WorldWideScience

Sample records for spatial kinetics coupled

  1. A generalized interface module for the coupling of spatial kinetics and thermal-hydraulics codes

    Energy Technology Data Exchange (ETDEWEB)

    Barber, D.A.; Miller, R.M.; Joo, H.G.; Downar, T.J. [Purdue Univ., West Lafayette, IN (United States). Dept. of Nuclear Engineering; Wang, W. [SCIENTECH, Inc., Rockville, MD (United States); Mousseau, V.A.; Ebert, D.D. [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research

    1999-03-01

    A generalized interface module has been developed for the coupling of any thermal-hydraulics code to any spatial kinetics code. The coupling scheme was designed and implemented with emphasis placed on maximizing flexibility while minimizing modifications to the respective codes. In this design, the thermal-hydraulics, general interface, and spatial kinetics codes function independently and utilize the Parallel Virtual Machine software to manage cross-process communication. Using this interface, the USNRC version of the 3D neutron kinetics code, PARCX, has been coupled to the USNRC system analysis codes RELAP5 and TRAC-M. RELAP5/PARCS assessment results are presented for two NEACRP rod ejection benchmark problems and an NEA/OECD main steam line break benchmark problem. The assessment of TRAC-M/PARCS has only recently been initiated, nonetheless, the capabilities of the coupled code are presented for a typical PWR system/core model.

  2. A generalized interface module for the coupling of spatial kinetics and thermal-hydraulics codes

    International Nuclear Information System (INIS)

    Barber, D.A.; Miller, R.M.; Joo, H.G.; Downar, T.J.; Mousseau, V.A.; Ebert, D.D.

    1999-01-01

    A generalized interface module has been developed for the coupling of any thermal-hydraulics code to any spatial kinetics code. The coupling scheme was designed and implemented with emphasis placed on maximizing flexibility while minimizing modifications to the respective codes. In this design, the thermal-hydraulics, general interface, and spatial kinetics codes function independently and utilize the Parallel Virtual Machine software to manage cross-process communication. Using this interface, the USNRC version of the 3D neutron kinetics code, PARCX, has been coupled to the USNRC system analysis codes RELAP5 and TRAC-M. RELAP5/PARCS assessment results are presented for two NEACRP rod ejection benchmark problems and an NEA/OECD main steam line break benchmark problem. The assessment of TRAC-M/PARCS has only recently been initiated, nonetheless, the capabilities of the coupled code are presented for a typical PWR system/core model

  3. Preliminary Development of the MARS/FREK Spatial Kinetics Coupled System Code for Square Fueled Fast Reactor Applications

    International Nuclear Information System (INIS)

    Bae, Moo Hoon; Joo, Han Gyu

    2009-01-01

    Incorporation of a three-dimensional (3-D) reactor kinetics model into a system thermal-hydraulic (T/H) code enhances the capability to perform realistic analyses of the core neutronic behavior and the plant system dynamics which are coupled each other. For this advantage, several coupled system T/H and spatial kinetics codes, such as RELAP/PARCS, RELAP5/ PANBOX, and MARS/MASTER have been developed. These codes, however, so far limited to LWR applications. The objective of this work is to develop such a coupled code for fast reactor applications. Particularly, applications to lead-bismuth eutectic (LBE) cooled fast reactor are of interest which employ open square lattices. A fast reactor kinetics code applicable to square fueled cores called FREK is coupled the LBE version of the MARS code. The MARS/MASTER coupled code is used as the reference for the integration. The coupled code MARS/FREK is examined for a conceptual reactor called P-DEMO which is being developed by NUTRECK. In order to check the validity of the coupled code, however, the OECD MSLB benchmark exercise III calculation is solved first

  4. Effect of antenna size on electron kinetics in inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo-Chang; Chung, Chin-Wook [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2013-10-15

    Spatially resolved measurements of electron energy distribution functions (EEDFs) are investigated in inductively coupled plasmas with two planar antenna coils. When the plasma is sustained by the antenna with a diameter of 18 cm, the nonlocal kinetics is preserved in the argon gas pressure range from 2 mTorr to 20 mTorr. However, electron kinetics transit from nonlocal kinetics to local kinetics in discharge sustained by the antenna coil with diameter 34 cm. The results suggest that antenna size as well as chamber length are important parameters for the transition of the electron kinetics. Spatial variations of plasma potential, effective electron temperature, and EEDF in terms of total electron energy scale are also presented.

  5. Energy Conservation Tests of a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Stotler, D. P.; Chang, C. S.; Ku, S. H.; Lang, J.; Park, G.

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  6. Inflationary dynamics of kinetically-coupled gauge fields

    DEFF Research Database (Denmark)

    Ferreira, Ricardo J. Z.; Ganc, Jonathan

    2015-01-01

    We investigate the inflationary dynamics of two kinetically-coupled massless U(1) gauge fields with time-varying kinetic-term coefficients. Ensuring that the system does not have strongly coupled regimes shrinks the parameter space. Also, we further restrict ourselves to systems that can be quant......We investigate the inflationary dynamics of two kinetically-coupled massless U(1) gauge fields with time-varying kinetic-term coefficients. Ensuring that the system does not have strongly coupled regimes shrinks the parameter space. Also, we further restrict ourselves to systems that can...... be quantized using the standard creation, annihilation operator algebra. This second constraint limits us to scenarios where the system can be diagonalized into the sum of two decoupled, massless, vector fields with a varying kinetic-term coefficient. Such a system might be interesting for magnetogenesis...... because of how the strong coupling problem generalizes. We explore this idea by assuming that one of the gauge fields is the Standard Model U(1) field and that the other dark gauge field has no particles charged under its gauge group. We consider whether it would be possible to transfer a magnetic field...

  7. Inflationary magneto-(non)genesis, increasing kinetic couplings, and the strong coupling problem

    Science.gov (United States)

    Bazrafshan Moghaddam, Hossein; McDonough, Evan; Namba, Ryo; Brandenberger, Robert H.

    2018-05-01

    We study the generation of magnetic fields during inflation making use of a coupling of the inflaton and moduli fields to electromagnetism via the photon kinetic term, and assuming that the coupling is an increasing function of time. We demonstrate that the strong coupling problem of inflationary magnetogenesis can be avoided by incorporating the destabilization of moduli fields after inflation. The magnetic field always dominates over the electric one, and thus the severe constraints on the latter from backreaction, which are the demanding obstacles in the case of a decreasing coupling function, do not apply to the current scenario. However, we show that this loophole to the strong coupling problem comes at a price: the normalization of the amplitude of magnetic fields is determined by this coupling term and is therefore suppressed by a large factor after the moduli destabilization completes. From this we conclude that there is no self-consistent and generic realization of primordial magnetogenesis producing scale-invariant fields in the case of an increasing kinetic coupling.

  8. Spatial coupling in heterogeneous catalysis

    Science.gov (United States)

    Yamamoto, S. Y.; Surko, C. M.; Maple, M. B.

    1995-11-01

    Spatial coupling mechanisms are studied in the heterogeneous catalytic oxidation of carbon monoxide over platinum at atmospheric pressure under oscillatory conditions. Experiments are conducted in a continuous flow reactor, and the reaction rate is monitored using both infrared imaging and thermocouples. The catalysts are in the form of platinum annular thin films on washer-shaped quartz substrates, and they provide highly repeatable oscillatory behavior. Oscillations are typically spatially synchronized with the entire catalyst ``flashing'' on and off uniformly. Spatial coupling is investigated by introducing various barriers which split the annular ring in half. Infrared images show that coupling through the gas phase dominates coupling via the diffusion of CO on the surface or heat diffusion through the substrate. The introduction of a localized heat perturbation to the catalyst surface does not induce a transition in the reaction rate. Thus, it is likely that the primary mode of communication is through the gas-phase diffusion of reactants.

  9. Impact of spatial kinetics in severe accident analysis for a large HWR

    International Nuclear Information System (INIS)

    Morris, E.E.

    1994-01-01

    The impact on spatial kinetics on the analysis of severe accidents initiated by the unprotected withdrawal of one or more control rods is investigated for a large heavy water reactor. Large inter- and intra-assembly power shifts are observed, and the importance of detailed geometrical modeling of fuel assemblies is demonstrated. Neglect of space-time effects is shown to lead to erroneous estimates of safety margins, and of accident consequences in the event safety margins are exceeded. The results and conclusions are typical of what would be expected for any large, loosely coupled core

  10. Hydrogen atom kinetics in capacitively coupled plasmas

    Science.gov (United States)

    Nunomura, Shota; Katayama, Hirotaka; Yoshida, Isao

    2017-05-01

    Hydrogen (H) atom kinetics has been investigated in capacitively coupled very high frequency (VHF) discharges at powers of 16-780 mW cm-2 and H2 gas pressures of 0.1-2 Torr. The H atom density has been measured using vacuum ultra violet absorption spectroscopy (VUVAS) with a micro-discharge hollow cathode lamp as a VUV light source. The measurements have been performed in two different electrode configurations of discharges: conventional parallel-plate diode and triode with an intermediate mesh electrode. We find that in the triode configuration, the H atom density is strongly reduced across the mesh electrode. The H atom density varies from ˜1012 cm-3 to ˜1010 cm-3 by crossing the mesh with 0.2 mm in thickness and 36% in aperture ratio. The fluid model simulations for VHF discharge plasmas have been performed to study the H atom generation, diffusion and recombination kinetics. The simulations suggest that H atoms are generated in the bulk plasma, by the electron impact dissociation (e + H2 \\to e + 2H) and the ion-molecule reaction (H2 + + H2 \\to {{{H}}}3+ + H). The diffusion of H atoms is strongly limited by a mesh electrode, and thus the mesh geometry influences the spatial distribution of the H atoms. The loss of H atoms is dominated by the surface recombination.

  11. Spatial neutron kinetic module of ROSA code

    International Nuclear Information System (INIS)

    Cherezov, A.L.; Shchukin, N.V.

    2009-01-01

    A spatial neutron kinetic module was developed for computer code ROSA. The paper describes a numerical scheme used in the module for resolving neutron kinetic equations. Analytical integration for delayed neutrons emitters method and direct numerical integration method (Gear's method) were analyzed. The two methods were compared on their efficiency and accuracy. Both methods were verified with test problems. The results obtained in the verification studies were presented [ru

  12. Measurement of turbulent spatial structure and kinetic energy spectrum by exact temporal-to-spatial mapping

    DEFF Research Database (Denmark)

    Buchhave, Preben; Velte, Clara Marika

    2017-01-01

    distortions caused by Taylor’s hypothesis. The method is first confirmed to produce the correct statistics using computer simulations and later applied to measurements in some of the most difficult regions of a round turbulent jet—the non-equilibrium developing region and the outermost parts of the developed......We present a method for converting a time record of turbulent velocity measured at a point in a flow to a spatial velocity record consisting of consecutive convection elements. The spatial record allows computation of dynamic statistical moments such as turbulent kinetic wavenumber spectra...... and spatial structure functions in a way that completely bypasses the need for Taylor’s hypothesis. The spatial statistics agree with the classical counterparts, such as the total kinetic energy spectrum, at least for spatial extents up to the Taylor microscale. The requirements for applying the method...

  13. HYDROBIOGEOCHEM: A coupled model of HYDROlogic transport and mixed BIOGEOCHEMical kinetic/equilibrium reactions in saturated-unsaturated media

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.; Salvage, K.M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Civil and Environmental Engineering; Gwo, J.P. [Oak Ridge National Lab., TN (United States); Zachara, J.M.; Szecsody, J.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-07-01

    The computer program HYDROBIOGEOCHEM is a coupled model of HYDROlogic transport and BIOGEOCHEMical kinetic and/or equilibrium reactions in saturated/unsaturated media. HYDROBIOGEOCHEM iteratively solves the two-dimensional transport equations and the ordinary differential and algebraic equations of mixed biogeochemical reactions. The transport equations are solved for all aqueous chemical components and kinetically controlled aqueous species. HYDROBIOGEOCHEM is designed for generic application to reactive transport problems affected by both microbiological and geochemical reactions in subsurface media. Input to the program includes the geometry of the system, the spatial distribution of finite elements and nodes, the properties of the media, the potential chemical and microbial reactions, and the initial and boundary conditions. Output includes the spatial distribution of chemical and microbial concentrations as a function of time and space, and the chemical speciation at user-specified nodes.

  14. Three-dimensional coupled kinetics/thermal- hydraulic benchmark TRIGA experiments

    International Nuclear Information System (INIS)

    Feltus, Madeline Anne; Miller, William Scott

    2000-01-01

    This research project provides separate effects tests in order to benchmark neutron kinetics models coupled with thermal-hydraulic (T/H) models used in best-estimate codes such as the Nuclear Regulatory Commission's (NRC) RELAP and TRAC code series and industrial codes such as RETRAN. Before this research project was initiated, no adequate experimental data existed for reactivity initiated transients that could be used to assess coupled three-dimensional (3D) kinetics and 3D T/H codes which have been, or are being developed around the world. Using various Test Reactor Isotope General Atomic (TRIGA) reactor core configurations at the Penn State Breazeale Reactor (PSBR), it is possible to determine the level of neutronics modeling required to describe kinetics and T/H feedback interactions. This research demonstrates that the small compact PSBR TRIGA core does not necessarily behave as a point kinetics reactor, but that this TRIGA can provide actual test results for 3D kinetics code benchmark efforts. This research focused on developing in-reactor tests that exhibited 3D neutronics effects coupled with 3D T/H feedback. A variety of pulses were used to evaluate the level of kinetics modeling needed for prompt temperature feedback in the fuel. Ramps and square waves were used to evaluate the detail of modeling needed for the delayed T/H feedback of the coolant. A stepped ramp was performed to evaluate and verify the derived thermal constants for the specific PSBR TRIGA core loading pattern. As part of the analytical benchmark research, the STAR 3D kinetics code (, STAR: Space and time analysis of reactors, Version 5, Level 3, Users Guide, Yankee Atomic Electric Company, YEAC 1758, Bolton, MA) was used to model the transient experiments. The STAR models were coupled with the one-dimensional (1D) WIGL and LRA and 3D COBRA (, COBRA IIIC: A digital computer program for steady-state and transient thermal-hydraulic analysis of rod bundle nuclear fuel elements, Battelle

  15. Stiffness Confinement Method with Pseudo Absorption for Spatial Kinetics

    International Nuclear Information System (INIS)

    Park, Beom Woo; Joo, Han Gyu; Chao, Yungan

    2013-01-01

    The primary advantage of the SCM is that it is possible to use larger time step sizes. This advantage comes from the fact because the SCM involves the solution of an eigenvalue problem instead of the ordinary form of a fixed source problem. Since using a large time step size is strongly desired in the direct whole core transport calculation for transient problems, we investigate here the SCM for spatial kinetics first with a simple one-dimensional, one-group diffusion equation and propose an improved formulation. The performance of the improved SCM for spatial kinetics is assessed by comparing the SCM solutions with the standard method solutions employing the Crank-Nicholson method with exponential transform. The stiffness confinement method for spatial kinetics was refined with the pseudo absorption term representing the dynamic frequencies. It was verified that the proposed SCM works much better than the Crank-Nicholson method with exponential transform in that time step sizes larger than 20 msec can be using in a super prompt-critical transient involving 1.5$ reactivity insertion

  16. Stiffness Confinement Method with Pseudo Absorption for Spatial Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Beom Woo; Joo, Han Gyu [Seoul National Univ., Seoul (Korea, Republic of); Chao, Yungan [Retired in China, Beijing (China)

    2013-05-15

    The primary advantage of the SCM is that it is possible to use larger time step sizes. This advantage comes from the fact because the SCM involves the solution of an eigenvalue problem instead of the ordinary form of a fixed source problem. Since using a large time step size is strongly desired in the direct whole core transport calculation for transient problems, we investigate here the SCM for spatial kinetics first with a simple one-dimensional, one-group diffusion equation and propose an improved formulation. The performance of the improved SCM for spatial kinetics is assessed by comparing the SCM solutions with the standard method solutions employing the Crank-Nicholson method with exponential transform. The stiffness confinement method for spatial kinetics was refined with the pseudo absorption term representing the dynamic frequencies. It was verified that the proposed SCM works much better than the Crank-Nicholson method with exponential transform in that time step sizes larger than 20 msec can be using in a super prompt-critical transient involving 1.5$ reactivity insertion.

  17. Insights into Sonogashira cross-coupling by high-throughput kinetics and descriptor modeling

    NARCIS (Netherlands)

    an der Heiden, M.R.; Plenio, H.; Immel, S.; Burello, E.; Rothenberg, G.; Hoefsloot, H.C.J.

    2008-01-01

    A method is presented for the high-throughput monitoring of reaction kinetics in homogeneous catalysis, running up to 25 coupling reactions in a single reaction vessel. This method is demonstrated and validated on the Sonogashira reaction, analyzing the kinetics for almost 500 coupling reactions.

  18. Coupled 3D neutron kinetics and thermalhydraulic characteristics of the Canadian supercritical water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, David William, E-mail: hummeld@mcmaster.ca; Novog, David Raymond

    2016-03-15

    Highlights: • A coupled spatial kinetics and thermalhydraulics model of the PT-SCWR was created. • Positive power excursions were demonstrated during accident-like transients. • The reactor will inherently self-shutdown in such transients with some delay. • A fast-acting shutdown system would limit the consequences of the power pulse. - Abstract: The Canadian Supercritical Water-cooled Reactor concept, as an evolution of the CANada Deuterium Uranium (CANDU) reactor, includes both pressure tubes and a low temperature heavy water moderator. The current Pressure Tube type SCWR (PT-SCWR) concept features 64-element fuel assemblies placed within High Efficiency Re-entrant Channels (HERCs) that connect to core inlet and outlet plena. Among current SCWR concepts the PT-SCWR is unique in that the HERC separates multiple coolant and moderator regions, giving rise to coupled neutronic-thermalhydraulic feedbacks beyond those present in CANDU or contemporary Light Water Reactors. The objective of this work was thus to model the coupled neutronic-thermal hydraulic properties of the PT-SCWR to establish the impact of these multiple regions on the core's transient behavior. To that end, the features of the PT-SCWR were first modeled with the neutron transport code DRAGON to create a database of homogenized and condensed cross-sections and thermalhydraulic feedback coefficients. These were used as input to a core-level neutron diffusion model created with the code DONJON. The behavior of the primary heat transport system was modeled with the thermalhydraulic system code CATHENA. A procedure was developed to couple the outputs of DONJON and CATHENA, facilitating three-dimensional spatial neutron kinetics and coupled thermalhydraulic analysis of the PT-SCWR core. Several postulated transients were initiated within the coupled model by changing the core inlet and outlet boundary conditions. Decreasing coolant density around the fuel was demonstrated to produce positive

  19. The spatial kinetic analysis of accelerator-driven subcritical reactor

    International Nuclear Information System (INIS)

    Takahashi, H.; An, Y.; Chen, X.

    1998-02-01

    The operation of the accelerator driven reactor with subcritical condition provides a more flexible choice of the reactor materials and of design parameters. A deep subcriticality is chosen sometime from the analysis of point kinetics. When a large reactor is operated in deep subcritical condition by using a localized spallation source, the power distribution has strong spatial dependence, and point kinetics does not provide proper analysis for reactor safety. In order to analyze the spatial and energy dependent kinetic behavior in the subcritical reactor, the authors developed a computation code which is composed of two parts, the first one is for creating the group cross section and the second part solves the multi-group kinetic diffusion equations. The reactor parameters such as the cross section of fission, scattering, and energy transfer among the several energy groups and regions are calculated by using a code modified from the Monte Carlo codes MCNPA and LAHET instead of the usual analytical method of ANISN, TWOTRAN codes. Thus the complicated geometry of the accelerator driven reactor core can be precisely taken into account. The authors analyzed the subcritical minor actinide transmutor studied by Japan Atomic Energy Research Institute (JAERI) using the code

  20. Multiple spatial scaling and the weak coupling approximation. II. Homogeneous kinetic equation

    Energy Technology Data Exchange (ETDEWEB)

    Kleinsmith, P E [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1977-08-01

    A modified form of the Bogoliubov plasma cluster expansion is applied to the derivation of a divergence-free kinetic equation from the BBGKY hierarchy. Special attention is given to the conditions under which the Landau kinetic equation may be derived from this more general formulation.

  1. A generalized electron energy probability function for inductively coupled plasmas under conditions of nonlocal electron kinetics

    Science.gov (United States)

    Mouchtouris, S.; Kokkoris, G.

    2018-01-01

    A generalized equation for the electron energy probability function (EEPF) of inductively coupled Ar plasmas is proposed under conditions of nonlocal electron kinetics and diffusive cooling. The proposed equation describes the local EEPF in a discharge and the independent variable is the kinetic energy of electrons. The EEPF consists of a bulk and a depleted tail part and incorporates the effect of the plasma potential, Vp, and pressure. Due to diffusive cooling, the break point of the EEPF is eVp. The pressure alters the shape of the bulk and the slope of the tail part. The parameters of the proposed EEPF are extracted by fitting to measure EEPFs (at one point in the reactor) at different pressures. By coupling the proposed EEPF with a hybrid plasma model, measurements in the gaseous electronics conference reference reactor concerning (a) the electron density and temperature and the plasma potential, either spatially resolved or at different pressure (10-50 mTorr) and power, and (b) the ion current density of the electrode, are well reproduced. The effect of the choice of the EEPF on the results is investigated by a comparison to an EEPF coming from the Boltzmann equation (local electron kinetics approach) and to a Maxwellian EEPF. The accuracy of the results and the fact that the proposed EEPF is predefined renders its use a reliable alternative with a low computational cost compared to stochastic electron kinetic models at low pressure conditions, which can be extended to other gases and/or different electron heating mechanisms.

  2. A coupled 3-D kinetics/system thermal-hydraulic analysis of main steam line break accident for Optimized Power Reactor 1000

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yung Kwon; Choi, Chul Jin; Kim, Eun Kee; Lee, Sang Yong [Korea Power Engineering Company, Inc, 150 Deokjin-dong, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2006-07-01

    This paper presents the results of the coupled 3-D neutronics/thermal-hydraulic analysis of hypothetical main steam line break (MSLB) accident for Optimized Power Reactor 1000. One of the major concerns of this accident is a return-to-power occurrence accompanied with extremely large radial peaking near the stuck Control Element Assembly (CEA). The conventional point kinetics application does not properly account for this kind of asymmetric and local core behavior. Therefore, the current licensing method of point kinetics application introduces some uncertainties and conservatisms in the physics parameters generation, e.g., the static net scram rod worth, moderator cooldown reactivity, Doppler reactivity, and a 3-D peaking factor. The recently developed UNICORN-TM code system is applied for the 3-D coupled calculation, where neutronics code MASTER is coupled with the best-estimate system transient code RETRAN. The 3-D coupled results were assessed in comparison with those by point kinetics application using stand-alone RETRAN application. To quantify the 3-D reactivity benefits over point kinetics, both calculations assumed the accidents to be initiated from the same core state, e.g., end of cycle burnup, fuel and CEA configuration with the same initial moderator and Doppler temperature coefficient, and with initial system thermal-hydraulic condition. The core physics parameters required for point kinetics application were produced using MASTER with the method and procedure consistent with the current licensing application. The occurrence of return-to-power was simulated by intentionally reducing the net CEA worth in order to assess the spatial power distribution and local T-H effect on the dynamic reactivity feedback. The results have demonstrated that the 3-D analysis removes some of the conservatisms inherent in point kinetics analysis mainly caused by the inability to properly account for local reactivity feedback effects during return-to-power transient

  3. A coupled 3-D kinetics/system thermal-hydraulic analysis of main steam line break accident for Optimized Power Reactor 1000

    International Nuclear Information System (INIS)

    Jin, Yung Kwon; Choi, Chul Jin; Kim, Eun Kee; Lee, Sang Yong

    2006-01-01

    This paper presents the results of the coupled 3-D neutronics/thermal-hydraulic analysis of hypothetical main steam line break (MSLB) accident for Optimized Power Reactor 1000. One of the major concerns of this accident is a return-to-power occurrence accompanied with extremely large radial peaking near the stuck Control Element Assembly (CEA). The conventional point kinetics application does not properly account for this kind of asymmetric and local core behavior. Therefore, the current licensing method of point kinetics application introduces some uncertainties and conservatisms in the physics parameters generation, e.g., the static net scram rod worth, moderator cooldown reactivity, Doppler reactivity, and a 3-D peaking factor. The recently developed UNICORN-TM code system is applied for the 3-D coupled calculation, where neutronics code MASTER is coupled with the best-estimate system transient code RETRAN. The 3-D coupled results were assessed in comparison with those by point kinetics application using stand-alone RETRAN application. To quantify the 3-D reactivity benefits over point kinetics, both calculations assumed the accidents to be initiated from the same core state, e.g., end of cycle burnup, fuel and CEA configuration with the same initial moderator and Doppler temperature coefficient, and with initial system thermal-hydraulic condition. The core physics parameters required for point kinetics application were produced using MASTER with the method and procedure consistent with the current licensing application. The occurrence of return-to-power was simulated by intentionally reducing the net CEA worth in order to assess the spatial power distribution and local T-H effect on the dynamic reactivity feedback. The results have demonstrated that the 3-D analysis removes some of the conservatisms inherent in point kinetics analysis mainly caused by the inability to properly account for local reactivity feedback effects during return-to-power transient

  4. Effective potential kinetic theory for strongly coupled plasmas

    Science.gov (United States)

    Baalrud, Scott D.; Daligault, Jérôme

    2016-11-01

    The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10-50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.

