WorldWideScience

Sample records for spatial pattern recognition

  1. Spatial pattern recognition of seismic events in South West Colombia

    Benítez, Hernán D.; Flórez, Juan F.; Duque, Diana P.; Benavides, Alberto; Lucía Baquero, Olga; Quintero, Jiber

    2013-09-01

    Recognition of seismogenic zones in geographical regions supports seismic hazard studies. This recognition is usually based on visual, qualitative and subjective analysis of data. Spatial pattern recognition provides a well founded means to obtain relevant information from large amounts of data. The purpose of this work is to identify and classify spatial patterns in instrumental data of the South West Colombian seismic database. In this research, clustering tendency analysis validates whether seismic database possesses a clustering structure. A non-supervised fuzzy clustering algorithm creates groups of seismic events. Given the sensitivity of fuzzy clustering algorithms to centroid initial positions, we proposed a methodology to initialize centroids that generates stable partitions with respect to centroid initialization. As a result of this work, a public software tool provides the user with the routines developed for clustering methodology. The analysis of the seismogenic zones obtained reveals meaningful spatial patterns in South-West Colombia. The clustering analysis provides a quantitative location and dispersion of seismogenic zones that facilitates seismological interpretations of seismic activities in South West Colombia.

  2. Pattern recognition

    Theodoridis, Sergios

    2003-01-01

    Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to ""learn"" -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10

  3. Pattern recognition neural-net by spatial mapping of biology visual field

    Lin, Xin; Mori, Masahiko

    2000-05-01

    The method of spatial mapping in biology vision field is applied to artificial neural networks for pattern recognition. By the coordinate transform that is called the complex-logarithm mapping and Fourier transform, the input images are transformed into scale- rotation- and shift- invariant patterns, and then fed into a multilayer neural network for learning and recognition. The results of computer simulation and an optical experimental system are described.

  4. Optical Pattern Recognition

    Yu, Francis T. S.; Jutamulia, Suganda

    2008-10-01

    Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.

  5. Spatial and temporal air quality pattern recognition using environmetric techniques: a case study in Malaysia.

    Syed Abdul Mutalib, Sharifah Norsukhairin; Juahir, Hafizan; Azid, Azman; Mohd Sharif, Sharifah; Latif, Mohd Talib; Aris, Ahmad Zaharin; Zain, Sharifuddin M; Dominick, Doreena

    2013-09-01

    The objective of this study is to identify spatial and temporal patterns in the air quality at three selected Malaysian air monitoring stations based on an eleven-year database (January 2000-December 2010). Four statistical methods, Discriminant Analysis (DA), Hierarchical Agglomerative Cluster Analysis (HACA), Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs), were selected to analyze the datasets of five air quality parameters, namely: SO2, NO2, O3, CO and particulate matter with a diameter size of below 10 μm (PM10). The three selected air monitoring stations share the characteristic of being located in highly urbanized areas and are surrounded by a number of industries. The DA results show that spatial characterizations allow successful discrimination between the three stations, while HACA shows the temporal pattern from the monthly and yearly factor analysis which correlates with severe haze episodes that have happened in this country at certain periods of time. The PCA results show that the major source of air pollution is mostly due to the combustion of fossil fuel in motor vehicles and industrial activities. The spatial pattern recognition (S-ANN) results show a better prediction performance in discriminating between the regions, with an excellent percentage of correct classification compared to DA. This study presents the necessity and usefulness of environmetric techniques for the interpretation of large datasets aiming to obtain better information about air quality patterns based on spatial and temporal characterizations at the selected air monitoring stations.

  6. Pattern Recognition

    Aleš Procházka

    2018-05-01

    Full Text Available Multimodal signal analysis based on sophisticated sensors, efficient communicationsystems and fast parallel processing methods has a rapidly increasing range of multidisciplinaryapplications. The present paper is devoted to pattern recognition, machine learning, and the analysisof sleep stages in the detection of sleep disorders using polysomnography (PSG data, includingelectroencephalography (EEG, breathing (Flow, and electro-oculogram (EOG signals. The proposedmethod is based on the classification of selected features by a neural network system with sigmoidaland softmax transfer functions using Bayesian methods for the evaluation of the probabilities of theseparate classes. The application is devoted to the analysis of the sleep stages of 184 individualswith different diagnoses, using EEG and further PSG signals. Data analysis points to an averageincrease of the length of the Wake stage by 2.7% per 10 years and a decrease of the length of theRapid Eye Movement (REM stages by 0.8% per 10 years. The mean classification accuracy for givensets of records and single EEG and multimodal features is 88.7% ( standard deviation, STD: 2.1 and89.6% (STD:1.9, respectively. The proposed methods enable the use of adaptive learning processesfor the detection and classification of health disorders based on prior specialist experience andman–machine interaction.

  7. Defect Localization Capabilities of a Global Detection Scheme: Spatial Pattern Recognition Using Full-field Vibration Test Data in Plates

    Saleeb, A. F.; Prabhu, M.; Arnold, S. M. (Technical Monitor)

    2002-01-01

    Recently, a conceptually simple approach, based on the notion of defect energy in material space has been developed and extensively studied (from the theoretical and computational standpoints). The present study focuses on its evaluation from the viewpoint of damage localization capabilities in case of two-dimensional plates; i.e., spatial pattern recognition on surfaces. To this end, two different experimental modal test results are utilized; i.e., (1) conventional modal testing using (white noise) excitation and accelerometer-type sensors and (2) pattern recognition using Electronic speckle pattern interferometry (ESPI), a full field method capable of analyzing the mechanical vibration of complex structures. Unlike the conventional modal testing technique (using contacting accelerometers), these emerging ESPI technologies operate in a non-contacting mode, can be used even under hazardous conditions with minimal or no presence of noise and can simultaneously provide measurements for both translations and rotations. Results obtained have clearly demonstrated the robustness and versatility of the global NDE scheme developed. The vectorial character of the indices used, which enabled the extraction of distinct patterns for localizing damages proved very useful. In the context of the targeted pattern recognition paradigm, two algorithms were developed for the interrogation of test measurements; i.e., intensity contour maps for the damaged index, and the associated defect energy vector field plots.

  8. Pattern recognition & machine learning

    Anzai, Y

    1992-01-01

    This is the first text to provide a unified and self-contained introduction to visual pattern recognition and machine learning. It is useful as a general introduction to artifical intelligence and knowledge engineering, and no previous knowledge of pattern recognition or machine learning is necessary. Basic for various pattern recognition and machine learning methods. Translated from Japanese, the book also features chapter exercises, keywords, and summaries.

  9. A bottom-up model of spatial attention predicts human error patterns in rapid scene recognition.

    Einhäuser, Wolfgang; Mundhenk, T Nathan; Baldi, Pierre; Koch, Christof; Itti, Laurent

    2007-07-20

    Humans demonstrate a peculiar ability to detect complex targets in rapidly presented natural scenes. Recent studies suggest that (nearly) no focal attention is required for overall performance in such tasks. Little is known, however, of how detection performance varies from trial to trial and which stages in the processing hierarchy limit performance: bottom-up visual processing (attentional selection and/or recognition) or top-down factors (e.g., decision-making, memory, or alertness fluctuations)? To investigate the relative contribution of these factors, eight human observers performed an animal detection task in natural scenes presented at 20 Hz. Trial-by-trial performance was highly consistent across observers, far exceeding the prediction of independent errors. This consistency demonstrates that performance is not primarily limited by idiosyncratic factors but by visual processing. Two statistical stimulus properties, contrast variation in the target image and the information-theoretical measure of "surprise" in adjacent images, predict performance on a trial-by-trial basis. These measures are tightly related to spatial attention, demonstrating that spatial attention and rapid target detection share common mechanisms. To isolate the causal contribution of the surprise measure, eight additional observers performed the animal detection task in sequences that were reordered versions of those all subjects had correctly recognized in the first experiment. Reordering increased surprise before and/or after the target while keeping the target and distractors themselves unchanged. Surprise enhancement impaired target detection in all observers. Consequently, and contrary to several previously published findings, our results demonstrate that attentional limitations, rather than target recognition alone, affect the detection of targets in rapidly presented visual sequences.

  10. Statistical Pattern Recognition

    Webb, Andrew R

    2011-01-01

    Statistical pattern recognition relates to the use of statistical techniques for analysing data measurements in order to extract information and make justified decisions.  It is a very active area of study and research, which has seen many advances in recent years. Applications such as data mining, web searching, multimedia data retrieval, face recognition, and cursive handwriting recognition, all require robust and efficient pattern recognition techniques. This third edition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields,

  11. Pattern Recognition Control Design

    Gambone, Elisabeth A.

    2018-01-01

    Spacecraft control algorithms must know the expected vehicle response to any command to the available control effectors, such as reaction thrusters or torque devices. Spacecraft control system design approaches have traditionally relied on the estimated vehicle mass properties to determine the desired force and moment, as well as knowledge of the effector performance to efficiently control the spacecraft. A pattern recognition approach was used to investigate the relationship between the control effector commands and spacecraft responses. Instead of supplying the approximated vehicle properties and the thruster performance characteristics, a database of information relating the thruster ring commands and the desired vehicle response was used for closed-loop control. A Monte Carlo simulation data set of the spacecraft dynamic response to effector commands was analyzed to establish the influence a command has on the behavior of the spacecraft. A tool developed at NASA Johnson Space Center to analyze flight dynamics Monte Carlo data sets through pattern recognition methods was used to perform this analysis. Once a comprehensive data set relating spacecraft responses with commands was established, it was used in place of traditional control methods and gains set. This pattern recognition approach was compared with traditional control algorithms to determine the potential benefits and uses.

  12. Pattern recognition in spectra

    Gebran, M; Paletou, F

    2017-01-01

    We present a new automated procedure that simultaneously derives the effective temperature T eff , surface gravity log g , metallicity [ Fe/H ], and equatorial projected rotational velocity v e sin i for stars. The procedure is inspired by the well-known PCA-based inversion of spectropolarimetric full-Stokes solar data, which was used both for Zeeman and Hanle effects. The efficiency and accuracy of this procedure have been proven for FGK, A, and late type dwarf stars of K and M spectral types. Learning databases are generated from the Elodie stellar spectra library using observed spectra for which fundamental parameters were already evaluated or with synthetic data. The synthetic spectra are calculated using ATLAS9 model atmospheres. This technique helped us to detect many peculiar stars such as Am, Ap, HgMn, SiEuCr and binaries. This fast and efficient technique could be used every time a pattern recognition is needed. One important application is the understanding of the physical properties of planetary surfaces by comparing aboard instrument data to synthetic ones. (paper)

  13. Symbol Recognition using Spatial Relations

    K.C., Santosh; Lamiroy, Bart; Wendling, Laurent

    2012-01-01

    International audience; In this paper, we present a method for symbol recognition based on the spatio-structural description of a 'vocabulary' of extracted visual elementary parts. It is applied to symbols in electrical wiring diagrams. The method consists of first identifying vocabulary elements into different groups based on their types (e.g., circle, corner ). We then compute spatial relations between the possible pairs of labelled vocabulary types which are further used as a basis for bui...

  14. Pattern recognition and string matching

    Cheng, Xiuzhen

    2002-01-01

    The research and development of pattern recognition have proven to be of importance in science, technology, and human activity. Many useful concepts and tools from different disciplines have been employed in pattern recognition. Among them is string matching, which receives much theoretical and practical attention. String matching is also an important topic in combinatorial optimization. This book is devoted to recent advances in pattern recognition and string matching. It consists of twenty eight chapters written by different authors, addressing a broad range of topics such as those from classifica­ tion, matching, mining, feature selection, and applications. Each chapter is self-contained, and presents either novel methodological approaches or applications of existing theories and techniques. The aim, intent, and motivation for publishing this book is to pro­ vide a reference tool for the increasing number of readers who depend upon pattern recognition or string matching in some way. This includes student...

  15. Facial Expression Recognition from Video Sequences Based on Spatial-Temporal Motion Local Binary Pattern and Gabor Multiorientation Fusion Histogram

    Lei Zhao

    2017-01-01

    Full Text Available This paper proposes novel framework for facial expressions analysis using dynamic and static information in video sequences. First, based on incremental formulation, discriminative deformable face alignment method is adapted to locate facial points to correct in-plane head rotation and break up facial region from background. Then, spatial-temporal motion local binary pattern (LBP feature is extracted and integrated with Gabor multiorientation fusion histogram to give descriptors, which reflect static and dynamic texture information of facial expressions. Finally, a one-versus-one strategy based multiclass support vector machine (SVM classifier is applied to classify facial expressions. Experiments on Cohn-Kanade (CK + facial expression dataset illustrate that integrated framework outperforms methods using single descriptors. Compared with other state-of-the-art methods on CK+, MMI, and Oulu-CASIA VIS datasets, our proposed framework performs better.

  16. Fuel pattern recognition device

    Sato, Tomomi.

    1995-01-01

    The device of the present invention monitors normal fuel exchange upon fuel exchanging operation carried out in a reactor of a nuclear power plant. Namely, a fuel exchanger is movably disposed to the upper portion of the reactor and exchanges fuels. An exclusive computer receives operation signals of the fuel exchanger during operation as inputs, and outputs reactor core fuel pattern information signals to a fuel arrangement diagnosis device. An underwater television camera outputs image signals of a fuel pattern in the reactor core to an image processing device. If there is any change in the image signals for the fuel pattern as a result of the fuel exchange operation of the fuel exchanger, the image processing device outputs the change as image signals to the fuel pattern diagnosis device. The fuel pattern diagnosis device compares the pattern information signals from the exclusive computer with the image signals from the image processing device, to diagnose the result of the fuel exchange operation performed by the fuel exchanger and inform the diagnosis by means of an image display. (I.S.)

  17. Modulations of eye movement patterns by spatial filtering during the learning and testing phases of an old/new face recognition task.

    Lemieux, Chantal L; Collin, Charles A; Nelson, Elizabeth A

    2015-02-01

    In two experiments, we examined the effects of varying the spatial frequency (SF) content of face images on eye movements during the learning and testing phases of an old/new recognition task. At both learning and testing, participants were presented with face stimuli band-pass filtered to 11 different SF bands, as well as an unfiltered baseline condition. We found that eye movements varied significantly as a function of SF. Specifically, the frequency of transitions between facial features showed a band-pass pattern, with more transitions for middle-band faces (≈5-20 cycles/face) than for low-band (≈20 cpf) ones. These findings were similar for the learning and testing phases. The distributions of transitions across facial features were similar for the middle-band, high-band, and unfiltered faces, showing a concentration on the eyes and mouth; conversely, low-band faces elicited mostly transitions involving the nose and nasion. The eye movement patterns elicited by low, middle, and high bands are similar to those previous researchers have suggested reflect holistic, configural, and featural processing, respectively. More generally, our results are compatible with the hypotheses that eye movements are functional, and that the visual system makes flexible use of visuospatial information in face processing. Finally, our finding that only middle spatial frequencies yielded the same number and distribution of fixations as unfiltered faces adds more evidence to the idea that these frequencies are especially important for face recognition, and reveals a possible mediator for the superior performance that they elicit.

  18. Data complexity in pattern recognition

    Kam Ho Tin

    2006-01-01

    Machines capable of automatic pattern recognition have many fascinating uses. Algorithms for supervised classification, where one infers a decision boundary from a set of training examples, are at the core of this capability. This book looks at data complexity and its role in shaping the theories and techniques in different disciplines

  19. Data structures, computer graphics, and pattern recognition

    Klinger, A; Kunii, T L

    1977-01-01

    Data Structures, Computer Graphics, and Pattern Recognition focuses on the computer graphics and pattern recognition applications of data structures methodology.This book presents design related principles and research aspects of the computer graphics, system design, data management, and pattern recognition tasks. The topics include the data structure design, concise structuring of geometric data for computer aided design, and data structures for pattern recognition algorithms. The survey of data structures for computer graphics systems, application of relational data structures in computer gr

  20. MEMBRAIN NEURAL NETWORK FOR VISUAL PATTERN RECOGNITION

    Artur Popko

    2013-06-01

    Full Text Available Recognition of visual patterns is one of significant applications of Artificial Neural Networks, which partially emulate human thinking in the domain of artificial intelligence. In the paper, a simplified neural approach to recognition of visual patterns is portrayed and discussed. This paper is dedicated for investigators in visual patterns recognition, Artificial Neural Networking and related disciplines. The document describes also MemBrain application environment as a powerful and easy to use neural networks’ editor and simulator supporting ANN.

  1. Is having similar eye movement patterns during face learning and recognition beneficial for recognition performance? Evidence from hidden Markov modeling.

    Chuk, Tim; Chan, Antoni B; Hsiao, Janet H

    2017-12-01

    The hidden Markov model (HMM)-based approach for eye movement analysis is able to reflect individual differences in both spatial and temporal aspects of eye movements. Here we used this approach to understand the relationship between eye movements during face learning and recognition, and its association with recognition performance. We discovered holistic (i.e., mainly looking at the face center) and analytic (i.e., specifically looking at the two eyes in addition to the face center) patterns during both learning and recognition. Although for both learning and recognition, participants who adopted analytic patterns had better recognition performance than those with holistic patterns, a significant positive correlation between the likelihood of participants' patterns being classified as analytic and their recognition performance was only observed during recognition. Significantly more participants adopted holistic patterns during learning than recognition. Interestingly, about 40% of the participants used different patterns between learning and recognition, and among them 90% switched their patterns from holistic at learning to analytic at recognition. In contrast to the scan path theory, which posits that eye movements during learning have to be recapitulated during recognition for the recognition to be successful, participants who used the same or different patterns during learning and recognition did not differ in recognition performance. The similarity between their learning and recognition eye movement patterns also did not correlate with their recognition performance. These findings suggested that perceptuomotor memory elicited by eye movement patterns during learning does not play an important role in recognition. In contrast, the retrieval of diagnostic information for recognition, such as the eyes for face recognition, is a better predictor for recognition performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Pattern recognition methods in air pollution control

    Tauber, S

    1978-01-01

    The use of pattern recognition methods for predicting air pollution developments is discussed. Computer analysis of historical pollution data allows comparison in graphical form. An example of crisis prediction for carbon monoxide concentrations, using the pattern recognition method of analysis, is presented. Results of the analysis agreed well with actual CO conditions. (6 graphs, 4 references, 1 table)

  3. PATTER, Pattern Recognition Data Analysis

    Cox, L.C. Jr.; Bender, C.F.

    1986-01-01

    1 - Description of program or function: PATTER is an interactive program with extensive facilities for modeling analytical processes and solving complex data analysis problems using statistical methods, spectral analysis, and pattern recognition techniques. PATTER addresses the type of problem generally stated as follows: given a set of objects and a list of measurements made on these objects, is it possible to find or predict a property of the objects which is not directly measurable but is known to define some unknown relationship? When employed intelligently, PATTER will act upon a data set in such a way it becomes apparent if useful information, beyond that already discerned, is contained in the data. 2 - Method of solution: In order to solve the general problem, PATTER contains preprocessing techniques to produce new variables that are related to the values of the measurements which may reduce the number of variables and/or reveal useful information about the 'obscure' property; display techniques to represent the variable space in some way that can be easily projected onto a two- or three-dimensional plot for human observation to see if any significant clustering of points occurs; and learning techniques based on both unsupervised and supervised methods, to extract as much information from the data as possible so that the optimum solution can be found

  4. Improved pattern recognition systems by hybrid methods

    Duerr, B.; Haettich, W.; Tropf, H.; Winkler, G.; Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung e.V., Karlsruhe

    1978-12-01

    This report describes a combination of statistical and syntactical pattern recongition methods. The hierarchically structured recognition system consists of a conventional statistical classifier, a structural classifier analysing the topological composition of the patterns, a stage reducing the number of hypotheses made by the first two stages, and a mixed stage based on a search for maximum similarity between syntactically generated prototypes and patterns. The stages work on different principles to avoid mistakes made in one stage in the other stages. This concept is applied to the recognition of numerals written without constraints. If no samples are rejected, a recognition rate of 99,5% is obtained. (orig.) [de

  5. Pattern recognition and classification an introduction

    Dougherty, Geoff

    2012-01-01

    The use of pattern recognition and classification is fundamental to many of the automated electronic systems in use today. However, despite the existence of a number of notable books in the field, the subject remains very challenging, especially for the beginner. Pattern Recognition and Classification presents a comprehensive introduction to the core concepts involved in automated pattern recognition. It is designed to be accessible to newcomers from varied backgrounds, but it will also be useful to researchers and professionals in image and signal processing and analysis, and in computer visi

  6. Acoustic Pattern Recognition on Android Devices

    Møller, Maiken Bjerg; Gaarsdal, Jesper; Steen, Kim Arild

    2013-01-01

    an Android application developed for acoustic pattern recognition of bird species. The acoustic data is recorded using a built-in microphone, and pattern recognition is performed on the device, requiring no network connection. The algorithm is implemented in C++ as a native Android module and the Open......CV library is used for signal processing. We conclude that the approach presented here is a viable solution to pattern recognition problems. Since it requires no network connection, it shows promise in fields such as wildlife research....

  7. Pattern activation/recognition theory of mind.

    du Castel, Bertrand

    2015-01-01

    In his 2012 book How to Create a Mind, Ray Kurzweil defines a "Pattern Recognition Theory of Mind" that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call "Pattern Activation/Recognition Theory of Mind." While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation.

  8. Technical Reviews on Pattern Recognition in Process Analytical Technology

    Kim, Jong Yun; Choi, Yong Suk; Ji, Sun Kyung; Park, Yong Joon; Song, Kyu Seok; Jung, Sung Hee

    2008-12-01

    Pattern recognition is one of the first and the most widely adopted chemometric tools among many active research area in chemometrics such as design of experiment(DoE), pattern recognition, multivariate calibration, signal processing. Pattern recognition has been used to identify the origin of a wine and the time of year that the vine was grown by using chromatography, cause of fire by using GC/MS chromatography, detection of explosives and land mines, cargo and luggage inspection in seaports and airports by using a prompt gamma-ray activation analysis, and source apportionment of environmental pollutant by using a stable isotope ratio mass spectrometry. Recently, pattern recognition has been taken into account as a major chemometric tool in the so-called 'process analytical technology (PAT)', which is a newly-developed concept in the area of process analytics proposed by US Food and Drug Administration (US FDA). For instance, identification of raw material by using a pattern recognition analysis plays an important role for the effective quality control of the production process. Recently, pattern recognition technique has been used to identify the spatial distribution and uniformity of the active ingredients present in the product such as tablet by transforming the chemical data into the visual information

  9. Degraded character recognition based on gradient pattern

    Babu, D. R. Ramesh; Ravishankar, M.; Kumar, Manish; Wadera, Kevin; Raj, Aakash

    2010-02-01

    Degraded character recognition is a challenging problem in the field of Optical Character Recognition (OCR). The performance of an optical character recognition depends upon printed quality of the input documents. Many OCRs have been designed which correctly identifies the fine printed documents. But, very few reported work has been found on the recognition of the degraded documents. The efficiency of the OCRs system decreases if the input image is degraded. In this paper, a novel approach based on gradient pattern for recognizing degraded printed character is proposed. The approach makes use of gradient pattern of an individual character for recognition. Experiments were conducted on character image that is either digitally written or a degraded character extracted from historical documents and the results are found to be satisfactory.

  10. Chopper model of pattern recognition

    van Hemmen, J.L.; Enter, A.C.D. van

    A simple model is proposed that allows an efficient storage and retrieval of random patterns. Also correlated patterns can be handled. The data are stored in an Ising-spin system with ferromagnetic interactions between all the spins and the main idea is to "chop" the system along the boundaries

  11. Automated pattern recognition system for noise analysis

    Sides, W.H. Jr.; Piety, K.R.

    1980-01-01

    A pattern recognition system was developed at ORNL for on-line monitoring of noise signals from sensors in a nuclear power plant. The system continuousy measures the power spectral density (PSD) values of the signals and the statistical characteristics of the PSDs in unattended operation. Through statistical comparison of current with past PSDs (pattern recognition), the system detects changes in the noise signals. Because the noise signals contain information about the current operational condition of the plant, a change in these signals could indicate a change, either normal or abnormal, in the operational condition

  12. Optical Pattern Recognition for Missile Guidance.

    1982-11-15

    directed to novel pattern recognition algo- rithms (that allow pattern recognition and object classification in the face of various geometrical and...I wats EF5 = 50) p.j/t’ni 2 (for btith image pat tern recognitio itas a preproicessing oiperatiton. Ini devices). TIhe rt’ad light intensity (0.33t mW...electrodes on its large faces . This Priz light modulator and the motivation for its devel- SLM is known as the Prom (Pockels real-time optical opment. In Sec

  13. Pattern recognition in high energy physics

    Tenner, A.G.

    1980-01-01

    In high energy physics experiments tracks of elementary particles are recorded by different types of equipment. Coordinates of points of these tracks have to be measured for the geometrical reconstruction and the further analysis of the observed events. Pattern recognition methods may facilitate the detection of tracks or whole events and the separation of relevant from non-relevant information. They may also serve for the automation of measurement. Generally, all work is done by digital computation. In a bubble chamber tracks appear as strings of vapour bubbles that can be recorded photographically. Two methods of pattern recognition are discussed. The flying spot digitizer encodes the pattern on the photograph into point coordinates in the memory of a computer. The computer carries out the pattern recognition procedure entirely on the basis of the stored information. Cathode ray instruments scan the photograph by means of a computer steered optical device. Data acquisition from the film is performed in a feedback loop of the computation. In electronic experimental equipment tracks are defined by the spacial distribution of hits of counters (wire counters, scintillation counters, spark chambers). Pattern recognition is generally performed in various stages both by on-line and off-line equipment. Problems in the data handling arise both from the great abundance of data and from the time limits imposed on the on-line computation by high measuring rates. The on-line computation is carried out by hardwired logic, small computers, and to an increasing extent by microprocessors. (Auth.)

  14. Spatial analysis of weed patterns

    Heijting, S.

    2007-01-01

    Keywords: Spatial analysis, weed patterns, Mead’s test, space-time correlograms, 2-D correlograms, dispersal, Generalized Linear Models, heterogeneity, soil, Taylor’s power law. Weeds in agriculture occur in patches. This thesis is a contribution to the characterization of this patchiness, to its

  15. Algorithms for adaptive nonlinear pattern recognition

    Schmalz, Mark S.; Ritter, Gerhard X.; Hayden, Eric; Key, Gary

    2011-09-01

    In Bayesian pattern recognition research, static classifiers have featured prominently in the literature. A static classifier is essentially based on a static model of input statistics, thereby assuming input ergodicity that is not realistic in practice. Classical Bayesian approaches attempt to circumvent the limitations of static classifiers, which can include brittleness and narrow coverage, by training extensively on a data set that is assumed to cover more than the subtense of expected input. Such assumptions are not realistic for more complex pattern classification tasks, for example, object detection using pattern classification applied to the output of computer vision filters. In contrast, we have developed a two step process, that can render the majority of static classifiers adaptive, such that the tracking of input nonergodicities is supported. Firstly, we developed operations that dynamically insert (or resp. delete) training patterns into (resp. from) the classifier's pattern database, without requiring that the classifier's internal representation of its training database be completely recomputed. Secondly, we developed and applied a pattern replacement algorithm that uses the aforementioned pattern insertion/deletion operations. This algorithm is designed to optimize the pattern database for a given set of performance measures, thereby supporting closed-loop, performance-directed optimization. This paper presents theory and algorithmic approaches for the efficient computation of adaptive linear and nonlinear pattern recognition operators that use our pattern insertion/deletion technology - in particular, tabular nearest-neighbor encoding (TNE) and lattice associative memories (LAMs). Of particular interest is the classification of nonergodic datastreams that have noise corruption with time-varying statistics. The TNE and LAM based classifiers discussed herein have been successfully applied to the computation of object classification in hyperspectral

  16. Applications of chaotic neurodynamics in pattern recognition

    Baird, Bill; Freeman, Walter J.; Eeckman, Frank H.; Yao, Yong

    1991-08-01

    Network algorithms and architectures for pattern recognition derived from neural models of the olfactory system are reviewed. These span a range from highly abstract to physiologically detailed, and employ the kind of dynamical complexity observed in olfactory cortex, ranging from oscillation to chaos. A simple architecture and algorithm for analytically guaranteed associative memory storage of analog patterns, continuous sequences, and chaotic attractors in the same network is described. A matrix inversion determines network weights, given prototype patterns to be stored. There are N units of capacity in an N node network with 3N2 weights. It costs one unit per static attractor, two per Fourier component of each sequence, and three to four per chaotic attractor. There are no spurious attractors, and for sequences there is a Liapunov function in a special coordinate system which governs the approach of transient states to stored trajectories. Unsupervised or supervised incremental learning algorithms for pattern classification, such as competitive learning or bootstrap Widrow-Hoff can easily be implemented. The architecture can be ''folded'' into a recurrent network with higher order weights that can be used as a model of cortex that stores oscillatory and chaotic attractors by a Hebb rule. Network performance is demonstrated by application to the problem of real-time handwritten digit recognition. An effective system with on-line learning has been written by Eeckman and Baird for the Macintosh. It utilizes static, oscillatory, and/or chaotic attractors of two kinds--Lorenze attractors, or attractors resulting from chaotically interacting oscillatory modes. The successful application to an industrial pattern recognition problem of a network architecture of considerable physiological and dynamical complexity, developed by Freeman and Yao, is described. The data sets of the problem come in three classes of difficulty, and performance of the biological network is

  17. Pattern recognition applied to uranium prospecting

    Briggs, P L; Press, F [Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Earth and Planetary Sciences

    1977-07-14

    It is stated that pattern recognition techniques provide one way of combining quantitative and descriptive geological data for mineral prospecting. A quantified decision process using computer-selected patterns of geological data has the potential for selecting areas with undiscovered deposits of uranium or other minerals. When a natural resource is mined more rapidly than it is discovered, its continued production becomes increasingly difficult, and it has been noted that, although a considerable uranium reserve may remain in the U.S.A., the discovery rate for uranium is decreasing exponentially with cumulative exploration footage drilled. Pattern recognition methods of organising geological information for prospecting may provide new predictive power, as well as insight into the occurrence of uranium ore deposits. Often the task of prospecting consists of three stages of information processing: (1) collection of data on known ore deposits; (2) noting any regularities common to the known examples of an ore; (3) selection of new exploration targets based on the results of the second stage. A logical pattern recognition algorithm is here described that implements this geological procedure to demonstrate the possibility of building a quantified uranium prospecting guide from diverse geologic data.

  18. A pattern recognition account of decision making.

    Massaro, D W

    1994-09-01

    In the domain of pattern recognition, experiments have shown that perceivers integrate multiple sources of information in an optimal manner. In contrast, other research has been interpreted to mean that decision making is nonoptimal. As an example, Tversky and Kahneman (1983) have shown that subjects commit a conjunction fallacy because they judge it more likely that a fictitious person named Linda is a bank teller and a feminist than just a bank teller. This judgment supposedly violates probability theory, because the probability of two events can never be greater than the probability of either event alone. The present research tests the hypothesis that subjects interpret this judgment task as a pattern recognition task. If this hypothesis is correct, subjects' judgments should be described accurately by the fuzzy logical model of perception (FLMP)--a successful model of pattern recognition. In the first experiment, the Linda task was extended to an expanded factorial design with five vocations and five avocations. The probability ratings were described well by the FLMP and described poorly by a simple probability model. The second experiment included (1) two fictitious people, Linda and Joan, as response alternatives and (2) both ratings and categorization judgments. Although the ratings were accurately described by both the FLMP and an averaging of the sources of information, the categorization judgments were described better by the FLMP. These results reveal important similarities in recognizing patterns and in decision making. Given that the FLMP is an optimal method for combining multiple sources of information, the probability judgments appear to be optimal in the same manner as pattern-recognition judgments.

  19. DNA pattern recognition using canonical correlation algorithm.

    Sarkar, B K; Chakraborty, Chiranjib

    2015-10-01

    We performed canonical correlation analysis as an unsupervised statistical tool to describe related views of the same semantic object for identifying patterns. A pattern recognition technique based on canonical correlation analysis (CCA) was proposed for finding required genetic code in the DNA sequence. Two related but different objects were considered: one was a particular pattern, and other was test DNA sequence. CCA found correlations between two observations of the same semantic pattern and test sequence. It is concluded that the relationship possesses maximum value in the position where the pattern exists. As a case study, the potential of CCA was demonstrated on the sequence found from HIV-1 preferred integration sites. The subsequences on the left and right flanking from the integration site were considered as the two views, and statistically significant relationships were established between these two views to elucidate the viral preference as an important factor for the correlation.

  20. Granular neural networks, pattern recognition and bioinformatics

    Pal, Sankar K; Ganivada, Avatharam

    2017-01-01

    This book provides a uniform framework describing how fuzzy rough granular neural network technologies can be formulated and used in building efficient pattern recognition and mining models. It also discusses the formation of granules in the notion of both fuzzy and rough sets. Judicious integration in forming fuzzy-rough information granules based on lower approximate regions enables the network to determine the exactness in class shape as well as to handle the uncertainties arising from overlapping regions, resulting in efficient and speedy learning with enhanced performance. Layered network and self-organizing analysis maps, which have a strong potential in big data, are considered as basic modules,. The book is structured according to the major phases of a pattern recognition system (e.g., classification, clustering, and feature selection) with a balanced mixture of theory, algorithm, and application. It covers the latest findings as well as directions for future research, particularly highlighting bioinf...

  1. Recent progress in invariant pattern recognition

    Arsenault, Henri H.; Chang, S.; Gagne, Philippe; Gualdron Gonzalez, Oscar

    1996-12-01

    We present some recent results in invariant pattern recognition, including methods that are invariant under two or more distortions of position, orientation and scale. There are now a few methods that yield good results under changes of both rotation and scale. Some new methods are introduced. These include locally adaptive nonlinear matched filters, scale-adapted wavelet transforms and invariant filters for disjoint noise. Methods using neural networks will also be discussed, including an optical method that allows simultaneous classification of multiple targets.

  2. Sequential pattern recognition by maximum conditional informativity

    Grim, Jiří

    2014-01-01

    Roč. 45, č. 1 (2014), s. 39-45 ISSN 0167-8655 R&D Projects: GA ČR(CZ) GA14-02652S; GA ČR(CZ) GA14-10911S Keywords : Multivariate statistics * Statistical pattern recognition * Sequential decision making * Product mixtures * EM algorithm * Shannon information Subject RIV: IN - Informatics, Computer Sci ence Impact factor: 1.551, year: 2014 http://library.utia.cas.cz/separaty/2014/RO/grim-0428565.pdf

  3. Pattern recognition of neurotransmitters using multimode sensing.

    Stefan-van Staden, Raluca-Ioana; Moldoveanu, Iuliana; van Staden, Jacobus Frederick

    2014-05-30

    Pattern recognition is essential in chemical analysis of biological fluids. Reliable and sensitive methods for neurotransmitters analysis are needed. Therefore, we developed for pattern recognition of neurotransmitters: dopamine, epinephrine, norepinephrine a method based on multimode sensing. Multimode sensing was performed using microsensors based on diamond paste modified with 5,10,15,20-tetraphenyl-21H,23H-porphyrine, hemin and protoporphyrin IX in stochastic and differential pulse voltammetry modes. Optimized working conditions: phosphate buffer solution of pH 3.01 and KCl 0.1mol/L (as electrolyte support), were determined using cyclic voltammetry and used in all measurements. The lowest limits of quantification were: 10(-10)mol/L for dopamine and epinephrine, and 10(-11)mol/L for norepinephrine. The multimode microsensors were selective over ascorbic and uric acids and the method facilitated reliable assay of neurotransmitters in urine samples, and therefore, the pattern recognition showed high reliability (RSDneurotransmitters on biological fluids at a lower determination level than chromatographic methods. The sampling of the biological fluids referees only to the buffering (1:1, v/v) with a phosphate buffer pH 3.01, while for chromatographic methods the sampling is laborious. Accordingly with the statistic evaluation of the results at 99.00% confidence level, both modes can be used for pattern recognition and quantification of neurotransmitters with high reliability. The best multimode microsensor was the one based on diamond paste modified with protoporphyrin IX. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Pattern recognition methods for acoustic emission analysis

    Doctor, P.G.; Harrington, T.P.; Hutton, P.H.

    1979-07-01

    Models have been developed that relate the rate of acoustic emissions to structural integrity. The implementation of these techniques in the field has been hindered by the noisy environment in which the data must be taken. Acoustic emissions from noncritical sources are recorded in addition to those produced by critical sources, such as flaws. A technique is discussed for prescreening acoustic events and filtering out those that are produced by noncritical sources. The methodology that was investigated is pattern recognition. Three different pattern recognition techniques were applied to a data set that consisted of acoustic emissions caused by crack growth and acoustic signals caused by extraneous noise sources. Examination of the acoustic emission data presented has uncovered several features of the data that can provide a reasonable filter. Two of the most valuable features are the frequency of maximum response and the autocorrelation coefficient at Lag 13. When these two features and several others were combined with a least squares decision algorithm, 90% of the acoustic emissions in the data set were correctly classified. It appears possible to design filters that eliminate extraneous noise sources from flaw-growth acoustic emissions using pattern recognition techniques

  5. Deep Learning For Sequential Pattern Recognition

    Safari, Pooyan

    2013-01-01

    Projecte realitzat en el marc d’un programa de mobilitat amb la Technische Universität München (TUM) In recent years, deep learning has opened a new research line in pattern recognition tasks. It has been hypothesized that this kind of learning would capture more abstract patterns concealed in data. It is motivated by the new findings both in biological aspects of the brain and hardware developments which have made the parallel processing possible. Deep learning methods come along with ...

  6. Fuzzy tree automata and syntactic pattern recognition.

    Lee, E T

    1982-04-01

    An approach of representing patterns by trees and processing these trees by fuzzy tree automata is described. Fuzzy tree automata are defined and investigated. The results include that the class of fuzzy root-to-frontier recognizable ¿-trees is closed under intersection, union, and complementation. Thus, the class of fuzzy root-to-frontier recognizable ¿-trees forms a Boolean algebra. Fuzzy tree automata are applied to processing fuzzy tree representation of patterns based on syntactic pattern recognition. The grade of acceptance is defined and investigated. Quantitative measures of ``approximate isosceles triangle,'' ``approximate elongated isosceles triangle,'' ``approximate rectangle,'' and ``approximate cross'' are defined and used in the illustrative examples of this approach. By using these quantitative measures, a house, a house with high roof, and a church are also presented as illustrative examples. In addition, three fuzzy tree automata are constructed which have the capability of processing the fuzzy tree representations of ``fuzzy houses,'' ``houses with high roofs,'' and ``fuzzy churches,'' respectively. The results may have useful applications in pattern recognition, image processing, artificial intelligence, pattern database design and processing, image science, and pictorial information systems.

  7. Spatial pattern of Amazonian timber species using cartesian and spatial coordinates method

    Tiago Monteiro Condé

    2016-06-01

    Full Text Available Geographic information system (GIS applied to forest analysis permit the recognition and analysis of spatial patterns of species in two and three dimensional. The aim of this study to demonstrate the efficiency of cartesian and spatial coordinates method (MCCE, method of correcting UTM coordinates of trees location in accordance with the location of field or Cartesian (X ,Y, combined with natural neighbor index (ANND in recognition and analysis of spatial distribution patterns of four commercial timber species in forest management in Caracaraí, Roraima State, Brazil. Simulations were performed on 9 ha, divided into 100 plots of 100 m2 each. Collected data were DBH > 10 cm, commercial and total heights, cartesian coordinates (X,Y and spatial coordinates (UTM. Random spatial patterns were observed in Eschweilera bracteosa and Manilkara huberi. The dispersed and rare spatial patterns were observed in Dinizia excelsa and Cedrelinga cateniformis. MCCE proved to be an efficient method in the recognition and analysis of spatial patterns of native species from Amazon rain forest, as forest planning becomes easier by 2D and 3D simulations.

  8. Running Improves Pattern Separation during Novel Object Recognition.

    Bolz, Leoni; Heigele, Stefanie; Bischofberger, Josef

    2015-10-09

    Running increases adult neurogenesis and improves pattern separation in various memory tasks including context fear conditioning or touch-screen based spatial learning. However, it is unknown whether pattern separation is improved in spontaneous behavior, not emotionally biased by positive or negative reinforcement. Here we investigated the effect of voluntary running on pattern separation during novel object recognition in mice using relatively similar or substantially different objects.We show that running increases hippocampal neurogenesis but does not affect object recognition memory with 1.5 h delay after sample phase. By contrast, at 24 h delay, running significantly improves recognition memory for similar objects, whereas highly different objects can be distinguished by both, running and sedentary mice. These data show that physical exercise improves pattern separation, independent of negative or positive reinforcement. In sedentary mice there is a pronounced temporal gradient for remembering object details. In running mice, however, increased neurogenesis improves hippocampal coding and temporally preserves distinction of novel objects from familiar ones.

  9. Artificial intelligence tools for pattern recognition

    Acevedo, Elena; Acevedo, Antonio; Felipe, Federico; Avilés, Pedro

    2017-06-01

    In this work, we present a system for pattern recognition that combines the power of genetic algorithms for solving problems and the efficiency of the morphological associative memories. We use a set of 48 tire prints divided into 8 brands of tires. The images have dimensions of 200 x 200 pixels. We applied Hough transform to obtain lines as main features. The number of lines obtained is 449. The genetic algorithm reduces the number of features to ten suitable lines that give thus the 100% of recognition. Morphological associative memories were used as evaluation function. The selection algorithms were Tournament and Roulette wheel. For reproduction, we applied one-point, two-point and uniform crossover.

  10. RECOG-ORNL, Pattern Recognition Data Analysis

    Begovich, C.L.; Larson, N.M.

    2000-01-01

    Description of program or function: RECOG-ORNL, a general-purpose pattern recognition code, is a modification of the RECOG program, written at Lawrence Livermore National Laboratory. RECOG-ORNL contains techniques for preprocessing, analyzing, and displaying data, and for unsupervised and supervised learning. Data preprocessing routines transform the data into useful representations by auto-calling, selecting important variables, and/or adding products or transformations of the variables of the data set. Data analysis routines use correlations to evaluate the data and interrelationships among the data. Display routines plot the multidimensional patterns in two dimensions or plot histograms, patterns, or one variable versus another. Unsupervised learning techniques search for classes contained inherently in the data. Supervised learning techniques use known information about some of the data to generate predicted properties for an unknown set

  11. Nonlinear dynamics of pattern formation and pattern recognition in the rabbit olfactory bulb

    Baird, Bill

    1986-10-01

    A mathematical model of the process of pattern recognition in the first olfactory sensory cortex of the rabbit is presented. It explains the formation and alteration of spatial patterns in neural activity observed experimentally during classical Pavlovian conditioning. On each inspiration of the animal, a surge of receptor input enters the olfactory bulb. EEG activity recorded at the surface of the bulb undergoes a transition from a low amplitude background state of temporal disorder to coherent oscillation. There is a distinctive spatial pattern of rms amplitude in this oscillation which changes reliably to a second pattern during each successful recognition by the animal of a conditioned stimulus odor. When a new odor is paired as conditioned stimulus, these patterns are replaced by new patterns that stabilize as the animal adapts to the new environment. I will argue that a unification of the theories of pattern formation and associative memory is required to account for these observations. This is achieved in a model of the bulb as a discrete excitable medium with spatially inhomogeneous coupling expressed by a connection matrix. The theory of multiple Hopf bifurcations is employed to find coupled equations for the amplitudes of competing unstable oscillatory modes. These may be created in the system by proper coupling and selectively evoked by specific classes of inputs. This allows a view of limit cycle attractors as “stored” fixed points of a gradient vector field and thereby recovers the more familiar dynamical systems picture of associative memory.

  12. Pattern Recognition of the Multiple Sclerosis Syndrome

    Stewart, Renee; Healey, Kathleen M.

    2017-01-01

    During recent decades, the autoimmune disease neuromyelitis optica spectrum disorder (NMOSD), once broadly classified under the umbrella of multiple sclerosis (MS), has been extended to include autoimmune inflammatory conditions of the central nervous system (CNS), which are now diagnosable with serum serological tests. These antibody-mediated inflammatory diseases of the CNS share a clinical presentation to MS. A number of practical learning points emerge in this review, which is geared toward the pattern recognition of optic neuritis, transverse myelitis, brainstem/cerebellar and hemispheric tumefactive demyelinating lesion (TDL)-associated MS, aquaporin-4-antibody and myelin oligodendrocyte glycoprotein (MOG)-antibody NMOSD, overlap syndrome, and some yet-to-be-defined/classified demyelinating disease, all unspecifically labeled under MS syndrome. The goal of this review is to increase clinicians’ awareness of the clinical nuances of the autoimmune conditions for MS and NMSOD, and to highlight highly suggestive patterns of clinical, paraclinical or imaging presentations in order to improve differentiation. With overlay in clinical manifestations between MS and NMOSD, magnetic resonance imaging (MRI) of the brain, orbits and spinal cord, serology, and most importantly, high index of suspicion based on pattern recognition, will help lead to the final diagnosis. PMID:29064441

  13. Similarity-based pattern analysis and recognition

    Pelillo, Marcello

    2013-01-01

    This accessible text/reference presents a coherent overview of the emerging field of non-Euclidean similarity learning. The book presents a broad range of perspectives on similarity-based pattern analysis and recognition methods, from purely theoretical challenges to practical, real-world applications. The coverage includes both supervised and unsupervised learning paradigms, as well as generative and discriminative models. Topics and features: explores the origination and causes of non-Euclidean (dis)similarity measures, and how they influence the performance of traditional classification alg

  14. Compact holographic memory and its application to optical pattern recognition

    Chao, Tien-Hsin; Reyes, George F.; Zhou, Hanying

    2001-03-01

    JPL is developing a high-density, nonvolatile Compact Holographic Data Storage (CHDS) system to enable large- capacity, high-speed, low power consumption, and read/write of data for commercial and space applications. This CHDS system consists of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and high- speed. In this paper, recent technology progress in developing this CHDS at JPL will be presented. The recent applications of the CHDS to optical pattern recognition, as a high-density, high transfer rate memory bank will also be discussed.

  15. The Role of Binocular Disparity in Rapid Scene and Pattern Recognition

    Matteo Valsecchi

    2013-04-01

    Full Text Available We investigated the contribution of binocular disparity to the rapid recognition of scenes and simpler spatial patterns using a paradigm combining backward masked stimulus presentation and short-term match-to-sample recognition. First, we showed that binocular disparity did not contribute significantly to the recognition of briefly presented natural and artificial scenes, even when the availability of monocular cues was reduced. Subsequently, using dense random dot stereograms as stimuli, we showed that observers were in principle able to extract spatial patterns defined only by disparity under brief, masked presentations. Comparing our results with the predictions from a cue-summation model, we showed that combining disparity with luminance did not per se disrupt the processing of disparity. Our results suggest that the rapid recognition of scenes is mediated mostly by a monocular comparison of the images, although we can rely on stereo in fast pattern recognition.

  16. Description and recognition of patterns in stochastic signals. [Electroencephalograms

    Flik, T [Technische Univ. Berlin (F.R. Germany). Informatik-Forschungsgruppe Rechnerorganisation und Schaltwerke

    1975-10-01

    A method is shown for the description and recognition of patterns in stochastic signals such as electroencephalograms. For pattern extraction the signal is segmented at times of minimum amplitudes. The describing features consist of geometric values of the so defined patterns. The classification algorithm is based on the regression analysis, which is well known in the field of character recognition. For an economic classification a method is proposed which reduces the number of features. The quality of this pattern recognition method is demonstrated by the detection of spike wave complexes in electroencephalograms. The pattern description and recognition are provided for processing on a digital computer. (DE)

  17. The Development of Spatial Frequency Biases in Face Recognition

    Leonard, Hayley C.; Karmiloff-Smith, Annette; Johnson, Mark H.

    2010-01-01

    Previous research has suggested that a mid-band of spatial frequencies is critical to face recognition in adults, but few studies have explored the development of this bias in children. We present a paradigm adapted from the adult literature to test spatial frequency biases throughout development. Faces were presented on a screen with particular…

  18. Rotation-invariant neural pattern recognition system with application to coin recognition.

    Fukumi, M; Omatu, S; Takeda, F; Kosaka, T

    1992-01-01

    In pattern recognition, it is often necessary to deal with problems to classify a transformed pattern. A neural pattern recognition system which is insensitive to rotation of input pattern by various degrees is proposed. The system consists of a fixed invariance network with many slabs and a trainable multilayered network. The system was used in a rotation-invariant coin recognition problem to distinguish between a 500 yen coin and a 500 won coin. The results show that the approach works well for variable rotation pattern recognition.

  19. The spatial patterns of directional phenotypic selection

    Siepielski, Adam M.; Gotanda, Kiyoko M.; Morrissey, Michael B.; Diamond, Sarah E.; DiBattista, Joseph; Carlson, Stephanie Marie

    2013-01-01

    the spatial patterns of selection, namely the extent of variation among populations in the strength and direction of selection. Here, we analyse a data set of spatially replicated studies of directional phenotypic selection from natural populations. The data

  20. Track recognition with an associative pattern memory

    Bok, H.W. den; Visschers, J.L.; Borgers, A.J.; Lourens, W.

    1991-01-01

    Using Programmable Gate Arrays (PGAs), a prototype for a fast Associative Pattern Memory module has been realized. The associative memory performs the recognition of tracks within the hadron detector data acquisition system at NIKHEF-K. The memory matches the detector state with a set of 24 predefined tracks to identify the particle tracks that occur during an event. This information enables the trigger hardware to classify and select or discriminate the event. Mounted on a standard size (6U) VME board, several PGAs together form an associative memory. The internal logic architecture of the Gate Array is used in such a way as to minimize signal propagation delay. The memory cells, containing a binary representation of the particle tracks, are dynamically loadable through a VME bus interface, providing a high level of flexibility. The hadron detector and its readout system are briefly described and our track representation method is presented. Results from measurements under experimental conditions are discussed. (orig.)

  1. Pattern recognition with simple oscillating circuits

    Hoelzel, R W; Krischer, K

    2011-01-01

    Neural network devices that inherently possess parallel computing capabilities are generally difficult to construct because of the large number of neuron-neuron connections. However, there exists a theoretical approach (Hoppensteadt and Izhikevich 1999 Phys. Rev. Lett. 82 2983) that forgoes the individual connections and uses only a global coupling: systems of weakly coupled oscillators with a time-dependent global coupling are capable of performing pattern recognition in an associative manner similar to Hopfield networks. The information is stored in the phase shifts of the individual oscillators. However, to date, even the feasibility of controlling phase shifts with this kind of coupling has not yet been established experimentally. We present an experimental realization of this neural network device. It consists of eight sinusoidal electrical van der Pol oscillators that are globally coupled through a variable resistor with the electric potential as the coupling variable. We estimate an effective value of the phase coupling strength in our experiment. For that, we derive a general approach that allows one to compare different experimental realizations with each other as well as with phase equation models. We demonstrate that individual phase shifts of oscillators can be experimentally controlled by a weak global coupling. Furthermore, supplied with a distorted input image, the oscillating network can indeed recognize the correct image out of a set of predefined patterns. It can therefore be used as the processing unit of an associative memory device.

  2. Pattern recognition with magnonic holographic memory device

    Kozhevnikov, A.; Dudko, G.; Filimonov, Y.; Gertz, F.; Khitun, A.

    2015-01-01

    In this work, we present experimental data demonstrating the possibility of using magnonic holographic devices for pattern recognition. The prototype eight-terminal device consists of a magnetic matrix with micro-antennas placed on the periphery of the matrix to excite and detect spin waves. The principle of operation is based on the effect of spin wave interference, which is similar to the operation of optical holographic devices. Input information is encoded in the phases of the spin waves generated on the edges of the magnonic matrix, while the output corresponds to the amplitude of the inductive voltage produced by the interfering spin waves on the other side of the matrix. The level of the output voltage depends on the combination of the input phases as well as on the internal structure of the magnonic matrix. Experimental data collected for several magnonic matrixes show the unique output signatures in which maxima and minima correspond to specific input phase patterns. Potentially, magnonic holographic devices may provide a higher storage density compare to optical counterparts due to a shorter wavelength and compatibility with conventional electronic devices. The challenges and shortcoming of the magnonic holographic devices are also discussed

  3. Action Recognition by Joint Spatial-Temporal Motion Feature

    Weihua Zhang

    2013-01-01

    Full Text Available This paper introduces a method for human action recognition based on optical flow motion features extraction. Automatic spatial and temporal alignments are combined together in order to encourage the temporal consistence on each action by an enhanced dynamic time warping (DTW algorithm. At the same time, a fast method based on coarse-to-fine DTW constraint to improve computational performance without reducing accuracy is induced. The main contributions of this study include (1 a joint spatial-temporal multiresolution optical flow computation method which can keep encoding more informative motion information than recent proposed methods, (2 an enhanced DTW method to improve temporal consistence of motion in action recognition, and (3 coarse-to-fine DTW constraint on motion features pyramids to speed up recognition performance. Using this method, high recognition accuracy is achieved on different action databases like Weizmann database and KTH database.

  4. Star pattern recognition algorithm aided by inertial information

    Liu, Bao; Wang, Ke-dong; Zhang, Chao

    2011-08-01

    Star pattern recognition is one of the key problems of the celestial navigation. The traditional star pattern recognition approaches, such as the triangle algorithm and the star angular distance algorithm, are a kind of all-sky matching method whose recognition speed is slow and recognition success rate is not high. Therefore, the real time and reliability of CNS (Celestial Navigation System) is reduced to some extent, especially for the maneuvering spacecraft. However, if the direction of the camera optical axis can be estimated by other navigation systems such as INS (Inertial Navigation System), the star pattern recognition can be fulfilled in the vicinity of the estimated direction of the optical axis. The benefits of the INS-aided star pattern recognition algorithm include at least the improved matching speed and the improved success rate. In this paper, the direction of the camera optical axis, the local matching sky, and the projection of stars on the image plane are estimated by the aiding of INS firstly. Then, the local star catalog for the star pattern recognition is established in real time dynamically. The star images extracted in the camera plane are matched in the local sky. Compared to the traditional all-sky star pattern recognition algorithms, the memory of storing the star catalog is reduced significantly. Finally, the INS-aided star pattern recognition algorithm is validated by simulations. The results of simulations show that the algorithm's computation time is reduced sharply and its matching success rate is improved greatly.

  5. Mapping spatial patterns with morphological image processing

    Peter Vogt; Kurt H. Riitters; Christine Estreguil; Jacek Kozak; Timothy G. Wade; James D. Wickham

    2006-01-01

    We use morphological image processing for classifying spatial patterns at the pixel level on binary land-cover maps. Land-cover pattern is classified as 'perforated,' 'edge,' 'patch,' and 'core' with higher spatial precision and thematic accuracy compared to a previous approach based on image convolution, while retaining the...

  6. Spatial patterns of development drive water use

    G. M. Sanchez; J. W. Smith; A. Terando; G. Sun; R. K. Meentemeyer

    2018-01-01

    Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land...

