over readout electrodes, electronics noise and particular algorithm of final coordinate calculation (centre-of-gravity algorithm). The simulation demonstrates that the minimum of the spatial resolution of about 10-20 μm can be achieved with a gas mixture of Ar-CO2 (75%-25%) at a strip pitch in the range from 250 μm to 300 μm. At a larger pitch the resolution quickly degrades reaching 70-100 μm at a pitch of 450-500 μm. The reasons of such behavior are discussed and corresponding hypothesis is tested. Particularly, the effect of electron cloud modification due to a GEM operation is considered using the ANSYS and Garfield++ simulation programs. The detection efficiency and spatial resolution of low-material triple-GEM detectors for the DEUTERON facility at BINP are measured at the extracted beam facility of the VEPP-4M collider. One-coordinate resolution of two detectors for the DEUTERON facility is measured with a 2 GeV electron beam. The determined values of the detectors' spatial resolution is equal to 46.6 ± 0.1 μm and 38.5 ± 0.2 μm for orthogonal tracks in two detectors, respectively.

  8. Assimilation of remote sensing observations into a sediment transport model of China's largest freshwater lake: spatial and temporal effects.

    Science.gov (United States)

    Zhang, Peng; Chen, Xiaoling; Lu, Jianzhong; Zhang, Wei

    2015-12-01

    Numerical models are important tools that are used in studies of sediment dynamics in inland and coastal waters, and these models can now benefit from the use of integrated remote sensing observations. This study explores a scheme for assimilating remotely sensed suspended sediment (from charge-coupled device (CCD) images obtained from the Huanjing (HJ) satellite) into a two-dimensional sediment transport model of Poyang Lake, the largest freshwater lake in China. Optimal interpolation is used as the assimilation method, and model predictions are obtained by combining four remote sensing images. The parameters for optimal interpolation are determined through a series of assimilation experiments evaluating the sediment predictions based on field measurements. The model with assimilation of remotely sensed sediment reduces the root-mean-square error of the predicted sediment concentrations by 39.4% relative to the model without assimilation, demonstrating the effectiveness of the assimilation scheme. The spatial effect of assimilation is explored by comparing model predictions with remotely sensed sediment, revealing that the model with assimilation generates reasonable spatial distribution patterns of suspended sediment. The temporal effect of assimilation on the model's predictive capabilities varies spatially, with an average temporal effect of approximately 10.8 days. The current velocities which dominate the rate and direction of sediment transport most likely result in spatial differences in the temporal effect of assimilation on model predictions.

  9. People and pixels in the Sahel: a study linking coarse-resolution remote sensing observations to land users' perceptions of their changing environment in Senegal

    Directory of Open Access Journals (Sweden)

    Stefanie M. Herrmann

    2014-09-01

    Full Text Available Mounting evidence from satellite observations of a re-greening across much of the Sahel and Sudan zones over the past three decades has raised questions about the extent and reversibility of desertification. Historical ground data that could help in interpreting the re-greening are scarce. To fill that void, we tapped into the collective memories of local land users from central and western Senegal in 39 focus groups and assessed the spatial association between their perceptions of vegetation changes over time and remote sensing-derived trends. To provide context to the vegetation changes, we also explored the land users' perspective on the evolution of other environmental and human variables that are potentially related to the greening, using participatory research methods. While increases in vegetation were confirmed by the study participants for certain areas, which spatially corresponded to satellite-observed re-greening, vegetation degradation dominated their perceptions of change. This degradation, although spatially extensive according to land users, flies under the radar of coarse-resolution remote sensing data because it is not necessarily associated with a decrease in biomass but rather with undesired changes in species composition. Few significant differences were found in the perceived trends of population pressure, environmental, and livelihood variables between communities that have greened up according to satellite data and those that have not. Our findings challenge the prevailing chain of assumptions of the satellite-observed greening trend indicating an improvement of environmental conditions in the sense of a rehabilitation of the vegetation cover after the great droughts of the 1970s and 1980s, and the improvement of environmental conditions possibly translating into more stable livelihoods and greater well-being of the populations. For monitoring desertification and rehabilitation, there is a need to develop remote sensing

  10. Relation of NDVI obtained from different remote sensing at different space and resolutions sensors in Spanish Dehesas

    Science.gov (United States)

    Escribano Rodríguez, Juan; Tarquis, Ana M.; Saa-Requejo, Antonio; Díaz-Ambrona, Carlos G. H.

    2015-04-01

    Satellite data are an important source of information and serve as monitoring crops on large scales. There are several indexes, but the most used for monitoring vegetation is NDVI (Normalized Difference Vegetation Index), calculated from the spectral bands of red (RED) and near infrared (NIR), obtaining the value according to relationship: [(NIR - RED) / (NIR + RED)]. During the years 2010-2013 monthly monitoring was conducted in three areas of Spain (Salamanca, Caceres and Cordoba). Pasture plots were selected and satellite images of two different sensors, DEIMOS-1 and MODIS were obtained. DEIMOS-1 is based on the concept Microsat-100 from Surrey. It is designed for imaging the Earth with a resolution good enough to study terrestrial vegetation cover (20x20 m), although with a wide range of visual field (600 km) to get those images with high temporal resolution. By contrast, MODIS images present a much lower spatial resolution (500x500 m). Indices obtained from both sensors to the same area and date are compared and the results show r2 = 0.56; r2 = 0.65 and r2 = 0.90 for the areas of Salamanca, Cáceres and Cordoba respectively. According to the results obtained show that the NDVI obtained by MODIS is slightly larger than that obtained by the sensor for DEIMOS for same time and area. References J.A. Escribano, C.G.H. Diaz-Ambrona, L. Recuero, M. Huesca, V. Cicuendez, A. Palacios-Orueta y A.M. Tarquis. Aplicacion de Indices de Vegetacion para evaluar la falta de produccion de pastos y montaneras en dehesas. I Congreso Iberico de la Dehesa y el Montado. 6-7 Noviembre, 2013, Badajoz. J.A. Escribano Rodriguez, A.M. Tarquis, C.G. Hernandez Diaz-Ambrona. Pasture Drought Insurance Based on NDVI and SAVI. Geophysical Research Abstracts, 14, EGU2012-13945, 2012. EGU General Assembly 2012. Juan Escribano Rodriguez, Carmelo Alonso, Ana Maria Tarquis, Rosa Maria Benito, Carlos Hernandez Diaz-Ambrona. Comparison of NDVI fields obtained from different remote sensors

  11. Spatial resolution requirements for traffic-related air pollutant exposure evaluations

    Science.gov (United States)

    Batterman, Stuart; Chambliss, Sarah; Isakov, Vlad

    2014-09-01

    Vehicle emissions represent one of the most important air pollution sources in most urban areas, and elevated concentrations of pollutants found near major roads have been associated with many adverse health impacts. To understand these impacts, exposure estimates should reflect the spatial and temporal patterns observed for traffic-related air pollutants. This paper evaluates the spatial resolution and zonal systems required to estimate accurately intraurban and near-road exposures of traffic-related air pollutants. The analyses use the detailed information assembled for a large (800 km2) area centered on Detroit, Michigan, USA. Concentrations of nitrogen oxides (NOx) due to vehicle emissions were estimated using hourly traffic volumes and speeds on 9700 links representing all but minor roads in the city, the MOVES2010 emission model, the RLINE dispersion model, local meteorological data, a temporal resolution of 1 h, and spatial resolution as low as 10 m. Model estimates were joined with the corresponding shape files to estimate residential exposures for 700,000 individuals at property parcel, census block, census tract, and ZIP code levels. We evaluate joining methods, the spatial resolution needed to meet specific error criteria, and the extent of exposure misclassification. To portray traffic-related air pollutant exposure, raster or inverse distance-weighted interpolations are superior to nearest neighbor approaches, and interpolations between receptors and points of interest should not exceed about 40 m near major roads, and 100 m at larger distances. For census tracts and ZIP codes, average exposures are overestimated since few individuals live very near major roads, the range of concentrations is compressed, most exposures are misclassified, and high concentrations near roads are entirely omitted. While smaller zones improve performance considerably, even block-level data can misclassify many individuals. To estimate exposures and impacts of traffic

  12. A spatial-spectral approach for deriving high signal quality eigenvectors for remote sensing image transformations

    DEFF Research Database (Denmark)

    Rogge, Derek; Bachmann, Martin; Rivard, Benoit

    2014-01-01

    Spectral decorrelation (transformations) methods have long been used in remote sensing. Transformation of the image data onto eigenvectors that comprise physically meaningful spectral properties (signal) can be used to reduce the dimensionality of hyperspectral images as the number of spectrally...... distinct signal sources composing a given hyperspectral scene is generally much less than the number of spectral bands. Determining eigenvectors dominated by signal variance as opposed to noise is a difficult task. Problems also arise in using these transformations on large images, multiple flight...... and spectral subsampling to the data, which is accomplished by deriving a limited set of eigenvectors for spatially contiguous subsets. These subset eigenvectors are compiled together to form a new noise reduced data set, which is subsequently used to derive a set of global orthogonal eigenvectors. Data from...