  5. Kinetics of the Coupled Gas-Iron Reactions Involving Silicon and ...

    African Journals Online (AJOL)

    The kinetic study of coupled gas-iron reactions at 15600 has been carried out for the system involving liquid iron containing carbon and silicon and a gas phase consisting carbon monoxide, silicon monoxide and carbon dioxide. The coupled reactions are: (1) 200(g) = CO2 + C. (2) SiO (g) + CO (g) = Si ¸ CO (g). (3) SiO (g) + ...

  6. On coupling fluid plasma and kinetic neutral physics models

    Directory of Open Access Journals (Sweden)

    I. Joseph

    2017-08-01

    Full Text Available The coupled fluid plasma and kinetic neutral physics equations are analyzed through theory and simulation of benchmark cases. It is shown that coupling methods that do not treat the coupling rates implicitly are restricted to short time steps for stability. Fast charge exchange, ionization and recombination coupling rates exist, even after constraining the solution by requiring that the neutrals are at equilibrium. For explicit coupling, the present implementation of Monte Carlo correlated sampling techniques does not allow for complete convergence in slab geometry. For the benchmark case, residuals decay with particle number and increase with grid size, indicating that they scale in a manner that is similar to the theoretical prediction for nonlinear bias error. Progress is reported on implementation of a fully implicit Jacobian-free Newton–Krylov coupling scheme. The present block Jacobi preconditioning method is still sensitive to time step and methods that better precondition the coupled system are under investigation.

  7. The string unification of gauge couplings and gauge kinetic mixings

    International Nuclear Information System (INIS)

    Hattori, Chuichiro; Matsuda, Masahisa; Matsuoka, Takeo; Mochinaga, Daizo.

    1993-01-01

    In the superstring models we have not only the complete 27 multiplets of E 6 but also extra incomplete (27+27-bar) chiral supermultiplets being alive at low energies. Associated with these additional multiplets, when the gauge symmetry contains more than one U(1) gauge group, there may exist gauge kinetic mixings among these U(1) gauge groups. In such cases the effect of gauge kinetic mixings should be incorporated into the study of unification of gauge couplings. We study these interesting effects systematically in these models. The string threshold effect is also taken into account. It is found that in the four-generation models we do not have an advisable solution of string unification of gauge couplings consistent with experimental values at the electroweak scale. We also discuss the possible scenarios to solve this problem. (author)

  8. A benchmark for coupled thermohydraulics system/three-dimensional neutron kinetics core models

    International Nuclear Information System (INIS)

    Kliem, S.

    1999-01-01

    During the last years 3D neutron kinetics core models have been coupled to advanced thermohydraulics system codes. These coupled codes can be used for the analysis of the whole reactor system. Although the stand-alone versions of the 3D neutron kinetics core models and of the thermohydraulics system codes generally have a good verification and validation basis, there is a need for additional validation work. This especially concerns the interaction between the reactor core and the other components of a nuclear power plant (NPP). In the framework of the international 'Atomic Energy Research' (AER) association on VVER Reactor Physics and Reactor Safety, a benchmark for these code systems was defined. (orig.)

  9. Investigation of 3D spatial effect on point kinetics estimation of the thermal hydraulics code RELAP for the analysis of MSLB accident of KK-NP

    International Nuclear Information System (INIS)

    Bera, S.; Pradhan, S.K.; Dubey, S.K.; Gupta, S.K.

    2011-01-01

    In general safety analyses of design basis accident of NPPs are being carried out using system thermal hydraulics code like RELAP. In RELAP, power is calculated based on point kinetics approximation, which virtually ignores the space and energy dependence of neutron flux. To include the space and energy dependence of neutron flux, three-dimensional neutronics code TRIHEXFA has been externally coupled with RELAP through interface program, TRIHEXFA-RELAP Interface Program (TRIP). Calculation methodology of TRIP program is based on adiabatic approximation. In the adiabatic approximation the neutron flux is being factored into spatial and amplitude part. Spatial part of flux is slowly varying with time whereas amplitude part is strongly varying function. The RELAP controls the transient time steps. Transient time is divided into several major and minor time steps. Minor time step is the sub-step of major time step. Thermal hydraulics and neutronics data are exchanged at each major time step. Spatial part of neutron flux has been updated at each major time step using TRIHEXFA code. But amplitude part of the neutron flux is calculated at each minor time step using RELAP code. Convergence of results of the coupled code, TRIP has been checked through coupling time step descritization study. This study determines the minimum coupling time step. Transient concerning VVER-1000 Main Steam Line Break, MSLB has been considered to investigate the space-time effect on point kinetics. MSLB occurs as a consequence of the rupture of one steam line upstream of main steam line isolation valves. Reference design and data from Kudankulam Nuclear Power Plant (KK-NPP) are used for the analysis. From this investigation it is found that TRIP significantly overestimates the maximum reactor power against uncoupled RELAP result. The time of scram also occur six seconds earlier in TRIP calculation compared to the RELAP. This exercise has also shown a proof of principle that coupling 3D

  10. Traffic dynamics on coupled spatial networks

    International Nuclear Information System (INIS)

    Du, Wen-Bo; Zhou, Xing-Lian; Chen, Zhen; Cai, Kai-Quan; Cao, Xian-Bin

    2014-01-01

    With the rapid development of modern traffic, various means of transportation systems make it more convenient and diversified for passengers to travel out. In this paper, we establish a two-layered spatial network model where the low-speed lower layer is a regular lattice and the high-speed upper layer is a scale-free network embedded in the lattice. Passengers will travel along the path with the minimal travel time, and they can transfer from one layer to the other, which will induce extra transfer cost. We extensively investigate the traffic process on these coupled spatial networks and focus on the effect of the parameter α, the speed ratio between two networks. It is found that, as α grows, the network capacity of the coupled networks increases in the early stage and then decreases, indicating that cooperation between the coupled networks will induce the highest network capacity at an optimal α. We then provide an explanation for this non-monotonous dependence from a micro-scope point of view. The travel time reliability is also examined. Both in free-flow state and congestion state, the travel time is linearly related to the Euclidean distance. However, the variance of travel time in the congestion state is remarkably larger than that in the free-flow state, namely, people have to set aside more redundant time in an unreliable traffic system

  11. Measurement of turbulent spatial structure and kinetic energy spectrum by exact temporal-to-spatial mapping

    Science.gov (United States)

    Buchhave, Preben; Velte, Clara M.

    2017-08-01

    We present a method for converting a time record of turbulent velocity measured at a point in a flow to a spatial velocity record consisting of consecutive convection elements. The spatial record allows computation of dynamic statistical moments such as turbulent kinetic wavenumber spectra and spatial structure functions in a way that completely bypasses the need for Taylor's hypothesis. The spatial statistics agree with the classical counterparts, such as the total kinetic energy spectrum, at least for spatial extents up to the Taylor microscale. The requirements for applying the method are access to the instantaneous velocity magnitude, in addition to the desired flow quantity, and a high temporal resolution in comparison to the relevant time scales of the flow. We map, without distortion and bias, notoriously difficult developing turbulent high intensity flows using three main aspects that distinguish these measurements from previous work in the field: (1) The measurements are conducted using laser Doppler anemometry and are therefore not contaminated by directional ambiguity (in contrast to, e.g., frequently employed hot-wire anemometers); (2) the measurement data are extracted using a correctly and transparently functioning processor and are analysed using methods derived from first principles to provide unbiased estimates of the velocity statistics; (3) the exact mapping proposed herein has been applied to the high turbulence intensity flows investigated to avoid the significant distortions caused by Taylor's hypothesis. The method is first confirmed to produce the correct statistics using computer simulations and later applied to measurements in some of the most difficult regions of a round turbulent jet—the non-equilibrium developing region and the outermost parts of the developed jet. The proposed mapping is successfully validated using corresponding directly measured spatial statistics in the fully developed jet, even in the difficult outer regions of

  12. Thermal hydraulic and neutron kinetic simulation of the Angra 2 reactor using a RELAP5/PARCS coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Patricia A.L.; Costa, Antonella L.; Hamers, Adolfo R.; Pereira, Claubia; Rodrigues, Thiago D.A.; Mantecon, Javier G.; Veloso, Maria A.F., E-mail: patricialire@yahoo.com.br, E-mail: antonella@nuclear.ufmg.br, E-mail: adolforomerohamers@hotmail.com, E-mail: claubia@nuclear.ufmg.br, E-mail: thiagodanielbh@gmail.com, E-mail: mantecon1987@gmail.com, E-mail: dora@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto Nacional de Ciencias e Tecnologia de Reatores Nucleares Inovadores (INCT/CNPq), Belo Horizonte (Brazil); Miro, Rafael; Verdu, Gumersindo, E-mail: rmiro@iqn.upv.es, E-mail: gverdu@iqn.upv.es [Universidad Politecnica de Valencia (Spain). Departamento de Ingenieria Quimica y Nuclear

    2015-07-01

    The computational advances observed in the last two decades have been provided direct impact on the researches related to nuclear simulations, which use several types of computer codes, including coupled between them, allowing representing with very accuracy the behavior of nuclear plants. Studies of complex scenarios in nuclear reactors have been improved by the use of thermal-hydraulic (TH) and neutron kinetics (NK) coupled codes. This technique consists in incorporating three-dimensional (3D) neutron modeling of the reactor core into codes, mainly to simulate transients that involve asymmetric core spatial power distributions and strong feedback effects between neutronics and reactor thermal-hydraulics. Therefore, this work presents preliminary results of TH RELAP5 and the NK PARCS calculations applied to model of the Angra 2 reactor. The WIMSD-5B code has been used to generate the macroscopic cross sections used in the NK code. The results obtained are satisfactory and represent important part of the development of this methodology. The next step is to couple the codes. (author)

  13. Electron screening and kinetic-energy oscillations in a strongly coupled plasma

    International Nuclear Information System (INIS)

    Chen, Y.C.; Simien, C.E.; Laha, S.; Gupta, P.; Martinez, Y.N.; Mickelson, P.G.; Nagel, S.B.; Killian, T.C.

    2004-01-01

    We study equilibration of strongly coupled ions in an ultracold neutral plasma produced by photoionizing laser-cooled and trapped atoms. By varying the electron temperature, we show that electron screening modifies the equilibrium ion temperature. Even with few electrons in a Debye sphere, the screening is well described by a model using a Yukawa ion-ion potential. We also observe damped oscillations of the ion kinetic energy that are a unique feature of equilibration of a strongly coupled plasma

  14. Validation and applicability of the 3D core kinetics and thermal hydraulics coupled code SPARKLE

    International Nuclear Information System (INIS)

    Miyata, Manabu; Maruyama, Manabu; Ogawa, Junto; Otake, Yukihiko; Miyake, Shuhei; Tabuse, Shigehiko; Tanaka, Hirohisa

    2009-01-01

    The SPARKLE code is a coupled code system based on three individual codes whose physical models have already been verified and validated. Mitsubishi Heavy Industries (MHI) confirmed the coupling calculation, including data transfer and the total reactor coolant system (RCS) behavior of the SPARKLE code. The confirmation uses the OECD/NEA MSLB benchmark problem, which is based on Three Mile Island Unit 1 (TMI-1) nuclear power plant data. This benchmark problem has been used to verify coupled codes developed and used by many organizations. Objectives of the benchmark program are as follows. Phase 1 is to compare the results of the system transient code using point kinetics. Phase 2 is to compare the results of the coupled three-dimensional (3D) core kinetics code and 3D core thermal-hydraulics (T/H) code, and Phase 3 is to compare the results of the combined coupled system transient code, 3D core kinetics code, and 3D core T/H code as a total validation of the coupled calculation. The calculation results of the SPARKLE code indicate good agreement with other benchmark participants' results. Therefore, the SPARKLE code is validated through these benchmark problems. In anticipation of applying the SPARKLE code to licensing analyses, MHI and Japanese PWR utilities have established a safety analysis method regarding the calculation conditions such as power distributions, reactivity coefficients, and event-specific features. (author)

  15. Temporal acceleration of spatially distributed kinetic Monte Carlo simulations

    International Nuclear Information System (INIS)

    Chatterjee, Abhijit; Vlachos, Dionisios G.

    2006-01-01

    The computational intensity of kinetic Monte Carlo (KMC) simulation is a major impediment in simulating large length and time scales. In recent work, an approximate method for KMC simulation of spatially uniform systems, termed the binomial τ-leap method, was introduced [A. Chatterjee, D.G. Vlachos, M.A. Katsoulakis, Binomial distribution based τ-leap accelerated stochastic simulation, J. Chem. Phys. 122 (2005) 024112], where molecular bundles instead of individual processes are executed over coarse-grained time increments. This temporal coarse-graining can lead to significant computational savings but its generalization to spatially lattice KMC simulation has not been realized yet. Here we extend the binomial τ-leap method to lattice KMC simulations by combining it with spatially adaptive coarse-graining. Absolute stability and computational speed-up analyses for spatial systems along with simulations provide insights into the conditions where accuracy and substantial acceleration of the new spatio-temporal coarse-graining method are ensured. Model systems demonstrate that the r-time increment criterion of Chatterjee et al. obeys the absolute stability limit for values of r up to near 1

  16. Characterization of a Fiber-Coupled 36-Core 3-Mode Photonic Lantern Spatial Multiplexer

    DEFF Research Database (Denmark)

    Rommel, Simon; Mendinueta, José Manuel Delgado; Klaus, Werner

    2017-01-01

    A fiber-coupled 108-port photonic lantern spatial-MUX is characterized with a spatially-diverse optical vector network analyzer. Insertion loss, mode-dependent losses, and time response are measured, showing significant mode mixing at a fiber splice.......A fiber-coupled 108-port photonic lantern spatial-MUX is characterized with a spatially-diverse optical vector network analyzer. Insertion loss, mode-dependent losses, and time response are measured, showing significant mode mixing at a fiber splice....

  17. Kinetic theory for strongly coupled Coulomb systems

    Science.gov (United States)

    Dufty, James; Wrighton, Jeffrey

    2018-01-01

    The calculation of dynamical properties for matter under extreme conditions is a challenging task. The popular Kubo-Greenwood model exploits elements from equilibrium density-functional theory (DFT) that allow a detailed treatment of electron correlations, but its origin is largely phenomenological; traditional kinetic theories have a more secure foundation but are limited to weak ion-electron interactions. The objective here is to show how a combination of the two evolves naturally from the short-time limit for the generator of the effective single-electron dynamics governing time correlation functions without such limitations. This provides a theoretical context for the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of its corrections. The method is to calculate the short-time dynamics in the single-electron subspace for a given configuration of the ions. This differs from the usual kinetic theory approach in which an average over the ions is performed as well. In this way the effective ion-electron interaction includes strong Coulomb coupling and is shown to be determined from DFT. The correlation functions have the form of the random-phase approximation for an inhomogeneous system but with renormalized ion-electron and electron-electron potentials. The dynamic structure function, density response function, and electrical conductivity are calculated as examples. The static local field corrections in the dielectric function are identified in this way. The current analysis is limited to semiclassical electrons (quantum statistical potentials), so important quantum conditions are excluded. However, a quantization of the kinetic theory is identified for broader application while awaiting its detailed derivation.

  18. Coupling of the 3D neutron kinetic core model DYN3D with the CFD software ANSYS-CFX

    International Nuclear Information System (INIS)

    Grahn, Alexander; Kliem, Sören; Rohde, Ulrich

    2015-01-01

    Highlights: • Improved thermal hydraulic description of nuclear reactor cores. • Possibility of three-dimensional flow phenomena in the core, such as cross flow, flow reversal, flow around obstacles. • Simulation at higher spatial resolution as compared to system codes. - Abstract: This article presents the implementation of a coupling between the 3D neutron kinetic core model DYN3D and the commercial, general purpose computational fluid dynamics (CFD) software ANSYS-CFX. In the coupling approach, parts of the thermal hydraulic calculation are transferred to CFX for its better ability to simulate the three-dimensional coolant redistribution in the reactor core region. The calculation of the heat transfer from the fuel into the coolant remains with DYN3D, which incorporates well tested and validated heat transfer models for rod-type fuel elements. On the CFX side, the core region is modeled based on the porous body approach. The implementation of the code coupling is verified by comparing test case results with reference solutions of the DYN3D standalone version. Test cases cover mini and full core geometries, control rod movement and partial overcooling transients

  19. How noise and coupling influence leading indicators of population extinction in a spatially extended ecological system.

    Science.gov (United States)

    O'Regan, Suzanne M

    2018-12-01

    Anticipating critical transitions in spatially extended systems is a key topic of interest to ecologists. Gradually declining metapopulations are an important example of a spatially extended biological system that may exhibit a critical transition. Theory for spatially extended systems approaching extinction that accounts for environmental stochasticity and coupling is currently lacking. Here, we develop spatially implicit two-patch models with additive and multiplicative forms of environmental stochasticity that are slowly forced through population collapse, through changing environmental conditions. We derive patch-specific expressions for candidate indicators of extinction and test their performance via a simulation study. Coupling and spatial heterogeneities decrease the magnitude of the proposed indicators in coupled populations relative to isolated populations, and the noise regime and the degree of coupling together determine trends in summary statistics. This theory may be readily applied to other spatially extended ecological systems, such as coupled infectious disease systems on the verge of elimination.

  20. Application of a generalized interface module to the coupling of PARCS with both RELAPS and TRAC-M

    International Nuclear Information System (INIS)

    Barber, D.A.; Wang, W.; Miller, R.M.; Downar, T.J.; Joo, H.G.; Mousseau, V.A.; Ebert, D.E.

    1999-01-01

    In an effort to more easily assess various combinations of 3-D neutronic/thermal-hydraulic codes, the USNRC has sponsored the development of a generalized interface module for the coupling of any thermal-hydraulics code to any spatial kinetics code. In this design, the thermal-hydraulics, general interface, and spatial kinetics codes function independently and utilize the Parallel Virtual Machine (PVM) software to manage inter-process communication. Using this interface, the USNRC version of the 3D neutron kinetics code, PARCS, has been coupled to the USNRC system analysis codes RELAP5 and TRAC-M. RELAP5/PARCS assessment results are presented for an OECD/NEA main steam line break benchmark problem. The assessment of TRAC-M/PARCS has only recently been initiated; nonetheless, the capabilities of the coupled code are presented for the OECD/NEA main steam line break benchmark problem

  1. Supercritical kinetic analysis in simplified system of fuel debris using integral kinetic model

    International Nuclear Information System (INIS)

    Tuya, Delgersaikhan; Obara, Toru

    2016-01-01

    Highlights: • Kinetic analysis in simplified weakly coupled fuel debris system was performed. • The integral kinetic model was used to simulate criticality accidents. • The fission power and released energy during simulated accident were obtained. • Coupling between debris regions and its effect on the fission power was obtained. - Abstract: Preliminary prompt supercritical kinetic analyses in a simplified coupled system of fuel debris designed to roughly resemble a melted core of a nuclear reactor were performed using an integral kinetic model. The integral kinetic model, which can describe region- and time-dependent fission rate in a coupled system of arbitrary geometry, was used because the fuel debris system is weakly coupled in terms of neutronics. The results revealed some important characteristics of coupled systems, such as the coupling between debris regions and the effect of the coupling on the fission rate and released energy in each debris region during the simulated criticality accident. In brief, this study showed that the integral kinetic model can be applied to supercritical kinetic analysis in fuel debris systems and also that it can be a useful tool for investigating the effect of the coupling on consequences of a supercritical accident.

  2. Spatially coupled LDPC coding in cooperative wireless networks

    NARCIS (Netherlands)

    Jayakody, D.N.K.; Skachek, V.; Chen, B.

    2016-01-01

    This paper proposes a novel technique of spatially coupled low-density parity-check (SC-LDPC) code-based soft forwarding relaying scheme for a two-way relay system. We introduce an array-based optimized SC-LDPC codes in relay channels. A more precise model is proposed to characterize the residual

  3. Application of a generalized interface module to the coupling of PARCS with both RELAP5 and TRAC-M

    Energy Technology Data Exchange (ETDEWEB)

    Barber, D.A.; Wang, W. [SCIENTECH, Inc. (United States); Miller, R.M.; Downar, T.J. [Purdue Univ., West Lafayette, IN (United States); Joo, H.G. [Korean Atomic Energy Research Inst., Seoul (Korea, Republic of); Mousseau, V.A. [Los Alamos National Lab., NM (United States); Ebert, D.E. [Nuclear Regulatory Commission, Washington, DC (United States)

    1999-04-01

    In an effort to more easily assess various combinations of 3-D neutronic/thermal-hydraulic codes, the USNRC has sponsored the development of a generalized interface module for the coupling of any thermal-hydraulics code to any spatial kinetics code. In this design, the thermal-hydraulics, general interface, and spatial kinetics codes function independently and utilize the Parallel Virtual Machine (PVM) software to manage inter-process communication. Using this interface, the USNRC version of the 3D neutron kinetics code, PARCS, has been coupled to the USNRC system analysis codes RELAP5 and TRAC-M. RELAP5/PARCS assessment results are presented for an OECD/NEA main steam line break benchmark problem. The assessment of TRAC-M/PARCS has only recently been initiated; nonetheless, the capabilities of the coupled code are presented for the OECD/NEA main steam line break benchmark problem.

  4. Reactor for in situ measurements of spatially resolved kinetic data in heterogeneous catalysis

    Science.gov (United States)

    Horn, R.; Korup, O.; Geske, M.; Zavyalova, U.; Oprea, I.; Schlögl, R.

    2010-06-01

    The present work describes a reactor that allows in situ measurements of spatially resolved kinetic data in heterogeneous catalysis. The reactor design allows measurements up to temperatures of 1300 °C and 45 bar pressure, i.e., conditions of industrial relevance. The reactor involves reactants flowing through a solid catalyst bed containing a sampling capillary with a side sampling orifice through which a small fraction of the reacting fluid (gas or liquid) is transferred into an analytical device (e.g., mass spectrometer, gas chromatograph, high pressure liquid chromatograph) for quantitative analysis. The sampling capillary can be moved with μm resolution in or against flow direction to measure species profiles through the catalyst bed. Rotation of the sampling capillary allows averaging over several scan lines. The position of the sampling orifice is such that the capillary channel through the catalyst bed remains always occupied by the capillary preventing flow disturbance and fluid bypassing. The second function of the sampling capillary is to provide a well which can accommodate temperature probes such as a thermocouple or a pyrometer fiber. If a thermocouple is inserted in the sampling capillary and aligned with the sampling orifice fluid temperature profiles can be measured. A pyrometer fiber can be used to measure the temperature profile of the solid catalyst bed. Spatial profile measurements are demonstrated for methane oxidation on Pt and methane oxidative coupling on Li/MgO, both catalysts supported on reticulated α -Al2O3 foam supports.