  7. Emerging spatial patterns in Antarctic prokaryotes.

    Chong, Chun-Wie; Pearce, David A; Convey, Peter

    2015-01-01

    Recent advances in knowledge of patterns of biogeography in terrestrial eukaryotic organisms have led to a fundamental paradigm shift in understanding of the controls and history of life on land in Antarctica, and its interactions over the long term with the glaciological and geological processes that have shaped the continent. However, while it has long been recognized that the terrestrial ecosystems of Antarctica are dominated by microbes and their processes, knowledge of microbial diversity and distributions has lagged far behind that of the macroscopic eukaryote organisms. Increasing human contact with and activity in the continent is leading to risks of biological contamination and change in a region whose isolation has protected it for millions of years at least; these risks may be particularly acute for microbial communities which have, as yet, received scant recognition and attention. Even a matter apparently as straightforward as Protected Area designation in Antarctica requires robust biodiversity data which, in most parts of the continent, remain almost completely unavailable. A range of important contributing factors mean that it is now timely to reconsider the state of knowledge of Antarctic terrestrial prokaryotes. Rapid advances in molecular biological approaches are increasingly demonstrating that bacterial diversity in Antarctica may be far greater than previously thought, and that there is overlap in the environmental controls affecting both Antarctic prokaryotic and eukaryotic communities. Bacterial dispersal mechanisms and colonization patterns remain largely unaddressed, although evidence for regional evolutionary differentiation is rapidly accruing and, with this, there is increasing appreciation of patterns in regional bacterial biogeography in this large part of the globe. In this review, we set out to describe the state of knowledge of Antarctic prokaryote diversity patterns, drawing analogy with those of eukaryote groups where appropriate

  8. Online and Offline Pattern Recognition in PANDA

    Boca, Gianluigi

    2016-11-01

    PANDA is one of the four experiments that will run at the new facility FAIR that is being built in Darmstadt, Germany. It is a fixed target experiment: a beam of antiprotons collides on a jet proton target (the maximum center of mass energy is 5.46 GeV). The interaction rate at the startup will be 2MHz with the goal of reaching 20MHz at full luminosity. The beam of antiprotons will be essentially continuous. PANDA will have NO hardware trigger but only a software trigger, to allow for maximum flexibility in the physics program. All those characteristics are severe challenges for the reconstruction code that 1) must be fast, since it has to be validated up to 20MHz interaction rate; 2) must be able to reject fake tracks caused by the remnant hits, belonging to previous or later events in some slow detectors, for example the straw tubes in the central region. The Pattern Recognition (PR) of PANDA will have to run both online to achieve a first fast selection, and offline, at lower rate, for a more refined selection. In PANDA the PR code is continuously evolving; this contribution shows the present status. I will give an overview of three examples of PR following different strategies and/or implemented on different hardware (FPGA, GPUs, CPUs) and, when available, I will report the performances.

  9. Online and Offline Pattern Recognition in PANDA

    Boca Gianluigi

    2016-01-01

    Full Text Available PANDA is one of the four experiments that will run at the new facility FAIR that is being built in Darmstadt, Germany. It is a fixed target experiment: a beam of antiprotons collides on a jet proton target (the maximum center of mass energy is 5.46 GeV. The interaction rate at the startup will be 2MHz with the goal of reaching 20MHz at full luminosity. The beam of antiprotons will be essentially continuous. PANDA will have NO hardware trigger but only a software trigger, to allow for maximum flexibility in the physics program. All those characteristics are severe challenges for the reconstruction code that 1 must be fast, since it has to be validated up to 20MHz interaction rate; 2 must be able to reject fake tracks caused by the remnant hits, belonging to previous or later events in some slow detectors, for example the straw tubes in the central region. The Pattern Recognition (PR of PANDA will have to run both online to achieve a first fast selection, and offline, at lower rate, for a more refined selection. In PANDA the PR code is continuously evolving; this contribution shows the present status. I will give an overview of three examples of PR following different strategies and/or implemented on different hardware (FPGA, GPUs, CPUs and, when available, I will report the performances.

  10. Pattern Recognition by Humans and Machines

    Versino, C.; )

    2015-01-01

    Data visualization is centred on new ways of processing and displaying large data sets to support pattern recognition by humans rather than by machines. The motivation for approaches based on data visualization is to encourage data exploration and curiosity by analysts. They should help formulating the right question more than addressing specific predefined issues or expectations. Translated into IAEA's terms, they should help verify the completeness of information declared to the IAEA more than their correctness. Data visualization contrasts with traditional information retrieval where one needs first to formulate a query in order to get to a narrow slice of data. Using traditional information retrieval, no one knows what is missed out. The system may fail to recall relevant data due to the way the query was formulated, or the query itself may not be the most relevant one to be asked in the first place. Examples of data visualizations relevant to safeguards will be illustrated, including new approaches for the review of surveillance images and for trade analysis. Common to these examples is the attempt to enlarge the view of the analyst on a universe of data, where context or detailed data is presented on-demand and by levels of abstraction. The paper will make reference to ongoing research and to enabling information technologies. (author)

  11. Searching for pulsars using image pattern recognition

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.; Tan, M.; Stairs, I. H. [Department of Physics and Astronomy, 6224 Agricultural Road, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Brazier, A. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Lazarus, P. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Lynch, R.; Scholz, P. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Stovall, K.; Cohen, S.; Dartez, L. P.; Lunsford, G.; Martinez, J. G.; Mata, A. [Center for Advanced Radio Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States); Ransom, S. M. [NRAO, Charlottesville, VA 22903 (United States); Banaszak, S.; Biwer, C. M.; Flanigan, J.; Rohr, M., E-mail: zhuww@phas.ubc.ca, E-mail: berndsen@phas.ubc.ca [Center for Gravitation, Cosmology and Astrophysics. University of Wisconsin Milwaukee, Milwaukee, WI 53211 (United States); and others

    2014-02-01

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ∼9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The

  12. Searching for pulsars using image pattern recognition

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.; Tan, M.; Stairs, I. H.; Brazier, A.; Lazarus, P.; Lynch, R.; Scholz, P.; Stovall, K.; Cohen, S.; Dartez, L. P.; Lunsford, G.; Martinez, J. G.; Mata, A.; Ransom, S. M.; Banaszak, S.; Biwer, C. M.; Flanigan, J.; Rohr, M.

    2014-01-01

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ∼9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The

  13. Searching for Pulsars Using Image Pattern Recognition

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.; Tan, M.; Stairs, I. H.; Brazier, A.; Lazarus, P.; Lynch, R.; Scholz, P.; Stovall, K.; Ransom, S. M.; Banaszak, S.; Biwer, C. M.; Cohen, S.; Dartez, L. P.; Flanigan, J.; Lunsford, G.; Martinez, J. G.; Mata, A.; Rohr, M.; Walker, A.; Allen, B.; Bhat, N. D. R.; Bogdanov, S.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Desvignes, G.; Ferdman, R. D.; Freire, P. C. C.; Hessels, J. W. T.; Jenet, F. A.; Kaplan, D. L.; Kaspi, V. M.; Knispel, B.; Lee, K. J.; van Leeuwen, J.; Lyne, A. G.; McLaughlin, M. A.; Siemens, X.; Spitler, L. G.; Venkataraman, A.

    2014-02-01

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ~9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The

  14. Application Of t-Cherry Junction Trees in Pattern Recognition

    Edith Kovacs

    2010-06-01

    Full Text Available Pattern recognition aims to classify data (patterns based ei-
    ther on a priori knowledge or on statistical information extracted from the data. In this paper we will concentrate on statistical pattern recognition using a new probabilistic approach which makes possible to select the so called 'informative' features. We develop a pattern recognition algorithm which is based on the conditional independence structure underlying the statistical data. Our method was succesfully applied on a real problem of recognizing Parkinson's disease on the basis of voice disorders.

  15. Spatial Patterns of Inshore Marine Soundscapes.

    McWilliam, Jamie

    2016-01-01

    Passive acoustic monitoring was employed to investigate spatial patterns of soundscapes within a marine reserve. High energy level broadband snaps dominated nearly all habitat soundscapes. Snaps, the principal acoustic feature of soundscapes, were primarily responsible for the observed spatial patterns, and soundscapes appeared to retain a level of compositional and configurational stability. In the presence of high-level broadband snaps, soundscape composition was more influenced by geographic location than habitat type. Future research should focus on investigating the spatial patterns of soundscapes across a wider range of coastal and offshore seascapes containing a variety of distinct ecosystems and habitats.

  16. The principles of the pattern recognition of skeletal structures

    Motto, J.A.

    2006-01-01

    Request of the skeletal system form a lage proportion of plain film radiographic examinations. A sound knowledge of normal radiographic appearances is vital if abnormal patterns are to be recognized.The ABCS, SPACED and SASNOES methods of applying pattern recognition to plain radiographers of bones and joints will be presented in an attempt to make pattern recognition and offer an opinion constitutes role extension of radiographers

  17. Spatial Patterns of Development Drive Water Use

    Sanchez, G. M.; Smith, J. W.; Terando, A.; Sun, G.; Meentemeyer, R. K.

    2018-03-01

    Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non-spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio-economic and environmental variables and two water use variables: a) domestic water use, and b) total development-related water use (a combination of public supply, domestic self-supply and industrial self-supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio-economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water-efficient land use planning.

  18. Spatial patterns of development drive water use

    Sanchez, G.M.; Smith, J.W.; Terando, Adam J.; Sun, G.; Meentemeyer, R.K.

    2018-01-01

    Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non‐spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio‐economic and environmental variables and two water use variables: a) domestic water use, and b) total development‐related water use (a combination of public supply, domestic self‐supply and industrial self‐supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio‐economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water‐efficient land use planning.

  19. Macrophage pattern recognition receptors in immunity, homeostasis and self tolerance.

    Mukhopadhyay, Subhankar; Plüddemann, Annette; Gordon, Siamon

    2009-01-01

    Macrophages, a major component of innate immune defence, express a large repertoire of different classes of pattern recognition receptors and other surface antigens which determine the immunologic and homeostatic potential of these versatile cells. In the light of present knowledge ofmacrophage surface antigens, we discuss self versus nonself recognition, microbicidal effector functions and self tolerance in the innate immune system.

  20. Applications of evolutionary computation in image processing and pattern recognition

    Cuevas, Erik; Perez-Cisneros, Marco

    2016-01-01

    This book presents the use of efficient Evolutionary Computation (EC) algorithms for solving diverse real-world image processing and pattern recognition problems. It provides an overview of the different aspects of evolutionary methods in order to enable the reader in reaching a global understanding of the field and, in conducting studies on specific evolutionary techniques that are related to applications in image processing and pattern recognition. It explains the basic ideas of the proposed applications in a way that can also be understood by readers outside of the field. Image processing and pattern recognition practitioners who are not evolutionary computation researchers will appreciate the discussed techniques beyond simple theoretical tools since they have been adapted to solve significant problems that commonly arise on such areas. On the other hand, members of the evolutionary computation community can learn the way in which image processing and pattern recognition problems can be translated into an...

  1. The Pandora software development kit for pattern recognition

    Marshall, J.S.; Thomson, M.A. [University of Cambridge, Cavendish Laboratory, Cambridge (United Kingdom)

    2015-09-15

    The development of automated solutions to pattern recognition problems is important in many areas of scientific research and human endeavour. This paper describes the implementation of the Pandora software development kit, which aids the process of designing, implementing and running pattern recognition algorithms. The Pandora Application Programming Interfaces ensure simple specification of the building-blocks defining a pattern recognition problem. The logic required to solve the problem is implemented in algorithms. The algorithms request operations to create or modify data structures and the operations are performed by the Pandora framework. This design promotes an approach using many decoupled algorithms, each addressing specific topologies. Details of algorithms addressing two pattern recognition problems in High Energy Physics are presented: reconstruction of events at a high-energy e{sup +}e{sup -} linear collider and reconstruction of cosmic ray or neutrino events in a liquid argon time projection chamber. (orig.)

  2. Data analysis and pattern recognition in multiple databases

    Adhikari, Animesh; Pedrycz, Witold

    2014-01-01

    Pattern recognition in data is a well known classical problem that falls under the ambit of data analysis. As we need to handle different data, the nature of patterns, their recognition and the types of data analyses are bound to change. Since the number of data collection channels increases in the recent time and becomes more diversified, many real-world data mining tasks can easily acquire multiple databases from various sources. In these cases, data mining becomes more challenging for several essential reasons. We may encounter sensitive data originating from different sources - those cannot be amalgamated. Even if we are allowed to place different data together, we are certainly not able to analyse them when local identities of patterns are required to be retained. Thus, pattern recognition in multiple databases gives rise to a suite of new, challenging problems different from those encountered before. Association rule mining, global pattern discovery, and mining patterns of select items provide different...

  3. West African spatial patterns of economic activities

    Walther, Olivier; Howard, Allen; Retaillé, Denis

    2015-01-01

    Over the last 30 years, two different bodies of literature developed by both US historians and francophone geographers have moved toward similar conclusions regarding West African economic spatial patterns. Despite their different backgrounds, both the ‘spatial factor’ approach promoted by histor......Over the last 30 years, two different bodies of literature developed by both US historians and francophone geographers have moved toward similar conclusions regarding West African economic spatial patterns. Despite their different backgrounds, both the ‘spatial factor’ approach promoted...... by historians and the ‘mobile space’ approach developed by geographers view exchange centres as nodes of transnational trade networks and places in production territories, and perceive spatial dynamics as highly dependent on shifts of trade flows and production activities. The objective of this article...

  4. Hopfield's Model of Patterns Recognition and Laws of Artistic Perception

    Yevin, Igor; Koblyakov, Alexander

    The model of patterns recognition or attractor network model of associative memory, offered by J.Hopfield 1982, is the most known model in theoretical neuroscience. This paper aims to show, that such well-known laws of art perception as the Wundt curve, perception of visual ambiguity in art, and also the model perception of musical tonalities are nothing else than special cases of the Hopfield’s model of patterns recognition.

  5. A bio-inspired spatial patterning circuit.

    Chen, Kai-Yuan; Joe, Danial J; Shealy, James B; Land, Bruce R; Shen, Xiling

    2014-01-01

    Lateral Inhibition (LI) is a widely conserved patterning mechanism in biological systems across species. Distinct from better-known Turing patterns, LI depend on cell-cell contact rather than diffusion. We built an in silico genetic circuit model to analyze the dynamic properties of LI. The model revealed that LI amplifies differences between neighboring cells to push them into opposite states, hence forming stable 2-D patterns. Inspired by this insight, we designed and implemented an electronic circuit that recapitulates LI patterning dynamics. This biomimetic system serve as a physical model to elucidate the design principle of generating robust patterning through spatial feedback, regardless of the underlying devices being biological or electrical.

  6. Pattern recognition in molecular dynamics. [FORTRAN

    Zurek, W H; Schieve, W C [Texas Univ., Austin (USA)

    1977-07-01

    An algorithm for the recognition of the formation of bound molecular states in the computer simulation of a dilute gas is presented. Applications to various related problems in physics and chemistry are pointed out. Data structure and decision processes are described. Performance of the FORTRAN program based on the algorithm in cooperation with the molecular dynamics program is described and the results are presented.

  7. Emotion recognition a pattern analysis approach

    Konar, Amit

    2014-01-01

    Offers both foundations and advances on emotion recognition in a single volumeProvides a thorough and insightful introduction to the subject by utilizing computational tools of diverse domainsInspires young researchers to prepare themselves for their own researchDemonstrates direction of future research through new technologies, such as Microsoft Kinect, EEG systems etc.

  8. Face recognition system and method using face pattern words and face pattern bytes

    Zheng, Yufeng

    2014-12-23

    The present invention provides a novel system and method for identifying individuals and for face recognition utilizing facial features for face identification. The system and method of the invention comprise creating facial features or face patterns called face pattern words and face pattern bytes for face identification. The invention also provides for pattern recognitions for identification other than face recognition. The invention further provides a means for identifying individuals based on visible and/or thermal images of those individuals by utilizing computer software implemented by instructions on a computer or computer system and a computer readable medium containing instructions on a computer system for face recognition and identification.

  9. Low, slow, small target recognition based on spatial vision network

    Cheng, Zhao; Guo, Pei; Qi, Xin

    2018-03-01

    Traditional photoelectric monitoring is monitored using a large number of identical cameras. In order to ensure the full coverage of the monitoring area, this monitoring method uses more cameras, which leads to more monitoring and repetition areas, and higher costs, resulting in more waste. In order to reduce the monitoring cost and solve the difficult problem of finding, identifying and tracking a low altitude, slow speed and small target, this paper presents spatial vision network for low-slow-small targets recognition. Based on camera imaging principle and monitoring model, spatial vision network is modeled and optimized. Simulation experiment results demonstrate that the proposed method has good performance.

  10. Application of PSO for solving problems of pattern recognition

    S. N. Chukanov

    2016-01-01

    Full Text Available The problem of estimating the norm of the distance between the two closed smooth curves for pattern recognition is considered. Diffeomorphic transformation curves based on the model of large deformation with the transformation of the starting points of domain in required is formed on the basis of which depends on time-dependent vector field of velocity is considered. The action of the translation, rotation and scaling closed curve, the invariants of the action of these groups are considered. The position of curves is normalized by centering, bringing the principal axes of the image to the axes of the coordinate system and bringing the area of a closed curve corresponding to one. For estimating of the norm of the distance between two closed curves is formed the functional corresponding normalized distance between the two curves, and the equation of evolution diffeomorphic transformations. The equation of evolution allows to move objects along trajectories which correspond to diffeomorphic transformations. The diffeomorphisms do not change the topology along the geodesic trajectories. The problem of inexact comparing the minimized functional contains a term that estimates the exactness of shooting points in the required positions. In the equation of evolution is introduced the variance of conversion error. An algorithm for solving the equation of diffeomorphic transformation is proposed, built on the basis of PSO, which can significantly reduce the number of computing operations, compared with gradient methods for solving. The developed algorithms can be used in bioinformatics and biometrics systems, classification of images and objects, machine vision systems, neuroimaging, for pattern recognition and object tracking systems. Algorithm for estimating the norm of distance between the closed curves by diffeomorphic transformation can spread to spatial objects (curves, surfaces, manifolds.

  11. Type-2 fuzzy graphical models for pattern recognition

    Zeng, Jia

    2015-01-01

    This book discusses how to combine type-2 fuzzy sets and graphical models to solve a range of real-world pattern recognition problems such as speech recognition, handwritten Chinese character recognition, topic modeling as well as human action recognition. It covers these recent developments while also providing a comprehensive introduction to the fields of type-2 fuzzy sets and graphical models. Though primarily intended for graduate students, researchers and practitioners in fuzzy logic and pattern recognition, the book can also serve as a valuable reference work for researchers without any previous knowledge of these fields. Dr. Jia Zeng is a Professor at the School of Computer Science and Technology, Soochow University, China. Dr. Zhi-Qiang Liu is a Professor at the School of Creative Media, City University of Hong Kong, China.

  12. Patterns recognition of electric brain activity using artificial neural networks

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  13. Threats of Password Pattern Leakage Using Smartwatch Motion Recognition Sensors

    Jihun Kim

    2017-06-01

    Full Text Available Thanks to the development of Internet of Things (IoT technologies, wearable markets have been growing rapidly. Smartwatches can be said to be the most representative product in wearable markets, and involve various hardware technologies in order to overcome the limitations of small hardware. Motion recognition sensors are a representative example of those hardware technologies. However, smartwatches and motion recognition sensors that can be worn by users may pose security threats of password pattern leakage. In the present paper, passwords are inferred through experiments to obtain password patterns inputted by users using motion recognition sensors, and verification of the results and the accuracy of the results is shown.

  14. Application of Fourier analysis to multispectral/spatial recognition

    Hornung, R. J.; Smith, J. A.

    1973-01-01

    One approach for investigating spectral response from materials is to consider spatial features of the response. This might be accomplished by considering the Fourier spectrum of the spatial response. The Fourier Transform may be used in a one-dimensional to multidimensional analysis of more than one channel of data. The two-dimensional transform represents the Fraunhofer diffraction pattern of the image in optics and has certain invariant features. Physically the diffraction pattern contains spatial features which are possibly unique to a given configuration or classification type. Different sampling strategies may be used to either enhance geometrical differences or extract additional features.

  15. Identification of strong earthquake ground motion by using pattern recognition

    Suzuki, Kohei; Tozawa, Shoji; Temmyo, Yoshiharu.

    1983-01-01

    The method of grasping adequately the technological features of complex waveform of earthquake ground motion and utilizing them as the input to structural systems has been proposed by many researchers, and the method of making artificial earthquake waves to be used for the aseismatic design of nuclear facilities has not been established in the unified form. In this research, earthquake ground motion was treated as an irregular process with unsteady amplitude and frequency, and the running power spectral density was expressed as a dark and light image on a plane of the orthogonal coordinate system with both time and frequency axes. The method of classifying this image into a number of technologically important categories by pattern recognition was proposed. This method is based on the concept called compound similarity method in the image technology, entirely different from voice diagnosis, and it has the feature that the result of identification can be quantitatively evaluated by the analysis of correlation of spatial images. Next, the standard pattern model of the simulated running power spectral density corresponding to the representative classification categories was proposed. Finally, the method of making unsteady simulated earthquake motion was shown. (Kako, I.)

  16. Speech pattern recognition for forensic acoustic purposes

    Herrera Martínez, Marcelo; Aldana Blanco, Andrea Lorena; Guzmán Palacios, Ana María

    2014-01-01

    The present paper describes the development of a software for analysis of acoustic voice parameters (APAVOIX), which can be used for forensic acoustic purposes, based on the speaker recognition and identification. This software enables to observe in a clear manner, the parameters which are sufficient and necessary when performing a comparison between two voice signals, the suspicious and the original one. These parameters are used according to the classic method, generally used by state entit...

  17. Quantum pattern recognition with multi-neuron interactions

    Fard, E. Rezaei; Aghayar, K.; Amniat-Talab, M.

    2018-03-01

    We present a quantum neural network with multi-neuron interactions for pattern recognition tasks by a combination of extended classic Hopfield network and adiabatic quantum computation. This scheme can be used as an associative memory to retrieve partial patterns with any number of unknown bits. Also, we propose a preprocessing approach to classifying the pattern space S to suppress spurious patterns. The results of pattern clustering show that for pattern association, the number of weights (η ) should equal the numbers of unknown bits in the input pattern ( d). It is also remarkable that associative memory function depends on the location of unknown bits apart from the d and load parameter α.

  18. Grip-pattern recognition: Applied to a smart gun

    Shang, X.

    2008-01-01

    In our work the verification performance of a biometric recognition system based on grip patterns, as part of a smart gun for use by the police ocers, has been investigated. The biometric features are extracted from a two-dimensional pattern of the pressure, exerted on the grip of a gun by the hand

  19. Biometric verification based on grip-pattern recognition

    Veldhuis, Raymond N.J.; Bazen, A.M.; Kauffman, J.A.; Hartel, Pieter H.; Delp, Edward J.; Wong, Ping W.

    This paper describes the design, implementation and evaluation of a user-verification system for a smart gun, which is based on grip-pattern recognition. An existing pressure sensor consisting of an array of 44 x 44 piezoresistive elements is used to measure the grip pattern. An interface has been

  20. Pattern Recognition as a Human Centered non-Euclidean Problem

    Duin, R.P.W.

    2010-01-01

    Regularities in the world are human defined. Patterns in the observed phenomena are there because we define and recognize them as such. Automatic pattern recognition tries to bridge the gap between human judgment and measurements made by artificial sensors. This is done in two steps: representation

  1. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation

    Perception of pathogen-associated molecular patterns (PAMPs) by surface-localised pattern-recognition receptors (PRRs) is a key component of plant innate immunity. Most known plant PRRs are receptor kinases and initiation of PAMP-triggered immunity (PTI) signalling requires phosphorylation of the PR...

  2. Biometric verification based on grip-pattern recognition

    Veldhuis, Raymond N.J.; Bazen, A.M.; Kauffman, J.A.; Hartel, Pieter H.

    This paper describes the design, implementation and evaluation of a user-verification system for a smart gun, which is based on grip-pattern recognition. An existing pressure sensor consisting of an array of 44 £ 44 piezoresistive elements is used to measure the grip pattern. An interface has been

  3. Differences in Spatial Memory Recognition Due to Cognitive Style.

    Tascón, Laura; Boccia, Maddalena; Piccardi, Laura; Cimadevilla, José M

    2017-01-01

    Field independence refers to the ability to perceive details from the surrounding context as a whole and to represent the environment by relying on an internal reference frame. Conversely, field dependence individuals tend to focus their attention on single environmental features analysing them individually. This cognitive style affects several visuo-spatial abilities including spatial memory. This study assesses both the effect of field independence and field dependence on performance displayed on virtual environments of different complexity. Forty young healthy individuals took part in this study. Participants performed the Embedded Figures Test for field independence or dependence assessment and a new spatial memory recognition test. The spatial memory recognition test demanded to memorize a green box location in a virtual room picture. Thereafter, during ten trials participants had to decide if a green box was located in the same position as in the sample picture. Five of the pictures were correct. The information available in the virtual room was manipulated. Hence, two different experimental conditions were tested: a virtual room containing all landmarks and a virtual room with only two cues. Accuracy and reaction time were registered. Analyses demonstrated that higher field independent individuals were related to better spatial memory performance in two landmarks condition and were faster in all landmark condition. In addition, men and women did not differ in their performance. These results suggested that cognitive style affects spatial memory performance and this phenomenon is modulated by environment complexity. This does not affect accuracy but time spent. Moreover, field dependent individuals are unable to organize the navigational field by relying on internal reference frames when few landmarks are available, and this causes them to commit more errors.

  4. Differences in Spatial Memory Recognition Due to Cognitive Style

    Laura Tascón

    2017-08-01

    Full Text Available Field independence refers to the ability to perceive details from the surrounding context as a whole and to represent the environment by relying on an internal reference frame. Conversely, field dependence individuals tend to focus their attention on single environmental features analysing them individually. This cognitive style affects several visuo-spatial abilities including spatial memory. This study assesses both the effect of field independence and field dependence on performance displayed on virtual environments of different complexity. Forty young healthy individuals took part in this study. Participants performed the Embedded Figures Test for field independence or dependence assessment and a new spatial memory recognition test. The spatial memory recognition test demanded to memorize a green box location in a virtual room picture. Thereafter, during ten trials participants had to decide if a green box was located in the same position as in the sample picture. Five of the pictures were correct. The information available in the virtual room was manipulated. Hence, two different experimental conditions were tested: a virtual room containing all landmarks and a virtual room with only two cues. Accuracy and reaction time were registered. Analyses demonstrated that higher field independent individuals were related to better spatial memory performance in two landmarks condition and were faster in all landmark condition. In addition, men and women did not differ in their performance. These results suggested that cognitive style affects spatial memory performance and this phenomenon is modulated by environment complexity. This does not affect accuracy but time spent. Moreover, field dependent individuals are unable to organize the navigational field by relying on internal reference frames when few landmarks are available, and this causes them to commit more errors.

  5. Evidence for Separate Contributions of High and Low Spatial Frequencies during Visual Word Recognition.

    Winsler, Kurt; Holcomb, Phillip J; Midgley, Katherine J; Grainger, Jonathan

    2017-01-01

    Previous studies have shown that different spatial frequency information processing streams interact during the recognition of visual stimuli. However, it is a matter of debate as to the contributions of high and low spatial frequency (HSF and LSF) information for visual word recognition. This study examined the role of different spatial frequencies in visual word recognition using event-related potential (ERP) masked priming. EEG was recorded from 32 scalp sites in 30 English-speaking adults in a go/no-go semantic categorization task. Stimuli were white characters on a neutral gray background. Targets were uppercase five letter words preceded by a forward-mask (#######) and a 50 ms lowercase prime. Primes were either the same word (repeated) or a different word (un-repeated) than the subsequent target and either contained only high, only low, or full spatial frequency information. Additionally within each condition, half of the prime-target pairs were high lexical frequency, and half were low. In the full spatial frequency condition, typical ERP masked priming effects were found with an attenuated N250 (sub-lexical) and N400 (lexical-semantic) for repeated compared to un-repeated primes. For HSF primes there was a weaker N250 effect which interacted with lexical frequency, a significant reversal of the effect around 300 ms, and an N400-like effect for only high lexical frequency word pairs. LSF primes did not produce any of the classic ERP repetition priming effects, however they did elicit a distinct early effect around 200 ms in the opposite direction of typical repetition effects. HSF information accounted for many of the masked repetition priming ERP effects and therefore suggests that HSFs are more crucial for word recognition. However, LSFs did produce their own pattern of priming effects indicating that larger scale information may still play a role in word recognition.

  6. Face Recognition Using Local Quantized Patterns and Gabor Filters

    Khryashchev, V.; Priorov, A.; Stepanova, O.; Nikitin, A.

    2015-05-01

    The problem of face recognition in a natural or artificial environment has received a great deal of researchers' attention over the last few years. A lot of methods for accurate face recognition have been proposed. Nevertheless, these methods often fail to accurately recognize the person in difficult scenarios, e.g. low resolution, low contrast, pose variations, etc. We therefore propose an approach for accurate and robust face recognition by using local quantized patterns and Gabor filters. The estimation of the eye centers is used as a preprocessing stage. The evaluation of our algorithm on different samples from a standardized FERET database shows that our method is invariant to the general variations of lighting, expression, occlusion and aging. The proposed approach allows about 20% correct recognition accuracy increase compared with the known face recognition algorithms from the OpenCV library. The additional use of Gabor filters can significantly improve the robustness to changes in lighting conditions.

  7. Subspace methods for pattern recognition in intelligent environment

    Jain, Lakhmi

    2014-01-01

    This research book provides a comprehensive overview of the state-of-the-art subspace learning methods for pattern recognition in intelligent environment. With the fast development of internet and computer technologies, the amount of available data is rapidly increasing in our daily life. How to extract core information or useful features is an important issue. Subspace methods are widely used for dimension reduction and feature extraction in pattern recognition. They transform a high-dimensional data to a lower-dimensional space (subspace), where most information is retained. The book covers a broad spectrum of subspace methods including linear, nonlinear and multilinear subspace learning methods and applications. The applications include face alignment, face recognition, medical image analysis, remote sensing image classification, traffic sign recognition, image clustering, super resolution, edge detection, multi-view facial image synthesis.

  8. Pattern recognition of state variables by neural networks

    Faria, Eduardo Fernandes; Pereira, Claubia

    1996-01-01

    An artificial intelligence system based on artificial neural networks can be used to classify predefined events and emergency procedures. These systems are being used in different areas. In the nuclear reactors safety, the goal is the classification of events whose data can be processed and recognized by neural networks. In this works we present a preliminary simple system, using neural networks in the recognition of patterns the recognition of variables which define a situation. (author)

  9. Using Pattern Classification and Recognition Techniques for Diagnostic and Prediction

    MORARIU, N.

    2007-04-01

    Full Text Available The paper presents some aspects regarding the joint use of classification and recognition techniques for the activity evolution diagnostication and prediction by means of a set of indexes. Starting from the indexes set there is defined a measure on the patterns set, measure representing a scalar value that characterizes the activity analyzed at each time moment. A pattern is defined by the values of the indexes set at a given time. Over the classes set obtained by means of the classification and recognition techniques is defined a relation that allows the representation of the evolution from negative evolution towards positive evolution. For the diagnostication and prediction the following tools are used: pattern recognition and multilayer perceptron. The data set used in experiments describes the pollution due to CO2 emission from the consumption of fuels in Europe. The paper also presents the REFORME software written by the authors and the results of the experiment obtained with this software.

  10. Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition

    Huntsberger, Terry

    2011-01-01

    The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.

  11. Diagnosis of Equipment Failures by Pattern Recognition

    Pau, L. F.

    1974-01-01

    The main problems in relation to automatic fault finding and diagnosis in equipments or production systems are discussed: 1) compression of the syndrome and observation spaces for better discrimination between failure modes; 2) simultaneous display of the failure patterns and the failure instants...

  12. Application of pattern recognition techniques to crime analysis

    Bender, C.F.; Cox, L.A. Jr.; Chappell, G.A.

    1976-08-15

    The initial goal was to evaluate the capabilities of current pattern recognition techniques when applied to existing computerized crime data. Performance was to be evaluated both in terms of the system's capability to predict crimes and to optimize police manpower allocation. A relation was sought to predict the crime's susceptibility to solution, based on knowledge of the crime type, location, time, etc. The preliminary results of this work are discussed. They indicate that automatic crime analysis involving pattern recognition techniques is feasible, and that efforts to determine optimum variables and techniques are warranted. 47 figures (RWR)

  13. Pattern recognition approach to nondestructive evaluation of materials

    Chen, C.H.

    1987-01-01

    In this paper, a pattern recognition approach to the ultrasonic nondestructive evaluation of materials is examined. Emphasis is placed on identifying effective features from time and frequency domains, correlation functions and impulse responses to classify aluminum plate specimens into three major defect geometry categories: flat, angular cut and circular hole defects. A multi-stage classification procedure is developed which can further determine the angles and sizes for defect characterization and classification. The research clearly demonstrates that the pattern recognition approach can significantly improve the nondestructive material evaluation capability of the ultrasonic methods without resorting to the solution of highly complex mathematical inverse problems

  14. Instruction of pattern recognition by MATLAB practice 1

    1999-06-01

    This book describes the pattern recognition by MATLAB practice. It includes possibility and limit of AI, introduction of pattern recognition a vector and matrix, basic status and a probability theory, a random variable and probability distribution, statistical decision theory, data-mining, gaussian mixture model, a nerve cell modeling such as Hebb's learning rule, LMS learning rule, genetic algorithm, dynamic programming and DTW, HMN on Markov model and HMM's three problems and solution, introduction of SVM with KKT condition and margin optimum, kernel trick and MATLAB practice.

  15. TECA: Petascale pattern recognition for climate science

    Prabhat, . [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Byna, Surendra [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vishwanath, Venkatram [Argonne National Lab. (ANL), Argonne, IL (United States); Dart, Eli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wehner, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Collins, William D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-26

    Climate Change is one of the most pressing challenges facing humanity in the 21st century. Climate simulations provide us with a unique opportunity to examine effects of anthropogenic emissions. Highresolution climate simulations produce “Big Data”: contemporary climate archives are ≈ 5PB in size and we expect future archives to measure on the order of Exa-Bytes. In this work, we present the successful application of TECA (Toolkit for Extreme Climate Analysis) framework, for extracting extreme weather patterns such as Tropical Cyclones, Atmospheric Rivers and Extra-Tropical Cyclones from TB-sized simulation datasets. TECA has been run at full-scale on Cray XE6 and IBM BG/Q systems, and has reduced the runtime for pattern detection tasks from years to hours. TECA has been utilized to evaluate the performance of various computational models in reproducing the statistics of extreme weather events, and for characterizing the change in frequency of storm systems in the future.

  16. Multiscale vector fields for image pattern recognition

    Low, Kah-Chan; Coggins, James M.

    1990-01-01

    A uniform processing framework for low-level vision computing in which a bank of spatial filters maps the image intensity structure at each pixel into an abstract feature space is proposed. Some properties of the filters and the feature space are described. Local orientation is measured by a vector sum in the feature space as follows: each filter's preferred orientation along with the strength of the filter's output determine the orientation and the length of a vector in the feature space; the vectors for all filters are summed to yield a resultant vector for a particular pixel and scale. The orientation of the resultant vector indicates the local orientation, and the magnitude of the vector indicates the strength of the local orientation preference. Limitations of the vector sum method are discussed. Investigations show that the processing framework provides a useful, redundant representation of image structure across orientation and scale.

  17. Pattern recognition with parallel associative memory

    Toth, Charles K.; Schenk, Toni

    1990-01-01

    An examination is conducted of the feasibility of searching targets in aerial photographs by means of a parallel associative memory (PAM) that is based on the nearest-neighbor algorithm; the Hamming distance is used as a measure of closeness, in order to discriminate patterns. Attention has been given to targets typically used for ground-control points. The method developed sorts out approximate target positions where precise localizations are needed, in the course of the data-acquisition process. The majority of control points in different images were correctly identified.

  18. The spatial patterns of directional phenotypic selection.

    Siepielski, Adam M; Gotanda, Kiyoko M; Morrissey, Michael B; Diamond, Sarah E; DiBattista, Joseph D; Carlson, Stephanie M

    2013-11-01

    Local adaptation, adaptive population divergence and speciation are often expected to result from populations evolving in response to spatial variation in selection. Yet, we lack a comprehensive understanding of the major features that characterise the spatial patterns of selection, namely the extent of variation among populations in the strength and direction of selection. Here, we analyse a data set of spatially replicated studies of directional phenotypic selection from natural populations. The data set includes 60 studies, consisting of 3937 estimates of selection across an average of five populations. We performed meta-analyses to explore features characterising spatial variation in directional selection. We found that selection tends to vary mainly in strength and less in direction among populations. Although differences in the direction of selection occur among populations they do so where selection is often weakest, which may limit the potential for ongoing adaptive population divergence. Overall, we also found that spatial variation in selection appears comparable to temporal (annual) variation in selection within populations; however, several deficiencies in available data currently complicate this comparison. We discuss future research needs to further advance our understanding of spatial variation in selection. © 2013 John Wiley & Sons Ltd/CNRS.

  19. The spatial patterns of directional phenotypic selection

    Siepielski, Adam M.

    2013-09-12

    Local adaptation, adaptive population divergence and speciation are often expected to result from populations evolving in response to spatial variation in selection. Yet, we lack a comprehensive understanding of the major features that characterise the spatial patterns of selection, namely the extent of variation among populations in the strength and direction of selection. Here, we analyse a data set of spatially replicated studies of directional phenotypic selection from natural populations. The data set includes 60 studies, consisting of 3937 estimates of selection across an average of five populations. We performed meta-analyses to explore features characterising spatial variation in directional selection. We found that selection tends to vary mainly in strength and less in direction among populations. Although differences in the direction of selection occur among populations they do so where selection is often weakest, which may limit the potential for ongoing adaptive population divergence. Overall, we also found that spatial variation in selection appears comparable to temporal (annual) variation in selection within populations; however, several deficiencies in available data currently complicate this comparison. We discuss future research needs to further advance our understanding of spatial variation in selection. © 2013 John Wiley & Sons Ltd/CNRS.

  20. Auditory orientation in crickets: Pattern recognition controls reactive steering

    Poulet, James F. A.; Hedwig, Berthold

    2005-10-01

    Many groups of insects are specialists in exploiting sensory cues to locate food resources or conspecifics. To achieve orientation, bees and ants analyze the polarization pattern of the sky, male moths orient along the females' odor plume, and cicadas, grasshoppers, and crickets use acoustic signals to locate singing conspecifics. In comparison with olfactory and visual orientation, where learning is involved, auditory processing underlying orientation in insects appears to be more hardwired and genetically determined. In each of these examples, however, orientation requires a recognition process identifying the crucial sensory pattern to interact with a localization process directing the animal's locomotor activity. Here, we characterize this interaction. Using a sensitive trackball system, we show that, during cricket auditory behavior, the recognition process that is tuned toward the species-specific song pattern controls the amplitude of auditory evoked steering responses. Females perform small reactive steering movements toward any sound patterns. Hearing the male's calling song increases the gain of auditory steering within 2-5 s, and the animals even steer toward nonattractive sound patterns inserted into the speciesspecific pattern. This gain control mechanism in the auditory-to-motor pathway allows crickets to pursue species-specific sound patterns temporarily corrupted by environmental factors and may reflect the organization of recognition and localization networks in insects. localization | phonotaxis

  1. Reactor noise analysis by statistical pattern recognition methods

    Howington, L.C.; Gonzalez, R.C.

    1976-01-01

    A multivariate statistical pattern recognition system for reactor noise analysis is presented. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, updating, and data compacting capabilities. System design emphasizes control of the false-alarm rate. Its abilities to learn normal patterns, to recognize deviations from these patterns, and to reduce the dimensionality of data with minimum error were evaluated by experiments at the Oak Ridge National Laboratory (ORNL) High-Flux Isotope Reactor. Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the pattern recognition system

  2. Two Challenges of Correct Validation in Pattern Recognition

    Thomas eNowotny

    2014-09-01

    Full Text Available Supervised pattern recognition is the process of mapping patterns to class labelsthat define their meaning. The core methods for pattern recognitionhave been developed by machine learning experts but due to their broadsuccess an increasing number of non-experts are now employing andrefining them. In this perspective I will discuss the challenge ofcorrect validation of supervised pattern recognition systems, in particular whenemployed by non-experts. To illustrate the problem I will give threeexamples of common errors that I have encountered in the lastyear. Much of this challenge can be addressed by strict procedure invalidation but there are remaining problems of correctlyinterpreting comparative work on exemplary data sets, which I willelucidate on the example of the well-used MNIST data set of handwrittendigits.

  3. Dentate gyrus supports slope recognition memory, shades of grey-context pattern separation and recognition memory, and CA3 supports pattern completion for object memory.

    Kesner, Raymond P; Kirk, Ryan A; Yu, Zhenghui; Polansky, Caitlin; Musso, Nick D

    2016-03-01

    In order to examine the role of the dorsal dentate gyrus (dDG) in slope (vertical space) recognition and possible pattern separation, various slope (vertical space) degrees were used in a novel exploratory paradigm to measure novelty detection for changes in slope (vertical space) recognition memory and slope memory pattern separation in Experiment 1. The results of the experiment indicate that control rats displayed a slope recognition memory function with a pattern separation process for slope memory that is dependent upon the magnitude of change in slope between study and test phases. In contrast, the dDG lesioned rats displayed an impairment in slope recognition memory, though because there was no significant interaction between the two groups and slope memory, a reliable pattern separation impairment for slope could not be firmly established in the DG lesioned rats. In Experiment 2, in order to determine whether, the dDG plays a role in shades of grey spatial context recognition and possible pattern separation, shades of grey were used in a novel exploratory paradigm to measure novelty detection for changes in the shades of grey context environment. The results of the experiment indicate that control rats displayed a shades of grey-context pattern separation effect across levels of separation of context (shades of grey). In contrast, the DG lesioned rats displayed a significant interaction between the two groups and levels of shades of grey suggesting impairment in a pattern separation function for levels of shades of grey. In Experiment 3 in order to determine whether the dorsal CA3 (dCA3) plays a role in object pattern completion, a new task requiring less training and using a choice that was based on choosing the correct set of objects on a two-choice discrimination task was used. The results indicated that control rats displayed a pattern completion function based on the availability of one, two, three or four cues. In contrast, the dCA3 lesioned rats

  4. Hypothesis Support Mechanism for Mid-Level Visual Pattern Recognition

    Amador, Jose J (Inventor)

    2007-01-01

    A method of mid-level pattern recognition provides for a pose invariant Hough Transform by parametrizing pairs of points in a pattern with respect to at least two reference points, thereby providing a parameter table that is scale- or rotation-invariant. A corresponding inverse transform may be applied to test hypothesized matches in an image and a distance transform utilized to quantify the level of match.

  5. An inverse problem approach to pattern recognition in industry

    Ali Sever

    2015-01-01

    Full Text Available Many works have shown strong connections between learning and regularization techniques for ill-posed inverse problems. A careful analysis shows that a rigorous connection between learning and regularization for inverse problem is not straightforward. In this study, pattern recognition will be viewed as an ill-posed inverse problem and applications of methods from the theory of inverse problems to pattern recognition are studied. A new learning algorithm derived from a well-known regularization model is generated and applied to the task of reconstruction of an inhomogeneous object as pattern recognition. Particularly, it is demonstrated that pattern recognition can be reformulated in terms of inverse problems defined by a Riesz-type kernel. This reformulation can be employed to design a learning algorithm based on a numerical solution of a system of linear equations. Finally, numerical experiments have been carried out with synthetic experimental data considering a reasonable level of noise. Good recoveries have been achieved with this methodology, and the results of these simulations are compatible with the existing methods. The comparison results show that the Regularization-based learning algorithm (RBA obtains a promising performance on the majority of the test problems. In prospects, this method can be used for the creation of automated systems for diagnostics, testing, and control in various fields of scientific and applied research, as well as in industry.

  6. Pattern recognition receptors and the inflammasome in kidney disease

    Leemans, Jaklien C.; Kors, Lotte; Anders, Hans-Joachim; Florquin, Sandrine

    2014-01-01

    Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain receptors (NLRs) are families of pattern recognition receptors that, together with inflammasomes, sense and respond to highly conserved pathogen motifs and endogenous molecules released upon cell damage or stress. Evidence

  7. Quantitative EEG Applying the Statistical Recognition Pattern Method

    Engedal, Knut; Snaedal, Jon; Hoegh, Peter

    2015-01-01

    BACKGROUND/AIM: The aim of this study was to examine the discriminatory power of quantitative EEG (qEEG) applying the statistical pattern recognition (SPR) method to separate Alzheimer's disease (AD) patients from elderly individuals without dementia and from other dementia patients. METHODS...

  8. Introduction of pattern recognition by MATLAB practice 2

    1999-06-01

    The contents of this book starts introduction and examples of pattern recognition. This book describes a vector and matrix, basic statistics and a probability distribution, statistical decision theory and probability density function, liner shunt, vector quantizing and clustering GMM, PCA and KL conversion, LDA, ID 3, a nerve cell modeling, HMM, SVM and Ada boost. It has direction of MATLAB in the appendix.

  9. Ultrasonic pattern recognition study of feedwater nozzle inner radius indication

    Yoneyama, H.; Takama, S.; Kishigami, M.; Sasahara, T.; Ando, H.

    1983-01-01

    A study was made to distinguish defects on feed-water nozzle inner radius from noise echo caused by stainless steel cladding by using ultrasonic pattern recognition method with frequency analysis technique. Experiment has been successfully performed on flat clad plates and nozzle mock-up containing fatigue cracks and the following results which shows the high capability of frequency analysis technique are obtained

  10. Pattern recognition approach to quantify the atomic structure of graphene

    Kling, Jens; Vestergaard, Jacob Schack; Dahl, Anders Bjorholm

    2014-01-01

    We report a pattern recognition approach to detect the atomic structure in high-resolution transmission electron microscopy images of graphene. The approach provides quantitative information such as carbon-carbon bond lengths and bond length variations on a global and local scale alike. © 2014...

  11. Environmental Sound Recognition Using Time-Frequency Intersection Patterns

    Xuan Guo

    2012-01-01

    Full Text Available Environmental sound recognition is an important function of robots and intelligent computer systems. In this research, we use a multistage perceptron neural network system for environmental sound recognition. The input data is a combination of time-variance pattern of instantaneous powers and frequency-variance pattern with instantaneous spectrum at the power peak, referred to as a time-frequency intersection pattern. Spectra of many environmental sounds change more slowly than those of speech or voice, so the intersectional time-frequency pattern will preserve the major features of environmental sounds but with drastically reduced data requirements. Two experiments were conducted using an original database and an open database created by the RWCP project. The recognition rate for 20 kinds of environmental sounds was 92%. The recognition rate of the new method was about 12% higher than methods using only an instantaneous spectrum. The results are also comparable with HMM-based methods, although those methods need to treat the time variance of an input vector series with more complicated computations.

  12. Statistical pattern recognition for automatic writer identification and verification

    Bulacu, Marius Lucian

    2007-01-01

    The thesis addresses the problem of automatic person identification using scanned images of handwriting.Identifying the author of a handwritten sample using automatic image-based methods is an interesting pattern recognition problem with direct applicability in the forensic and historic document

  13. Fringe patterns generated by micro-optical sensors for pattern recognition.

    Tamee, Kreangsak; Chaiwong, Khomyuth; Yothapakdee, Kriengsak; Yupapin, Preecha P

    2015-01-01

    We present a new result of pattern recognition generation scheme using a small-scale optical muscle sensing system, which consisted of an optical add-drop filter incorporating two nonlinear optical side ring resonators. When light from laser source enters into the system, the device is stimulated by an external physical parameter that introduces a change in the phase of light propagation within the sensing device, which can be formed by the interference fringe patterns. Results obtained have shown that the fringe patterns can be used to form the relationship between signal patterns and fringe pattern recognitions.

  14. A new concept of vertically integrated pattern recognition associative memory

    Liu, Ted; Hoff, Jim; Deptuch, Grzegorz; Yarema, Ray

    2011-01-01

    Hardware-based pattern recognition for fast triggering on particle tracks has been successfully used in high-energy physics experiments for some time. The CDF Silicon Vertex Trigger (SVT) at the Fermilab Tevatron is an excellent example. The method used there, developed in the 1990's, is based on algorithms that use a massively parallel associative memory architecture to identify patterns efficiently at high speed. However, due to much higher occupancy and event rates at the LHC, and the fact that the LHC detectors have a much larger number of channels in their tracking detectors, there is an enormous challenge in implementing fast pattern recognition for a track trigger, requiring about three orders of magnitude more associative memory patterns than what was used in the original CDF SVT. Scaling of current technologies is unlikely to satisfy the scientific needs of the future, and investments in transformational new technologies need to be made. In this paper, we will discuss a new concept of using the emerging 3D vertical integration technology to significantly advance the state-of-the-art for fast pattern recognition within and outside HEP. A generic R and D proposal based on this new concept, with a few institutions involved, has recently been submitted to DOE with the goal to design and perform the ASIC engineering necessary to realize a prototype device. The progress of this R and D project will be reported in the future. Here we will only focus on the concept of this new approach.

  15. Towards pattern understanding-new technologies beyond pattern recognition

    Sakai, T

    1982-04-01

    The techniques employed in understanding-systems for pattern information are classified roughly under top-down and bottom-up techniques. These are outlined in the paper, and intellectual preparation for communications and information processing is briefly described. 1 ref.

  16. Natural Cytotoxicity Receptors: Pattern Recognition and Involvement of Carbohydrates

    Angel Porgador

    2005-01-01

    Full Text Available Natural cytotoxicity receptors (NCRs, expressed by natural killer (NK cells, trigger NK lysis of tumor and virus-infected cells on interaction with cell-surface ligands of these target cells. We have determined that viral hemagglutinins expressed on the surface of virus-infected cells are involved in the recognition by the NCRs, NKp44 and NKp46. Recognition of tumor cells by the NCRs NKp30 and NKp46 involves heparan sulfate epitopes expressed on the tumor cell membrane. Our studies provide new evidence for the identity of the ligands for NCRs and indicate that a broader definition should be applied to pathological patterns recognized by innate immune receptors. Since nonmicrobial endogenous carbohydrate structures contribute significantly to this recognition, there is an imperative need to develop appropriate tools for the facile sequencing of carbohydrate moieties.

  17. Do pattern recognition skills transfer across sports? A preliminary analysis.

    Smeeton, Nicholas J; Ward, Paul; Williams, A Mark

    2004-02-01

    The ability to recognize patterns of play is fundamental to performance in team sports. While typically assumed to be domain-specific, pattern recognition skills may transfer from one sport to another if similarities exist in the perceptual features and their relations and/or the strategies used to encode and retrieve relevant information. A transfer paradigm was employed to compare skilled and less skilled soccer, field hockey and volleyball players' pattern recognition skills. Participants viewed structured and unstructured action sequences from each sport, half of which were randomly represented with clips not previously seen. The task was to identify previously viewed action sequences quickly and accurately. Transfer of pattern recognition skill was dependent on the participant's skill, sport practised, nature of the task and degree of structure. The skilled soccer and hockey players were quicker than the skilled volleyball players at recognizing structured soccer and hockey action sequences. Performance differences were not observed on the structured volleyball trials between the skilled soccer, field hockey and volleyball players. The skilled field hockey and soccer players were able to transfer perceptual information or strategies between their respective sports. The less skilled participants' results were less clear. Implications for domain-specific expertise, transfer and diversity across domains are discussed.

  18. Emerging spatial patterns in Antarctic prokaryotes

    Chun Wie eChong

    2015-09-01

    Full Text Available Recent advances in knowledge of patterns of biogeography in terrestrial eukaryotic organisms have led to a fundamental paradigm shift in understanding of the controls and history of life on land in Antarctica, and its interactions over the long term with the glaciological and geological processes that have shaped the continent. However, while it has long been recognized that the terrestrial ecosystems of Antarctica are dominated by microbes and their processes, knowledge of microbial diversity and distributions has lagged far behind that of the macroscopic eukaryote organisms. Increasing human contact with and activity in the continent is leading to risks of biological contamination and change in a region whose isolation has protected it for millions of years at least; these risks may be particularly acute for microbial communities which have, as yet, received scant recognition and attention. Even a matter apparently as straightforward as Protected Area designation in Antarctica requires robust biodiversity data which, in most parts of the continent, remain almost completely unavailable. A range of important contributing factors mean that it is now timely to reconsider the state of knowledge of Antarctic terrestrial prokaryotes. Rapid advances in molecular biological approaches are increasingly demonstrating that bacterial diversity in Antarctica may be far greater than previously thought, and that there is overlap in the environmental controls affecting both Antarctic prokaryotic and eukaryotic communities. Bacterial dispersal mechanisms and colonization patterns remain largely unaddressed, although evidence for regional evolutionary differentiation is rapidly accruing and, with this, there is increasing appreciation of patterns in regional bacterial biogeography in this large part of the globe. In this review, we set out to describe the state of knowledge of Antarctic prokaryote diversity patterns, drawing analogy with those of eukaryote

  19. Spatial pattern of ASG-EUPOS sites

    Calka, Beata; Bielecka, Elzbieta; Figurski, Mariusz

    2017-12-01

    The article presents the spatial pattern analysis of the ASG-EUPOS permanent GNSS stations in Poland. Using different methods and tools (nearest neighbour, Riplay's K-function, morphology of Thiessen polygons) we proved that the station distribution model changes within scales. At short distances up to 65 km, which are typical lengths in the network, stations are irregularly dispersed. Increasing this distance to 130 km and over could result in a clustered pattern. The Thiessen polygon area in 72% depends on the level of urbanization, especially coverage of forested and built-up areas as well as the density of the transportation network. The smallest density of the ASG-EUPOS sites is one station over 10,000 sq. km, which is two times more than is stated in the national regulations. The mean distance from ASG-EUPOS location to the nearest station is about 41.5 km.

  20. Pattern Recognition-Based Analysis of COPD in CT

    Sørensen, Lauge Emil Borch Laurs

    recognition part is used to turn the texture measures, measured in a CT image of the lungs, into a quantitative measure of disease. This is done by applying a classifier that is trained on a training set of data examples with known lung tissue patterns. Different classification systems are considered, and we...... will in particular use the pattern recognition concepts of supervised learning, multiple instance learning, and dissimilarity representation-based classification. The proposed texture-based measures are applied to CT data from two different sources, one comprising low dose CT slices from subjects with manually...... annotated regions of emphysema and healthy tissue, and one comprising volumetric low dose CT images from subjects that are either healthy or suffer from COPD. Several experiments demonstrate that it is clearly beneficial to take the lung tissue texture into account when classifying or quantifying emphysema...

  1. Pattern Recognition in Optical Remote Sensing Data Processing

    Kozoderov, Vladimir; Kondranin, Timofei; Dmitriev, Egor; Kamentsev, Vladimir

    Computational procedures of the land surface biophysical parameters retrieval imply that modeling techniques are available of the outgoing radiation description together with monitoring techniques of remote sensing data processing using registered radiances between the related optical sensors and the land surface objects called “patterns”. Pattern recognition techniques are a valuable approach to the processing of remote sensing data for images of the land surface - atmosphere system. Many simplified codes of the direct and inverse problems of atmospheric optics are considered applicable for the imagery processing of low and middle spatial resolution. Unless the authors are not interested in the accuracy of the final information products, they utilize these standard procedures. The emerging necessity of processing data of high spectral and spatial resolution given by imaging spectrometers puts forward the newly defined pattern recognition techniques. The proposed tools of using different types of classifiers combined with the parameter retrieval procedures for the forested environment are maintained to have much wider applications as compared with the image features and object shapes extraction, which relates to photometry and geometry in pixel-level reflectance representation of the forested land cover. The pixel fraction and reflectance of “end-members” (sunlit forest canopy, sunlit background and shaded background for a particular view and solar illumination angle) are only a part in the listed techniques. It is assumed that each pixel views collections of the individual forest trees and the pixel-level reflectance can thus be computed as a linear mixture of sunlit tree tops, sunlit background (or understory) and shadows. Instead of these photometry and geometry constraints, the improved models are developed of the functional description of outgoing spectral radiation, in which such parameters of the forest canopy like the vegetation biomass density for

  2. Linear Programming and Its Application to Pattern Recognition Problems

    Omalley, M. J.

    1973-01-01

    Linear programming and linear programming like techniques as applied to pattern recognition problems are discussed. Three relatively recent research articles on such applications are summarized. The main results of each paper are described, indicating the theoretical tools needed to obtain them. A synopsis of the author's comments is presented with regard to the applicability or non-applicability of his methods to particular problems, including computational results wherever given.

  3. Pattern recognition as a method of data analysis

    Caputo, M.

    1978-11-15

    The method of pattern recognition has been used in biological and social sciences and has been recently introduced for the solution of geological and geophysical problems such as oil and ore prospecting and seismological prediction. The method is briefly illustrated by an application to earthquake prediction in Italy in which topographic and geologic maps are used in conjunction with earthquake catalogs. 3 figures, 1 table.