  13. Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery

    Directory of Open Access Journals (Sweden)

    Jordi Inglada

    2015-09-01

    Full Text Available Crop area extent estimates and crop type maps provide crucial information for agricultural monitoring and management. Remote sensing imagery in general and, more specifically, high temporal and high spatial resolution data as the ones which will be available with upcoming systems, such as Sentinel-2, constitute a major asset for this kind of application. The goal of this paper is to assess to what extent state-of-the-art supervised classification methods can be applied to high resolution multi-temporal optical imagery to produce accurate crop type maps at the global scale. Five concurrent strategies for automatic crop type map production have been selected and benchmarked using SPOT4 (Take5 and Landsat 8 data over 12 test sites spread all over the globe (four in Europe, four in Africa, two in America and two in Asia. This variety of tests sites allows one to draw conclusions applicable to a wide variety of landscapes and crop systems. The results show that a random forest classifier operating on linearly temporally gap-filled images can achieve overall accuracies above 80% for most sites. Only two sites showed low performances: Madagascar due to the presence of fields smaller than the pixel size and Burkina Faso due to a mix of trees and crops in the fields. The approach is based on supervised machine learning techniques, which need in situ data collection for the training step, but the map production is fully automatic.

  14. Spatial Co-Registration of Ultra-High Resolution Visible, Multispectral and Thermal Images Acquired with a Micro-UAV over Antarctic Moss Beds

    Directory of Open Access Journals (Sweden)

    Darren Turner

    2014-05-01

    Full Text Available In recent times, the use of Unmanned Aerial Vehicles (UAVs as tools for environmental remote sensing has become more commonplace. Compared to traditional airborne remote sensing, UAVs can provide finer spatial resolution data (up to 1 cm/pixel and higher temporal resolution data. For the purposes of vegetation monitoring, the use of multiple sensors such as near infrared and thermal infrared cameras are of benefit. Collecting data with multiple sensors, however, requires an accurate spatial co-registration of the various UAV image datasets. In this study, we used an Oktokopter UAV to investigate the physiological state of Antarctic moss ecosystems using three sensors: (i a visible camera (1 cm/pixel, (ii a 6 band multispectral camera (3 cm/pixel, and (iii a thermal infrared camera (10 cm/pixel. Imagery from each sensor was geo-referenced and mosaicked with a combination of commercially available software and our own algorithms based on the Scale Invariant Feature Transform (SIFT. The validation of the mosaic’s spatial co-registration revealed a mean root mean squared error (RMSE of 1.78 pixels. A thematic map of moss health, derived from the multispectral mosaic using a Modified Triangular Vegetation Index (MTVI2, and an indicative map of moss surface temperature were then combined to demonstrate sufficient accuracy of our co-registration methodology for UAV-based monitoring of Antarctic moss beds.

  15. Satellite microwave remote sensing of North Eurasian inundation dynamics: development of coarse-resolution products and comparison with high-resolution synthetic aperture radar data

    International Nuclear Information System (INIS)

    Schroeder, R; Rawlins, M A; McDonald, K C; Podest, E; Zimmermann, R; Kueppers, M

    2010-01-01

    Wetlands are not only primary producers of atmospheric greenhouse gases but also possess unique features that are favourable for application of satellite microwave remote sensing to monitoring their status and trend. In this study we apply combined passive and active microwave remote sensing data sets from the NASA sensors AMSR-E and QuikSCAT to map surface water dynamics over Northern Eurasia. We demonstrate our method on the evolution of large wetland complexes for two consecutive years from January 2006 to December 2007. We apply river discharge measurements from the Ob River along with land surface runoff simulations derived from the Pan-Arctic Water Balance Model during and after snowmelt in 2006 and 2007 to interpret the abundance of widespread flooding along the River Ob in early summer of 2007 observed in the remote sensing products. The coarse-resolution, 25 km, surface water product is compared to a high-resolution, 30 m, inundation map derived from ALOS PALSAR (Advanced Land Observation Satellite phased array L-band synthetic aperture radar) imagery acquired for 11 July 2006, and extending along a transect in the central Western Siberian Plain. We found that the surface water fraction derived from the combined AMSR-E/QuikSCAT data sets closely tracks the inundation mapped using higher-resolution ALOS PALSAR data.

  16. Object-oriented spatial-temporal association rules mining on ocean remote sensing imagery

    International Nuclear Information System (INIS)

    Xue, C J; Dong, Q; Ma, W X

    2014-01-01

    Using the long term marine remote sensing imagery, we develop an object-oriented spatial-temporal association rules mining framework to explore the association rules mining among marine environmental elements. Within the framework, two key issues are addressed. They are how to effectively deal with the related lattices and how to reduce the related dimensions? To deal with the first key issues, this paper develops an object-oriented method for abstracting marine sensitive objects from raster pixels and for representing them with a quadruple. To deal with the second key issues, by embedding the mutual information theory, we construct the direct association pattern tree to reduce the related elements at the first step, and then the Apriori algorithm is used to discover the spatio-temporal associated rules. Finally, Pacific Ocean is taken as a research area and multi- marine remote sensing imagery in recent three decades is used as a case study. The results show that the object-oriented spatio-temporal association rules mining can acquire the associated relationships not only among marine environmental elements in same region, also among the different regions. In addition, the information from association rules mining is much more expressive and informative in space and time than traditional spatio-temporal analysis

  17. High-resolution spatial databases of monthly climate variables (1961-2010) over a complex terrain region in southwestern China

    Science.gov (United States)

    Wu, Wei; Xu, An-Ding; Liu, Hong-Bin

    2015-01-01

    Climate data in gridded format are critical for understanding climate change and its impact on eco-environment. The aim of the current study is to develop spatial databases for three climate variables (maximum, minimum temperatures, and relative humidity) over a large region with complex topography in southwestern China. Five widely used approaches including inverse distance weighting, ordinary kriging, universal kriging, co-kriging, and thin-plate smoothing spline were tested. Root mean square error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) showed that thin-plate smoothing spline with latitude, longitude, and elevation outperformed other models. Average RMSE, MAE, and MAPE of the best models were 1.16 °C, 0.74 °C, and 7.38 % for maximum temperature; 0.826 °C, 0.58 °C, and 6.41 % for minimum temperature; and 3.44, 2.28, and 3.21 % for relative humidity, respectively. Spatial datasets of annual and monthly climate variables with 1-km resolution covering the period 1961-2010 were then obtained using the best performance methods. Comparative study showed that the current outcomes were in well agreement with public datasets. Based on the gridded datasets, changes in temperature variables were investigated across the study area. Future study might be needed to capture the uncertainty induced by environmental conditions through remote sensing and knowledge-based methods.

  18. Spatial Predictive Modeling and Remote Sensing of Land Use Change in the Chesapeake Bay Watershed

    Science.gov (United States)

    Goetz, Scott J.; Bockstael, Nancy E.; Jantz, Claire A.

    2005-01-01

    This project was focused on modeling the processes by which increasing demand for developed land uses, brought about by changes in the regional economy and the socio-demographics of the region, are translated into a changing spatial pattern of land use. Our study focused on a portion of the Chesapeake Bay Watershed where the spatial patterns of sprawl represent a set of conditions generally prevalent in much of the U.S. Working in the region permitted us access to (i) a time-series of multi-scale and multi-temporal (including historical) satellite imagery and (ii) an established network of collaborating partners and agencies willing to share resources and to utilize developed techniques and model results. In addition, a unique parcel-level tax assessment database and linked parcel boundary maps exists for two counties in the Maryland portion of this region that made it possible to establish a historical cross-section time-series database of parcel level development decisions. Scenario analyses of future land use dynamics provided critical quantitative insight into the impact of alternative land management and policy decisions. These also have been specifically aimed at addressing growth control policies aimed at curbing exurban (sprawl) development. Our initial technical approach included three components: (i) spatial econometric modeling of the development decision, (ii) remote sensing of suburban change and residential land use density, including comparisons of past change from Landsat analyses and more traditional sources, and (iii) linkages between the two through variable initialization and supplementation of parcel level data. To these we added a fourth component, (iv) cellular automata modeling of urbanization, which proved to be a valuable addition to the project. This project has generated both remote sensing and spatially explicit socio-economic data to estimate and calibrate the parameters for two different types of land use change models and has

  19. Photogrammetry and remote sensing for visualization of spatial data in a virtual reality environment

    Science.gov (United States)

    Bhagawati, Dwipen

    2001-07-01

    Researchers in many disciplines have started using the tool of Virtual Reality (VR) to gain new insights into problems in their respective disciplines. Recent advances in computer graphics, software and hardware technologies have created many opportunities for VR systems, advanced scientific and engineering applications being among them. In Geometronics, generally photogrammetry and remote sensing are used for management of spatial data inventory. VR technology can be suitably used for management of spatial data inventory. This research demonstrates usefulness of VR technology for inventory management by taking the roadside features as a case study. Management of roadside feature inventory involves positioning and visualization of the features. This research has developed a methodology to demonstrate how photogrammetric principles can be used to position the features using the video-logging images and GPS camera positioning and how image analysis can help produce appropriate texture for building the VR, which then can be visualized in a Cave Augmented Virtual Environment (CAVE). VR modeling was implemented in two stages to demonstrate the different approaches for modeling the VR scene. A simulated highway scene was implemented with the brute force approach, while modeling software was used to model the real world scene using feature positions produced in this research. The first approach demonstrates an implementation of the scene by writing C++ codes to include a multi-level wand menu for interaction with the scene that enables the user to interact with the scene. The interactions include editing the features inside the CAVE display, navigating inside the scene, and performing limited geographic analysis. The second approach demonstrates creation of a VR scene for a real roadway environment using feature positions determined in this research. The scene looks realistic with textures from the real site mapped on to the geometry of the scene. Remote sensing and

  20. Remote sensing and spatial analysis based study for detecting deforestation and the associated drivers

    Science.gov (United States)

    El-Abbas, Mustafa M.; Csaplovics, Elmar; Deafalla, Taisser H.