  5. Kinetic study on anaerobic oxidation of methane coupled to denitrification.

    Science.gov (United States)

    Yu, Hou; Kashima, Hiroyuki; Regan, John M; Hussain, Abid; Elbeshbishy, Elsayed; Lee, Hyung-Sool

    2017-09-01

    Monod kinetic parameters provide information required for kinetic analysis of anaerobic oxidation of methane coupled to denitrification (AOM-D). This information is critical for engineering AOM-D processes in wastewater treatment facilities. We first experimentally determined Monod kinetic parameters for an AOM-D enriched culture and obtained the following values: maximum specific growth rate (μ max ) 0.121/d, maximum substrate-utilization rate (q max ) 28.8mmol CH 4 /g cells-d, half maximum-rate substrate concentration (K s ) 83μΜ CH 4 , growth yield (Y) 4.76gcells/mol CH 4 , decay coefficient (b) 0.031/d, and threshold substrate concentration (S min ) 28.8μM CH 4 . Clone library analysis of 16S rRNA and mcrA gene fragments suggested that AOM-D reactions might have occurred via the syntrophic interaction between denitrifying bacteria (e.g., Ignavibacterium, Acidovorax, and Pseudomonas spp.) and hydrogenotrophic methanogens (Methanobacterium spp.), supporting reverse methanogenesis-dependent AOM-D in our culture. High μ max and q max , and low K s for the AOM-D enrichment imply that AOM-D could play a significant role in mitigating atmospheric methane efflux. In addition, these high kinetic features suggest that engineered AOM-D systems may provide a sustainable alternative to nitrogen removal in wastewater treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Nodal kinetics model upgrade in the Penn State coupled TRAC/NEM codes

    International Nuclear Information System (INIS)

    Beam, Tara M.; Ivanov, Kostadin N.; Baratta, Anthony J.; Finnemann, Herbert

    1999-01-01

    The Pennsylvania State University currently maintains and does development and verification work for its own versions of the coupled three-dimensional kinetics/thermal-hydraulics codes TRAC-PF1/NEM and TRAC-BF1/NEM. The subject of this paper is nodal model enhancements in the above mentioned codes. Because of the numerous validation studies that have been performed on almost every aspect of these codes, this upgrade is done without a major code rewrite. The upgrade consists of four steps. The first two steps are designed to improve the accuracy of the kinetics model, based on the nodal expansion method. The polynomial expansion solution of 1D transverse integrated diffusion equation is replaced with a solution, which uses a semi-analytic expansion. Further the standard parabolic polynomial representation of the transverse leakage in the above 1D equations is replaced with an improved approximation. The last two steps of the upgrade address the code efficiency by improving the solution of the time-dependent NEM equations and implementing a multi-grid solver. These four improvements are implemented into the standalone NEM kinetics code. Verification of this code was accomplished based on the original verification studies. The results show that the new methods improve the accuracy and efficiency of the code. The verification of the upgraded NEM model in the TRAC-PF1/NEM and TRAC-BF1/NEM coupled codes is underway

  7. Spatial Inhomogeneity of Kinetic and Magnetic Dissipations in Thermal Convection

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, H. [Department of Physics, Graduate School of Science, Chiba university, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522 (Japan)

    2017-08-20

    We investigate the inhomogeneity of kinetic and magnetic dissipations in thermal convection using high-resolution calculations. In statistically steady turbulence, the injected and dissipated energies are balanced. This means that a large amount of energy is continuously converted into internal energy via dissipation. As in thermal convection, downflows are colder than upflows and the inhomogeneity of the dissipation potentially changes the convection structure. Our investigation of the inhomogeneity of the dissipation shows the following. (1) More dissipation is seen around the bottom of the calculation domain, and this tendency is promoted with the magnetic field. (2) The dissipation in the downflow is much larger than that in the upflow. The dissipation in the downflow is more than 80% of the total at maximum. This tendency is also promoted with the magnetic field. (3) Although 2D probability density functions of the kinetic and magnetic dissipations versus the vertical velocity are similar, the kinetic and magnetic dissipations are not well correlated. Our result suggests that the spatial inhomogeneity of the dissipation is significant and should be considered when modeling a small-scale strong magnetic field generated with an efficient small-scale dynamo for low-resolution calculations.

  8. A new kinetic description for turbulent collisions including mode-coupling

    International Nuclear Information System (INIS)

    Misguich, J.H.; Tchen, C.M.

    1982-07-01

    The usual introduction of higher-order mode-coupling terms in the description of turbulent collisions beyond usual Renormalized Quasi-Linear approximation (RQL) is briefly analyzed. Here new results are derived in the framework of the general kinetic theory, and the equivalence is proved with the long time limit of simple results deduced from the Vlasov equation. The correction to the RQL turbulent collision term is analyzed and a new approximation is proposed. Turbulent collisions are also described by perturbation around the Lagrangian autocorrelation of fluctuating fields. For an homogeneous turbulence, however, the asymptotic integral of this Lagrangian autocorrelation vanishes identically, similarly to what occurs in Brownian motion. For inhomogeneous turbulence this method can nevertheless be used, and higher-order mode-coupling terms can be interpreted as a shielding of elementary Lagrangian turbulent collisions

  9. A hybrid model for coupling kinetic corrections of fusion reactivity to hydrodynamic implosion simulations

    Science.gov (United States)

    Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.

    2014-03-01

    Inertial confinement fusion requires an imploded target in which a central hot spot is surrounded by a cold and dense pusher. The hot spot/pusher interface can take complicated shape in three dimensions due to hydrodynamic mix. It is also a transition region where the Knudsen and inverse Knudsen layer effect can significantly modify the fusion reactivity in comparison with the commonly used value evaluated with background Maxwellians. Here, we describe a hybrid model that couples the kinetic correction of fusion reactivity to global hydrodynamic implosion simulations. The key ingredient is a non-perturbative treatment of the tail ions in the interface region where the Gamow ion Knudsen number approaches or surpasses order unity. The accuracy of the coupling scheme is controlled by the precise criteria for matching the non-perturbative kinetic model to perturbative solutions in both configuration space and velocity space.

  10. Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations.

    Science.gov (United States)

    Arampatzis, Georgios; Katsoulakis, Markos A

    2014-03-28

    In this paper we propose a new class of coupling methods for the sensitivity analysis of high dimensional stochastic systems and in particular for lattice Kinetic Monte Carlo (KMC). Sensitivity analysis for stochastic systems is typically based on approximating continuous derivatives with respect to model parameters by the mean value of samples from a finite difference scheme. Instead of using independent samples the proposed algorithm reduces the variance of the estimator by developing a strongly correlated-"coupled"- stochastic process for both the perturbed and unperturbed stochastic processes, defined in a common state space. The novelty of our construction is that the new coupled process depends on the targeted observables, e.g., coverage, Hamiltonian, spatial correlations, surface roughness, etc., hence we refer to the proposed method as goal-oriented sensitivity analysis. In particular, the rates of the coupled Continuous Time Markov Chain are obtained as solutions to a goal-oriented optimization problem, depending on the observable of interest, by considering the minimization functional of the corresponding variance. We show that this functional can be used as a diagnostic tool for the design and evaluation of different classes of couplings. Furthermore, the resulting KMC sensitivity algorithm has an easy implementation that is based on the Bortz-Kalos-Lebowitz algorithm's philosophy, where events are divided in classes depending on level sets of the observable of interest. Finally, we demonstrate in several examples including adsorption, desorption, and diffusion Kinetic Monte Carlo that for the same confidence interval and observable, the proposed goal-oriented algorithm can be two orders of magnitude faster than existing coupling algorithms for spatial KMC such as the Common Random Number approach. We also provide a complete implementation of the proposed sensitivity analysis algorithms, including various spatial KMC examples, in a supplementary MATLAB

  11. Kinetic roughening and pinning of coupled precursor and impregnation fronts in porous media

    International Nuclear Information System (INIS)

    Balankin, Alexander S.; Garcia Paredes, Rafael; Marquez Gonsalez, Jesus; Susarrey Huerta, Orlando; Morales Matamoros, Daniel; Castrejon Vacio, Fernando

    2006-01-01

    In the paper wetting experiments at low evaporation rate, after a short Washburn regime the film flow of filtered water overtakes the main impregnation front. Accordingly, we study the kinetic roughening dynamics and pinning of two strongly coupled fronts moving in different papers. We find that the kinetic roughening dynamics of precursor and main fronts belongs to different universality classes, nevertheless, at the final stage the distance between the fronts decrease until both fronts are pinned in the same configuration z P (x,y), the scaling properties of which are determined by the long-range correlations in the pore network

  12. Verification of kinetic parameters of coupled fast-thermal core HERBE

    International Nuclear Information System (INIS)

    Pesic, M.; Marinkovic, P.; Milosevic, M.; Nikolic, D.; Zavaljevski, N.; Milovanovic, S.; Ljubenov, V.

    1997-03-01

    The HERBE system is a new coupled fast-thermal core constructed in 1989 at the RB critical heavy water assembly at the VINCA Institute. It was designed with the aim to improve experimental possibilities in fast neutron fields and for experimental verification of reactor design-oriented methods. This paper overviews experiments for kinetic parameters verification carried out at HERBE system. Their short description and comparison of experimental and calculation results are included. A brief introduction to the computer codes used in the calculations is presented too. (author)

  13. Kinetic coupling of phosphate release, force generation and rate-limiting steps in the cross-bridge cycle.

    Science.gov (United States)

    Stehle, Robert; Tesi, Chiara

    2017-08-01

    A basic goal in muscle research is to understand how the cyclic ATPase activity of cross-bridges is converted into mechanical force. A direct approach to study the chemo-mechanical coupling between P i release and the force-generating step is provided by the kinetics of force response induced by a rapid change in [P i ]. Classical studies on fibres using caged-P i discovered that rapid increases in [P i ] induce fast force decays dependent on final [P i ] whose kinetics were interpreted to probe a fast force-generating step prior to P i release. However, this hypothesis was called into question by studies on skeletal and cardiac myofibrils subjected to P i jumps in both directions (increases and decreases in [P i ]) which revealed that rapid decreases in [P i ] trigger force rises with slow kinetics, similar to those of calcium-induced force development and mechanically-induced force redevelopment at the same [P i ]. A possible explanation for this discrepancy came from imaging of individual sarcomeres in cardiac myofibrils, showing that the fast force decay upon increase in [P i ] results from so-called sarcomere 'give'. The slow force rise upon decrease in [P i ] was found to better reflect overall sarcomeres cross-bridge kinetics and its [P i ] dependence, suggesting that the force generation coupled to P i release cannot be separated from the rate-limiting transition. The reasons for the different conclusions achieved in fibre and myofibril studies are re-examined as the recent findings on cardiac myofibrils have fundamental consequences for the coupling between P i release, rate-limiting steps and force generation. The implications from P i -induced force kinetics of myofibrils are discussed in combination with historical and recent models of the cross-bridge cycle.

  14. Charge-coupled devices for particle detection with high spatial resolution

    International Nuclear Information System (INIS)

    Farley, F.J.; Damerell, C.J.S.; Gillman, A.R.; Wickens, F.J.

    1980-10-01

    The results of a study of the possible application of a thin microelectronic device (the charge-coupled device) to high energy physics as particle detectors with good spatial resolution which can distinguish between tracks emerging from the primary vertex and those from secondary vertices due to the decay of short lived particles with higher flavours, are reported. Performance characteristics indicating the spatial resolution, particle discrimination, time resolution, readout time and lifetime of such detectors have been obtained. (U.K.)

  15. Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations

    International Nuclear Information System (INIS)

    Arampatzis, Georgios; Katsoulakis, Markos A.

    2014-01-01

    In this paper we propose a new class of coupling methods for the sensitivity analysis of high dimensional stochastic systems and in particular for lattice Kinetic Monte Carlo (KMC). Sensitivity analysis for stochastic systems is typically based on approximating continuous derivatives with respect to model parameters by the mean value of samples from a finite difference scheme. Instead of using independent samples the proposed algorithm reduces the variance of the estimator by developing a strongly correlated-“coupled”- stochastic process for both the perturbed and unperturbed stochastic processes, defined in a common state space. The novelty of our construction is that the new coupled process depends on the targeted observables, e.g., coverage, Hamiltonian, spatial correlations, surface roughness, etc., hence we refer to the proposed method as goal-oriented sensitivity analysis. In particular, the rates of the coupled Continuous Time Markov Chain are obtained as solutions to a goal-oriented optimization problem, depending on the observable of interest, by considering the minimization functional of the corresponding variance. We show that this functional can be used as a diagnostic tool for the design and evaluation of different classes of couplings. Furthermore, the resulting KMC sensitivity algorithm has an easy implementation that is based on the Bortz–Kalos–Lebowitz algorithm's philosophy, where events are divided in classes depending on level sets of the observable of interest. Finally, we demonstrate in several examples including adsorption, desorption, and diffusion Kinetic Monte Carlo that for the same confidence interval and observable, the proposed goal-oriented algorithm can be two orders of magnitude faster than existing coupling algorithms for spatial KMC such as the Common Random Number approach. We also provide a complete implementation of the proposed sensitivity analysis algorithms, including various spatial KMC examples, in a supplementary

  16. Investigation of spatial coupling aspects for coupled code application in PWR safety analysis

    International Nuclear Information System (INIS)

    Todorova, N.K.; Ivanov, K.N.

    2003-01-01

    The simulation of nuclear power plant accident conditions requires three-dimensional (3-D) modeling of the reactor core to ensure a realistic description of physical phenomena. This paper describes a part of the research activities carried out on the sensitivity of coupled neutronics/thermal-hydraulic system code's results to the spatial mesh overlays used for modeling pressurized water reactor (PWR) cores for analysis of different transients. The coupled TRAC-PF1/NEM was used to model PWR rod ejection accident (REA). Modeling schemes for pressurized water reactor are described in detail, followed by a comparative analysis of both steady state and transient calculations. By using different TRAC-PF1/NEM vessel modeling options it was demonstrated that the geometric refinement plays a great role in determining the local parameters and control rod worth in the case of spatially asymmetric transients. The capability of TRAC-PF1/NEM to introduce local refinement of heat structure models was explored while preserving the original coarse-mesh structure of the hydraulic model. The obtained results indicated that the thermal-hydraulic feedback phenomenon is non-linear and cannot be separated even in rod ejection accident analysis, where the Doppler feedback plays a dominant role. While the impact of neutronics mesh refinement is well known, this research found that the local predictions, as well as the global predictions are also very sensitive to the thermal-hydraulic refinement

  17. Spatial layout optimization design of multi-type LEDs lighting source based on photoelectrothermal coupling theory

    Science.gov (United States)

    Xue, Lingyun; Li, Guang; Chen, Qingguang; Rao, Huanle; Xu, Ping

    2018-03-01

    Multiple LED-based spectral synthesis technology has been widely used in the fields of solar simulator, color mixing, and artificial lighting of plant factory and so on. Generally, amounts of LEDs are spatially arranged with compact layout to obtain the high power density output. Mutual thermal spreading among LEDs will produce the coupled thermal effect which will additionally increase the junction temperature of LED. Affected by the Photoelectric thermal coupling effect of LED, the spectrum of LED will shift and luminous efficiency will decrease. Correspondingly, the spectral synthesis result will mismatch. Therefore, thermal management of LED spatial layout plays an important role for multi-LEDs light source system. In the paper, the thermal dissipation network topology model considering the mutual thermal spreading effect among the LEDs is proposed for multi-LEDs system with various types of power. The junction temperature increment cased by the thermal coupling has the great relation with the spatial arrangement. To minimize the thermal coupling effect, an optimized method of LED spatial layout for the specific light source structure is presented and analyzed. The results showed that layout of LED with high-power are arranged in the corner and low-power in the center. Finally, according to this method, it is convenient to determine the spatial layout of LEDs in a system having any kind of light source structure, and has the advantages of being universally applicable to facilitate adjustment.

  18. Development, validation and application of multi-point kinetics model in RELAP5 for analysis of asymmetric nuclear transients

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Santosh K., E-mail: santosh@aerb.gov.in [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India); Obaidurrahman, K. [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India); Iyer, Kannan N. [Department of Mechanical Engineering, IIT Bombay, Mumbai 400076 (India); Gaikwad, Avinash J. [Nuclear Safety Analysis Division, Atomic Energy Regulatory Board, Mumbai 400094 (India)

    2016-04-15

    Highlights: • A multi-point kinetics model is developed for RELAP5 system thermal hydraulics code. • Model is validated against extensive 3D kinetics code. • RELAP5 multi-point kinetics formulation is used to investigate critical break for LOCA in PHWR. - Abstract: Point kinetics approach in system code RELAP5 limits its use for many of the reactivity induced transients, which involve asymmetric core behaviour. Development of fully coupled 3D core kinetics code with system thermal-hydraulics is the ultimate requirement in this regard; however coupling and validation of 3D kinetics module with system code is cumbersome and it also requires access to source code. An intermediate approach with multi-point kinetics is appropriate and relatively easy to implement for analysis of several asymmetric transients for large cores. Multi-point kinetics formulation is based on dividing the entire core into several regions and solving ODEs describing kinetics in each region. These regions are interconnected by spatial coupling coefficients which are estimated from diffusion theory approximation. This model offers an advantage that associated ordinary differential equations (ODEs) governing multi-point kinetics formulation can be solved using numerical methods to the desired level of accuracy and thus allows formulation based on user defined control variables, i.e., without disturbing the source code and hence also avoiding associated coupling issues. Euler's method has been used in the present formulation to solve several coupled ODEs internally at each time step. The results have been verified against inbuilt point-kinetics models of RELAP5 and validated against 3D kinetics code TRIKIN. The model was used to identify the critical break in RIH of a typical large PHWR core. The neutronic asymmetry produced in the core due to the system induced transient was effectively handled by the multi-point kinetics model overcoming the limitation of in-built point kinetics model

  19. Partial synchronization and spontaneous spatial ordering in coupled chaotic systems

    International Nuclear Information System (INIS)

    Ying Zhang; Gang Hu; Cerdeira, Hilda A.; Shigang Chen; Braun, Thomas; Yugui Yao

    2000-11-01

    A model of many symmetrically and locally coupled chaotic oscillators is studied. Partial chaotic synchronizations associated with spontaneous spatial ordering are demonstrated. Very rich patterns of the system are revealed, based on partial synchronization analysis. The stabilities of different partially synchronous spatiotemporal structures and some novel dynamical behaviors of these states are discussed both numerically and analytically. (author)

  20. Synchrony, waves and ripple in spatially coupled Kuramoto oscillators with Mexican hat connectivity.

    Science.gov (United States)

    Heitmann, Stewart; Ermentrout, G Bard

    2015-06-01

    Spatiotemporal waves of synchronized activity are known to arise in oscillatory neural networks with lateral inhibitory coupling. How such patterns respond to dynamic changes in coupling strength is largely unexplored. The present study uses analysis and simulation to investigate the evolution of wave patterns when the strength of lateral inhibition is varied dynamically. Neural synchronization was modeled by a spatial ring of Kuramoto oscillators with Mexican hat lateral coupling. Broad bands of coexisting stable wave solutions were observed at all levels of inhibition. The stability of these waves was formally analyzed in both the infinite ring and the finite ring. The broad range of multi-stability predicted hysteresis in transitions between neighboring wave solutions when inhibition is slowly varied. Numerical simulation confirmed the predicted transitions when inhibition was ramped down from a high initial value. However, non-wave solutions emerged from the uniform solution when inhibition was ramped upward from zero. These solutions correspond to spatially periodic deviations of phase that we call ripple states. Numerical continuation showed that stable ripple states emerge from synchrony via a supercritical pitchfork bifurcation. The normal form of this bifurcation was derived analytically, and its predictions compared against the numerical results. Ripple states were also found to bifurcate from wave solutions, but these were locally unstable. Simulation also confirmed the existence of hysteresis and ripple states in two spatial dimensions. Our findings show that spatial synchronization patterns can remain structurally stable despite substantial changes in network connectivity.

  1. Stability of generalized Runge-Kutta methods for stiff kinetics coupled differential equations

    International Nuclear Information System (INIS)

    Aboanber, A E

    2006-01-01

    A stability and efficiency improved class of generalized Runge-Kutta methods of order 4 are developed for the numerical solution of stiff system kinetics equations for linear and/or nonlinear coupled differential equations. The determination of the coefficients required by the method is precisely obtained from the so-called equations of condition which in turn are derived by an approach based on Butcher series. Since the equations of condition are fewer in number, free parameters can be chosen for optimizing any desired feature of the process. A further related coefficient set with different values of these parameters and the region of absolute stability of the method have been introduced. In addition, the A(α) stability properties of the method are investigated. Implementing the method in a personal computer estimated the accuracy and speed of calculations and verified the good performances of the proposed new schemes for several sample problems of the stiff system point kinetics equations with reactivity feedback

  2. Transient cases analyses of the TRIGA IPR-R1 using thermal hydraulic and neutron kinetic coupled codes

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Patricia A.L.; Costa, Antonella L.; Pereira, Claubia; Veloso, Maria A.F.; Scari, Maria E., E-mail: patricialire@yahoo.com.br, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br, E-mail: dora@nuclear.ufmg.br, E-mail: melizabethscari@yahoo.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto Nacional de Ciencias e Tecnologia de Reatores Nucleares Inovadores (INCT/CNPq), Belo Horizonte (Brazil); Miro, Rafael; Verdu, Gumersindo, E-mail: rmiro@iqn.upv.es, E-mail: gverdu@iqn.upv.es [Universidad Politecnica de Valencia (Spain). Departamento de Ingenieria Quimica y Nuclear

    2015-07-01

    Simulations and analyses of nuclear reactors have been improved by utilization of coupled thermal-hydraulic (TH) and neutron kinetics (NK) system codes especially to simulate transients that involve strong feedback effects between NK and TH. The TH-NK coupling technique was initially developed and used to simulate the behavior of power reactors; however, several coupling methodologies are now being applied for research reactors. This work presents the coupling methodology application between RELAP5 and PARCS codes using as a model the TRIGA IPR-R1 research reactor. Analyses of steady state and transient conditions and comparisons with results from simulations using only the RELAP5 code are being presented in this paper. (author)

  3. Transport in semiconductor nanowire superlattices described by coupled quantum mechanical and kinetic models.

    Science.gov (United States)

    Alvaro, M; Bonilla, L L; Carretero, M; Melnik, R V N; Prabhakar, S

    2013-08-21

    In this paper we develop a kinetic model for the analysis of semiconductor superlattices, accounting for quantum effects. The model consists of a Boltzmann-Poisson type system of equations with simplified Bhatnagar-Gross-Krook collisions, obtained from the general time-dependent Schrödinger-Poisson model using Wigner functions. This system for superlattice transport is supplemented by the quantum mechanical part of the model based on the Ben-Daniel-Duke form of the Schrödinger equation for a cylindrical superlattice of finite radius. The resulting energy spectrum is used to characterize the Fermi-Dirac distribution that appears in the Bhatnagar-Gross-Krook collision, thereby coupling the quantum mechanical and kinetic parts of the model. The kinetic model uses the dispersion relation obtained by the generalized Kronig-Penney method, and allows us to estimate radii of quantum wire superlattices that have the same miniband widths as in experiments. It also allows us to determine more accurately the time-dependent characteristics of superlattices, in particular their current density. Results, for several experimentally grown superlattices, are discussed in the context of self-sustained coherent oscillations of the current density which are important in an increasing range of current and potential applications.

  4. Role of spatial inhomogenity in GPCR dimerisation predicted by receptor association-diffusion models

    Science.gov (United States)

    Deshpande, Sneha A.; Pawar, Aiswarya B.; Dighe, Anish; Athale, Chaitanya A.; Sengupta, Durba

    2017-06-01

    G protein-coupled receptor (GPCR) association is an emerging paradigm with far reaching implications in the regulation of signalling pathways and therapeutic interventions. Recent super resolution microscopy studies have revealed that receptor dimer steady state exhibits sub-second dynamics. In particular the GPCRs, muscarinic acetylcholine receptor M1 (M1MR) and formyl peptide receptor (FPR), have been demonstrated to exhibit a fast association/dissociation kinetics, independent of ligand binding. In this work, we have developed a spatial kinetic Monte Carlo model to investigate receptor homo-dimerisation at a single receptor resolution. Experimentally measured association/dissociation kinetic parameters and diffusion coefficients were used as inputs to the model. To test the effect of membrane spatial heterogeneity on the simulated steady state, simulations were compared to experimental statistics of dimerisation. In the simplest case the receptors are assumed to be diffusing in a spatially homogeneous environment, while spatial heterogeneity is modelled to result from crowding, membrane micro-domains and cytoskeletal compartmentalisation or ‘corrals’. We show that a simple association-diffusion model is sufficient to reproduce M1MR association statistics, but fails to reproduce FPR statistics despite comparable kinetic constants. A parameter sensitivity analysis is required to reproduce the association statistics of FPR. The model reveals the complex interplay between cytoskeletal components and their influence on receptor association kinetics within the features of the membrane landscape. These results constitute an important step towards understanding the factors modulating GPCR organisation.