  4. Neurocomputing methods for pattern recognition in nuclear physics

    Gyulassy, M.; Dong, D.; Harlander, M. [Lawrence Berkeley Lab., CA (United States)

    1991-12-31

    We review recent progress on the development and applications of novel neurocomputing techniques for pattern recognition problems of relevance to RHIC experiments. The Elastic Tracking algorithm is shown to achieve sub-pad two track resolution without preprocessing. A high pass neural filter is developed for jet analysis and singular deconvolution methods are shown to recover the primordial jet distribution to a surprising high degree of accuracy.

  5. Spatial patterns of dengue cases in Brazil.

    Fernando Jose Antonio

    Full Text Available Dengue infection plays a central role in our society, since it is the most prevalent vector-borne viral disease affecting humans. We statistically investigated patterns concerning the spatial spreading of dengue epidemics in Brazil, as well as their temporal evolution in all Brazilian municipalities for a period of 12 years. We showed that the distributions of cases in municipalities follow power laws persistent in time and that the infection scales linearly with the population of the municipalities. We also found that the average number of dengue cases does not have a clear dependence on the longitudinal position of municipalities. On the other hand, we found that the average distribution of cases varies with the latitudinal position of municipalities, displaying an almost constant growth from high latitudes until reaching the Tropic of Capricorn leveling to a plateau closer to the Equator. We also characterized the spatial correlation of the number of dengue cases between pairs of municipalities, where our results showed that the spatial correlation function decays with the increase of distance between municipalities, following a power-law with an exponential cut-off. This regime leads to a typical dengue traveling distance. Finally, we considered modeling this last behaviour within the framework of a Edwards-Wilkinson equation with a fractional derivative on space.

  6. Face Recognition Is Affected by Similarity in Spatial Frequency Range to a Greater Degree Than Within-Category Object Recognition

    Collin, Charles A.; Liu, Chang Hong; Troje, Nikolaus F.; McMullen, Patricia A.; Chaudhuri, Avi

    2004-01-01

    Previous studies have suggested that face identification is more sensitive to variations in spatial frequency content than object recognition, but none have compared how sensitive the 2 processes are to variations in spatial frequency overlap (SFO). The authors tested face and object matching accuracy under varying SFO conditions. Their results…

  7. Conditional Random Fields for Pattern Recognition Applied to Structured Data

    Tom Burr

    2015-07-01

    Full Text Available Pattern recognition uses measurements from an input domain, X, to predict their labels from an output domain, Y. Image analysis is one setting where one might want to infer whether a pixel patch contains an object that is “manmade” (such as a building or “natural” (such as a tree. Suppose the label for a pixel patch is “manmade”; if the label for a nearby pixel patch is then more likely to be “manmade” there is structure in the output domain that can be exploited to improve pattern recognition performance. Modeling P(X is difficult because features between parts of the model are often correlated. Therefore, conditional random fields (CRFs model structured data using the conditional distribution P(Y|X = x, without specifying a model for P(X, and are well suited for applications with dependent features. This paper has two parts. First, we overview CRFs and their application to pattern recognition in structured problems. Our primary examples are image analysis applications in which there is dependence among samples (pixel patches in the output domain. Second, we identify research topics and present numerical examples.

  8. Do subitizing deficits in developmental dyscalculia involve pattern recognition weakness?

    Ashkenazi, Sarit; Mark-Zigdon, Nitza; Henik, Avishai

    2013-01-01

    The abilities of children diagnosed with developmental dyscalculia (DD) were examined in two types of object enumeration: subitizing, and small estimation (5-9 dots). Subitizing is usually defined as a fast and accurate assessment of a number of small dots (range 1 to 4 dots), and estimation is an imprecise process to assess a large number of items (range 5 dots or more). Based on reaction time (RT) and accuracy analysis, our results indicated a deficit in the subitizing and small estimation range among DD participants in relation to controls. There are indications that subitizing is based on pattern recognition, thus presenting dots in a canonical shape in the estimation range should result in a subitizing-like pattern. In line with this theory, our control group presented a subitizing-like pattern in the small estimation range for canonically arranged dots, whereas the DD participants presented a deficit in the estimation of canonically arranged dots. The present finding indicates that pattern recognition difficulties may play a significant role in both subitizing and subitizing deficits among those with DD. © 2012 Blackwell Publishing Ltd.

  9. Automated target recognition and tracking using an optical pattern recognition neural network

    Chao, Tien-Hsin

    1991-01-01

    The on-going development of an automatic target recognition and tracking system at the Jet Propulsion Laboratory is presented. This system is an optical pattern recognition neural network (OPRNN) that is an integration of an innovative optical parallel processor and a feature extraction based neural net training algorithm. The parallel optical processor provides high speed and vast parallelism as well as full shift invariance. The neural network algorithm enables simultaneous discrimination of multiple noisy targets in spite of their scales, rotations, perspectives, and various deformations. This fully developed OPRNN system can be effectively utilized for the automated spacecraft recognition and tracking that will lead to success in the Automated Rendezvous and Capture (AR&C) of the unmanned Cargo Transfer Vehicle (CTV). One of the most powerful optical parallel processors for automatic target recognition is the multichannel correlator. With the inherent advantages of parallel processing capability and shift invariance, multiple objects can be simultaneously recognized and tracked using this multichannel correlator. This target tracking capability can be greatly enhanced by utilizing a powerful feature extraction based neural network training algorithm such as the neocognitron. The OPRNN, currently under investigation at JPL, is constructed with an optical multichannel correlator where holographic filters have been prepared using the neocognitron training algorithm. The computation speed of the neocognitron-type OPRNN is up to 10(exp 14) analog connections/sec that enabling the OPRNN to outperform its state-of-the-art electronics counterpart by at least two orders of magnitude.

  10. Rotation, scale, and translation invariant pattern recognition using feature extraction

    Prevost, Donald; Doucet, Michel; Bergeron, Alain; Veilleux, Luc; Chevrette, Paul C.; Gingras, Denis J.

    1997-03-01

    A rotation, scale and translation invariant pattern recognition technique is proposed.It is based on Fourier- Mellin Descriptors (FMD). Each FMD is taken as an independent feature of the object, and a set of those features forms a signature. FMDs are naturally rotation invariant. Translation invariance is achieved through pre- processing. A proper normalization of the FMDs gives the scale invariance property. This approach offers the double advantage of providing invariant signatures of the objects, and a dramatic reduction of the amount of data to process. The compressed invariant feature signature is next presented to a multi-layered perceptron neural network. This final step provides some robustness to the classification of the signatures, enabling good recognition behavior under anamorphically scaled distortion. We also present an original feature extraction technique, adapted to optical calculation of the FMDs. A prototype optical set-up was built, and experimental results are presented.

  11. Clustering Vehicle Temporal and Spatial Travel Behavior Using License Plate Recognition Data

    Huiyu Chen

    2017-01-01

    Full Text Available Understanding travel patterns of vehicle can support the planning and design of better services. In addition, vehicle clustering can improve management efficiency through more targeted access to groups of interest and facilitate planning by more specific survey design. This paper clustered 854,712 vehicles in a week using K-means clustering algorithm based on license plate recognition (LPR data obtained in Shenzhen, China. Firstly, several travel characteristics related to temporal and spatial variability and activity patterns are used to identify homogeneous clusters. Then, Davies-Bouldin index (DBI and Silhouette Coefficient (SC are applied to capture the optimal number of groups and, consequently, six groups are classified in weekdays and three groups are sorted in weekends, including commuting vehicles and some other occasional leisure travel vehicles. Moreover, a detailed analysis of the characteristics of each group in terms of spatial travel patterns and temporal changes are presented. This study highlights the possibility of applying LPR data for discovering the underlying factor in vehicle travel patterns and examining the characteristic of some groups specifically.

  12. Multivariate statistical pattern recognition system for reactor noise analysis

    Gonzalez, R.C.; Howington, L.C.; Sides, W.H. Jr.; Kryter, R.C.

    1976-01-01

    A multivariate statistical pattern recognition system for reactor noise analysis was developed. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, and updating capabilities. System design emphasizes control of the false-alarm rate. The ability of the system to learn normal patterns of reactor behavior and to recognize deviations from these patterns was evaluated by experiments at the ORNL High-Flux Isotope Reactor (HFIR). Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the system

  13. Multivariate statistical pattern recognition system for reactor noise analysis

    Gonzalez, R.C.; Howington, L.C.; Sides, W.H. Jr.; Kryter, R.C.

    1975-01-01

    A multivariate statistical pattern recognition system for reactor noise analysis was developed. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, and updating capabilities. System design emphasizes control of the false-alarm rate. The ability of the system to learn normal patterns of reactor behavior and to recognize deviations from these patterns was evaluated by experiments at the ORNL High-Flux Isotope Reactor (HFIR). Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the system. 19 references

  14. Pattern recognition trigger electronics for an imaging atmospheric Cherenkov telescope

    Bradbury, S.M.; Rose, H.J.

    2002-01-01

    For imaging atmospheric Cherenkov telescopes, which aim to detect electromagnetic air showers with cameras consisting of several hundred photomultiplier pixels, the single pixel trigger rate is dominated by fluctuations in night sky brightness and by ion feedback in the photomultipliers. Pattern recognition trigger electronics may be used to reject night sky background images, thus reducing the data rate to a manageable level. The trigger system described here detects patterns of 2, 3 or 4 adjacent pixel signals within a 331 pixel camera and gives a positive trigger decision in 65 ns. The candidate pixel pattern is compared with the contents of a pre-programmed memory. With the trigger decision timing controlled by a fixed delay the time-jitter inherent in the use of programmable gate arrays is avoided. This system is now in routine operation at the Whipple 10 m Telescope

  15. Spatial patterns in accretion on barrier-island salt marshes

    Groot, de A.V.; Veeneklaas, R.M.; Kuijper, D.P.J.; Bakker, J.P.

    2011-01-01

    On minerogenic barrier-island salt marshes, sedimentation is spatially heterogeneous. Although the main forcing factors for sedimentation are known, much less is known about the characteristic sizes of this spatial patterning. Such patterning gives information on the spatial component of salt-marsh

  16. Pattern recognition for cache management in distributed medical imaging environments.

    Viana-Ferreira, Carlos; Ribeiro, Luís; Matos, Sérgio; Costa, Carlos

    2016-02-01

    Traditionally, medical imaging repositories have been supported by indoor infrastructures with huge operational costs. This paradigm is changing thanks to cloud outsourcing which not only brings technological advantages but also facilitates inter-institutional workflows. However, communication latency is one main problem in this kind of approaches, since we are dealing with tremendous volumes of data. To minimize the impact of this issue, cache and prefetching are commonly used. The effectiveness of these mechanisms is highly dependent on their capability of accurately selecting the objects that will be needed soon. This paper describes a pattern recognition system based on artificial neural networks with incremental learning to evaluate, from a set of usage pattern, which one fits the user behavior at a given time. The accuracy of the pattern recognition model in distinct training conditions was also evaluated. The solution was tested with a real-world dataset and a synthesized dataset, showing that incremental learning is advantageous. Even with very immature initial models, trained with just 1 week of data samples, the overall accuracy was very similar to the value obtained when using 75% of the long-term data for training the models. Preliminary results demonstrate an effective reduction in communication latency when using the proposed solution to feed a prefetching mechanism. The proposed approach is very interesting for cache replacement and prefetching policies due to the good results obtained since the first deployment moments.

  17. The DELPHI Silicon Tracker in the global pattern recognition

    Elsing, M

    2000-01-01

    ALEPH and DELPHI were the first experiments operating a silicon vertex detector at LEP. During the past 10 years of data taking the DELPHI Silicon Tracker was upgraded three times to follow the different tracking requirements for LEP 1 and LEP 2 as well as to improve the tracking performance. Several steps in the development of the pattern recognition software were done in order to understand and fully exploit the silicon tracker information. This article gives an overview of the final algorithms and concepts of the track reconstruction using the Silicon Tracker in DELPHI.

  18. 6th International Conference on Pattern Recognition and Machine Intelligence

    Gawrysiak, Piotr; Kryszkiewicz, Marzena; Rybiński, Henryk

    2016-01-01

    This book presents valuable contributions devoted to practical applications of Machine Intelligence and Big Data in various branches of the industry. All the contributions are extended versions of presentations delivered at the Industrial Session the 6th International Conference on Pattern Recognition and Machine Intelligence (PREMI 2015) held in Warsaw, Poland at June 30- July 3, 2015, which passed through a rigorous reviewing process. The contributions address real world problems and show innovative solutions used to solve them. This volume will serve as a bridge between researchers and practitioners, as well as between different industry branches, which can benefit from sharing ideas and results.

  19. Infrared target recognition based on improved joint local ternary pattern

    Sun, Junding; Wu, Xiaosheng

    2016-05-01

    This paper presents a simple, efficient, yet robust approach, named joint orthogonal combination of local ternary pattern, for automatic forward-looking infrared target recognition. It gives more advantages to describe the macroscopic textures and microscopic textures by fusing variety of scales than the traditional LBP-based methods. In addition, it can effectively reduce the feature dimensionality. Further, the rotation invariant and uniform scheme, the robust LTP, and soft concave-convex partition are introduced to enhance its discriminative power. Experimental results demonstrate that the proposed method can achieve competitive results compared with the state-of-the-art methods.

  20. The DELPHI Silicon Tracker in the global pattern recognition

    Elsing, M.

    2000-01-01

    ALEPH and DELPHI were the first experiments operating a silicon vertex detector at LEP. During the past 10 years of data taking the DELPHI Silicon Tracker was upgraded three times to follow the different tracking requirements for LEP 1 and LEP 2 as well as to improve the tracking performance. Several steps in the development of the pattern recognition software were done in order to understand and fully exploit the silicon tracker information. This article gives an overview of the final algorithms and concepts of the track reconstruction using the Silicon Tracker in DELPHI

  1. Comparison of eye imaging pattern recognition using neural network

    Bukhari, W. M.; Syed A., M.; Nasir, M. N. M.; Sulaima, M. F.; Yahaya, M. S.

    2015-05-01

    The beauty of eye recognition system that it is used in automatic identifying and verifies a human weather from digital images or video source. There are various behaviors of the eye such as the color of the iris, size of pupil and shape of the eye. This study represents the analysis, design and implementation of a system for recognition of eye imaging. All the eye images that had been captured from the webcam in RGB format must through several techniques before it can be input for the pattern and recognition processes. The result shows that the final value of weight and bias after complete training 6 eye images for one subject is memorized by the neural network system and be the reference value of the weight and bias for the testing part. The target classifies to 5 different types for 5 subjects. The eye images can recognize the subject based on the target that had been set earlier during the training process. When the values between new eye image and the eye image in the database are almost equal, it is considered the eye image is matched.

  2. Pattern recognition in menstrual bleeding diaries by statistical cluster analysis

    Wessel Jens

    2009-07-01

    Full Text Available Abstract Background The aim of this paper is to empirically identify a treatment-independent statistical method to describe clinically relevant bleeding patterns by using bleeding diaries of clinical studies on various sex hormone containing drugs. Methods We used the four cluster analysis methods single, average and complete linkage as well as the method of Ward for the pattern recognition in menstrual bleeding diaries. The optimal number of clusters was determined using the semi-partial R2, the cubic cluster criterion, the pseudo-F- and the pseudo-t2-statistic. Finally, the interpretability of the results from a gynecological point of view was assessed. Results The method of Ward yielded distinct clusters of the bleeding diaries. The other methods successively chained the observations into one cluster. The optimal number of distinctive bleeding patterns was six. We found two desirable and four undesirable bleeding patterns. Cyclic and non cyclic bleeding patterns were well separated. Conclusion Using this cluster analysis with the method of Ward medications and devices having an impact on bleeding can be easily compared and categorized.

  3. Bifurcation analysis of oscillating network model of pattern recognition in the rabbit olfactory bulb

    Baird, Bill

    1986-08-01

    A neural network model describing pattern recognition in the rabbit olfactory bulb is analysed to explain the changes in neural activity observed experimentally during classical Pavlovian conditioning. EEG activity recorded from an 8×8 arry of 64 electrodes directly on the surface on the bulb shows distinct spatial patterns of oscillation that correspond to the animal's recognition of different conditioned odors and change with conditioning to new odors. The model may be considered a variant of Hopfield's model of continuous analog neural dynamics. Excitatory and inhibitory cell types in the bulb and the anatomical architecture of their connection requires a nonsymmetric coupling matrix. As the mean input level rises during each breath of the animal, the system bifurcates from homogenous equilibrium to a spatially patterned oscillation. The theory of multiple Hopf bifurcations is employed to find coupled equations for the amplitudes of these unstable oscillatory modes independent of frequency. This allows a view of stored periodic attractors as fixed points of a gradient vector field and thereby recovers the more familiar dynamical systems picture of associative memory.

  4. Inductive class representation and its central role in pattern recognition

    Goldfarb, L. [Univ. of New Brunswick, Fredericton, New Brunswick (Canada)

    1996-12-31

    The definition of inductive learning (IL) based on the new concept of inductive class representation (ICR) is given. The ICR, in addition to the ability to recognize a noise-corrupted object from the class, must also provide the means to generate every element in the resulting approximation of the class, i.e., the emphasis is on the generative capability of the ICR. Thus, the IL problem absorbs the main difficulties associated with a satisfactory formulation of the pattern recognition problem. This formulation of the IL problem appeared gradually as a result of the development of a fundamentally new formal model of IL--evolving transformation system (ETS) model. The model with striking clarity suggests that IL is the basic process which produces all the necessary {open_quotes}structures{close_quotes} for the recognition process, which is built directly on top of it. Based on the training set, the IL process, constructs optimal discriminatory (symbolic) weighted {open_quotes}features{close_quotes} which induce the corresponding optimal (symbolic) distance measure. The distance measure is a generalization of the weighted Levenshtein, or edit, distance defined on strings over a finite alphabet. The ETS model has emerged as a result of an attempt to unify two basic, but inadequate, approaches to pattern recognition: the classical vector space based and the syntactic approaches. ETS also elucidates with remarkable clarity the nature of the interrelationships between the corresponding symbolic and numeric mechanisms, in which the symbolic mechanisms play a more fundamental part. The model, in fact, suggests the first formal definition of the symbolic mathematical structure and also suggests a fundamentally different, more satisfactory, way of introducing the concept of fuzziness. The importance of the ICR concept to semiotics and semantics should become apparent as soon as one fully realizes that it represents the class and specifies the semantics of the class.

  5. Playing tag with ANN: boosted top identification with pattern recognition

    Almeida, Leandro G.; Backović, Mihailo; Cliche, Mathieu; Lee, Seung J.; Perelstein, Maxim

    2015-01-01

    Many searches for physics beyond the Standard Model at the Large Hadron Collider (LHC) rely on top tagging algorithms, which discriminate between boosted hadronic top quarks and the much more common jets initiated by light quarks and gluons. We note that the hadronic calorimeter (HCAL) effectively takes a “digital image" of each jet, with pixel intensities given by energy deposits in individual HCAL cells. Viewed in this way, top tagging becomes a canonical pattern recognition problem. With this motivation, we present a novel top tagging algorithm based on an Artificial Neural Network (ANN), one of the most popular approaches to pattern recognition. The ANN is trained on a large sample of boosted tops and light quark/gluon jets, and is then applied to independent test samples. The ANN tagger demonstrated excellent performance in a Monte Carlo study: for example, for jets with p T in the 1100–1200 GeV range, 60% top-tag efficiency can be achieved with a 4% mis-tag rate. We discuss the physical features of the jets identified by the ANN tagger as the most important for classification, as well as correlations between the ANN tagger and some of the familiar top-tagging observables and algorithms.

  6. Wavelet-based moment invariants for pattern recognition

    Chen, Guangyi; Xie, Wenfang

    2011-07-01

    Moment invariants have received a lot of attention as features for identification and inspection of two-dimensional shapes. In this paper, two sets of novel moments are proposed by using the auto-correlation of wavelet functions and the dual-tree complex wavelet functions. It is well known that the wavelet transform lacks the property of shift invariance. A little shift in the input signal will cause very different output wavelet coefficients. The autocorrelation of wavelet functions and the dual-tree complex wavelet functions, on the other hand, are shift-invariant, which is very important in pattern recognition. Rotation invariance is the major concern in this paper, while translation invariance and scale invariance can be achieved by standard normalization techniques. The Gaussian white noise is added to the noise-free images and the noise levels vary with different signal-to-noise ratios. Experimental results conducted in this paper show that the proposed wavelet-based moments outperform Zernike's moments and the Fourier-wavelet descriptor for pattern recognition under different rotation angles and different noise levels. It can be seen that the proposed wavelet-based moments can do an excellent job even when the noise levels are very high.

  7. Playing tag with ANN: boosted top identification with pattern recognition

    Almeida, Leandro G. [Institut de Biologie de l’École Normale Supérieure (IBENS), Inserm 1024- CNRS 8197,46 rue d’Ulm, 75005 Paris (France); Backović, Mihailo [Center for Cosmology, Particle Physics and Phenomenology - CP3,Universite Catholique de Louvain,Louvain-la-neuve (Belgium); Cliche, Mathieu [Laboratory for Elementary Particle Physics, Cornell University,Ithaca, NY 14853 (United States); Lee, Seung J. [Department of Physics, Korea Advanced Institute of Science and Technology,335 Gwahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); School of Physics, Korea Institute for Advanced Study,Seoul 130-722 (Korea, Republic of); Perelstein, Maxim [Laboratory for Elementary Particle Physics, Cornell University,Ithaca, NY 14853 (United States)

    2015-07-17

    Many searches for physics beyond the Standard Model at the Large Hadron Collider (LHC) rely on top tagging algorithms, which discriminate between boosted hadronic top quarks and the much more common jets initiated by light quarks and gluons. We note that the hadronic calorimeter (HCAL) effectively takes a “digital image' of each jet, with pixel intensities given by energy deposits in individual HCAL cells. Viewed in this way, top tagging becomes a canonical pattern recognition problem. With this motivation, we present a novel top tagging algorithm based on an Artificial Neural Network (ANN), one of the most popular approaches to pattern recognition. The ANN is trained on a large sample of boosted tops and light quark/gluon jets, and is then applied to independent test samples. The ANN tagger demonstrated excellent performance in a Monte Carlo study: for example, for jets with p{sub T} in the 1100–1200 GeV range, 60% top-tag efficiency can be achieved with a 4% mis-tag rate. We discuss the physical features of the jets identified by the ANN tagger as the most important for classification, as well as correlations between the ANN tagger and some of the familiar top-tagging observables and algorithms.

  8. A pattern recognition approach to transistor array parameter variance

    da F. Costa, Luciano; Silva, Filipi N.; Comin, Cesar H.

    2018-06-01

    The properties of semiconductor devices, including bipolar junction transistors (BJTs), are known to vary substantially in terms of their parameters. In this work, an experimental approach, including pattern recognition concepts and methods such as principal component analysis (PCA) and linear discriminant analysis (LDA), was used to experimentally investigate the variation among BJTs belonging to integrated circuits known as transistor arrays. It was shown that a good deal of the devices variance can be captured using only two PCA axes. It was also verified that, though substantially small variation of parameters is observed for BJT from the same array, larger variation arises between BJTs from distinct arrays, suggesting the consideration of device characteristics in more critical analog designs. As a consequence of its supervised nature, LDA was able to provide a substantial separation of the BJT into clusters, corresponding to each transistor array. In addition, the LDA mapping into two dimensions revealed a clear relationship between the considered measurements. Interestingly, a specific mapping suggested by the PCA, involving the total harmonic distortion variation expressed in terms of the average voltage gain, yielded an even better separation between the transistor array clusters. All in all, this work yielded interesting results from both semiconductor engineering and pattern recognition perspectives.

  9. Spatial pattern recognition of extreme temperature climatology: assessing HadCM3 simulations via NCEP reanalyses over Europe Análise do padrão espacial da climatologia de temperaturas extremas: avaliando simulações do HadCM3 via reanálises do NCEP para a Europa

    P. S. Lucio

    2007-08-01

    Full Text Available This article attempts to quantify the spatial uncertainties associated with extreme temperature’s response, by assessing data derived from climate model. This is undertaken by a comparison of the spatial pattern of a long-term time-series aggregation (1960/61-1989/90 for extreme temperatures simulated by a particular GCM (the UK Met Office - Hadley Centre climate model, HadCM3 to that of the USA NCAR NCEP Reanalyses, which are considered as ‘truth’, over the MICE (Modelling the Impacts of Climate Extremes - EU Project spatial domain. Since evaluation of models is crucial to assessing future scenarios, the aim of this study is to investigate whether the extreme values predicted by the HadCM3 climate model can simulate those produced by NCEP Reanalyses, assuming that the extremes of both models are realizations of the same spatial stochastic process. To get more useful information about the uncertainties surrounding spatial climate projection, one also has to analyze the pattern of temperature extremes in terms of their anomalies. A common technical issue in the assessment of numerical spatial models is based on the Principal Components Analysis and Bayesian Classification for spatial pattern recognition. These methodologies are very important and useful for guiding an evolutionary statistical model-building process. This study leads to the conclusion that the HadCM3 Simulations do not realistically reproduce the NCEP Reanalyses, despite the fact that the climatology of extremes has demonstrated very similar spatial patterns. It is likely therefore that such instability may persist in the future.Este artigo é um ensaio na quantificação de incertezas espaciais associadas à resposta de temperaturas extremas, avaliando dados derivados de um determinado modelo de clima. Isto é empreendido por uma comparação entre o padrão espacial de séries temporais agregadas de longo termo (1960/61-1989/90 para temperaturas extremas simuladas de um

  10. Computational intelligence in multi-feature visual pattern recognition hand posture and face recognition using biologically inspired approaches

    Pisharady, Pramod Kumar; Poh, Loh Ai

    2014-01-01

    This book presents a collection of computational intelligence algorithms that addresses issues in visual pattern recognition such as high computational complexity, abundance of pattern features, sensitivity to size and shape variations and poor performance against complex backgrounds. The book has 3 parts. Part 1 describes various research issues in the field with a survey of the related literature. Part 2 presents computational intelligence based algorithms for feature selection and classification. The algorithms are discriminative and fast. The main application area considered is hand posture recognition. The book also discusses utility of these algorithms in other visual as well as non-visual pattern recognition tasks including face recognition, general object recognition and cancer / tumor classification. Part 3 presents biologically inspired algorithms for feature extraction. The visual cortex model based features discussed have invariance with respect to appearance and size of the hand, and provide good...

  11. Environmental controls on multiscale spatial patterns of salt marsh vegetation

    Kim, Daehyun; Cairns, David; Bartholdy, Jesper

    2010-01-01

    In coastal environments, biogeographic patterns are generally influenced by surface elevation and horizontal distance from sea water. However, it is still unclear whether these major topographic factors are significant controls of vegetation patterns across spatial scales at which different physi...

  12. Artificial neural network for bubbles pattern recognition on the images

    Poletaev, I E; Pervunin, K S; Tokarev, M P

    2016-01-01

    Two-phase bubble flows have been used in many technological and energy processes as processing oil, chemical and nuclear reactors. This explains large interest to experimental and numerical studies of such flows last several decades. Exploiting of optical diagnostics for analysis of the bubble flows allows researchers obtaining of instantaneous velocity fields and gaseous phase distribution with the high spatial resolution non-intrusively. Behavior of light rays exhibits an intricate manner when they cross interphase boundaries of gaseous bubbles hence the identification of the bubbles images is a complicated problem. This work presents a method of bubbles images identification based on a modern technology of deep learning called convolutional neural networks (CNN). Neural networks are able to determine overlapping, blurred, and non-spherical bubble images. They can increase accuracy of the bubble image recognition, reduce the number of outliers, lower data processing time, and significantly decrease the number of settings for the identification in comparison with standard recognition methods developed before. In addition, usage of GPUs speeds up the learning process of CNN owning to the modern adaptive subgradient optimization techniques. (paper)

  13. ALBEDO PATTERN RECOGNITION AND TIME-SERIES ANALYSES IN MALAYSIA

    S. A. Salleh

    2012-07-01

    Full Text Available Pattern recognition and time-series analyses will enable one to evaluate and generate predictions of specific phenomena. The albedo pattern and time-series analyses are very much useful especially in relation to climate condition monitoring. This study is conducted to seek for Malaysia albedo pattern changes. The pattern recognition and changes will be useful for variety of environmental and climate monitoring researches such as carbon budgeting and aerosol mapping. The 10 years (2000–2009 MODIS satellite images were used for the analyses and interpretation. These images were being processed using ERDAS Imagine remote sensing software, ArcGIS 9.3, the 6S code for atmospherical calibration and several MODIS tools (MRT, HDF2GIS, Albedo tools. There are several methods for time-series analyses were explored, this paper demonstrates trends and seasonal time-series analyses using converted HDF format MODIS MCD43A3 albedo land product. The results revealed significance changes of albedo percentages over the past 10 years and the pattern with regards to Malaysia's nebulosity index (NI and aerosol optical depth (AOD. There is noticeable trend can be identified with regards to its maximum and minimum value of the albedo. The rise and fall of the line graph show a similar trend with regards to its daily observation. The different can be identified in term of the value or percentage of rises and falls of albedo. Thus, it can be concludes that the temporal behavior of land surface albedo in Malaysia have a uniform behaviours and effects with regards to the local monsoons. However, although the average albedo shows linear trend with nebulosity index, the pattern changes of albedo with respects to the nebulosity index indicates that there are external factors that implicates the albedo values, as the sky conditions and its diffusion plotted does not have uniform trend over the years, especially when the trend of 5 years interval is examined, 2000 shows high

  14. An Ultrasonic Pattern Recognition Approach to Welding Defect Classification

    Song, Sung Jin

    1995-01-01

    Classification of flaws in weldments from their ultrasonic scattering signals is very important in quantitative nondestructive evaluation. This problem is ideally suited to a modern ultrasonic pattern recognition technique. Here brief discussion on systematic approach to this methodology is presented including ultrasonic feature extraction, feature selection and classification. A stronger emphasis is placed on probabilistic neural networks as efficient classifiers for many practical classification problems. In an example probabilistic neural networks are applied to classify flaws in weldments into 3 classes such as cracks, porosity and slag inclusions. Probabilistic nets are shown to be able to exhibit high performance of other classifiers without any training time overhead. In addition, forward selection scheme for sensitive features is addressed to enhance network performance

  15. Differential theory of learning for efficient neural network pattern recognition

    Hampshire, John B., II; Vijaya Kumar, Bhagavatula

    1993-09-01

    We describe a new theory of differential learning by which a broad family of pattern classifiers (including many well-known neural network paradigms) can learn stochastic concepts efficiently. We describe the relationship between a classifier's ability to generate well to unseen test examples and the efficiency of the strategy by which it learns. We list a series of proofs that differential learning is efficient in its information and computational resource requirements, whereas traditional probabilistic learning strategies are not. The proofs are illustrated by a simple example that lends itself to closed-form analysis. We conclude with an optical character recognition task for which three different types of differentially generated classifiers generalize significantly better than their probabilistically generated counterparts.

  16. Pattern recognition issues on anisotropic smoothed particle hydrodynamics

    Pereira Marinho, Eraldo

    2014-03-01

    This is a preliminary theoretical discussion on the computational requirements of the state of the art smoothed particle hydrodynamics (SPH) from the optics of pattern recognition and artificial intelligence. It is pointed out in the present paper that, when including anisotropy detection to improve resolution on shock layer, SPH is a very peculiar case of unsupervised machine learning. On the other hand, the free particle nature of SPH opens an opportunity for artificial intelligence to study particles as agents acting in a collaborative framework in which the timed outcomes of a fluid simulation forms a large knowledge base, which might be very attractive in computational astrophysics phenomenological problems like self-propagating star formation.

  17. Pattern recognition issues on anisotropic smoothed particle hydrodynamics

    Marinho, Eraldo Pereira

    2014-01-01

    This is a preliminary theoretical discussion on the computational requirements of the state of the art smoothed particle hydrodynamics (SPH) from the optics of pattern recognition and artificial intelligence. It is pointed out in the present paper that, when including anisotropy detection to improve resolution on shock layer, SPH is a very peculiar case of unsupervised machine learning. On the other hand, the free particle nature of SPH opens an opportunity for artificial intelligence to study particles as agents acting in a collaborative framework in which the timed outcomes of a fluid simulation forms a large knowledge base, which might be very attractive in computational astrophysics phenomenological problems like self-propagating star formation

  18. Terahertz Imaging for Biomedical Applications Pattern Recognition and Tomographic Reconstruction

    Yin, Xiaoxia; Abbott, Derek

    2012-01-01

    Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction presents the necessary algorithms needed to assist screening, diagnosis, and treatment, and these algorithms will play a critical role in the accurate detection of abnormalities present in biomedical imaging. Terahertz biomedical imaging has become an area of interest due to its ability to simultaneously acquire both image and spectral information. Terahertz imaging systems are being commercialized with an increasing number of trials performed in a biomedical setting. Terahertz tomographic imaging and detection technology contributes to the ability to identify opaque objects with clear boundaries,and would be useful to both in vivo and ex vivo environments. This book also: Introduces terahertz radiation techniques and provides a number of topical examples of signal and image processing, as well as machine learning Presents the most recent developments in an emerging field, terahertz radiation Utilizes new methods...

  19. 64 x 64 thresholding photodetector array for optical pattern recognition

    Langenbacher, Harry; Chao, Tien-Hsin; Shaw, Timothy; Yu, Jeffrey W.

    1993-10-01

    A high performance 32 X 32 peak detector array is introduced. This detector consists of a 32 X 32 array of thresholding photo-transistor cells, manufactured with a standard MOSIS digital 2-micron CMOS process. A built-in thresholding function that is able to perform 1024 thresholding operations in parallel strongly distinguishes this chip from available CCD detectors. This high speed detector offers responses from one to 10 milliseconds that is much higher than the commercially available CCD detectors operating at a TV frame rate. The parallel multiple peaks thresholding detection capability makes it particularly suitable for optical correlator and optoelectronically implemented neural networks. The principle of operation, circuit design and the performance characteristics are described. Experimental demonstration of correlation peak detection is also provided. Recently, we have also designed and built an advanced version of a 64 X 64 thresholding photodetector array chip. Experimental investigation of using this chip for pattern recognition is ongoing.

  20. Pattern recognition and reconstruction on a FPGA coprocessor board

    Männer, R; Simmler, H

    2000-01-01

    High energy accelerator labs use huge detector systems to track particles. The ATLAS detector at CERN, Geneva (Switzerland), will provide complex three-dimensional images. A trigger system at the detector output is used to reduce the amount of data to a manageable size. Each trigger applies certain filter algorithms to select the very rare physically interesting events. The algorithm presented, processes data from a special detector called TRT, to generate a trigger decision within approximately=10 ms. System supervisors then decide together with other results whether the event will be rejected or passed to the next trigger level. Due to the restricted execution time for calculating the decision, fast pattern recognition algorithms are required. These algorithms require a high I/O bandwidth and high computing power. These reasons and the high degree of parallelism make it best suited for custom computing machines. (3 refs).

  1. Pattern Recognition and Natural Language Processing: State of the Art

    Mirjana Kocaleva

    2016-05-01

    Full Text Available Development of information technologies is growing steadily. With the latest software technologies development and application of the methods of artificial intelligence and machine learning intelligence embededs in computers, the expectations are that in near future computers will be able to solve problems themselves like people do. Artificial intelligence emulates human behavior on computers. Rather than executing instructions one by one, as theyare programmed, machine learning employs prior experience/data that is used in the process of system’s training. In this state of the art paper, common methods in AI, such as machine learning, pattern recognition and the natural language processing (NLP are discussed. Also are given standard architecture of NLP processing system and the level thatisneeded for understanding NLP. Lastly the statistical NLP processing and multi-word expressions are described.

  2. Distorted Pattern Recognition and Analysis with the Help of IEf Graph Representation

    Adam Sedziwy

    2002-01-01

    Full Text Available An algorithm for distorted pattern recognition is presented. lt's generalization of M Flasinski results (Pattern Recognition, 27, 1-16, 1992. A new formalism allows to make both qualitative and quantitive distortion analysis. It also enlarges parser flexibility by extending the set of patterns which may be recognized.

  3. Integrating spatial and numerical structure in mathematical patterning

    Ni’mah, K.; Purwanto; Irawan, E. B.; Hidayanto, E.

    2018-03-01

    This paper reports a study monitoring the integrating spatial and numerical structure in mathematical patterning skills of 30 students grade 7th of junior high school. The purpose of this research is to clarify the processes by which learners construct new knowledge in mathematical patterning. Findings indicate that: (1) students are unable to organize the structure of spatial and numerical, (2) students were only able to organize the spatial structure, but the numerical structure is still incorrect, (3) students were only able to organize numerical structure, but its spatial structure is still incorrect, (4) students were able to organize both of the spatial and numerical structure.

  4. Proposal for the development of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    Deptuch, Gregory; Hoff, Jim; Kwan, Simon; Lipton, Ron; Liu, Ted; Ramberg, Erik; Todri, Aida; Yarema, Ray; /Fermilab; Demarteua, Marcel,; Drake, Gary; Weerts, Harry; /Argonne /Chicago U. /Padua U. /INFN, Padua

    2010-10-01

    Future particle physics experiments looking for rare processes will have no choice but to address the demanding challenges of fast pattern recognition in triggering as detector hit density becomes significantly higher due to the high luminosity required to produce the rare process. The authors propose to develop a 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) chip for HEP applications, to advance the state-of-the-art for pattern recognition and track reconstruction for fast triggering.

  5. Evidences of the role of the rodent hippocampus in the non-spatial recognition memory.

    Yi, Jee Hyun; Park, Hye Jin; Kim, Byeong C; Kim, Dong Hyun; Ryu, Jong Hoon

    2016-01-15

    The hippocampus is a key region responsible for processing spatial information. However, the role of the hippocampus in non-spatial recognition memory is still controversial. In the present study, we performed hippocampal lesioning to address this controversy. The hippocampi of mice were disrupted with bilateral cytotoxic lesions, and standard object recognition (non-spatial) and object location recognition (spatial) were tested. In the habituation period, mice with hippocampal lesions needed a significantly longer time to fully habituate to the test box. Interestingly, after 4 days of habituation (insufficient habituation), the recognition index was similar in the sham and hippocampal lesion groups. However, exploration time was significantly shorter in mice with hippocampal lesions compared with that in control mice. Interestingly, if mice were subjected to a 10-days-long period of habituation (full habituation), the recognition index was significantly lower in mice with hippocampal lesions compared with that in control mice; however, total exploration time was similar in both groups. Furthermore, the object recognition test after full habituation occluded hippocampal long-term potentiation, a cellular model of memory. These results indicate that sufficient habituation is required to observe the effects of hippocampal lesions on object recognition memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Competitive STDP Learning of Overlapping Spatial Patterns.

    Krunglevicius, Dalius

    2015-08-01

    Spike-timing-dependent plasticity (STDP) is a set of Hebbian learning rules firmly based on biological evidence. It has been demonstrated that one of the STDP learning rules is suited for learning spatiotemporal patterns. When multiple neurons are organized in a simple competitive spiking neural network, this network is capable of learning multiple distinct patterns. If patterns overlap significantly (i.e., patterns are mutually inclusive), however, competition would not preclude trained neuron's responding to a new pattern and adjusting synaptic weights accordingly. This letter presents a simple neural network that combines vertical inhibition and Euclidean distance-dependent synaptic strength factor. This approach helps to solve the problem of pattern size-dependent parameter optimality and significantly reduces the probability of a neuron's forgetting an already learned pattern. For demonstration purposes, the network was trained for the first ten letters of the Braille alphabet.

  7. Evaluating spatial patterns in hydrological modelling

    Koch, Julian

    the contiguous United Sates (10^6 km2). To this end, the thesis at hand applies a set of spatial performance metrics on various hydrological variables, namely land-surface-temperature (LST), evapotranspiration (ET) and soil moisture. The inspiration for the applied metrics is found in related fields...... is not fully exploited by current modelling frameworks due to the lack of suitable spatial performance metrics. Furthermore, the traditional model evaluation using discharge is found unsuitable to lay confidence on the predicted catchment inherent spatial variability of hydrological processes in a fully...

  8. Recognition of visual stimuli and memory for spatial context in schizophrenic patients and healthy volunteers.

    Brébion, Gildas; David, Anthony S; Pilowsky, Lyn S; Jones, Hugh

    2004-11-01

    Verbal and visual recognition tasks were administered to 40 patients with schizophrenia and 40 healthy comparison subjects. The verbal recognition task consisted of discriminating between 16 target words and 16 new words. The visual recognition task consisted of discriminating between 16 target pictures (8 black-and-white and 8 color) and 16 new pictures (8 black-and-white and 8 color). Visual recognition was followed by a spatial context discrimination task in which subjects were required to remember the spatial location of the target pictures at encoding. Results showed that recognition deficit in patients was similar for verbal and visual material. In both schizophrenic and healthy groups, men, but not women, obtained better recognition scores for the colored than for the black-and-white pictures. However, men and women similarly benefited from color to reduce spatial context discrimination errors. Patients showed a significant deficit in remembering the spatial location of the pictures, independently of accuracy in remembering the pictures themselves. These data suggest that patients are impaired in the amount of visual information that they can encode. With regards to the perceptual attributes of the stimuli, memory for spatial information appears to be affected, but not processing of color information.

  9. Recognition of higher order patterns in proteins: immunologic kernels.

    Robert D Bremel

    Full Text Available By applying analysis of the principal components of amino acid physical properties we predicted cathepsin cleavage sites, MHC binding affinity, and probability of B-cell epitope binding of peptides in tetanus toxin and in ten diverse additional proteins. Cross-correlation of these metrics, for peptides of all possible amino acid index positions, each evaluated in the context of a ±25 amino acid flanking region, indicated that there is a strongly repetitive pattern of short peptides of approximately thirty amino acids each bounded by cathepsin cleavage sites and each comprising B-cell linear epitopes, MHC-I and MHC-II binding peptides. Such "immunologic kernel" peptides comprise all signals necessary for adaptive immunologic cognition, response and recall. The patterns described indicate a higher order spatial integration that forms a symbolic logic coordinating the adaptive immune system.

  10. Brief Report: Developing Spatial Frequency Biases for Face Recognition in Autism and Williams Syndrome

    Leonard, Hayley C.; Annaz, Dagmara; Karmiloff-Smith, Annette; Johnson, Mark H.

    2011-01-01

    The current study investigated whether contrasting face recognition abilities in autism and Williams syndrome could be explained by different spatial frequency biases over developmental time. Typically-developing children and groups with Williams syndrome and autism were asked to recognise faces in which low, middle and high spatial frequency…

  11. Human hippocampal and parahippocampal activity during visual associative recognition memory for spatial and nonspatial stimulus configurations.

    Düzel, Emrah; Habib, Reza; Rotte, Michael; Guderian, Sebastian; Tulving, Endel; Heinze, Hans-Jochen

    2003-10-15

    Evidence from animal studies points to the importance of the parahippocampal region (PHR) [including entorhinal, perirhinal, and parahippocampal (PHC) cortices] for recognition of visual stimuli. Recent findings in animals suggest that PHR may also be involved in visual associative recognition memory for configurations of stimuli. Thus far, however, such involvement has not been demonstrated in humans. In fact, it has been argued that associative recognition in humans is critically dependent on the hippocampal formation (HF). To better understand the division of function between HF and PHR during recognition memory in humans, we measured the activity of both areas in healthy young adults during an associative recognition memory task using functional magnetic resonance imaging. To more precisely characterize the nature of the associations that might be coded by the HF and PHR during recognition, subjects were required to learn and were later tested for associations based on either the spatial arrangements of two stimuli or the identity of two stimuli (a face and a tool). An area in the PHC was found to be more active for recognized old configurations than new configurations in both the spatial and identity conditions. The HF, on the other hand, was more active for recognition of new configurations than old configurations and also more active in the spatial than the identity condition. These data highlight the involvement of PHR in the long-term coding of associative relationships between stimuli and help to clarify the nature of its functional distinction from the HF.

  12. Facial expression recognition based on improved local ternary pattern and stacked auto-encoder

    Wu, Yao; Qiu, Weigen

    2017-08-01

    In order to enhance the robustness of facial expression recognition, we propose a method of facial expression recognition based on improved Local Ternary Pattern (LTP) combined with Stacked Auto-Encoder (SAE). This method uses the improved LTP extraction feature, and then uses the improved depth belief network as the detector and classifier to extract the LTP feature. The combination of LTP and improved deep belief network is realized in facial expression recognition. The recognition rate on CK+ databases has improved significantly.

  13. Differences in Spatial Memory Recognition Due to Cognitive Style

    Tasc?n, Laura; Boccia, Maddalena; Piccardi, Laura; Cimadevilla, Jos? M.

    2017-01-01

    Field independence refers to the ability to perceive details from the surrounding context as a whole and to represent the environment by relying on an internal reference frame. Conversely, field dependence individuals tend to focus their attention on single environmental features analysing them individually. This cognitive style affects several visuo-spatial abilities including spatial memory. This study assesses both the effect of field independence and field dependence on performance displa...

  14. Multiple Spatial Coherence Resonances and Spatial Patterns in a Noise-Driven Heterogeneous Neuronal Network

    Li, Yu-Ye; Ding, Xue-Li

    2014-12-01

    Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris—Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns.

  15. Multiple Spatial Coherence Resonances and Spatial Patterns in a Noise-Driven Heterogeneous Neuronal Network

    Li Yu-Ye; Ding Xue-Li

    2014-01-01

    Heterogeneity of the neurons and noise are inevitable in the real neuronal network. In this paper, Gaussian white noise induced spatial patterns including spiral waves and multiple spatial coherence resonances are studied in a network composed of Morris—Lecar neurons with heterogeneity characterized by parameter diversity. The relationship between the resonances and the transitions between ordered spiral waves and disordered spatial patterns are achieved. When parameter diversity is introduced, the maxima of multiple resonances increases first, and then decreases as diversity strength increases, which implies that the coherence degrees induced by noise are enhanced at an intermediate diversity strength. The synchronization degree of spatial patterns including ordered spiral waves and disordered patterns is identified to be a very low level. The results suggest that the nervous system can profit from both heterogeneity and noise, and the multiple spatial coherence resonances are achieved via the emergency of spiral waves instead of synchronization patterns. (interdisciplinary physics and related areas of science and technology)

  16. Ficolins and FIBCD1: Soluble and membrane bound pattern recognition molecules with acetyl group selectivity

    Thomsen, Theresa; Schlosser, Anders; Holmskov, Uffe

    2011-01-01

    as pattern recognition molecules. Ficolins are soluble oligomeric proteins composed of trimeric collagen-like regions linked to fibrinogen-related domains (FReDs) that have the ability to sense molecular patterns on both pathogens and apoptotic cell surfaces and activate the complement system. The ficolins......D-containing molecules, and discusses structural resemblance but also diversity in recognition of acetylated ligands....

  17. HTM Spatial Pooler With Memristor Crossbar Circuits for Sparse Biometric Recognition.

    James, Alex Pappachen; Fedorova, Irina; Ibrayev, Timur; Kudithipudi, Dhireesha

    2017-06-01

    Hierarchical Temporal Memory (HTM) is an online machine learning algorithm that emulates the neo-cortex. The development of a scalable on-chip HTM architecture is an open research area. The two core substructures of HTM are spatial pooler and temporal memory. In this work, we propose a new Spatial Pooler circuit design with parallel memristive crossbar arrays for the 2D columns. The proposed design was validated on two different benchmark datasets, face recognition, and speech recognition. The circuits are simulated and analyzed using a practical memristor device model and 0.18 μm IBM CMOS technology model. The databases AR, YALE, ORL, and UFI, are used to test the performance of the design in face recognition. TIMIT dataset is used for the speech recognition.

  18. Development of Spatial Distribution Patterns by Biofilm Cells

    Haagensen, Janus Anders Juul; Hansen, Susse Kirkelund; Bak Christensen, Bjarke

    2015-01-01

    -pattern by Acinetobacter sp. C6. Ecological spatial pattern analyses revealed that the microcolonies were not entirely randomly distributed, and instead arranged in a uniform pattern. Detailed time-lapse confocal microscopy at the single cell level demonstrated that the spatial pattern was the result of an intriguing self......-organization: Small multicellular clusters moved along the surface to fuse with one another to form microcolonies. This active distribution capability was dependent on environmental factors (carbon source, oxygen) and historical contingency (formation of phenotypic variants). The findings of this study are discussed...

  19. Applications of pattern recognition techniques to online fault detection

    Singer, R.M.; Gross, K.C.; King, R.W.

    1993-01-01

    A common problem to operators of complex industrial systems is the early detection of incipient degradation of sensors and components in order to avoid unplanned outages, to orderly plan for anticipated maintenance activities and to assure continued safe operation. In such systems, there usually are a large number of sensors (upwards of several thousand is not uncommon) serving many functions, ranging from input to control systems, monitoring of safety parameters and component performance limits, system environmental conditions, etc. Although sensors deemed to measure important process conditions are generally alarmed, the alarm set points usually are just high-low limits and the operator's response to such alarms is based on written procedures and his or her experience and training. In many systems this approach has been successful, but in situations where the cost of a forced outage is high an improved method is needed. In such cases it is desirable, if not necessary, to detect disturbances in either sensors or the process prior to any actual failure that could either shut down the process or challenge any safety system that is present. Recent advances in various artificial intelligence techniques have provided the opportunity to perform such functions of early detection and diagnosis. In this paper, the experience gained through the application of several pattern-recognition techniques to the on-line monitoring and incipient disturbance detection of several coolant pumps and numerous sensors at the Experimental Breeder Reactor-II (EBR-II) which is located at the Idaho National Engineering Laboratory is presented

  20. Cerebellar involvement in metabolic disorders: a pattern-recognition approach

    Steinlin, M.; Boltshauser, E.; Blaser, S.

    1998-01-01

    Inborn errors of metabolism can affect the cerebellum during development, maturation and later during life. We have established criteria for pattern recognition of cerebellar abnormalities in metabolic disorders. The abnormalities can be divided into four major groups: cerebellar hypoplasia (CH), hyperplasia, cerebellar atrophy (CA), cerebellar white matter abnormalities (WMA) or swelling, and involvement of the dentate nuclei (DN) or cerebellar cortex. CH can be an isolated typical finding, as in adenylsuccinase deficiency, but is also occasionally seen in many other disorders. Differentiation from CH and CA is often difficult, as in carbohydrate deficient glycoprotein syndrome or 2-l-hydroxyglutaric acidaemia. In cases of atrophy the relationship of cerebellar to cerebral atrophy is important. WMA may be diffuse or patchy, frequently predominantly around the DN. Severe swelling of white matter is present during metabolic crisis in maple syrup urine disease. The DN can be affected by metabolite deposition, necrosis, calcification or demyelination. Involvement of cerebellar cortex is seen in infantile neuroaxonal dystrophy. Changes in DN and cerebellar cortex are rather typical and therefore most helpful; additional features should be sought as they are useful in narrowing down the differential diagnosis. (orig.)

  1. Session Introduction: Challenges of Pattern Recognition in Biomedical Data.

    Verma, Shefali Setia; Verma, Anurag; Basile, Anna Okula; Bishop, Marta-Byrska; Darabos, Christian

    2018-01-01

    The analysis of large biomedical data often presents with various challenges related to not just the size of the data, but also to data quality issues such as heterogeneity, multidimensionality, noisiness, and incompleteness of the data. The data-intensive nature of computational genomics problems in biomedical informatics warrants the development and use of massive computer infrastructure and advanced software tools and platforms, including but not limited to the use of cloud computing. Our session aims to address these challenges in handling big data for designing a study, performing analysis, and interpreting outcomes of these analyses. These challenges have been prevalent in many studies including those which focus on the identification of novel genetic variant-phenotype associations using data from sources like Electronic Health Records (EHRs) or multi-omic data. One of the biggest challenges to focus on is the imperfect nature of the biomedical data where a lot of noise and sparseness is observed. In our session, we will present research articles that can help in identifying innovative ways to recognize and overcome newly arising challenges associated with pattern recognition in biomedical data.

  2. Spatial patterns of species diversity in Kenya

    Oindo, B.O.

    2001-01-01

    The most striking feature of Earth is the existence of life and the most striking feature of life is its diversity. Explaining patterns of species diversity is one of the most complex problems in ecology. This is because diversity is usually the outcome of many contributing factors whose relative

  3. Hippocampus lesions induced deficits in social and spatial recognition in Octodon degus.

    Uekita, Tomoko; Okanoya, Kazuo

    2011-06-01

    Previous studies of rodents reported that the hippocampus plays an important role in social behavior as well as spatial behavior. However, there are inconsistencies between reports of the effects of hippocampal lesions on social behavior. The present study sought to clarify the aspects of social behavior in which the hippocampus plays a role in the degu, Octodon degus, a social rodent. We examined the effects of hippocampal lesions on social behavior in the degu using familiar and novel partners. When placed in a familiar environment with a familiar partner after surgery, sham operation control (S.Cont) degus exhibited affinitive behavior longer compared with hippocampal lesioned (HPC) degus. In a novel environment, S.Cont degus exhibited longer aggressive behavior toward novel partners, and longer affinitive behavior with familiar partners compared with HPC degus. HPC degus did not show evidence of differentiation in social behavior, regardless of partner's novelty. The results of an anxiety test confirmed that these findings could not be attributed to changes in emotional state. We conducted an object-recognition test with the same subjects. HPC degus showed an impairment in spatial recognition but not object recognition. Taken together, these results suggest that the degu hippocampus plays an important role not only in spatial recognition but also social recognition. The changes in social behavior resulting from hippocampal lesions were interpreted as due to an impairment of social recognition rather than an impairment in novelty detection. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Analysis of Spatial Voting Patterns: An Approach in Political Socialization

    Klimasewski, Ted

    1973-01-01

    Passage of the 26th Amendment gave young adults the right to vote. This study attempts to further student understanding of the electoral process by presenting a method for analyzing spatial voting patterns. The spatial emphasis adds another dimension to the temporal and behavioral-structural approaches in studying the American electoral system.…

  5. Retrieval of Spatial Join Pattern Instances from Sensor Networks

    Yiu, Man Lung; Mamoulis, Nikos; Bakiras, Spiridon

    2009-01-01

    We study the continuous evaluation of spatial join queries and extensions thereof, defined by interesting combinations of sensor readings (events) that co-occur in a spatial neighborhood. An example of such a pattern is "a high temperature reading in the vicinity of at least four high-pressure re...

  6. Spatial pattern and ecological process in the coffee agroforestry system.

    Perfecto, Ivette; Vandermeer, John

    2008-04-01

    The coffee agroforestry system provides an ideal platform for the study of spatial ecology. The uniform pattern of the coffee plants and shade trees allows for the study of pattern generation through intrinsic biological forces rather than extrinsic habitat patchiness. Detailed studies, focusing on a key mutualism between an ant (Azteca instabilis) and a scale insect (Coccus viridis), conducted in a 45-ha plot in a coffee agroforestry system have provided insights into (1) the quantitative evaluation of spatial pattern of the scale insect Coccus viridis on coffee bushes, (2) the mechanisms for the generation of patterns through the combination of local satellite ant nest formation and regional control from natural enemies, and (3) the consequences of the spatial pattern for the stability of predator-prey (host-parasitoid) systems, for a key coccinelid beetle preying on the scale insects and a phorid fly parasitoid parasitizing the ant.

  7. Crime Pattern Analysis: A Spatial Frequent Pattern Mining Approach

    2012-05-10

    econometrics. A companion to theoretical econometrics, pages 310-330, 1988. [5] L. Anselin, J. Cohen, D. Cook, W. Gorr, and G. Tita . Spatial analyses...52] G. Mohler, M. Short, P. Brantingham, F. Schoenberg, and G. Tita . Self-exciting point process modeling of crime. Journal of the American...Systems, 9:462, 2010. [69] M. Short, P. Brantingham, A. Bertozzi, and G. Tita . Dissipation and displacement of hotspots in reaction-diffusion models

  8. Surveillance of a nuclear reactor core by use of a pattern recognition method

    Invernizzi, Michel.