    2013-10-01

    Nowadays, remote-sensing technologies are becoming increasingly interlinked to the issue of deforestation. They offer a systematized and objective strategy to document, understand and simulate the deforestation process and its associated causes. In this context, the main goal of this study, conducted in the Blue Nile region of Sudan, in which most of the natural habitats were dramatically destroyed, was to develop spatial methodologies to assess the deforestation dynamics and its associated factors. To achieve that, optical multispectral satellite scenes (i.e., ASTER and LANDSAT) integrated with field survey in addition to multiple data sources were used for the analyses. Spatiotemporal Object Based Image Analysis (STOBIA) was applied to assess the change dynamics within the period of study. Broadly, the above mentioned analyses include; Object Based (OB) classifications, post-classification change detection, data fusion, information extraction and spatial analysis. Hierarchical multi-scale segmentation thresholds were applied and each class was delimited with semantic meanings by a set of rules associated with membership functions. Consequently, the fused multi-temporal data were introduced to create detailed objects of change classes from the input LU/LC classes. The dynamic changes were quantified and spatially located as well as the spatial and contextual relations from adjacent areas were analyzed. The main finding of the present study is that, the forest areas were drastically decreased, while the agrarian structure in conversion of forest into agricultural fields and grassland was the main force of deforestation. In contrast, the capability of the area to recover was clearly observed. The study concludes with a brief assessment of an 'oriented' framework, focused on the alarming areas where serious dynamics are located and where urgent plans and interventions are most critical, guided with potential solutions based on the identified driving forces.

  1. Fast and accurate denoising method applied to very high resolution optical remote sensing images

    Science.gov (United States)

    Masse, Antoine; Lefèvre, Sébastien; Binet, Renaud; Artigues, Stéphanie; Lassalle, Pierre; Blanchet, Gwendoline; Baillarin, Simon

    2017-10-01

    Restoration of Very High Resolution (VHR) optical Remote Sensing Image (RSI) is critical and leads to the problem of removing instrumental noise while keeping integrity of relevant information. Improving denoising in an image processing chain implies increasing image quality and improving performance of all following tasks operated by experts (photo-interpretation, cartography, etc.) or by algorithms (land cover mapping, change detection, 3D reconstruction, etc.). In a context of large industrial VHR image production, the selected denoising method should optimized accuracy and robustness with relevant information and saliency conservation, and rapidity due to the huge amount of data acquired and/or archived. Very recent research in image processing leads to a fast and accurate algorithm called Non Local Bayes (NLB) that we propose to adapt and optimize for VHR RSIs. This method is well suited for mass production thanks to its best trade-off between accuracy and computational complexity compared to other state-of-the-art methods. NLB is based on a simple principle: similar structures in an image have similar noise distribution and thus can be denoised with the same noise estimation. In this paper, we describe in details algorithm operations and performances, and analyze parameter sensibilities on various typical real areas observed in VHR RSIs.

  2. Remote sensing-based Information for crop monitoring: contribution of SAR and Moderate resolution optical data on Asian rice production

    Science.gov (United States)

    Boschetti, Mirco; Holectz, Francesco; Manfron, Giacinto; Collivignarelli, Francesco; Nelson, Andrew

    2013-04-01

    Updated information on crop typology and status are strongly required to support suitable action to better manage agriculture production and reduce food insecurity. In this field, remote sensing has been demonstrated to be a suitable tool to monitor crop condition however rarely the tested system became really operative. The ones today available, such as the European Commission MARS, are mainly based on the analysis of NDVI time series and required ancillary external information like crop mask to interpret the seasonal signal. This condition is not always guarantied worldwide reducing the potentiality of the remote sensing monitoring. Moreover in tropical countries cloud contamination strongly reduce the possibility of using optical remote sensing data for crop monitoring. In this framework we focused our analysis on the rice production monitoring in Asian tropical area. Rice is in fact the staple food for half of the world population (FAO 2004), in Asia almost 90% of the world's rice is produced and consumed and Rice and poverty often coincide. In this contest the production of reliable rice production information is of extreme interest. We tried to address two important issue in terms of required geospatial information for crop monitoring: rice crop detection (rice map) and seasonal dynamics analysis (phenology). We use both SAR and Optical data in order to exploit the potential complementarity of this system. Multi-temporal ASAR Wide Swath data are in fact the best option to deal with cloud contamination. SAR can easily penetrate the clouds providing information on the surface target. Temporal analysis of archive ASAR data allowed to derived accurate map, at 100m spatial resolution, of permanent rice cultivated areas. On the other and high frequency revisiting optical data, in this case MODIS, have been used to extract seasonal information for the year under analysis. MOD09A1 Surface Reflectance 8-Day L3 Global 500m have been exploited to derive time series of

  3. Long-distance super-resolution imaging assisted by enhanced spatial Fourier transform.

    Science.gov (United States)

    Tang, Heng-He; Liu, Pu-Kun

    2015-09-07

    A new gradient-index (GRIN) lens that can realize enhanced spatial Fourier transform (FT) over optically long distances is demonstrated. By using an anisotropic GRIN metamaterial with hyperbolic dispersion, evanescent wave in free space can be transformed into propagating wave in the metamaterial and then focused outside due to negative-refraction. Both the results based on the ray tracing and the finite element simulation show that the spatial frequency bandwidth of the spatial FT can be extended to 2.7k(0) (k(0) is the wave vector in free space). Furthermore, assisted by the enhanced spatial FT, a new long-distance (in the optical far-field region) super-resolution imaging scheme is also proposed and the super resolved capability of λ/5 (λ is the wavelength in free space) is verified. The work may provide technical support for designing new-type high-speed microscopes with long working distances.

  4. Mapping Monthly Water Scarcity in Global Transboundary Basins at Country-Basin Mesh Based Spatial Resolution.

    Science.gov (United States)

    Degefu, Dagmawi Mulugeta; Weijun, He; Zaiyi, Liao; Liang, Yuan; Zhengwei, Huang; Min, An

    2018-02-01

    Currently fresh water scarcity is an issue with huge socio-economic and environmental impacts. Transboundary river and lake basins are among the sources of fresh water facing this challenge. Previous studies measured blue water scarcity at different spatial and temporal resolutions. But there is no global water availability and footprint assessment done at country-basin mesh based spatial and monthly temporal resolutions. In this study we assessed water scarcity at these spatial and temporal resolutions. Our results showed that around 1.6 billion people living within the 328 country-basin units out of the 560 we assessed in this study endures severe water scarcity at least for a month within the year. In addition, 175 country-basin units goes through severe water scarcity for 3-12 months in the year. These sub-basins include nearly a billion people. Generally, the results of this study provide insights regarding the number of people and country-basin units experiencing low, moderate, significant and severe water scarcity at a monthly temporal resolution. These insights might help these basins' sharing countries to design and implement sustainable water management and sharing schemes.

  5. Improving spatial prediction of Schistosoma haematobium prevalence in southern Ghana through new remote sensors and local water access profiles.

    Science.gov (United States)

    Kulinkina, Alexandra V; Walz, Yvonne; Koch, Magaly; Biritwum, Nana-Kwadwo; Utzinger, Jürg; Naumova, Elena N

    2018-06-04

    Schistosomiasis is a water-related neglected tropical disease. In many endemic low- and middle-income countries, insufficient surveillance and reporting lead to poor characterization of the demographic and geographic distribution of schistosomiasis cases. Hence, modeling is relied upon to predict areas of high transmission and to inform control strategies. We hypothesized that utilizing remotely sensed (RS) environmental data in combination with water, sanitation, and hygiene (WASH) variables could improve on the current predictive modeling approaches. Schistosoma haematobium prevalence data, collected from 73 rural Ghanaian schools, were used in a random forest model to investigate the predictive capacity of 15 environmental variables derived from RS data (Landsat 8, Sentinel-2, and Global Digital Elevation Model) with fine spatial resolution (10-30 m). Five methods of variable extraction were tested to determine the spatial linkage between school-based prevalence and the environmental conditions of potential transmission sites, including applying the models to known human water contact locations. Lastly, measures of local water access and groundwater quality were incorporated into RS-based models to assess the relative importance of environmental and WASH variables. Predictive models based on environmental characterization of specific locations where people contact surface water bodies offered some improvement as compared to the traditional approach based on environmental characterization of locations where prevalence is measured. A water index (MNDWI) and topographic variables (elevation and slope) were important environmental risk factors, while overall, groundwater iron concentration predominated in the combined model that included WASH variables. The study helps to understand localized drivers of schistosomiasis transmission. Specifically, unsatisfactory water quality in boreholes perpetuates reliance of surface water bodies, indirectly increasing

  6. Knowledge-Based Detection and Assessment of Damaged Roads Using Post-Disaster High-Resolution Remote Sensing Image

    OpenAIRE

    Wang, Jianhua; Qin, Qiming; Zhao, Jianghua; Ye, Xin; Feng, Xiao; Qin, Xuebin; Yang, Xiucheng

    2015-01-01

    Road damage detection and assessment from high-resolution remote sensing image is critical for natural disaster investigation and disaster relief. In a disaster context, the pairing of pre-disaster and post-disaster road data for change detection and assessment is difficult to achieve due to the mismatch of different data sources, especially for rural areas where the pre-disaster data (i.e., remote sensing imagery or vector map) are hard to obtain. In this study, a knowledge-based method for ...