  5. Validation of the coupled neutron kinetic thermohydraulic code ATHLET/DYN3D with help of measured data of the OECD Turbine Trip Benchmarks. Final report

    International Nuclear Information System (INIS)

    Grundmann, U.; Kliem, S.

    2003-12-01

    The project consisted in the validation of the coupled neutron kinetic/thermal hydraulic code system ATHLET/DYN3D for boiling water reactors by the participation at the OECD/NRC turbine trip benchmark. The benchmark defined by the OECD and the American NRC is based on an experiment with closure of the turbine stop valve which was carried out in 1977 in the nuclear power plant Peach Bottom 2 within the framework of a series of 3 experiments. In the experiment, the closure of the valve caused a pressure wave which propagated with attenuation into the reactor core. The condensation of steam in the reactor core caused by the increase of pressure lead to a positive reactivity insertion. The following rise of power was limited by the feedback and the insertion of the control rods. In the frame of the benchmark, the codes could be validated by comparisons with the measured results and the result of the other participants. The benchmark was divided into 3 phases or exercises. Phase I was used for checking the thermo-hydraulic model of the system using a given power release in the core. In phase II, three-dimensional core calculations were performed for given thermal-hydraulic boundary conditions. Coupled calculations were carried out for the selected experiment and four extreme scenarios in the phase III. In the frame of the project, FZR took part in phases II and III of the benchmark. The calculations for phase II were performed with DYN3D by using the assembly discontinuity factors (ADF) and 764 thermal-hydraulic channels (1 channel/assembly). The ATHLET input data set for the coolant system was obtained form the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS). It was slightly modified for the phase III calculations carried out with the parallel coupling of ATHLET and DYN3D. For spatially averaged parameters, a good agreement with the results of measurement and the results of other codes was achieved. The influence of the different models was investigated with the

  6. Contralesional Hemisphere Regulation of Transcranial Magnetic Stimulation-Induced Kinetic Coupling in the Poststroke Lower Limb

    OpenAIRE

    Tan, Andrew Q.; Dhaher, Yasin Y.

    2017-01-01

    Background The neural constraints underlying hemiparetic gait dysfunction are associated with abnormal kinetic outflow and altered muscle synergy structure. Recent evidence from our lab implicates the lesioned hemisphere in mediating the expression of abnormally coupled hip adduction and knee extension synergy, suggesting a role of cortical networks in the regulation of lower limb motor outflow poststroke. The potential contribution of contralesional hemisphere (CON-H) in regulating pareti...

  7. Development of a coupled dynamics code with transport theory capability and application to accelerator driven systems transients

    International Nuclear Information System (INIS)

    Cahalan, J.E.; Ama, T.; Palmiotti, G.; Taiwo, T.A.; Yang, W.S.

    2000-01-01

    The VARIANT-K and DIF3D-K nodal spatial kinetics computer codes have been coupled to the SAS4A and SASSYS-1 liquid metal reactor accident and systems analysis codes. SAS4A and SASSYS-1 have been extended with the addition of heavy liquid metal (Pb and Pb-Bi) thermophysical properties, heat transfer correlations, and fluid dynamics correlations. The coupling methodology and heavy liquid metal modeling additions are described. The new computer code suite has been applied to analysis of neutron source and thermal-hydraulics transients in a model of an accelerator-driven minor actinide burner design proposed in an OECD/NEA/NSC benchmark specification. Modeling assumptions and input data generation procedures are described. Results of transient analyses are reported, with emphasis on comparison of P1 and P3 variational nodal transport theory results with nodal diffusion theory results, and on significance of spatial kinetics effects

  8. Comparison of 'system thermal-hydraulics-3 dimensional reactor kinetics' coupled calculations using the MARS 1D and 3D modules and the MASTER code

    International Nuclear Information System (INIS)

    Jung, J. J.; Joo, H. K.; Lee, W. J.; Ji, S. K.; Jung, B. D.

    2002-01-01

    KAERI has developed the coupled 'system thermal-hydraulics - 3 dimensional reactor kinetics' code, MARS/MASTER since 1998. However, there is a limitation in the existing MARS/MASTER code; that is, to perform the coupled calculations using MARS/MASTER, we have to utilize the hydrodynamic model and the heat structure model of the MARS '3D module'. In some transients, reactor kinetics behavior is strongly multi-dimensional, but core thermal-hydraulic behavior remains in one-dimensional manner. For efficient analysis of such transients, we coupled the MARS 1D module with MASTER. The new feature has been assessed by the 'OECD NEA Main Steam Line Break (MSLB) benchmark exercise III' simulations

  9. Development of the coupled 'system thermal-hydraulics, 3D reactor kinetics, and hot channel' analysis capability of the MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, J. J.; Chung, B. D.; Lee, W.J

    2005-02-01

    The subchannel analysis capability of the MARS 3D module has been improved. Especially, the turbulent mixing and void drift models for flow mixing phenomena in rod bundles have been assessed using some well-known rod bundle test data. Then, the subchannel analysis feature was combined to the existing coupled 'system Thermal-Hydraulics (T/H) and 3D reactor kinetics' calculation capability of MARS. These features allow the coupled 'system T/H, 3D reactor kinetics, and hot channel' analysis capability and, thus, realistic simulations of hot channel behavior as well as global system T/H behavior. In this report, the MARS code features for the coupled analysis capability are described first. The code modifications relevant to the features are also given. Then, a coupled analysis of the Main Steam Line Break (MSLB) is carried out for demonstration. The results of the coupled calculations are very reasonable and realistic, and show these methods can be used to reduce the over-conservatism in the conventional safety analysis.

  10. Coupling effects of grey-grey separate spatial screening soliton pairs

    International Nuclear Information System (INIS)

    Jiang Qichang; Su Yanli; Ji Xuanmang

    2012-01-01

    The existence and coupling effects of grey-grey separate spatial soliton pairs in a biased series non-photovoltaic photorefractive crystal circuit are investigated in this paper. The numerical solution of grey-grey soliton pairs is derived. The coupling effects between two grey solitons resulting from the input optical intensity and crystal temperature are analyzed numerically. The results show that when the input optical intensity of one crystal changes, two grey solitons in a soliton pair will all change; that is, two grey solitons can affect each other by the light-induced current that flows from one crystal to another. When the temperature of one crystal increases, the intensity width of the grey soliton in this crystal first decreases and then increases. Simultaneously, the intensity width of another grey soliton increases monotonically.

  11. Effect of spatially correlated noise on stochastic synchronization in globally coupled FitzHugh-Nagumo neuron systems

    Directory of Open Access Journals (Sweden)

    Yange Shao

    2014-01-01

    Full Text Available The phenomenon of stochastic synchronization in globally coupled FitzHugh-Nagumo (FHN neuron system subjected to spatially correlated Gaussian noise is investigated based on dynamical mean-field approximation (DMA and direct simulation (DS. Results from DMA are in good quantitative or qualitative agreement with those from DS for weak noise intensity and larger system size. Whether the consisting single FHN neuron is staying at the resting state, subthreshold oscillatory regime, or the spiking state, our investigation shows that the synchronization ratio of the globally coupled system becomes higher as the noise correlation coefficient increases, and thus we conclude that spatial correlation has an active effect on stochastic synchronization, and the neurons can achieve complete synchronization in the sense of statistics when the noise correlation coefficient tends to one. Our investigation also discloses that the noise spatial correlation plays the same beneficial role as the global coupling strength in enhancing stochastic synchronization in the ensemble. The result might be useful in understanding the information coding mechanism in neural systems.

  12. Evaluation of the rod ejection accident in Westinghouse Pressurized Water Reactors using spatial kinetics methods

    International Nuclear Information System (INIS)

    Risher, D.H. Jr.

    1975-01-01

    The consequences of a rod ejection accident are investigated in relation to the latest, high power density Westinghouse reactors. Limiting criteria are presented, based on experimental evidence, and if not exceeded these criteria will ensure that there will be no interference with core cooling capability, and radiation releases, if any, will be within the guidelines of 10CFR100. A basis is presented for the conservative selection of plant parameters to be used in the analysis, such that the analysis is applicable to a wide range of past, present, and future reactors. The calculational method employs a one-dimensional spatial kinetics computer code and a transient fuel heat transfer computer code to determine the hot spot fuel temperature versus time following a rod ejection. Using these computer codes, the most limiting hot channel factor (which does not cause the fuel damage limit criteria to be exceeded) has been determined as a function of the ejected rod worth. By this means, the limit criteria have been translated into ejected rod worths and hot channel factors which can be used effectively by the nuclear designer and safety analyst. The calculational method is shown to be conservative, compared to the results of a three-dimensional spatial kinetics analysis

  13. A third-order gas-kinetic CPR method for the Euler and Navier-Stokes equations on triangular meshes

    Science.gov (United States)

    Zhang, Chao; Li, Qibing; Fu, Song; Wang, Z. J.

    2018-06-01

    A third-order accurate gas-kinetic scheme based on the correction procedure via reconstruction (CPR) framework is developed for the Euler and Navier-Stokes equations on triangular meshes. The scheme combines the accuracy and efficiency of the CPR formulation with the multidimensional characteristics and robustness of the gas-kinetic flux solver. Comparing with high-order finite volume gas-kinetic methods, the current scheme is more compact and efficient by avoiding wide stencils on unstructured meshes. Unlike the traditional CPR method where the inviscid and viscous terms are treated differently, the inviscid and viscous fluxes in the current scheme are coupled and computed uniformly through the kinetic evolution model. In addition, the present scheme adopts a fully coupled spatial and temporal gas distribution function for the flux evaluation, achieving high-order accuracy in both space and time within a single step. Numerical tests with a wide range of flow problems, from nearly incompressible to supersonic flows with strong shocks, for both inviscid and viscous problems, demonstrate the high accuracy and efficiency of the present scheme.

  14. Study of Rayleigh-Love coupling from Spatial Gradient Observation

    Science.gov (United States)

    Lin, C. J.; Hosseini, K.; Donner, S.; Vernon, F.; Wassermann, J. M.; Igel, H.

    2017-12-01

    We present a new method to study Rayleigh-Love coupling. Instead of using seismograms solely, where ground motion is recorded as function of time, we incorporate with rotation and strain, also called spatial gradient where ground is represented as function of distance. Seismic rotation and strain are intrinsic different observable wavefield so are helpful to indentify wave type and wave propagation. A Mw 7.5 earthquake on 29 March 2015 occurred in Kokopo, Papua New Guinea recorded by a dense seismic array at PFO, California are used to obtaint seismic spatial gradient. We firstly estimate time series of azimuthal direction and phase velocity of SH wave and Rayleigh wave by analyzing collocated seismograms and rotations. This result also compares with frequency wavenumber methods using a nearby ANZA seismic array. We find the direction of Rayleigh wave fits well with great-circle back azimuth during wave propagation, while the direction of Love wave deviates from that, especially when main energy of Rayleigh wave arrives. From the analysis of cross-correlation between areal strain and vertical rotation, it reveals that high coherence, either positive or negative, happens at the same time when Love wave deparate from great-circle path. We also find the observed azimuth of Love wave and polarized particle motion of Rayleigh wave fits well with the fast direction of Rayleigh wave, for the period of 50 secs. We conclude the cause of deviated azimuth of Love wave is due to Rayleigh-Love coupling, as surface wave propagates through the area with anisotropic structure.

  15. Kinetics of radiation-induced precipitation at the alloy surface

    Science.gov (United States)

    Lam, N. Q.; Nguyen, T.; Leaf, G. K.; Yip, S.

    1988-05-01

    Radiation-induced precipitation of a new phase at the surface of an alloy during irradiation at elevated temperatures was studied with the aid of a kinetic model of segregation. The preferential coupling of solute atoms with the defect fluxes gives rise to a strong solute enrichment at the surface, which, if surpassing the solute solubility limit, leads to the formation of a precipitate layer. The moving precipitate/matrix interface was accommodated by means of a mathematical scheme that transforms spatial coordinates into a reference frame in which the boundaries are immobile. Sample calculations were performed for precipitation of the γ'-Ni 3Si layer on Ni-Si alloys undergoing electron irradiation. The dependences of the precipitation kinetics on the defect-production rate, irradiation temperature, internal defect sink concentration and alloy composition were investigated systematically.

  16. Simulation of A Main Steam Line Break Accident Using the Coupled 'System Thermal-Hydraulics, 3D reactor Kinetics, and Hot Channel' Analysis Capability of MARS 3.0

    International Nuclear Information System (INIS)

    Jeong, Jae Jun; Chung, Bub Dong

    2005-09-01

    For realistic analysis of thermal-hydraulics (T-H) transients in light water reactors, KAERI has developed the best-estimate T-H system code, MARS. The code has been improved from the consolidated version of the RELAP5/MOD3 and COBRA-TF codes. Then, the MARS code was coupled with a three-dimensional (3-D) reactor kinetics code, MASTER. This coupled calculation feature, in conjunction with the existing hot channel analysis capabilities of the MARS and MASTER codes, allows for more realistic simulations of nuclear system transients. In this work, a main steam line break (MSLB) accident is simulated using the coupled 'system T-H, 3-D reactor kinetics, and hot channel analysis' feature of the MARS code. Two coupled calculations are performed for demonstration. First, a coupled calculation of the 'system T-H and 3-D reactor kinetics' with a refined core T-H nodalization is carried out to obtain global core power and local departure from nucleate boiling (DNB) ratio (DNBR) behaviors. Next, for a more accurate DNBR prediction, another coupled calculation with subchannel meshes for the hot channels is performed. The results of the coupled calculations are very reasonable and consistent so that these can be used to remove the excessive conservatism in the conventional safety analysis

  17. Determining Li+-Coupled Redox Targeting Reaction Kinetics of Battery Materials with Scanning Electrochemical Microscopy.

    Science.gov (United States)

    Yan, Ruiting; Ghilane, Jalal; Phuah, Kia Chai; Pham Truong, Thuan Nguyen; Adams, Stefan; Randriamahazaka, Hyacinthe; Wang, Qing

    2018-02-01

    The redox targeting reaction of Li + -storage materials with redox mediators is the key process in redox flow lithium batteries, a promising technology for next-generation large-scale energy storage. The kinetics of the Li + -coupled heterogeneous charge transfer between the energy storage material and redox mediator dictates the performance of the device, while as a new type of charge transfer process it has been rarely studied. Here, scanning electrochemical microscopy (SECM) was employed for the first time to determine the interfacial charge transfer kinetics of LiFePO 4 /FePO 4 upon delithiation and lithiation by a pair of redox shuttle molecules FcBr 2 + and Fc. The effective rate constant k eff was determined to be around 3.70-6.57 × 10 -3 cm/s for the two-way pseudo-first-order reactions, which feature a linear dependence on the composition of LiFePO 4 , validating the kinetic process of interfacial charge transfer rather than bulk solid diffusion. In addition, in conjunction with chronoamperometry measurement, the SECM study disproves the conventional "shrinking-core" model for the delithiation of LiFePO 4 and presents an intriguing way of probing the phase boundary propagations induced by interfacial redox reactions. This study demonstrates a reliable method for the kinetics of redox targeting reactions, and the results provide useful guidance for the optimization of redox targeting systems for large-scale energy storage.

  18. Influence of Proton Acceptors on the Proton-Coupled Electron Transfer Reaction Kinetics of a Ruthenium-Tyrosine Complex.

    Science.gov (United States)

    Lennox, J Christian; Dempsey, Jillian L

    2017-11-22

    A polypyridyl ruthenium complex with fluorinated bipyridine ligands and a covalently bound tyrosine moiety was synthesized, and its photo-induced proton-coupled electron transfer (PCET) reactivity in acetonitrile was investigated with transient absorption spectroscopy. Using flash-quench methodology with methyl viologen as an oxidative quencher, a Ru 3+ species is generated that is capable of initiating the intramolecular PCET oxidation of the tyrosine moiety. Using a series of substituted pyridine bases, the reaction kinetics were found to vary as a function of proton acceptor concentration and identity, with no significant H/D kinetic isotope effect. Through analysis of the kinetics traces and comparison to a control complex without the tyrosine moiety, PCET reactivity was found to proceed through an equilibrium electron transfer followed by proton transfer (ET-PT) pathway in which irreversible deprotonation of the tyrosine radical cation shifts the ET equilibrium, conferring a base dependence on the reaction. Comprehensive kinetics modeling allowed for deconvolution of complex kinetics and determination of rate constants for each elementary step. Across the five pyridine bases explored, spanning a range of 4.2 pK a units, a linear free-energy relationship was found for the proton transfer rate constant with a slope of 0.32. These findings highlight the influence that proton transfer driving force exerts on PCET reaction kinetics.

  19. Signatures of van der Waals binding: A coupling-constant scaling analysis

    Science.gov (United States)

    Jiao, Yang; Schröder, Elsebeth; Hyldgaard, Per

    2018-02-01

    The van der Waals (vdW) density functional (vdW-DF) method [Rep. Prog. Phys. 78, 066501 (2015), 10.1088/0034-4885/78/6/066501] describes dispersion or vdW binding by tracking the effects of an electrodynamic coupling among pairs of electrons and their associated exchange-correlation holes. This is done in a nonlocal-correlation energy term Ecnl, which permits density functional theory calculation in the Kohn-Sham scheme. However, to map the nature of vdW forces in a fully interacting materials system, it is necessary to also account for associated kinetic-correlation energy effects. Here, we present a coupling-constant scaling analysis, which permits us to compute the kinetic-correlation energy Tcnl that is specific to the vdW-DF account of nonlocal correlations. We thus provide a more complete spatially resolved analysis of the electrodynamical-coupling nature of nonlocal-correlation binding, including vdW attraction, in both covalently and noncovalently bonded systems. We find that kinetic-correlation energy effects play a significant role in the account of vdW or dispersion interactions among molecules. Furthermore, our mapping shows that the total nonlocal-correlation binding is concentrated to pockets in the sparse electron distribution located between the material fragments.

  20. Electric currents couple spatially separated biogeochemical processes in marine sediment

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Risgaard-Petersen, Nils; Fossing, Henrik

    2010-01-01

    Some bacteria are capable of extracellular electron transfer, thereby enabling them to use electron acceptors and donors without direct cell contact 1, 2, 3, 4 . Beyond the micrometre scale, however, no firm evidence has previously existed that spatially segregated biogeochemical processes can...... be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water...... in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined...

  1. Advanced methodology to simulate boiling water reactor transient using coupled thermal-hydraulic/neutron-kinetic codes

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Christoph Oliver

    2016-06-13

    Coupled Thermal-hydraulic/Neutron-kinetic (TH/NK) simulations of Boiling Water Reactor transients require well validated and accurate simulation tools. The generation of cross-section (XS) libraries, depending on the individual thermal-hydraulic state parameters, is of paramount importance for coupled simulations. Problem-dependent XS-sets for 3D core simulations are being generated mainly by well validated, fast running commercial and user-friendly lattice codes such as CASMO and HELIOS. In this dissertation a computational route, based on the lattice code SCALE6/TRITON, the cross-section interface GenPMAXS, the best-estimate thermal-hydraulic system code TRACE and the core simulator PARCS, for best-estimate simulations of Boiling Water (BWR) transients has been developed and validated. The computational route has been supplemented by a subsequent uncertainty and sensitivity study based on Monte Carlo sampling and propagation of the uncertainties of input parameters to the output (SUSA code). The analysis of a single BWR fuel assembly depletion problem with PARCS using SCALE/TRITON cross-sections has been shown a good agreement with the results obtained with CASMO cross-section sets. However, to compensate the deficiencies of the interface program GenPMAXS, PYTHON scripts had to be developed to incorporate missing data, as the yields of Iodine, Xenon and Promethium, into the cross-section-data sets (PMAXS-format) generated by GenPMAXS from the SCALE/TRITON output. The results of the depletion analysis of a full BWR core with PARCS have indicated the importance of considering history effects, adequate modeling of the reflector region and the control rods, as the PARCS simulations for depleted fuel and all control rods inserted (ARI) differs significantly at the fuel assembly top and bottom. Systematic investigations with the coupled codes TRACE/PARCS have been performed to analyse the core behaviour at different thermal conditions using nuclear data (XS

  2. Development of neutronic models for the thermal hydraulics coupling of the MSFR and the calculation of effective kinetic parameters

    International Nuclear Information System (INIS)

    Laureau, Axel

    2015-01-01

    In this PhD thesis, we describe the development of innovative neutronic models for their coupling with thermal hydraulics such that they combine precision and reasonable computational times. One of the main cases where this method is applied is the Molten Salt Fast Reactor (MSFR) whose combines a fast neutron spectrum with a thorium cycle. In this fourth generation reactor, the motion of the delayed neutron precursors and the associated phenomena have to be taken into account due to the liquid fuel circulation. The starting point for these developments was the preliminary design of this type of system where a dedicated multi-physical representation was needed to study the reactor performance in steady and transient conditions. As a first step, a stationary coupling was developed. A neutronic model based on a stochastic approach was associated to a CFD (Computational Fluid Dynamics) code to solve the Navier Stokes equations for turbulent flows and the transport of the delayed neutron precursors. The impact of this precursor motion is taken into account by reconstructing the prompt shower that they generate. This approach, called by shower, views the critical reactor as a prompt subcritical reactor that amplifies a source of delayed neutrons. A second step consisted in developing a neutronic model based on a time dependent version of the fission matrices (Transient Fission Matrix or TFM) so as to enable reactor transient studies. With the TFM model, an initial computation of the matrices with a stochastic code (MCNP, SERPENT) allows the characterization of the global spatial and time dependent neutronic response of the reactor with a precision close to that of a Monte Carlo calculation. The information thus obtained is then used to calculate transients, while retaining the advantage of reduced computational time. The TFM model, which can be used for various system concepts, also allows the evaluation of effective kinetic parameters such as the effective fraction of

  3. Spectral-Kinetic Coupling and Effect of Microfield Rotation on Stark Broadening in Plasmas

    Directory of Open Access Journals (Sweden)

    Alexander V. Demura

    2014-07-01

    Full Text Available The study deals with two conceptual problems in the theory of Stark broadening by plasmas. One problem is the assumption of the density matrix diagonality in the calculation of spectral line profiles. This assumption is closely related to the definition of zero wave functions basis within which the density matrix is assumed to be diagonal, and obviously violated under the basis change. A consistent use of density matrix in the theoretical scheme inevitably leads to interdependence of atomic kinetics, describing the population of atomic states with the Stark profiles of spectral lines, i.e., to spectral-kinetic coupling. The other problem is connected with the study of the influence of microfield fluctuations on Stark profiles. Here the main results of the perturbative approach to ion dynamics, called the theory of thermal corrections (TTC, are presented, within which the main contribution to effects of ion dynamics is due to microfield fluctuations caused by rotations. In the present study the qualitative behavior of the Stark profiles in the line center within predictions of TTC is confirmed, using non-perturbative computer simulations.

  4. ATLASGAL-selected massive clumps in the inner Galaxy. VI. Kinetic temperature and spatial density measured with formaldehyde

    Science.gov (United States)

    Tang, X. D.; Henkel, C.; Wyrowski, F.; Giannetti, A.; Menten, K. M.; Csengeri, T.; Leurini, S.; Urquhart, J. S.; König, C.; Güsten, R.; Lin, Y. X.; Zheng, X. W.; Esimbek, J.; Zhou, J. J.