    1982-07-01

    A pattern recognition system is described for the surveillance of a PWR reactor. This report contains four chapters. The first one succinctly deals with statistical pattern recognition principles. In the second chapter we show how a surveillance problem may be treated by pattern recognition and we present methods for surveillances (detection of abnormalities), controls (kind of running recognition) and diagnotics (kind of abnormality recognition). The third chapter shows a surveillance method of a nuclear plant. The signals used are the neutron noise observations made by the ionization chambers inserted in the reactor. Abnormality is defined in opposition with the training set witch is supposed to be an exhaustive summary of normality. In the fourth chapter we propose a scheme for an adaptative recognition and a method based on classes modelisations by hyper-spheres. This method has been tested on simulated training sets in two-dimensional feature spaces. It gives solutions to problems of non-linear separability [fr

  9. Multi-spatial analysis of aeolian dune-field patterns

    Ewing, Ryan C.; McDonald, George D.; Hayes, Alex G.

    2015-07-01

    Aeolian dune-fields are composed of different spatial scales of bedform patterns that respond to changes in environmental boundary conditions over a wide range of time scales. This study examines how variations in spatial scales of dune and ripple patterns found within dune fields are used in environmental reconstructions on Earth, Mars and Titan. Within a single bedform type, different spatial scales of bedforms emerge as a pattern evolves from an initial state into a well-organized pattern, such as with the transition from protodunes to dunes. Additionally, different types of bedforms, such as ripples, coarse-grained ripples and dunes, coexist at different spatial scales within a dune-field. Analysis of dune-field patterns at the intersection of different scales and types of bedforms at different stages of development provides a more comprehensive record of sediment supply and wind regime than analysis of a single scale and type of bedform. Interpretations of environmental conditions from any scale of bedform, however, are limited to environmental signals associated with the response time of that bedform. Large-scale dune-field patterns integrate signals over long-term climate cycles and reveal little about short-term variations in wind or sediment supply. Wind ripples respond instantly to changing conditions, but reveal little about longer-term variations in wind or sediment supply. Recognizing the response time scales across different spatial scales of bedforms maximizes environmental interpretations from dune-field patterns.

  10. Emerging spatial patterns in Antarctic prokaryotes

    Chong, Chun-Wie; Pearce, David A.; Convey, Peter

    2015-01-01

    Recent advances in knowledge of patterns of biogeography in terrestrial eukaryotic organisms have led to a fundamental paradigm shift in understanding of the controls and history of life on land in Antarctica, and its interactions over the long term with the glaciological and geological processes that have shaped the continent. However, while it has long been recognized that the terrestrial ecosystems of Antarctica are dominated by microbes and their processes, knowledge of microbial diversit...

  11. Complex temporal and spatial patterns in nonequilibrium processes

    Swinney, H.L.

    1992-01-01

    We have used dynamical systems methods to study and characterize bifurcations and pattern formation in a variety of nonequilibrium systems. In this paper we describe our work on dynamical systems, chemical oscillations and chaos, chemical spatial patterns, instabilities in fluid dynamics, electrodeposition clusters, the ballast resistor, and crack propagation

  12. Weighted Local Active Pixel Pattern (WLAPP for Face Recognition in Parallel Computation Environment

    Gundavarapu Mallikarjuna Rao

    2013-10-01

    Full Text Available Abstract  - The availability of multi-core technology resulted totally new computational era. Researchers are keen to explore available potential in state of art-machines for breaking the bearer imposed by serial computation. Face Recognition is one of the challenging applications on so ever computational environment. The main difficulty of traditional Face Recognition algorithms is lack of the scalability. In this paper Weighted Local Active Pixel Pattern (WLAPP, a new scalable Face Recognition Algorithm suitable for parallel environment is proposed.  Local Active Pixel Pattern (LAPP is found to be simple and computational inexpensive compare to Local Binary Patterns (LBP. WLAPP is developed based on concept of LAPP. The experimentation is performed on FG-Net Aging Database with deliberately introduced 20% distortion and the results are encouraging. Keywords — Active pixels, Face Recognition, Local Binary Pattern (LBP, Local Active Pixel Pattern (LAPP, Pattern computing, parallel workers, template, weight computation.  

  13. Applications of pattern recognition theory in diagnostics of nuclear power plants

    Cech, J.

    1982-01-01

    The questions are discussed of the application of the theory of pattern recognition in the diagnostics of nuclear power plants. For the future use of recognition systems in the diagnostics of nuclear power plants it is obvious that like with other complex systems, optimal models will have to be used which will organize the optimal recognition algorithm. The conclusion is presented that for the needs of nuclear power plants special systems will be more suitable for pattern recognition than digital computers which are flexible and adaptible but have a lower decision rate, an insufficient working memory, complicated programs, etc. (Z.M.)

  14. Mining the Relationship between Spatial Mobility Patterns and POIs

    Liping Huang

    2018-01-01

    Full Text Available Passengers move between urban places for diverse interests and drive the metropolitan regions as the aggregation of urban places to group into network communities. This paper aims to examine the relationship between the spatial patterns (represented by the network communities of mobility flows and places of interest (POIs. Furtherly, it intends to identify the categories of POIs that play the most significant role in shaping the spatial patterns of mobility flows. To achieve these purposes, we partition the study area into disjoint regions and construct the network with each partitioned region as a node and connection between them as links weighted by the mobility flows. The community detection algorithm is implemented on the network to discover spatial mobility patterns, and the multiclass classification based on the logistic regression method is adopted to classify spatial communities featured by POIs. Taking the taxi systems of Shanghai and Beijing as examples, we detect spatial communities based on the movement strengths among regions. Then we investigate their correlations with POIs. It finds that communities’ modularity correlates linearly with POIs; particularly governments, hotels, and the traffic facilities are of the most significance for generating the mobility patterns. This study can provide valuable insight into understanding the spatial mobility patterns from the perspective of POIs.

  15. Balancing geo-privacy and spatial patterns in epidemiological studies

    Chien-Chou Chen

    2017-11-01

    Full Text Available To balance the protection of geo-privacy and the accuracy of spatial patterns, we developed a geo-spatial tool (GeoMasker intended to mask the residential locations of patients or cases in a geographic information system (GIS. To elucidate the effects of geo-masking parameters, we applied 2010 dengue epidemic data from Taiwan testing the tool’s performance in an empirical situation. The similarity of pre- and post-spatial patterns was measured by D statistics under a 95% confidence interval. In the empirical study, different magnitudes of anonymisation (estimated Kanonymity ≥10 and 100 were achieved and different degrees of agreement on the pre- and post-patterns were evaluated. The application is beneficial for public health workers and researchers when processing data with individuals’ spatial information.

  16. Multiresolution pattern recognition of small volcanos in Magellan data

    Smyth, P.; Anderson, C. H.; Aubele, J. C.; Crumpler, L. S.

    1992-01-01

    The Magellan data is a treasure-trove for scientific analysis of venusian geology, providing far more detail than was previously available from Pioneer Venus, Venera 15/16, or ground-based radar observations. However, at this point, planetary scientists are being overwhelmed by the sheer quantities of data collected--data analysis technology has not kept pace with our ability to collect and store it. In particular, 'small-shield' volcanos (less than 20 km in diameter) are the most abundant visible geologic feature on the planet. It is estimated, based on extrapolating from previous studies and knowledge of the underlying geologic processes, that there should be on the order of 10(exp 5) to 10(exp 6) of these volcanos visible in the Magellan data. Identifying and studying these volcanos is fundamental to a proper understanding of the geologic evolution of Venus. However, locating and parameterizing them in a manual manner is very time-consuming. Hence, we have undertaken the development of techniques to partially automate this task. The goal is not the unrealistic one of total automation, but rather the development of a useful tool to aid the project scientists. The primary constraints for this particular problem are as follows: (1) the method must be reasonably robust; and (2) the method must be reasonably fast. Unlike most geological features, the small volcanos of Venus can be ascribed to a basic process that produces features with a short list of readily defined characteristics differing significantly from other surface features on Venus. For pattern recognition purposes the relevant criteria include the following: (1) a circular planimetric outline; (2) known diameter frequency distribution from preliminary studies; (3) a limited number of basic morphological shapes; and (4) the common occurrence of a single, circular summit pit at the center of the edifice.

  17. Motor Oil Classification using Color Histograms and Pattern Recognition Techniques.

    Ahmadi, Shiva; Mani-Varnosfaderani, Ahmad; Habibi, Biuck

    2018-04-20

    Motor oil classification is important for quality control and the identification of oil adulteration. In thiswork, we propose a simple, rapid, inexpensive and nondestructive approach based on image analysis and pattern recognition techniques for the classification of nine different types of motor oils according to their corresponding color histograms. For this, we applied color histogram in different color spaces such as red green blue (RGB), grayscale, and hue saturation intensity (HSI) in order to extract features that can help with the classification procedure. These color histograms and their combinations were used as input for model development and then were statistically evaluated by using linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and support vector machine (SVM) techniques. Here, two common solutions for solving a multiclass classification problem were applied: (1) transformation to binary classification problem using a one-against-all (OAA) approach and (2) extension from binary classifiers to a single globally optimized multilabel classification model. In the OAA strategy, LDA, QDA, and SVM reached up to 97% in terms of accuracy, sensitivity, and specificity for both the training and test sets. In extension from binary case, despite good performances by the SVM classification model, QDA and LDA provided better results up to 92% for RGB-grayscale-HSI color histograms and up to 93% for the HSI color map, respectively. In order to reduce the numbers of independent variables for modeling, a principle component analysis algorithm was used. Our results suggest that the proposed method is promising for the identification and classification of different types of motor oils.

  18. Spatial and Temporal Patterns In Ecohydrological Separation

    Jarvis, S. K.; Barnard, H. R.; Singha, K.; Harmon, R. E.; Szutu, D.

    2017-12-01

    The model of ecohydrological separation suggests that trees source water from a different subsurface pool than what is contributing to stream flow during dry periods, however diel fluctuations in stream flow and transpiration are tightly coupled. To better understand the mechanism of this coupling, this study examines spatiotemporal patterns in water isotopic relationships between tree, soil, and stream water. Preliminary analysis of data collected in 2015 show a trend in δ18O enrichment in xylem water, suggesting an increased reliance on enriched soil water not flowing to the stream as the growing season progresses, while xylem samples from 2016, a particularly wet year, do not have this trend. Variations in these temporal trends are explored with regard to distance from stream, aspect of hillslope, position in the watershed, size of the tree, and soil depth. Additionally, a near-stream site is examined at high resolution using water isotope data, sap flow, and electrical resistivity surveying to examine soil moisture and water use patterns across the riparian-hillslope transition.

  19. Biased figure-ground assignment affects conscious object recognition in spatial neglect.

    Eramudugolla, Ranmalee; Driver, Jon; Mattingley, Jason B

    2010-09-01

    Unilateral spatial neglect is a disorder of attention and spatial representation, in which early visual processes such as figure-ground segmentation have been assumed to be largely intact. There is evidence, however, that the spatial attention bias underlying neglect can bias the segmentation of a figural region from its background. Relatively few studies have explicitly examined the effect of spatial neglect on processing the figures that result from such scene segmentation. Here, we show that a neglect patient's bias in figure-ground segmentation directly influences his conscious recognition of these figures. By varying the relative salience of figural and background regions in static, two-dimensional displays, we show that competition between elements in such displays can modulate a neglect patient's ability to recognise parsed figures in a scene. The findings provide insight into the interaction between scene segmentation, explicit object recognition, and attention.

  20. Terrain feature recognition for synthetic aperture radar (SAR) imagery employing spatial attributes of targets

    Iisaka, Joji; Sakurai-Amano, Takako

    1994-08-01

    This paper describes an integrated approach to terrain feature detection and several methods to estimate spatial information from SAR (synthetic aperture radar) imagery. Spatial information of image features as well as spatial association are key elements in terrain feature detection. After applying a small feature preserving despeckling operation, spatial information such as edginess, texture (smoothness), region-likeliness and line-likeness of objects, target sizes, and target shapes were estimated. Then a trapezoid shape fuzzy membership function was assigned to each spatial feature attribute. Fuzzy classification logic was employed to detect terrain features. Terrain features such as urban areas, mountain ridges, lakes and other water bodies as well as vegetated areas were successfully identified from a sub-image of a JERS-1 SAR image. In the course of shape analysis, a quantitative method was developed to classify spatial patterns by expanding a spatial pattern through the use of a series of pattern primitives.

  1. Illumination robust face recognition using spatial adaptive shadow compensation based on face intensity prior

    Hsieh, Cheng-Ta; Huang, Kae-Horng; Lee, Chang-Hsing; Han, Chin-Chuan; Fan, Kuo-Chin

    2017-12-01

    Robust face recognition under illumination variations is an important and challenging task in a face recognition system, particularly for face recognition in the wild. In this paper, a face image preprocessing approach, called spatial adaptive shadow compensation (SASC), is proposed to eliminate shadows in the face image due to different lighting directions. First, spatial adaptive histogram equalization (SAHE), which uses face intensity prior model, is proposed to enhance the contrast of each local face region without generating visible noises in smooth face areas. Adaptive shadow compensation (ASC), which performs shadow compensation in each local image block, is then used to produce a wellcompensated face image appropriate for face feature extraction and recognition. Finally, null-space linear discriminant analysis (NLDA) is employed to extract discriminant features from SASC compensated images. Experiments performed on the Yale B, Yale B extended, and CMU PIE face databases have shown that the proposed SASC always yields the best face recognition accuracy. That is, SASC is more robust to face recognition under illumination variations than other shadow compensation approaches.

  2. Wavenumber locking and pattern formation in spatially forced systems

    Manor, Rotem; Meron, Ehud; Hagberg, Aric

    2009-01-01

    We study wavenumber locking and pattern formation resulting from weak spatially periodic one-dimensional forcing of two-dimensional systems. We consider systems that produce stationary or traveling stripe patterns when unforced and apply forcing aligned with the stripes. Forcing at close to twice the pattern wavenumber selects, stabilizes, or creates resonant stripes locked at half the forcing wavenumber. If the mismatch between the forcing and pattern wavenumber is high we find that the pattern still locks but develops a wave vector component perpendicular to the forcing direction and forms rectangular and oblique patterns. When the unforced system supports traveling waves, resonant rectangular patterns remain stationary but oblique patterns travel in a direction orthogonal to the traveling waves.

  3. Emergent intelligent properties of progressively structured pattern recognition nets

    Aleksander, I

    1983-07-01

    The n-tuple recognition net is seen as a building brick of a progression of network structures. The emergent intelligent properties of such systems are discussed. They include the amplification of confidence for the recognition of images that differ in small detail, a short term memory of the last seen image, sequence sensitivity, sequence sensitivity, sequence acceptance and saccadic inspection as an aid in scene analysis. 12 references.

  4. Kernel Learning of Histogram of Local Gabor Phase Patterns for Face Recognition

    Bineng Zhong

    2008-06-01

    Full Text Available This paper proposes a new face recognition method, named kernel learning of histogram of local Gabor phase pattern (K-HLGPP, which is based on Daugman’s method for iris recognition and the local XOR pattern (LXP operator. Unlike traditional Gabor usage exploiting the magnitude part in face recognition, we encode the Gabor phase information for face classification by the quadrant bit coding (QBC method. Two schemes are proposed for face recognition. One is based on the nearest-neighbor classifier with chi-square as the similarity measurement, and the other makes kernel discriminant analysis for HLGPP (K-HLGPP using histogram intersection and Gaussian-weighted chi-square kernels. The comparative experiments show that K-HLGPP achieves a higher recognition rate than other well-known face recognition systems on the large-scale standard FERET, FERET200, and CAS-PEAL-R1 databases.

  5. On Assisting a Visual-Facial Affect Recognition System with Keyboard-Stroke Pattern Information

    Stathopoulou, I.-O.; Alepis, E.; Tsihrintzis, G. A.; Virvou, M.

    Towards realizing a multimodal affect recognition system, we are considering the advantages of assisting a visual-facial expression recognition system with keyboard-stroke pattern information. Our work is based on the assumption that the visual-facial and keyboard modalities are complementary to each other and that their combination can significantly improve the accuracy in affective user models. Specifically, we present and discuss the development and evaluation process of two corresponding affect recognition subsystems, with emphasis on the recognition of 6 basic emotional states, namely happiness, sadness, surprise, anger and disgust as well as the emotion-less state which we refer to as neutral. We find that emotion recognition by the visual-facial modality can be aided greatly by keyboard-stroke pattern information and the combination of the two modalities can lead to better results towards building a multimodal affect recognition system.

  6. Food restriction affects Y-maze spatial recognition memory in developing mice.

    Fu, Yu; Chen, Yanmei; Li, Liane; Wang, Yumei; Kong, Xiangyang; Wang, Jianhong

    2017-08-01

    The ambiguous effects of food restriction (FR) on cognition in rodents have been mostly explored in the aged brain by a variety of paradigms, in which either rewards or punishments are involved. This study aims to examine the effects of chronic and acute FR with varying intensities on spatial recognition memory in developing mice. We have used a Y-maze task that is based on the innate tendency of rodents to explore novel environments. In chronic FR, mice had 70-30% chow of control for seven weeks. In acute FR, mice were food restricted for 12-48h before the tests. We found that chronic FR had no effect on the preference of mice for novelty in the Y-maze, but severe FR (50-30% of control) caused impairment on spatial recognition memory. The impairment significantly correlated with the slow weight growth induced by FR. Acute FR also did not affect the novelty preference of mice, but either improved or impaired the memory retention. These data suggest chronic FR impairs Y-maze spatial recognition memory in developing mice depending on FR intensity and individual tolerability of the FR. Moreover, acute FR exerts diverse effects on the memory, either positive or negative. Our findings have revealed new insights on the effects of FR on spatial recognition memory in developing animals. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  7. Optimal pattern synthesis for speech recognition based on principal component analysis

    Korsun, O. N.; Poliyev, A. V.

    2018-02-01

    The algorithm for building an optimal pattern for the purpose of automatic speech recognition, which increases the probability of correct recognition, is developed and presented in this work. The optimal pattern forming is based on the decomposition of an initial pattern to principal components, which enables to reduce the dimension of multi-parameter optimization problem. At the next step the training samples are introduced and the optimal estimates for principal components decomposition coefficients are obtained by a numeric parameter optimization algorithm. Finally, we consider the experiment results that show the improvement in speech recognition introduced by the proposed optimization algorithm.

  8. Spatial pattern enhances ecosystem functioning in an African savanna.

    Pringle, Robert M; Doak, Daniel F; Brody, Alison K; Jocqué, Rudy; Palmer, Todd M

    2010-05-25

    The finding that regular spatial patterns can emerge in nature from local interactions between organisms has prompted a search for the ecological importance of these patterns. Theoretical models have predicted that patterning may have positive emergent effects on fundamental ecosystem functions, such as productivity. We provide empirical support for this prediction. In dryland ecosystems, termite mounds are often hotspots of plant growth (primary productivity). Using detailed observations and manipulative experiments in an African savanna, we show that these mounds are also local hotspots of animal abundance (secondary and tertiary productivity): insect abundance and biomass decreased with distance from the nearest termite mound, as did the abundance, biomass, and reproductive output of insect-eating predators. Null-model analyses indicated that at the landscape scale, the evenly spaced distribution of termite mounds produced dramatically greater abundance, biomass, and reproductive output of consumers across trophic levels than would be obtained in landscapes with randomly distributed mounds. These emergent properties of spatial pattern arose because the average distance from an arbitrarily chosen point to the nearest feature in a landscape is minimized in landscapes where the features are hyper-dispersed (i.e., uniformly spaced). This suggests that the linkage between patterning and ecosystem functioning will be common to systems spanning the range of human management intensities. The centrality of spatial pattern to system-wide biomass accumulation underscores the need to conserve pattern-generating organisms and mechanisms, and to incorporate landscape patterning in efforts to restore degraded habitats and maximize the delivery of ecosystem services.

  9. Landsat TM band 431 combine on clustering analysis for pattern recognition land use using idrisi 4.2 software

    Wiweka, Arief H.; Izzawati, Tjahyaningsih A.

    1997-01-01

    The recognition of earth object's pattern which is recorded on remote sensing digital image can do by classification process based on the group of spectral pixel value. The spectral assessment on a spatial which represent the object characteristic can be helped through supervised or unsupervised. On certain case, there no media, such as maps, airborne, photo, the capability of field observation and the knowledge of object's location. Classification process can be done by clustering. The group of pixel based on the wide of the whole value interval of spectral image, then the class group base on the desired accuracy. The clustering method in Idris 4.2 software equipments are sequential method, statistic, iso data, and RGB. The clustering existence can help pre-process pattern recognition

  10. Variability in the recognition of distinctive immunofluorescence patterns in different brands of HEp-2 cell slides

    Alessandra Dellavance

    2013-06-01

    Full Text Available INTRODUCTION: Indirect immunofluorescence on HEp-2 cells is considered the gold standard for the detection of autoantibodies against cellular antigens. However, the culture conditions, cell fixation and permeabilization processes interfere directly in the preservation and spatial distribution of antigens. Therefore, one can assume that certain peculiarities in the processing of cellular substrate may affect the recognition of indirect immunofluorescence patterns associated with several autoantibodies. OBJECTIVE: To evaluate a panel of serum samples representing nuclear, nucleolar, cytoplasmic, mitotic apparatus, and chromosome plate patterns on HEp-2 cell substrates from different suppliers. MATERIALS AND METHODS: Seven blinded observers, independent from the three selected reference centers, evaluated 17 samples yielding different nuclear, nucleolar, cytoplasmic and mitotic apparatus patterns on HEp-2 cell slides from eight different brands. The slides were coded to maintain confidentiality of both brands and participating centers. RESULTS: The 17 HEp-2 cell patterns were identified on most substrates. Nonetheless, some slides showed deficit in the expression of several patterns: nuclear coarse speckled/U1-ribonucleoprotein associated with antibodies against RNP (U1RNP, centromeric protein F (CENP-F, proliferating cell nuclear antigen (PCNA, cytoplasmic fine speckled associated with anti-Jo-1 antibodies (histidyl synthetase, nuclear mitotic apparatus protein 1 (NuMA-1 and nuclear mitotic apparatus protein 2 (NuMA-2. CONCLUSION: Despite the overall good quality of the assessed HEp-2 substrates, there was considerable inconsistency in results among different commercial substrates. The variations may be due to the evaluated batches, hence generalizations cannot be made as to the respective brands. It is recommended that each new batch or new brand be tested with a panel of reference sera representing the various patterns.

  11. Pattern recognition and modelling of earthquake registrations with interactive computer support

    Manova, Katarina S.

    2004-01-01

    The object of the thesis is Pattern Recognition. Pattern recognition i.e. classification, is applied in many fields: speech recognition, hand printed character recognition, medical analysis, satellite and aerial-photo interpretations, biology, computer vision, information retrieval and so on. In this thesis is studied its applicability in seismology. Signal classification is an area of great importance in a wide variety of applications. This thesis deals with the problem of (automatic) classification of earthquake signals, which are non-stationary signals. Non-stationary signal classification is an area of active research in the signal and image processing community. The goal of the thesis is recognition of earthquake signals according to their epicentral zone. Source classification i.e. recognition is based on transformation of seismograms (earthquake registrations) to images, via time-frequency transformations, and applying image processing and pattern recognition techniques for feature extraction, classification and recognition. The tested data include local earthquakes from seismic regions in Macedonia. By using actual seismic data it is shown that proposed methods provide satisfactory results for classification and recognition.(Author)

  12. Selective memory generalization by spatial patterning of protein synthesis.

    O'Donnell, Cian; Sejnowski, Terrence J

    2014-04-16

    Protein synthesis is crucial for both persistent synaptic plasticity and long-term memory. De novo protein expression can be restricted to specific neurons within a population, and to specific dendrites within a single neuron. Despite its ubiquity, the functional benefits of spatial protein regulation for learning are unknown. We used computational modeling to study this problem. We found that spatially patterned protein synthesis can enable selective consolidation of some memories but forgetting of others, even for simultaneous events that are represented by the same neural population. Key factors regulating selectivity include the functional clustering of synapses on dendrites, and the sparsity and overlap of neural activity patterns at the circuit level. Based on these findings, we proposed a two-step model for selective memory generalization during REM and slow-wave sleep. The pattern-matching framework we propose may be broadly applicable to spatial protein signaling throughout cortex and hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Hardware processors for pattern recognition tasks in experiments with wire chambers

    Verkerk, C.

    1975-01-01

    Hardware processors for pattern recognition tasks in experiments with multiwire proportional chambers or drift chambers are described. They vary from simple ones used for deciding in real time if particle trajectories are straight to complex ones for recognition of curved tracks. Schematics and block-diagrams of different processors are shown

  14. Exploring How User Routine Affects the Recognition Performance of a Lock Pattern

    de Wide, Lisa; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.

    2015-01-01

    To protect an Android smartphone against attackers, a lock pattern can be used. Nevertheless, shoulder-surfing and smudge attacks can be used to get access despite of this protection. To combat these attacks, biometric recognition can be added to the lock pattern, such that the lock-pattern

  15. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.

    Kasabov, Nikola; Dhoble, Kshitij; Nuntalid, Nuttapod; Indiveri, Giacomo

    2013-05-01

    On-line learning and recognition of spatio- and spectro-temporal data (SSTD) is a very challenging task and an important one for the future development of autonomous machine learning systems with broad applications. Models based on spiking neural networks (SNN) have already proved their potential in capturing spatial and temporal data. One class of them, the evolving SNN (eSNN), uses a one-pass rank-order learning mechanism and a strategy to evolve a new spiking neuron and new connections to learn new patterns from incoming data. So far these networks have been mainly used for fast image and speech frame-based recognition. Alternative spike-time learning methods, such as Spike-Timing Dependent Plasticity (STDP) and its variant Spike Driven Synaptic Plasticity (SDSP), can also be used to learn spatio-temporal representations, but they usually require many iterations in an unsupervised or semi-supervised mode of learning. This paper introduces a new class of eSNN, dynamic eSNN, that utilise both rank-order learning and dynamic synapses to learn SSTD in a fast, on-line mode. The paper also introduces a new model called deSNN, that utilises rank-order learning and SDSP spike-time learning in unsupervised, supervised, or semi-supervised modes. The SDSP learning is used to evolve dynamically the network changing connection weights that capture spatio-temporal spike data clusters both during training and during recall. The new deSNN model is first illustrated on simple examples and then applied on two case study applications: (1) moving object recognition using address-event representation (AER) with data collected using a silicon retina device; (2) EEG SSTD recognition for brain-computer interfaces. The deSNN models resulted in a superior performance in terms of accuracy and speed when compared with other SNN models that use either rank-order or STDP learning. The reason is that the deSNN makes use of both the information contained in the order of the first input spikes

  16. Segmentation of turbo generator and reactor coolant pump vibratory patterns: a syntactic pattern recognition approach

    Tira, Z.

    1993-02-01

    This study was undertaken in the context of turbogenerator and reactor coolant pump vibration surveillance. Vibration meters are used to monitor equipment condition. An anomaly will modify the signal mean. At the present time, the expert system DIVA, developed to automate diagnosis, requests the operator to identify the nature of the pattern change thus indicated. In order to minimize operator intervention, we have to automate on the one hand classification and on the other hand, detection and segmentation of the patterns. The purpose of this study is to develop a new automatic system for the segmentation and classification of signals. The segmentation is based on syntactic pattern recognition. For the classification, a decision tree is used. The signals to process are the rms values of the vibrations measured on rotating machines. These signals are randomly sampled. All processing is automatic and no a priori statistical knowledge on the signals is required. The segmentation performances are assessed by tests on vibratory signals. (author). 31 figs

  17. Inputs and spatial distribution patterns of Cr in Jiaozhou Bay

    Yang, Dongfang; Miao, Zhenqing; Huang, Xinmin; Wei, Linzhen; Feng, Ming

    2018-03-01

    Cr pollution in marine bays has been one of the critical environmental issues, and understanding the input and spatial distribution patterns is essential to pollution control. In according to the source strengths of the major pollution sources, the input patterns of pollutants to marine bay include slight, moderate and heavy, and the spatial distribution are corresponding to three block models respectively. This paper analyzed input patterns and distributions of Cr in Jiaozhou Bay, eastern China based on investigation on Cr in surface waters during 1979-1983. Results showed that the input strengths of Cr in Jiaozhou Bay could be classified as moderate input and slight input, and the input strengths were 32.32-112.30 μg L-1 and 4.17-19.76 μg L-1, respectively. The input patterns of Cr included two patterns of moderate input and slight input, and the horizontal distributions could be defined by means of Block Model 2 and Block Model 3, respectively. In case of moderate input pattern via overland runoff, Cr contents were decreasing from the estuaries to the bay mouth, and the distribution pattern was parallel. In case of moderate input pattern via marine current, Cr contents were decreasing from the bay mouth to the bay, and the distribution pattern was parallel to circular. The Block Models were able to reveal the transferring process of various pollutants, and were helpful to understand the distributions of pollutants in marine bay.

  18. Probabilistic Neural Networks for Chemical Sensor Array Pattern Recognition: Comparison Studies, Improvements and Automated Outlier Rejection

    Shaffer, Ronald E

    1998-01-01

    For application to chemical sensor arrays, the ideal pattern recognition is accurate, fast, simple to train, robust to outliers, has low memory requirements, and has the ability to produce a measure...

  19. Utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information

    2009-01-01

    This report describes a study conducted to explore the utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information. The study gathered data from a large number of pilots who conduct all type...

  20. Peptide Pattern Recognition for high-throughput protein sequence analysis and clustering

    Busk, Peter Kamp

    2017-01-01

    Large collections of protein sequences with divergent sequences are tedious to analyze for understanding their phylogenetic or structure-function relation. Peptide Pattern Recognition is an algorithm that was developed to facilitate this task but the previous version does only allow a limited...... number of sequences as input. I implemented Peptide Pattern Recognition as a multithread software designed to handle large numbers of sequences and perform analysis in a reasonable time frame. Benchmarking showed that the new implementation of Peptide Pattern Recognition is twenty times faster than...... the previous implementation on a small protein collection with 673 MAP kinase sequences. In addition, the new implementation could analyze a large protein collection with 48,570 Glycosyl Transferase family 20 sequences without reaching its upper limit on a desktop computer. Peptide Pattern Recognition...

  1. Modular Neural Networks and Type-2 Fuzzy Systems for Pattern Recognition

    Melin, Patricia

    2012-01-01

    This book describes hybrid intelligent systems using type-2 fuzzy logic and modular neural networks for pattern recognition applications. Hybrid intelligent systems combine several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful pattern recognition systems. Type-2 fuzzy logic is an extension of traditional type-1 fuzzy logic that enables managing higher levels of uncertainty in complex real world problems, which are of particular importance in the area of pattern recognition. The book is organized in three main parts, each containing a group of chapters built around a similar subject. The first part consists of chapters with the main theme of theory and design algorithms, which are basically chapters that propose new models and concepts, which are the basis for achieving intelligent pattern recognition. The second part contains chapters with the main theme of using type-2 fuzzy models and modular neural ne...

  2. Impaired recognition of facial emotions from low-spatial frequencies in Asperger syndrome.

    Kätsyri, Jari; Saalasti, Satu; Tiippana, Kaisa; von Wendt, Lennart; Sams, Mikko

    2008-01-01

    The theory of 'weak central coherence' [Happe, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36(1), 5-25] implies that persons with autism spectrum disorders (ASDs) have a perceptual bias for local but not for global stimulus features. The recognition of emotional facial expressions representing various different levels of detail has not been studied previously in ASDs. We analyzed the recognition of four basic emotional facial expressions (anger, disgust, fear and happiness) from low-spatial frequencies (overall global shapes without local features) in adults with an ASD. A group of 20 participants with Asperger syndrome (AS) was compared to a group of non-autistic age- and sex-matched controls. Emotion recognition was tested from static and dynamic facial expressions whose spatial frequency contents had been manipulated by low-pass filtering at two levels. The two groups recognized emotions similarly from non-filtered faces and from dynamic vs. static facial expressions. In contrast, the participants with AS were less accurate than controls in recognizing facial emotions from very low-spatial frequencies. The results suggest intact recognition of basic facial emotions and dynamic facial information, but impaired visual processing of global features in ASDs.

  3. Definition of new 3D invariants. Applications to pattern recognition problems with neural networks

    Proriol, J.

    1996-01-01

    We propose a definition of new 3D invariants. Usual pattern recognition methods use 2D descriptions of 3D objects, we propose a 2D approximation of the defined 3D invariants which can be used with neural networks to solve pattern recognition problems. We describe some methods to use the 2 D approximants. This work is an extension of previous 3D invariants used to solve some high energy physics problems. (author)

  4. Data Mining and Pattern Recognition Models for Identifying Inherited Diseases: Challenges and Implications

    Iddamalgoda, Lahiru; Das, Partha S.; Aponso, Achala; Sundararajan, Vijayaraghava S.; Suravajhala, Prashanth; Valadi, Jayaraman K.

    2016-01-01

    Data mining and pattern recognition methods reveal interesting findings in genetic studies, especially on how the genetic makeup is associated with inherited diseases. Although researchers have proposed various data mining models for biomedical approaches, there remains a challenge in accurately prioritizing the single nucleotide polymorphisms (SNP) associated with the disease. In this commentary, we review the state-of-art data mining and pattern recognition models for identifying inherited ...

  5. CNNs flag recognition preprocessing scheme based on gray scale stretching and local binary pattern

    Gong, Qian; Qu, Zhiyi; Hao, Kun

    2017-07-01

    Flag is a rather special recognition target in image recognition because of its non-rigid features with the location, scale and rotation characteristics. The location change can be handled well by the depth learning algorithm Convolutional Neural Networks (CNNs), but the scale and rotation changes are quite a challenge for CNNs. Since it has good rotation and gray scale invariance, the local binary pattern (LBP) is combined with grayscale stretching and CNNs to make LBP and grayscale stretching as CNNs pretreatment, which can not only significantly improve the efficiency of flag recognition, but can also evaluate the recognition effect through ROC, accuracy, MSE and quality factor.

  6. Gender recognition using local binary pattern and Naive Bayes ...

    Automatic gender classification has many important applications, for example, intelligent user interface, surveillance, identity authentication, access control and human-computer interaction amongst others. Gender ... The system can be employed for use in scenarios where real time gender recognition is required.

  7. Pattern Recognition Methods and Features Selection for Speech Emotion Recognition System.

    Partila, Pavol; Voznak, Miroslav; Tovarek, Jaromir

    2015-01-01

    The impact of the classification method and features selection for the speech emotion recognition accuracy is discussed in this paper. Selecting the correct parameters in combination with the classifier is an important part of reducing the complexity of system computing. This step is necessary especially for systems that will be deployed in real-time applications. The reason for the development and improvement of speech emotion recognition systems is wide usability in nowadays automatic voice controlled systems. Berlin database of emotional recordings was used in this experiment. Classification accuracy of artificial neural networks, k-nearest neighbours, and Gaussian mixture model is measured considering the selection of prosodic, spectral, and voice quality features. The purpose was to find an optimal combination of methods and group of features for stress detection in human speech. The research contribution lies in the design of the speech emotion recognition system due to its accuracy and efficiency.

  8. Pattern Recognition Methods and Features Selection for Speech Emotion Recognition System

    Pavol Partila

    2015-01-01

    Full Text Available The impact of the classification method and features selection for the speech emotion recognition accuracy is discussed in this paper. Selecting the correct parameters in combination with the classifier is an important part of reducing the complexity of system computing. This step is necessary especially for systems that will be deployed in real-time applications. The reason for the development and improvement of speech emotion recognition systems is wide usability in nowadays automatic voice controlled systems. Berlin database of emotional recordings was used in this experiment. Classification accuracy of artificial neural networks, k-nearest neighbours, and Gaussian mixture model is measured considering the selection of prosodic, spectral, and voice quality features. The purpose was to find an optimal combination of methods and group of features for stress detection in human speech. The research contribution lies in the design of the speech emotion recognition system due to its accuracy and efficiency.

  9. 1988 Wet deposition temporal and spatial patterns in North America

    Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

    1992-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-year (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen's median trend estimate and Kendall's seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.

  10. 1988 Wet deposition temporal and spatial patterns in North America

    Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

    1992-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-year (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen`s median trend estimate and Kendall`s seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.

  11. Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature

    Shouyi Yin

    2015-01-01

    Full Text Available Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.

  12. A Spatially Constrained Multi-autoencoder Approach for Multivariate Geochemical Anomaly Recognition

    Lirong, C.; Qingfeng, G.; Renguang, Z.; Yihui, X.

    2017-12-01

    Separating and recognizing geochemical anomalies from the geochemical background is one of the key tasks in geochemical exploration. Many methods have been developed, such as calculating the mean ±2 standard deviation, and fractal/multifractal models. In recent years, deep autoencoder, a deep learning approach, have been used for multivariate geochemical anomaly recognition. While being able to deal with the non-normal distributions of geochemical concentrations and the non-linear relationships among them, this self-supervised learning method does not take into account the spatial heterogeneity of geochemical background and the uncertainty induced by the randomly initialized weights of neurons, leading to ineffective recognition of weak anomalies. In this paper, we introduce a spatially constrained multi-autoencoder (SCMA) approach for multivariate geochemical anomaly recognition, which includes two steps: spatial partitioning and anomaly score computation. The first step divides the study area into multiple sub-regions to segregate the geochemical background, by grouping the geochemical samples through K-means clustering, spatial filtering, and spatial constraining rules. In the second step, for each sub-region, a group of autoencoder neural networks are constructed with an identical structure but different initial weights on neurons. Each autoencoder is trained using the geochemical samples within the corresponding sub-region to learn the sub-regional geochemical background. The best autoencoder of a group is chosen as the final model for the corresponding sub-region. The anomaly score at each location can then be calculated as the euclidean distance between the observed concentrations and reconstructed concentrations of geochemical elements.The experiments using the geochemical data and Fe deposits in the southwestern Fujian province of China showed that our SCMA approach greatly improved the recognition of weak anomalies, achieving the AUC of 0.89, compared

  13. On tests of randomness for spatial point patterns

    Doguwa, S.I.

    1990-11-01

    New tests of randomness for spatial point patterns are introduced. These test statistics are then compared in a power study with the existing alternatives. These results of the power study suggest that one of the tests proposed is extremely powerful against both aggregated and regular alternatives. (author). 9 refs, 7 figs, 3 tabs

  14. Spatial patterns of encroaching shrub species under different ...

    ... in Middelburg (Eastern Cape, South Africa) coexist and partition space under different grazing regimes (viz. continuous rest, and continuous, summer and winter grazing). We used point-pattern analysis to assess the spatial ecology of these species. We also used an index of integration (mingling index), where low values ...

  15. The effect of spatial planning patterns on distribution of pedestrians ...

    This study focuses on public spaces of residential neighbourhoods in the City of Nairobi. It establishes various spatial characteristics, hence patterns, that have a bearing on the distribution of pedestrians therein. A higher encounter rate of pedestrians is a desirable public space quality given that the higher degree of ...

  16. Demographic change in Germany and reversal of spatial ageing patterns

    Swiaczny Frank

    2010-12-01

    Full Text Available The paper presents the result of a spatial analysis considering the effect of demographic ageing and ageing-in-place processes in Germany according to spatially differentiated ageing patterns among urban, sub-urban and rural counties up to 2025. As to the latest official population forecast counties of urban core regions will undergo a slower ageing process than other types of counties, resulting in a reversal of ageing patterns. Urban core areas in this analysis will gain demographically from their net migration surplus while suburban housing locations of the past will be no longer able to attract enough young migrants to compensate for their now rapidly ageing baby boomer generation. The process presented is typical for the fate of (suburban housing areas with homogenous populations under conditions of ageing and shrinking if spatial mobility in ageing population groups is declining.

  17. Demographic change in Germany and reversal of spatial ageing patterns

    Swiaczny F.

    2010-01-01

    Full Text Available The paper presents the result of a spatial analysis considering the effect of demographic ageing and ageing-in-place processes in Germany according to spatially differentiated ageing patterns among urban, sub-urban and rural counties up to 2025. As to the latest official population forecast counties of urban core regions will undergo a slower ageing process than other types of counties, resulting in a reversal of ageing patterns. Urban core areas in this analysis will gain demographically from their net migration surplus while suburban housing locations of the past will be no longer able to attract enough young migrants to compensate for their now rapidly ageing baby boomer generation. The process presented is typical for the fate of (suburban housing areas with homogenous populations under conditions of ageing and shrinking if spatial mobility in ageing population groups is declining.

  18. Almeria spatial memory recognition test (ASMRT): Gender differences emerged in a new passive spatial task.

    Tascón, Laura; García-Moreno, Luis Miguel; Cimadevilla, Jose Manuel

    2017-06-09

    Many different human spatial memory tasks were developed in the last two decades. Virtual reality based tasks make possible developing different scenarios and situations to assess spatial orientation but sometimes these tasks are complex for specific populations like children and older-adults. A new spatial task with a very limited technological requirement was developed in this study. It demanded the use of spatial memory for an accurate solution. It also proved to be sensitive to gender differences, with men outperforming women under high specific difficulty levels. Thanks to its simplicity it could be applied as a screening test and is easy to combine with EEG and fMRI studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Abiotic and biotic controls of spatial pattern at alpine treeline

    Malanson, George P.; Xiao, Ningchuan; Alftine, K.J.; Bekker, Mathew; Butler, David R.; Brown, Daniel G.; Cairns, David M.; Fagre, Daniel; Walsh, Stephen J.

    2000-01-01

    At alpine treeline, trees and krummholz forms affect the environment in ways that increase their growth and reproduction. We assess the way in which these positive feedbacks combine in spatial patterns to alter the environment in the neighborhood of existing plants. The research is significant because areas of alpine tundra are susceptible to encroachment by woody species as climate changes. Moreover, understanding the general processes of plant invasion is important. The importance of spatial pattern has been recognized, but the spatial pattern of positive feedbacks per se has not been explored in depth. We present a linked set of models of vegetation change at an alpine forest-tundra ecotone. Our aim is to create models that are as simple as possible in order to test specific hypotheses. We present results from a model of the resource averaging hypothesis and the positive feedback switch hypothesis of treelines. We compare the patterns generated by the models to patterns observed in fine scale remotely sensed data.

  20. 1987 wet deposition temporal and spatial patterns in North America

    Simpson, J.C.; Olsen, A.R.

    1990-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1987 and spatial patterns for 1987. The report investigates the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Data are from the Acid Deposition System (ADS) for the statistical reporting of North American deposition data which includes the National Atmospheric Deposition Program/National Trends Network (NADP/NTN), the MAP3S precipitation chemistry network, the Utility Acid Precipitation Study Program (UAPSP), the Canadian Precipitation Monitoring Network (CAPMoN), and the daily and 4-weekly Acidic Precipitation in Ontario Study (APIOS-D and APIOS-C). Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1987 annual, winter, and summer periods. The temporal pattern analyses use a subset of 39 sites over a 9-year (1979--1987) period and an expanded subset of 140 sites with greater spatial coverage over a 6-year (1982--1987) period. 68 refs., 15 figs., 15 tabs.

  1. Spatial implications of covariate adjustment on patterns of risk

    Sabel, Clive Eric; Wilson, Jeff Gaines; Kingham, Simon

    2007-01-01

    Epidemiological studies that examine the relationship between environmental exposures and health often address other determinants of health that may influence the relationship being studied by adjusting for these factors as covariates. While disease surveillance methods routinely control...... for covariates such as deprivation, there has been limited investigative work on the spatial movement of risk at the intraurban scale due to the adjustment. It is important that the nature of any spatial relocation be well understood as a relocation to areas of increased risk may also introduce additional...... localised factors that influence the exposure-response relationship. This paper examines the spatial patterns of relative risk and clusters of hospitalisations based on an illustrative small-area example from Christchurch, New Zealand. A four-stage test of the spatial relocation effects of covariate...

  2. Spatial pattern enhances ecosystem functioning in an African savanna.

    Robert M Pringle

    2010-05-01

    Full Text Available The finding that regular spatial patterns can emerge in nature from local interactions between organisms has prompted a search for the ecological importance of these patterns. Theoretical models have predicted that patterning may have positive emergent effects on fundamental ecosystem functions, such as productivity. We provide empirical support for this prediction. In dryland ecosystems, termite mounds are often hotspots of plant growth (primary productivity. Using detailed observations and manipulative experiments in an African savanna, we show that these mounds are also local hotspots of animal abundance (secondary and tertiary productivity: insect abundance and biomass decreased with distance from the nearest termite mound, as did the abundance, biomass, and reproductive output of insect-eating predators. Null-model analyses indicated that at the landscape scale, the evenly spaced distribution of termite mounds produced dramatically greater abundance, biomass, and reproductive output of consumers across trophic levels than would be obtained in landscapes with randomly distributed mounds. These emergent properties of spatial pattern arose because the average distance from an arbitrarily chosen point to the nearest feature in a landscape is minimized in landscapes where the features are hyper-dispersed (i.e., uniformly spaced. This suggests that the linkage between patterning and ecosystem functioning will be common to systems spanning the range of human management intensities. The centrality of spatial pattern to system-wide biomass accumulation underscores the need to conserve pattern-generating organisms and mechanisms, and to incorporate landscape patterning in efforts to restore degraded habitats and maximize the delivery of ecosystem services.

  3. Spatial pattern of diarrhea based on regional economic and environment by spatial autoregressive model

    Bekti, Rokhana Dwi; Nurhadiyanti, Gita; Irwansyah, Edy

    2014-10-01

    The diarrhea case pattern information, especially for toddler, is very important. It is used to show the distribution of diarrhea in every region, relationship among that locations, and regional economic characteristic or environmental behavior. So, this research uses spatial pattern to perform them. This method includes: Moran's I, Spatial Autoregressive Models (SAR), and Local Indicator of Spatial Autocorrelation (LISA). It uses sample from 23 sub districts of Bekasi Regency, West Java, Indonesia. Diarrhea case, regional economic, and environmental behavior of households have a spatial relationship among sub district. SAR shows that the percentage of Regional Gross Domestic Product is significantly effect on diarrhea at α = 10%. Therefore illiteracy and health center facilities are significant at α = 5%. With LISA test, sub districts in southern Bekasi have high dependencies with Cikarang Selatan, Serang Baru, and Setu. This research also builds development application that is based on java and R to support data analysis.

  4. Fundamental remote science research program. Part 2: Status report of the mathematical pattern recognition and image analysis project

    Heydorn, R. P.

    1984-01-01

    The Mathematical Pattern Recognition and Image Analysis (MPRIA) Project is concerned with basic research problems related to the study of he Earth from remotely sensed measurements of its surface characteristics. The program goal is to better understand how to analyze the digital image that represents the spatial, spectral, and temporal arrangement of these measurements for purposing of making selected inferences about the Earth. This report summarizes the progress that has been made toward this program goal by each of the principal investigators in the MPRIA Program.

  5. The Spatial Patterns of Dairy Farming In Molise

    Ievoli Corrado

    2017-12-01

    Full Text Available The greater market orientation of European dairy production, caused by the end of quota regime, is likely to have consequences on less favoured areas, where breeding of dairy cattle plays both a crucial socio-economic and environmental role. Within this new framework, endogenous factors determining spatial reorganisation of the sector are becoming of increasing relevance. Based on these considerations, this study analyses the impact of the three broader classes of location determinants suggested by economic theory - factor endowment, market potential, and spatial agglomeration externalities - on the spatial pattern of milk production in Molise, a rural region in the south of Italy. Milk production is measured in term of dairy cows per hectare. The truncated distribution of this variable and its high degree of spatial autocorrelation prompted us to apply a Spatial Autoregressive Tobit model. Estimation results reveal that all three categories have a positive effect on the location of milk production, even if the influence of factor endowment (intended as forage area, and market potential (measured in term of proximity of dairy companies is quite limited. On the contrary, the impact of spatial externalities (related variety on the regional localisation of milk production is strongly significant. These results cast some doubts on the current measures of intervention and might suggest a new policy framework both at firm and spatial level

  6. Cellular-automata-based learning network for pattern recognition

    Tzionas, Panagiotis G.; Tsalides, Phillippos G.; Thanailakis, Adonios

    1991-11-01

    Most classification techniques either adopt an approach based directly on the statistical characteristics of the pattern classes involved, or they transform the patterns in a feature space and try to separate the point clusters in this space. An alternative approach based on memory networks has been presented, its novelty being that it can be implemented in parallel and it utilizes direct features of the patterns rather than statistical characteristics. This study presents a new approach for pattern classification using pseudo 2-D binary cellular automata (CA). This approach resembles the memory network classifier in the sense that it is based on an adaptive knowledge based formed during a training phase, and also in the fact that both methods utilize pattern features that are directly available. The main advantage of this approach is that the sensitivity of the pattern classifier can be controlled. The proposed pattern classifier has been designed using 1.5 micrometers design rules for an N-well CMOS process. Layout has been achieved using SOLO 1400. Binary pseudo 2-D hybrid additive CA (HACA) is described in the second section of this paper. The third section describes the operation of the pattern classifier and the fourth section presents some possible applications. The VLSI implementation of the pattern classifier is presented in the fifth section and, finally, the sixth section draws conclusions from the results obtained.

  7. Visual memory in unilateral spatial neglect: immediate recall versus delayed recognition.

    Moreh, Elior; Malkinson, Tal Seidel; Zohary, Ehud; Soroker, Nachum

    2014-09-01

    Patients with unilateral spatial neglect (USN) often show impaired performance in spatial working memory tasks, apart from the difficulty retrieving "left-sided" spatial data from long-term memory, shown in the "piazza effect" by Bisiach and colleagues. This study's aim was to compare the effect of the spatial position of a visual object on immediate and delayed memory performance in USN patients. Specifically, immediate verbal recall performance, tested using a simultaneous presentation of four visual objects in four quadrants, was compared with memory in a later-provided recognition task, in which objects were individually shown at the screen center. Unlike healthy controls, USN patients showed a left-side disadvantage and a vertical bias in the immediate free recall task (69% vs. 42% recall for right- and left-sided objects, respectively). In the recognition task, the patients correctly recognized half of "old" items, and their correct rejection rate was 95.5%. Importantly, when the analysis focused on previously recalled items (in the immediate task), no statistically significant difference was found in the delayed recognition of objects according to their original quadrant of presentation. Furthermore, USN patients were able to recollect the correct original location of the recognized objects in 60% of the cases, well beyond chance level. This suggests that the memory trace formed in these cases was not only semantic but also contained a visuospatial tag. Finally, successful recognition of objects missed in recall trials points to formation of memory traces for neglected contralesional objects, which may become accessible to retrieval processes in explicit memory.

  8. Multifractal spatial patterns and diversity in an ecological succession.

    Leonardo Ariel Saravia

    Full Text Available We analyzed the relationship between biodiversity and spatial biomass heterogeneity along an ecological succession developed in the laboratory. Periphyton (attached microalgae biomass spatial patterns at several successional stages were obtained using digital image analysis and at the same time we estimated the species composition and abundance. We show that the spatial pattern was self-similar and as the community developed in an homogeneous environment the pattern is self-organized. To characterize it we estimated the multifractal spectrum of generalized dimensions D(q. Using D(q we analyze the existence of cycles of heterogeneity during succession and the use of the information dimension D(1 as an index of successional stage. We did not find cycles but the values of D(1 showed an increasing trend as the succession developed and the biomass was higher. D(1 was also negatively correlated with Shannon's diversity. Several studies have found this relationship in different ecosystems but here we prove that the community self-organizes and generates its own spatial heterogeneity influencing diversity. If this is confirmed with more experimental and theoretical evidence D(1 could be used as an index, easily calculated from remote sensing data, to detect high or low diversity areas.

  9. Investigation of Time Series Representations and Similarity Measures for Structural Damage Pattern Recognition

    Wenjia Liu

    2013-01-01

    Full Text Available This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate.

  10. Investigation of Time Series Representations and Similarity Measures for Structural Damage Pattern Recognition

    Swartz, R. Andrew

    2013-01-01

    This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES) Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate. PMID:24191136

  11. New Directions in Statistical Physics: Econophysics, Bioinformatics, and Pattern Recognition

    Grassberger, P

    2004-01-01

    This book contains 18 contributions from different authors. Its subtitle 'Econophysics, Bioinformatics, and Pattern Recognition' says more precisely what it is about: not so much about central problems of conventional statistical physics like equilibrium phase transitions and critical phenomena, but about its interdisciplinary applications. After a long period of specialization, physicists have, over the last few decades, found more and more satisfaction in breaking out of the limitations set by the traditional classification of sciences. Indeed, this classification had never been strict, and physicists in particular had always ventured into other fields. Helmholtz, in the middle of the 19th century, had considered himself a physicist when working on physiology, stressing that the physics of animate nature is as much a legitimate field of activity as the physics of inanimate nature. Later, Max Delbrueck and Francis Crick did for experimental biology what Schroedinger did for its theoretical foundation. And many of the experimental techniques used in chemistry, biology, and medicine were developed by a steady stream of talented physicists who left their proper discipline to venture out into the wider world of science. The development we have witnessed over the last thirty years or so is different. It started with neural networks where methods could be applied which had been developed for spin glasses, but todays list includes vehicular traffic (driven lattice gases), geology (self-organized criticality), economy (fractal stochastic processes and large scale simulations), engineering (dynamical chaos), and many others. By staying in the physics departments, these activities have transformed the physics curriculum and the view physicists have of themselves. In many departments there are now courses on econophysics or on biological physics, and some universities offer degrees in the physics of traffic or in econophysics. In order to document this change of attitude

  12. Fingerprint Recognition using Fuzzy Logic with Triangular Pattern Template

    Hussain, Dil Muhammad Akbar

    2006-01-01

    A fingerprint is a pattern of ridges and valleys that exist on the surface of the finger. The uniqueness of a fingerprint is typically determined by the overall pattern of ridges and valleys as well as the local ridge structures e.g., a ridge bifurcation or a ridge ending, which are called minutiae...

  13. Application of data clustering to railway delay pattern recognition

    Cerreto, Fabrizio; Nielsen, Bo Friis; Nielsen, Otto Anker

    2018-01-01

    K-means clustering is employed to identify recurrent delay patterns on a high traffic railway line north of Copenhagen, Denmark. The clusters identify behavioral patterns in the very large (“big data”) data sets generated automatically and continuously by the railway signal system. The results re...

  14. Spatially patterned matrix elasticity directs stem cell fate

    Yang, Chun; DelRio, Frank W.; Ma, Hao; Killaars, Anouk R.; Basta, Lena P.; Kyburz, Kyle A.; Anseth, Kristi S.

    2016-08-01

    There is a growing appreciation for the functional role of matrix mechanics in regulating stem cell self-renewal and differentiation processes. However, it is largely unknown how subcellular, spatial mechanical variations in the local extracellular environment mediate intracellular signal transduction and direct cell fate. Here, the effect of spatial distribution, magnitude, and organization of subcellular matrix mechanical properties on human mesenchymal stem cell (hMSCs) function was investigated. Exploiting a photodegradation reaction, a hydrogel cell culture substrate was fabricated with regions of spatially varied and distinct mechanical properties, which were subsequently mapped and quantified by atomic force microscopy (AFM). The variations in the underlying matrix mechanics were found to regulate cellular adhesion and transcriptional events. Highly spread, elongated morphologies and higher Yes-associated protein (YAP) activation were observed in hMSCs seeded on hydrogels with higher concentrations of stiff regions in a dose-dependent manner. However, when the spatial organization of the mechanically stiff regions was altered from a regular to randomized pattern, lower levels of YAP activation with smaller and more rounded cell morphologies were induced in hMSCs. We infer from these results that irregular, disorganized variations in matrix mechanics, compared with regular patterns, appear to disrupt actin organization, and lead to different cell fates; this was verified by observations of lower alkaline phosphatase (ALP) activity and higher expression of CD105, a stem cell marker, in hMSCs in random versus regular patterns of mechanical properties. Collectively, this material platform has allowed innovative experiments to elucidate a novel spatial mechanical dosing mechanism that correlates to both the magnitude and organization of spatial stiffness.

  15. A Global Online Handwriting Recognition Approach Based on Frequent Patterns

    C. Gmati

    2018-06-01

    Full Text Available In this article, the handwriting signals are represented based on geometric and spatio-temporal characteristics to increase the feature vectors relevance of each object. The main goal was to extract features in the form of a numeric vector based on the extraction of frequent patterns. We used two types of frequent motifs (closed frequent patterns and maximal frequent patterns that can represent handwritten characters pertinently. These common features patterns are generated from a raw data transformation method to achieve high relevance. A database of words consisting of two different letters was created. The proposed application gives promising results and highlights the advantages that frequent pattern extraction algorithms can achieve, as well as the central role played by the “minimum threshold” parameter in the overall description of the characters.