  7. Study of the spatial resolution of low-material GEM tracking detectors

    Directory of Open Access Journals (Sweden)

    Kudryavtsev V.N.

    2018-01-01

    Full Text Available The spatial resolution of GEM based tracking detectors has been simulated and measured. The simulation includes the GEANT4 based transport of high energy electrons with careful accounting for atomic relaxation processes including emission of fluorescent photons and Auger electrons and custom post-processing, including accounting for diffusion, gas amplification fluctuations, the distribution of signals on readout electrodes, electronics noise and a particular algorithm of the final coordinate calculation (center of gravity. The simulation demonstrates that a minimum of the spatial resolution of about 10 μm can be achieved with strip pitches from 250 μm to 300 μm. For larger pitches the resolution is quickly degrading reaching 80-100 μm at a pitch of 500 μm. The spatial resolution of low-material triple-GEM detectors for the DEUTRON facility at the VEPP-3 storage ring is measured at the extracted beam facility of the VEPP-4M collider. The amount of material in these detectors is reduced by etching the copper of the GEMs electrodes and using a readout structure on a thin kapton foil rather than on a glass fibre plate. The exact amount of material in one DEUTRON detector is measured by studying multiple scattering of 100 MeV electrons in it. The result of these measurements is X/X0 = 2.4×10−3 corresponding to a thickness of the copper layers of the GEM foils of 3 μm. The spatial resolution of one DEUTRON detector is measured with 500 MeV electrons and the measured value is equal to 35 ± 1 μm for orthogonal tracks.

  8. Study of the spatial resolution of low-material GEM tracking detectors

    Science.gov (United States)

    Kudryavtsev, V. N.; Maltsev, T. V.; Shekhtman, L. I.

    2018-02-01

    The spatial resolution of GEM based tracking detectors has been simulated and measured. The simulation includes the GEANT4 based transport of high energy electrons with careful accounting for atomic relaxation processes including emission of fluorescent photons and Auger electrons and custom post-processing, including accounting for diffusion, gas amplification fluctuations, the distribution of signals on readout electrodes, electronics noise and a particular algorithm of the final coordinate calculation (center of gravity). The simulation demonstrates that a minimum of the spatial resolution of about 10 μm can be achieved with strip pitches from 250 μm to 300 μm. For larger pitches the resolution is quickly degrading reaching 80-100 μm at a pitch of 500 μm. The spatial resolution of low-material triple-GEM detectors for the DEUTRON facility at the VEPP-3 storage ring is measured at the extracted beam facility of the VEPP-4M collider. The amount of material in these detectors is reduced by etching the copper of the GEMs electrodes and using a readout structure on a thin kapton foil rather than on a glass fibre plate. The exact amount of material in one DEUTRON detector is measured by studying multiple scattering of 100 MeV electrons in it. The result of these measurements is X/X0 = 2.4×10-3 corresponding to a thickness of the copper layers of the GEM foils of 3 μm. The spatial resolution of one DEUTRON detector is measured with 500 MeV electrons and the measured value is equal to 35 ± 1 μm for orthogonal tracks.

  9. High spatial resolution upgrade of the electron cyclotron emission radiometer for the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Truong, D. D., E-mail: dtruong@wisc.edu [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Austin, M. E. [Institute for Fusion Studies, University of Texas, Austin, Texas, 78712 (United States)

    2014-11-15

    The 40-channel DIII-D electron cyclotron emission (ECE) radiometer provides measurements of T{sub e}(r,t) at the tokamak midplane from optically thick, second harmonic X-mode emission over a frequency range of 83–130 GHz. The frequency spacing of the radiometer's channels results in a spatial resolution of ∼1–3 cm, depending on local magnetic field and electron temperature. A new high resolution subsystem has been added to the DIII-D ECE radiometer to make sub-centimeter (0.6–0.8 cm) resolution T{sub e} measurements. The high resolution subsystem branches off from the regular channels’ IF bands and consists of a microwave switch to toggle between IF bands, a switched filter bank for frequency selectivity, an adjustable local oscillator and mixer for further frequency down-conversion, and a set of eight microwave filters in the 2–4 GHz range. Higher spatial resolution is achieved through the use of a narrower (200 MHz) filter bandwidth and closer spacing between the filters’ center frequencies (250 MHz). This configuration allows for full coverage of the 83–130 GHz frequency range in 2 GHz bands. Depending on the local magnetic field, this translates into a “zoomed-in” analysis of a ∼2–4 cm radial region. Expected uses of these channels include mapping the spatial dependence of Alfven eigenmodes, geodesic acoustic modes, and externally applied magnetic perturbations. Initial T{sub e} measurements, which demonstrate that the desired resolution is achieved, are presented.

  10. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction

    International Nuclear Information System (INIS)

    Liang, Yicheng; Peng, Hao

    2015-01-01

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity. (paper)

  11. APPLICABILITY OF VARIOUS INTERPOLATION APPROACHES FOR HIGH RESOLUTION SPATIAL MAPPING OF CLIMATE DATA IN KOREA

    Directory of Open Access Journals (Sweden)

    A. Jo

    2018-04-01

    Full Text Available The purpose of this study is to create a new dataset of spatially interpolated monthly climate data for South Korea at high spatial resolution (approximately 30m by performing various spatio-statistical interpolation and comparing with forecast LDAPS gridded climate data provided from Korea Meterological Administration (KMA. Automatic Weather System (AWS and Automated Synoptic Observing System (ASOS data in 2017 obtained from KMA were included for the spatial mapping of temperature and rainfall; instantaneous temperature and 1-hour accumulated precipitation at 09:00 am on 31th March, 21th June, 23th September, and 24th December. Among observation data, 80 percent of the total point (478 and remaining 120 points were used for interpolations and for quantification, respectively. With the training data and digital elevation model (DEM with 30 m resolution, inverse distance weighting (IDW, co-kriging, and kriging were performed by using ArcGIS10.3.1 software and Python 3.6.4. Bias and root mean square were computed to compare prediction performance quantitatively. When statistical analysis was performed for each cluster using 20 % validation data, co kriging was more suitable for spatialization of instantaneous temperature than other interpolation method. On the other hand, IDW technique was appropriate for spatialization of precipitation.

  12. High spatial resolution gamma imaging detector based on a 5 inch diameter R3292 Hamamatsu PSPMT

    International Nuclear Information System (INIS)

    Wojcik, R.; Majewski, S.; Kross, B.; Weisenberger, A.G.; Steinbach, D.

    1998-01-01

    High resolution imaging gamma-ray detectors were developed using Hamamatsu's 5 inch diameter R3292 position sensitive PMT (PSPMT) and a variety of crystal scintillator arrays. Special readout techniques were used to maximize the active imaging area while reducing the number of readout channels. Spatial resolutions approaching 1 mm were obtained in a broad energy range from 20 to 511 keV. Results are also presented of coupling the scintillator arrays to the PMT via imaging light guides consisting of acrylic optical fibers

  13. Measurement of the spatial resolution of wide-pitch silicon strip detectors with large incident angle

    International Nuclear Information System (INIS)

    Kawasaki, T.; Hazumi, M.; Nagashima, Y.