    2018-03-01

    Context. Formaldehyde (H2CO) is a reliable tracer to accurately measure the physical parameters of dense gas in star-forming regions. Aim. We aim to determine directly the kinetic temperature and spatial density with formaldehyde for the 100 brightest ATLASGAL-selected clumps (the TOP100 sample) at 870 μm representing various evolutionary stages of high-mass star formation. Methods: Ten transitions (J = 3-2 and 4-3) of ortho- and para-H2CO near 211, 218, 225, and 291 GHz were observed with the Atacama Pathfinder EXperiment (APEX) 12 m telescope. Results: Using non-LTE models with RADEX, we derived the gas kinetic temperature and spatial density with the measured para-H2CO 321-220/303-202, 422-321/404-303, and 404-303/303-202 ratios. The gas kinetic temperatures derived from the para-H2CO 321-220/303-202 and 422-321/404-303 line ratios are high, ranging from 43 to >300 K with an unweighted average of 91 ± 4 K. Deduced Tkin values from the J = 3-2 and 4-3 transitions are similar. Spatial densities of the gas derived from the para-H2CO 404-303/303-202 line ratios yield 0.6-8.3 × 106 cm-3 with an unweighted average of 1.5 (±0.1) × 106 cm-3. A comparison of kinetic temperatures derived from para-H2CO, NH3, and dust emission indicates that para-H2CO traces a distinctly higher temperature than the NH3 (2, 2)/(1, 1) transitions and the dust, tracing heated gas more directly associated with the star formation process. The H2CO line widths are found to be correlated with bolometric luminosity and increase with the evolutionary stage of the clumps, which suggests that higher luminosities tend to be associated with a more turbulent molecular medium. It seems that the spatial densities measured with H2CO do not vary significantly with the evolutionary stage of the clumps. However, averaged gas kinetic temperatures derived from H2CO increase with time through the evolution of the clumps. The high temperature of the gas traced by H2CO may be mainly caused by radiation from

  5. Human seizures couple across spatial scales through travelling wave dynamics

    Science.gov (United States)

    Martinet, L.-E.; Fiddyment, G.; Madsen, J. R.; Eskandar, E. N.; Truccolo, W.; Eden, U. T.; Cash, S. S.; Kramer, M. A.

    2017-04-01

    Epilepsy--the propensity toward recurrent, unprovoked seizures--is a devastating disease affecting 65 million people worldwide. Understanding and treating this disease remains a challenge, as seizures manifest through mechanisms and features that span spatial and temporal scales. Here we address this challenge through the analysis and modelling of human brain voltage activity recorded simultaneously across microscopic and macroscopic spatial scales. We show that during seizure large-scale neural populations spanning centimetres of cortex coordinate with small neural groups spanning cortical columns, and provide evidence that rapidly propagating waves of activity underlie this increased inter-scale coupling. We develop a corresponding computational model to propose specific mechanisms--namely, the effects of an increased extracellular potassium concentration diffusing in space--that support the observed spatiotemporal dynamics. Understanding the multi-scale, spatiotemporal dynamics of human seizures--and connecting these dynamics to specific biological mechanisms--promises new insights to treat this devastating disease.

  6. Coupling of unidimensional neutron kinetics to thermal hydraulics in parallel channels

    International Nuclear Information System (INIS)

    Cecenas F, M.; Campos G, R.M.

    2003-01-01

    In this work the dynamic behavior of a consistent system in fifteen channels in parallel that represent the reactor core of a BWR type, coupled of a kinetic neutronic model in one dimension is studied by means of time series. The arrangement of channels is obtained collapsing the assemblies that it consists the core to an arrangement of channels prepared in straight lines, and it is coupled to the unidimensional solution of the neutron diffusion equation. This solution represents the radial power distribution, and initially the static solution is obtained to verify that the one modeling core is critic. The coupled set nuclear-thermal hydraulics it is solved numerically by means of a net of CPUs working in the outline teacher-slave by means of Parallel Virtual Machine (PVM), subject to the restriction that the pressure drop is equal for each channel, which is executed iterating on the refrigerant distribution. The channels are dimensioned according to the one Stability Benchmark of the Ringhals swedish plant, organized by the Nuclear Energy Agency in 1994. From the information of this benchmark it is obtained the axial power profile for each channel, which is assumed as invariant in the time. To obtain the time series, the system gets excited with white noise (sequence that statistically obeys to a normal distribution with zero media), so that the power generated in each channel it possesses the same ones characteristics of a typical signal obtained by means of the acquisition of those signals of neutron flux in a BWR reactor. (Author)

  7. Langevin Dynamics with Spatial Correlations as a Model for Electron-Phonon Coupling

    Science.gov (United States)

    Tamm, A.; Caro, M.; Caro, A.; Samolyuk, G.; Klintenberg, M.; Correa, A. A.

    2018-05-01

    Stochastic Langevin dynamics has been traditionally used as a tool to describe nonequilibrium processes. When utilized in systems with collective modes, traditional Langevin dynamics relaxes all modes indiscriminately, regardless of their wavelength. We propose a generalization of Langevin dynamics that can capture a differential coupling between collective modes and the bath, by introducing spatial correlations in the random forces. This allows modeling the electronic subsystem in a metal as a generalized Langevin bath endowed with a concept of locality, greatly improving the capabilities of the two-temperature model. The specific form proposed here for the spatial correlations produces a physical wave-vector and polarization dependency of the relaxation produced by the electron-phonon coupling in a solid. We show that the resulting model can be used for describing the path to equilibration of ions and electrons and also as a thermostat to sample the equilibrium canonical ensemble. By extension, the family of models presented here can be applied in general to any dense system, solids, alloys, and dense plasmas. As an example, we apply the model to study the nonequilibrium dynamics of an electron-ion two-temperature Ni crystal.

  8. Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. II. Experimental fields and measured momentum coupling

    Science.gov (United States)

    Bonde, Jeffrey; Vincena, Stephen; Gekelman, Walter

    2018-04-01

    The momentum coupled to a magnetized, ambient argon plasma from a high- β, laser-produced carbon plasma is examined in a collisionless, weakly coupled limit. The total electric field was measured by separately examining the induced component associated with the rapidly changing magnetic field of the high- β (kinetic β˜106), expanding plasma and the electrostatic component due to polarization of the expansion. Their temporal and spatial structures are discussed and their effect on the ambient argon plasma (thermal β˜10-2) is confirmed with a laser-induced fluorescence diagnostic, which directly probed the argon ion velocity distribution function. For the given experimental conditions, the electrostatic field is shown to dominate the interaction between the high- β expansion and the ambient plasma. Specifically, the expanding plasma couples energy and momentum into the ambient plasma by pulling ions inward against the flow direction.

  9. Capacitively coupled radio-frequency discharges in nitrogen at low pressures

    KAUST Repository

    Alves, Luís Lemos

    2012-07-06

    This paper uses experiments and modelling to study capacitively coupled radio-frequency (rf) discharges in pure nitrogen, at 13.56MHz frequency, 0.11 mbar pressures and 230W coupled powers. Experiments performed on two similar (not twin) setups, existing in the LATMOS and the GREMI laboratories, include electrical and optical emission spectroscopy (OES) measurements. Electrical measurements give the rf-applied and the direct-current-self-bias voltages, the effective power coupled to the plasma and the average electron density. OES diagnostics measure the intensities of radiative transitions with the nitrogen second-positive and first-negative systems, and with the 811.5 nm atomic line of argon (present as an actinometer). Simulations use a hybrid code that couples a two-dimensional time-dependent fluid module, describing the dynamics of the charged particles (electrons and positive ions N 2 + and N 4 + ), and a zero-dimensional kinetic module, describing the production and destruction of nitrogen (atomic and molecular) neutral species. The coupling between these modules adopts the local mean energy approximation to define spacetime-dependent electron parameters for the fluid module and to work out spacetime-averaged rates for the kinetic module. The model gives general good predictions for the self-bias voltage and for the intensities of radiative transitions (both average and spatially resolved), underestimating the electron density by a factor of 34. © 2012 IOP Publishing Ltd.

  10. Code Coupling via Jacobian-Free Newton-Krylov Algorithms with Application to Magnetized Fluid Plasma and Kinetic Neutral Models

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Ilon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-05-27

    Jacobian-free Newton-Krylov (JFNK) algorithms are a potentially powerful class of methods for solving the problem of coupling codes that address dfferent physics models. As communication capability between individual submodules varies, different choices of coupling algorithms are required. The more communication that is available, the more possible it becomes to exploit the simple sparsity pattern of the Jacobian, albeit of a large system. The less communication that is available, the more dense the Jacobian matrices become and new types of preconditioners must be sought to efficiently take large time steps. In general, methods that use constrained or reduced subsystems can offer a compromise in complexity. The specific problem of coupling a fluid plasma code to a kinetic neutrals code is discussed as an example.

  11. Simulation of A Main Steam Line Break Accident Using the Coupled 'System Thermal-Hydraulics, 3D reactor Kinetics, and Hot Channel' Analysis Capability of MARS 3.0

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Jun; Chung, Bub Dong

    2005-09-15

    For realistic analysis of thermal-hydraulics (T-H) transients in light water reactors, KAERI has developed the best-estimate T-H system code, MARS. The code has been improved from the consolidated version of the RELAP5/MOD3 and COBRA-TF codes. Then, the MARS code was coupled with a three-dimensional (3-D) reactor kinetics code, MASTER. This coupled calculation feature, in conjunction with the existing hot channel analysis capabilities of the MARS and MASTER codes, allows for more realistic simulations of nuclear system transients. In this work, a main steam line break (MSLB) accident is simulated using the coupled 'system T-H, 3-D reactor kinetics, and hot channel analysis' feature of the MARS code. Two coupled calculations are performed for demonstration. First, a coupled calculation of the 'system T-H and 3-D reactor kinetics' with a refined core T-H nodalization is carried out to obtain global core power and local departure from nucleate boiling (DNB) ratio (DNBR) behaviors. Next, for a more accurate DNBR prediction, another coupled calculation with subchannel meshes for the hot channels is performed. The results of the coupled calculations are very reasonable and consistent so that these can be used to remove the excessive conservatism in the conventional safety analysis.

  12. Learning of couplings for random asymmetric kinetic Ising models revisited: random correlation matrices and learning curves

    International Nuclear Information System (INIS)

    Bachschmid-Romano, Ludovica; Opper, Manfred

    2015-01-01

    We study analytically the performance of a recently proposed algorithm for learning the couplings of a random asymmetric kinetic Ising model from finite length trajectories of the spin dynamics. Our analysis shows the importance of the nontrivial equal time correlations between spins induced by the dynamics for the speed of learning. These correlations become more important as the spin’s stochasticity is decreased. We also analyse the deviation of the estimation error (paper)

  13. Kinetic insights over a PEMFC operating on stationary and oscillatory states.

    Science.gov (United States)

    Mota, Andressa; Gonzalez, Ernesto R; Eiswirth, Markus

    2011-12-01

    Kinetic investigations in the oscillatory state have been carried out in order to shed light on the interplay between the complex kinetics exhibited by a proton exchange membrane fuel cell fed with poisoned H(2) (108 ppm of CO) and the other in serie process. The apparent activation energy (E(a)) in the stationary state was investigated in order to clarify the E(a) observed in the oscillatory state. The apparent activation energy in the stationary state, under potentiostatic control, rendered (a) E(a) ≈ 50-60 kJ mol(-1) over 0.8 V < E < 0.6 V and (b) E(a) ≈ 10 kJ mol(-1) at E = 0.3 V. The former is related to the H(2) adsorption in the vacancies of the surface poisoned by CO and the latter is correlated to the process of proton conductivity in the membrane. The dependence of the period-one oscillations on the temperature yielded a genuine Arrhenius dependence with two E(a) values: (a) E(a) around 70 kJ mol(-1), at high temperatures, and (b) E(a) around 10-15 kJ mol(-1), at lower temperatures. The latter E(a) indicates the presence of protonic mass transport coupled to the essential oscillatory mechanism. These insights point in the right direction to predict spatial couplings between anode and cathode as having the highest strength as well as to speculate the most likely candidates to promote spatial inhomogeneities. © 2011 American Chemical Society

  14. Thermal hydraulic and neutron kinetic coupled simulation of the IPR-R1 Triga reactor

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Patricia A.L.; Costa, Antonella L.; Pereira, Claubia; Silva, Clarysson A.M. da; Veloso, Maria Auxiliadora F.; Soares, Humbero V., E-mail: patricialire@yahoo.com.br, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br, E-mail: clarysson@nuclear.ufmg.br, E-mail: dora@nuclear.ufmg.br, E-mail: betovitor@ig.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto Nacional de Ciencias e Tecnologia de Reatores Nucleares Inovadores (INCT/CNPq Rede), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The nuclear industry and the scientific community have turned the attention for the development of coupled 3D neutron kinetics (NK) and thermal-hydraulic (TH) system codes to investigate specific nuclear reactor transients. Improving in theoretical investigations of complex phenomena in nuclear reactor technology have been increased thanks to numerical methods and computational resources incorporated in nuclear codes. This paper presents a model for the IPR-R1 TRIGA research reactor using the RELAP5-3D 3.0 code. The development and the assessment of the thermal-hydraulic RELAP5 code model for the IPR-R1 have been validated for steady state and transient situations and the results were published in preceding works. Results of RELAP5-3D steady state and a transient case presented in this paper show good agreement with experimental data, validating then this model for point kinetic calculations. To supply adequate cross sections to the NK code, the WIMSD5 is being used. First results of steady state calculation using the 3D neutron modeling are being presented in this paper. (author)

  15. Spatial kinetics studies in liquid-metal fast breeder reactor critical assemblies

    International Nuclear Information System (INIS)

    Brumback, S.B.; Goin, R.W.; Carpenter, S.G.

    1988-01-01

    Recent measurements in the zero-power physics reactor have been used to study the effect of spatial decoupling in fast reactor critical assemblies of various sizes and compositions. Flux distributions in these assemblies had varying degrees of sensitivity to perturbations. Decoupling was investigated using rod-drop, boron-oscillator, and noise-coherence techniques, which emphasized different times following perturbations. Equilibrium flux distributions were also measured for subcritical configurations with inserted control rods. For most assemblies, accurate reactivity measurements were obtained by analyzing the power history from a single detector using inverse kinetics methods, assuming an instantaneous efficiency change for the detector. The instantaneous efficiency change assumption broke down, however, in assemblies with zones in which normal plutonium fuel was replaced by /sup 235/U fuel or fuel with a high /sup 240/Pu content. Flux redistributions caused by perturbations in these cores took several minutes to evolve

  16. 120W, NA_0.15 fiber coupled LD module with 125-μm clad/NA 0.22 fiber by spatial coupling method

    Science.gov (United States)

    Ishige, Yuta; Kaji, Eisaku; Katayama, Etsuji; Ohki, Yutaka; Gajdátsy, Gábor; Cserteg, András.

    2018-02-01

    We have fabricated a fiber coupled semiconductor laser diode module by means of spatial beam combining of single emitter broad area semiconductor laser diode chips in the 9xx nm band. In the spatial beam multiplexing method, the numerical aperture of the output light from the optical fiber increases by increasing the number of laser diodes coupled into the fiber. To reduce it, we have tried the approach to improving assembly process technology. As a result, we could fabricate laser diode modules having a light output power of 120W or more and 95% power within NA of 0.15 or less from a single optical fiber with 125-μm cladding diameter. Furthermore, we have obtained that the laser diode module maintaining high coupling efficiency can be realized even around the fill factor of 0.95. This has been achieved by improving the optical alignment method regarding the fast axis stack pitch of the laser diodes in the laser diode module. Therefore, without using techniques such as polarization combining and wavelength combining, high output power was realized while keeping small numerical aperture. This contributes to a reduction in unit price per light output power of the pumping laser diode module.

  17. Coupled kinetic equations for fermions and bosons in the relaxation-time approximation

    Science.gov (United States)

    Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw

    2018-02-01

    Kinetic equations for fermions and bosons are solved numerically in the relaxation-time approximation for the case of one-dimensional boost-invariant geometry. Fermions are massive and carry baryon number, while bosons are massless. The conservation laws for the baryon number, energy, and momentum lead to two Landau matching conditions, which specify the coupling between the fermionic and bosonic sectors and determine the proper-time dependence of the effective temperature and baryon chemical potential of the system. The numerical results illustrate how a nonequilibrium mixture of fermions and bosons approaches hydrodynamic regime described by the Navier-Stokes equations with appropriate forms of the kinetic coefficients. The shear viscosity of a mixture is the sum of the shear viscosities of fermion and boson components, while the bulk viscosity is given by the formula known for a gas of fermions, however, with the thermodynamic variables characterising the mixture. Thus, we find that massless bosons contribute in a nontrivial way to the bulk viscosity of a mixture, provided fermions are massive. We further observe the hydrodynamization effect, which takes place earlier in the shear sector than in the bulk one. The numerical studies of the ratio of the longitudinal and transverse pressures show, to a good approximation, that it depends on the ratio of the relaxation and proper times only. This behavior is connected with the existence of an attractor solution for conformal systems.

  18. Transmit/Receive Spatial Smoothing with Improved Effective Array Aperture for Angle and Mutual Coupling Estimation in Bistatic MIMO Radar

    Directory of Open Access Journals (Sweden)

    Haomiao Liu

    2016-01-01

    Full Text Available We proposed a transmit/receive spatial smoothing with improved effective aperture approach for angle and mutual coupling estimation in bistatic MIMO radar. Firstly, the noise in each channel is restrained, by exploiting its independency, in both the spatial domain and temporal domain. Then the augmented transmit and receive spatial smoothing matrices with improved effective aperture are obtained, by exploiting the Vandermonde structure of steering vector with uniform linear array. The DOD and DOA can be estimated by utilizing the unitary ESPRIT algorithm. Finally, the mutual coupling coefficients of both the transmitter and the receiver can be figured out with the estimated angles of DOD and DOA. Numerical examples are presented to verify the effectiveness of the proposed method.

  19. Spatially indirect excitons in coupled quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Chih-Wei Eddy [Univ. of California, Berkeley, CA (United States)

    2004-03-01

    Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer)2 were

  20. Analyses of kinetic glass transition in short-range attractive colloids based on time-convolutionless mode-coupling theory.

    Science.gov (United States)

    Narumi, Takayuki; Tokuyama, Michio

    2017-03-01

    For short-range attractive colloids, the phase diagram of the kinetic glass transition is studied by time-convolutionless mode-coupling theory (TMCT). Using numerical calculations, TMCT is shown to recover all the remarkable features predicted by the mode-coupling theory for attractive colloids: the glass-liquid-glass reentrant, the glass-glass transition, and the higher-order singularities. It is also demonstrated through the comparisons with the results of molecular dynamics for the binary attractive colloids that TMCT improves the critical values of the volume fraction. In addition, a schematic model of three control parameters is investigated analytically. It is thus confirmed that TMCT can describe the glass-glass transition and higher-order singularities even in such a schematic model.

  1. A kinetics database and scripts for PHREEQC

    Science.gov (United States)

    Hu, B.; Zhang, Y.; Teng, Y.; Zhu, C.

    2017-12-01

    Kinetics of geochemical reactions has been increasingly used in numerical models to simulate coupled flow, mass transport, and chemical reactions. However, the kinetic data are scattered in the literature. To assemble a kinetic dataset for a modeling project is an intimidating task for most. In order to facilitate the application of kinetics in geochemical modeling, we assembled kinetics parameters into a database for the geochemical simulation program, PHREEQC (version 3.0). Kinetics data were collected from the literature. Our database includes kinetic data for over 70 minerals. The rate equations are also programmed into scripts with the Basic language. Using the new kinetic database, we simulated reaction path during the albite dissolution process using various rate equations in the literature. The simulation results with three different rate equations gave difference reaction paths at different time scale. Another application involves a coupled reactive transport model simulating the advancement of an acid plume in an acid mine drainage site associated with Bear Creek Uranium tailings pond. Geochemical reactions including calcite, gypsum, and illite were simulated with PHREEQC using the new kinetic database. The simulation results successfully demonstrated the utility of new kinetic database.

  2. Development and verification of an efficient spatial neutron kinetics method for reactivity-initiated event analyses

    International Nuclear Information System (INIS)

    Ikeda, Hideaki; Takeda, Toshikazu

    2001-01-01

    A space/time nodal diffusion code based on the nodal expansion method (NEM), EPISODE, was developed in order to evaluate transient neutron behavior in light water reactor cores. The present code employs the improved quasistatic (IQS) method for spatial neutron kinetics, and neutron flux distribution is numerically obtained by solving the neutron diffusion equation with the nonlinear iteration scheme to achieve fast computation. A predictor-corrector (PC) method developed in the present study enabled to apply a coarse time mesh to the transient spatial neutron calculation than that applicable in the conventional IQS model, which improved computational efficiency further. Its computational advantage was demonstrated by applying to the numerical benchmark problems that simulate reactivity-initiated events, showing reduction of computational times up to a factor of three than the conventional IQS. The thermohydraulics model was also incorporated in EPISODE, and the capability of realistic reactivity event analyses was verified using the SPERT-III/E-Core experimental data. (author)

  3. Kinetics-Driven Superconducting Gap in Underdoped Cuprate Superconductors Within the Strong-Coupling Limit

    Directory of Open Access Journals (Sweden)

    Yucel Yildirim

    2011-09-01

    Full Text Available A generic theory of the quasiparticle superconducting gap in underdoped cuprates is derived in the strong-coupling limit, and found to describe the experimental “second gap” in absolute scale. In drastic contrast to the standard pairing gap associated with Bogoliubov quasiparticle excitations, the quasiparticle gap is shown to originate from anomalous kinetic (scattering processes, with a size unrelated to the pairing strength. Consequently, the k dependence of the gap deviates significantly from the pure d_{x^{2}-y^{2}} wave of the order parameter. Our study reveals a new paradigm for the nature of the superconducting gap, and is expected to reconcile numerous apparent contradictions among existing experiments and point toward a more coherent understanding of high-temperature superconductivity.

  4. Synchronization of three electrochemical oscillators: From local to global coupling

    Science.gov (United States)

    Liu, Yifan; Sebek, Michael; Mori, Fumito; Kiss, István Z.

    2018-04-01

    We investigate the formation of synchronization patterns in an oscillatory nickel electrodissolution system in a network obtained by superimposing local and global coupling with three electrodes. We explored the behavior through numerical simulations using kinetic ordinary differential equations, Kuramoto type phase models, and experiments, in which the local to global coupling could be tuned by cross resistances between the three nickel wires. At intermediate coupling strength with predominant global coupling, two of the three oscillators, whose natural frequencies are closer, can synchronize. By adding even a relatively small amount of local coupling (about 9%-25%), a spatially organized partially synchronized state can occur where one of the two synchronized elements is in the center. A formula was derived for predicting the critical coupling strength at which full synchronization will occur independent of the permutation of the natural frequencies of the oscillators over the network. The formula correctly predicts the variation of the critical coupling strength as a function of the global coupling fraction, e.g., with local coupling the critical coupling strength is about twice than that required with global coupling. The results show the importance of the topology of the network on the synchronization properties in a simple three-oscillator setup and could provide guidelines for decrypting coupling topology from identification of synchronization patterns.

  5. Improved point-kinetics model for the BWR control rod drop accident

    International Nuclear Information System (INIS)

    Neogy, P.; Wakabayashi, T.; Carew, J.F.