  16. Innate pattern recognition and categorization in a jumping spider.

    Yinnon Dolev

    Full Text Available The East African jumping spider Evarcha culicivora feeds indirectly on vertebrate blood by preferentially preying upon blood-fed Anopheles mosquitoes, the vectors of human malaria1, using the distinct resting posture and engorged abdomen characteristic of these specific prey as key elements for their recognition. To understand perceptual categorization of objects by these spiders, we investigated their predatory behavior toward different digital stimuli--abstract 'stick figure' representations of Anopheles constructed solely by known key identification elements, disarranged versions of these, as well as non-prey items and detailed images of alternative prey. We hypothesized that the abstract images representing Anopheles would be perceived as potential prey, and would be preferred to those of non-preferred prey. Spiders perceived the abstract stick figures of Anopheles specifically as their preferred prey, attacking them significantly more often than non-preferred prey, even when the comprising elements of the Anopheles stick figures were disarranged and disconnected from each other. However, if the relative angles between the elements of the disconnected stick figures of Anopheles were altered, the otherwise identical set of elements was no longer perceived as prey. These data show that E. culicivora is capable of making discriminations based on abstract concepts, such as the hypothetical angle formed by discontinuous elements. It is this inter-element angle rather than resting posture that is important for correct identification of Anopheles. Our results provide a glimpse of the underlying processes of object recognition in animals with minute brains, and suggest that these spiders use a local processing approach for object recognition, rather than a holistic or global approach. This study provides an excellent basis for a comparative analysis on feature extraction and detection by animals as diverse as bees and mammals.

  17. Innate Pattern Recognition and Categorization in a Jumping Spider

    Dolev, Yinnon; Nelson, Ximena J.

    2014-01-01

    The East African jumping spider Evarcha culicivora feeds indirectly on vertebrate blood by preferentially preying upon blood-fed Anopheles mosquitoes, the vectors of human malaria1, using the distinct resting posture and engorged abdomen characteristic of these specific prey as key elements for their recognition. To understand perceptual categorization of objects by these spiders, we investigated their predatory behavior toward different digital stimuli - abstract ‘stick figure’ representations of Anopheles constructed solely by known key identification elements, disarranged versions of these, as well as non-prey items and detailed images of alternative prey. We hypothesized that the abstract images representing Anopheles would be perceived as potential prey, and would be preferred to those of non-preferred prey. Spiders perceived the abstract stick figures of Anopheles specifically as their preferred prey, attacking them significantly more often than non-preferred prey, even when the comprising elements of the Anopheles stick figures were disarranged and disconnected from each other. However, if the relative angles between the elements of the disconnected stick figures of Anopheles were altered, the otherwise identical set of elements was no longer perceived as prey. These data show that E. culicivora is capable of making discriminations based on abstract concepts, such as the hypothetical angle formed by discontinuous elements. It is this inter-element angle rather than resting posture that is important for correct identification of Anopheles. Our results provide a glimpse of the underlying processes of object recognition in animals with minute brains, and suggest that these spiders use a local processing approach for object recognition, rather than a holistic or global approach. This study provides an excellent basis for a comparative analysis on feature extraction and detection by animals as diverse as bees and mammals. PMID:24893306

  18. Structural pattern recognition methods based on string comparison for fusion databases

    Dormido-Canto, S.; Farias, G.; Dormido, R.; Vega, J.; Sanchez, J.; Duro, N.; Vargas, H.; Ratta, G.; Pereira, A.; Portas, A.

    2008-01-01

    Databases for fusion experiments are designed to store several million waveforms. Temporal evolution signals show the same patterns under the same plasma conditions and, therefore, pattern recognition techniques allow the identification of similar plasma behaviours. This article is focused on the comparison of structural pattern recognition methods. A pattern can be composed of simpler sub-patterns, where the most elementary sub-patterns are known as primitives. Selection of primitives is an essential issue in structural pattern recognition methods, because they determine what types of structural components can be constructed. However, it should be noted that there is not a general solution to extract structural features (primitives) from data. So, four different ways to compute the primitives of plasma waveforms are compared: (1) constant length primitives, (2) adaptive length primitives, (3) concavity method and (4) concavity method for noisy signals. Each method defines a code alphabet and, in this way, the pattern recognition problem is carried out via string comparisons. Results of the four methods with the TJ-II stellarator databases will be discussed

  19. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance

    Lacombe, S.; Rougon-Cardoso, A.; Sherwood, E.; Peeters, N.; Dahlbeck, D.; Esse, van H.P.; Smoker, M.; Rallapalli, G.; Thomma, B.P.H.J.; Staskawicz, B.; Jones, J.D.G.; Zipfel, C.

    2010-01-01

    Plant diseases cause massive losses in agriculture. Increasing the natural defenses of plants may reduce the impact of phytopathogens on agricultural productivity. Pattern-recognition receptors (PRRs) detect microbes by recognizing conserved pathogen-associated molecular patterns (PAMPs)1, 2, 3.

  20. Structural pattern recognition methods based on string comparison for fusion databases

    Dormido-Canto, S. [Dpto. Informatica y Automatica - UNED 28040, Madrid (Spain)], E-mail: sebas@dia.uned.es; Farias, G.; Dormido, R. [Dpto. Informatica y Automatica - UNED 28040, Madrid (Spain); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, 28040, Madrid (Spain); Sanchez, J.; Duro, N.; Vargas, H. [Dpto. Informatica y Automatica - UNED 28040, Madrid (Spain); Ratta, G.; Pereira, A.; Portas, A. [Asociacion EURATOM/CIEMAT para Fusion, 28040, Madrid (Spain)

    2008-04-15

    Databases for fusion experiments are designed to store several million waveforms. Temporal evolution signals show the same patterns under the same plasma conditions and, therefore, pattern recognition techniques allow the identification of similar plasma behaviours. This article is focused on the comparison of structural pattern recognition methods. A pattern can be composed of simpler sub-patterns, where the most elementary sub-patterns are known as primitives. Selection of primitives is an essential issue in structural pattern recognition methods, because they determine what types of structural components can be constructed. However, it should be noted that there is not a general solution to extract structural features (primitives) from data. So, four different ways to compute the primitives of plasma waveforms are compared: (1) constant length primitives, (2) adaptive length primitives, (3) concavity method and (4) concavity method for noisy signals. Each method defines a code alphabet and, in this way, the pattern recognition problem is carried out via string comparisons. Results of the four methods with the TJ-II stellarator databases will be discussed.

  1. Neural Network Based Recognition of Signal Patterns in Application to Automatic Testing of Rails

    Tomasz Ciszewski

    2006-01-01

    Full Text Available The paper describes the application of neural network for recognition of signal patterns in measuring data gathered by the railroad ultrasound testing car. Digital conversion of the measuring signal allows to store and process large quantities of data. The elaboration of smart, effective and automatic procedures recognizing the obtained patterns on the basisof measured signal amplitude has been presented. The test shows only two classes of pattern recognition. In authors’ opinion if we deliver big enough quantity of training data, presented method is applicable to a system that recognizes many classes.

  2. Combining Biometric Fractal Pattern and Particle Swarm Optimization-Based Classifier for Fingerprint Recognition

    Chia-Hung Lin

    2010-01-01

    Full Text Available This paper proposes combining the biometric fractal pattern and particle swarm optimization (PSO-based classifier for fingerprint recognition. Fingerprints have arch, loop, whorl, and accidental morphologies, and embed singular points, resulting in the establishment of fingerprint individuality. An automatic fingerprint identification system consists of two stages: digital image processing (DIP and pattern recognition. DIP is used to convert to binary images, refine out noise, and locate the reference point. For binary images, Katz's algorithm is employed to estimate the fractal dimension (FD from a two-dimensional (2D image. Biometric features are extracted as fractal patterns using different FDs. Probabilistic neural network (PNN as a classifier performs to compare the fractal patterns among the small-scale database. A PSO algorithm is used to tune the optimal parameters and heighten the accuracy. For 30 subjects in the laboratory, the proposed classifier demonstrates greater efficiency and higher accuracy in fingerprint recognition.

  3. Finger Vein Recognition Using Local Line Binary Pattern

    Bakhtiar Affendi Rosdi

    2011-11-01

    Full Text Available In this paper, a personal verification method using finger vein is presented. Finger vein can be considered more secured compared to other hands based biometric traits such as fingerprint and palm print because the features are inside the human body. In the proposed method, a new texture descriptor called local line binary pattern (LLBP is utilized as feature extraction technique. The neighbourhood shape in LLBP is a straight line, unlike in local binary pattern (LBP which is a square shape. Experimental results show that the proposed method using LLBP has better performance than the previous methods using LBP and local derivative pattern (LDP.

  4. Finger vein recognition using local line binary pattern.

    Rosdi, Bakhtiar Affendi; Shing, Chai Wuh; Suandi, Shahrel Azmin

    2011-01-01

    In this paper, a personal verification method using finger vein is presented. Finger vein can be considered more secured compared to other hands based biometric traits such as fingerprint and palm print because the features are inside the human body. In the proposed method, a new texture descriptor called local line binary pattern (LLBP) is utilized as feature extraction technique. The neighbourhood shape in LLBP is a straight line, unlike in local binary pattern (LBP) which is a square shape. Experimental results show that the proposed method using LLBP has better performance than the previous methods using LBP and local derivative pattern (LDP).

  5. Finger Vein Recognition Using Local Line Binary Pattern

    Rosdi, Bakhtiar Affendi; Shing, Chai Wuh; Suandi, Shahrel Azmin

    2011-01-01

    In this paper, a personal verification method using finger vein is presented. Finger vein can be considered more secured compared to other hands based biometric traits such as fingerprint and palm print because the features are inside the human body. In the proposed method, a new texture descriptor called local line binary pattern (LLBP) is utilized as feature extraction technique. The neighbourhood shape in LLBP is a straight line, unlike in local binary pattern (LBP) which is a square shape. Experimental results show that the proposed method using LLBP has better performance than the previous methods using LBP and local derivative pattern (LDP). PMID:22247670

  6. Supervised and Unsupervised Classification for Pattern Recognition Purposes

    Catalina COCIANU

    2006-01-01

    Full Text Available A cluster analysis task has to identify the grouping trends of data, to decide on the sound clusters as well as to validate somehow the resulted structure. The identification of the grouping tendency existing in a data collection assumes the selection of a framework stated in terms of a mathematical model allowing to express the similarity degree between couples of particular objects, quasi-metrics expressing the similarity between an object an a cluster and between clusters, respectively. In supervised classification, we are provided with a collection of preclassified patterns, and the problem is to label a newly encountered pattern. Typically, the given training patterns are used to learn the descriptions of classes which in turn are used to label a new pattern. The final section of the paper presents a new methodology for supervised learning based on PCA. The classes are represented in the measurement/feature space by a continuous repartitions

  7. Recognition of distinctive patterns of gallium-67 distribution in sarcoidosis

    Sulavik, S.B.; Spencer, R.P.; Weed, D.A.; Shapiro, H.R.; Shiue, S.T.; Castriotta, R.J.

    1990-01-01

    Assessment of gallium-67 ( 67 Ga) uptake in the salivary and lacrimal glands and intrathoracic lymph nodes was made in 605 consecutive patients including 65 with sarcoidosis. A distinctive intrathoracic lymph node 67 Ga uptake pattern, resembling the Greek letter lambda, was observed only in sarcoidosis (72%). Symmetrical lacrimal gland and parotid gland 67 Ga uptake (panda appearance) was noted in 79% of sarcoidosis patients. A simultaneous lambda and panda pattern (62%) or a panda appearance with radiographic bilateral, symmetrical, hilar lymphadenopathy (6%) was present only in sarcoidosis patients. The presence of either of these patterns was particularly prevalent in roentgen Stages I (80%) or II (74%). We conclude that simultaneous (a) lambda and panda images, or (b) a panda image with bilateral symmetrical hilar lymphadenopathy on chest X-ray represent distinctive patterns which are highly specific for sarcoidosis, and may obviate the need for invasive diagnostic procedures

  8. Sub-pattern based multi-manifold discriminant analysis for face recognition

    Dai, Jiangyan; Guo, Changlu; Zhou, Wei; Shi, Yanjiao; Cong, Lin; Yi, Yugen

    2018-04-01

    In this paper, we present a Sub-pattern based Multi-manifold Discriminant Analysis (SpMMDA) algorithm for face recognition. Unlike existing Multi-manifold Discriminant Analysis (MMDA) approach which is based on holistic information of face image for recognition, SpMMDA operates on sub-images partitioned from the original face image and then extracts the discriminative local feature from the sub-images separately. Moreover, the structure information of different sub-images from the same face image is considered in the proposed method with the aim of further improve the recognition performance. Extensive experiments on three standard face databases (Extended YaleB, CMU PIE and AR) demonstrate that the proposed method is effective and outperforms some other sub-pattern based face recognition methods.

  9. Sonographic Diagnosis of Tubal Cancer with IOTA Simple Rules Plus Pattern Recognition

    Tongsong, Theera; Wanapirak, Chanane; Tantipalakorn, Charuwan; Tinnangwattana, Dangcheewan

    2017-11-26

    Objective: To evaluate diagnostic performance of IOTA simple rules plus pattern recognition in predicting tubal cancer. Methods: Secondary analysis was performed on prospective database of our IOTA project. The patients recruited in the project were those who were scheduled for pelvic surgery due to adnexal masses. The patients underwent ultrasound examinations within 24 hours before surgery. On ultrasound examination, the masses were evaluated using the well-established IOTA simple rules plus pattern recognition (sausage-shaped appearance, incomplete septum, visible ipsilateral ovaries) to predict tubal cancer. The gold standard diagnosis was based on histological findings or operative findings. Results: A total of 482 patients, including 15 cases of tubal cancer, were evaluated by ultrasound preoperatively. The IOTA simple rules plus pattern recognition gave a sensitivity of 86.7% (13 in 15) and specificity of 97.4%. Sausage-shaped appearance was identified in nearly all cases (14 in 15). Incomplete septa and normal ovaries could be identified in 33.3% and 40%, respectively. Conclusion: IOTA simple rules plus pattern recognition is relatively effective in predicting tubal cancer. Thus, we propose the simple scheme in diagnosis of tubal cancer as follows. First of all, the adnexal masses are evaluated with IOTA simple rules. If the B-rules could be applied, tubal cancer is reliably excluded. If the M-rules could be applied or the result is inconclusive, careful delineation of the mass with pattern recognition should be performed. Creative Commons Attribution License

  10. Automatic micropropagation of plants--the vision-system: graph rewriting as pattern recognition

    Schwanke, Joerg; Megnet, Roland; Jensch, Peter F.

    1993-03-01

    The automation of plant-micropropagation is necessary to produce high amounts of biomass. Plants have to be dissected on particular cutting-points. A vision-system is needed for the recognition of the cutting-points on the plants. With this background, this contribution is directed to the underlying formalism to determine cutting-points on abstract-plant models. We show the usefulness of pattern recognition by graph-rewriting along with some examples in this context.

  11. Spatial pattern formation induced by Gaussian white noise.

    Scarsoglio, Stefania; Laio, Francesco; D'Odorico, Paolo; Ridolfi, Luca

    2011-02-01

    The ability of Gaussian noise to induce ordered states in dynamical systems is here presented in an overview of the main stochastic mechanisms able to generate spatial patterns. These mechanisms involve: (i) a deterministic local dynamics term, accounting for the local rate of variation of the field variable, (ii) a noise component (additive or multiplicative) accounting for the unavoidable environmental disturbances, and (iii) a linear spatial coupling component, which provides spatial coherence and takes into account diffusion mechanisms. We investigate these dynamics using analytical tools, such as mean-field theory, linear stability analysis and structure function analysis, and use numerical simulations to confirm these analytical results. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Interactions of the humoral pattern recognition molecule PTX3 with the complement system

    Doni, Andrea; Garlanda, Cecilia; Bottazzi, Barbara

    2012-01-01

    The innate immune system comprises a cellular and a humoral arm. The long pentraxin PTX3 is a fluid phase pattern recognition molecule, which acts as an essential component of the humoral arm of innate immunity. PTX3 has antibody-like properties including interactions with complement components....... PTX3 interacts with C1q, ficolin-1 and ficolin-2 as well as mannose-binding lectin, recognition molecules in the classical and lectin complement pathways. The formation of these heterocomplexes results in cooperative pathogen recognition and complement activation. Interactions with C4b binding protein...

  13. Temporal and spatial patterns of micropollutants in urban receiving waters

    Musolff, Andreas, E-mail: andreas.musolff@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Hydrogeology, Permoserstr. 15, 04318 Leipzig (Germany); Leschik, Sebastian, E-mail: sebastian.leschik@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Hydrogeology, Permoserstr. 15, 04318 Leipzig (Germany); Moeder, Monika, E-mail: monika.moeder@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstr. 15, 04318 Leipzig (Germany); Strauch, Gerhard, E-mail: gerhard.strauch@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Hydrogeology, Permoserstr. 15, 04318 Leipzig (Germany); Reinstorf, Frido, E-mail: frido.reinstorf@hs-magdeburg.d [University of Applied Sciences Magdeburg-Stendal, Department of Water and Waste Management, Breitscheidstr. 2, 39114 Magdeburg (Germany); Schirmer, Mario, E-mail: mario.schirmer@eawag.c [Eawag, The Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water, Ueberlandstr. 133, 8600 Duebendorf (Switzerland)

    2009-11-15

    Based on a monitoring program over the course of a year, we characterize the temporal and spatial distribution of selected micropollutants in an urban watershed within the city of Leipzig, Germany. Micropollutants revealed a ubiquitous presence in untreated and treated wastewater, surface water and groundwater. The loads of 4-nonylphenol in the effluents of the municipal wastewater treatment plant followed a seasonal trend, whereas the loads of all other micropollutants were highly variable and not correlated to seasons. In the surface water, load seasonality of caffeine, galaxolide and tonalide resulted from a rapid removal with increased water temperature. The loads of 4-nonylphenol and of caffeine in the colder months increased when rainfall occurred. In the groundwater, complex spatial and temporal patterns were apparent and were related to varying input, retardation and removal processes. As a consequence, an assessment of micropollutants in urban waters should consider different micropollutants' temporal and spatial variability. - Micropollutants in urban receiving waters are characterized by variable temporal and spatial concentration and load patterns that have to be considered in risk assessments.

  14. Chromosome driven spatial patterning of proteins in bacteria.

    Saeed Saberi

    Full Text Available The spatial patterning of proteins in bacteria plays an important role in many processes, from cell division to chemotaxis. In the asymmetrically dividing bacteria Caulobacter crescentus, a scaffolding protein, PopZ, localizes to both poles and aids the differential patterning of proteins between mother and daughter cells during division. Polar patterning of misfolded proteins in Escherichia coli has also been shown, and likely plays an important role in cellular ageing. Recent experiments on both of the above systems suggest that the presence of chromosome free regions along with protein multimerization may be a mechanism for driving the polar localization of proteins. We have developed a simple physical model for protein localization using only these two driving mechanisms. Our model reproduces all the observed patterns of PopZ and misfolded protein localization--from diffuse, unipolar, and bipolar patterns and can also account for the observed patterns in a variety of mutants. The model also suggests new experiments to further test the role of the chromosome in driving protein patterning, and whether such a mechanism is responsible for helping to drive the differentiation of the cell poles.

  15. A Spatial Frequency Account of the Detriment that Local Processing of Navon Letters Has on Face Recognition

    Hills, Peter J.; Lewis, Michael B.

    2009-01-01

    Five minutes of processing the local features of a Navon letter causes a detriment in subsequent face-recognition performance (Macrae & Lewis, 2002). We hypothesize a perceptual after effect explanation of this effect in which face recognition is less accurate after adapting to high-spatial frequencies at high contrasts. Five experiments were…

  16. Spatial patterns of cyanobacterial mat growth on sand ripples

    Mariotti, G.; Klepac-Ceraj, V.; Perron, J. T.; Bosak, T.

    2016-02-01

    Photosynthetic microbial mats produce organic matter, cycle nutrients, bind pollutants and stabilize sediment in sandy marine environments. Here, we investigate the influence of bedforms and wave motion on the growth rate, composition and spatial variability of microbial mats by growing cyanobacterial mats on a rippled bed of carbonate sand in a wave tank. The tank was forced with an oscillatory flow with velocities below the threshold for sediment motion yet able to induce a porewater flow within the sediment. Different spatial patterns developed in mats depending on the initial biochemistry of the water medium. When growing in a medium rich in nitrogen, phosphorous and micronutrients, mats grew faster on ripple troughs than on ripple crests. After two months, mats covered the bed surface uniformly, and the microbial communities on the crests and in the troughs had similar compositions. Differences in bed shear stress and nutrient availability between crests and troughs were not able to explain the faster growth in the troughs. We hypothesize that this growth pattern is due to a "strainer" effect, i.e. the suspended bacteria from the inoculum were preferentially delivered to troughs by the wave-induced porewater flow. In the experiments initiated in a medium previously used up by a microbial mat and thus depleted in nutrients, mats grew preferentially on the ripple crests. This spatial pattern persisted for nearly two years, and the microbial composition on troughs and crests was different. We attribute this pattern to the upwelling of porewater in the crests, which increased the delivery of nutrients from sediment to the cyanobacteria on the bed surface. Thus, the macroscopic patterns formed by photosynthetic microbial mats on sand ripples may be used to infer whether mats are nutrient-limited and whether they are recently colonized or older than a month.

  17. Clustering Vehicle Temporal and Spatial Travel Behavior Using License Plate Recognition Data

    Huiyu Chen; Chao Yang; Xiangdong Xu

    2017-01-01

    Understanding travel patterns of vehicle can support the planning and design of better services. In addition, vehicle clustering can improve management efficiency through more targeted access to groups of interest and facilitate planning by more specific survey design. This paper clustered 854,712 vehicles in a week using K-means clustering algorithm based on license plate recognition (LPR) data obtained in Shenzhen, China. Firstly, several travel characteristics related to temporal and spati...

  18. Micro-motion Recognition of Spatial Cone Target Based on ISAR Image Sequences

    Changyong Shu

    2016-04-01

    Full Text Available The accurate micro-motions recognition of spatial cone target is the foundation of the characteristic parameter acquisition. For this reason, a micro-motion recognition method based on the distinguishing characteristics extracted from the Inverse Synthetic Aperture Radar (ISAR sequences is proposed in this paper. The projection trajectory formula of cone node strong scattering source and cone bottom slip-type strong scattering sources, which are located on the spatial cone target, are deduced under three micro-motion types including nutation, precession, and spinning, and the correctness is verified by the electromagnetic simulation. By comparison, differences are found among the projection of the scattering sources with different micro-motions, the coordinate information of the scattering sources in the Inverse Synthetic Aperture Radar sequences is extracted by the CLEAN algorithm, and the spinning is recognized by setting the threshold value of Doppler. The double observation points Interacting Multiple Model Kalman Filter is used to separate the scattering sources projection of the nutation target or precession target, and the cross point number of each scattering source’s projection track is used to classify the nutation or precession. Finally, the electromagnetic simulation data are used to verify the effectiveness of the micro-motion recognition method.

  19. Spatial Location in Brief, Free-Viewing Face Encoding Modulates Contextual Face Recognition

    Fatima M. Felisberti

    2013-08-01

    Full Text Available The effect of the spatial location of faces in the visual field during brief, free-viewing encoding in subsequent face recognition is not known. This study addressed this question by tagging three groups of faces with cheating, cooperating or neutral behaviours and presenting them for encoding in two visual hemifields (upper vs. lower or left vs. right. Participants then had to indicate if a centrally presented face had been seen before or not. Head and eye movements were free in all phases. Findings showed that the overall recognition of cooperators was significantly better than cheaters, and it was better for faces encoded in the upper hemifield than in the lower hemifield, both in terms of a higher d' and faster reaction time (RT. The d' for any given behaviour in the left and right hemifields was similar. The RT in the left hemifield did not vary with tagged behaviour, whereas the RT in the right hemifield was longer for cheaters than for cooperators. The results showed that memory biases in contextual face recognition were modulated by the spatial location of briefly encoded faces and are discussed in terms of scanning reading habits, top-left bias in lighting preference and peripersonal space.

  20. Human Walking Pattern Recognition Based on KPCA and SVM with Ground Reflex Pressure Signal

    Zhaoqin Peng

    2013-01-01

    Full Text Available Algorithms based on the ground reflex pressure (GRF signal obtained from a pair of sensing shoes for human walking pattern recognition were investigated. The dimensionality reduction algorithms based on principal component analysis (PCA and kernel principal component analysis (KPCA for walking pattern data compression were studied in order to obtain higher recognition speed. Classifiers based on support vector machine (SVM, SVM-PCA, and SVM-KPCA were designed, and the classification performances of these three kinds of algorithms were compared using data collected from a person who was wearing the sensing shoes. Experimental results showed that the algorithm fusing SVM and KPCA had better recognition performance than the other two methods. Experimental outcomes also confirmed that the sensing shoes developed in this paper can be employed for automatically recognizing human walking pattern in unlimited environments which demonstrated the potential application in the control of exoskeleton robots.

  1. The Role of Verbal Instruction and Visual Guidance in Training Pattern Recognition

    Jamie S. North

    2017-09-01

    Full Text Available We used a novel approach to examine whether it is possible to improve the perceptual–cognitive skill of pattern recognition using a video-based training intervention. Moreover, we investigated whether any improvements in pattern recognition transfer to an improved ability to make anticipation judgments. Finally, we compared the relative effectiveness of verbal and visual guidance interventions compared to a group that merely viewed the same sequences without any intervention and a control group that only completed pre- and post-tests. We found a significant effect for time of testing. Participants were more sensitive in their ability to perceive patterns and distinguish between novel and familiar sequences at post- compared to pre-test. However, this improvement was not influenced by the nature of the intervention, despite some trends in the data. An analysis of anticipation accuracy showed no change from pre- to post-test following the pattern recognition training intervention, suggesting that the link between pattern perception and anticipation may not be strong. We present a series of recommendations for scientists and practitioners when employing training methods to improve pattern recognition and anticipation.

  2. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  3. Hypothetical Pattern Recognition Design Using Multi-Layer Perceptorn Neural Network For Supervised Learning

    Md. Abdullah-al-mamun

    2015-08-01

    Full Text Available Abstract Humans are capable to identifying diverse shape in the different pattern in the real world as effortless fashion due to their intelligence is grow since born with facing several learning process. Same way we can prepared an machine using human like brain called Artificial Neural Network that can be recognize different pattern from the real world object. Although the various techniques is exists to implementation the pattern recognition but recently the artificial neural network approaches have been giving the significant attention. Because the approached of artificial neural network is like a human brain that is learn from different observation and give a decision the previously learning rule. Over the 50 years research now a days pattern recognition for machine learning using artificial neural network got a significant achievement. For this reason many real world problem can be solve by modeling the pattern recognition process. The objective of this paper is to present the theoretical concept for pattern recognition design using Multi-Layer Perceptorn neural networkin the algorithm of artificial Intelligence as the best possible way of utilizing available resources to make a decision that can be a human like performance.

  4. Landscape metrics for three-dimension urban pattern recognition

    Liu, M.; Hu, Y.; Zhang, W.; Li, C.

    2017-12-01

    Understanding how landscape pattern determines population or ecosystem dynamics is crucial for managing our landscapes. Urban areas are becoming increasingly dominant social-ecological systems, so it is important to understand patterns of urbanization. Most studies of urban landscape pattern examine land-use maps in two dimensions because the acquisition of 3-dimensional information is difficult. We used Brista software based on Quickbird images and aerial photos to interpret the height of buildings, thus incorporating a 3-dimensional approach. We estimated the feasibility and accuracy of this approach. A total of 164,345 buildings in the Liaoning central urban agglomeration of China, which included seven cities, were measured. Twelve landscape metrics were proposed or chosen to describe the urban landscape patterns in 2- and 3-dimensional scales. The ecological and social meaning of landscape metrics were analyzed with multiple correlation analysis. The results showed that classification accuracy compared with field surveys was 87.6%, which means this method for interpreting building height was acceptable. The metrics effectively reflected the urban architecture in relation to number of buildings, area, height, 3-D shape and diversity aspects. We were able to describe the urban characteristics of each city with these metrics. The metrics also captured ecological and social meanings. The proposed landscape metrics provided a new method for urban landscape analysis in three dimensions.

  5. Automatic SIMD parallelization of embedded applications based on pattern recognition

    Manniesing, R.; Karkowski, I.P.; Corporaal, H.

    2000-01-01

    This paper investigates the potential for automatic mapping of typical embedded applications to architectures with multimedia instruction set extensions. For this purpose a (pattern matching based) code transformation engine is used, which involves a three-step process of matching, condition

  6. Pattern Recognition for Reliability Assessment of Water Distribution Networks

    Trifunovi?, N.

    2012-01-01

    The study presented in this manuscript investigates the patterns that describe reliability of water distribution networks focusing to the node connectivity, energy balance, and economics of construction, operation and maintenance. A number of measures to evaluate the network resilience has been

  7. Recognition of periodic behavioral patterns from streaming mobility data

    Baratchi, Mitra; Meratnia, Nirvana; Havinga, Paul J.M.; Stojmenovic, Ivan; Cheng, Zixue; Guo, Song

    2014-01-01

    Ubiquitous location-aware sensing devices have facilitated collection of large volumes of mobility data streams from moving entities such as people and animals, among others. Extraction of various types of periodic behavioral patterns hidden in such large volume of mobility data helps in

  8. Determination of ocular torsion by means of automatic pattern recognition

    Groen, E.L.; Bos, J.E.; Nacken, P.F.M.; Graaf, B. de

    1996-01-01

    A new, automatic method for determination of human ocular torsion (OT) was devel-oped based on the tracking of iris patterns in digitized video images. Instead of quanti-fying OT by means of cross-correlation of circular iris samples, a procedure commonly applied, this new method automatically

  9. Determination of ocular torsion by means of automatic pattern recognition

    Groen, Eric; Bos, Jelte E.; Nacken, Peter F M; De Graaf, Bernd

    A new, automatic method for determination of human ocular torsion (OT) was developed based on the tracking of iris patterns in digitized video images. Instead of quantifying OT by means of cross-correlation of circular iris samples, a procedure commonly applied, this new method automatically selects

  10. Increased neutrophil expression of pattern recognition receptors during COPD exacerbations

    Pouwels, Simon D.; Van Geffen, Wouter H.; Jonker, Marnix R.; Kerstjens, Huib A. M.; Nawijn, Martijn C.; Heijink, Irene H.

    Previously, we observed increased serum levels of damage-associated molecular patterns (DAMPs) during COPD exacerbations. Here, gene expression of DAMP receptors was measured in peripheral blood neutrophils of COPD patients during stable disease and severe acute exacerbation. The expression of

  11. spsann - optimization of sample patterns using spatial simulated annealing

    Samuel-Rosa, Alessandro; Heuvelink, Gerard; Vasques, Gustavo; Anjos, Lúcia

    2015-04-01

    There are many algorithms and computer programs to optimize sample patterns, some private and others publicly available. A few have only been presented in scientific articles and text books. This dispersion and somewhat poor availability is holds back to their wider adoption and further development. We introduce spsann, a new R-package for the optimization of sample patterns using spatial simulated annealing. R is the most popular environment for data processing and analysis. Spatial simulated annealing is a well known method with widespread use to solve optimization problems in the soil and geo-sciences. This is mainly due to its robustness against local optima and easiness of implementation. spsann offers many optimizing criteria for sampling for variogram estimation (number of points or point-pairs per lag distance class - PPL), trend estimation (association/correlation and marginal distribution of the covariates - ACDC), and spatial interpolation (mean squared shortest distance - MSSD). spsann also includes the mean or maximum universal kriging variance (MUKV) as an optimizing criterion, which is used when the model of spatial variation is known. PPL, ACDC and MSSD were combined (PAN) for sampling when we are ignorant about the model of spatial variation. spsann solves this multi-objective optimization problem scaling the objective function values using their maximum absolute value or the mean value computed over 1000 random samples. Scaled values are aggregated using the weighted sum method. A graphical display allows to follow how the sample pattern is being perturbed during the optimization, as well as the evolution of its energy state. It is possible to start perturbing many points and exponentially reduce the number of perturbed points. The maximum perturbation distance reduces linearly with the number of iterations. The acceptance probability also reduces exponentially with the number of iterations. R is memory hungry and spatial simulated annealing is a

  12. Mapping spatial patterns of denitrifiers at large scales (Invited)

    Philippot, L.; Ramette, A.; Saby, N.; Bru, D.; Dequiedt, S.; Ranjard, L.; Jolivet, C.; Arrouays, D.

    2010-12-01

    Little information is available regarding the landscape-scale distribution of microbial communities and its environmental determinants. Here we combined molecular approaches and geostatistical modeling to explore spatial patterns of the denitrifying community at large scales. The distribution of denitrifrying community was investigated over 107 sites in Burgundy, a 31 500 km2 region of France, using a 16 X 16 km sampling grid. At each sampling site, the abundances of denitrifiers and 42 soil physico-chemical properties were measured. The relative contributions of land use, spatial distance, climatic conditions, time and soil physico-chemical properties to the denitrifier spatial distribution were analyzed by canonical variation partitioning. Our results indicate that 43% to 85% of the spatial variation in community abundances could be explained by the measured environmental parameters, with soil chemical properties (mostly pH) being the main driver. We found spatial autocorrelation up to 739 km and used geostatistical modelling to generate predictive maps of the distribution of denitrifiers at the landscape scale. Studying the distribution of the denitrifiers at large scale can help closing the artificial gap between the investigation of microbial processes and microbial community ecology, therefore facilitating our understanding of the relationships between the ecology of denitrifiers and N-fluxes by denitrification.

  13. Mapping spatial patterns of people's risk perception of landslides

    Kofler, Christian; Pedoth, Lydia; Elzbieta Stawinoga, Agnieszka; Schneiderbauer, Stefan

    2016-04-01

    The resilience of communities against natural hazards is largely influenced by how the individuals perceive risk. A good understanding of people's risk perception, awareness and hazard knowledge is crucial for developing and improving risk management and communication strategies between authorities and the affected population. A lot of research has been done in investigating the social aspects of risks to natural hazards by means of interviews or questionnaires. However, there is still a lack of research in the investigation of the influence of the spatial distance to a hazard event on peoples risk perception. While the spatial dimension of a natural hazard event is always assessed in works with a natural science approach, it is often neglected in works on social aspects of natural hazards. In the present study, we aimed to overcome these gaps by combining methods from different disciplines and assessing and mapping the spatial pattern of risk perception through multivariate statistical approaches based on empirical data from questionnaires. We will present results from a case study carried out in Badia, located in the Province of South Tyrol- Italy, where in December 2012 a landslide destroyed four residential buildings and led to the evacuation of 36 people. By means of questionnaires distributed to all adults living in the case study area we assessed people's risk perception and asked respondents to allocate their place of residence on a map of the case study area subdivided in 7 zones. Based on the data of the questionnaire results we developed a risk perception factor in order to express various assessed aspects linked to risk perception with one metric. We analyzed and mapped this factor according to the different zones reflecting the spatial distance to the event. Furthermore, a cluster analysis identified various risk behavior profiles within the population. We also investigated the spatial patterns of these risk profiles. We revealed that the residential

  14. Are Differences Between Men and Women in Rotated Pattern Recognition Due to the Use of Different Cognitive Strategies?

    Catherine Brandner

    2013-08-01

    Full Text Available A recursive hypothesis suggests that gender differences in spatial abilities, including mental rotation tasks, are the result of differences in the strategies that men and women use to process information. To address this issue, we systematically explored men and women’s performance for rotated patterns by assessing recognition, confidence rating and response time, thought to be fundamental to spatial processing, with classical methods, and with signal detection theory (SDT parameters (d-prime and c-bias. Among our findings, we highlight d-prime as the most robust parameter to assess gender differences and predict group membership. Furthermore, we conclude that better performance by men is due to their strategy of transforming a mental rotation task into a simpler task comparing the alignment of test stimuli to the surrounding experimental environment.

  15. GIS technology in regional recognition of the distribution pattern of multifloral honey: The chemical traits in Serbia

    Radović D.I.

    2014-01-01

    Full Text Available GIS is a computer-based system to input, store, manipulate, analyze and output spatially referenced data. There is a huge range application of GIS that generally sets out to fulfill: mapping, measurement, monitoring, modeling and management. In this study, GIS technology was used for the regional recognition of origin and distribution patterns of multifloral honey chemical traits in Serbia. This included organizing and analyzing the spatial and attributive data of 164 honey samples collected from different regions of Serbia during the harvesting season of 2009. Multifloral honey was characterized in regards to mineral composition, sugar content and basic physicochemical properties. The kriging method of Geostatistical Analyst was used for interpolation to predict values of a sampled variable over the whole territory of Serbia. [Projekat Ministarstva nauke Republike Srbije, br. III 46002, OI 172017 and 451-03-2372-IP Type 1/107

  16. Rough-fuzzy pattern recognition applications in bioinformatics and medical imaging

    Maji, Pradipta

    2012-01-01

    Learn how to apply rough-fuzzy computing techniques to solve problems in bioinformatics and medical image processing Emphasizing applications in bioinformatics and medical image processing, this text offers a clear framework that enables readers to take advantage of the latest rough-fuzzy computing techniques to build working pattern recognition models. The authors explain step by step how to integrate rough sets with fuzzy sets in order to best manage the uncertainties in mining large data sets. Chapters are logically organized according to the major phases of pattern recognition systems dev

  17. Application of the new pattern recognition system in the new e-nose to detecting Chinese spirits

    Gu Yu; Li Qiang

    2014-01-01

    We present a new pattern recognition system based on moving average and linear discriminant analysis (LDA), which can be used to process the original signal of the new polymer quartz piezoelectric crystal air-sensitive sensor system we designed, called the new e-nose. Using the new e-nose, we obtain the template datum of Chinese spirits via a new pattern recognition system. To verify the effectiveness of the new pattern recognition system, we select three kinds of Chinese spirits to test, our results confirm that the new pattern recognition system can perfectly identify and distinguish between the Chinese spirits. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  18. Spatial pattern and temporal trend of mortality due to tuberculosis

    Ana Angélica Rêgo de Queiroz

    2018-05-01

    Full Text Available ABSTRACT Objectives: To describe the epidemiological profile of mortality due to tuberculosis (TB, to analyze the spatial pattern of these deaths and to investigate the temporal trend in mortality due to tuberculosis in Northeast Brazil. Methods: An ecological study based on secondary mortality data. Deaths due to TB were included in the study. Descriptive statistics were calculated and gross mortality rates were estimated and smoothed by the Local Empirical Bayesian Method. Prais-Winsten’s regression was used to analyze the temporal trend in the TB mortality coefficients. The Kernel density technique was used to analyze the spatial distribution of TB mortality. Results: Tuberculosis was implicated in 236 deaths. The burden of tuberculosis deaths was higher amongst males, single people and people of mixed ethnicity, and the mean age at death was 51 years. TB deaths were clustered in the East, West and North health districts, and the tuberculosis mortality coefficient remained stable throughout the study period. Conclusions: Analyses of the spatial pattern and temporal trend in mortality revealed that certain areas have higher TB mortality rates, and should therefore be prioritized in public health interventions targeting the disease.

  19. Spatial pattern of agricultural land conversion in West Java Province

    Maryati, S.; Humaira, A. N. S.; Pratiwi, F.

    2018-03-01

    Population growth has an implication on increasing demand for land. The demand for built-up area is filled by land conversion, mostly from agricultural land. On the other hand, population growth requires an increase in food production as well as land for agriculture. Conversion of agricultural land can threaten the availability and food security. The purpose of this study is to identify the spatial pattern of changes in agricultural land in West Java Province as input to improve food security condition in this province. Descriptive statistics and spatial analysis were used to analyse the area of agricultural land, conversion of agricultural land, and spatial pattern of changes in agricultural land in West Java Province. The data used is time series data in the period of 2005-2014. The result of analysis shows that there are still areas with a high percentage of agricultural land in West Java Province. The rate of conversion of agricultural land varies widely. Cities or regions with very high land conversion rate tend to concentrate in metropolitan areas.

  20. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity

    Miller, Yury I; Choi, Soo-Ho; Wiesner, Philipp

    2011-01-01

    are a major target of innate immunity, recognized by a variety of "pattern recognition receptors" (PRRs). By analogy with microbial "pathogen-associated molecular patterns" (PAMPs), we postulate that host-derived, oxidation-specific epitopes can be considered to represent "danger (or damage......)-associated molecular patterns" (DAMPs). We also argue that oxidation-specific epitopes present on apoptotic cells and their cellular debris provided the primary evolutionary pressure for the selection of such PRRs. Furthermore, because many PAMPs on microbes share molecular identity and/or mimicry with oxidation...

  1. Page Oriented Holographic Memories And Optical Pattern Recognition

    Caulfield, H. J.

    1987-08-01

    In the twenty-two years since VanderLugt's introduction of holographic matched filtering, the intensive research carried out throughout the world has led to no applications in complex environment. This leads one to the suspicion that the VanderLugt filter technique is insufficiently complex to handle truly complex problems. Therefore, it is of great interest to increase the complexity of the VanderLugt filtering operation. We introduce here an approach to the real time filter assembly: use of page oriented holographic memories and optically addressed SLMs to achieve intelligent and fast reprogramming of the filters using a 10 4 to 10 6 stored pattern base.

  2. Protein recognition by a pattern-generating fluorescent molecular probe

    Pode, Zohar; Peri-Naor, Ronny; Georgeson, Joseph M.; Ilani, Tal; Kiss, Vladimir; Unger, Tamar; Markus, Barak; Barr, Haim M.; Motiei, Leila; Margulies, David

    2017-12-01

    Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.

  3. Pattern Recognition of Gene Expression with Singular Spectrum Analysis

    Hossein Hassani

    2014-07-01

    Full Text Available Drosophila segmentation as a model organism is one of the most highly studied. Among many maternal segmentation coordinate genes, bicoid protein pattern plays a significant role during Drosophila embryogenesis, since this gradient determines most aspects of head and thorax development. Despite the fact that several models have been proposed to describe the bicoid gradient, due to its association with considerable error, each can only partially explain bicoid characteristics. In this paper, a modified version of singular spectrum analysis is examined for filtering and extracting the bicoid gene expression signal. The results with strong evidence indicate that the proposed technique is able to remove noise more effectively and can be considered as a promising method for filtering gene expression measurements for other applications.

  4. Recognition of neural brain activity patterns correlated with complex motor activity

    Kurkin, Semen; Musatov, Vyacheslav Yu.; Runnova, Anastasia E.; Grubov, Vadim V.; Efremova, Tatyana Yu.; Zhuravlev, Maxim O.

    2018-04-01

    In this paper, based on the apparatus of artificial neural networks, a technique for recognizing and classifying patterns corresponding to imaginary movements on electroencephalograms (EEGs) obtained from a group of untrained subjects was developed. The works on the selection of the optimal type, topology, training algorithms and neural network parameters were carried out from the point of view of the most accurate and fast recognition and classification of patterns on multi-channel EEGs associated with the imagination of movements. The influence of the number and choice of the analyzed channels of a multichannel EEG on the quality of recognition of imaginary movements was also studied, and optimal configurations of electrode arrangements were obtained. The effect of pre-processing of EEG signals is analyzed from the point of view of improving the accuracy of recognition of imaginary movements.

  5. Pattern recognition methodologies and deterministic evaluation of seismic hazard: A strategy to increase earthquake preparedness

    Peresan, Antonella; Panza, Giuliano F.; Gorshkov, Alexander I.; Aoudia, Abdelkrim

    2001-05-01

    Several algorithms, structured according to a general pattern-recognition scheme, have been developed for the space-time identification of strong events. Currently, two of such algorithms are applied to the Italian territory, one for the recognition of earthquake-prone areas and the other, namely CN algorithm, for earthquake prediction purposes. These procedures can be viewed as independent experts, hence they can be combined to better constrain the alerted seismogenic area. We examine here the possibility to integrate CN intermediate-term medium-range earthquake predictions, pattern recognition of earthquake-prone areas and deterministic hazard maps, in order to associate CN Times of Increased Probability (TIPs) to a set of appropriate scenarios of ground motion. The advantage of this procedure mainly consists in the time information provided by predictions, useful to increase preparedness of safety measures and to indicate a priority for detailed seismic risk studies to be performed at a local scale. (author)

  6. A Dynamic Interval-Valued Intuitionistic Fuzzy Sets Applied to Pattern Recognition

    Zhenhua Zhang

    2013-01-01

    Full Text Available We present dynamic interval-valued intuitionistic fuzzy sets (DIVIFS, which can improve the recognition accuracy when they are applied to pattern recognition. By analyzing the degree of hesitancy, we propose some DIVIFS models from intuitionistic fuzzy sets (IFS and interval-valued IFS (IVIFS. And then we present a novel ranking condition on the distance of IFS and IVIFS and introduce some distance measures of DIVIFS satisfying the ranking condition. Finally, a pattern recognition example applied to medical diagnosis decision making is given to demonstrate the application of DIVIFS and its distances. The simulation results show that the DIVIFS method is more comprehensive and flexible than the IFS method and the IVIFS method.

  7. Spatial patterns of seaweed distribution in Malaysia using GIS

    Lian, Du Hai; Sim, Jillian Ooi Lean; Fauzi, Rosmadi; Moi, Phang Siew

    2008-10-01

    The objective of this article is to represent spatial patterns of seaweed distribution in Malaysia. Seaweeds have been collected since 1984 along coastlines of 4675 km of peninsular Malaysia, Sabah, and Sarawak. However, there is no seaweed database and they cannot be displayed in a geographic view. Therefore, a database with 805 georeferenced observations was setup and GIS is used to analyze seaweed diversity based on this database. The highest number of observations is 94 which occur along east coastline of peninsular Malaysia. The highest number of species richness is 82 which are also along east coastline of peninsular Malaysia. Rhodophyta has the highest species richness while Chlorophyta has the least species richness.

  8. Foundations for a syntatic pattern recognition system for genomic DNA sequences

    Searles, D.B.

    1993-03-01

    The goal of the proposed work is the creation of a software system that will perform sophisticated pattern recognition and related functions at a level of abstraction and with expressive power beyond current general-purpose pattern-matching systems for biological sequences; and with a more uniform language, environment, and graphical user interface, and with greater flexibility, extensibility, embeddability, and ability to incorporate other algorithms, than current special-purpose analytic software.

  9. Whose Balance Sheet is this? Neural Networks for Banks' Pattern Recognition

    Leon Rincon, Carlos; Moreno, José Fernando; Cely, Jorge

    2017-01-01

    The balance sheet is a snapshot that portraits the financial position of a firm at a specific point of time. Under the reasonable assumption that the financial position of a firm is unique and representative, we use a basic artificial neural network pattern recognition method on Colombian banks’

  10. Binary pattern flavored feature extractors for Facial Expression Recognition: An overview

    Kristensen, Rasmus Lyngby; Tan, Zheng-Hua; Ma, Zhanyu

    2015-01-01

    This paper conducts a survey of modern binary pattern flavored feature extractors applied to the Facial Expression Recognition (FER) problem. In total, 26 different feature extractors are included, of which six are selected for in depth description. In addition, the paper unifies important FER...

  11. Mechanisms and Neural Basis of Object and Pattern Recognition: A Study with Chess Experts

    Bilalic, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang

    2010-01-01

    Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and…

  12. Behavioral and Physiological Neural Network Analyses: A Common Pathway toward Pattern Recognition and Prediction

    Ninness, Chris; Lauter, Judy L.; Coffee, Michael; Clary, Logan; Kelly, Elizabeth; Rumph, Marilyn; Rumph, Robin; Kyle, Betty; Ninness, Sharon K.

    2012-01-01

    Using 3 diversified datasets, we explored the pattern-recognition ability of the Self-Organizing Map (SOM) artificial neural network as applied to diversified nonlinear data distributions in the areas of behavioral and physiological research. Experiment 1 employed a dataset obtained from the UCI Machine Learning Repository. Data for this study…

  13. An Application of Discriminant Analysis to Pattern Recognition of Selected Contaminated Soil Features in Thin Sections

    Ribeiro, Alexandra B.; Nielsen, Allan Aasbjerg

    1997-01-01

    qualitative microprobe results: present elements Al, Si, Cr, Fe, As (associated with others). Selected groups of calibrated images (same light conditions and magnification) submitted to discriminant analysis, in order to find a pattern of recognition in the soil features corresponding to contamination already...

  14. A New Functional Classification of Glucuronoyl Esterases by Peptide Pattern Recognition

    Wittrup Agger, Jane; Busk, Peter Kamp; Pilgaard, Bo

    2017-01-01

    of characterized enzymes exist and the exact activity is still uncertain. Here peptide pattern recognition is used as a bioinformatic tool to identify and group new CE15 proteins that are likely to have glucuronoyl esterase activity. 1024 CE15-like sequences were drawn from GenBank and grouped into 24 groups...

  15. Identification of a β-glucosidase from the Mucor circinelloides genome by peptide pattern recognition

    Yuhong, Huang; Busk, Peter Kamp; Grell, Morten Nedergaard

    2014-01-01

    Mucor circinelloides produces plant cell wall degrading enzymes that allow it to grow on complex polysaccharides. Although the genome of M. circinelloides has been sequenced, only few plant cell wall degrading enzymes are annotated in this species. We applied peptide pattern recognition, which...

  16. Pattern recognition in cyclic and discrete skills performance from inertial measurement units

    Seifert, Ludovic; L'Hermette, Maxime; Komar, John; Orth, Dominic; Mell, Florian; Merriaux, Pierre; Grenet, Pierre; Caritu, Yanis; Hérault, Romain; Dovgalecs, Vladislavs; Davids, Keith

    2014-01-01

    The aim of this study is to compare and validate an Inertial Measurement Unit (IMU) relative to an optic system, and to propose methods for pattern recognition to capture behavioural dynamics during sport performance. IMU validation was conducted by comparing the motions of the two arms of a

  17. Reading laterally: the cerebral hemispheric use of spatial frequencies in visual word recognition.

    Tadros, Karine; Dupuis-Roy, Nicolas; Fiset, Daniel; Arguin, Martin; Gosselin, Frédéric

    2013-01-04

    It is generally accepted that the left hemisphere (LH) is more capable for reading than the right hemisphere (RH). Left hemifield presentations (initially processed by the RH) lead to a globally higher error rate, slower word identification, and a significantly stronger word length effect (i.e., slower reaction times for longer words). Because the visuo-perceptual mechanisms of the brain for word recognition are primarily localized in the LH (Cohen et al., 2003), it is possible that this part of the brain possesses better spatial frequency (SF) tuning for processing the visual properties of words than the RH. The main objective of this study is to determine the SF tuning functions of the LH and RH for word recognition. Each word image was randomly sampled in the SF domain using the SF bubbles method (Willenbockel et al., 2010) and was presented laterally to the left or right visual hemifield. As expected, the LH requires less visual information than the RH to reach the same level of performance, illustrating the well-known LH advantage for word recognition. Globally, the SF tuning of both hemispheres is similar. However, these seemingly identical tuning functions hide important differences. Most importantly, we argue that the RH requires higher SFs to identify longer words because of crowding.

  18. Three dimensional pattern recognition using feature-based indexing and rule-based search

    Lee, Jae-Kyu

    In flexible automated manufacturing, robots can perform routine operations as well as recover from atypical events, provided that process-relevant information is available to the robot controller. Real time vision is among the most versatile sensing tools, yet the reliability of machine-based scene interpretation can be questionable. The effort described here is focused on the development of machine-based vision methods to support autonomous nuclear fuel manufacturing operations in hot cells. This thesis presents a method to efficiently recognize 3D objects from 2D images based on feature-based indexing. Object recognition is the identification of correspondences between parts of a current scene and stored views of known objects, using chains of segments or indexing vectors. To create indexed object models, characteristic model image features are extracted during preprocessing. Feature vectors representing model object contours are acquired from several points of view around each object and stored. Recognition is the process of matching stored views with features or patterns detected in a test scene. Two sets of algorithms were developed, one for preprocessing and indexed database creation, and one for pattern searching and matching during recognition. At recognition time, those indexing vectors with the highest match probability are retrieved from the model image database, using a nearest neighbor search algorithm. The nearest neighbor search predicts the best possible match candidates. Extended searches are guided by a search strategy that employs knowledge-base (KB) selection criteria. The knowledge-based system simplifies the recognition process and minimizes the number of iterations and memory usage. Novel contributions include the use of a feature-based indexing data structure together with a knowledge base. Both components improve the efficiency of the recognition process by improved structuring of the database of object features and reducing data base size

  19. Nematode spatial and ecological patterns from tropical and temperate rainforests.

    Dorota L Porazinska

    Full Text Available Large scale diversity patterns are well established for terrestrial macrobiota (e.g. plants and vertebrates, but not for microscopic organisms (e.g. nematodes. Due to small size, high abundance, and extensive dispersal, microbiota are assumed to exhibit cosmopolitan distributions with no biogeographical patterns. This assumption has been extrapolated from local spatial scale studies of a few taxonomic groups utilizing morphological approaches. Recent molecularly-based studies, however, suggest something quite opposite. Nematodes are the most abundant metazoans on earth, but their diversity patterns are largely unknown. We conducted a survey of nematode diversity within three vertical strata (soil, litter, and canopy of rainforests at two contrasting latitudes in the North American meridian (temperate: the Olympic National Forest, WA, U.S.A and tropical: La Selva Biological Station, Costa Rica using standardized sampling designs and sample processing protocols. To describe nematode diversity, we applied an ecometagenetic approach using 454 pyrosequencing. We observed that: 1 nematode communities were unique without even a single common species between the two rainforests, 2 nematode communities were unique among habitats in both rainforests, 3 total species richness was 300% more in the tropical than in the temperate rainforest, 4 80% of the species in the temperate rainforest resided in the soil, whereas only 20% in the tropics, 5 more than 90% of identified species were novel. Overall, our data provided no support for cosmopolitanism at both local (habitats and large (rainforests spatial scales. In addition, our data indicated that biogeographical patterns typical of macrobiota also exist for microbiota.

  20. Nematode Spatial and Ecological Patterns from Tropical and Temperate Rainforests

    Porazinska, Dorota L.; Giblin-Davis, Robin M.; Powers, Thomas O.; Thomas, W. Kelley

    2012-01-01

    Large scale diversity patterns are well established for terrestrial macrobiota (e.g. plants and vertebrates), but not for microscopic organisms (e.g. nematodes). Due to small size, high abundance, and extensive dispersal, microbiota are assumed to exhibit cosmopolitan distributions with no biogeographical patterns. This assumption has been extrapolated from local spatial scale studies of a few taxonomic groups utilizing morphological approaches. Recent molecularly-based studies, however, suggest something quite opposite. Nematodes are the most abundant metazoans on earth, but their diversity patterns are largely unknown. We conducted a survey of nematode diversity within three vertical strata (soil, litter, and canopy) of rainforests at two contrasting latitudes in the North American meridian (temperate: the Olympic National Forest, WA, U.S.A and tropical: La Selva Biological Station, Costa Rica) using standardized sampling designs and sample processing protocols. To describe nematode diversity, we applied an ecometagenetic approach using 454 pyrosequencing. We observed that: 1) nematode communities were unique without even a single common species between the two rainforests, 2) nematode communities were unique among habitats in both rainforests, 3) total species richness was 300% more in the tropical than in the temperate rainforest, 4) 80% of the species in the temperate rainforest resided in the soil, whereas only 20% in the tropics, 5) more than 90% of identified species were novel. Overall, our data provided no support for cosmopolitanism at both local (habitats) and large (rainforests) spatial scales. In addition, our data indicated that biogeographical patterns typical of macrobiota also exist for microbiota. PMID:22984536

  1. Small regulatory RNAs may sharpen spatial expression patterns.

    Erel Levine

    2007-11-01

    Full Text Available The precise establishment of gene expression patterns is a crucial step in development. Formation of a sharp boundary between high and low spatial expression domains requires a genetic mechanism that exhibits sensitivity, yet is robust to fluctuations, a demand that may not be easily achieved by morphogens alone. Recently, it has been demonstrated that small RNAs (and, in particular, microRNAs play many roles in embryonic development. Whereas some RNAs are essential for embryogenesis, others are limited to fine-tuning a predetermined gene expression pattern. Here, we explore the possibility that small RNAs participate in sharpening a gene expression profile that was crudely established by a morphogen. To this end, we study a model in which small RNAs interact with a target gene and diffusively move from cell to cell. Though diffusion generally smoothens spatial expression patterns, we find that intercellular mobility of small RNAs is actually critical in sharpening the interface between target expression domains in a robust manner. This sharpening occurs as small RNAs diffuse into regions of low mRNA expression and eliminate target molecules therein, but cannot affect regions of high mRNA levels. We discuss the applicability of our results, as examples, to the case of leaf polarity establishment in maize and Hox patterning in the early Drosophila embryo. Our findings point out the functional significance of some mechanistic properties, such as mobility of small RNAs and the irreversibility of their interactions. These properties are yet to be established directly for most classes of small RNAs. An indirect yet simple experimental test of the proposed mechanism is suggested in some detail.