    1996-01-01

    As a part of R ampersand D for the BELLE experiment at KEK-B, we measured the spatial resolution of silicon strip detectors for particles with incident angles ranging from 0 degrees to 75 degrees. These detectors have strips with pitches of 50, 125 and 250 μm on the ohmic side. We have obtained the incident angle dependence which agreed well with a Monte Carlo simulation. The resolution was found to be 11 μm for normal incidence with a pitch of 50 μm, and 29 μm for incident angle of 75 degrees with a pitch of 250μm

  14. Spatial and temporal patterns of burned area over Brazilian Cerrado from 2005 to 2015 using remote sensing data

    Science.gov (United States)

    Libonati, Renata; DaCamara, Carlos; Setzer, Alberto

    2016-04-01

    Although Cerrado is a fire-dependent biome, current agriculture practices have significantly modified the native fire regime. Moreover, over the last decades, climate conditions, such as intensive droughts, have contributed to enhance the effects of anthropogenic activities, and consequently fire, over the region. For instance, during the 2010 extreme drought there was an increase of 100% in the number of fire pixels detected by just one polar orbiting satellite (information online at http://www.cptec.inpe.br/queimadas). A better characterization of spatial and temporal fire patterns over Cerrado is therefore crucial to uncover both climate and anthropogenic influences in this ecosystem. Additionally, information about the extent, location and time of burned areas (BA) over Cerrado is especially useful to a wide range of users, from government agencies, research groups and ecologists, to fire managers and NGOs. Instruments on-board satellites are the only available operational means to collect BA data at appropriated spatial and temporal scales and in a cost-effective way. Several global BA products derived from remote sensed information have been developed over the last years using a variety of techniques based on different spatial, spectral and temporal resolutions. Although presenting similar inter-annual variability, there are marked differences among the products both in magnitude and location of the area burnt. The development of regional algorithms which take into account local characteristics such as vegetation type, soil and climate is therefore an added value to the existing information. We present a monthly BA product (AQM) for Brazil based on information from MODIS 1km. The algorithm was specifically designed for ecosystems in Brazil and the procedure represents the first initiative of an automated method for BA monitoring using remote sensing information in the country. The product relies on an algorithm that takes advantage of the ability of MIR

  15. Examining Spatiotemporal Urbanization Patterns in Kathmandu Valley, Nepal: Remote Sensing and Spatial Metrics Approaches

    Directory of Open Access Journals (Sweden)

    Rajesh Bahadur Thapa

    2009-09-01

    Full Text Available This paper examines the spatiotemporal pattern of urbanization in Kathmandu Valley using remote sensing and spatial metrics techniques. The study is based on 33-years of time series data compiled from satellite images. Along with new developments within the city fringes and rural villages in the valley, shifts in the natural environment and newly developed socioeconomic strains between residents are emerging. A highly dynamic spatial pattern of urbanization is observed in the valley. Urban built-up areas had a slow trend of growth in the 1960s and 1970s but have grown rapidly since the 1980s. The urbanization process has developed fragmented and heterogeneous land use combinations in the valley. However, the refill type of development process in the city core and immediate fringe areas has shown a decreasing trend in the neighborhood distances between land use patches, and an increasing trend towards physical connectedness, which indicates a higher probability of homogenous landscape development in the upcoming decades.

  16. Environmental cue saliency influences the vividness of a remote spatial memory in rats.

    Science.gov (United States)

    Lopez, Joëlle; de Vasconcelos, Anne Pereira; Cassel, Jean-Christophe

    2008-07-01

    The Morris water maze is frequently used to evaluate the acquisition and retrieval of spatial memories. Few experiments, however, have investigated the effects of environmental cue saliency on the strength or persistence of such memories after a short vs. long post-acquisition interval. Using a Morris water maze, we therefore tested in rats the effect of the saliency of distal cues on the vividness of a recent (5 days) vs. remote (25 days) memory. Rats trained in a cue-enriched vs. a cue-impoverished context showed a better overall level of performance during acquisition. Furthermore, the probe trials revealed that the rats trained and tested in the cue-impoverished context (1) spent less time in the target quadrant at the 25-day delay, and (2) swam shorter distances in the target area, with fewer crossings at both 5- and 25-day delays, as compared to their counterparts trained and tested in the cue-enriched context. Thus, the memory trace formed in the cue-enriched context shows better resistance to time, suggesting an implication of cue saliency in the vividness of a spatial memory.

  17. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Venkat; Cole, Wesley

    2016-07-01

    Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERC region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.

  18. High Resolution Spectra of Carbon Monoxide, Propane and Ammonia for Atmospheric Remote Sensing

    Science.gov (United States)

    Beale, Christopher Andrew

    Spectroscopy is a critical tool for analyzing atmospheric data. Identification of atmospheric parameters such as temperature, pressure and the existence and concentrations of constituent gases via remote sensing techniques are only possible with spectroscopic data. These form the basis of model atmospheres which may be compared to observations to determine such parameters. To this end, this dissertation explores the spectroscopy of three molecules: ammonia, propane and carbon monoxide. Infrared spectra have been recorded for ammonia in the region 2400-9000 cm-1. These spectra were recorded at elevated temperatures (from 293-973 K) using a Fourier Transform Spectrometer (FTS). Comparison between the spectra recorded at different temperatures yielded experimental lower state energies. These spectra resulted in the measurement of roughly 30000 lines and about 3000 quantum assignments. In addition spectra of propane were recorded at elevated temperatures (296-700 K) using an FTS. Atmospheres with high temperatures require molecular data at appropriate conditions. This dissertation describes collection of such data and the potential application to atmospheres in our solar system, such as auroral regions in Jupiter, to those of planets orbiting around other stars and cool sub-stellar objects known as brown dwarfs. The spectra of propane and ammonia provide the highest resolution and most complete experimental study of these gases in their respective spectral regions at elevated temperatures. Detection of ammonia in an exoplanet or detection of propane in the atmosphere of Jupiter will most likely rely on the work presented here. The best laboratory that we have to study atmospheres is our own planet. The same techniques that are applied to these alien atmospheres originated on Earth. As such it is appropriate to discuss remote sensing of our own atmosphere. This idea is explored through analysis of spectroscopic data recorded by an FTS on the Atmospheric Chemistry

  19. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    International Nuclear Information System (INIS)

    Foxley, Sean; Karczmar, Gregory S.; Domowicz, Miriam; Schwartz, Nancy

    2015-01-01

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T 2 * -weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T 2 * and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm 3 and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T 2 * -weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in the water resonance that is not

  20. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Foxley, Sean, E-mail: sean.foxley@ndcn.ox.ac.uk; Karczmar, Gregory S. [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Domowicz, Miriam [Department of Pediatrics, University of Chicago, Chicago, Illinois 60637 (United States); Schwartz, Nancy [Department of Pediatrics, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637 (United States)

    2015-03-15

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T{sub 2}{sup *}-weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T{sub 2}{sup *} and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm{sup 3} and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T{sub 2}{sup *}-weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in

  1. Spatial resolution of imaging plate with flash X-rays and its utilization for radiography

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, A. M., E-mail: shaikham@barc.gov.in [Physics Group, Bhabha Atomic Research Centre, Mumbai-400085 (India); Romesh, C.; Kolage, T. S.; Sharma, Archana [Accelerator and Pulsed Power Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)

    2015-06-24

    A flash X-ray source developed using pulsed electron accelerator with electron energy range of 400keV to 1030keV and a field emission cathode is characterized using X-ray imaging plates. Spatial resolution of the imaging system is measured using edge spread function fitted to data obtained from radiograph of Pb step wedge. A spatial resolution of 150±6 µm is obtained. The X-ray beam size is controlled by the anode-cathode configuration. Optimum source size of ∼13±2 mm diameter covering an area with intensity of ∼27000 PSL/mm{sup 2} is obtained on the imaging plate kept at a distance of ∼200 mm from the tip of the anode. It is used for recording radiographs of objects like satellite cable cutter, aero-engine turbine blade and variety of pyro-devices used in aerospace industry.

  2. Working memory-driven attention improves spatial resolution: Support for perceptual enhancement.

    Science.gov (United States)

    Pan, Yi; Luo, Qianying; Cheng, Min

    2016-08-01

    Previous research has indicated that attention can be biased toward those stimuli matching the contents of working memory and thereby facilitates visual processing at the location of the memory-matching stimuli. However, whether this working memory-driven attentional modulation takes place on early perceptual processes remains unclear. Our present results showed that working memory-driven attention improved identification of a brief Landolt target presented alone in the visual field. Because the suprathreshold target appeared without any external noise added (i.e., no distractors or masks), the results suggest that working memory-driven attention enhances the target signal at early perceptual stages of visual processing. Furthermore, given that performance in the Landolt target identification task indexes spatial resolution, this attentional facilitation indicates that working memory-driven attention can boost early perceptual processing via enhancement of spatial resolution at the attended location.