    1985-01-01

    A simple prescription to account for spatial feedback weighting effects in RDA (rod drop accident) point-kinetics analyses has been derived and tested. The point-kinetics feedback model is linear in the core peaking factor, F/sub Q/, and in the core average void fraction and fuel temperature. Comparison with detailed spatial kinetics analyses indicates that the improved point-kinetics model provides an accurate description of the BWR RDA

  6. The Effect of Spatial Heterogeneities on Nucleation Kinetics in Amorphous Aluminum Alloys

    Science.gov (United States)

    Shen, Ye

    The mechanical property of the Al based metallic glass could be enhanced significantly by introducing the high number density of Al-fcc nanocrystals (1021 ˜1023 m-3) to the amorphous matrix through annealing treatments, which motivates the study of the nucleation kinetics for the microstructure control. With the presence of a high number density (1025 m-3) of aluminum-like medium range order (MRO), the Al-Y-Fe metallic glass is considered to be spatially heterogeneous. Combining the classical nucleation theory with the structural configuration, a MRO seeded nucleation model has been proposed and yields theoretical steady state nucleation rates consistent with the experimental results. In addition, this model satisfies all the thermodynamic and kinetic constraints to be reasonable. Compared with the Al-Y-Fe system, the primary crystallization onset temperature decreases significantly and the transient delay time (tau) is shorter in the Al-Y-Fe-Pb(In) systems because the insoluble Pb and In nanoparticles in the amorphous matrix served as extrinsic spatial heterogeneity to provide the nucleation sites for Al-fcc precipitation and the high-resolution transmission electron microscopy (HRTEM) images of the Pb-Al interface revealed a good wetting behavior between the Al and Pb nanoparticles. The study of the transient delay time (tau) could provide insight on the transport behavior during the nucleation and a more convenient approach to evaluate the delay time has been developed by measuring the Al-Y-Fe amorphous alloy glass transition temperature (Tg) shift with the increasing annealing time (tannealing) in FlashDSC. The break point in the Tg vs. log(tannealing) plot has been identified to correspond to the delay time by the TEM characterization. FlashDSC tests with different heating rates and different compositions (Al-Y-Fe-Pb and Zn-Mg-Ca-Yb amorphous alloys) further confirmed the break point and delay time relationship. The amorphous matrix composition and the

  7. Study on spatial distribution of plasma parameters in a magnetized inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Hee-Woon; Lee, Woohyun; Kim, Ji-Won; Whang, Ki-Woong, E-mail: kwhang@snu.ac.kr [Plasma Laboratory, Inter-University Semiconductor Research Center, Department of Electrical and Computer Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyuk [Samsung Electronics Co., Banwol-dong, Hwaseong 445-701 (Korea, Republic of); Park, Wanjae [Tokyo Electron Miyagi Ltd., Taiwa-cho, Kurokawa-gun, Miyagi 981-3629 (Japan)

    2015-07-15

    Spatial distributions of various plasma parameters such as plasma density, electron temperature, and radical density in an inductively coupled plasma (ICP) and a magnetized inductively coupled plasma (M-ICP) were investigated and compared. Electron temperature in between the rf window and the substrate holder of M-ICP was higher than that of ICP, whereas the one just above the substrate holder of M-ICP was similar to that of ICP when a weak (<8 G) magnetic field was employed. As a result, radical densities in M-ICP were higher than those in ICP and the etch rate of oxide in M-ICP was faster than that in ICP without severe electron charging in 90 nm high aspect ratio contact hole etch.

  8. Variational estimates of point-kinetics parameters

    International Nuclear Information System (INIS)

    Favorite, J.A.; Stacey, W.M. Jr.

    1995-01-01

    Variational estimates of the effect of flux shifts on the integral reactivity parameter of the point-kinetics equations and on regional power fractions were calculated for a variety of localized perturbations in two light water reactor (LWR) model problems representing a small, tightly coupled core and a large, loosely coupled core. For the small core, the flux shifts resulting from even relatively large localized reactivity changes (∼600 pcm) were small, and the standard point-kinetics approximation estimates of reactivity were in error by only ∼10% or less, while the variational estimates were accurate to within ∼1%. For the larger core, significant (>50%) flux shifts occurred in response to local perturbations, leading to errors of the same magnitude in the standard point-kinetics approximation of the reactivity worth. For positive reactivity, the error in the variational estimate of reactivity was only a few percent in the larger core, and the resulting transient power prediction was 1 to 2 orders of magnitude more accurate than with the standard point-kinetics approximation. For a large, local negative reactivity insertion resulting in a large flux shift, the accuracy of the variational estimate broke down. The variational estimate of the effect of flux shifts on reactivity in point-kinetics calculations of transients in LWR cores was found to generally result in greatly improved accuracy, relative to the standard point-kinetics approximation, the exception being for large negative reactivity insertions with large flux shifts in large, loosely coupled cores

  9. Prototype coupling of the CFD software ansys CFX with the 3D neutron kinetic core model DYN3D - 249

    International Nuclear Information System (INIS)

    Kliem, S.; Rohde, U.; Schutze, J.; Frank, Th.

    2010-01-01

    The CFD code ANSYS CFX has been coupled with the neutron-kinetic core model DYN3D. ANSYS CFX calculates the fluid dynamics and related transport phenomena in the reactor's coolant and provides the corresponding data to DYN3D. In the fluid flow simulation of the coolant, the core itself is modeled within the porous body approach. DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the prototype that is currently available, the coupling is restricted to single-phase flow problems. In the time domain an explicit coupling of the codes has been implemented so far. Steady-state and transient verification calculations for a small-size test problem confirm the correctness of the implementation of the prototype coupling. This test problem was a mini-core consisting of nine real-size fuel assemblies. Comparison was performed with the DYN3D standalone code. In the steady state, the effective multiplication factor obtained by the ANSYS CFX/DYN3D codes shows a deviation of 9.8 pcm from the DYN3D stand-alone solution. This difference can be attributed to the use of different water property packages in the two codes. The transient test case simulated the withdrawal of the control rod from the central fuel assembly at hot zero power. Power increase during the introduction of positive reactivity and power reduction due to fuel temperature increase are calculated in the same manner by the coupled and the stand-alone codes. The maximum values reached during the power rise differ by about 1 MW at a power level of 50 MW. Beside the different water property packages, these differences are caused by the use of different flow solvers. (authors)

  10. Progress in antenna coupled kinetic inductance detectors

    NARCIS (Netherlands)

    Baryshev, A.; Baselmans, J.J.A.; Freni, A.; Gerini, G.; Hoevers, H.F.C.; Iacono, A.; Neto, A.

    2011-01-01

    This paper describes the combined Dutch efforts toward the development of large wideband focal plane array receivers based on kinetic inductance detectors (KIDs). Taking into account strict electromagnetic and detector sensitivity requirements for future ground and space based observatories, this

  11. Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking

    Science.gov (United States)

    Sunko, Veronika; Rosner, H.; Kushwaha, P.; Khim, S.; Mazzola, F.; Bawden, L.; Clark, O. J.; Riley, J. M.; Kasinathan, D.; Haverkort, M. W.; Kim, T. K.; Hoesch, M.; Fujii, J.; Vobornik, I.; MacKenzie, A. P.; King, P. D. C.

    2017-09-01

    Engineering and enhancing the breaking of inversion symmetry in solids—that is, allowing electrons to differentiate between ‘up’ and ‘down’—is a key goal in condensed-matter physics and materials science because it can be used to stabilize states that are of fundamental interest and also have potential practical applications. Examples include improved ferroelectrics for memory devices and materials that host Majorana zero modes for quantum computing. Although inversion symmetry is naturally broken in several crystalline environments, such as at surfaces and interfaces, maximizing the influence of this effect on the electronic states of interest remains a challenge. Here we present a mechanism for realizing a much larger coupling of inversion-symmetry breaking to itinerant surface electrons than is typically achieved. The key element is a pronounced asymmetry of surface hopping energies—that is, a kinetic-energy-coupled inversion-symmetry breaking, the energy scale of which is a substantial fraction of the bandwidth. Using spin- and angle-resolved photoemission spectroscopy, we demonstrate that such a strong inversion-symmetry breaking, when combined with spin-orbit interactions, can mediate Rashba-like spin splittings that are much larger than would typically be expected. The energy scale of the inversion-symmetry breaking that we achieve is so large that the spin splitting in the CoO2- and RhO2-derived surface states of delafossite oxides becomes controlled by the full atomic spin-orbit coupling of the 3d and 4d transition metals, resulting in some of the largest known Rashba-like spin splittings. The core structural building blocks that facilitate the bandwidth-scaled inversion-symmetry breaking are common to numerous materials. Our findings therefore provide opportunities for creating spin-textured states and suggest routes to interfacial control of inversion-symmetry breaking in designer heterostructures of oxides and other material classes.

  12. Acousto-optic resonant coupling of three spatial modes in an optical fiber.

    Science.gov (United States)

    Park, Hee Su; Song, Kwang Yong

    2014-01-27

    A fiber-optic analogue to an externally driven three-level quantum state is demonstrated by acousto-optic coupling of the spatial modes in a few-mode fiber. Under the condition analogous to electromagnetically induced transparency, a narrow-bandwidth transmission within an absorption band for the fundamental mode is demonstrated. The presented structure is an efficient converter between the fundamental mode and the higher-order modes that cannot be easily addressed by previous techniques, therefore can play a significant role in the next-generation space-division multiplexing communications as an arbitrarily mode-selectable router.

  13. Final Report: Mechanisms of sputter ripple formation: coupling among energetic ions, surface kinetics, stress and composition

    Energy Technology Data Exchange (ETDEWEB)

    Chason, Eric; Shenoy, Vivek

    2013-01-22

    Self-organized pattern formation enables the creation of nanoscale surface structures over large areas based on fundamental physical processes rather than an applied template. Low energy ion bombardment is one such method that induces the spontaneous formation of a wide variety of interesting morphological features (e.g., sputter ripples and/or quantum dots). This program focused on the processes controlling sputter ripple formation and the kinetics controlling the evolution of surfaces and nanostructures in high flux environments. This was done by using systematic, quantitative experiments to measure ripple formation under a variety of processing conditions coupled with modeling to interpret the results.

  14. Coupling between temporal and spatial chaos of vortex state in superconductors with periodical pinning arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lin, H.T. [Department of Information Management, Cheng Shiu University, Kaoshuing, Taiwan (China); Cheng, C.H. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Ke, C.; Pan, M. [School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia); Zhao, Y., E-mail: yzhao@swjtu.edu.cn [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)] [School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia)

    2011-11-15

    Mean field approach is a good way of dealing with chaos of vortex motion in a background of many vortices. The vortex motion under the damping mode is a kind of self-organized motion. The spatial chaos can dominate the chaotic behavior of the system. Vortex motion in the background of many vortices is investigated by a mean field approach. Effects of the vortex-vortex coupling, the driving frequency, and the vortex viscosity on the vortex motion have been studied to reveal the interaction between the spatial and temporal chaos. It is found that the mean-field approach is a good approximation to describe the vortex motion in one dimensional vortex system. The vortex motion under the damping mode is a kind of self-organized motion. The spatial chaos can dominate the chaotic behavior of the system.

  15. The Kinetics of Joined Action of Triplet-Triplet Annihilation and First-Order Decay of Molecules in T1 State in the Case of Nondominant First-Order Process: The Kinetic Model in the Case of Spatially Periodic Excitation

    Directory of Open Access Journals (Sweden)

    Paweł Borowicz

    2013-01-01

    Full Text Available In this paper the model developed for estimation of the diffusion coefficient of the molecules in the triplet state is presented. The model is based on the intuitive modification of the Smoluchowski equation for the time-dependent rate parameter. Since the sample is irradiated with the spatially periodic pattern nonexponential effects can be expected in the areas of the constructive interference of the exciting laser beams. This nonexponential effects introduce changes in the observed kinetics of the diffusion-controlled triplet-triplet annihilation. Due to irradiation with so-called long excitation pulse these non-exponential effects are very weak, so they can be described with introducing very simple correction to the kinetic model described in the first paper of this series. The values of diffusion coefficient of anthracene are used to calculate the annihilation radius from the data for spatially homogeneous excitation.

  16. Comparison of multimesh hp-FEM to interpolation and projection methods for spatial coupling of thermal and neutron diffusion calculations

    International Nuclear Information System (INIS)

    Dubcova, Lenka; Solin, Pavel; Hansen, Glen; Park, HyeongKae

    2011-01-01

    Multiphysics solution challenges are legion within the field of nuclear reactor design and analysis. One major issue concerns the coupling between heat and neutron flow (neutronics) within the reactor assembly. These phenomena are usually very tightly interdependent, as large amounts of heat are quickly produced with an increase in fission events within the fuel, which raises the temperature that affects the neutron cross section of the fuel. Furthermore, there typically is a large diversity of time and spatial scales between mathematical models of heat and neutronics. Indeed, the different spatial resolution requirements often lead to the use of very different meshes for the two phenomena. As the equations are coupled, one must take care in exchanging solution data between them, or significant error can be introduced into the coupled problem. We propose a novel approach to the discretization of the coupled problem on different meshes based on an adaptive multimesh higher-order finite element method (hp-FEM), and compare it to popular interpolation and projection methods. We show that the multimesh hp-FEM method is significantly more accurate than the interpolation and projection approaches considered in this study.

  17. On the Modeling of Local Neutronically-Coupled Flow-Induced Oscillations in Advanced Boiling Water Reactors

    International Nuclear Information System (INIS)

    Aniel-Buchheit, Sylvie; Podowski, Michael Z.

    2006-01-01

    The purpose of this paper is to discuss the development in progress of a complete space- and time-dependent model of the coupled neutron kinetic and reactor thermal-hydraulics. The neutron kinetics model is based on two-group diffusion equations with Doppler and void reactivity feedback effects. This model is coupled with the model of two-phase flow and heat transfer in parallel coolant channels. The modeling concepts considered for this purpose include one-dimensional drift flux and two-fluid models, as well a CFD model implemented in the NPHASE advanced computational multiphase fluid dynamics (CMFD) computer code. Two methods of solution for the overall model are proposed. One is based on direct numerical integration of the spatially-discretized governing equations. The other approach is based on a quasi-analytical modal approach to the neutronics model, in which a complete set of eigenvectors is found for step-wise temporal changes of the cross-sections of core materials (fuel and coolant/moderator). The issues investigated in the paper include details of model formulation, as well as the results of calculations for neutronically-coupled density-wave oscillations. (authors)

  18. Fundamental aspects of plasma chemical physics kinetics

    CERN Document Server

    Capitelli, Mario; Colonna, Gianpiero; Esposito, Fabrizio; Gorse, Claudine; Hassouni, Khaled; Laricchiuta, Annarita; Longo, Savino

    2016-01-01

    Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the...

  19. Evaluation of heading performance with vibrotactile guidance: the benefits of information-movement coupling compared with spatial language.

    Science.gov (United States)

    Faugloire, Elise; Lejeune, Laure

    2014-12-01

    This study quantified the effectiveness of tactile guidance in indicating a direction to turn to and measured its benefits compared to spatial language. The device (CAYLAR), which was composed of 8 vibrators, specified the requested direction by a vibration at the corresponding location around the waist. Twelve participants were tested in normal light and in total darkness with 3 guidance conditions: spatial language, a long tactile rhythm (1 s on/4 s off vibrations) providing a single stimulation before movement, and a short rhythm (200 ms on/200 ms off vibrations) allowing information-movement coupling during body rotation. We measured response time, heading error, and asked participants to rate task easiness, intuitiveness and perceived accuracy for each guidance mode. Accuracy was higher and participants' ratings were more positive with the short tactile mode than with the 2 other modes. Compared to spatial language, tactile guidance, regardless of the vibration rhythm, also allowed faster responses and did not impair accuracy in the absence of vision. These findings quantitatively demonstrate that tactile guidance is particularly effective when it is reciprocally related to movement. We discuss implications of the benefits of perception-action coupling for the design of tactile navigation devices. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  20. Spatially distributed patterns of oscillatory coupling between high-frequency amplitudes and low-frequency phases in human iEEG

    NARCIS (Netherlands)

    Maris, Eric; van Vugt, Marieke; Kahana, Michael

    2011-01-01

    Spatially distributed coherent oscillations provide temporal windows of excitability that allow for interactions between distinct neuronal groups. It has been hypothesized that this mechanism for neuronal communication is realized by bursts of high-frequency oscillations that are phase-coupled to a

  1. Performance of the coupled thermalhydraulics/neutron kinetics code R/P/C on workstation clusters and multiprocessor systems

    International Nuclear Information System (INIS)

    Hammer, C.; Paffrath, M.; Boeer, R.; Finnemann, H.; Jackson, C.J.

    1996-01-01

    The light water reactor core simulation code PANBOX has been coupled with the transient analysis code RELAP5 for the purpose of performing plant safety analyses with a three-dimensional (3-D) neutron kinetics model. The system has been parallelized to improve the computational efficiency. The paper describes the features of this system with emphasis on performance aspects. Performance results are given for different types of parallelization, i. e. for using an automatic parallelizing compiler, using the portable PVM platform on a workstation cluster, using PVM on a shared memory multiprocessor, and for using machine dependent interfaces. (author)

  2. Coupling of the computational fluid dynamics code ANSYS CFX with the 3D neutron kinetic core model DYN3D

    International Nuclear Information System (INIS)

    Kliem, S.; Grahn, A.; Rohde, U.; Schuetze, J.; Frank, Th.

    2010-01-01

    The computational fluid dynamics code ANSYS CFX has been coupled with the neutron-kinetic core model DYN3D. ANSYS CFX calculates the fluid dynamics and related transport phenomena in the reactors coolant and provides the corresponding data to DYN3D. In the fluid flow simulation of the coolant, the core itself is modeled within the porous body approach. DYN3D calculates the neutron kinetics and the fuel behavior including the heat transfer to the coolant. The physical data interface between the codes is the volumetric heat release rate into the coolant. In the prototype that is currently available, the coupling is restricted to single-phase flow problems. In the time domain an explicit coupling of the codes has been implemented so far. Steady-state and transient verification calculations for two small-size test problems confirm the correctness of the implementation of the prototype coupling. The first test problem was a mini-core consisting of nine real-size fuel assemblies with quadratic cross section. Comparison was performed with the DYN3D stand-alone code. In the steady state, the effective multiplication factor obtained by the DYN3D/ANSYS CFX codes hows a deviation of 9.8 pcm from the DYN3D stand-alone solution. This difference can be attributed to the use of different water property packages in the two codes. The transient test case simulated the withdrawal of the control rod from the central fuel assembly at hot zero power in the same mini-core. Power increase during the introduction of positive reactivity and power reduction due to fuel temperature increase are calculated in the same manner by the coupled and the stand-alone codes. The maximum values reached during the power rise differ by about 1 MW at a power level of 50 MW. Beside the different water property packages, these differences are caused by the use of different flow solvers. The same calculations were carried for a mini-core with seven real-size fuel assemblies with hexagonal cross section in

  3. Spatial distribution of mechanical forces and ionic flux in electro-kinetic instability near a permselective membrane

    Science.gov (United States)

    Magnico, Pierre

    2018-01-01

    This paper is devoted to the numerical investigation of electro-kinetic instability in a polarization layer next to a cation-exchange membrane. An analysis of some properties of the electro-kinetic instability is followed by a detailed description of the fluid flow structure and of the spatial distribution of the ionic flux. In this aim, the Stokes-Poisson-Nernst-Planck equation set is solved until the Debye length scale. The results show that the potential threshold of the marginal instability and the current density depend on the logarithm of the concentration at the membrane surface. The size of the stable vortices seems to be an increasing function of the potential drop. The fluid motion is induced by the electric force along the maximum concentration in the extended space charge (ESC) region and by the pressure force in the region around the inner edge of the ESC layer. Two spots of kinetic energy are located in the ESC region and between the vortices. The cationic motion, controlled by the electric field and the convection, presents counter-rotating vortices in the stagnation zone located in the fluid ejection region. The anion transport is also characterized by two independent layers which contain counter-rotating vortices. The first one is in contact with the stationary reservoir. In the second layer against the membrane, the convection, and the electric field control, the transversal motion, the Fickian diffusion, and the convection are dominant in the longitudinal direction. Finally, the longitudinal disequilibrium of potential and pressure along the membrane is analyzed.

  4. Explicit integration with GPU acceleration for large kinetic networks

    International Nuclear Information System (INIS)

    Brock, Benjamin; Belt, Andrew; Billings, Jay Jay; Guidry, Mike

    2015-01-01

    We demonstrate the first implementation of recently-developed fast explicit kinetic integration algorithms on modern graphics processing unit (GPU) accelerators. Taking as a generic test case a Type Ia supernova explosion with an extremely stiff thermonuclear network having 150 isotopic species and 1604 reactions coupled to hydrodynamics using operator splitting, we demonstrate the capability to solve of order 100 realistic kinetic networks in parallel in the same time that standard implicit methods can solve a single such network on a CPU. This orders-of-magnitude decrease in computation time for solving systems of realistic kinetic networks implies that important coupled, multiphysics problems in various scientific and technical fields that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible.

  5. Numerical Model of Dephosphorization Reaction Kinetics in Top Blown Converter Coupled with Flow Field

    Science.gov (United States)

    Liu, Wei; Yang, Shufeng; Li, Jingshe; Wang, Minghui

    2017-07-01

    A 3D transient numerical model of dephosphorization kinetics coupled with flow field in a top blown converter was built. Through the model the dephosphorization reaction rate influenced by the oxygen jets and the steel flow were simulated. The results show that the dephosphorization rate at the droplet metal-slag interface is two orders of magnitude faster than that at bath metal-slag interface. When the lance oxygen pressure increases from 0.7 to 0.8 MPa, the dephosphorization rate increases notably and the end content of P has a decrease of 19 %. However, when the pressure continues rising to 0.9 MPa, the dephosphorization rate has no significant increase. In addition, the lance height shows a nearly linear relation to the end P content of steel, that the lower the height, the faster the dephosphorization rate.

  6. Non-topological solitons in field theories with kinetic self-coupling

    International Nuclear Information System (INIS)

    Diaz-Alonso, Joaquin; Rubiera-Garcia, Diego

    2007-01-01

    We investigate some fundamental features of a class of non-linear relativistic Lagrangian field theories with kinetic self-coupling. We focus our attention upon theories admitting static, spherically symmetric solutions in three space dimensions which are finite-energy and stable. We determine general conditions for the existence and stability of these non-topological soliton solutions. In particular, we perform a linear stability analysis that goes beyond the usual Derrick-like criteria. On the basis of these considerations we obtain a complete characterization of the soliton-supporting members of the aforementioned class of non-linear field theories. We then classify the family of soliton-supporting theories according to the central and asymptotic behaviors of the soliton field, and provide illustrative explicit examples of models belonging to each of the corresponding sub-families. In the present work we restrict most of our considerations to one and many-components scalar models. We show that in these cases the finite-energy static spherically symmetric solutions are stable against charge-preserving perturbations, provided that the vacuum energy of the model vanishes and the energy density is positive definite. We also discuss briefly the extension of the present approach to models involving other types of fields, but a detailed study of this more general scenario will be addressed in a separate publication

  7. A Comprehensive Enzyme Kinetic Exercise for Biochemistry

    Science.gov (United States)

    Barton, Janice S.

    2011-01-01

    This article describes a comprehensive treatment of experimental enzyme kinetics strongly coupled to electronic data acquisition and use of spreadsheets to organize data and perform linear and nonlinear least-squares analyses, all in a manner that promotes development of important reasoning skills. Kinetic parameters are obtained for the stable…

  8. Kinetics and spatial distribution of enzymes of carbon, nitrogen and phosphorus cycles in earthworm biopores

    Science.gov (United States)

    Hoang Thi Thu, Duyen; Razavi, Bahar S.

    2016-04-01

    Earthworms boost microbial activities and consequently form hotspots in soil. The distribution of enzyme activities inside the earthworm biopores is completely unknown. For the first time, we analyzed enzyme kinetics and visualized enzyme distribution inside and outside biopores by in situ soil zymography. Kinetic parameters (Vmax and Km) of 6 enzymes β-glucosidase (GLU), cellobiohydrolase (CBH), xylanase (XYL), chitinase (NAG), leucine aminopeptidase (LAP) and acid phosphatase (APT) were determined in biopores formed by Lumbricus terrestris L.. The spatial distributions of GLU, NAG and APT become visible via zymograms in comparison between earthworm-inhabited and earthworm-free soil. Zymography showed heterogeneous distribution of hotspots in the rhizosphere and biopores. The hotspot areas were 2.4 to 14 times larger in the biopores than in soil without earthworms. The significantly higher Vmax values for GLU, CBH, XYL, NAG and APT in biopores confirmed the stimulation of enzyme activities by earthworms. For CBH, XYL and NAG, the 2- to 3-fold higher Km values in biopores indicated different enzyme systems with lower substrate affinity compared to control soil. The positive effects of earthworms on Vmax were cancelled by the Km increase for CBH, XYL and NAG at a substrate concentration below 20 μmol g-1 soil. The change of enzyme systems reflected a shift in dominant microbial populations toward species with lower affinity to holo-celluloses and to N-acetylglucosamine, and with higher affinity to proteins as compared to the biopores-free soil. We conclude that earthworm biopores are microbial hotspots with much higher and dense distribution of enzyme activities compared to bulk soil. References Spohn M, Kuzyakov Y. (2014) Spatial and temporal dynamics of hotspots of enzyme activity in soil as affected by living and dead roots - a soil zymography analysis, Plant Soil 379: 67-77. Blagodatskaya, E., Kuzyakov, Y., 2013. Review paper: Active microorganisms in soil

  9. Coupling Chemical Kinetics and Flashes in Reactive, Thermal and Compositional Reservoir Simulation

    DEFF Research Database (Denmark)

    Kristensen, Morten Rode; Gerritsen, Margot G.; Thomsen, Per Grove

    2007-01-01

    of convergence and error test failures by more than 50% compared to direct integration without the new algorithm. To facilitate the algorithmic development we construct a virtual kinetic cell model. We use implicit one-step ESDIRK (Explicit Singly Diagonal Implicit Runge-Kutta) methods for integration...... of the kinetics. The kinetic cell model serves both as a tool for the development and testing of tailored solvers as well as a testbed for studying the interactions between chemical kinetics and phase behavior. A comparison between a Kvalue correlation based approach and a more rigorous equation of state based......Phase changes are known to cause convergence problems for integration of stiff kinetics in thermal and compositional reservoir simulations. We propose an algorithm for detection and location of phase changes based on discrete event system theory. The algorithm provides a robust way for handling...