  2. Recognition of building group patterns in topographic maps based on graph partitioning and random forest

    He, Xianjin; Zhang, Xinchang; Xin, Qinchuan

    2018-02-01

    Recognition of building group patterns (i.e., the arrangement and form exhibited by a collection of buildings at a given mapping scale) is important to the understanding and modeling of geographic space and is hence essential to a wide range of downstream applications such as map generalization. Most of the existing methods develop rigid rules based on the topographic relationships between building pairs to identify building group patterns and thus their applications are often limited. This study proposes a method to identify a variety of building group patterns that allow for map generalization. The method first identifies building group patterns from potential building clusters based on a machine-learning algorithm and further partitions the building clusters with no recognized patterns based on the graph partitioning method. The proposed method is applied to the datasets of three cities that are representative of the complex urban environment in Southern China. Assessment of the results based on the reference data suggests that the proposed method is able to recognize both regular (e.g., the collinear, curvilinear, and rectangular patterns) and irregular (e.g., the L-shaped, H-shaped, and high-density patterns) building group patterns well, given that the correctness values are consistently nearly 90% and the completeness values are all above 91% for three study areas. The proposed method shows promises in automated recognition of building group patterns that allows for map generalization.

  3. Multitemporal spatial pattern analysis of Tulum's tropical coastal landscape

    Ramírez-Forero, Sandra Carolina; López-Caloca, Alejandra; Silván-Cárdenas, José Luis

    2011-11-01

    The tropical coastal landscape of Tulum in Quintana Roo, Mexico has a high ecological, economical, social and cultural value, it provides environmental and tourism services at global, national, regional and local levels. The landscape of the area is heterogeneous and presents random fragmentation patterns. In recent years, tourist services of the region has been increased promoting an accelerate expansion of hotels, transportation and recreation infrastructure altering the complex landscape. It is important to understand the environmental dynamics through temporal changes on the spatial patterns and to propose a better management of this ecological area to the authorities. This paper addresses a multi-temporal analysis of land cover changes from 1993 to 2000 in Tulum using Thematic Mapper data acquired by Landsat-5. Two independent methodologies were applied for the analysis of changes in the landscape and for the definition of fragmentation patterns. First, an Iteratively Multivariate Alteration Detection (IR-MAD) algorithm was used to detect and localize land cover change/no-change areas. Second, the post-classification change detection evaluated using the Support Vector Machine (SVM) algorithm. Landscape metrics were calculated from the results of IR-MAD and SVM. The analysis of the metrics indicated, among other things, a higher fragmentation pattern along roadways.

  4. Spatial recognition test: A novel cognition task for assessing topographical memory in mice.

    Havolli, Enes; Hill, Mark Dw; Godley, Annie; Goetghebeur, Pascal Jd

    2017-06-01

    Dysfunction in topographical memory is a core feature of several neurological disorders. There is a large unmet medical need to address learning and memory deficits as a whole in central nervous system disease. There are considerable efforts to identify pro-cognitive compounds but current methods are either lengthy or labour intensive. Our test used a two chamber apparatus and is based on the preference of rodents to explore novel environments. It was used firstly to assess topographical memory in mice at different retention intervals (RI) and secondly to investigate the effect of three drugs reported to be beneficial for cognitive decline associated with Alzheimer's disease, namely: donepezil, memantine and levetiracetam. Animals show good memory performance at all RIs tested under four hours. At the four-hour RI, animals show a significantly poorer memory performance which can be rescued using donepezil, memantine and levetiracetam. Using this test we established and validated a spatial recognition paradigm to address topographical memory in mice by showing a decremental time-induced forgetting response and reversing this decrease in performance using pharmacological tools. The spatial recognition test differs from more commonly used visuospatial laboratory tests in both throughput capability and potentially neuroanatomical substrate. This test has the potential to be used to assess cognitive performance in transgenic animals, disease models and to screen putative cognitive enhancers or depressors.

  5. Listening for recollection: a multi-voxel pattern analysis of recognition memory retrieval strategies

    Joel R Quamme

    2010-08-01

    Full Text Available Recent studies of recognition memory indicate that subjects can strategically vary how much they rely on recollection of specific details vs. feelings of familiarity when making recognition judgments. One possible explanation of these results is that subjects can establish an internally-directed attentional state (listening for recollection that enhances retrieval of studied details; fluctuations in this attentional state over time should be associated with fluctuations in subjects' recognition behavior. In this study, we used multi-voxel pattern analysis of fMRI data to identify brain regions that are involved in listening for recollection. Specifically, we looked for brain regions that met the following criteria: 1 Distinct neural patterns should be present when subjects are instructed to rely on recollection vs. familiarity, and 2 fluctuations in these neural patterns should be related to recognition behavior in the manner predicted by dual-process theories of recognition: Specifically, the presence of the recollection pattern during the pre-stimulus interval (indicating that subjects are listening for recollection at that moment should be associated with a selective decrease in false alarms to related lures. We found that pre-stimulus activity in the right supramarginal gyrus met all of these criteria, suggesting that this region proactively establishes an internally-directed attentional state that fosters recollection. We also found other regions (e.g., left middle temporal gyrus where the pattern of neural activity was related to subjects’ responding to related lures after stimulus onset (but not before, suggesting that these regions implement processes that are engaged in a reactive fashion to boost recollection.

  6. Digital and optical shape representation and pattern recognition; Proceedings of the Meeting, Orlando, FL, Apr. 4-6, 1988

    Juday, Richard D. (Editor)

    1988-01-01

    The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.

  7. Development of spatially diverse and complex dune-field patterns: Gran Desierto Dune Field, Sonora, Mexico

    Beveridge, C.; Kocurek, G.; Ewing, R.C.; Lancaster, N.; Morthekai, P.; Singhvi, A.K.; Mahan, S.A.

    2006-01-01

    The pattern of dunes within the Gran Desierto of Sonora, Mexico, is both spatially diverse and complex. Identification of the pattern components from remote-sensing images, combined with statistical analysis of their measured parameters demonstrate that the composite pattern consists of separate populations of simple dune patterns. Age-bracketing by optically stimulated luminescence (OSL) indicates that the simple patterns represent relatively short-lived aeolian constructional events since ???25 ka. The simple dune patterns consist of: (i) late Pleistocene relict linear dunes; (ii) degraded crescentic dunes formed at ???12 ka; (iii) early Holocene western crescentic dunes; (iv) eastern crescentic dunes emplaced at ???7 ka; and (v) star dunes formed during the last 3 ka. Recognition of the simple patterns and their ages allows for the geomorphic backstripping of the composite pattern. Palaeowind reconstructions, based upon the rule of gross bedform-normal transport, are largely in agreement with regional proxy data. The sediment state over time for the Gran Desierto is one in which the sediment supply for aeolian constructional events is derived from previously stored sediment (Ancestral Colorado River sediment), and contemporaneous influx from the lower Colorado River valley and coastal influx from the Bahia del Adair inlet. Aeolian constructional events are triggered by climatic shifts to greater aridity, changes in the wind regime, and the development of a sediment supply. The rate of geomorphic change within the Gran Desierto is significantly greater than the rate of subsidence and burial of the accumulation surface upon which it rests. ?? 2006 The Authors. Journal compilation 2006 International Association of Sedimentologists.

  8. Emotional Faces in Context: Age Differences in Recognition Accuracy and Scanning Patterns

    Noh, Soo Rim; Isaacowitz, Derek M.

    2014-01-01

    While age-related declines in facial expression recognition are well documented, previous research relied mostly on isolated faces devoid of context. We investigated the effects of context on age differences in recognition of facial emotions and in visual scanning patterns of emotional faces. While their eye movements were monitored, younger and older participants viewed facial expressions (i.e., anger, disgust) in contexts that were emotionally congruent, incongruent, or neutral to the facial expression to be identified. Both age groups had highest recognition rates of facial expressions in the congruent context, followed by the neutral context, and recognition rates in the incongruent context were worst. These context effects were more pronounced for older adults. Compared to younger adults, older adults exhibited a greater benefit from congruent contextual information, regardless of facial expression. Context also influenced the pattern of visual scanning characteristics of emotional faces in a similar manner across age groups. In addition, older adults initially attended more to context overall. Our data highlight the importance of considering the role of context in understanding emotion recognition in adulthood. PMID:23163713

  9. Spatial patterns of fish standing biomass across Brazilian reefs.

    Morais, R A; Ferreira, C E L; Floeter, S R

    2017-12-01

    A large fish-count dataset from the Brazilian province was used to describe spatial patterns in standing biomass and test if total biomass, taxonomic and functional trophic structure vary across nested spatial scales. Taxonomic and functional structure varied more among localities and sites than among regions. Total biomass was generally higher at oceanic islands and remote or protected localities along the coast. Lower level carnivores comprised a large part of the biomass at almost all localities (mean of 44%), zooplanktivores never attained more than 14% and omnivores were more representative of subtropical reefs and oceanic islands (up to 66% of total biomass). Small and large herbivores and detritivores varied greatly in their contribution to total biomass, with no clear geographical patterns. Macrocarnivores comprised less than 12% of the biomass anywhere, except for two remote localities. Top predators, such as sharks and very large groupers, were rare and restricted to a few reefs, suggesting that their ecological function might have already been lost in many Brazilian reefs. © 2017 The Fisheries Society of the British Isles.

  10. The pattern of spatial flood disaster region in DKI Jakarta

    Tambunan, M. P.

    2017-02-01

    The study of disaster flood area was conducted in DKI Jakarta Province, Indonesia. The aim of this research is: to study the spatial distribution of potential and actual of flood area The flood was studied from the geographic point of view using spatial approach, while the study of the location, the distribution, the depth and the duration of flooding was conducted using geomorphologic approach and emphasize on the detailed landform unit as analysis unit. In this study the landforms in DKI Jakarta have been a diversity, as well as spatial and temporal pattern of the actual and potential flood area. Landform at DKI Jakarta has been largely used as built up area for settlement and it facilities, thus affecting the distribution pattern of flooding area. The collection of the physical condition of landform in DKI Jakarta data prone were conducted through interpretation of the topographic map / RBI map and geological map. The flood data were obtained by survey and secondary data from Kimpraswil (Public Work) of DKI Jakarta Province for 3 years (1996, 2002, and 2007). Data of rainfall were obtained from BMKG and land use data were obtained from BPN DKI Jakarta. The analysis of the causal factors and distribution of flooding was made spatially and temporally using geographic information system. This study used survey method with a pragmatic approach. In this study landform as result from the analytical survey was settlement land use as result the synthetic survey. The primary data consist of landform, and the flood characteristic obtained by survey. The samples were using purposive sampling. Landform map was composed by relief, structure and material stone, and process data Landform map was overlay with flood map the flood prone area in DKI Jakarta Province in scale 1:50,000 to show. Descriptive analysis was used the spatial distribute of the flood prone area. The result of the study show that actual of flood prone area in the north, west and east of Jakarta lowland both

  11. Visual Scanning Patterns and Executive Function in Relation to Facial Emotion Recognition in Aging

    Circelli, Karishma S.; Clark, Uraina S.; Cronin-Golomb, Alice

    2012-01-01

    Objective The ability to perceive facial emotion varies with age. Relative to younger adults (YA), older adults (OA) are less accurate at identifying fear, anger, and sadness, and more accurate at identifying disgust. Because different emotions are conveyed by different parts of the face, changes in visual scanning patterns may account for age-related variability. We investigated the relation between scanning patterns and recognition of facial emotions. Additionally, as frontal-lobe changes with age may affect scanning patterns and emotion recognition, we examined correlations between scanning parameters and performance on executive function tests. Methods We recorded eye movements from 16 OA (mean age 68.9) and 16 YA (mean age 19.2) while they categorized facial expressions and non-face control images (landscapes), and administered standard tests of executive function. Results OA were less accurate than YA at identifying fear (precognition of sad expressions and with scanning patterns for fearful, sad, and surprised expressions. Conclusion We report significant age-related differences in visual scanning that are specific to faces. The observed relation between scanning patterns and executive function supports the hypothesis that frontal-lobe changes with age may underlie some changes in emotion recognition. PMID:22616800

  12. Performance Study of the First 2D Prototype of Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    Deptuch, Gregory [Fermilab; Hoff, James [Fermilab; Jindariani, Sergo [Fermilab; Liu, Tiehui [Fermilab; Olsen, Jamieson [Fermilab; Tran, Nhan [Fermilab; Joshi, Siddhartha [Northwestern U.; Li, Dawei [Northwestern U.; Ogrenci-Memik, Seda [Northwestern U.

    2017-09-24

    Extremely fast pattern recognition capabilities are necessary to find and fit billions of tracks at the hardware trigger level produced every second anticipated at high luminosity LHC (HL-LHC) running conditions. Associative Memory (AM) based approaches for fast pattern recognition have been proposed as a potential solution to the tracking trigger. However, at the HL-LHC, there is much less time available and speed performance must be improved over previous systems while maintaining a comparable number of patterns. The Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) Project aims to achieve the target pattern density and performance goal using 3DIC technology. The first step taken in the VIPRAM work was the development of a 2D prototype (protoVIPRAM00) in which the associative memory building blocks were designed to be compatible with the 3D integration. In this paper, we present the results from extensive performance studies of the protoVIPRAM00 chip in both realistic HL-LHC and extreme conditions. Results indicate that the chip operates at the design frequency of 100 MHz with perfect correctness in realistic conditions and conclude that the building blocks are ready for 3D stacking. We also present performance boundary characterization of the chip under extreme conditions.

  13. A study on the extraction of feature variables for the pattern recognition for welding flaws

    Kim, J. Y.; Kim, C. H.; Kim, B. H.

    1996-01-01

    In this study, the researches classifying the artificial and natural flaws in welding parts are performed using the pattern recognition technology. For this purpose the signal pattern recognition package including the user defined function was developed and the total procedure including the digital signal processing, feature extraction, feature selection and classifier selection is treated by bulk. Specially it is composed with and discussed using the statistical classifier such as the linear discriminant function classifier, the empirical Bayesian classifier. Also, the pattern recognition technology is applied to classification problem of natural flaw(i.e multiple classification problem-crack, lack of penetration, lack of fusion, porosity, and slag inclusion, the planar and volumetric flaw classification problem). According to this results, if appropriately teamed the neural network classifier is better than stastical classifier in the classification problem of natural flaw. And it is possible to acquire the recognition rate of 80% above through it is different a little according to domain extracting the feature and the classifier.

  14. Hydrogeological controls on spatial patterns of groundwater discharge in peatlands

    D. K. Hare

    2017-11-01

    Full Text Available Peatland environments provide important ecosystem services including water and carbon storage, nutrient processing and retention, and wildlife habitat. However, these systems and the services they provide have been degraded through historical anthropogenic agricultural conversion and dewatering practices. Effective wetland restoration requires incorporating site hydrology and understanding groundwater discharge spatial patterns. Groundwater discharge maintains wetland ecosystems by providing relatively stable hydrologic conditions, nutrient inputs, and thermal buffering important for ecological structure and function; however, a comprehensive site-specific evaluation is rarely feasible for such resource-constrained projects. An improved process-based understanding of groundwater discharge in peatlands may help guide ecological restoration design without the need for invasive methodologies and detailed site-specific investigation. Here we examine a kettle-hole peatland in southeast Massachusetts historically modified for commercial cranberry farming. During the time of our investigation, a large process-based ecological restoration project was in the assessment and design phases. To gain insight into the drivers of site hydrology, we evaluated the spatial patterning of groundwater discharge and the subsurface structure of the peatland complex using heat-tracing methods and ground-penetrating radar. Our results illustrate that two groundwater discharge processes contribute to the peatland hydrologic system: diffuse lower-flux marginal matrix seepage and discrete higher-flux preferential-flow-path seepage. Both types of groundwater discharge develop through interactions with subsurface peatland basin structure, often where the basin slope is at a high angle to the regional groundwater gradient. These field observations indicate strong correlation between subsurface structures and surficial groundwater discharge. Understanding these general patterns

  15. Hydrogeological controls on spatial patterns of groundwater discharge in peatlands

    Hare, Danielle K.; Boutt, David F.; Clement, William P.; Hatch, Christine E.; Davenport, Glorianna; Hackman, Alex

    2017-11-01

    Peatland environments provide important ecosystem services including water and carbon storage, nutrient processing and retention, and wildlife habitat. However, these systems and the services they provide have been degraded through historical anthropogenic agricultural conversion and dewatering practices. Effective wetland restoration requires incorporating site hydrology and understanding groundwater discharge spatial patterns. Groundwater discharge maintains wetland ecosystems by providing relatively stable hydrologic conditions, nutrient inputs, and thermal buffering important for ecological structure and function; however, a comprehensive site-specific evaluation is rarely feasible for such resource-constrained projects. An improved process-based understanding of groundwater discharge in peatlands may help guide ecological restoration design without the need for invasive methodologies and detailed site-specific investigation. Here we examine a kettle-hole peatland in southeast Massachusetts historically modified for commercial cranberry farming. During the time of our investigation, a large process-based ecological restoration project was in the assessment and design phases. To gain insight into the drivers of site hydrology, we evaluated the spatial patterning of groundwater discharge and the subsurface structure of the peatland complex using heat-tracing methods and ground-penetrating radar. Our results illustrate that two groundwater discharge processes contribute to the peatland hydrologic system: diffuse lower-flux marginal matrix seepage and discrete higher-flux preferential-flow-path seepage. Both types of groundwater discharge develop through interactions with subsurface peatland basin structure, often where the basin slope is at a high angle to the regional groundwater gradient. These field observations indicate strong correlation between subsurface structures and surficial groundwater discharge. Understanding these general patterns may allow resource

  16. Attention Modulates Visual-Tactile Interaction in Spatial Pattern Matching

    Göschl, Florian; Engel, Andreas K.; Friese, Uwe

    2014-01-01

    Factors influencing crossmodal interactions are manifold and operate in a stimulus-driven, bottom-up fashion, as well as via top-down control. Here, we evaluate the interplay of stimulus congruence and attention in a visual-tactile task. To this end, we used a matching paradigm requiring the identification of spatial patterns that were concurrently presented visually on a computer screen and haptically to the fingertips by means of a Braille stimulator. Stimulation in our paradigm was always bimodal with only the allocation of attention being manipulated between conditions. In separate blocks of the experiment, participants were instructed to (a) focus on a single modality to detect a specific target pattern, (b) pay attention to both modalities to detect a specific target pattern, or (c) to explicitly evaluate if the patterns in both modalities were congruent or not. For visual as well as tactile targets, congruent stimulus pairs led to quicker and more accurate detection compared to incongruent stimulation. This congruence facilitation effect was more prominent under divided attention. Incongruent stimulation led to behavioral decrements under divided attention as compared to selectively attending a single sensory channel. Additionally, when participants were asked to evaluate congruence explicitly, congruent stimulation was associated with better performance than incongruent stimulation. Our results extend previous findings from audiovisual studies, showing that stimulus congruence also resulted in behavioral improvements in visuotactile pattern matching. The interplay of stimulus processing and attentional control seems to be organized in a highly flexible fashion, with the integration of signals depending on both bottom-up and top-down factors, rather than occurring in an ‘all-or-nothing’ manner. PMID:25203102

  17. Attention modulates visual-tactile interaction in spatial pattern matching.

    Florian Göschl

    Full Text Available Factors influencing crossmodal interactions are manifold and operate in a stimulus-driven, bottom-up fashion, as well as via top-down control. Here, we evaluate the interplay of stimulus congruence and attention in a visual-tactile task. To this end, we used a matching paradigm requiring the identification of spatial patterns that were concurrently presented visually on a computer screen and haptically to the fingertips by means of a Braille stimulator. Stimulation in our paradigm was always bimodal with only the allocation of attention being manipulated between conditions. In separate blocks of the experiment, participants were instructed to (a focus on a single modality to detect a specific target pattern, (b pay attention to both modalities to detect a specific target pattern, or (c to explicitly evaluate if the patterns in both modalities were congruent or not. For visual as well as tactile targets, congruent stimulus pairs led to quicker and more accurate detection compared to incongruent stimulation. This congruence facilitation effect was more prominent under divided attention. Incongruent stimulation led to behavioral decrements under divided attention as compared to selectively attending a single sensory channel. Additionally, when participants were asked to evaluate congruence explicitly, congruent stimulation was associated with better performance than incongruent stimulation. Our results extend previous findings from audiovisual studies, showing that stimulus congruence also resulted in behavioral improvements in visuotactile pattern matching. The interplay of stimulus processing and attentional control seems to be organized in a highly flexible fashion, with the integration of signals depending on both bottom-up and top-down factors, rather than occurring in an 'all-or-nothing' manner.

  18. Nobiletin improves emotional and novelty recognition memory but not spatial referential memory.

    Kang, Jiyun; Shin, Jung-Won; Kim, Yoo-Rim; Swanberg, Kelley M; Kim, Yooseung; Bae, Jae Ryong; Kim, Young Ki; Lee, Jinwon; Kim, Soo-Yeon; Sohn, Nak-Won; Maeng, Sungho

    2017-01-01

    How to maintain and enhance cognitive functions for both aged and young populations is a highly interesting subject. But candidate memory-enhancing reagents are tested almost exclusively on lesioned or aged animals. Also, there is insufficient information on the type of memory these reagents can improve. Working memory, located in the prefrontal cortex, manages short-term sensory information, but, by gaining significant relevance, this information is converted to long-term memory by hippocampal formation and/or amygdala, followed by tagging with space-time or emotional cues, respectively. Nobiletin is a product of citrus peel known for cognitive-enhancing effects in various pharmacological and neurodegenerative disease models, yet, it is not well studied in non-lesioned animals and the type of memory that nobiletin can improve remains unclear. In this study, 8-week-old male mice were tested using behavioral measurements for working, spatial referential, emotional and visual recognition memory after daily administration of nobiletin. While nobiletin did not induce any change of spontaneous activity in the open field test, freezing by fear conditioning and novel object recognition increased. However, the effectiveness of spatial navigation in the Y-maze and Morris water maze was not improved. These results mean that nobiletin can specifically improve memories of emotionally salient information associated with fear and novelty, but not of spatial information without emotional saliency. Accordingly, the use of nobiletin on normal subjects as a memory enhancer would be more effective on emotional types but may have limited value for the improvement of episodic memories.

  19. Evaluation of pattern recognition and feature extraction methods in ADHD prediction.

    Joao Ricardo Sato

    2012-09-01

    Full Text Available Attention-Deficit/Hyperactivity Disorder is a neurodevelopmental disorder, being one of the most prevalent psychiatric disorders in childhood. The neural substrates associated with this condition, both from structural and functional perspectives, are not yet well established . Recent studies have highlighted the relevance of neuroimaging not only to provide a more solid understanding about the disorder but also for possible clinical support. The ADHD-200 Consortium organized the ADHD-200 global competition making publicly available, hundreds of structural magnetic resonance imaging (MRI and functional MRI (fMRI datasets of both ADHD patients and typically developing controls for research use. In the current study, we evaluate the predictive power of a set of three different feature extraction methods and 10 different pattern recognition methods. The features tested were regional homogeneity (ReHo, amplitude of low frequency fluctuations (ALFF and independent components analysis maps (RSN. Our findings suggest that the combination ALFF+ReHo maps contain relevant information to discriminate ADHD patients from typically developing controls, but with limited accuracy. All classifiers provided almost the same performance in this case. In addition, the combination ALFF+ReHo+RSN was relevant in combined vs inattentive ADHD classification, achieving a score accuracy of 67%. In this latter case, the performances of the classifiers were not equivalent and L2-regularized logistic regression (both in primal and dual space provided the most accurate predictions. The analysis of brain regions containing most discriminative information suggested that in both classifications (ADHD vs typically developing controls and combined vs inattentive, the relevant information is not confined only to a small set of regions but it is spatially distributed across the whole brain.

  20. The time course of individual face recognition: A pattern analysis of ERP signals.

    Nemrodov, Dan; Niemeier, Matthias; Mok, Jenkin Ngo Yin; Nestor, Adrian

    2016-05-15

    An extensive body of work documents the time course of neural face processing in the human visual cortex. However, the majority of this work has focused on specific temporal landmarks, such as N170 and N250 components, derived through univariate analyses of EEG data. Here, we take on a broader evaluation of ERP signals related to individual face recognition as we attempt to move beyond the leading theoretical and methodological framework through the application of pattern analysis to ERP data. Specifically, we investigate the spatiotemporal profile of identity recognition across variation in emotional expression. To this end, we apply pattern classification to ERP signals both in time, for any single electrode, and in space, across multiple electrodes. Our results confirm the significance of traditional ERP components in face processing. At the same time though, they support the idea that the temporal profile of face recognition is incompletely described by such components. First, we show that signals associated with different facial identities can be discriminated from each other outside the scope of these components, as early as 70ms following stimulus presentation. Next, electrodes associated with traditional ERP components as well as, critically, those not associated with such components are shown to contribute information to stimulus discriminability. And last, the levels of ERP-based pattern discrimination are found to correlate with recognition accuracy across subjects confirming the relevance of these methods for bridging brain and behavior data. Altogether, the current results shed new light on the fine-grained time course of neural face processing and showcase the value of novel methods for pattern analysis to investigating fundamental aspects of visual recognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Recognition

    Gimmler, Antje

    2017-01-01

    In this article, I shall examine the cognitive, heuristic and theoretical functions of the concept of recognition. To evaluate both the explanatory power and the limitations of a sociological concept, the theory construction must be analysed and its actual productivity for sociological theory mus...

  2. Adaptive pattern recognition in real-time video-based soccer analysis

    Schlipsing, Marc; Salmen, Jan; Tschentscher, Marc

    2017-01-01

    are taken into account. Our contribution is twofold: (1) the deliberate use of machine learning and pattern recognition techniques allows us to achieve high classification accuracy in varying environments. We systematically evaluate combinations of image features and learning machines in the given online......Computer-aided sports analysis is demanded by coaches and the media. Image processing and machine learning techniques that allow for "live" recognition and tracking of players exist. But these methods are far from collecting and analyzing event data fully autonomously. To generate accurate results......, human interaction is required at different stages including system setup, calibration, supervision of classifier training, and resolution of tracking conflicts. Furthermore, the real-time constraints are challenging: in contrast to other object recognition and tracking applications, we cannot treat data...

  3. Jellyfish prediction of occurrence from remote sensing data and a non-linear pattern recognition approach

    Albajes-Eizagirre, Anton; Romero, Laia; Soria-Frisch, Aureli; Vanhellemont, Quinten

    2011-11-01

    Impact of jellyfish in human activities has been increasingly reported worldwide in recent years. Segments such as tourism, water sports and leisure, fisheries and aquaculture are commonly damaged when facing blooms of gelatinous zooplankton. Hence the prediction of the appearance and disappearance of jellyfish in our coasts, which is not fully understood from its biological point of view, has been approached as a pattern recognition problem in the paper presented herein, where a set of potential ecological cues was selected to test their usefulness for prediction. Remote sensing data was used to describe environmental conditions that could support the occurrence of jellyfish blooms with the aim of capturing physical-biological interactions: forcing, coastal morphology, food availability, and water mass characteristics are some of the variables that seem to exert an effect on jellyfish accumulation on the shoreline, under specific spatial and temporal windows. A data-driven model based on computational intelligence techniques has been designed and implemented to predict jellyfish events on the beach area as a function of environmental conditions. Data from 2009 over the NW Mediterranean continental shelf have been used to train and test this prediction protocol. Standard level 2 products are used from MODIS (NASA OceanColor) and MERIS (ESA - FRS data). The procedure for designing the analysis system can be described as following. The aforementioned satellite data has been used as feature set for the performance evaluation. Ground truth has been extracted from visual observations by human agents on different beach sites along the Catalan area. After collecting the evaluation data set, the performance between different computational intelligence approaches have been compared. The outperforming one in terms of its generalization capability has been selected for prediction recall. Different tests have been conducted in order to assess the prediction capability of the

  4. Investigating Patterns for Self-Induced Emotion Recognition from EEG Signals.

    Zhuang, Ning; Zeng, Ying; Yang, Kai; Zhang, Chi; Tong, Li; Yan, Bin

    2018-03-12

    Most current approaches to emotion recognition are based on neural signals elicited by affective materials such as images, sounds and videos. However, the application of neural patterns in the recognition of self-induced emotions remains uninvestigated. In this study we inferred the patterns and neural signatures of self-induced emotions from electroencephalogram (EEG) signals. The EEG signals of 30 participants were recorded while they watched 18 Chinese movie clips which were intended to elicit six discrete emotions, including joy, neutrality, sadness, disgust, anger and fear. After watching each movie clip the participants were asked to self-induce emotions by recalling a specific scene from each movie. We analyzed the important features, electrode distribution and average neural patterns of different self-induced emotions. Results demonstrated that features related to high-frequency rhythm of EEG signals from electrodes distributed in the bilateral temporal, prefrontal and occipital lobes have outstanding performance in the discrimination of emotions. Moreover, the six discrete categories of self-induced emotion exhibit specific neural patterns and brain topography distributions. We achieved an average accuracy of 87.36% in the discrimination of positive from negative self-induced emotions and 54.52% in the classification of emotions into six discrete categories. Our research will help promote the development of comprehensive endogenous emotion recognition methods.

  5. Investigating Patterns for Self-Induced Emotion Recognition from EEG Signals

    Zeng, Ying; Yang, Kai; Tong, Li; Yan, Bin

    2018-01-01

    Most current approaches to emotion recognition are based on neural signals elicited by affective materials such as images, sounds and videos. However, the application of neural patterns in the recognition of self-induced emotions remains uninvestigated. In this study we inferred the patterns and neural signatures of self-induced emotions from electroencephalogram (EEG) signals. The EEG signals of 30 participants were recorded while they watched 18 Chinese movie clips which were intended to elicit six discrete emotions, including joy, neutrality, sadness, disgust, anger and fear. After watching each movie clip the participants were asked to self-induce emotions by recalling a specific scene from each movie. We analyzed the important features, electrode distribution and average neural patterns of different self-induced emotions. Results demonstrated that features related to high-frequency rhythm of EEG signals from electrodes distributed in the bilateral temporal, prefrontal and occipital lobes have outstanding performance in the discrimination of emotions. Moreover, the six discrete categories of self-induced emotion exhibit specific neural patterns and brain topography distributions. We achieved an average accuracy of 87.36% in the discrimination of positive from negative self-induced emotions and 54.52% in the classification of emotions into six discrete categories. Our research will help promote the development of comprehensive endogenous emotion recognition methods. PMID:29534515

  6. Artificial immune pattern recognition for damage detection in structural health monitoring sensor networks

    Chen, Bo; Zang, Chuanzhi

    2009-03-01

    This paper presents an artificial immune pattern recognition (AIPR) approach for the damage detection and classification in structures. An AIPR-based Structure Damage Classifier (AIPR-SDC) has been developed by mimicking immune recognition and learning mechanisms. The structure damage patterns are represented by feature vectors that are extracted from the structure's dynamic response measurements. The training process is designed based on the clonal selection principle in the immune system. The selective and adaptive features of the clonal selection algorithm allow the classifier to generate recognition feature vectors that are able to match the training data. In addition, the immune learning algorithm can learn and remember various data patterns by generating a set of memory cells that contains representative feature vectors for each class (pattern). The performance of the presented structure damage classifier has been validated using a benchmark structure proposed by the IASC-ASCE (International Association for Structural Control - American Society of Civil Engineers) Structural Health Monitoring Task Group. The validation results show a better classification success rate comparing to some of other classification algorithms.

  7. A Motion-Adaptive Deinterlacer via Hybrid Motion Detection and Edge-Pattern Recognition

    He-Yuan Lin

    2008-03-01

    Full Text Available A novel motion-adaptive deinterlacing algorithm with edge-pattern recognition and hybrid motion detection is introduced. The great variety of video contents makes the processing of assorted motion, edges, textures, and the combination of them very difficult with a single algorithm. The edge-pattern recognition algorithm introduced in this paper exhibits the flexibility in processing both textures and edges which need to be separately accomplished by line average and edge-based line average before. Moreover, predicting the neighboring pixels for pattern analysis and interpolation further enhances the adaptability of the edge-pattern recognition unit when motion detection is incorporated. Our hybrid motion detection features accurate detection of fast and slow motion in interlaced video and also the motion with edges. Using only three fields for detection also renders higher temporal correlation for interpolation. The better performance of our deinterlacing algorithm with higher content-adaptability and less memory cost than the state-of-the-art 4-field motion detection algorithms can be seen from the subjective and objective experimental results of the CIF and PAL video sequences.

  8. A Motion-Adaptive Deinterlacer via Hybrid Motion Detection and Edge-Pattern Recognition

    Li Hsin-Te

    2008-01-01

    Full Text Available Abstract A novel motion-adaptive deinterlacing algorithm with edge-pattern recognition and hybrid motion detection is introduced. The great variety of video contents makes the processing of assorted motion, edges, textures, and the combination of them very difficult with a single algorithm. The edge-pattern recognition algorithm introduced in this paper exhibits the flexibility in processing both textures and edges which need to be separately accomplished by line average and edge-based line average before. Moreover, predicting the neighboring pixels for pattern analysis and interpolation further enhances the adaptability of the edge-pattern recognition unit when motion detection is incorporated. Our hybrid motion detection features accurate detection of fast and slow motion in interlaced video and also the motion with edges. Using only three fields for detection also renders higher temporal correlation for interpolation. The better performance of our deinterlacing algorithm with higher content-adaptability and less memory cost than the state-of-the-art 4-field motion detection algorithms can be seen from the subjective and objective experimental results of the CIF and PAL video sequences.

  9. Disturbance History,Spatial Variability, and Patterns of Biodiversity

    Bendix, J.; Wiley, J. J.; Commons, M.

    2012-12-01

    The intermediate disturbance hypothesis predicts that species diversity will be maximized in environments experiencing intermediate intensity disturbance, after an intermediate timespan. Because many landscapes comprise mosaics with complex disturbance histories, the theory implies that each patch in those mosaics should have a distinct level of diversity reflecting combined impact of the magnitude of disturbance and the time since it occurred. We modeled the changing patterns of species richness across a landscape experiencing varied scenarios of simulated disturbance. Model outputs show that individual landscape patches have highly variable species richness through time, with the details reflecting the timing, intensity and sequence of their disturbance history. When the results are mapped across the landscape, the resulting temporal and spatial complexity illustrates both the contingent nature of diversity and the danger of generalizing about the impacts of disturbance.

  10. Spatial patterns in timing of the diurnal temperature cycle

    T. R. H. Holmes

    2013-10-01

    Full Text Available This paper investigates the structural difference in timing of the diurnal temperature cycle (DTC over land resulting from choice of measuring device or model framework. It is shown that the timing can be reliably estimated from temporally sparse observations acquired from a constellation of low Earth-orbiting satellites given record lengths of at least three months. Based on a year of data, the spatial patterns of mean DTC timing are compared between temperature estimates from microwave Ka-band, geostationary thermal infrared (TIR, and numerical weather prediction model output from the Global Modeling and Assimilation Office (GMAO. It is found that the spatial patterns can be explained by vegetation effects, sensing depth differences and more speculatively the orientation of orographic relief features. In absolute terms, the GMAO model puts the peak of the DTC on average at 12:50 local solar time, 23 min before TIR with a peak temperature at 13:13 (both averaged over Africa and Europe. Since TIR is the shallowest observation of the land surface, this small difference represents a structural error that possibly affects the model's ability to assimilate observations that are closely tied to the DTC. The equivalent average timing for Ka-band is 13:44, which is influenced by the effect of increased sensing depth in desert areas. For non-desert areas, the Ka-band observations lag the TIR observations by only 15 min, which is in agreement with their respective theoretical sensing depth. The results of this comparison provide insights into the structural differences between temperature measurements and models, and can be used as a first step to account for these differences in a coherent way.

  11. Impact of Spatial Pumping Patterns on Groundwater Management

    Yin, J.; Tsai, F. T. C.

    2017-12-01

    Challenges exist to manage groundwater resources while maintaining a balance between groundwater quantity and quality because of anthropogenic pumping activities as well as complex subsurface environment. In this study, to address the impact of spatial pumping pattern on groundwater management, a mixed integer nonlinear multi-objective model is formulated by integrating three objectives within a management framework to: (i) maximize total groundwater withdrawal from potential wells; (ii) minimize total electricity cost for well pumps; and (iii) attain groundwater level at selected monitoring locations as close as possible to the target level. Binary variables are used in the groundwater management model to control the operative status of pumping wells. The NSGA-II is linked with MODFLOW to solve the multi-objective problem. The proposed method is applied to a groundwater management problem in the complex Baton Rouge aquifer system, southeastern Louisiana. Results show that (a) non-dominated trade-off solutions under various spatial distributions of active pumping wells can be achieved. Each solution is optimal with regard to its corresponding objectives; (b) operative status, locations and pumping rates of pumping wells are significant to influence the distribution of hydraulic head, which in turn influence the optimization results; (c) A wide range of optimal solutions is obtained such that decision makers can select the most appropriate solution through negotiation with different stakeholders. This technique is beneficial to finding out the optimal extent to which three objectives including water supply concern, energy concern and subsidence concern can be balanced.

  12. Spatial patterns of drought persistence in East China

    Meng, L.; Ford, T.

    2017-12-01

    East China has experienced a number of severe droughts in recent decades. Understanding the characteristics of droughts and their persistence will provide operational guidelines for water resource management and agricultural production. This study uses a logistic regression model to measure the probability of drought occurrence in the current season given the previous season's Standardized Precipitation Index (SPI) and Southern Oscillation Index (SOI) as well as drought persistence. Results reveal large spatial and seasonal variations in the relationship between the previous season's SPI and the drought occurrence probability in a given season. The drought persistence averaged over the entire study area for all the four seasons is approximately 34% with large variations from season to season and from region to region. The East and Northeast regions have the largest summer drought persistence ( 40%) and lowest fall drought persistence ( 28%). The spatial pattern in winter and spring drought persistence is dissimilar with stronger winter and weaker spring drought persistence in the Southwest and Northeast relative to other regions. Logistic regression analysis indicates a stronger negative relationship in summer-to-fall (or between fall drought occurrence and summer SPI) than other inter-season relationships. This study demonstrates that the impact of previous season SPI and SOI on current season drought varies substantially from region to region and from season to season. This study also shows stronger drought persistence in summer than in other seasons. In other words, the probability of fall drought occurrence is closely related to summer moisture conditions in the East China.

  13. LOCAL LINE BINARY PATTERN FOR FEATURE EXTRACTION ON PALM VEIN RECOGNITION

    Jayanti Yusmah Sari

    2015-08-01

    Full Text Available In recent years, palm vein recognition has been studied to overcome problems in conventional systems in biometrics technology (finger print, face, and iris. Those problems in biometrics includes convenience and performance. However, due to the clarity of the palm vein image, the veins could not be segmented properly. To overcome this problem, we propose a palm vein recognition system using Local Line Binary Pattern (LLBP method that can extract robust features from the palm vein images that has unclear veins. LLBP is an advanced method of Local Binary Pattern (LBP, a texture descriptor based on the gray level comparison of a neighborhood of pixels. There are four major steps in this paper, Region of Interest (ROI detection, image preprocessing, features extraction using LLBP method, and matching using Fuzzy k-NN classifier. The proposed method was applied on the CASIA Multi-Spectral Image Database. Experimental results showed that the proposed method using LLBP has a good performance with recognition accuracy of 97.3%. In the future, experiments will be conducted to observe which parameter that could affect processing time and recognition accuracy of LLBP is needed

  14. Stage-specific sampling by pattern recognition receptors during Candida albicans phagocytosis.

    Sigrid E M Heinsbroek

    2008-11-01

    Full Text Available Candida albicans is a medically important pathogen, and recognition by innate immune cells is critical for its clearance. Although a number of pattern recognition receptors have been shown to be involved in recognition and phagocytosis of this fungus, the relative role of these receptors has not been formally examined. In this paper, we have investigated the contribution of the mannose receptor, Dectin-1, and complement receptor 3; and we have demonstrated that Dectin-1 is the main non-opsonic receptor involved in fungal uptake. However, both Dectin-1 and complement receptor 3 were found to accumulate at the site of uptake, while mannose receptor accumulated on C. albicans phagosomes at later stages. These results suggest a potential role for MR in phagosome sampling; and, accordingly, MR deficiency led to a reduction in TNF-alpha and MCP-1 production in response to C. albicans uptake. Our data suggest that pattern recognition receptors sample the fungal phagosome in a sequential fashion.

  15. Implementation theory of distortion-invariant pattern recognition for optical and digital signal processing systems

    Lhamon, Michael Earl

    A pattern recognition system which uses complex correlation filter banks requires proportionally more computational effort than single-real valued filters. This introduces increased computation burden but also introduces a higher level of parallelism, that common computing platforms fail to identify. As a result, we consider algorithm mapping to both optical and digital processors. For digital implementation, we develop computationally efficient pattern recognition algorithms, referred to as, vector inner product operators that require less computational effort than traditional fast Fourier methods. These algorithms do not need correlation and they map readily onto parallel digital architectures, which imply new architectures for optical processors. These filters exploit circulant-symmetric matrix structures of the training set data representing a variety of distortions. By using the same mathematical basis as with the vector inner product operations, we are able to extend the capabilities of more traditional correlation filtering to what we refer to as "Super Images". These "Super Images" are used to morphologically transform a complicated input scene into a predetermined dot pattern. The orientation of the dot pattern is related to the rotational distortion of the object of interest. The optical implementation of "Super Images" yields feature reduction necessary for using other techniques, such as artificial neural networks. We propose a parallel digital signal processor architecture based on specific pattern recognition algorithms but general enough to be applicable to other similar problems. Such an architecture is classified as a data flow architecture. Instead of mapping an algorithm to an architecture, we propose mapping the DSP architecture to a class of pattern recognition algorithms. Today's optical processing systems have difficulties implementing full complex filter structures. Typically, optical systems (like the 4f correlators) are limited to phase

  16. SAR target recognition and posture estimation using spatial pyramid pooling within CNN

    Peng, Lijiang; Liu, Xiaohua; Liu, Ming; Dong, Liquan; Hui, Mei; Zhao, Yuejin

    2018-01-01

    Many convolution neural networks(CNN) architectures have been proposed to strengthen the performance on synthetic aperture radar automatic target recognition (SAR-ATR) and obtained state-of-art results on targets classification on MSTAR database, but few methods concern about the estimation of depression angle and azimuth angle of targets. To get better effect on learning representation of hierarchies of features on both 10-class target classification task and target posture estimation tasks, we propose a new CNN architecture with spatial pyramid pooling(SPP) which can build high hierarchy of features map by dividing the convolved feature maps from finer to coarser levels to aggregate local features of SAR images. Experimental results on MSTAR database show that the proposed architecture can get high recognition accuracy as 99.57% on 10-class target classification task as the most current state-of-art methods, and also get excellent performance on target posture estimation tasks which pays attention to depression angle variety and azimuth angle variety. What's more, the results inspire us the application of deep learning on SAR target posture description.

  17. Application of pattern recognition techniques to the detection of the Phenix reactor control rods vibrations

    Zwingelstein, G.; Deat, M.; Le Guillou, G.

    1979-01-01

    The incipient detection of control rods vibrations is very important for the safety of the operating plants. This detection can be achieved by an analysis of the peaks of the power spectrum density of the neutron noise. Pattern Recognition techniques were applied to detect the rod vibrations which occured at the fast breeder Phenix (250MWe). In the first part we give a description of the basic pattern which is used to characterize the behavior of the plant. The pattern is considered as column vector in n dimensional Euclidian space where the components are the samples of the power spectral density of the neutron noise. In the second part, a recursive learning procedure of the normal patterns which provides the mean and the variance of the estimates is described. In the third part the classification problem has been framed in terms of a partitioning procedure in n dimensional space which encloses regions corresponding to normal operations. This pattern recognition scheme was applied to the detection of rod vibrations with neutron data collected at the Phenix site before and after occurence of the vibrations. The analysis was carried out with a 42-dimensional measurement space. The learned pattern was estimated with 150 measurement vectors which correspond to the period without vibrations. The efficiency of the surveillance scheme is then demonstrated by processing separately 119 measurement vectors recorded during the rod vibration period

  18. Extended pattern recognition scheme for self-learning kinetic Monte Carlo simulations

    Shah, Syed Islamuddin; Nandipati, Giridhar; Kara, Abdelkader; Rahman, Talat S

    2012-01-01

    We report the development of a pattern recognition scheme that takes into account both fcc and hcp adsorption sites in performing self-learning kinetic Monte Carlo (SLKMC-II) simulations on the fcc(111) surface. In this scheme, the local environment of every under-coordinated atom in an island is uniquely identified by grouping fcc sites, hcp sites and top-layer substrate atoms around it into hexagonal rings. As the simulation progresses, all possible processes, including those such as shearing, reptation and concerted gliding, which may involve fcc-fcc, hcp-hcp and fcc-hcp moves are automatically found, and their energetics calculated on the fly. In this article we present the results of applying this new pattern recognition scheme to the self-diffusion of 9-atom islands (M 9 ) on M(111), where M = Cu, Ag or Ni.

  19. Pattern recognition algorithms for data mining scalability, knowledge discovery and soft granular computing

    Pal, Sankar K

    2004-01-01

    Pattern Recognition Algorithms for Data Mining addresses different pattern recognition (PR) tasks in a unified framework with both theoretical and experimental results. Tasks covered include data condensation, feature selection, case generation, clustering/classification, and rule generation and evaluation. This volume presents various theories, methodologies, and algorithms, using both classical approaches and hybrid paradigms. The authors emphasize large datasets with overlapping, intractable, or nonlinear boundary classes, and datasets that demonstrate granular computing in soft frameworks.Organized into eight chapters, the book begins with an introduction to PR, data mining, and knowledge discovery concepts. The authors analyze the tasks of multi-scale data condensation and dimensionality reduction, then explore the problem of learning with support vector machine (SVM). They conclude by highlighting the significance of granular computing for different mining tasks in a soft paradigm.

  20. Compact holographic optical neural network system for real-time pattern recognition

    Lu, Taiwei; Mintzer, David T.; Kostrzewski, Andrew A.; Lin, Freddie S.

    1996-08-01

    One of the important characteristics of artificial neural networks is their capability for massive interconnection and parallel processing. Recently, specialized electronic neural network processors and VLSI neural chips have been introduced in the commercial market. The number of parallel channels they can handle is limited because of the limited parallel interconnections that can be implemented with 1D electronic wires. High-resolution pattern recognition problems can require a large number of neurons for parallel processing of an image. This paper describes a holographic optical neural network (HONN) that is based on high- resolution volume holographic materials and is capable of performing massive 3D parallel interconnection of tens of thousands of neurons. A HONN with more than 16,000 neurons packaged in an attache case has been developed. Rotation- shift-scale-invariant pattern recognition operations have been demonstrated with this system. System parameters such as the signal-to-noise ratio, dynamic range, and processing speed are discussed.

  1. Pattern-recognition software detecting the onset of failures in complex systems

    Mott, J.; King, R.

    1987-01-01

    A very general mathematical framework for embodying learned data from a complex system and combining it with a current observation to estimate the true current state of the system has been implemented using nearly universal pattern-recognition algorithms and applied to surveillance of the EBR-II power plant. In this application the methodology can provide signal validation and replacement of faulty signals on a near-real-time basis for hundreds of plant parameters. The mathematical framework, the pattern-recognition algorithms, examples of the learning and estimating process, and plant operating decisions made using this methodology are discussed. The entire methodology has been reduced to a set of FORTRAN subroutines which are small, fast, robust and executable on a personal computer with a serial link to the system's data acquisition computer, or on the data acquisition computer itself

  2. An Approach for Pattern Recognition of EEG Applied in Prosthetic Hand Drive

    Xiao-Dong Zhang

    2011-12-01

    Full Text Available For controlling the prosthetic hand by only electroencephalogram (EEG, it has become the hot spot in robotics research to set up a direct communication and control channel between human brain and prosthetic hand. In this paper, the EEG signal is analyzed based on multi-complicated hand activities. And then, two methods of EEG pattern recognition are investigated, a neural prosthesis hand system driven by BCI is set up, which can complete four kinds of actions (arm’s free state, arm movement, hand crawl, hand open. Through several times of off-line and on-line experiments, the result shows that the neural prosthesis hand system driven by BCI is reasonable and feasible, the C-support vector classifiers-based method is better than BP neural network on the EEG pattern recognition for multi-complicated hand activities.

  3. Authentication and distinction of Shenmai injection with HPLC fingerprint analysis assisted by pattern recognition techniques

    Xue-Feng Lu

    2012-10-01

    Full Text Available In this paper, the feasibility and advantages of employing high performance liquid chromatographic (HPLC fingerprints combined with pattern recognition techniques for quality control of Shenmai injection were investigated and demonstrated. The Similarity Evaluation System was employed to evaluate the similarities of samples of Shenmai injection, and the HPLC generated chromatographic data were analyzed using hierarchical clustering analysis (HCA and soft independent modeling of class analogy (SIMCA. Consistent results were obtained to show that the authentic samples and the blended samples were successfully classified by SIMCA, which could be applied to accurate discrimination and quality control of Shenmai injection. Furthermore, samples could also be grouped in accordance with manufacturers. Our results revealed that the developed method has potential perspective for the original discrimination and quality control of Shenmai injection. Keywords: Shenmai injection, High performance liquid chromatography, Fingerprint, Pattern recognition

  4. Application of ann-based decision making pattern recognition to fishing operations

    Akhlaghinia, M.; Torabi, F.; Wilton, R.R. [University of Regina, Saskatchewan (Canada). Faculty of Engineering. Dept. of Petroleum Engineering], e-mail: Farshid.Torabi@uregina.ca

    2010-10-15

    Decision making is a crucial part of fishing operations. Proper decisions should be made to prevent wasted time and associated costs on unsuccessful operations. This paper presents a novel model to help drilling managers decide when to commence and when to quit a fishing operation. A decision making model based on Artificial Neural Network (ANN) has been developed that utilizes Pattern Recognition based on 181 fishing incidents from one of the most fish-prone fields of the southwest of Iran. All parameters chosen to train the ANN-Based Pattern Recognition Tool are assumed to play a role in the success of the fishing operation and are therefore used to decide whether a fishing operation should be performed or not. If the tool deems the operation suitable for consideration, a cost analysis of the fishing operation can then be performed to justify its overall cost. (author)

  5. Simultaneous pattern recognition and track fitting by the Kalman filtering method

    Billoir, P.

    1990-01-01

    A progressive pattern recognition algorithm based on the Kalman filtering method has been tested. The algorithm starts from a small track segment or from a fitted track of a neighbouring detector, then extends the candidate tracks by adding measured points one by one. The fitted parameters and weight matrix of the candidate track are updated when adding a point, and give an increasing precision on prediction of the next point. Thus, pattern recognition and track fitting can be accomplished simultaneously. The method has been implemented and tested for track reconstruction for the vertex detector of the ZEUS experiment at DESY. Detailed procedures of the method and its performance are presented. Its flexibility is described as well. (orig.)

  6. EBR-II [Experimental Breeder Reactor-II] system surveillance using pattern recognition software

    Mott, J.E.; Radtke, W.H.; King, R.W.

    1986-02-01

    The problem of most accurately determining the Experimental Breeder Reactor-II (EBR-II) reactor outlet temperature from currently available plant signals is investigated. Historically, the reactor outlet pipe was originally instrumented with 8 temperature sensors but, during 22 years of operation, all these instruments have failed except for one remaining thermocouple, and its output had recently become suspect. Using pattern recognition methods to compare values of 129 plant signals for similarities over a 7 month period spanning reconfiguration of the core and recalibration of many plant signals, it was determined that the remaining reactor outlet pipe thermocouple is still useful as an indicator of true mixed mean reactor outlet temperature. Application of this methodology to investigate one specific signal has automatically validated the vast majority of the 129 signals used for pattern recognition and also highlighted a few inconsistent signals for further investigation

  7. Data Mining and Pattern Recognition Models for Identifying Inherited Diseases: Challenges and Implications.

    Iddamalgoda, Lahiru; Das, Partha S; Aponso, Achala; Sundararajan, Vijayaraghava S; Suravajhala, Prashanth; Valadi, Jayaraman K

    2016-01-01

    Data mining and pattern recognition methods reveal interesting findings in genetic studies, especially on how the genetic makeup is associated with inherited diseases. Although researchers have proposed various data mining models for biomedical approaches, there remains a challenge in accurately prioritizing the single nucleotide polymorphisms (SNP) associated with the disease. In this commentary, we review the state-of-art data mining and pattern recognition models for identifying inherited diseases and deliberate the need of binary classification- and scoring-based prioritization methods in determining causal variants. While we discuss the pros and cons associated with these methods known, we argue that the gene prioritization methods and the protein interaction (PPI) methods in conjunction with the K nearest neighbors' could be used in accurately categorizing the genetic factors in disease causation.

  8. Fault diagnosis and performance monitoring for pumps by means of vibration measurement and pattern recognition

    Grabner, A.; Weiss, F.P.

    1984-12-01

    In recent years the early detection of malfunctions with noise and vibration analysis techniques has become a more and more important method for increasing availability and safety of various components in technical plants. The possibility of pattern recognition assisted vibration monitoring and its practical realization are demonstrated by failure diagnosis and trend analysis of the condition of large centrifugal pumps in hydraulic circuits. Some problems as, e.g., the finding of dynamic failure models, signal analysis, feature extraction and statistical pattern recognition, which helps automatically to decide whether the pump works normally or not, are discussed in more detail. In the paper it is shown that for various types of machines the chance of success of condition based maintenance can be enhanced by such an automatic vibration monitoring. (author)

  9. A pattern recognition methodology for evaluation of load profiles and typical days of large electricity customers

    Tsekouras, G.J.; Kotoulas, P.B.; Tsirekis, C.D.; Dialynas, E.N.; Hatziargyriou, N.D.

    2008-01-01

    This paper describes a pattern recognition methodology for the classification of the daily chronological load curves of each large electricity customer, in order to estimate his typical days and his respective representative daily load profiles. It is based on pattern recognition methods, such as k-means, self-organized maps (SOM), fuzzy k-means and hierarchical clustering, which are theoretically described and properly adapted. The parameters of each clustering method are properly selected by an optimization process, which is separately applied for each one of six adequacy measures. The results can be used for the short-term and mid-term load forecasting of each consumer, for the choice of the proper tariffs and the feasibility studies of demand side management programs. This methodology is analytically applied for one medium voltage industrial customer and synoptically for a set of medium voltage customers of the Greek power system. The results of the clustering methods are presented and discussed. (author)

  10. GEMAS: Molybdenum Spatial Distribution Patterns in European Soil

    Cicchella, Domenico; Zuzolo, Daniela; Demetriades, Alecos; De Vivo, Benedetto; Eklund, Mikael; Ladenberger, Anna; Negrel, Philippe; O'Connor, Patrick

    2017-04-01

    Molybdenum is an essential trace element for both plants and animals as well as for human being. It is one such trace element for which potential health concerns have been raised but for which few data exist and little investigation or interpretation of distributions in soils has been made. The main goal of this study was to fill this gap. Molybdenum (Mo) concentrations are reported for the similar spatial distribution patterns mainly governed by geology (parent material and mineralisation), as well as weathering, soil formation and climate since the last glaciations period. The dominant feature is represented by low Mo concentrations over the coarse-grained sandy deposits of the last glaciations in central northern Europe while the most extensive anomalies occur in Scandinavian soils. The highest Mo concentration value occurs to the North of Oslo close to one of the largest porphyry Mo deposit of the World. Some interesting anomalous patterns occur also in Italy in correspondence with alkaline volcanics, in Spain and Greece associated with sulfides mineralizations and in Slovenia and Croatia where are probably related to the long weathering history of karstic residual soils. Anomalous concentrations in some areas of Ireland represent a clear example of how an excess of molybdenum has produced potentially toxic pastures. In fact, these give rise to problems particularly in young cattle when excess molybdenum in the herbage acts as an antagonist, which militates against efficient copper absorption by the animal.