  3. Development of temperature profile sensor at high temporal and spatial resolution

    International Nuclear Information System (INIS)

    Takiguchi, Hiroki; Furuya, Masahiro; Arai, Takahiro

    2017-01-01

    In order to quantify thermo-physical flow field for the industrial applications such as nuclear and chemical reactors, high temporal and spatial measurements for temperature, pressure, phase velocity, viscosity and so on are required to validate computational fluid dynamics (CFD) and subchannel analyses. The paper proposes a novel temperature profile sensor, which can acquire temperature distribution in water at high temporal (a millisecond) and spatial (millimeter) resolutions. The devised sensor acquires electric conductance between transmitter and receiver wires, which is a function of temperature. The sensor comprise wire mesh structure for multipoint and simultaneous temperature measurement in water, which indicated that three-dimensional temperature distribution can be detected in flexible resolutions. For the demonstration of the principle, temperature profile in water was estimated according to pre-determined temperature calibration line against time-averaged impedance. The 16×16 grid sensor visualized fast and multi-dimensional mixing process of a hot water jet into a cold water pool. (author)

  4. Hard X-ray Microscopy with sub 30 nm Spatial Resolution

    International Nuclear Information System (INIS)

    Tang, M.-T.; Song, Y.-F.; Yin, G.-C.; Chen, J.-H.; Chen, Y.-M.; Liang, Keng S.; Chen, F.-R.; Duewer, F.; Yun Wenbing

    2007-01-01

    A transmission X-ray microscope (TXM) has been installed at the BL01B beamline at National Synchrotron Radiation Research Center in Taiwan. This state-of-the-art TXM operational in a range 8-11 keV provides 2D images and 3D tomography with spatial resolution 60 nm, and with the Zernike-phase contrast mode for imaging light materials such as biological specimens. A spatial resolution of the TXM better than 30 nm, apparently the best result in hard X-ray microscopy, has been achieved by employing the third diffraction order of the objective zone plate. The TXM has been applied in diverse research fields, including analysis of failure mechanisms in microelectronic devices, tomographic structures of naturally grown photonic specimens, and the internal structure of fault zone gouges from an earthquake core. Here we discuss the scope and prospects of the project, and the progress of the TXM in NSRRC

  5. Secondary electron spectroscopy and Auger microscopy at high spatial resolution. Application to scanning electron microscopy

    International Nuclear Information System (INIS)

    Le Gressus, Claude; Massignon, Daniel; Sopizet, Rene

    1979-01-01

    Secondary electron spectroscopy (SES), Auger electron spectroscopy (AES) and electron energy loss spectroscopy (ELS) are combined with ultra high vacuum scanning microscopy (SEM) for surface analysis at high spatial resolution. Reliability tests for the optical column for the vacuum and for the spectrometer are discussed. Furthermore the sensitivity threshold in AES which is compatible with a non destructive surface analysis at high spatial resolution is evaluated. This combination of all spectroscopies is used in the study of the beam damage correlated with the well known secondary electron image (SEI) darkening still observed in ultra high vacuum. The darkening is explained as a bulk decontamination of the sample rather than as a surface contamination from the residual vacuum gas [fr

  6. Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution

    Science.gov (United States)

    Payne, Adam

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.

  7. Influence of backscattering on the spatial resolution of semiconductor X-ray detectors

    International Nuclear Information System (INIS)

    Hoheisel, M.; Korn, A.; Giersch, J.

    2005-01-01

    Pixelated X-ray detectors using semiconductor layers or scintillators as absorbers are widely used in high-energy physics, medical diagnosis, or non-destructive testing. Their good spatial resolution performance makes them particularly suitable for applications where fine details have to be resolved. Intrinsic limitations of the spatial resolution have been studied in previous simulations. These simulations focused on interactions inside the conversion layer. Transmitted photons were treated as a loss. In this work, we also implemented the structure behind the conversion layer to investigate the impact of backscattering inside the detector setup. We performed Monte Carlo simulations with the program ROSI (Roentgen Simulation) which is based on the well-established EGS4 algorithm. Line-spread functions of different fully implemented detectors were simulated. In order to characterize the detectors' spatial resolution, the modulation transfer functions (MTF) were calculated. The additional broadening of the line-spread function by carrier transport has been ignored in this work. We investigated two different detector types: a directly absorbing pixel detector where a semiconductor slab is bump-bonded to a readout ASIC such as the Medipix-2 setup with Si or GaAs as an absorbing semiconductor layer, and flat-panel detectors with a Se or a CsI converter. We found a significant degradation of the MTF compared to the case without backscattering. At energies above the K-edge of the backscattering material the spatial resolution drops and can account for the observed low-frequency drop of the MTF. Ignoring this backscatter effect might lead to misinterpretations of the charge sharing effect in counting pixel detectors

  8. High spatial and temporal resolution interrogation of fully distributed chirped fiber Bragg grating sensors

    OpenAIRE

    Ahmad, Eamonn J.; Wang, Chao; Feng, Dejun; Yan, Zhijun; Zhang, Lin

    2017-01-01

    A novel interrogation technique for fully distributed linearly chirped fiber Bragg grating (LCFBG) strain sensors with simultaneous high temporal and spatial resolution based on optical time-stretch frequency-domain reflectometry (OTS-FDR) is proposed and experimentally demonstrated. LCFBGs is a promising candidate for fully distributed sensors thanks to its longer grating length and broader reflection bandwidth compared to normal uniform FBGs. In the proposed system, two identical LCFBGs are...

  9. Sensitive rapid analysis of iodine-labelled protein mixture on flat substrates with high spatial resolution

    International Nuclear Information System (INIS)

    Zanevskij, Yu.V.; Ivanov, A.B.; Movchan, S.A.; Peshekhonov, V.D.; Chan Dyk Tkhan'; Chernenko, S.P.; Kaminir, L.B.; Krejndlin, Eh.Ya.; Chernyj, A.A.

    1983-01-01

    Usability of rapid analysis by electrophoresis of the admixture of I 125 -labelled proteins on flat samples by means of URAN type installation developed using a multiwire proportional chamber is studied. The sensitivity of the method is better than 200 cpm/cm 2 and the spatial resolution is approximately 1 mm. The procedure of the rapid analysis is no longer than several tens of minutes

  10. Resolution of spatial and temporal visual attention in infants with fragile X syndrome

    OpenAIRE

    Farzin, Faraz; Rivera, Susan M.; Whitney, David

    2011-01-01

    Fragile X syndrome is the most common cause of inherited intellectual impairment and the most common single-gene cause of autism. Individuals with fragile X syndrome present with a neurobehavioural phenotype that includes selective deficits in spatiotemporal visual perception associated with neural processing in frontal–parietal networks of the brain. The goal of the current study was to examine whether reduced resolution of spatial and/or temporal visual attention may underlie perceptual def...

  11. Study of spatial resolution of YAG:Ce cathodoluminescent imaging screens

    Czech Academy of Sciences Publication Activity Database

    Schauer, Petr; Bok, Jan

    2013-01-01

    Roč. 308, 1 August (2013), s. 68-73 ISSN 0168-583X R&D Projects: GA TA ČR TE01020118; GA ČR GAP102/10/1410; GA MŠk EE.2.3.20.0103 Institutional support: RVO:68081731 Keywords : Spatial resolution * Imaging screen * Electron microscope * Cathodoluminescence * YAG:Ce single crystal * Line spread function * Modulation transfer function Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.186, year: 2013

  12. Assessing the Resolution Adaptability of the Zhang-McFarlane Cumulus Parameterization With Spatial and Temporal Averaging: RESOLUTION ADAPTABILITY OF ZM SCHEME

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Yuxing [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing China; Fan, Jiwen [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Xiao, Heng [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Zhang, Guang J. [Scripps Institution of Oceanography, University of California, San Diego CA USA; Ghan, Steven J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Xu, Kuan-Man [NASA Langley Research Center, Hampton VA USA; Ma, Po-Lun [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Gustafson, William I. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA

    2017-11-01

    Realistic modeling of cumulus convection at fine model resolutions (a few to a few tens of km) is problematic since it requires the cumulus scheme to adapt to higher resolution than they were originally designed for (~100 km). To solve this problem, we implement the spatial averaging method proposed in Xiao et al. (2015) and also propose a temporal averaging method for the large-scale convective available potential energy (CAPE) tendency in the Zhang-McFarlane (ZM) cumulus parameterization. The resolution adaptability of the original ZM scheme, the scheme with spatial averaging, and the scheme with both spatial and temporal averaging at 4-32 km resolution is assessed using the Weather Research and Forecasting (WRF) model, by comparing with Cloud Resolving Model (CRM) results. We find that the original ZM scheme has very poor resolution adaptability, with sub-grid convective transport and precipitation increasing significantly as the resolution increases. The spatial averaging method improves the resolution adaptability of the ZM scheme and better conserves the total transport of moist static energy and total precipitation. With the temporal averaging method, the resolution adaptability of the scheme is further improved, with sub-grid convective precipitation becoming smaller than resolved precipitation for resolution higher than 8 km, which is consistent with the results from the CRM simulation. Both the spatial distribution and time series of precipitation are improved with the spatial and temporal averaging methods. The results may be helpful for developing resolution adaptability for other cumulus parameterizations that are based on quasi-equilibrium assumption.

  13. Influence of Elevation Data Resolution on Spatial Prediction of Colluvial Soils in a Luvisol Region.

    Directory of Open Access Journals (Sweden)

    Vít Penížek

    Full Text Available The development of a soil cover is a dynamic process. Soil cover can be altered within a few decades, which requires updating of the legacy soil maps. Soil erosion is one of the most important processes quickly altering soil cover on agriculture land. Colluvial soils develop in concave parts of the landscape as a consequence of sedimentation of eroded material. Colluvial soils are recognised as important soil units because they are a vast sink of soil organic carbon. Terrain derivatives became an important tool in digital soil mapping and are among the most popular auxiliary data used for quantitative spatial prediction. Prediction success rates are often directly dependent on raster resolution. In our study, we tested how raster resolution (1, 2, 3, 5, 10, 20 and 30 meters influences spatial prediction of colluvial soils. Terrain derivatives (altitude, slope, plane curvature, topographic position index, LS factor and convergence index were calculated for the given raster resolutions. Four models were applied (boosted tree, neural network, random forest and Classification/Regression Tree to spatially predict the soil cover over a 77 ha large study plot. Models training and validation was based on 111 soil profiles surveyed on a regular sampling grid. Moreover, the predicted real extent and shape of the colluvial soil area was examined. In general, no clear trend in the accuracy prediction was found without the given raster resolution range. Higher maximum prediction accuracy for colluvial soil, compared to prediction accuracy of total soil cover of the study plot, can be explained by the choice of terrain derivatives that were best for Colluvial soils differentiation from other soil units. Regarding the character of the predicted Colluvial soils area, maps of 2 to 10 m resolution provided reasonable delineation of the colluvial soil as part of the cover over the study area.