  10. Monitoring of the spatio-temporal change in the interplate coupling at northeastern Japan subduction zone based on the spatial gradients of surface velocity field

    Science.gov (United States)

    Iinuma, Takeshi

    2018-04-01

    A monitoring method to grasp the spatio-temporal change in the interplate coupling in a subduction zone based on the spatial gradients of surface displacement rate fields is proposed. I estimated the spatio-temporal change in the interplate coupling along the plate boundary in northeastern (NE) Japan by applying the proposed method to the surface displacement rates based on global positioning system observations. The gradient of the surface velocities is calculated in each swath configured along the direction normal to the Japan Trench for time windows such as 0.5, 1, 2, 3 and 5 yr being shifted by one week during the period of 1997-2016. The gradient of the horizontal velocities is negative and has a large magnitude when the interplate coupling at the shallow part (less than approximately 50 km in depth) beneath the profile is strong, and the sign of the gradient of the vertical velocity is sensitive to the existence of the coupling at the deep part (greater than approximately 50 km in depth). The trench-parallel variation of the spatial gradients of a displacement rate field clearly corresponds to the trench-parallel variation of the amplitude of the interplate coupling on the plate interface, as well as the rupture areas of previous interplate earthquakes. Temporal changes in the trench-parallel variation of the spatial gradient of the displacement rate correspond to the strengthening or weakening of the interplate coupling. We can monitor the temporal change in the interplate coupling state by calculating the spatial gradients of the surface displacement rate field to some extent without performing inversion analyses with applying certain constraint conditions that sometimes cause over- and/or underestimation at areas of limited spatial resolution far from the observation network. The results of the calculation confirm known interplate events in the NE Japan subduction zone, such as the post-seismic slip of the 2003 M8.0 Tokachi-oki and 2005 M7.2 Miyagi

  11. Critical behavior of the compact 3D U(1) theory in the limit of zero spatial coupling

    International Nuclear Information System (INIS)

    Borisenko, O; Gravina, M; Papa, A

    2008-01-01

    Critical properties of the compact three-dimensional U(1) lattice gauge theory are explored at finite temperatures on an asymmetric lattice. For vanishing value of the spatial gauge coupling one obtains an effective two-dimensional spin model which describes the interaction between Polyakov loops. We study numerically the effective spin model for N t = 1,4,8 on lattices with spatial extent ranging from L = 64 to 256. Our results indicate that the finite temperature U(1) lattice gauge theory belongs to the universality class of the two-dimensional XY model, thus supporting the Svetitsky–Yaffe conjecture

  12. Incoherently Coupled Grey-Grey Spatial Soliton Pairs in Biased Two-Photon Photovoltaic Photorefractive Crystals

    International Nuclear Information System (INIS)

    Su Yanli; Jiang Qichang; Ji Xuanmang

    2010-01-01

    The incoherently coupled grey-grey screening-photovoltaic spatial soliton pairs are predicted in biased two-photon photovoltaic photorefractive crystals under steady-state conditions. These grey-grey screening-photovoltaic soliton pairs can be established provided that the incident beams have the same polarization, wavelength, and are mutually incoherent. The grey-grey screening-photovoltaic soliton pairs can be considered as the united form of grey-grey screening soliton pairs and open or closed-circuit grey-grey photovoltaic soliton pairs. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Spatial stochasticity and non-continuum effects in gas flows

    Energy Technology Data Exchange (ETDEWEB)

    Dadzie, S. Kokou, E-mail: k.dadzie@glyndwr.ac.uk [Mechanical and Aeronautical Engineering, Glyndwr University, Mold Road, Wrexham LL11 2AW (United Kingdom); Reese, Jason M., E-mail: jason.reese@strath.ac.uk [Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom)

    2012-02-06

    We investigate the relationship between spatial stochasticity and non-continuum effects in gas flows. A kinetic model for a dilute gas is developed using strictly a stochastic molecular model reasoning, without primarily referring to either the Liouville or the Boltzmann equations for dilute gases. The kinetic equation, a stochastic version of the well-known deterministic Boltzmann equation for dilute gas, is then associated with a set of macroscopic equations for the case of a monatomic gas. Tests based on a heat conduction configuration and sound wave dispersion show that spatial stochasticity can explain some non-continuum effects seen in gases. -- Highlights: ► We investigate effects of molecular spatial stochasticity in non-continuum regime. ► Present a simplify spatial stochastic kinetic equation. ► Present a spatial stochastic macroscopic flow equations. ► Show effects of the new model on sound wave dispersion prediction. ► Show effects of the new approach in density profiles in a heat conduction.

  14. Kinetic Effects Of Increased Proton Transfer Distance On Proton-Coupled Oxidations Of Phenol-Amines

    Science.gov (United States)

    Rhile, Ian J.

    2011-01-01

    To test the effect of varying the proton donor-acceptor distance in proton-coupled electron transfer (PCET) reactions, the oxidation of a bicyclic amino-indanol (2) is compared with that of a closely related phenol with an ortho CPh2NH2 substituent (1). Spectroscopic, structural, thermochemical and computational studies show that the two amino-phenols are very similar, except that the O⋯N distance (dON) is >0.1 Å longer in 2 than in 1. The difference in dON is 0.13 ± 0.03 Å from X-ray crystallography and 0.165 Å from DFT calculations. Oxidations of these phenols by outer-sphere oxidants yield distonic radical cations •OAr–NH3+ by concerted proton-electron transfer (CPET). Simple tunneling and classical kinetic models both predict that the longer donor-acceptor distance in 2 should lead to slower reactions, by ca. two orders of magnitude, as well as larger H/D kinetic isotope effects (KIEs). However, kinetic studies show that the compound with the longer proton-transfer distance, 2, exhibits smaller KIEs and has rate constants that are quite close to those of 1. For example, the oxidation of 2 by the triarylamminium radical cation N(C6H4OMe)3•+ (3a+) occurs at (1.4 ± 0.1) × 104 M-1 s-1, only a factor of two slower than the closely related reaction of 1 with N(C6H4OMe)2(C6H4Br)•+ (3b+). This difference in rate constants is well accounted for by the slightly different free energies of reaction: ΔG°(2 + 3a+) = +0.078 V vs. ΔG°(1 + 3b+) = +0.04 V. The two phenol-amines do display some subtle kinetic differences: for instance, compound 2 has a shallower dependence of CPET rate constants on driving force (Brønsted α, Δln(k)/Δln(Keq)). These results show that the simple tunneling model is not a good predictor of the effect of proton donor-acceptor distance on concerted-electron transfer reactions involving strongly hydrogen-bonded systems. Computational analysis of the observed similarity of the two phenols emphasizes the importance of the highly

  15. Partial Overhaul and Initial Parallel Optimization of KINETICS, a Coupled Dynamics and Chemistry Atmosphere Model

    Science.gov (United States)

    Nguyen, Howard; Willacy, Karen; Allen, Mark

    2012-01-01

    KINETICS is a coupled dynamics and chemistry atmosphere model that is data intensive and computationally demanding. The potential performance gain from using a supercomputer motivates the adaptation from a serial version to a parallelized one. Although the initial parallelization had been done, bottlenecks caused by an abundance of communication calls between processors led to an unfavorable drop in performance. Before starting on the parallel optimization process, a partial overhaul was required because a large emphasis was placed on streamlining the code for user convenience and revising the program to accommodate the new supercomputers at Caltech and JPL. After the first round of optimizations, the partial runtime was reduced by a factor of 23; however, performance gains are dependent on the size of the data, the number of processors requested, and the computer used.

  16. Radionuclide behavior in water saturated porous media: Diffusion and infiltration coupling of thermodynamically and kinetically controlled radionuclide water - mineral interactions

    International Nuclear Information System (INIS)

    Spasennykh, M.Yu.; Apps, J.A.

    1995-05-01

    A model is developed describing one dimensional radionuclide transport in porous media coupled with locally reversible radionuclide water-mineral exchange reactions and radioactive decay. Problems are considered in which radionuclide transport by diffusion and infiltration processes occur in cases where radionuclide water-solid interaction are kinetically and thermodynamically controlled. The limits of Sr-90 and Cs-137 migration are calculated over a wide range of the problem variables (infiltration velocity, distribution coefficients, and rate constants of water-mineral radionuclide exchange reactions)

  17. Interfacial mixing in high-energy-density matter with a multiphysics kinetic model

    Science.gov (United States)

    Haack, Jeffrey R.; Hauck, Cory D.; Murillo, Michael S.

    2017-12-01

    We have extended a recently developed multispecies, multitemperature Bhatnagar-Gross-Krook model [Haack et al., J. Stat. Phys. 168, 822 (2017), 10.1007/s10955-017-1824-9], to include multiphysics capabilities that enable modeling of a wider range of physical conditions. In terms of geometry, we have extended from the spatially homogeneous setting to one spatial dimension. In terms of the physics, we have included an atomic ionization model, accurate collision physics across coupling regimes, self-consistent electric fields, and degeneracy in the electronic screening. We apply the model to a warm dense matter scenario in which the ablator-fuel interface of an inertial confinement fusion target is heated, but for larger length and time scales and for much higher temperatures than can be simulated using molecular dynamics. Relative to molecular dynamics, the kinetic model greatly extends the temperature regime and the spatiotemporal scales over which we are able to model. In our numerical results we observe hydrogen from the ablator material jetting into the fuel during the early stages of the implosion and compare the relative size of various diffusion components (Fickean diffusion, electrodiffusion, and barodiffusion) that drive this process. We also examine kinetic effects, such as anisotropic distributions and velocity separation, in order to determine when this problem can be described with a hydrodynamic model.

  18. Evaluation of the Angra-2 nuclear power plant using a RELAP5-PARCS coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Patrícia A.L.; Hamers, Adolfo R.; Pereira, Claubia; Costa, Antonella L.; Veloso, Maria A.F.; Verdú, Gumersindo [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Miró, Rafael, E-mail: antonella@nuclear.ufmg.br, E-mail: dora@nuclear.ufmg.br, E-mail: rmiro@iqn.upv.es, E-mail: gverdu@iqn.upv.es [Departamento de Ingenieria Quimica y Nuclear, Universidad Politécnica de Valencia (Spain)

    2017-07-01

    Studies of complex transients in nuclear reactors have been improved by the use of thermal hydraulic (TH) and neutron kinetics (NK) coupled codes. This technique consists in incorporating three-dimensional (3D) neutron modeling of the reactor core into codes to possibility simulation of transients that involve asymmetric core spatial power distributions and strong feedback effects between neutronic and reactor thermal hydraulics. In this work, steady state results using the verified model of TH RELAP5 code and the NK PARCS code to predict the Angra 2 reactor behavior have been presented. (author)

  19. Group-kinetic theory of turbulence

    Science.gov (United States)

    Tchen, C. M.

    1986-01-01

    The two phases are governed by two coupled systems of Navier-Stokes equations. The couplings are nonlinear. These equations describe the microdynamical state of turbulence, and are transformed into a master equation. By scaling, a kinetic hierarchy is generated in the form of groups, representing the spectral evolution, the diffusivity and the relaxation. The loss of memory in formulating the relaxation yields the closure. The network of sub-distributions that participates in the relaxation is simulated by a self-consistent porous medium, so that the average effect on the diffusivity is to make it approach equilibrium. The kinetic equation of turbulence is derived. The method of moments reverts it to the continuum. The equation of spectral evolution is obtained and the transport properties are calculated. In inertia turbulence, the Kolmogoroff law for weak coupling and the spectrum for the strong coupling are found. As the fluid analog, the nonlinear Schrodinger equation has a driving force in the form of emission of solitons by velocity fluctuations, and is used to describe the microdynamical state of turbulence. In order for the emission together with the modulation to participate in the transport processes, the non-homogeneous Schrodinger equation is transformed into a homogeneous master equation. By group-scaling, the master equation is decomposed into a system of transport equations, replacing the Bogoliubov system of equations of many-particle distributions. It is in the relaxation that the memory is lost when the ensemble of higher-order distributions is simulated by an effective porous medium. The closure is thus found. The kinetic equation is derived and transformed into the equation of spectral flow.

  20. A New Coupled CFD/Neutron Kinetics System for High Fidelity Simulations of LWR Core Phenomena: Proof of Concept

    Directory of Open Access Journals (Sweden)

    Jorge Pérez Mañes

    2014-01-01

    Full Text Available The Institute for Neutron Physics and Reactor Technology (INR at the Karlsruhe Institute of Technology (KIT is investigating the application of the meso- and microscale analysis for the prediction of local safety parameters for light water reactors (LWR. By applying codes like CFD (computational fluid dynamics and SP3 (simplified transport reactor dynamics it is possible to describe the underlying phenomena in a more accurate manner than by the nodal/coarse 1D thermal hydraulic coupled codes. By coupling the transport (SP3 based neutron kinetics (NK code DYN3D with NEPTUNE-CFD, within a parallel MPI-environment, the NHESDYN platform is created. The newly developed system will allow high fidelity simulations of LWR fuel assemblies and cores. In NHESDYN, a heat conduction solver, SYRTHES, is coupled to NEPTUNE-CFD. The driver module of NHESDYN controls the sequence of execution of the solvers as well as the communication between the solvers based on MPI. In this paper, the main features of NHESDYN are discussed and the proof of the concept is done by solving a single pin problem. The prediction capability of NHESDYN is demonstrated by a code-to-code comparison with the DYNSUB code. Finally, the future developments and validation efforts are highlighted.

  1. Performance of non-conventional factorization approaches for neutron kinetics

    International Nuclear Information System (INIS)

    Bulla, S.; Nervo, M.

    2013-01-01

    The use of factorization techniques provides a interesting option for the simulation of the time-dependent behavior of nuclear systems with a reduced computational effort. While point kinetics neglects all spatial and spectral effects, quasi-statics and multipoint kinetics allow to produce results with a higher accuracy for transients involving relevant modifications of the neutron distribution. However, in some conditions these methods can not work efficiently. In this paper, we discuss some possible alternative formulations for the factorization process for neutron kinetics, leading to mathematical models of reduced complications that can allow an accurate simulation of transients involving spatial and spectral effects. The performance of these innovative approaches are compared to standard techniques for some test cases, showing the benefits and shortcomings of the method proposed. (authors)

  2. Coupling of kinetic Monte Carlo simulations of surface reactions to transport in a fluid for heterogeneous catalytic reactor modeling

    International Nuclear Information System (INIS)

    Schaefer, C.; Jansen, A. P. J.

    2013-01-01

    We have developed a method to couple kinetic Monte Carlo simulations of surface reactions at a molecular scale to transport equations at a macroscopic scale. This method is applicable to steady state reactors. We use a finite difference upwinding scheme and a gap-tooth scheme to efficiently use a limited amount of kinetic Monte Carlo simulations. In general the stochastic kinetic Monte Carlo results do not obey mass conservation so that unphysical accumulation of mass could occur in the reactor. We have developed a method to perform mass balance corrections that is based on a stoichiometry matrix and a least-squares problem that is reduced to a non-singular set of linear equations that is applicable to any surface catalyzed reaction. The implementation of these methods is validated by comparing numerical results of a reactor simulation with a unimolecular reaction to an analytical solution. Furthermore, the method is applied to two reaction mechanisms. The first is the ZGB model for CO oxidation in which inevitable poisoning of the catalyst limits the performance of the reactor. The second is a model for the oxidation of NO on a Pt(111) surface, which becomes active due to lateral interaction at high coverages of oxygen. This reaction model is based on ab initio density functional theory calculations from literature.

  3. Many-body correlation effects in the spatially separated electron and hole layers in the coupled quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Babichenko, V.S. [RRC Kurchatov Institute, Kurchatov Sq., 1, 123182 Moscow (Russian Federation); Polishchuk, I.Ya., E-mail: iyppolishchuk@gmail.com [RRC Kurchatov Institute, Kurchatov Sq., 1, 123182 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700, 9, Institutskii per., Dolgoprudny, Moscow Region (Russian Federation)

    2014-11-15

    The many-body correlation effects in the spatially separated electron and hole layers in the coupled quantum wells are investigated. A special case of the many-component electron–hole system is considered. It is shown that if the hole mass is much greater than the electron mass, the negative correlation energy is mainly determined by the holes. The ground state of the system is found to be the 2D electron–hole liquid with the energy smaller than the exciton phase. It is shown that the system decays into the spatially separated neutral electron–hole drops if the initially created charge density in the layers is smaller than the certain critical value n{sub eq}.

  4. Kinetic equations for the collisional plasma model

    International Nuclear Information System (INIS)

    Rij, W.I. Van; Meier, H.K.; Beasley, C.O. Jr.; McCune, J.E.

    1977-01-01

    Using the Collisional Plasma Model (CPM) representation, expressions are derived for the Vlasov operator, both in its general form and in the drift-kinetic approximation following the recursive derivation by Hazeltine. The expressions for the operators give easily calculated couplings between neighbouring components of the CPM representation. Expressions for various macroscopic observables in the drift-kinetics approximation are also given. (author)

  5. Coupling of THALES and FROST using MPI Method

    International Nuclear Information System (INIS)

    Park, Jin Woo; Ryu, Seok Hee; Jung, Chan Do; Jung, Jee Hoon; Um, Kil Sup; Lee, Jae Il

    2013-01-01

    This paper presents the coupling method between THALES and FROST and the simulation results with the coupled code system. In this study, subchannel analysis code THALES and transient fuel performance code FROST were coupled using MPI method as the first stage of the development of the multi-dimensional safety analysis methodology. As a part of the validation, the CEA ejection accident was simulated using the coupled THALES-FROST code and the results were compared with the ShinKori 3 and 4 FSAR. Comparison results revealed that CHASER using MPI method predicts fuel temperatures and heat flux quantitatively well. Thus it was confirmed that the THALES and FROST are properly coupled. In near future, ASTRA, multi-dimensional core neutron kinetics code, will be linked to THALESFROST code for the detailed three-dimensional CEA ejection analysis. The current safety analysis methodology for a CEA ejection accident based on numerous conservative assumptions with the point kinetics model results in quite adverse consequences. Thus, KNF is developing the multi-dimensional safety analysis methodology to enhance the consequences of the CEA ejection accident. For this purpose, three-dimensional core neutron kinetics code ASTRA, subchannel analysis code THALES, and transient fuel performance analysis code FROST are being coupled using message passing interface(MPI). For the first step, THALES and FROST are coupled and tested

  6. Spatially Distributed, Coupled Modeling of Plant Growth, Nitrogen and Water Fluxes in an Alpine Catchment

    Science.gov (United States)

    Schneider, K.

    2001-12-01

    Carbon, water and nitrogen fluxes are closely coupled. They interact and have many feedbacks. Human interference, in particular through land use management and global change strongly modifies these fluxes. Increasing demands and conflicting interests result in an increasing need for regulation targeting different aspects of the system. Without being their main target, many of these measures directly affect water quantity, quality and availability. Improved management and planning of our water resources requires the development of integrated tools, in particular since interactions of the involved environmental and social systems often lead to unexpected or adverse results. To investigate the effect of plant growth, land use management and global change on water fluxes and quality, the PROcess oriented Modular EnvironmenT and Vegetation Model (PROMET-V) was developed. PROMET-V models the spatial patterns and temporal course of water, carbon and nitrogen fluxes using process oriented and mechanistic model components. The hydrological model is based on the Penman-Monteith approach, it uses a plant-physiological model to calculate the canopy conductance, and a multi-layer soil water model. Plant growth for different vegetation is modelled by calculating canopy photosynthesis, respiration, phenology and allocation. Plant growth and water fluxes are coupled directly through photosynthesis and transpiration. Many indirect feedbacks and interactions occur due to their mutual dependency upon leaf area, root distribution, water and nutrient availability for instance. PROMET-V calculates nitrogen fluxes and transformations. The time step used depends upon the modelled process and varies from 1 hour to 1 day. The kernel model is integrated in a raster GIS system for spatially distributed modelling. PROMET-V was tested in a pre-alpine landscape (Ammer river, 709 km**2, located in Southern Germany) which is characterized by small scale spatial heterogeneities of climate, soil and

  7. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Laureau, A., E-mail: laureau.axel@gmail.com; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-05-15

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  8. Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach

    International Nuclear Information System (INIS)

    Laureau, A.; Heuer, D.; Merle-Lucotte, E.; Rubiolo, P.R.; Allibert, M.; Aufiero, M.

    2017-01-01

    Highlights: • Neutronic ‘Transient Fission Matrix’ approach coupled to the CFD OpenFOAM code. • Fission Matrix interpolation model for fast spectrum homogeneous reactors. • Application for coupled calculations of the Molten Salt Fast Reactor. • Load following, over-cooling and reactivity insertion transient studies. • Validation of the reactor intrinsic stability for normal and accidental transients. - Abstract: In this paper we present transient studies of the Molten Salt Fast Reactor (MSFR). This generation IV reactor is characterized by a liquid fuel circulating in the core cavity, requiring specific simulation tools. An innovative neutronic approach called “Transient Fission Matrix” is used to perform spatial kinetic calculations with a reduced computational cost through a pre-calculation of the Monte Carlo spatial and temporal response of the system. Coupled to this neutronic approach, the Computational Fluid Dynamics code OpenFOAM is used to model the complex flow pattern in the core. An accurate interpolation model developed to take into account the thermal hydraulics feedback on the neutronics including reactivity and neutron flux variation is presented. Finally different transient studies of the reactor in normal and accidental operating conditions are detailed such as reactivity insertion and load following capacities. The results of these studies illustrate the excellent behavior of the MSFR during such transients.

  9. Enhanced axion-photon coupling in GUT with hidden photon

    Science.gov (United States)

    Daido, Ryuji; Takahashi, Fuminobu; Yokozaki, Norimi

    2018-05-01

    We show that the axion coupling to photons can be enhanced in simple models with a single Peccei-Quinn field, if the gauge coupling unification is realized by a large kinetic mixing χ = O (0.1) between hypercharge and unbroken hidden U(1)H. The key observation is that the U(1)H gauge coupling should be rather strong to induce such large kinetic mixing, leading to enhanced contributions of hidden matter fields to the electromagnetic anomaly. We find that the axion-photon coupling is enhanced by about a factor of 10-100 with respect to the GUT-axion models with E / N = 8 / 3.

  10. Spatially coupled low-density parity-check error correction for holographic data storage

    Science.gov (United States)

    Ishii, Norihiko; Katano, Yutaro; Muroi, Tetsuhiko; Kinoshita, Nobuhiro

    2017-09-01

    The spatially coupled low-density parity-check (SC-LDPC) was considered for holographic data storage. The superiority of SC-LDPC was studied by simulation. The simulations show that the performance of SC-LDPC depends on the lifting number, and when the lifting number is over 100, SC-LDPC shows better error correctability compared with irregular LDPC. SC-LDPC is applied to the 5:9 modulation code, which is one of the differential codes. The error-free point is near 2.8 dB and over 10-1 can be corrected in simulation. From these simulation results, this error correction code can be applied to actual holographic data storage test equipment. Results showed that 8 × 10-2 can be corrected, furthermore it works effectively and shows good error correctability.