  11. Spatial diastereomer patterns of hexabromocyclododecane (HBCD) in a Norwegian fjord

    Haukas, Marianne; Hylland, Ketil; Berge, John Arthur; Nygard, Torgeir; Mariussen, Espen

    2009-01-01

    Hexabromocyclododecane (HBCD) is the third most used brominated flame retardant globally, and has been found widely distributed in the environment. The present study reports concentrations and spatial patterns of α, β and γ-HBCD in a contaminated Norwegian fjord. Intertidal surface sediment and selected species from the marine food web were sampled at five locations in increasing distance from a known point source of HBCD. All sediment and biota samples were analyzed for the three HBCD diastereomers by liquid chromatography and mass spectrometry (LC/MS). The results demonstrated a HBCD gradient with decreasing concentrations at increasing distance from the point source in sediment and sedentary species, but less so in the species with large feeding ranges. Mean concentrations of ΣHBCD at the closest/most remote locations relative to the point source were 9000/300 ng g -1 TOC in sediment and 150/90 ng g -1 lw in the species with largest feeding range (great black-backed gull). The HBCD diastereomer patterns were similar for each of the matrices (sediment, organisms) independent of distance from the source, indicating no difference in environmental partitioning between the diastereomers. However, the concentration ratio of diastereomers in each matrix ranged from 3:1:10 (α:β:γ) in the sediments to 55:1 (α:γ) in the highest trophic level species, suggesting diastereomer-specific bioaccumulation in the organisms.

  12. Investigation of CoPd alloys by XPS and EPES using the pattern recognition method

    Lesiak, B.; Zemek, Josef; Jiříček, Petr; Jozwik, A.

    2007-01-01

    Roč. 428, - (2007), s. 190-196 ISSN 0925-8388 R&D Projects: GA ČR GA202/06/0459 Institutional research plan: CEZ:AV0Z10100521 Keywords : CoPd alloys * x-ray photoelectron spectroscopy (XPS) * elastic peak electron spectroscopy (EPES) * pattern recognition method * fuzzy k-nearest neighbour rule (fkNN) * quantitative analysis * surface segregation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.455, year: 2007

  13. Development of a Pattern Recognition Methodology for Determining Operationally Optimal Heat Balance Instrumentation Calibration Schedules

    Kurt Beran; John Christenson; Dragos Nica; Kenny Gross

    2002-12-15

    The goal of the project is to enable plant operators to detect with high sensitivity and reliability the onset of decalibration drifts in all of the instrumentation used as input to the reactor heat balance calculations. To achieve this objective, the collaborators developed and implemented at DBNPS an extension of the Multivariate State Estimation Technique (MSET) pattern recognition methodology pioneered by ANAL. The extension was implemented during the second phase of the project and fully achieved the project goal.

  14. Application of pattern recognition methods for evaluating the immune status in patients

    Stavitsky, R.B.; Guslistyj, I.V.; Miroshnichenko, I.V.; Karklinskaya, O.N.; Ryabinina, I.D.; Kosova, I.P.; Stolpnikova, V.N.; Malaeva, N.S.; Latypova, I.I.; Lebedev, L.A.

    2001-01-01

    The effectiveness of mathematical tools for pattern recognition as applied to numerical assessments of the immune status of patients exposed to ecological hazards is evaluated by experimentation. The immune status is estimated according to a two-class scheme (norm/abnormality) based on blood indicators of immunity for the patients examined. The task of categorizing patients by immunological parameters of blood is shown to be resolved with high effectiveness for determining the immune status [ru

  15. Pattern recognition application for surveillance of abnormal conditions in a nuclear reactor

    Pepelyshev, Yu.N.; Dzwinel, W.

    1990-01-01

    The system to monitor abnormal conditions in a nuclear reactor, based on the noise analysis of the reactor basic parameters such as power, temperature and coolant flow rate, has been developed. The pattern recognition techniques such as clustering, cluster analysis, feature selection and clusters visualization methods form the basis of the software. Apart from non-hierarchical clustering procedures applied earlier, the hierarchical one is recommended. The system application for IBR-2 Dubna reactor diagnostics is shown. 10 refs.; 6 figs

  16. Development of pattern recognition algorithms for the central drift chamber of the Belle II detector

    Trusov, Viktor

    2016-11-04

    In this thesis, the development of one of the pattern recognition algorithms for the Belle II experiment based on conformal and Legendre transformations is presented. In order to optimize the performance of the algorithm (CPU time and efficiency) specialized processing steps have been introduced. To show achieved results, Monte-Carlo based efficiency measurements of the tracking algorithms in the Central Drift Chamber (CDC) has been done.

  17. New Digital Approach to CNN On-chip Implementation for Pattern Recognition

    Durackova, Daniela

    2008-01-01

    We developed a novel simulator for the CNN using the program tool Visual Basic for Application. Its algorithm is based on the same principle as the planned designed circuit. The network can process the patterns with 400 point recognition. The created universal simulator can change various simulation parameters. We found that the rounding at multiplication is not as important as we previously expected. On the basis of the simulations we designed a novel digital CNN cell implemented on a chip. ...

  18. An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control.

    Adewuyi, Adenike A; Hargrove, Levi J; Kuiken, Todd A

    2016-04-01

    Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for application to partial-hand prosthetic control.

  19. Knowledge fusion: An approach to time series model selection followed by pattern recognition

    Bleasdale, S.A.; Burr, T.L.; Scovel, J.C.; Strittmatter, R.B.

    1996-03-01

    This report describes work done during FY 95 that was sponsored by the Department of Energy, Office of Nonproliferation and National Security, Knowledge Fusion Project. The project team selected satellite sensor data to use as the one main example for the application of its analysis algorithms. The specific sensor-fusion problem has many generic features, which make it a worthwhile problem to attempt to solve in a general way. The generic problem is to recognize events of interest from multiple time series that define a possibly noisy background. By implementing a suite of time series modeling and forecasting methods and using well-chosen alarm criteria, we reduce the number of false alarms. We then further reduce the number of false alarms by analyzing all suspicious sections of data, as judged by the alarm criteria, with pattern recognition methods. An accompanying report (Ref 1) describes the implementation and application of this 2-step process for separating events from unusual background and applies a suite of forecasting methods followed by a suite of pattern recognition methods. This report goes into more detail about one of the forecasting methods and one of the pattern recognition methods and is applied to the same kind of satellite-sensor data that is described in Ref. 1

  20. Developement of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    Deputch, G.; Hoff, J.; Lipton, R.; Liu, T.; Olsen, J.; Ramberg, E.; Wu, Jin-Yuan; Yarema, R.; Shochet, M.; Tang, F.; Demarteau, M.

    2011-01-01

    Many next-generation physics experiments will be characterized by the collection of large quantities of data, taken in rapid succession, from which scientists will have to unravel the underlying physical processes. In most cases, large backgrounds will overwhelm the physics signal. Since the quantity of data that can be stored for later analysis is limited, real-time event selection is imperative to retain the interesting events while rejecting the background. Scaling of current technologies is unlikely to satisfy the scientific needs of future projects, so investments in transformational new technologies need to be made. For example, future particle physics experiments looking for rare processes will have to address the demanding challenges of fast pattern recognition in triggering as detector hit density becomes significantly higher due to the high luminosity required to produce the rare processes. In this proposal, we intend to develop hardware-based technology that significantly advances the state-of-the-art for fast pattern recognition within and outside HEP using the 3D vertical integration technology that has emerged recently in industry. The ultimate physics reach of the LHC experiments will crucially depend on the tracking trigger's ability to help discriminate between interesting rare events and the background. Hardware-based pattern recognition for fast triggering on particle tracks has been successfully used in high-energy physics experiments for some time. The CDF Silicon Vertex Trigger (SVT) at the Fermilab Tevatron is an excellent example. The method used there, developed in the 1990's, is based on algorithms that use a massively parallel associative memory architecture to identify patterns efficiently at high speed. However, due to much higher occupancy and event rates at the LHC, and the fact that the LHC detectors have a much larger number of channels in their tracking detectors, there is an enormous challenge in implementing pattern recognition

  1. Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification

    Anwer, Rao Muhammad; Khan, Fahad Shahbaz; van de Weijer, Joost; Molinier, Matthieu; Laaksonen, Jorma

    2018-04-01

    Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Local Binary Patterns (LBP) encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit LBP based texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Furthermore, our final combination leads to consistent improvement over the state-of-the-art for remote sensing scene classification.

  2. Hand Biometric Recognition Based on Fused Hand Geometry and Vascular Patterns

    Park, GiTae; Kim, Soowon

    2013-01-01

    A hand biometric authentication method based on measurements of the user's hand geometry and vascular pattern is proposed. To acquire the hand geometry, the thickness of the side view of the hand, the K-curvature with a hand-shaped chain code, the lengths and angles of the finger valleys, and the lengths and profiles of the fingers were used, and for the vascular pattern, the direction-based vascular-pattern extraction method was used, and thus, a new multimodal biometric approach is proposed. The proposed multimodal biometric system uses only one image to extract the feature points. This system can be configured for low-cost devices. Our multimodal biometric-approach hand-geometry (the side view of the hand and the back of hand) and vascular-pattern recognition method performs at the score level. The results of our study showed that the equal error rate of the proposed system was 0.06%. PMID:23449119

  3. Hand biometric recognition based on fused hand geometry and vascular patterns.

    Park, GiTae; Kim, Soowon

    2013-02-28

    A hand biometric authentication method based on measurements of the user's hand geometry and vascular pattern is proposed. To acquire the hand geometry, the thickness of the side view of the hand, the K-curvature with a hand-shaped chain code, the lengths and angles of the finger valleys, and the lengths and profiles of the fingers were used, and for the vascular pattern, the direction-based vascular-pattern extraction method was used, and thus, a new multimodal biometric approach is proposed. The proposed multimodal biometric system uses only one image to extract the feature points. This system can be configured for low-cost devices. Our multimodal biometric-approach hand-geometry (the side view of the hand and the back of hand) and vascular-pattern recognition method performs at the score level. The results of our study showed that the equal error rate of the proposed system was 0.06%.

  4. Spatial and temporal patterns of subtidal and intertidal crabs excursions

    Silva, A. C. F.; Boaventura, D. M.; Thompson, R. C.; Hawkins, S. J.

    2014-01-01

    Highly mobile predators such as fish and crabs are known to migrate from the subtidal zone to forage in the intertidal zone at high-tide. The extent and variation of these habitat linking movements along the vertical shore gradient have not been examined before for several species simultaneously, hence not accounting for species interactions. Here, the foraging excursions of Carcinus maenas (L.), Necora puber (Linnaeus, 1767) and Cancer pagurus (Linnaeus, 1758) were assessed in a one-year mark-recapture study on two replicated rocky shores in southwest U.K. A comparison between the abundance of individuals present on the shore at high-tide with those present in refuges exposed at low-tide indicated considerable intertidal migration by all species, showing strong linkage between subtidal and intertidal habitats. Estimates of population size based on recapture of marked individuals indicated that an average of ~ 4000 individuals combined for the three crab species, can be present on the shore during one tidal cycle. There was also a high fidelity of individuals and species to particular shore levels. Underlying mechanisms for these spatial patterns such as prey availability and agonistic interactions are discussed. Survival rates were estimated using the Cormack-Jolly-Seber model from multi-recapture analysis and found to be considerably high with a minimum of 30% for all species. Growth rates were found to vary intraspecifically with size and between seasons. Understanding the temporal and spatial variations in predation pressure by crabs on rocky shores is dependent on knowing who, when and how many of these commercially important crab species depend on intertidal foraging. Previous studies have shown that the diet of these species is strongly based on intertidal prey including key species such as limpets; hence intertidal crab migration could be associated with considerable impacts on intertidal assemblages.

  5. ISOLATED SPEECH RECOGNITION SYSTEM FOR TAMIL LANGUAGE USING STATISTICAL PATTERN MATCHING AND MACHINE LEARNING TECHNIQUES

    VIMALA C.

    2015-05-01

    Full Text Available In recent years, speech technology has become a vital part of our daily lives. Various techniques have been proposed for developing Automatic Speech Recognition (ASR system and have achieved great success in many applications. Among them, Template Matching techniques like Dynamic Time Warping (DTW, Statistical Pattern Matching techniques such as Hidden Markov Model (HMM and Gaussian Mixture Models (GMM, Machine Learning techniques such as Neural Networks (NN, Support Vector Machine (SVM, and Decision Trees (DT are most popular. The main objective of this paper is to design and develop a speaker-independent isolated speech recognition system for Tamil language using the above speech recognition techniques. The background of ASR system, the steps involved in ASR, merits and demerits of the conventional and machine learning algorithms and the observations made based on the experiments are presented in this paper. For the above developed system, highest word recognition accuracy is achieved with HMM technique. It offered 100% accuracy during training process and 97.92% for testing process.

  6. Stress Prediction for Distributed Structural Health Monitoring Using Existing Measurements and Pattern Recognition.

    Lu, Wei; Teng, Jun; Zhou, Qiushi; Peng, Qiexin

    2018-02-01

    The stress in structural steel members is the most useful and directly measurable physical quantity to evaluate the structural safety in structural health monitoring, which is also an important index to evaluate the stress distribution and force condition of structures during structural construction and service phases. Thus, it is common to set stress as a measure in steel structural monitoring. Considering the economy and the importance of the structural members, there are only a limited number of sensors that can be placed, which means that it is impossible to obtain the stresses of all members directly using sensors. This study aims to develop a stress response prediction method for locations where there are insufficent sensors, using measurements from a limited number of sensors and pattern recognition. The detailed improved aspects are: (1) a distributed computing process is proposed, where the same pattern is recognized by several subsets of measurements; and (2) the pattern recognition using the subset of measurements is carried out by considering the optimal number of sensors and number of fusion patterns. The validity and feasibility of the proposed method are verified using two examples: the finite-element simulation of a single-layer shell-like steel structure, and the structural health monitoring of the space steel roof of Shenzhen Bay Stadium; for the latter, the anti-noise performance of this method is verified by the stress measurements from a real-world project.

  7. Image Classification Using Biomimetic Pattern Recognition with Convolutional Neural Networks Features

    Huo, Guanying

    2017-01-01

    As a typical deep-learning model, Convolutional Neural Networks (CNNs) can be exploited to automatically extract features from images using the hierarchical structure inspired by mammalian visual system. For image classification tasks, traditional CNN models employ the softmax function for classification. However, owing to the limited capacity of the softmax function, there are some shortcomings of traditional CNN models in image classification. To deal with this problem, a new method combining Biomimetic Pattern Recognition (BPR) with CNNs is proposed for image classification. BPR performs class recognition by a union of geometrical cover sets in a high-dimensional feature space and therefore can overcome some disadvantages of traditional pattern recognition. The proposed method is evaluated on three famous image classification benchmarks, that is, MNIST, AR, and CIFAR-10. The classification accuracies of the proposed method for the three datasets are 99.01%, 98.40%, and 87.11%, respectively, which are much higher in comparison with the other four methods in most cases. PMID:28316614

  8. Effect of cataract surgery and pupil dilation on iris pattern recognition for personal authentication.

    Dhir, L; Habib, N E; Monro, D M; Rakshit, S

    2010-06-01

    The purpose of this study was to investigate the effect of cataract surgery and pupil dilation on iris pattern recognition for personal authentication. Prospective non-comparative cohort study. Images of 15 subjects were captured before (enrolment), and 5, 10, and 15 min after instillation of mydriatics before routine cataract surgery. After cataract surgery, images were captured 2 weeks thereafter. Enrolled and test images (after pupillary dilation and after cataract surgery) were segmented to extract the iris. This was then unwrapped onto a rectangular format for normalization and a novel method using the Discrete Cosine Transform was applied to encode the image into binary bits. The numerical difference between two iris codes (Hamming distance, HD) was calculated. The HD between identification and enrolment codes was used as a score and was compared with a confidence threshold for specific equipment, giving a match or non-match result. The Correct Recognition Rate (CRR) and Equal Error Rates (EERs) were calculated to analyse overall system performance. After cataract surgery, perfect identification and verification was achieved, with zero false acceptance rate, zero false rejection rate, and zero EER. After pupillary dilation, non-elastic deformation occurs and a CRR of 86.67% and EER of 9.33% were obtained. Conventional circle-based localization methods are inadequate. Matching reliability decreases considerably with increase in pupillary dilation. Cataract surgery has no effect on iris pattern recognition, whereas pupil dilation may be used to defeat an iris-based authentication system.

  9. Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity.

    Cerliani, Juan P; Stowell, Sean R; Mascanfroni, Iván D; Arthur, Connie M; Cummings, Richard D; Rabinovich, Gabriel A

    2011-02-01

    Effective immunity relies on the recognition of pathogens and tumors by innate immune cells through diverse pattern recognition receptors (PRRs) that lead to initiation of signaling processes and secretion of pro- and anti-inflammatory cytokines. Galectins, a family of endogenous lectins widely expressed in infected and neoplastic tissues have emerged as part of the portfolio of soluble mediators and pattern recognition receptors responsible for eliciting and controlling innate immunity. These highly conserved glycan-binding proteins can control immune cell processes through binding to specific glycan structures on pathogens and tumors or by acting intracellularly via modulation of selective signaling pathways. Recent findings demonstrate that various galectin family members influence the fate and physiology of different innate immune cells including polymorphonuclear neutrophils, mast cells, macrophages, and dendritic cells. Moreover, several pathogens may actually utilize galectins as a mechanism of host invasion. In this review, we aim to highlight and integrate recent discoveries that have led to our current understanding of the role of galectins in host-pathogen interactions and innate immunity. Challenges for the future will embrace the rational manipulation of galectin-glycan interactions to instruct and shape innate immunity during microbial infections, inflammation, and cancer.

  10. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition

    Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi

    2017-01-01

    Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle). PMID:28608824

  11. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG Pattern Recognition

    Qi Huang

    2017-06-01

    Full Text Available Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC, by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC. We compared PAC performance with incremental support vector classifier (ISVC and non-adapting SVC (NSVC in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05 and ISVC (13.38% ± 2.62%, p = 0.001, and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle.

  12. New pattern recognition system in the e-nose for Chinese spirit identification

    Zeng Hui; Li Qiang; Gu Yu

    2016-01-01

    This paper presents a new pattern recognition system for Chinese spirit identification by using the polymer quartz piezoelectric crystal sensor based e-nose. The sensors are designed based on quartz crystal microbalance (QCM) principle, and they could capture different vibration frequency signal values for Chinese spirit identification. For each sensor in an 8-channel sensor array, seven characteristic values of the original vibration frequency signal values, i.e., average value (A), root-mean-square value (RMS), shape factor value (S f ), crest factor value (C f ), impulse factor value (I f ), clearance factor value (CL f ), kurtosis factor value (K v ) are first extracted. Then the dimension of the characteristic values is reduced by the principle components analysis (PCA) method. Finally the back propagation (BP) neutral network algorithm is used to recognize Chinese spirits. The experimental results show that the recognition rate of six kinds of Chinese spirits is 93.33% and our proposed new pattern recognition system can identify Chinese spirits effectively. (paper)

  13. Climatic extremes improve predictions of spatial patterns of tree species

    Zimmermann, N.E.; Yoccoz, N.G.; Edwards, T.C.; Meier, E.S.; Thuiller, W.; Guisan, Antoine; Schmatz, D.R.; Pearman, P.B.

    2009-01-01

    Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D2, +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.

  14. Double-Barrier Memristive Devices for Unsupervised Learning and Pattern Recognition.

    Hansen, Mirko; Zahari, Finn; Ziegler, Martin; Kohlstedt, Hermann

    2017-01-01

    The use of interface-based resistive switching devices for neuromorphic computing is investigated. In a combined experimental and numerical study, the important device parameters and their impact on a neuromorphic pattern recognition system are studied. The memristive cells consist of a layer sequence Al/Al 2 O 3 /Nb x O y /Au and are fabricated on a 4-inch wafer. The key functional ingredients of the devices are a 1.3 nm thick Al 2 O 3 tunnel barrier and a 2.5 mm thick Nb x O y memristive layer. Voltage pulse measurements are used to study the electrical conditions for the emulation of synaptic functionality of single cells for later use in a recognition system. The results are evaluated and modeled in the framework of the plasticity model of Ziegler et al. Based on this model, which is matched to experimental data from 84 individual devices, the network performance with regard to yield, reliability, and variability is investigated numerically. As the network model, a computing scheme for pattern recognition and unsupervised learning based on the work of Querlioz et al. (2011), Sheridan et al. (2014), Zahari et al. (2015) is employed. This is a two-layer feedforward network with a crossbar array of memristive devices, leaky integrate-and-fire output neurons including a winner-takes-all strategy, and a stochastic coding scheme for the input pattern. As input pattern, the full data set of digits from the MNIST database is used. The numerical investigation indicates that the experimentally obtained yield, reliability, and variability of the memristive cells are suitable for such a network. Furthermore, evidence is presented that their strong I - V non-linearity might avoid the need for selector devices in crossbar array structures.

  15. Multivariate data-driven modelling and pattern recognition for damage detection and identification for acoustic emission and acousto-ultrasonics

    Torres-Arredondo, M.A.; Tibaduiza, D.-A.; McGugan, Malcolm

    2013-01-01

    and pattern recognition are evaluated and integrated into the different proposed methodologies. As a contribution to solve the problem, this paper presents results in damage detection and classification using a methodology based on hierarchical nonlinear principal component analysis, square prediction...

  16. Optical pattern recognition III; Proceedings of the Meeting, Orlando, FL, Apr. 21, 22, 1992

    Casasent, David P. (Editor); Chao, Tien-Hsin (Editor)

    1992-01-01

    Consideration is given to transitioning of optical processing into systems (TOPS), optical correlator hardware, phase-only optical correlation filters, optical distortion-invariant correlation filters, and optical neural networks. Particular attention is given to a test target for optical correlators, a TOPS electronic warfare channelizer program, a portable video-rate optical correlator, a joint transform correlator employing electron trapping materials, a novelty filtered optical correlator using a photorefractive crystal, a comparison of correlation performance of smart ternary phase-amplitude filters with gray-scale and binary input scenes, real-time distortion-tolerant composite filters for automatic target identification, landscaping the correlation surface, fast designing of a circular harmonic filter using simulated annealing, feature-based correlation filters for distortion invariance, automatic target recognition using a feature-based optical neural network, and a holographic inner-product processor for pattern recognition.

  17. A new pattern associative memory model for image recognition based on Hebb rules and dot product

    Gao, Mingyue; Deng, Limiao; Wang, Yanjiang

    2018-04-01

    A great number of associative memory models have been proposed to realize information storage and retrieval inspired by human brain in the last few years. However, there is still much room for improvement for those models. In this paper, we extend a binary pattern associative memory model to accomplish real-world image recognition. The learning process is based on the fundamental Hebb rules and the retrieval is implemented by a normalized dot product operation. Our proposed model can not only fulfill rapid memory storage and retrieval for visual information but also have the ability on incremental learning without destroying the previous learned information. Experimental results demonstrate that our model outperforms the existing Self-Organizing Incremental Neural Network (SOINN) and Back Propagation Neuron Network (BPNN) on recognition accuracy and time efficiency.

  18. An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode

    Doni, Andrea; Musso, Tiziana; Morone, Diego; Bastone, Antonio; Zambelli, Vanessa; Sironi, Marina; Castagnoli, Carlotta; Cambieri, Irene; Stravalaci, Matteo; Pasqualini, Fabio; Laface, Ilaria; Valentino, Sonia; Tartari, Silvia; Ponzetta, Andrea; Maina, Virginia; Barbieri, Silvia S.; Tremoli, Elena; Catapano, Alberico L.; Norata, Giuseppe D.; Bottazzi, Barbara; Garlanda, Cecilia

    2015-01-01

    Pentraxin 3 (PTX3) is a fluid-phase pattern recognition molecule and a key component of the humoral arm of innate immunity. In four different models of tissue damage in mice, PTX3 deficiency was associated with increased fibrin deposition and persistence, and thicker clots, followed by increased collagen deposition, when compared with controls. Ptx3-deficient macrophages showed defective pericellular fibrinolysis in vitro. PTX3-bound fibrinogen/fibrin and plasminogen at acidic pH and increased plasmin-mediated fibrinolysis. The second exon-encoded N-terminal domain of PTX3 recapitulated the activity of the intact molecule. Thus, a prototypic component of humoral innate immunity, PTX3, plays a nonredundant role in the orchestration of tissue repair and remodeling. Tissue acidification resulting from metabolic adaptation during tissue repair sets PTX3 in a tissue remodeling and repair mode, suggesting that matrix and microbial recognition are common, ancestral features of the humoral arm of innate immunity. PMID:25964372

  19. Assay for the pattern recognition molecule collectin liver 1 (CL-L1)

    Axelgaard, Esben; Jensenius, Jens Christian; Thiel, Steffen

    Collectin liver 1 (also termed collectin 10 and CL-L1) is a C-type lectin that functions as a pattern recognition molecule (PRM) in the innate immune system1. We have produced antibodies against CL-L1 and have developed a sandwich-type time-resolved immuno-fluorometric assay (TRIFMA...... to co-purify with MASPs, possibly rendering it a role in complement. CL-L1 showed binding activity towards mannose-TSK beads in a Ca2+-dependent manner. This binding could be inhibited by mannose and glucose, but not by galactose, indicating that CL-L1 binds via its carbohydrate-recognition domain (CRD)....

  20. Recognition memory for low- and high-frequency-filtered emotional faces: Low spatial frequencies drive emotional memory enhancement, whereas high spatial frequencies drive the emotion-induced recognition bias.

    Rohr, Michaela; Tröger, Johannes; Michely, Nils; Uhde, Alarith; Wentura, Dirk

    2017-07-01

    This article deals with two well-documented phenomena regarding emotional stimuli: emotional memory enhancement-that is, better long-term memory for emotional than for neutral stimuli-and the emotion-induced recognition bias-that is, a more liberal response criterion for emotional than for neutral stimuli. Studies on visual emotion perception and attention suggest that emotion-related processes can be modulated by means of spatial-frequency filtering of the presented emotional stimuli. Specifically, low spatial frequencies are assumed to play a primary role for the influence of emotion on attention and judgment. Given this theoretical background, we investigated whether spatial-frequency filtering also impacts (1) the memory advantage for emotional faces and (2) the emotion-induced recognition bias, in a series of old/new recognition experiments. Participants completed incidental-learning tasks with high- (HSF) and low- (LSF) spatial-frequency-filtered emotional and neutral faces. The results of the surprise recognition tests showed a clear memory advantage for emotional stimuli. Most importantly, the emotional memory enhancement was significantly larger for face images containing only low-frequency information (LSF faces) than for HSF faces across all experiments, suggesting that LSF information plays a critical role in this effect, whereas the emotion-induced recognition bias was found only for HSF stimuli. We discuss our findings in terms of both the traditional account of different processing pathways for HSF and LSF information and a stimulus features account. The double dissociation in the results favors the latter account-that is, an explanation in terms of differences in the characteristics of HSF and LSF stimuli.

  1. Muscle Sensor Model Using Small Scale Optical Device for Pattern Recognitions

    Kreangsak Tamee

    2013-01-01

    Full Text Available A new sensor system for measuring contraction and relaxation of muscles by using a PANDA ring resonator is proposed. The small scale optical device is designed and configured to perform the coupling effects between the changes in optical device phase shift and human facial muscle movement, which can be used to form the relationship between optical phase shift and muscle movement. By using the Optiwave and MATLAB programs, the results obtained have shown that the measurement of the contraction and relaxation of muscles can be obtained after the muscle movements, in which the unique pattern of individual muscle movement from facial expression can be established. The obtained simulation results, that is, interference signal patterns, can be used to form the various pattern recognitions, which are useful for the human machine interface and the human computer interface application and discussed in detail.

  2. Optimizing pattern recognition-based control for partial-hand prosthesis application.

    Earley, Eric J; Adewuyi, Adenike A; Hargrove, Levi J

    2014-01-01

    Partial-hand amputees often retain good residual wrist motion, which is essential for functional activities involving use of the hand. Thus, a crucial design criterion for a myoelectric, partial-hand prosthesis control scheme is that it allows the user to retain residual wrist motion. Pattern recognition (PR) of electromyographic (EMG) signals is a well-studied method of controlling myoelectric prostheses. However, wrist motion degrades a PR system's ability to correctly predict hand-grasp patterns. We studied the effects of (1) window length and number of hand-grasps, (2) static and dynamic wrist motion, and (3) EMG muscle source on the ability of a PR-based control scheme to classify functional hand-grasp patterns. Our results show that training PR classifiers with both extrinsic and intrinsic muscle EMG yields a lower error rate than training with either group by itself (pgrasps available to the classifier significantly decrease classification error (pgrasp.

  3. Study of problems met in muon pattern recognition for a deep inelastic scattering experiment at the S.P.S

    Besson, C.

    1976-01-01

    The problems of the muon pattern recognition are studied for a muon-proton deep inelastic scattering experiment at the S.P.S. The pattern recognition program is described together with the problems caused by some characteristics of the apparatus of the European muon collaboration. Several reconstruction technics are compared, and a way of handling big drift chamber problems is found. Some results on Monte-Carlo tracks are given [fr

  4. Automated, high accuracy classification of Parkinsonian disorders: a pattern recognition approach.

    Andre F Marquand

    Full Text Available Progressive supranuclear palsy (PSP, multiple system atrophy (MSA and idiopathic Parkinson's disease (IPD can be clinically indistinguishable, especially in the early stages, despite distinct patterns of molecular pathology. Structural neuroimaging holds promise for providing objective biomarkers for discriminating these diseases at the single subject level but all studies to date have reported incomplete separation of disease groups. In this study, we employed multi-class pattern recognition to assess the value of anatomical patterns derived from a widely available structural neuroimaging sequence for automated classification of these disorders. To achieve this, 17 patients with PSP, 14 with IPD and 19 with MSA were scanned using structural MRI along with 19 healthy controls (HCs. An advanced probabilistic pattern recognition approach was employed to evaluate the diagnostic value of several pre-defined anatomical patterns for discriminating the disorders, including: (i a subcortical motor network; (ii each of its component regions and (iii the whole brain. All disease groups could be discriminated simultaneously with high accuracy using the subcortical motor network. The region providing the most accurate predictions overall was the midbrain/brainstem, which discriminated all disease groups from one another and from HCs. The subcortical network also produced more accurate predictions than the whole brain and all of its constituent regions. PSP was accurately predicted from the midbrain/brainstem, cerebellum and all basal ganglia compartments; MSA from the midbrain/brainstem and cerebellum and IPD from the midbrain/brainstem only. This study demonstrates that automated analysis of structural MRI can accurately predict diagnosis in individual patients with Parkinsonian disorders, and identifies distinct patterns of regional atrophy particularly useful for this process.

  5. Pattern recognition techniques and neo-deterministic seismic hazard: Time dependent scenarios for North-Eastern Italy

    Peresan, A.; Vaccari, F.; Panza, G.F.; Zuccolo, E.; Gorshkov, A.

    2009-05-01

    An integrated neo-deterministic approach to seismic hazard assessment has been developed that combines different pattern recognition techniques, designed for the space-time identification of strong earthquakes, with algorithms for the realistic modeling of seismic ground motion. The integrated approach allows for a time dependent definition of the seismic input, through the routine updating of earthquake predictions. The scenarios of expected ground motion, associated with the alarmed areas, are defined by means of full waveform modeling. A set of neo-deterministic scenarios of ground motion is defined at regional and local scale, thus providing a prioritization tool for timely prevention and mitigation actions. Constraints about the space and time of occurrence of the impending strong earthquakes are provided by three formally defined and globally tested algorithms, which have been developed according to a pattern recognition scheme. Two algorithms, namely CN and M8, are routinely used for intermediate-term middle-range earthquake predictions, while a third algorithm allows for the identification of the areas prone to large events. These independent procedures have been combined to better constrain the alarmed area. The pattern recognition of earthquake-prone areas does not belong to the family of earthquake prediction algorithms since it does not provide any information about the time of occurrence of the expected earthquakes. Nevertheless, it can be considered as the term-less zero-approximation, which restrains the alerted areas (e.g. defined by CN or M8) to the more precise location of large events. Italy is the only region of moderate seismic activity where the two different prediction algorithms CN and M8S (i.e. a spatially stabilized variant of M8) are applied simultaneously and a real-time test of predictions, for earthquakes with magnitude larger than 5.4, is ongoing since 2003. The application of the CN to the Adriatic region (s.l.), which is relevant

  6. Impact of Sliding Window Length in Indoor Human Motion Modes and Pose Pattern Recognition Based on Smartphone Sensors

    Gaojing Wang

    2018-06-01

    Full Text Available Human activity recognition (HAR is essential for understanding people’s habits and behaviors, providing an important data source for precise marketing and research in psychology and sociology. Different approaches have been proposed and applied to HAR. Data segmentation using a sliding window is a basic step during the HAR procedure, wherein the window length directly affects recognition performance. However, the window length is generally randomly selected without systematic study. In this study, we examined the impact of window length on smartphone sensor-based human motion and pose pattern recognition. With data collected from smartphone sensors, we tested a range of window lengths on five popular machine-learning methods: decision tree, support vector machine, K-nearest neighbor, Gaussian naïve Bayesian, and adaptive boosting. From the results, we provide recommendations for choosing the appropriate window length. Results corroborate that the influence of window length on the recognition of motion modes is significant but largely limited to pose pattern recognition. For motion mode recognition, a window length between 2.5–3.5 s can provide an optimal tradeoff between recognition performance and speed. Adaptive boosting outperformed the other methods. For pose pattern recognition, 0.5 s was enough to obtain a satisfactory result. In addition, all of the tested methods performed well.

  7. Theoretical Aspects of the Patterns Recognition Statistical Theory Used for Developing the Diagnosis Algorithms for Complicated Technical Systems

    Obozov, A. A.; Serpik, I. N.; Mihalchenko, G. S.; Fedyaeva, G. A.

    2017-01-01

    In the article, the problem of application of the pattern recognition (a relatively young area of engineering cybernetics) for analysis of complicated technical systems is examined. It is shown that the application of a statistical approach for hard distinguishable situations could be the most effective. The different recognition algorithms are based on Bayes approach, which estimates posteriori probabilities of a certain event and an assumed error. Application of the statistical approach to pattern recognition is possible for solving the problem of technical diagnosis complicated systems and particularly big powered marine diesel engines.

  8. Mechanisms of Expression and Internalisation of FIBCD1; a novel Pattern Recognition Receptor in the Gut Mucosa

    Hammond, Mark; Schlosser, Anders; Dubey, Lalit Kumar

    2012-01-01

    is a carbohydrate recognition domain also expressed by the ficolins, which are pattern recognition molecules that activate the complement system via the lectin pathway. Chitin is a highly ace¬tylated homopolymer of β-1,4-N-acetyl-glucosamine carbohydrate found abundantly in nature in organisms such as fungi...... pattern recognition receptor that binds chitin and directs acetylated structures for de¬gradation in the endosome via clathrin-mediated endocytosis. The localisation of FIBCD1 in the intestinal mucosal epithelia points towards a functional role in innate immunity and/or gut homeostasis....

  9. Fluid pipeline system leak detection based on neural network and pattern recognition

    Tang Xiujia

    1998-01-01

    The mechanism of the stress wave propagation along the pipeline system of NPP, caused by turbulent ejection from pipeline leakage, is researched. A series of characteristic index are described in time domain or frequency domain, and compress numerical algorithm is developed for original data compression. A back propagation neural networks (BPNN) with the input matrix composed by stress wave characteristics in time domain or frequency domain is first proposed to classify various situations of the pipeline, in order to detect the leakage in the fluid flow pipelines. The capability of the new method had been demonstrated by experiments and finally used to design a handy instrument for the pipeline leakage detection. Usually a pipeline system has many inner branches and often in adjusting dynamic condition, it is difficult for traditional pipeline diagnosis facilities to identify the difference between inner pipeline operation and pipeline fault. The author first proposed pipeline wave propagation identification by pattern recognition to diagnose pipeline leak. A series of pattern primitives such as peaks, valleys, horizon lines, capstan peaks, dominant relations, slave relations, etc., are used to extract features of the negative pressure wave form. The context-free grammar of symbolic representation of the negative wave form is used, and a negative wave form parsing system with application to structural pattern recognition based on the representation is first proposed to detect and localize leaks of the fluid pipelines

  10. Fast pattern recognition with the ATLAS L1Track trigger for HL-LHC

    AUTHOR|(INSPIRE)INSPIRE-00530554; The ATLAS collaboration

    2017-01-01

    A fast hardware based track trigger is being developed in ATLAS for the High Luminosity upgrade of the Large Hadron Collider. The goal is to achieve trigger levels in the high pile-up conditions of the High Luminosity Large Hadron Collider that are similar or better than those achieved at low pile-up conditions by adding tracking information to the ATLAS hardware trigger. A method for fast pattern recognition using the Hough transform is investigated. In this method, detector hits are mapped onto a 2D parameter space with one parameter related to the transverse momentum and one to the initial track direction. The performance of the Hough transform is studied at different pile-up values. It is also compared, using full event simulation of events with average pile-up of 200, with a method based on matching detector hits to pattern banks of simulated tracks stored in a custom made Associative Memory ASICs. The pattern recognition is followed by a track fitting step which calculates the track parameters. The spee...

  11. Fast pattern recognition with the ATLAS L1 track trigger for the HL-LHC

    Martensson, Mikael; The ATLAS collaboration

    2016-01-01

    A fast hardware based track trigger for high luminosity upgrade of the Large Hadron Collider (HL- LHC) is being developed in ATLAS. The goal is to achieve trigger levels in high pileup collisions that are similar or even better than those achieved at low pile-up running of LHC by adding tracking information to the ATLAS hardware trigger which is currently based on information from calorimeters and muon trigger chambers only. Two methods for fast pattern recognition are investigated. The first is based on matching tracker hits to pattern banks of simulated high momentum tracks which are stored in a custom made Associative Memory (AM) ASIC. The second is based on the Hough transform where detector hits are transformed into 2D Hough space with one variable related to track pt and one to track direction. Hits found by pattern recognition will be sent to a track fitting step which calculates the track parameters . The speed and precision of the track fitting depends on the quality of the hits selected by the patte...

  12. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-05-21

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.

  13. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm

    Serge Thomas Mickala Bourobou

    2015-05-01

    Full Text Available This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen’s temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.

  14. Spatial coherence resonance and spatial pattern transition induced by the decrease of inhibitory effect in a neuronal network

    Tao, Ye; Gu, Huaguang; Ding, Xueli

    2017-10-01

    Spiral waves were observed in the biological experiment on rat brain cortex with the application of carbachol and bicuculline which can block inhibitory coupling from interneurons to pyramidal neurons. To simulate the experimental spiral waves, a two-dimensional neuronal network composed of pyramidal neurons and inhibitory interneurons was built. By decreasing the percentage of active inhibitory interneurons, the random-like spatial patterns change to spiral waves and to random-like spatial patterns or nearly synchronous behaviors. The spiral waves appear at a low percentage of inhibitory interneurons, which matches the experimental condition that inhibitory couplings of the interneurons were blocked. The spiral waves exhibit a higher order or signal-to-noise ratio (SNR) characterized by spatial structure function than both random-like spatial patterns and nearly synchronous behaviors, which shows that changes of the percentage of active inhibitory interneurons can induce spatial coherence resonance-like behaviors. In addition, the relationship between the coherence degree and the spatial structures of the spiral waves is identified. The results not only present a possible and reasonable interpretation to the spiral waves observed in the biological experiment on the brain cortex with disinhibition, but also reveal that the spiral waves exhibit more ordered degree in spatial patterns.

  15. Pattern formation through spatial interactions in a modified Daisyworld model

    Alberti, Tommaso; Primavera, Leonardo; Lepreti, Fabio; Vecchio, Antonio; Carbone, Vincenzo

    2015-04-01

    The Daisyworld model is based on a hypothetical planet, like the Earth, which receives the radiant energy coming from a Sun-like star, and populated by two kinds of identical plants differing by their colour: white daisies reflecting light and black daisies absorbing light. The interactions and feedbacks between the collective biota of the planet and the incoming radiation form a self-regulating system where the conditions for life are maintained. We investigate a modified version of the Daisyworld model where a spatial dependency on latitude is introduced, and both a variable heat diffusivity along latitude and a simple greenhouse model are included. We show that the spatial interactions between the variables of the system can generate some equilibrium patterns which can locally stabilize the coexistence of the two vegetation types. The feedback on albedo is able to generate new equilibrium solutions which can efficiently self-regulate the planet climate, even for values of the solar luminosity relatively far from the current Earth conditions. The extension to spatial Daisyworld gives room to the possibility of inhomogeneous solar forcing in a curved planet, with explicit differences between poles and equator and the direct use of the heat diffusion equation. As a first approach, to describe a spherical planet, we consider the temperature T(θ,t) and the surface coverage as depending only on time and on latitude θ (-90° ≤ θ ≤ 90°). A second step is the introduction of the greenhouse effect in the model, the process by which outgoing infrared radiation is partly screened by greenhouse gases. This effect can be described by relaxing the black-body radiation hypothesis and by introducing a grayness function g(T) in the heat equation. As a third step, we consider a latitude dependence of the Earth's conductivity, χ = χ(θ). Considering these terms, using spherical coordinates and symmetry with respect to θ, the modified Daisyworld equations reduce to the

  16. BIOCAT: a pattern recognition platform for customizable biological image classification and annotation.

    Zhou, Jie; Lamichhane, Santosh; Sterne, Gabriella; Ye, Bing; Peng, Hanchuan

    2013-10-04

    Pattern recognition algorithms are useful in bioimage informatics applications such as quantifying cellular and subcellular objects, annotating gene expressions, and classifying phenotypes. To provide effective and efficient image classification and annotation for the ever-increasing microscopic images, it is desirable to have tools that can combine and compare various algorithms, and build customizable solution for different biological problems. However, current tools often offer a limited solution in generating user-friendly and extensible tools for annotating higher dimensional images that correspond to multiple complicated categories. We develop the BIOimage Classification and Annotation Tool (BIOCAT). It is able to apply pattern recognition algorithms to two- and three-dimensional biological image sets as well as regions of interest (ROIs) in individual images for automatic classification and annotation. We also propose a 3D anisotropic wavelet feature extractor for extracting textural features from 3D images with xy-z resolution disparity. The extractor is one of the about 20 built-in algorithms of feature extractors, selectors and classifiers in BIOCAT. The algorithms are modularized so that they can be "chained" in a customizable way to form adaptive solution for various problems, and the plugin-based extensibility gives the tool an open architecture to incorporate future algorithms. We have applied BIOCAT to classification and annotation of images and ROIs of different properties with applications in cell biology and neuroscience. BIOCAT provides a user-friendly, portable platform for pattern recognition based biological image classification of two- and three- dimensional images and ROIs. We show, via diverse case studies, that different algorithms and their combinations have different suitability for various problems. The customizability of BIOCAT is thus expected to be useful for providing effective and efficient solutions for a variety of biological

  17. Morphological characterization of Mycobacterium tuberculosis in a MODS culture for an automatic diagnostics through pattern recognition.

    Alicia Alva

    Full Text Available Tuberculosis control efforts are hampered by a mismatch in diagnostic technology: modern optimal diagnostic tests are least available in poor areas where they are needed most. Lack of adequate early diagnostics and MDR detection is a critical problem in control efforts. The Microscopic Observation Drug Susceptibility (MODS assay uses visual recognition of cording patterns from Mycobacterium tuberculosis (MTB to diagnose tuberculosis infection and drug susceptibility directly from a sputum sample in 7-10 days with a low cost. An important limitation that laboratories in the developing world face in MODS implementation is the presence of permanent technical staff with expertise in reading MODS. We developed a pattern recognition algorithm to automatically interpret MODS results from digital images. The algorithm using image processing, feature extraction and pattern recognition determined geometrical and illumination features used in an object-model and a photo-model to classify TB-positive images. 765 MODS digital photos were processed. The single-object model identified MTB (96.9% sensitivity and 96.3% specificity and was able to discriminate non-tuberculous mycobacteria with a high specificity (97.1% M. avium, 99.1% M. chelonae, and 93.8% M. kansasii. The photo model identified TB-positive samples with 99.1% sensitivity and 99.7% specificity. This algorithm is a valuable tool that will enable automatic remote diagnosis using Internet or cellphone telephony. The use of this algorithm and its further implementation in a telediagnostics platform will contribute to both faster TB detection and MDR TB determination leading to an earlier initiation of appropriate treatment.

  18. Pattern recognition techniques for horizontal and vertically upward multiphase flow measurement

    Arubi, Tesi I. M.; Yeung, Hoi

    2012-03-01

    The oil and gas industry need for high performing and low cost multiphase meters is ever more justified given the rapid depletion of conventional oil reserves that has led oil companies to develop smaller and marginal fields and reservoirs in remote locations and deep offshore, thereby placing great demands for compact and more cost effective solutions of on-line continuous multiphase flow measurement for well testing, production monitoring, production optimisation, process control and automation. The pattern recognition approach for clamp-on multiphase measurement employed in this study provides one means for meeting this need. High speed caesium-137 radioisotope-based densitometers were installed vertically at the top of a 50.8mm and 101.6mm riser as well as horizontally at the riser base in the Cranfield University multiphase flow test facility. A comprehensive experimental campaign comprising flow conditions typical of operating conditions found in the Petroleum Industry was conducted. The application of a single gamma densitometer unit, in conjunction with pattern recognition techniques to determine both the phase volume fractions and velocities to yield the individual phase flow rates of horizontal and vertically upward multiphase flows was investigated. The pattern recognition systems were trained to map the temporal fluctuations in the multiphase mixture density with the individual phase flow rates using statistical features extracted from the gamma counts signals as their inputs. Initial results yielded individual phase flow rate predictions to within ±5% relative error for the two phase airwater flows and ±10% for three phase air-oil-water flows data.

  19. Recognition for old Arabic manuscripts using spatial gray level dependence (SGLD

    Ahmad M. Abd Al-Aziz

    2011-03-01

    Full Text Available Texture analysis forms the basis of object recognition and classification in several domains, one of these domains is historical document manuscripts because the manuscripts hold our culture heritage and also large numbers of undated manuscripts exist. This paper presents results for historical document classification of old Arabic manuscripts using texture analysis and a segmentation free approach. The main objective is to discriminate between historical documents of different writing styles to three different ages: Contemporary (Modern Age, Ottoman Age and Mamluk Age. This classification depends on a Spatial Gray-level Dependence (SGLD technique which provides eight distinct texture features for each sample document. We applied Stepwise Discriminant Analysis and Multiple discriminant analysis methods to decrease the dimensionality of features and extract training vector features from samples. To classify historical documents into three main historical age classes the decision tree classification is applied. The system has been tested on 48 Arabic historical manuscripts documents from the Dar Al-Kotob Al-Masria Library. Our results so far yield 95.83% correct classification for the historical Arabic documents.

  20. Hotspot detection using image pattern recognition based on higher-order local auto-correlation

    Maeda, Shimon; Matsunawa, Tetsuaki; Ogawa, Ryuji; Ichikawa, Hirotaka; Takahata, Kazuhiro; Miyairi, Masahiro; Kotani, Toshiya; Nojima, Shigeki; Tanaka, Satoshi; Nakagawa, Kei; Saito, Tamaki; Mimotogi, Shoji; Inoue, Soichi; Nosato, Hirokazu; Sakanashi, Hidenori; Kobayashi, Takumi; Murakawa, Masahiro; Higuchi, Tetsuya; Takahashi, Eiichi; Otsu, Nobuyuki

    2011-04-01

    Below 40nm design node, systematic variation due to lithography must be taken into consideration during the early stage of design. So far, litho-aware design using lithography simulation models has been widely applied to assure that designs are printed on silicon without any error. However, the lithography simulation approach is very time consuming, and under time-to-market pressure, repetitive redesign by this approach may result in the missing of the market window. This paper proposes a fast hotspot detection support method by flexible and intelligent vision system image pattern recognition based on Higher-Order Local Autocorrelation. Our method learns the geometrical properties of the given design data without any defects as normal patterns, and automatically detects the design patterns with hotspots from the test data as abnormal patterns. The Higher-Order Local Autocorrelation method can extract features from the graphic image of design pattern, and computational cost of the extraction is constant regardless of the number of design pattern polygons. This approach can reduce turnaround time (TAT) dramatically only on 1CPU, compared with the conventional simulation-based approach, and by distributed processing, this has proven to deliver linear scalability with each additional CPU.

  1. A microprocessor-based single board computer for high energy physics event pattern recognition

    Bernstein, H.; Gould, J.J.; Imossi, R.; Kopp, J.K.; Love, W.A.; Ozaki, S.; Platner, E.D.; Kramer, M.A.

    1981-01-01

    A single board MC 68000 based computer has been assembled and bench marked against the CDC 7600 running portions of the pattern recognition code used at the MPS. This computer has a floating coprocessor to achieve throughputs equivalent to several percent that of the 7600. A major part of this work was the construction of a FORTRAN compiler including assembler, linker and library. The intention of this work is to assemble a large number of these single board computers in a parallel FASTBUS environment to act as an on-line and off-line filter for the raw data from MPS II and ISABELLE experiments. (orig.)

  2. Application of Pattern Recognition Method for Color Assessment of Oriental Tobacco based on HPLC of Polyphenols

    Dagnon S

    2014-12-01

    Full Text Available The color of Oriental tobaccos was organoleptically assayed, and high performance liquid chromatography (HPLC of polyphenols was performed. The major tobacco polyphenols (chlorogenic acid, its isomers, and rutin, as well as scopoletin and kaempferol-3-rutinoside were quantified. HPLC polyphenol profiles were processed by pattern recognition method (PRM, and the values of indexes of similarity (Is,% between the cultivars studied were determined. It was shown that data from organoleptic color assessment and from PRM based on HPLC profiles of polyphenols of the cultivars studied are largely compatible. Hence, PRM can be suggested as an additional tool for objective color evaluation and classification of Oriental tobacco.

  3. REMOVAL OF SPECTRO-POLARIMETRIC FRINGES BY TWO-DIMENSIONAL PATTERN RECOGNITION

    Casini, R.; Judge, P. G.; Schad, T. A.

    2012-01-01

    We present a pattern-recognition-based approach to the problem of the removal of polarized fringes from spectro-polarimetric data. We demonstrate that two-dimensional principal component analysis can be trained on a given spectro-polarimetric map in order to identify and isolate fringe structures from the spectra. This allows us, in principle, to reconstruct the data without the fringe component, providing an effective and clean solution to the problem. The results presented in this paper point in the direction of revising the way that science and calibration data should be planned for a typical spectro-polarimetric observing run.

  4. Is it worth changing pattern recognition methods for structural health monitoring?

    Bull, L. A.; Worden, K.; Cross, E. J.; Dervilis, N.

    2017-05-01

    The key element of this work is to demonstrate alternative strategies for using pattern recognition algorithms whilst investigating structural health monitoring. This paper looks to determine if it makes any difference in choosing from a range of established classification techniques: from decision trees and support vector machines, to Gaussian processes. Classification algorithms are tested on adjustable synthetic data to establish performance metrics, then all techniques are applied to real SHM data. To aid the selection of training data, an informative chain of artificial intelligence tools is used to explore an active learning interaction between meaningful clusters of data.

  5. Pattern-recognition system application to EBR-II plant-life extension

    King, R.W.; Radtke, W.H.; Mott, J.E.

    1988-01-01

    A computer-based pattern-recognition system, the System State Analyzer (SSA), is being used as part of the EBR-II plant-life extension program for detection of degradation and other abnormalities in plant systems. The SSA is used for surveillance of the EBR-II primary system instrumentation, primary sodium pumps, and plant heat balances. Early results of this surveillance indicate that the SSA can detect instrumentation degradation and system performance degradation over varying time intervals, and can provide derived signal values to replace signals from failed critical sensors. These results are being used in planning for extended-life operation of EBR-II

  6. Neutron-gamma discrimination employing pattern recognition of the signal from liquid scintillator

    Kamada, Kohji; Enokido, Uhji; Ogawa, Seiji

    1999-01-01

    A pattern recognition method was applied to the neutron-gamma discrimination of the pulses from the liquid scintillator, NE-213. The circuit for the discrimination is composed of A/D converter, fast SCA, memory control circuit, two digital delay lines and two buffer memories. All components are packed on a small circuit board and are installed into a personal computer. Experiments using a weak 252 Cf n-γ source were undertaken to test the feasibility of the circuit. The circuit is of very easy adjustment and, at the same time, of very economical price when compared with usual discrimination circuits, such as the TAC system

  7. Neutron-gamma discrimination employing pattern recognition of the signal from liquid scintillator

    Kamada, K; Ogawa, S

    1999-01-01

    A pattern recognition method was applied to the neutron-gamma discrimination of the pulses from the liquid scintillator, NE-213. The circuit for the discrimination is composed of A/D converter, fast SCA, memory control circuit, two digital delay lines and two buffer memories. All components are packed on a small circuit board and are installed into a personal computer. Experiments using a weak sup 2 sup 5 sup 2 Cf n-gamma source were undertaken to test the feasibility of the circuit. The circuit is of very easy adjustment and, at the same time, of very economical price when compared with usual discrimination circuits, such as the TAC system.

  8. [Fuzzing pattern recognition study on Raman spectrum of tumor peripheral tissue].

    Luo, Lei; Zhao, Yuan-li; Ge, Xiang-hong; Zhang, Xiao-dong; Hao, Zhi-fang; Lü, Jing

    2006-06-01

    On the basis of some theories about fuzzing pattern recognition, the present article studied the data preprocessing of the Raman spectrum of tumor peripheral tissue, and feature extraction and selection. According to these features the authors improved the leaning towards the bigger membership function of trapezoidal distribution. The authors built the membership function of Raman spectrum of tumor peripheral tissue which belongs to malignant tumor on the basis of 40 specimens, and designed the classifier. The test of other 40 specimens showed that the discrimination of malignant tumor is 82.4%, while that of beginning tumor is 73.9%.

  9. Trends in Correlation-Based Pattern Recognition and Tracking in Forward-Looking Infrared Imagery

    Alam, Mohammad S.; Bhuiyan, Sharif M. A.

    2014-01-01

    In this paper, we review the recent trends and advancements on correlation-based pattern recognition and tracking in forward-looking infrared (FLIR) imagery. In particular, we discuss matched filter-based correlation techniques for target detection and tracking which are widely used for various real time applications. We analyze and present test results involving recently reported matched filters such as the maximum average correlation height (MACH) filter and its variants, and distance classifier correlation filter (DCCF) and its variants. Test results are presented for both single/multiple target detection and tracking using various real-life FLIR image sequences. PMID:25061840

  10. Microprocessor-based single board computer for high energy physics event pattern recognition

    Bernstein, H.; Gould, J.J.; Imossi, R.; Kopp, J.K.; Love, W.A.; Ozaki, S.; Platner, E.D.; Kramer, M.A.