  14. Influence of Elevation Data Resolution on Spatial Prediction of Colluvial Soils in a Luvisol Region

    Science.gov (United States)

    Penížek, Vít; Zádorová, Tereza; Kodešová, Radka; Vaněk, Aleš

    2016-01-01

    The development of a soil cover is a dynamic process. Soil cover can be altered within a few decades, which requires updating of the legacy soil maps. Soil erosion is one of the most important processes quickly altering soil cover on agriculture land. Colluvial soils develop in concave parts of the landscape as a consequence of sedimentation of eroded material. Colluvial soils are recognised as important soil units because they are a vast sink of soil organic carbon. Terrain derivatives became an important tool in digital soil mapping and are among the most popular auxiliary data used for quantitative spatial prediction. Prediction success rates are often directly dependent on raster resolution. In our study, we tested how raster resolution (1, 2, 3, 5, 10, 20 and 30 meters) influences spatial prediction of colluvial soils. Terrain derivatives (altitude, slope, plane curvature, topographic position index, LS factor and convergence index) were calculated for the given raster resolutions. Four models were applied (boosted tree, neural network, random forest and Classification/Regression Tree) to spatially predict the soil cover over a 77 ha large study plot. Models training and validation was based on 111 soil profiles surveyed on a regular sampling grid. Moreover, the predicted real extent and shape of the colluvial soil area was examined. In general, no clear trend in the accuracy prediction was found without the given raster resolution range. Higher maximum prediction accuracy for colluvial soil, compared to prediction accuracy of total soil cover of the study plot, can be explained by the choice of terrain derivatives that were best for Colluvial soils differentiation from other soil units. Regarding the character of the predicted Colluvial soils area, maps of 2 to 10 m resolution provided reasonable delineation of the colluvial soil as part of the cover over the study area. PMID:27846230

  15. Echo planar perfusion imaging with high spatial and temporal resolution: methodology and clinical aspects

    International Nuclear Information System (INIS)

    Bitzer, M.; Klose, U.; Naegele, T.; Friese, S.; Kuntz, R.; Voigt, K.; Fetter, M.; Opitz, H.

    1999-01-01

    The purpose of the present study was to analyse specific advantages of calculated parameter images and their limitations using an optimized echo-planar imaging (EPI) technique with high spatial and temporal resolution. Dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) was performed in 12 patients with cerebrovascular disease and in 13 patients with brain tumours. For MR imaging of cerebral perfusion an EPI sequence was developed which provides a temporal resolution of 0.68 s for three slices with a 128 x 128 image matrix. To evaluate DSC-MRI, the following parameter images were calculated pixelwise: (1) Maximum signal reduction (MSR); (2) maximum signal difference (ΔSR); (3) time-to-peak (T p ); and (4) integral of signal-intensity-time curve until T p (S Int ). The MSR maps were superior in the detection of acute infarctions and ΔSR maps in the delineation of vasogenic brain oedema. The time-to-peak (T p ) maps seemed to be highly sensitive in the detection of poststenotic malperfused brain areas (sensitivity 90 %). Hyperperfused areas of brain tumours were detectable down to a diameter of 1 cm with high sensitivity (> 90 %). Distinct clinical and neuroradiological conditions revealed different suitabilities for the parameter images. The time-to-peak (T p ) maps may be an important advantage in the detection of poststenotic ''areas at risk'', due to an improved temporal resolution using an EPI technique. With regard to spatial resolution, a matrix size of 128 x 128 is sufficient for all clinical conditions. According to our results, a further increase in matrix size would not improve the spatial resolution in DSC-MRI, since the degree of the vascularization of lesions and the susceptibility effect itself seem to be the limiting factors. (orig.)

  16. Study on the Spatial Resolution of Single and Multiple Coincidences Compton Camera

    Science.gov (United States)

    Andreyev, Andriy; Sitek, Arkadiusz; Celler, Anna

    2012-10-01

    In this paper we study the image resolution that can be obtained from the Multiple Coincidences Compton Camera (MCCC). The principle of MCCC is based on a simultaneous acquisition of several gamma-rays emitted in cascade from a single nucleus. Contrary to a standard Compton camera, MCCC can theoretically provide the exact location of a radioactive source (based only on the identification of the intersection point of three cones created by a single decay), without complicated tomographic reconstruction. However, practical implementation of the MCCC approach encounters several problems, such as low detection sensitivities result in very low probability of coincident triple gamma-ray detection, which is necessary for the source localization. It is also important to evaluate how the detection uncertainties (finite energy and spatial resolution) influence identification of the intersection of three cones, thus the resulting image quality. In this study we investigate how the spatial resolution of the reconstructed images using the triple-cone reconstruction (TCR) approach compares to images reconstructed from the same data using standard iterative method based on single-cone. Results show, that FWHM for the point source reconstructed with TCR was 20-30% higher than the one obtained from the standard iterative reconstruction based on expectation maximization (EM) algorithm and conventional single-cone Compton imaging. Finite energy and spatial resolutions of the MCCC detectors lead to errors in conical surfaces definitions (“thick” conical surfaces) which only amplify in image reconstruction when intersection of three cones is being sought. Our investigations show that, in spite of being conceptually appealing, the identification of triple cone intersection constitutes yet another restriction of the multiple coincidence approach which limits the image resolution that can be obtained with MCCC and TCR algorithm.

  17. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Laroche, G. [Laboratoire d' Ingenierie de Surface, Centre de Recherche sur les Materiaux Avances, Departement de genie des mines, de la metallurgie et des materiaux, Universite Laval, 1065, avenue de la Medecine, Quebec G1V 0A6 (Canada); Centre de recherche du CHUQ, Hopital St Francois d' Assise, 10, rue de l' Espinay, local E0-165, Quebec G1L 3L5 (Canada); Vallade, J. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Agence de l' environnement et de la Ma Latin-Small-Letter-Dotless-I -carettrise de l' Energie, 20, avenue du Gresille, BP 90406, F-49004 Angers Cedex 01 (France); Bazinette, R.; Hernandez, E.; Hernandez, G.; Massines, F. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Nijnatten, P. van [OMT Solutions bv, High Tech Campus 9, 5656AE Eindhoven (Netherlands)

    2012-10-15

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm Multiplication-Sign 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45 Degree-Sign beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  18. High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses.

    Science.gov (United States)

    Zhang, Jingdong; Zhu, Tao; Zhou, Huan; Huang, Shihong; Liu, Min; Huang, Wei

    2016-11-28

    We demonstrate a cost-effective distributed fiber sensing system for the multi-parameter detection of the vibration, the temperature, and the strain by integrating phase-sensitive optical time domain reflectometry (φ-OTDR) and Brillouin optical time domain reflectometry (B-OTDR). Taking advantage of the fast changing property of the vibration and the static properties of the temperature and the strain, both the width and intensity of the laser pulses are modulated and injected into the single-mode sensing fiber proportionally, so that three concerned parameters can be extracted simultaneously by only one photo-detector and one data acquisition channel. A data processing method based on Gaussian window short time Fourier transform (G-STFT) is capable of achieving high spatial resolution in B-OTDR. The experimental results show that up to 4.8kHz vibration sensing with 3m spatial resolution at 10km standard single-mode fiber can be realized, as well as the distributed temperature and stress profiles along the same fiber with 80cm spatial resolution.

  19. Study and design of a very high spatial resolution beta imaging system

    International Nuclear Information System (INIS)

    Donnard, J.

    2008-01-01

    The b autoradiography is a widely used technique in pharmacology or biological fields. It is able to locate in two dimensions molecules labeled with beta emitters. The development of a gaseous detector incorporating micro-mesh called PIM in the Subatech laboratory leads to the construction of a very high spatial resolution apparatus dedicated to b imaging. This device is devoted to small analysis surface of a half microscope slide in particular of 3 H or 14 C and the measured spatial resolution is 20 μm FWHM. The recent development of a new reconstruction method allows enlarging the field of investigation to high energy beta emitters such as 131 I, 18 F or 46 Sc. A new device with a large active area of 18*18 cm 2 has been built with a user friendly design. This allows to image simultaneously 10 microscope slides. Thanks to a multi-modality solution, it retains the good characteristics of spatial resolution obtained previously on a small surface. Moreover, different kinds of samples, like microscope slides or scotches can be analysed. The simulation and experimentation work achieved during this thesis led to an optimal disposition of the inner structure of the detector. These results and characterization show that the PIM structure has to be considered for a next generation of b-Imager. (author)

  20. Mapping the layer count of few-layer hexagonal boron nitride at high lateral spatial resolutions

    Science.gov (United States)

    Mohsin, Ali; Cross, Nicholas G.; Liu, Lei; Watanabe, Kenji; Taniguchi, Takashi; Duscher, Gerd; Gu, Gong

    2018-01-01

    Layer count control and uniformity of two dimensional (2D) layered materials are critical to the investigation of their properties and to their electronic device applications, but methods to map 2D material layer count at nanometer-level lateral spatial resolutions have been lacking. Here, we demonstrate a method based on two complementary techniques widely available in transmission electron microscopes (TEMs) to map the layer count of multilayer hexagonal boron nitride (h-BN) films. The mass-thickness contrast in high-angle annular dark-field (HAADF) imaging in the scanning transmission electron microscope (STEM) mode allows for thickness determination in atomically clean regions with high spatial resolution (sub-nanometer), but is limited by surface contamination. To complement, another technique based on the boron K ionization edge in the electron energy loss spectroscopy spectrum (EELS) of h-BN is developed to quantify the layer count so that surface contamination does not cause an overestimate, albeit at a lower spatial resolution (nanometers). The two techniques agree remarkably well in atomically clean regions with discrepancies within  ±1 layer. For the first time, the layer count uniformity on the scale of nanometers is quantified for a 2D material. The methodology is applicable to layer count mapping of other 2D layered materials, paving the way toward the synthesis of multilayer 2D materials with homogeneous layer count.