    1981-01-01

    A single board MC 68000 based computer has been assembled and bench marked against the CDC 7600 running portions of the pattern recognition code used at the MPS. This computer has a floating coprocessor to achieve throughputs equivalent to several percent that of the 7600. A major part of this work was the construction of a FORTRAN compiler including assembler, linker and library. The intention of this work is to assemble a large number of these single board computers in a parallel FASTBUS environment to act as an on-line and off-line filter for the raw data from MPS II and ISABELLE experiments

  11. Semantic Network Adaptation Based on QoS Pattern Recognition for Multimedia Streams

    Exposito, Ernesto; Gineste, Mathieu; Lamolle, Myriam; Gomez, Jorge

    This article proposes an ontology based pattern recognition methodology to compute and represent common QoS properties of the Application Data Units (ADU) of multimedia streams. The use of this ontology by mechanisms located at different layers of the communication architecture will allow implementing fine per-packet self-optimization of communication services regarding the actual application requirements. A case study showing how this methodology is used by error control mechanisms in the context of wireless networks is presented in order to demonstrate the feasibility and advantages of this approach.

  12. The SPAtial EFficiency metric (SPAEF): multiple-component evaluation of spatial patterns for optimization of hydrological models

    Koch, Julian; Cüneyd Demirel, Mehmet; Stisen, Simon

    2018-05-01

    The process of model evaluation is not only an integral part of model development and calibration but also of paramount importance when communicating modelling results to the scientific community and stakeholders. The modelling community has a large and well-tested toolbox of metrics to evaluate temporal model performance. In contrast, spatial performance evaluation does not correspond to the grand availability of spatial observations readily available and to the sophisticate model codes simulating the spatial variability of complex hydrological processes. This study makes a contribution towards advancing spatial-pattern-oriented model calibration by rigorously testing a multiple-component performance metric. The promoted SPAtial EFficiency (SPAEF) metric reflects three equally weighted components: correlation, coefficient of variation and histogram overlap. This multiple-component approach is found to be advantageous in order to achieve the complex task of comparing spatial patterns. SPAEF, its three components individually and two alternative spatial performance metrics, i.e. connectivity analysis and fractions skill score, are applied in a spatial-pattern-oriented model calibration of a catchment model in Denmark. Results suggest the importance of multiple-component metrics because stand-alone metrics tend to fail to provide holistic pattern information. The three SPAEF components are found to be independent, which allows them to complement each other in a meaningful way. In order to optimally exploit spatial observations made available by remote sensing platforms, this study suggests applying bias insensitive metrics which further allow for a comparison of variables which are related but may differ in unit. This study applies SPAEF in the hydrological context using the mesoscale Hydrologic Model (mHM; version 5.8), but we see great potential across disciplines related to spatially distributed earth system modelling.

  13. Evaluating structural pattern recognition for handwritten math via primitive label graphs

    Zanibbi, Richard; Mouchère, Harold; Viard-Gaudin, Christian

    2013-01-01

    Currently, structural pattern recognizer evaluations compare graphs of detected structure to target structures (i.e. ground truth) using recognition rates, recall and precision for object segmentation, classification and relationships. In document recognition, these target objects (e.g. symbols) are frequently comprised of multiple primitives (e.g. connected components, or strokes for online handwritten data), but current metrics do not characterize errors at the primitive level, from which object-level structure is obtained. Primitive label graphs are directed graphs defined over primitives and primitive pairs. We define new metrics obtained by Hamming distances over label graphs, which allow classification, segmentation and parsing errors to be characterized separately, or using a single measure. Recall and precision for detected objects may also be computed directly from label graphs. We illustrate the new metrics by comparing a new primitive-level evaluation to the symbol-level evaluation performed for the CROHME 2012 handwritten math recognition competition. A Python-based set of utilities for evaluating, visualizing and translating label graphs is publicly available.

  14. Reduction of the dimension of neural network models in problems of pattern recognition and forecasting

    Nasertdinova, A. D.; Bochkarev, V. V.

    2017-11-01

    Deep neural networks with a large number of parameters are a powerful tool for solving problems of pattern recognition, prediction and classification. Nevertheless, overfitting remains a serious problem in the use of such networks. A method of solving the problem of overfitting is proposed in this article. This method is based on reducing the number of independent parameters of a neural network model using the principal component analysis, and can be implemented using existing libraries of neural computing. The algorithm was tested on the problem of recognition of handwritten symbols from the MNIST database, as well as on the task of predicting time series (rows of the average monthly number of sunspots and series of the Lorentz system were used). It is shown that the application of the principal component analysis enables reducing the number of parameters of the neural network model when the results are good. The average error rate for the recognition of handwritten figures from the MNIST database was 1.12% (which is comparable to the results obtained using the "Deep training" methods), while the number of parameters of the neural network can be reduced to 130 times.

  15. Voronoi tessellations and the cosmic web : Spatial patterns and clustering across the universe

    van de Weygaert, Rien; Gold, CM

    2007-01-01

    The spatial cosmic matter distribution on scales of a few up to more than a hundred Megaparsec(1) displays a salient and pervasive foamlike pattern. Voronoi tessellations are a versatile and flexible mathematical model for such weblike spatial patterns. They would be the natural result of an

  16. Differential cortical c-Fos and Zif-268 expression after object and spatial memory processing in a standard or episodic-like object recognition task

    Flávio F Barbosa

    2013-08-01

    Full Text Available Episodic memory reflects the capacity to recollect what, where and when a specific event happened in an integrative manner. Animal studies have suggested that the medial temporal lobe and the medial pre-frontal cortex are important for episodic-like memory formation. The goal of present study was to evaluate whether there are different patterns of expression of the immediate early genes c-Fos and Zif-268 in these cortical areas after rats are exposed to object recognition tasks with different cognitive demands. Male rats were randomly assigned to five groups: home cage control (CTR-HC, empty open field (CTR-OF, open field with one object (CTR-OF + Obj, novel object recognition task (OR and episodic-like memory task (ELM and were killed one hour after the last behavioral procedure. Rats were able to discriminate the objects in the OR task. In the ELM task, rats showed spatial (but not temporal discrimination of the objects. We found an increase in the c-Fos expression in the dorsal dentate gyrus (DG and in the perirhinal cortex (PRh in the OR and ELM groups. The OR group also presented an increase of c-Fos expression in the medial prefrontal cortex (mPFC. Additionally, the OR and ELM groups had increased expression of Zif-268 in the mPFC. Moreover, Zif-268 was increased in the dorsal CA1 and perirhinal cortex only in the ELM group. In conclusion, the pattern of activation was different in tasks with different cognitive demands. Accordingly, correlation tests suggest the engagement of different neural networks in the object recognition tasks used. Specifically, perirhinal-dentate gyrus co-activation was detected after the what-where memory retrieval, but not after the novel object recognition task. Both regions correlated with the respective behavioral outcome. These findings can be helpful in the understanding of the neural networks underlying memory tasks with different cognitive demands.

  17. A Prosthetic Hand Body Area Controller Based on Efficient Pattern Recognition Control Strategies.

    Benatti, Simone; Milosevic, Bojan; Farella, Elisabetta; Gruppioni, Emanuele; Benini, Luca

    2017-04-15

    Poliarticulated prosthetic hands represent a powerful tool to restore functionality and improve quality of life for upper limb amputees. Such devices offer, on the same wearable node, sensing and actuation capabilities, which are not equally supported by natural interaction and control strategies. The control in state-of-the-art solutions is still performed mainly through complex encoding of gestures in bursts of contractions of the residual forearm muscles, resulting in a non-intuitive Human-Machine Interface (HMI). Recent research efforts explore the use of myoelectric gesture recognition for innovative interaction solutions, however there persists a considerable gap between research evaluation and implementation into successful complete systems. In this paper, we present the design of a wearable prosthetic hand controller, based on intuitive gesture recognition and a custom control strategy. The wearable node directly actuates a poliarticulated hand and wirelessly interacts with a personal gateway (i.e., a smartphone) for the training and personalization of the recognition algorithm. Through the whole system development, we address the challenge of integrating an efficient embedded gesture classifier with a control strategy tailored for an intuitive interaction between the user and the prosthesis. We demonstrate that this combined approach outperforms systems based on mere pattern recognition, since they target the accuracy of a classification algorithm rather than the control of a gesture. The system was fully implemented, tested on healthy and amputee subjects and compared against benchmark repositories. The proposed approach achieves an error rate of 1.6% in the end-to-end real time control of commonly used hand gestures, while complying with the power and performance budget of a low-cost microcontroller.

  18. Shape-based hand recognition approach using the morphological pattern spectrum

    Ramirez-Cortes, Juan Manuel; Gomez-Gil, Pilar; Sanchez-Perez, Gabriel; Prieto-Castro, Cesar

    2009-01-01

    We propose the use of the morphological pattern spectrum, or pecstrum, as the base of a biometric shape-based hand recognition system. The system receives an image of the right hand of a subject in an unconstrained pose, which is captured with a commercial flatbed scanner. According to pecstrum property of invariance to translation and rotation, the system does not require the use of pegs for a fixed hand position, which simplifies the image acquisition process. This novel feature-extraction method is tested using a Euclidean distance classifier for identification and verification cases, obtaining 97% correct identification, and an equal error rate (EER) of 0.0285 (2.85%) for the verification mode. The obtained results indicate that the pattern spectrum represents a good feature-extraction alternative for low- and medium-level hand-shape-based biometric applications.

  19. Preparation and pattern recognition of metallic Ni ultrafine powders by electroless plating

    Zhang, H.J.; Zhang, H.T.; Wu, X.W.; Wang, Z.L.; Jia, Q.L.; Jia, X.L.

    2006-01-01

    Using hydrazine hydrate as reductant, metallic Ni ultrafine powders were prepared from NiSO 4 aqueous solution by electroless plating method. The factors including concentration of NiSO 4 , bathing temperature, ratio of hydrazine hydrate to NiSO 4 , the pH of the solution, etc., on influence of the yield and average particle size of metallic Ni ultrafine powders were studied in detail. X-ray powders diffraction patterns show that the nickel powders are cubic crystallite. The average crystalline size of the ultrafine nickel powders is about 30 nm. The dielectric and magnetic loss of ultrafine Ni powders-paraffin wax composites were measured by the rectangle waveguide method in the range 8.2-12.4 GHz. The factors for Ni ultrafine powders preparation are optimized by computer pattern recognition program based on principal component analysis, the optimum factors regions with higher yield of metallic Ni ultrafine powders are indicated by this way

  20. Design of environmental monitoring system of nuclear facility based on a method of pattern recognition

    Katoh, N; Kiyose, R; Yamamoto, Y [Tokyo Univ. (Japan). Faculty of Engineering

    1977-10-01

    The problem to optimize the number and locations of environmental radiation monitoring detectors is formulated by taking the specifically defined distance measures as a performance index and solved numerically using heuristic programming such as branch and bound method. An ideal numerical example neglecting noises due to background radiation, shows that the desirable number and locations of detectors are determined mainly by the atmospheric conditions and are not significantly influenced by the variation of the rate and pattern of activity release from the nuclear facility. It is shown also that the appropriate and sufficient number of monitoring detectors to be located around the facility will be from three to six at most, if considered from the viewpoint of pattern recognition.

  1. Spatial distribution pattern of vanadium in hydric landscapes

    Fiedler, Sabine; Breuer, Jörn; Palmer, Iris; Berger, Jochen

    2010-05-01

    landscapes. Independent from the parent material, we found a distinct spatial pattern of V, which reflected that of the local redox environment: Horizons/pedons with oxic conditions revealed a positive correlation between V content and Fe content. In this case, iron oxides act as an important sink for dissolved V which originated from other locations of the catena. Poorly drained soils, such as Stagnosols for example, promote both Fe and V reduction, which is coupled to their removal from the pedons by leaching. It can be demonstrated that the element-specific Eh window for differential reduction is very narrow. The spatial distribution of both elements shows that high V contents are often associated with low Fe contents. It is therefore assumed that a reducing environment promotes Fe3+ reduction, while maintaining while maintaining V stable.

  2. Characteristics of Spatial Structural Patterns and Temporal Variability of Annual Precipitation in Ningxia

    2011-01-01

    [Objective] The aim was to study the characteristics of the spatial structural patterns and temporal variability of annual precipitation in Ningxia.[Method] Using rotated empirical orthogonal function,the precipitation concentration index,wavelet analysis and Mann-Kendall rank statistic method,the characteristics of precipitation on the spatial-temporal variability and trend were analyzed by the monthly precipitation series in Ningxia during 1951-2008.[Result] In Ningxia,the spatial structural patterns of a...

  3. Pipeline Structural Damage Detection Using Self-Sensing Technology and PNN-Based Pattern Recognition

    Lee, Chang Gil; Park, Woong Ki; Park, Seung Hee

    2011-01-01

    In a structure, damage can occur at several scales from micro-cracking to corrosion or loose bolts. This makes the identification of damage difficult with one mode of sensing. Hence, a multi-mode actuated sensing system is proposed based on a self-sensing circuit using a piezoelectric sensor. In the self sensing-based multi-mode actuated sensing, one mode provides a wide frequency-band structural response from the self-sensed impedance measurement and the other mode provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. In this study, an experimental study on the pipeline system is carried out to verify the effectiveness and the robustness of the proposed structural health monitoring approach. Different types of structural damage are artificially inflicted on the pipeline system. To classify the multiple types of structural damage, a supervised learning-based statistical pattern recognition is implemented by composing a two-dimensional space using the damage indices extracted from the impedance and guided wave features. For more systematic damage classification, several control parameters to determine an optimal decision boundary for the supervised learning-based pattern recognition are optimized. Finally, further research issues will be discussed for real-world implementation of the proposed approach

  4. NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review

    Smolinska, Agnieszka; Blanchet, Lionel; Buydens, Lutgarde M.C.; Wijmenga, Sybren S.

    2012-01-01

    Highlights: ► Procedures for acquisition of different biofluids by NMR. ► Recent developments in metabolic profiling of different biofluids by NMR are presented. ► The crucial steps involved in data preprocessing and multivariate chemometric analysis are reviewed. ► Emphasis is given on recent findings on Multiple Sclerosis via NMR and pattern recognition methods. - Abstract: Metabolomics is the discipline where endogenous and exogenous metabolites are assessed, identified and quantified in different biological samples. Metabolites are crucial components of biological system and highly informative about its functional state, due to their closeness to functional endpoints and to the organism's phenotypes. Nuclear Magnetic Resonance (NMR) spectroscopy, next to Mass Spectrometry (MS), is one of the main metabolomics analytical platforms. The technological developments in the field of NMR spectroscopy have enabled the identification and quantitative measurement of the many metabolites in a single sample of biofluids in a non-targeted and non-destructive manner. Combination of NMR spectra of biofluids and pattern recognition methods has driven forward the application of metabolomics in the field of biomarker discovery. The importance of metabolomics in diagnostics, e.g. in identifying biomarkers or defining pathological status, has been growing exponentially as evidenced by the number of published papers. In this review, we describe the developments in data acquisition and multivariate analysis of NMR-based metabolomics data, with particular emphasis on the metabolomics of Cerebrospinal Fluid (CSF) and biomarker discovery in Multiple Sclerosis (MScl).

  5. Health monitoring of 90° bolted joints using fuzzy pattern recognition of ultrasonic signals

    Jalalpour, M; El-Osery, A I; Austin, E M; Reda Taha, M M

    2014-01-01

    Bolted joints are important parts for aerospace structures. However, there is a significant risk associated with assembling bolted joints due to potential human error during the assembly process. Such errors are expensive to find and correct if exposed during environmental testing, yet checking the integrity of individual fasteners after assembly would be a time consuming task. Recent advances in structural health monitoring (SHM) can provide techniques to not only automate this process but also make it reliable. This integrity monitoring requires damage features to be related to physical conditions representing the structural integrity of bolted joints. In this paper an SHM technique using ultrasonic signals and fuzzy pattern recognition to monitor the integrity of 90° bolted joints in aerospace structures is described. The proposed technique is based on normalized fast Fourier transform (NFFT) of transmitted signals and fuzzy pattern recognition. Moreover, experimental observations of a case study on an aluminum 90° bolted joint are presented. We demonstrate the ability of the proposed method to efficiently monitor and indicate bolted joint integrity. (paper)

  6. Pattern Recognition via the Toll-Like Receptor System in the Human Female Genital Tract

    Kaei Nasu

    2010-01-01

    Full Text Available The mucosal surface of the female genital tract is a complex biosystem, which provides a barrier against the outside world and participates in both innate and acquired immune defense systems. This mucosal compartment has adapted to a dynamic, non-sterile environment challenged by a variety of antigenic/inflammatory stimuli associated with sexual intercourse and endogenous vaginal microbiota. Rapid innate immune defenses against microbial infection usually involve the recognition of invading pathogens by specific pattern-recognition receptors recently attributed to the family of Toll-like receptors (TLRs. TLRs recognize conserved pathogen-associated molecular patterns (PAMPs synthesized by microorganisms including bacteria, fungi, parasites, and viruses as well as endogenous ligands associated with cell damage. Members of the TLR family, which includes 10 human TLRs identified to date, recognize distinct PAMPs produced by various bacterial, fungal, and viral pathogens. The available literature regarding the innate immune system of the female genital tract during human reproductive processes was reviewed in order to identify studies specifically related to the expression and function of TLRs under normal as well as pathological conditions. Increased understanding of these molecules may provide insight into site-specific immunoregulatory mechanisms in the female reproductive tract.

  7. Real-Time Control of an Exoskeleton Hand Robot with Myoelectric Pattern Recognition.

    Lu, Zhiyuan; Chen, Xiang; Zhang, Xu; Tong, Kay-Yu; Zhou, Ping

    2017-08-01

    Robot-assisted training provides an effective approach to neurological injury rehabilitation. To meet the challenge of hand rehabilitation after neurological injuries, this study presents an advanced myoelectric pattern recognition scheme for real-time intention-driven control of a hand exoskeleton. The developed scheme detects and recognizes user's intention of six different hand motions using four channels of surface electromyography (EMG) signals acquired from the forearm and hand muscles, and then drives the exoskeleton to assist the user accomplish the intended motion. The system was tested with eight neurologically intact subjects and two individuals with spinal cord injury (SCI). The overall control accuracy was [Formula: see text] for the neurologically intact subjects and [Formula: see text] for the SCI subjects. The total lag of the system was approximately 250[Formula: see text]ms including data acquisition, transmission and processing. One SCI subject also participated in training sessions in his second and third visits. Both the control accuracy and efficiency tended to improve. These results show great potential for applying the advanced myoelectric pattern recognition control of the wearable robotic hand system toward improving hand function after neurological injuries.

  8. Differentiation of tea varieties using UV-Vis spectra and pattern recognition techniques

    Palacios-Morillo, Ana; Alcázar, Ángela.; de Pablos, Fernando; Jurado, José Marcos

    2013-02-01

    Tea, one of the most consumed beverages all over the world, is of great importance in the economies of a number of countries. Several methods have been developed to classify tea varieties or origins based in pattern recognition techniques applied to chemical data, such as metal profile, amino acids, catechins and volatile compounds. Some of these analytical methods become tedious and expensive to be applied in routine works. The use of UV-Vis spectral data as discriminant variables, highly influenced by the chemical composition, can be an alternative to these methods. UV-Vis spectra of methanol-water extracts of tea have been obtained in the interval 250-800 nm. Absorbances have been used as input variables. Principal component analysis was used to reduce the number of variables and several pattern recognition methods, such as linear discriminant analysis, support vector machines and artificial neural networks, have been applied in order to differentiate the most common tea varieties. A successful classification model was built by combining principal component analysis and multilayer perceptron artificial neural networks, allowing the differentiation between tea varieties. This rapid and simple methodology can be applied to solve classification problems in food industry saving economic resources.

  9. Finger crease pattern recognition using Legendre moments and principal component analysis

    Luo, Rongfang; Lin, Tusheng

    2007-03-01

    The finger joint lines defined as finger creases and its distribution can identify a person. In this paper, we propose a new finger crease pattern recognition method based on Legendre moments and principal component analysis (PCA). After obtaining the region of interest (ROI) for each finger image in the pre-processing stage, Legendre moments under Radon transform are applied to construct a moment feature matrix from the ROI, which greatly decreases the dimensionality of ROI and can represent principal components of the finger creases quite well. Then, an approach to finger crease pattern recognition is designed based on Karhunen-Loeve (K-L) transform. The method applies PCA to a moment feature matrix rather than the original image matrix to achieve the feature vector. The proposed method has been tested on a database of 824 images from 103 individuals using the nearest neighbor classifier. The accuracy up to 98.584% has been obtained when using 4 samples per class for training. The experimental results demonstrate that our proposed approach is feasible and effective in biometrics.

  10. Recognition of damage-associated, nucleic acid-related molecular patterns during inflammation and vaccination

    Nao eJounai

    2013-01-01

    Full Text Available All mammalian cells are equipped with large numbers of sensors for protection from various sorts of invaders, who, in turn, are equipped with molecules containing pathogen-associated molecular patterns (PAMPs. Once these sensors recognize non-self antigens containing PAMPs, various physiological responses including inflammation are induced to eliminate the pathogens. However, the host sometimes suffers from chronic infection or continuous injuries, resulting in production of self-molecules containing damage-associated molecular patterns (DAMPs. DAMPs are also responsible for the elimination of pathogens, but promiscuous recognition of DAMPs through sensors against PAMPs has been reported. Accumulation of DAMPs leads to massive inflammation and continuous production of DAMPs; that is, a vicious circle leading to the development of autoimmune disease. From a vaccinological point of view, the accurate recognition of both PAMPs and DAMPs is important for vaccine immunogenicity, because vaccine adjuvants are composed of several PAMPs and/or DAMPs, which are also associated with severe adverse events after vaccination. Here, we review as the roles of PAMPs and DAMPs upon infection with pathogens or inflammation, and the sensors responsible for recognizing them, as well as their relationship with the development of autoimmune disease or the immunogenicity of vaccines.

  11. An intelligent signal processing and pattern recognition technique for defect identification using an active sensor network

    Su, Zhongqing; Ye, Lin

    2004-08-01

    The practical utilization of elastic waves, e.g. Rayleigh-Lamb waves, in high-performance structural health monitoring techniques is somewhat impeded due to the complicated wave dispersion phenomena, the existence of multiple wave modes, the high susceptibility to diverse interferences, the bulky sampled data and the difficulty in signal interpretation. An intelligent signal processing and pattern recognition (ISPPR) approach using the wavelet transform and artificial neural network algorithms was developed; this was actualized in a signal processing package (SPP). The ISPPR technique comprehensively functions as signal filtration, data compression, characteristic extraction, information mapping and pattern recognition, capable of extracting essential yet concise features from acquired raw wave signals and further assisting in structural health evaluation. For validation, the SPP was applied to the prediction of crack growth in an alloy structural beam and construction of a damage parameter database for defect identification in CF/EP composite structures. It was clearly apparent that the elastic wave propagation-based damage assessment could be dramatically streamlined by introduction of the ISPPR technique.

  12. Recent developments in pattern recognition with applications in high-energy physics

    Bischof, H.; Fruehwirth, R.

    1998-01-01

    In this contribution we consider the track finding and fitting problem from the pattern recognition and computer vision point of view. In particular, we consider it as a problem of recovering parametric models from noisy measurements. We review major approaches like neural networks, Hough transforms, Kalman filtering techniques, etc, which have been previously used in that area, and point out the problems of these approaches. Then we present an algorithm, originally developed in the area of computer vision, to fit different types of curves to noisy edge data, and demonstrate how it can be used for track finding and fitting. The algorithm is based on two principles: (a) a data driven exploration produces many hypotheses of possible tracks; (b) a selection procedure based on the Minimum Description Length Principle (MDL), selects those hypotheses which are needed to explain the data. The results of the algorithm are a number of tracks, and a set of outlier points (which cannot be explained by tracks according to the MDL-principle). We discuss how knowledge about the detectors and the underlying processes can be incorporated in the algorithm. Finally, we demonstrate the algorithm on 2D and 3D pattern recognition tasks. (author)

  13. Design and testing of the first 2D Prototype Vertically Integrated Pattern Recognition Associative Memory

    Liu, T.; Deptuch, G.; Hoff, J.; Jindariani, S.; Joshi, S.; Olsen, J.; Tran, N.; Trimpl, M.

    2015-02-01

    An associative memory-based track finding approach has been proposed for a Level 1 tracking trigger to cope with increasing luminosities at the LHC. The associative memory uses a massively parallel architecture to tackle the intrinsically complex combinatorics of track finding algorithms, thus avoiding the typical power law dependence of execution time on occupancy and solving the pattern recognition in times roughly proportional to the number of hits. This is of crucial importance given the large occupancies typical of hadronic collisions. The design of an associative memory system capable of dealing with the complexity of HL-LHC collisions and with the short latency required by Level 1 triggering poses significant, as yet unsolved, technical challenges. For this reason, an aggressive R&D program has been launched at Fermilab to advance state of-the-art associative memory technology, the so called VIPRAM (Vertically Integrated Pattern Recognition Associative Memory) project. The VIPRAM leverages emerging 3D vertical integration technology to build faster and denser Associative Memory devices. The first step is to implement in conventional VLSI the associative memory building blocks that can be used in 3D stacking, in other words, the building blocks are laid out as if it is a 3D design. In this paper, we report on the first successful implementation of a 2D VIPRAM demonstrator chip (protoVIPRAM00). The results show that these building blocks are ready for 3D stacking.

  14. Pattern recognition applied to infrared images for early alerts in fog

    Boucher, Vincent; Marchetti, Mario; Dumoulin, Jean; Cord, Aurélien

    2014-09-01

    Fog conditions are the cause of severe car accidents in western countries because of the poor induced visibility. Its forecast and intensity are still very difficult to predict by weather services. Infrared cameras allow to detect and to identify objects in fog while visibility is too low for eye detection. Over the past years, the implementation of cost effective infrared cameras on some vehicles has enabled such detection. On the other hand pattern recognition algorithms based on Canny filters and Hough transformation are a common tool applied to images. Based on these facts, a joint research program between IFSTTAR and Cerema has been developed to study the benefit of infrared images obtained in a fog tunnel during its natural dissipation. Pattern recognition algorithms have been applied, specifically on road signs which shape is usually associated to a specific meaning (circular for a speed limit, triangle for an alert, …). It has been shown that road signs were detected early enough in images, with respect to images in the visible spectrum, to trigger useful alerts for Advanced Driver Assistance Systems.

  15. HPLC fingerprint analysis combined with chemometrics for pattern recognition of ginger.

    Feng, Xu; Kong, Weijun; Wei, Jianhe; Ou-Yang, Zhen; Yang, Meihua

    2014-03-01

    Ginger, the fresh rhizome of Zingiber officinale Rosc. (Zingiberaceae), has been used worldwide; however, for a long time, there has been no standard approbated internationally for its quality control. To establish an efficacious and combinational method and pattern recognition technique for quality control of ginger. A simple, accurate and reliable method based on high-performance liquid chromatography with photodiode array (HPLC-PDA) detection was developed for establishing the chemical fingerprints of 10 batches of ginger from different markets in China. The method was validated in terms of precision, reproducibility and stability; and the relative standard deviations were all less than 1.57%. On the basis of this method, the fingerprints of 10 batches of ginger samples were obtained, which showed 16 common peaks. Coupled with similarity evaluation software, the similarities between each fingerprint of the sample and the simulative mean chromatogram were in the range of 0.998-1.000. Then, the chemometric techniques, including similarity analysis, hierarchical clustering analysis and principal component analysis were applied to classify the ginger samples. Consistent results were obtained to show that ginger samples could be successfully classified into two groups. This study revealed that HPLC-PDA method was simple, sensitive and reliable for fingerprint analysis, and moreover, for pattern recognition and quality control of ginger.

  16. Performance Evaluation of Machine Learning Algorithms for Urban Pattern Recognition from Multi-spectral Satellite Images

    Marc Wieland

    2014-03-01

    Full Text Available In this study, a classification and performance evaluation framework for the recognition of urban patterns in medium (Landsat ETM, TM and MSS and very high resolution (WorldView-2, Quickbird, Ikonos multi-spectral satellite images is presented. The study aims at exploring the potential of machine learning algorithms in the context of an object-based image analysis and to thoroughly test the algorithm’s performance under varying conditions to optimize their usage for urban pattern recognition tasks. Four classification algorithms, Normal Bayes, K Nearest Neighbors, Random Trees and Support Vector Machines, which represent different concepts in machine learning (probabilistic, nearest neighbor, tree-based, function-based, have been selected and implemented on a free and open-source basis. Particular focus is given to assess the generalization ability of machine learning algorithms and the transferability of trained learning machines between different image types and image scenes. Moreover, the influence of the number and choice of training data, the influence of the size and composition of the feature vector and the effect of image segmentation on the classification accuracy is evaluated.

  17. Applying Evidence-Based Medicine in Telehealth: An Interactive Pattern Recognition Approximation

    Carlos Fernández-Llatas

    2013-10-01

    Full Text Available Born in the early nineteen nineties, evidence-based medicine (EBM is a paradigm intended to promote the integration of biomedical evidence into the physicians daily practice. This paradigm requires the continuous study of diseases to provide the best scientific knowledge for supporting physicians in their diagnosis and treatments in a close way. Within this paradigm, usually, health experts create and publish clinical guidelines, which provide holistic guidance for the care for a certain disease. The creation of these clinical guidelines requires hard iterative processes in which each iteration supposes scientific progress in the knowledge of the disease. To perform this guidance through telehealth, the use of formal clinical guidelines will allow the building of care processes that can be interpreted and executed directly by computers. In addition, the formalization of clinical guidelines allows for the possibility to build automatic methods, using pattern recognition techniques, to estimate the proper models, as well as the mathematical models for optimizing the iterative cycle for the continuous improvement of the guidelines. However, to ensure the efficiency of the system, it is necessary to build a probabilistic model of the problem. In this paper, an interactive pattern recognition approach to support professionals in evidence-based medicine is formalized.

  18. Complex temporal and spatial patterns in nonequilibrium processes

    1992-01-01

    Dynamical systems methods have been used to study bifurcations and pattern formation in nonequilibrium systems. Accomplishments during this period include: information-theoretic methods for analyzing chaos, chemical reactors for studying sustained reaction-diffusion patterns, a reactor exploiting pattern formation to extract short- lived intermediate species, observation of bifurcation from periodic to quasiperiodic rotating chemical spiral patterns, observation of a Turing bifurcation (transition from uniform state to a stationary chemical pattern), method for extracting noise strength in ramped convection, self-similar fractal structure of Zn clusters in electrodeposition, and dynamical instability in crack propagation

  19. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory

    Kana Okada; Kayo Nishizawa; Tomoko Kobayashi; Shogo Sakata; Kazuto Kobayashi

    2015-01-01

    Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer?s disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remai...

  20. Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns

    Brock, William A.; Carpenter, Stephen R.; Ellison, Aaron M.; Livina, Valerie N.; Seekell, David A.; Scheffer, Marten; van Nes, Egbert H.; Dakos, Vasilis

    2014-01-01

    A number of ecosystems can exhibit abrupt shifts between alternative stable states. Because of their important ecological and economic consequences, recent research has focused on devising early warning signals for anticipating such abrupt ecological transitions. In particular, theoretical studies show that changes in spatial characteristics of the system could provide early warnings of approaching transitions. However, the empirical validation of these indicators lag behind their theoretical developments. Here, we summarize a range of currently available spatial early warning signals, suggest potential null models to interpret their trends, and apply them to three simulated spatial data sets of systems undergoing an abrupt transition. In addition to providing a step-by-step methodology for applying these signals to spatial data sets, we propose a statistical toolbox that may be used to help detect approaching transitions in a wide range of spatial data. We hope that our methodology together with the computer codes will stimulate the application and testing of spatial early warning signals on real spatial data. PMID:24658137

  1. Scanning patterns of faces do not explain impaired emotion recognition in Huntington Disease: Evidence for a high level mechanism

    Marieke evan Asselen

    2012-02-01

    Full Text Available Previous studies in patients with amygdala lesions suggested that deficits in emotion recognition might be mediated by impaired scanning patterns of faces. Here we investigated whether scanning patterns also contribute to the selective impairment in recognition of disgust in Huntington disease (HD. To achieve this goal, we recorded eye movements during a two-alternative forced choice emotion recognition task. HD patients in presymptomatic (n=16 and symptomatic (n=9 disease stages were tested and their performance was compared to a control group (n=22. In our emotion recognition task, participants had to indicate whether a face reflected one of six basic emotions. In addition, and in order to define whether emotion recognition was altered when the participants were forced to look at a specific component of the face, we used a second task where only limited facial information was provided (eyes/mouth in partially masked faces. Behavioural results showed no differences in the ability to recognize emotions between presymptomatic gene carriers and controls. However, an emotion recognition deficit was found for all 6 basic emotion categories in early stage HD. Analysis of eye movement patterns showed that patient and controls used similar scanning strategies. Patterns of deficits were similar regardless of whether parts of the faces were masked or not, thereby confirming that selective attention to particular face parts is not underlying the deficits. These results suggest that the emotion recognition deficits in symptomatic HD patients cannot be explained by impaired scanning patterns of faces. Furthermore, no selective deficit for recognition of disgust was found in presymptomatic HD patients.

  2. MCAW-DB: A glycan profile database capturing the ambiguity of glycan recognition patterns.

    Hosoda, Masae; Takahashi, Yushi; Shiota, Masaaki; Shinmachi, Daisuke; Inomoto, Renji; Higashimoto, Shinichi; Aoki-Kinoshita, Kiyoko F

    2018-05-11

    Glycan-binding protein (GBP) interaction experiments, such as glycan microarrays, are often used to understand glycan recognition patterns. However, oftentimes the interpretation of glycan array experimental data makes it difficult to identify discrete GBP binding patterns due to their ambiguity. It is known that lectins, for example, are non-specific in their binding affinities; the same lectin can bind to different monosaccharides or even different glycan structures. In bioinformatics, several tools to mine the data generated from these sorts of experiments have been developed. These tools take a library of predefined motifs, which are commonly-found glycan patterns such as sialyl-Lewis X, and attempt to identify the motif(s) that are specific to the GBP being analyzed. In our previous work, as opposed to using predefined motifs, we developed the Multiple Carbohydrate Alignment with Weights (MCAW) tool to visualize the state of the glycans being recognized by the GBP under analysis. We previously reported on the effectiveness of our tool and algorithm by analyzing several glycan array datasets from the Consortium of Functional Glycomics (CFG). In this work, we report on our analysis of 1081 data sets which we collected from the CFG, the results of which we have made publicly and freely available as a database called MCAW-DB. We introduce this database, its usage and describe several analysis results. We show how MCAW-DB can be used to analyze glycan-binding patterns of GBPs amidst their ambiguity. For example, the visualization of glycan-binding patterns in MCAW-DB show how they correlate with the concentrations of the samples used in the array experiments. Using MCAW-DB, the patterns of glycans found to bind to various GBP-glycan binding proteins are visualized, indicating the binding "environment" of the glycans. Thus, the ambiguity of glycan recognition is numerically represented, along with the patterns of monosaccharides surrounding the binding region. The

  3. Complement activating soluble pattern recognition molecules with collagen-like regions, mannan-binding lectin, ficolins and associated proteins

    Thiel, Steffen

    2007-01-01

    Mannan-binding lectin (MBL), L-ficolin, M-ficolin and H-ficolin are all complement activating soluble pattern recognition molecules with recognition domains linked to collagen-like regions. All four may form complexes with four structurally related proteins, the three MBL-associated serine...... proteases (MASPs), MASP-1, MASP-2 and MASP-3, and a smaller MBL-associated protein (MAp19). The four recognition molecules recognize patterns of carbohydrate or acetyl-group containing ligands. After binding to the relevant targets all four are able to activate the complement system. We thus have a system...... where four different and/or overlapping patterns of microbial origin or patterns of altered-self may be recognized, but in all cases the signalling molecules, the MASPs, are shared. MASP-1 and MASP-3 are formed from one gene, MASP1/3, by alternative splicing generating two different mRNAs from a single...

  4. Computerized spatial delayed recognition span task: a specific tool to assess visuospatial working memory.

    Satler, Corina; Belham, Flávia Schechtman; Garcia, Ana; Tomaz, Carlos; Tavares, Maria Clotilde H

    2015-01-01

    A new tablet device version (IOS platform) of the Spatial Delayed Recognition Span Task (SDRST) was developed with the aim of investigating visuospatial Working Memory (WM) abilities based on touchscreen technology. This new WM testing application will be available to download for free in Apple Store app ("SDRST app"). In order to verify the feasibility of this computer-based task, we conducted three experiments with different manipulations and groups of participants. We were interested in investigating if (1) the SDRST is sensitive enough to tap into cognitive differences brought by aging and dementia; (2) different experimental manipulations work successfully; (3) cortical brain activations seen in other WM tasks are also demonstrated here; and (4) non-human primates are able to answer the task. Performance (scores and response time) was better for young than older adults and higher for the latter when compared to Alzheimer's disease (AD) patients. All groups performed better with facial stimuli than with images of scenes and with emotional than with neutral stimuli. Electrophysiology data showed activation on prefrontal and frontal areas of scalp, theta band activity on the midline area, and gamma activity in left temporal area. There are all scalp regions known to be related to attention and WM. Besides those data, our sample of adult captive capuchin monkeys (Sapajus libidinosus) answered the task above chance level. Taken together, these results corroborate the reliability of this new computer-based SDRST as a measure of visuospatial WM in clinical and non-clinical populations as well as in non-human primates. Its tablet app allows the task to be administered in a wide range of settings, including hospitals, homes, schools, laboratories, universities, and research institutions.

  5. Computerized Spatial-Delayed Recognition Span Task: a specific tool to assess visuospatial working memory

    Corina eSatler

    2015-04-01

    Full Text Available A new tablet device version (IOS platform of the Spatial Delayed Recognition Span Task (SDRST was developed with the aim of investigating visuospatial Working Memory (WM abilities based on touchscreen technology. This new WM testing application will be available to download for free in Apple Store app (SDRST app. In order to verify the feasibility of this computer-based task, we conducted three experiments with different manipulations and groups of participants. We were interested in investigating if (1 the SDRST is sensitive enough to tap into cognitive differences brought by ageing and dementia; (2 different experimental manipulations work successfully; (3 cortical brain activations seen in other WM tasks are also demonstrated here; and (4 non-human primates are able to answer the task. Performance (scores and response time was better for young than older adults and higher for the latter when compared to Alzheimer’s disease patients. All groups performed better with facial stimuli than with images of scenes and with emotional than with neutral stimuli. Electrophysiology data showed activation on prefrontal and frontal areas of scalp, theta band activity on the midline area, and gamma activity in left temporal area. There are all scalp regions known to be related to attention and WM. Besides those data, our sample of adult captive capuchin monkeys (Sapajus libidinosus answered the task above chance level. Taken together, these results corroborate the reliability of this new computer-based SDRST as a measure of visuospatial WM in clinical and non-clinical populations as well as in non-human primates. Its tablet app allows the task to be administered in a wide range of settings, including hospitals, homes, schools, laboratories, universities, and research institutions.

  6. Real-time intelligent pattern recognition algorithm for surface EMG signals

    Jahed Mehran

    2007-12-01

    Full Text Available Abstract Background Electromyography (EMG is the study of muscle function through the inquiry of electrical signals that the muscles emanate. EMG signals collected from the surface of the skin (Surface Electromyogram: sEMG can be used in different applications such as recognizing musculoskeletal neural based patterns intercepted for hand prosthesis movements. Current systems designed for controlling the prosthetic hands either have limited functions or can only be used to perform simple movements or use excessive amount of electrodes in order to achieve acceptable results. In an attempt to overcome these problems we have proposed an intelligent system to recognize hand movements and have provided a user assessment routine to evaluate the correctness of executed movements. Methods We propose to use an intelligent approach based on adaptive neuro-fuzzy inference system (ANFIS integrated with a real-time learning scheme to identify hand motion commands. For this purpose and to consider the effect of user evaluation on recognizing hand movements, vision feedback is applied to increase the capability of our system. By using this scheme the user may assess the correctness of the performed hand movement. In this work a hybrid method for training fuzzy system, consisting of back-propagation (BP and least mean square (LMS is utilized. Also in order to optimize the number of fuzzy rules, a subtractive clustering algorithm has been developed. To design an effective system, we consider a conventional scheme of EMG pattern recognition system. To design this system we propose to use two different sets of EMG features, namely time domain (TD and time-frequency representation (TFR. Also in order to decrease the undesirable effects of the dimension of these feature sets, principle component analysis (PCA is utilized. Results In this study, the myoelectric signals considered for classification consists of six unique hand movements. Features chosen for EMG signal

  7. Phoneme Error Pattern by Heritage Speakers of Spanish on an English Word Recognition Test.

    Shi, Lu-Feng

    2017-04-01

    Heritage speakers acquire their native language from home use in their early childhood. As the native language is typically a minority language in the society, these individuals receive their formal education in the majority language and eventually develop greater competency with the majority than their native language. To date, there have not been specific research attempts to understand word recognition by heritage speakers. It is not clear if and to what degree we may infer from evidence based on bilingual listeners in general. This preliminary study investigated how heritage speakers of Spanish perform on an English word recognition test and analyzed their phoneme errors. A prospective, cross-sectional, observational design was employed. Twelve normal-hearing adult Spanish heritage speakers (four men, eight women, 20-38 yr old) participated in the study. Their language background was obtained through the Language Experience and Proficiency Questionnaire. Nine English monolingual listeners (three men, six women, 20-41 yr old) were also included for comparison purposes. Listeners were presented with 200 Northwestern University Auditory Test No. 6 words in quiet. They repeated each word orally and in writing. Their responses were scored by word, word-initial consonant, vowel, and word-final consonant. Performance was compared between groups with Student's t test or analysis of variance. Group-specific error patterns were primarily descriptive, but intergroup comparisons were made using 95% or 99% confidence intervals for proportional data. The two groups of listeners yielded comparable scores when their responses were examined by word, vowel, and final consonant. However, heritage speakers of Spanish misidentified significantly more word-initial consonants and had significantly more difficulty with initial /p, b, h/ than their monolingual peers. The two groups yielded similar patterns for vowel and word-final consonants, but heritage speakers made significantly

  8. Spatial and seasonal patterns of European short-snouted seahorse ...

    North-East Atlantic), determining the spatial and seasonal abundance, population structure and physical appearance of European short-snouted seahorse Hippocampus hippocampus. Animals were surveyed off Gran Canaria Island in two ...

  9. Spatial Memory for Patterns of Taps on the Fingers.

    Markel, Paul D

    2015-01-01

    Ongoing development of haptic technology has the potential to provide significant improvement in safety and performance in demanding environments where vision and hearing are compromised. Research regarding the cognitive psychology of touch is lacking and could be beneficial in the development of expectations about human performance for the refinement and implementation of haptic technology. This study examines haptic-spatial memory using a novel assessment method based on finger anatomy. In addition, evidence is presented for a serial-position effect for haptic-spatial memory that is analogous to the classic serial-position effect demonstrated in the verbal recall of word lists. Finally, haptic-spatial memory is compared with short- and long-term memory for visual-spatial tasks.

  10. Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model

    Demirel, Mehmet C.; Mai, Juliane; Mendiguren Gonzalez, Gorka

    2018-01-01

    Satellite-based earth observations offer great opportunities to improve spatial model predictions by means of spatial-pattern-oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET) are utilised for spatial model calibration tailored to target...... and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parameterisations are utilised as they are most relevant for simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance...

  11. [Characteristics of temporal-spatial differentiation in landscape pattern vulnerability in Nansihu Lake wetland, China.

    Liang, Jia Xin; Li, Xin Ju

    2018-02-01

    With remote sensing images from 1985, 2000 Lantsat 5 TM and 2015 Lantsat 8 OLI as data sources, we tried to select the suitable research scale and examine the temporal-spatial diffe-rentiation with such scale in the Nansihu Lake wetland by using landscape pattern vulnerability index constructed by sensitivity index and adaptability index, and combined with space statistics such as semivariogram and spatial autocorrelation. The results showed that 1 km × 1 km equidistant grid was the suitable research scale, which could eliminate the influence of spatial heterogeneity induced by random factors. From 1985 to 2015, the landscape pattern vulnerability in the Nansihu Lake wetland deteriorated gradually. The high-risk area of landscape pattern vulnerability dramatically expanded with time. The spatial heterogeneity of landscape pattern vulnerability increased, and the influence of non-structural factors on landscape pattern vulnerability strengthened. Spatial variability affected by spatial autocorrelation slightly weakened. Landscape pattern vulnerability had strong general spatial positive correlation, with the significant form of spatial agglomeration. The positive spatial autocorrelation continued to increase and the phenomenon of spatial concentration was more and more obvious over time. The local autocorrelation mainly based on high-high accumulation zone and low-low accumulation zone had stronger spatial autocorrelation among neighboring space units. The high-high accumulation areas showed the strongest level of significance, and the significant level of low-low accumulation zone increased with time. Natural factors, such as temperature and precipitation, affected water-level and landscape distribution, and thus changed the landscape patterns vulnerability of Nansihu Lake wetland. The dominant driver for the deterioration of landscape patterns vulnerability was human activities, including social economy activity and policy system.

  12. Pattern Recognition of Signals for the Fault-Slip Type of Rock Burst in Coal Mines

    X. S. Liu

    2015-01-01

    Full Text Available The fault-slip type of rock burst is a major threat to the safety of coal mining, and effectively recognizing its signals patterns is the foundation for the early warning and prevention. At first, a mechanical model of the fault-slip was established and the mechanism of the rock burst induced by the fault-slip was revealed. Then, the patterns of the electromagnetic radiation, acoustic emission (AE, and microseismic signals in the fault-slip type of rock burst were proposed, in that before the rock burst occurs, the electromagnetic radiation intensity near the sliding surface increases rapidly, the AE energy rises exponentially, and the energy released by microseismic events experiences at least one peak and is close to the next peak. At last, in situ investigations were performed at number 1412 coal face in the Huafeng Mine, China. Results showed that the signals patterns proposed are in good agreement with the process of the fault-slip type of rock burst. The pattern recognition can provide a basis for the early warning and the implementation of relief measures of the fault-slip type of rock burst.

  13. Two-phase flow patterns recognition and parameters estimation through natural circulation test loop image analysis

    Mesquita, R.N.; Libardi, R.M.P.; Masotti, P.H.F.; Sabundjian, G.; Andrade, D.A.; Umbehaun, P.E.; Torres, W.M.; Conti, T.N.; Macedo, L.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Nuclear Engineering Center], e-mail: rnavarro@ipen.br

    2009-07-01

    Visualization of natural circulation test loop cycles is used to study two-phase flow patterns associated with phase transients and static instabilities of flow. Experimental studies on natural circulation flow were originally related to accidents and transient simulations relative to nuclear reactor systems with light water refrigeration. In this regime, fluid circulation is mainly caused by a driving force ('thermal head') which arises from density differences due to temperature gradient. Natural circulation phenomenon has been important to provide residual heat removal in cases of 'loss of pump power' or plant shutdown in nuclear power plant accidents. The new generation of compact nuclear reactors includes natural circulation of their refrigerant fluid as a security mechanism in their projects. Two-phase flow patterns have been studied for many decades, and the related instabilities have been object of special attention recently. Experimental facility is an all glass-made cylindrical tubes loop which contains about twelve demineralized water liters, a heat source by an electrical resistor immersion heater controlled by a Variac, and a helicoidal heat exchanger working as cold source. Data is obtained through thermo-pairs distributed over the loop and CCD cameras. Artificial intelligence based algorithms are used to improve (bubble) border detection and patterns recognition, in order to estimate and characterize, phase transitions patterns and correlate them with the periodic static instability (chugging) cycle observed in this circuit. Most of initial results show good agreement with previous numerical studies in this same facility. (author)

  14. Two-phase flow patterns recognition and parameters estimation through natural circulation test loop image analysis

    Mesquita, R.N.; Libardi, R.M.P.; Masotti, P.H.F.; Sabundjian, G.; Andrade, D.A.; Umbehaun, P.E.; Torres, W.M.; Conti, T.N.; Macedo, L.A.

    2009-01-01

    Visualization of natural circulation test loop cycles is used to study two-phase flow patterns associated with phase transients and static instabilities of flow. Experimental studies on natural circulation flow were originally related to accidents and transient simulations relative to nuclear reactor systems with light water refrigeration. In this regime, fluid circulation is mainly caused by a driving force ('thermal head') which arises from density differences due to temperature gradient. Natural circulation phenomenon has been important to provide residual heat removal in cases of 'loss of pump power' or plant shutdown in nuclear power plant accidents. The new generation of compact nuclear reactors includes natural circulation of their refrigerant fluid as a security mechanism in their projects. Two-phase flow patterns have been studied for many decades, and the related instabilities have been object of special attention recently. Experimental facility is an all glass-made cylindrical tubes loop which contains about twelve demineralized water liters, a heat source by an electrical resistor immersion heater controlled by a Variac, and a helicoidal heat exchanger working as cold source. Data is obtained through thermo-pairs distributed over the loop and CCD cameras. Artificial intelligence based algorithms are used to improve (bubble) border detection and patterns recognition, in order to estimate and characterize, phase transitions patterns and correlate them with the periodic static instability (chugging) cycle observed in this circuit. Most of initial results show good agreement with previous numerical studies in this same facility. (author)

  15. PCI bus content-addressable-memory (CAM) implementation on FPGA for pattern recognition/image retrieval in a distributed environment

    Megherbi, Dalila B.; Yan, Yin; Tanmay, Parikh; Khoury, Jed; Woods, C. L.

    2004-11-01

    Recently surveillance and Automatic Target Recognition (ATR) applications are increasing as the cost of computing power needed to process the massive amount of information continues to fall. This computing power has been made possible partly by the latest advances in FPGAs and SOPCs. In particular, to design and implement state-of-the-Art electro-optical imaging systems to provide advanced surveillance capabilities, there is a need to integrate several technologies (e.g. telescope, precise optics, cameras, image/compute vision algorithms, which can be geographically distributed or sharing distributed resources) into a programmable system and DSP systems. Additionally, pattern recognition techniques and fast information retrieval, are often important components of intelligent systems. The aim of this work is using embedded FPGA as a fast, configurable and synthesizable search engine in fast image pattern recognition/retrieval in a distributed hardware/software co-design environment. In particular, we propose and show a low cost Content Addressable Memory (CAM)-based distributed embedded FPGA hardware architecture solution with real time recognition capabilities and computing for pattern look-up, pattern recognition, and image retrieval. We show how the distributed CAM-based architecture offers a performance advantage of an order-of-magnitude over RAM-based architecture (Random Access Memory) search for implementing high speed pattern recognition for image retrieval. The methods of designing, implementing, and analyzing the proposed CAM based embedded architecture are described here. Other SOPC solutions/design issues are covered. Finally, experimental results, hardware verification, and performance evaluations using both the Xilinx Virtex-II and the Altera Apex20k are provided to show the potential and power of the proposed method for low cost reconfigurable fast image pattern recognition/retrieval at the hardware/software co-design level.

  16. Pattern classification and recognition of invertebrate functional groups using self-organizing neural networks.

    Zhang, WenJun

    2007-07-01

    Self-organizing neural networks can be used to mimic non-linear systems. The main objective of this study is to make pattern classification and recognition on sampling information using two self-organizing neural network models. Invertebrate functional groups sampled in the irrigated rice field were classified and recognized using one-dimensional self-organizing map and self-organizing competitive learning neural networks. Comparisons between neural network models, distance (similarity) measures, and number of neurons were conducted. The results showed that self-organizing map and self-organizing competitive learning neural network models were effective in pattern classification and recognition of sampling information. Overall the performance of one-dimensional self-organizing map neural network was better than self-organizing competitive learning neural network. The number of neurons could determine the number of classes in the classification. Different neural network models with various distance (similarity) measures yielded similar classifications. Some differences, dependent upon the specific network structure, would be found. The pattern of an unrecognized functional group was recognized with the self-organizing neural network. A relative consistent classification indicated that the following invertebrate functional groups, terrestrial blood sucker; terrestrial flyer; tourist (nonpredatory species with no known functional role other than as prey in ecosystem); gall former; collector (gather, deposit feeder); predator and parasitoid; leaf miner; idiobiont (acarine ectoparasitoid), were classified into the same group, and the following invertebrate functional groups, external plant feeder; terrestrial crawler, walker, jumper or hunter; neustonic (water surface) swimmer (semi-aquatic), were classified into another group. It was concluded that reliable conclusions could be drawn from comparisons of different neural network models that use different distance

  17. Identification of two-phase flow pattern by using specific spatial frequency of differential pressure signal

    Han Bin; Tong Yunxian; Wu Shaorong

    1992-11-01

    It is a classical method by using analysis of differential pressure fluctuation signal to identify two-phase flow pattern. The method which uses trait peak in the frequency-domain will result confusion between bubble flow and intermittent flow due to the influence of gas speed. Considering the spatial geometric significance of two-phase slow patterns and using the differential pressure gauge as a sensor, the Strouhal number 'Sr' is taken as the basis for distinguishing flow patterns. Using Strouhal number 'Sr' to identify flow pattern has clear physical meaning. The experimental results using the spatial analytical technique to measure the flow pattern are also given

  18. Mining Co-Location Patterns with Clustering Items from Spatial Data Sets

    Zhou, G.; Li, Q.; Deng, G.; Yue, T.; Zhou, X.

    2018-05-01

    The explosive growth of spatial data and widespread use of spatial databases emphasize the need for the spatial data mining. Co-location patterns discovery is an important branch in spatial data mining. Spatial co-locations represent the subsets of features which are frequently located together in geographic space. However, the appearance of a spatial feature C is often not determined by a single spatial feature A or B but by the two spatial features A and B, that is to say where A and B appear together, C often appears. We note that this co-location pattern is different from the traditional co-location pattern. Thus, this paper presents a new concept called clustering terms, and this co-location pattern is called co-location patterns with clustering items. And the traditional algorithm cannot mine this co-location pattern, so we introduce the related concept in detail and propose a novel algorithm. This algorithm is extended by join-based approach proposed by Huang. Finally, we evaluate the performance of this algorithm.

  19. A real-time comparison between direct control, sequential pattern recognition control and simultaneous pattern recognition control using a Fitts' law style assessment procedure.

    Wurth, Sophie M; Hargrove, Levi J

    2014-05-30

    Pattern recognition (PR) based strategies for the control of myoelectric upper limb prostheses are generally evaluated through offline classification accuracy, which is an admittedly useful metric, but insufficient to discuss functional performance in real time. Existing functional tests are extensive to set up and most fail to provide a challenging, objective framework to assess the strategy performance in real time. Nine able-bodied and two amputee subjects gave informed consent and participated in the local Institutional Review Board approved study. We designed a two-dimensional target acquisition task, based on the principles of Fitts' law for human motor control. Subjects were prompted to steer a cursor from the screen center of into a series of subsequently appearing targets of different difficulties. Three cursor control systems were tested, corresponding to three electromyography-based prosthetic control strategies: 1) amplitude-based direct control (the clinical standard of care), 2) sequential PR control, and 3) simultaneous PR control, allowing for a concurrent activation of two degrees of freedom (DOF). We computed throughput (bits/second), path efficiency (%), reaction time (second), and overshoot (%)) and used general linear models to assess significant differences between the strategies for each metric. We validated the proposed methodology by achieving very high coefficients of determination for Fitts' law. Both PR strategies significantly outperformed direct control in two-DOF targets and were more intuitive to operate. In one-DOF targets, the simultaneous approach was the least precise. The direct control was efficient in one-DOF targets but cumbersome to operate in two-DOF targets through a switch-depended sequential cursor control. We designed a test, capable of comprehensively describing prosthetic control strategies in real time. When implemented on control subjects, the test was able to capture statistically significant differences (p

  20. Architecture of top down, parallel pattern recognition system TOPS and its application to the MR head images

    Matsunoshita, Jun-ichi; Akamatsu, Shigeo; Yamamoto, Shinji.

    1993-01-01

    This paper describes about the system architecture of a new image recognition system TOPS (top-down parallel pattern recognition system), and its application to the automatic extraction of brain organs (cerebrum, cerebellum, brain stem) from 3D-MRI images. Main concepts of TOPS are as follows: (1) TOPS is the top-down type recognition system, which allows parallel models in each level of hierarchy structure. (2) TOPS allows parallel image processing algorithms for one purpose (for example, for extraction of one special organ). This results in multiple candidates for one purpose, and judgment to get unique solution for it will be made at upper level of hierarchy structure. (author)