  1. Conjunctions between motion and disparity are encoded with the same spatial resolution as disparity alone.

    Science.gov (United States)

    Allenmark, Fredrik; Read, Jenny C A

    2012-10-10

    Neurons in cortical area MT respond well to transparent streaming motion in distinct depth planes, such as caused by observer self-motion, but do not contain subregions excited by opposite directions of motion. We therefore predicted that spatial resolution for transparent motion/disparity conjunctions would be limited by the size of MT receptive fields, just as spatial resolution for disparity is limited by the much smaller receptive fields found in primary visual cortex, V1. We measured this using a novel "joint motion/disparity grating," on which human observers detected motion/disparity conjunctions in transparent random-dot patterns containing dots streaming in opposite directions on two depth planes. Surprisingly, observers showed the same spatial resolution for these as for pure disparity gratings. We estimate the limiting receptive field diameter at 11 arcmin, similar to V1 and much smaller than MT. Higher internal noise for detecting joint motion/disparity produces a slightly lower high-frequency cutoff of 2.5 cycles per degree (cpd) versus 3.3 cpd for disparity. This suggests that information on motion/disparity conjunctions is available in the population activity of V1 and that this information can be decoded for perception even when it is invisible to neurons in MT.

  2. Geographic information system for fusion and analysis of high-resolution remote sensing and ground data

    Science.gov (United States)

    Freeman, Anthony; Way, Jo Bea; Dubois, Pascale; Leberl, Franz

    1993-01-01

    We seek to combine high-resolution remotely sensed data with models and ground truth measurements, in the context of a Geographical Information System (GIS), integrated with specialized image processing software. We will use this integrated system to analyze the data from two Case Studies, one at a boreal forest site, the other a tropical forest site. We will assess the information content of the different components of the data, determine the optimum data combinations to study biogeophysical changes in the forest, assess the best way to visualize the results, and validate the models for the forest response to different radar wavelengths/polarizations. During the 1990's, unprecedented amounts of high-resolution images from space of the Earth's surface will become available to the applications scientist from the LANDSAT/TM series, European and Japanese ERS-1 satellites, RADARSAT and SIR-C missions. When the Earth Observation Systems (EOS) program is operational, the amount of data available for a particular site can only increase. The interdisciplinary scientist, seeking to use data from various sensors to study his site of interest, may be faced with massive difficulties in manipulating such large data sets, assessing their information content, determining the optimum combinations of data to study a particular parameter, visualizing his results and validating his model of the surface. The techniques to deal with these problems are also needed to support the analysis of data from NASA's current program of Multi-sensor Airborne Campaigns, which will also generate large volumes of data. In the Case Studies outlined in this proposal, we will have somewhat unique data sets. For the Bonanza Creek Experimental Forest (Case 1) calibrated DC-8 SAR (Synthetic Aperture Radar) data and extensive ground truth measurement are already at our disposal. The data set shows documented evidence to temporal change. The Belize Forest Experiment (Case 2) will produce calibrated DC-8 SAR

  3. Study on the Coastline Change of Jiaozhou Bay Based on High Resolution Remote Sensing Image

    Science.gov (United States)

    Zhu, H.; Xing, B.; Ni, S.; Wei, P.

    2018-05-01

    In recent years, with the rapid development of the Jiaozhou Bay area of Qingdao, the influence of human activities on the coastline of Jiaozhou Bay is becoming more and more serious. Based on the high resolution remote sensing image data of 10 periods from 2001 to 2017 in the Jiaozhou Bay area, and combined with the data of on-the-spot survey and expert knowledge, this paper have completed the interpretation and extraction of coastline data of each year, and analyzed the distribution, size, rate of change, and trend of the increase and decrease of the coastal area of Jiaozhou Bay in different time periods, combined with the economic construction and the marine hydrodynamic environment of the region to analyze the reasons for the change of the coastline of Jiaozhou Bay. The results show that the increase and reduction of the coastal area of Jiaozhou Bay was mainly affected by human activities such as sea reclamation and marine aquaculture, resulting in a gradual change in the rate of increase and decrease with human development. For coastal advance part,2001-2013, the average increase rate on the coastal area of Jiaozhou Bay was 2.30 km2/a, showing a trend of rapid growth, 2013-2017 the average increase rate of 0.53 km2/a, and the growth rate slowed down. For coastal retreat part, 2001-2013, the average decrease rate was 2.58 × 10-3 km2/a. 2013-2014, the decrease rate reached a peak value of 1.11 km2/a. 2014-2017, the average decrease rate was 0.14 km2/a. The decrease rate shows a trend of increasing first and then slowing down.

  4. High-resolution land surface modeling utilizing remote sensing parameters and the Noah UCM: a case study in the Los Angeles Basin

    Science.gov (United States)

    Vahmani, P.; Hogue, T. S.

    2014-12-01

    In the current work we investigate the utility of remote-sensing-based surface parameters in the Noah UCM (urban canopy model) over a highly developed urban area. Landsat and fused Landsat-MODIS data are utilized to generate high-resolution (30 m) monthly spatial maps of green vegetation fraction (GVF), impervious surface area (ISA), albedo, leaf area index (LAI), and emissivity in the Los Angeles metropolitan area. The gridded remotely sensed parameter data sets are directly substituted for the land-use/lookup-table-based values in the Noah-UCM modeling framework. Model performance in reproducing ET (evapotranspiration) and LST (land surface temperature) fields is evaluated utilizing Landsat-based LST and ET estimates from CIMIS (California Irrigation Management Information System) stations as well as in situ measurements. Our assessment shows that the large deviations between the spatial distributions and seasonal fluctuations of the default and measured parameter sets lead to significant errors in the model predictions of monthly ET fields (RMSE = 22.06 mm month-1). Results indicate that implemented satellite-derived parameter maps, particularly GVF, enhance the capability of the Noah UCM to reproduce observed ET patterns over vegetated areas in the urban domains (RMSE = 11.77 mm month-1). GVF plays the most significant role in reproducing the observed ET fields, likely due to the interaction with other parameters in the model. Our analysis also shows that remotely sensed GVF and ISA improve the model's capability to predict the LST differences between fully vegetated pixels and highly developed areas.

  5. Supervised Classification High-Resolution Remote-Sensing Image Based on Interval Type-2 Fuzzy Membership Function

    Directory of Open Access Journals (Sweden)

    Chunyan Wang

    2018-05-01

    Full Text Available Because of the degradation of classification accuracy that is caused by the uncertainty of pixel class and classification decisions of high-resolution remote-sensing images, we proposed a supervised classification method that is based on an interval type-2 fuzzy membership function for high-resolution remote-sensing images. We analyze the data features of a high-resolution remote-sensing image and construct a type-1 membership function model in a homogenous region by supervised sampling in order to characterize the uncertainty of the pixel class. On the basis of the fuzzy membership function model in the homogeneous region and in accordance with the 3σ criterion of normal distribution, we proposed a method for modeling three types of interval type-2 membership functions and analyze the different types of functions to improve the uncertainty of pixel class expressed by the type-1 fuzzy membership function and to enhance the accuracy of classification decision. According to the principle that importance will increase with a decrease in the distance between the original, upper, and lower fuzzy membership of the training data and the corresponding frequency value in the histogram, we use the weighted average sum of three types of fuzzy membership as the new fuzzy membership of the pixel to be classified and then integrated into the neighborhood pixel relations, constructing a classification decision model. We use the proposed method to classify real high-resolution remote-sensing images and synthetic images. Additionally, we qualitatively and quantitatively evaluate the test results. The results show that a higher classification accuracy can be achieved with the proposed algorithm.

  6. Spatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based on Adaptive Multi-Scale Detail Enhancement.

    Science.gov (United States)

    Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming

    2018-02-07

    There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L ₀ gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements.

  7. Spatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based on Adaptive Multi-Scale Detail Enhancement

    Science.gov (United States)

    Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming

    2018-01-01

    There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L0 gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remot