  11. The situated HKB model: how sensorimotor spatial coupling can alter oscillatory brain dynamics

    Science.gov (United States)

    Aguilera, Miguel; Bedia, Manuel G.; Santos, Bruno A.; Barandiaran, Xabier E.

    2013-01-01

    Despite the increase of both dynamic and embodied/situated approaches in cognitive science, there is still little research on how coordination dynamics under a closed sensorimotor loop might induce qualitatively different patterns of neural oscillations compared to those found in isolated systems. We take as a departure point the Haken-Kelso-Bunz (HKB) model, a generic model for dynamic coordination between two oscillatory components, which has proven useful for a vast range of applications in cognitive science and whose dynamical properties are well understood. In order to explore the properties of this model under closed sensorimotor conditions we present what we call the situated HKB model: a robotic model that performs a gradient climbing task and whose “brain” is modeled by the HKB equation. We solve the differential equations that define the agent-environment coupling for increasing values of the agent's sensitivity (sensor gain), finding different behavioral strategies. These results are compared with two different models: a decoupled HKB with no sensory input and a passively-coupled HKB that is also decoupled but receives a structured input generated by a situated agent. We can precisely quantify and qualitatively describe how the properties of the system, when studied in coupled conditions, radically change in a manner that cannot be deduced from the decoupled HKB models alone. We also present the notion of neurodynamic signature as the dynamic pattern that correlates with a specific behavior and we show how only a situated agent can display this signature compared to an agent that simply receives the exact same sensory input. To our knowledge, this is the first analytical solution of the HKB equation in a sensorimotor loop and qualitative and quantitative analytic comparison of spatially coupled vs. decoupled oscillatory controllers. Finally, we discuss the limitations and possible generalization of our model to contemporary neuroscience and

  12. The Situated HKB Model: how sensorimotor spatial coupling can alter oscillatory brain dynamics

    Directory of Open Access Journals (Sweden)

    Miguel eAguilera

    2013-08-01

    Full Text Available Despite the increase both of dynamic and embodied/situated approaches in cognitive science, there is still little research on how coordination dynamics under a closed sensorimotor loop might induce qualitatively different patterns of neural oscillations compared to those found in isolated systems. We take as a departure point the HKB model, a generic model for dynamic coordination between two oscillatory components, which has proven useful for a vast range of applications in cognitive science and whose dynamical properties are well understood. In order to explore the properties of this model under closed sensorimotor conditions we present what we call the situated HKB model: a robotic model that performs a gradient climbing task and whose "brain" is modelled by the HKB equation. We solve the differential equations that define the agent-environment coupling for increasing values of the agent's sensitivity (sensor gain, finding different behavioural strategies. These results are compared with two different models: a decoupled HKB with no sensory input and a passively-coupled HKB that is also decoupled but receives a structured input generated by a situated agent. We can precisely quantify and qualitatively describe how the properties of the system, when studied in coupled conditions, radically change in a manner that cannot be deduced from the decoupled HKB models alone. We also present the notion of neurodynamic signature as the dynamic pattern that correlates with a specific behaviour and we show how only a situated agent can display this signature compared to an agent that simply receives the exact same sensory input.To our knowledge, this is the first analytical solution of the HKB equation in a sensorimotor loop and qualitative and quantitative analytic comparison of spatially coupled vs. decoupled oscillatory controllers. Finally, we discuss the limitations and possible generalization of our model to contemporary neuroscience and philosophy

  13. Weakening Gravity on Redshift-Survey Scales with Kinetic Matter Mixing

    CERN Document Server

    D'Amico, Guido; Mancarella, Michele; Vernizzi, Filippo

    2017-01-01

    We explore general scalar-tensor models in the presence of a kinetic mixing between matter and the scalar field, which we call Kinetic Matter Mixing. In the frame where gravity is de-mixed from the scalar this is due to disformal couplings of matter species to the gravitational sector, with disformal coefficients that depend on the gradient of the scalar field. In the frame where matter is minimally coupled, it originates from the so-called beyond Horndeski quadratic Lagrangian. We extend the Effective Theory of Interacting Dark Energy by allowing disformal coupling coefficients to depend on the gradient of the scalar field as well. In this very general approach, we derive the conditions to avoid ghost and gradient instabilities and we define Kinetic Matter Mixing independently of the frame metric used to described the action. We study its phenomenological consequences for a $\\Lambda$CDM background evolution, first analytically on small scales. Then, we compute the matter power spectrum and the angular spectr...

  14. RNA folding: structure prediction, folding kinetics and ion electrostatics.

    Science.gov (United States)

    Tan, Zhijie; Zhang, Wenbing; Shi, Yazhou; Wang, Fenghua

    2015-01-01

    Beyond the "traditional" functions such as gene storage, transport and protein synthesis, recent discoveries reveal that RNAs have important "new" biological functions including the RNA silence and gene regulation of riboswitch. Such functions of noncoding RNAs are strongly coupled to the RNA structures and proper structure change, which naturally leads to the RNA folding problem including structure prediction and folding kinetics. Due to the polyanionic nature of RNAs, RNA folding structure, stability and kinetics are strongly coupled to the ion condition of solution. The main focus of this chapter is to review the recent progress in the three major aspects in RNA folding problem: structure prediction, folding kinetics and ion electrostatics. This chapter will introduce both the recent experimental and theoretical progress, while emphasize the theoretical modelling on the three aspects in RNA folding.

  15. The Einstein-Vlasov System/Kinetic Theory.

    Science.gov (United States)

    Andréasson, Håkan

    2011-01-01

    The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on non-relativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to a good comprehension of kinetic theory in general relativity.

  16. Modeling in applied sciences a kinetic theory approach

    CERN Document Server

    Pulvirenti, Mario

    2000-01-01

    Modeling complex biological, chemical, and physical systems, in the context of spatially heterogeneous mediums, is a challenging task for scientists and engineers using traditional methods of analysis Modeling in Applied Sciences is a comprehensive survey of modeling large systems using kinetic equations, and in particular the Boltzmann equation and its generalizations An interdisciplinary group of leading authorities carefully develop the foundations of kinetic models and discuss the connections and interactions between model theories, qualitative and computational analysis and real-world applications This book provides a thoroughly accessible and lucid overview of the different aspects, models, computations, and methodology for the kinetic-theory modeling process Topics and Features * Integrated modeling perspective utilized in all chapters * Fluid dynamics of reacting gases * Self-contained introduction to kinetic models * Becker–Doring equations * Nonlinear kinetic models with chemical reactions * Kinet...

  17. Development of 3-dimensional neutronics kinetics analysis code for CANDU-PHWR

    International Nuclear Information System (INIS)

    Kim, M. W.; Kim, C. H.; Hong, I. S.

    2005-02-01

    The followings are the major contents and scope of the research : development of kinetics power calculation module, formulation of space-dependent neutron transient analysis - implementation of 3-D and 2-G unified nodal method, verification of the kinetics module by benchmark problem - 3-D PHWR kinetics benchmark problem suggested by AECL, reactor trip simulation by shutdown system 1 in Wolsong unit 2. Development of a dynamic linked library code, SCAN D LL, for the coupled calculation with RELAP-CANDU : modeling of shutdown system 1, development of automatic shutdown module - automatic trip module based on rate log power control logic, automatic insertion of shutdown system 1. Development of a link code for coupled calculation - development of SCAN D LL(windows version), verification of coupled code by - 40% reactor inlet header break LOCA power pulse, 100% reactor outlet header break LOCA power pulse, 50% pump suction break LOCA power pulse

  18. Use of phase-locking value in sensorimotor rhythm-based brain-computer interface: zero-phase coupling and effects of spatial filters.

    Science.gov (United States)

    Jian, Wenjuan; Chen, Minyou; McFarland, Dennis J

    2017-11-01

    Phase-locking value (PLV) is a potentially useful feature in sensorimotor rhythm-based brain-computer interface (BCI). However, volume conduction may cause spurious zero-phase coupling between two EEG signals and it is not clear whether PLV effects are independent of spectral amplitude. Volume conduction might be reduced by spatial filtering, but it is uncertain what impact this might have on PLV. Therefore, the goal of this study was to explore whether zero-phase PLV is meaningful and how it is affected by spatial filtering. Both amplitude and PLV feature were extracted in the frequency band of 10-15 Hz by classical methods using archival EEG data of 18 subjects trained on a two-target BCI task. The results show that with right ear-referenced data, there is meaningful long-range zero-phase synchronization likely involving the primary motor area and the supplementary motor area that cannot be explained by volume conduction. Another novel finding is that the large Laplacian spatial filter enhances the amplitude feature but eliminates most of the phase information seen in ear-referenced data. A bipolar channel using phase-coupled areas also includes both phase and amplitude information and has a significant practical advantage since fewer channels required.

  19. A kinetic-MHD model for low frequency phenomena

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1991-07-01

    A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter τ and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented

  20. Parametric study of the stability properties of a thermo hydraulic channel coupled to punctual kinetics

    International Nuclear Information System (INIS)

    Cecenas F, M.; Campos G, R.M.

    2005-01-01

    The reason of decay is the indicator of stability usually used in the literature to evaluate stability of boiling water reactors, however, in the operation of this type of reactors is considered the length of boiling like an auxiliary parameter for the evaluation of stability. In this work its are studied the variation of these two indicators when modifying a given an operation parameter in a model of a thermo hydraulic channel coupled to punctual kinetics, maintaining all the other input constant variables. The parameters selected for study are the axial profile of power, the subcooling, the flow of coolant and the thermal power. The study is supplemented by means of real data of plant using the one Benchmark of Ringhals, and the results for the case of the ratio of decay its are compared with the decay reasons obtained by means of autoregression models of the local instrumentation of neutron flux. (Author)

  1. Simulation of LOCA power transients of CANDU6 by SCAN/RELAP-CANDU coupled code system

    International Nuclear Information System (INIS)

    Hong, In Seob; Kim, Chang Hyo; Hwang, Su Hyun; Kim, Man Woong; Chung, Bub Dong

    2004-01-01

    As can be seen in the standalone application of RELAP-CANDU for LOCA analysis of CANDU-PHWR, the system thermal-hydraulic code alone cannot predict the transient behavior accurately. Therefore, best estimate neutronics and system thermal-hydraulic coupled code system is necessary to describe the transient behavior with higher accuracy and reliability. The purpose of this research is to develop and test a coupled neutronics and thermal-hydraulics analysis code, SCAN (SNU CANDU-PHWR Neutronics) and RELAP-CANDU, for transient analysis of CANDU-PHWR's. For this purpose, a spatial kinetics calculation module of SCAN, a 3-D CANDU-PHWR neutronics design and analysis code, is dynamically coupled with RELAP-CANDU, the system thermal-hydraulic code for CANDU-PHWR. The performance of the coupled code system is examined by simulation of reactor power transients caused by a hypothetical Loss Of Coolant Accident (LOCA) in Wolsong units, which involves the insertion of positive void reactivity into the core in the course of transients. Specifically, a 40% Reactor Inlet Header (RIH) break LOCA was assumed for the test of the SCAN/RELAP-CANDU coupled code system analysis

  2. One-dimensional reactor kinetics model for RETRAN

    International Nuclear Information System (INIS)

    Gose, G.C.; Peterson, C.E.; Ellis, N.L.; McClure, J.A.

    1981-01-01

    This paper describes a one-dimensional spatial neutron kinetics model that was developed for the RETRAN code. The RETRAN -01 code has a point kinetics model to describe the reactor core behavior during thermal-hydraulic transients. A one-dimensional neutronics model has been developed for RETRAN-02. The ability to account for flux shape changes will permit an improved representation of the thermal and hydraulic feedback effects for many operational transients. 19 refs

  3. Kinetics of highly vibrationally excited O2(X) molecules in inductively-coupled oxygen plasmas

    Science.gov (United States)

    Annušová, Adriana; Marinov, Daniil; Booth, Jean-Paul; Sirse, Nishant; Lino da Silva, Mário; Lopez, Bruno; Guerra, Vasco

    2018-04-01

    The high degree of vibrational excitation of O2 ground state molecules recently observed in inductively coupled plasma discharges is investigated experimentally in more detail and interpreted using a detailed self-consistent 0D global kinetic model for oxygen plasmas. Additional experimental results are presented and used to validate the model. The vibrational kinetics considers vibrational levels up to v = 41 and accounts for electron impact excitation and de-excitation (e-V), vibration-to-translation relaxation (V-T) in collisions with O2 molecules and O atoms, vibration-to-vibration energy exchanges (V-V), excitation of electronically excited states, dissociative electron attachment, and electron impact dissociation. Measurements were performed at pressures of 10–80 mTorr (1.33 and 10.67 Pa) and radio frequency (13.56 MHz) powers up to 500 W. The simulation results are compared with the absolute densities in each O2 vibrational level obtained by high sensitivity absorption spectroscopy measurements of the Schumann–Runge bands for O2(X, v = 4–18), O(3 P) atom density measurements by two-photon absorption laser induced fluorescence (TALIF) calibrated against Xe, and laser photodetachment measurements of the O‑ negative ions. The highly excited O2(X, v) distribution exhibits a shape similar to a Treanor-Gordiets distribution, but its origin lies in electron impact e-V collisions and not in V-V up-pumping, in contrast to what happens in all other molecular gases known to date. The relaxation of vibrational quanta is mainly due to V-T energy-transfer collisions with O atoms and to electron impact dissociation of vibrationally excited molecules, e+O2(X, v)→O(3P)+O(3P).

  4. Simulation of an MSLB scenario using the 3D neutron kinetic core model DYN3D coupled with the CFD software Trio-U

    Energy Technology Data Exchange (ETDEWEB)

    Grahn, Alexander, E-mail: a.grahn@hzdr.de; Gommlich, André; Kliem, Sören; Bilodid, Yurii; Kozmenkov, Yaroslav

    2017-04-15

    Highlights: • Improved thermal-hydraulic description of nuclear reactor cores. • Providing reactor dynamics code with realistic thermal-hydraulic boundary conditions. • Possibility of three-dimensional flow phenomena in the core, such as cross flow, flow reversal. • Simulation at higher spatial resolution as compared to system codes. - Abstract: In the framework of the European project NURESAFE, the reactor dynamics code DYN3D, developed at Helmholtz-Zentrum Dresden-Rossendorf (HZDR), was coupled with the Computational Fluid Dynamics (CFD) solver Trio-U, developed at CEA France, in order to replace DYN3D’s one-dimensional hydraulic part with a full three-dimensional description of the coolant flow in the reactor core at higher spatial resolution. The present document gives an introduction into the coupling method and shows results of its application to the simulation of a Main Steamline Break (MSLB) accident of a Pressurised Water Reactor (PWR).

  5. Joint reconstruction of dynamic PET activity and kinetic parametric images using total variation constrained dictionary sparse coding

    Science.gov (United States)

    Yu, Haiqing; Chen, Shuhang; Chen, Yunmei; Liu, Huafeng

    2017-05-01

    Dynamic positron emission tomography (PET) is capable of providing both spatial and temporal information of radio tracers in vivo. In this paper, we present a novel joint estimation framework to reconstruct temporal sequences of dynamic PET images and the coefficients characterizing the system impulse response function, from which the associated parametric images of the system macro parameters for tracer kinetics can be estimated. The proposed algorithm, which combines statistical data measurement and tracer kinetic models, integrates a dictionary sparse coding (DSC) into a total variational minimization based algorithm for simultaneous reconstruction of the activity distribution and parametric map from measured emission sinograms. DSC, based on the compartmental theory, provides biologically meaningful regularization, and total variation regularization is incorporated to provide edge-preserving guidance. We rely on techniques from minimization algorithms (the alternating direction method of multipliers) to first generate the estimated activity distributions with sub-optimal kinetic parameter estimates, and then recover the parametric maps given these activity estimates. These coupled iterative steps are repeated as necessary until convergence. Experiments with synthetic, Monte Carlo generated data, and real patient data have been conducted, and the results are very promising.

  6. Challenges in coupled thermal-hydraulics and neutronics simulations for LWR safety analysis

    International Nuclear Information System (INIS)

    Ivanov, Kostadin; Avramova, Maria

    2007-01-01

    The simulation of nuclear power plant accident conditions requires three-dimensional (3D) modeling of the reactor core to ensure a realistic description of physical phenomena. The operational flexibility of Light Water Reactor (LWR) plants can be improved by utilizing accurate 3D coupled neutronics/thermal-hydraulics calculations for safety margins evaluations. There are certain requirements to the coupling of thermal-hydraulic system codes and neutron-kinetics codes that ought to be considered. The objective of these requirements is to provide accurate solutions in a reasonable amount of CPU time in coupled simulations of detailed operational transient and accident scenarios. These requirements are met by the development and implementation of six basic components of the coupling methodologies: ways of coupling (internal or external coupling); coupling approach (integration algorithm or parallel processing); spatial mesh overlays; coupled time-step algorithms; coupling numerics (explicit, semi-implicit and implicit schemes); and coupled convergence schemes. These principles of the coupled simulations are discussed in details along with the scientific issues associated with the development of appropriate neutron cross-section libraries for coupled code transient modeling. The current trends in LWR nuclear power generation and regulation as well as the design of next generation LWR reactor concepts along with the continuing computer technology progress stimulate further development of these coupled code systems. These efforts have been focused towards extending the analysis capabilities as well as refining the scale and level of detail of the coupling. This article analyses the coupled phenomena and modeling challenges on both global (assembly-wise) and local (pin-wise) levels. The issues related to the consistent qualification of coupled code systems as well as their application to different types of LWR transients are presented. Finally, the advances in numerical

  7. Hybrid Fluid/Kinetic Modeling Of Magnetized High Energy Density Plasmas

    Science.gov (United States)

    Hansen, David; Held, Eric; King, Jacob; Stoltz, Peter; Masti, Robert; Srinivasan, Bhuvana

    2017-10-01

    MHD modeling with an equation of state (EOS) of the Rayleigh-Taylor (RT) instabily in Z indicates that it is seeded by the electro-thermal instability. Large thermodynamic drives associated with gradients at the interface between the liner and the coronal regions distort distribution functions and likely lead to non-local transport effects in a plasma which varies from weakly to strongly coupled. In this work, we discuss using effective potential theory along with a Chapman-Ensksog-like (CEL) formalism to develop hybrid fluid/kinetic modeling capabilities for these plasmas. Effective potential theory addresses the role of Coulomb collisions on transport across coupling regimes and the CEL approach bridges the gap between full-blow kinetic simulations and the EOS tables, which only depend locally on density and temperature. Quantitative results on the Spitzer problem across coupling coupling regimes will be presented as a first step. DOE Grant No. DE-SC0016525.

  8. Diffuso-Kinetics and Diffuso-Mechanics of Carbon Dioxide / Polyvinylidene Fluoride System under Explosive Gas Decompression: Identification of Key Diffuso-Elastic Couplings by Numerical and Experimental Confrontation

    Directory of Open Access Journals (Sweden)

    Grandidier Jean-Claude

    2015-02-01

    Full Text Available The work aims at identifying the key diffuso-elastic couplings which characterize a numerical tool developed to simulate the irreversible ‘Explosive Decompression Failure’ (XDF in semi-crystalline polymer. The model proposes to predict the evolution of the gas concentration and of the stress field in the polymer during the gas desorption [DOI: 10.1016/j.compositesa.2005.05.021]. Main difficulty is to couple thermal, mechanical and diffusive effects that occur simultaneously during the gas desorption. The couplings are splitting into two families: indirect coupling (i.e., phenomenology that is state variables (gas concentration, temperature, and pressure dependent. direct coupling, (i.e., diffuso-elastic coupling as polymer volume changes because of gas diffusion; The numerical prediction of the diffusion kinetics and of the volume strain (swelling of PVF2 (polyvinylidene fluoride under CO2 (carbon dioxide environment is concerned. The prediction is carried out by studying selected combinations of couplings for a broad range of CO2 pressures. The modeling relevance is evaluated by a comparison with experimental transport parameters analytically identify from solubility tests. A pertinent result of the present study is to have demonstrated the non-uniqueness of the coefficients of diffusion (D and solubility (Sg between the diffuso-elastic coupling (direct coupling and indirect coupling. Main conclusion is that it is necessary to consider concomitantly the two types of couplings, the indirect and the direct couplings.

  9. MBS Analysis Of Kinetic Structures Using ADAMS

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R.K.

    2009-01-01

    The present paper considers multibody system (MBS) analysis of kinetic structures using the software package ADAMS. Deployable, foldable, expandable and reconfigurable kinetic structures can provide a change in the geometric morphology of the envelope by contributing to making it adaptable to e.......g. changing external climate factors, in order to improve the indoor climate performance of the building. The derivation of equations of motion for such spatial mechanical systems is a challenging issue in scientific community. However, with new symbolic tools one can automatically derive equations in so......-called multibody system (MBS) formalism. The present paper considers MBS modeling of kinetic architectural structures using the software packages ADAMS. As a result, it is found that symbolic MBS simulation tools facilitate a useful evaluation environment for MBS users during a design phase of responsive kinetic...

  10. Analytical solution of spatial kinetics of the diffusion model for subcritical homogeneous systems driven by external source

    International Nuclear Information System (INIS)

    Oliveira, Fernando Luiz de

    2008-01-01

    This work describes an analytical solution obtained by the expansion method for the spatial kinetics using the diffusion model with delayed emission for source transients in homogeneous media. In particular, starting from simple models, and increasing the complexity, numerical results were obtained for different types of source transients. An analytical solution of the one group without precursors was solved, followed by considering one precursors family. The general case of G-groups with R families of precursor although having a closed form solution, cannot be solved analytically, since there are no explicit formulae for the eigenvalues, and numerical methods must be used to solve such problem. To illustrate the general solution, the multi-group (three groups) time-dependent problem without precursors was solved and the numerical results of a finite difference code were compared with the exact results for different transients. (author)

  11. CHEMSIMUL: A simulator for chemical kinetics

    DEFF Research Database (Denmark)

    Kirkegaard, P.; Bjergbakke, E.

    1999-01-01

    CHEMSIMUL is a computer program system for numerical simulation of chemical reaction systems. It can be used for modeling complex kinetics in many contexts, in particular radiolytic processes. It contains a translator module and a module for solving theresulting coupled nonlinear ordinary...

  12. Nonequilibrium transition and pattern formation in a linear reaction-diffusion system with self-regulated kinetics

    Science.gov (United States)

    Paul, Shibashis; Ghosh, Shyamolina; Ray, Deb Shankar

    2018-02-01

    We consider a reaction-diffusion system with linear, stochastic activator-inhibitor kinetics where the time evolution of concentration of a species at any spatial location depends on the relative average concentration of its neighbors. This self-regulating nature of kinetics brings in spatial correlation between the activator and the inhibitor. An interplay of this correlation in kinetics and disparity of diffusivities of the two species leads to symmetry breaking non-equilibrium transition resulting in stationary pattern formation. The role of initial noise strength and the linear reaction terms has been analyzed for pattern selection.

  13. Non-Gaussianity in multi-sound-speed disformally coupled inflation

    Energy Technology Data Exchange (ETDEWEB)

    De Bruck, Carsten van; Longden, Chris [Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Koivisto, Tomi, E-mail: C.vandeBruck@sheffield.ac.uk, E-mail: tomi.koivisto@nordita.org, E-mail: cjlongden1@sheffield.ac.uk [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2017-02-01

    Most, if not all, scalar-tensor theories are equivalent to General Relativity with a disformally coupled matter sector. In extra-dimensional theories such a coupling can be understood as a result of induction of the metric on a brane that matter is confined to. This article presents a first look at the non-Gaussianities in disformally coupled inflation, a simple two-field model that features a novel kinetic interaction. Cases with both canonical and Dirac-Born-Infeld (DBI) kinetic terms are taken into account, the latter motivated by the possible extra-dimensional origin of the disformality. The computations are carried out for the equilateral configuration in the slow-roll regime, wherein it is found that the non-Gaussianity is typically rather small and negative. This is despite the fact that the new kinetic interaction causes the perturbation modes to propagate with different sounds speeds, which may both significantly deviate from unity during inflation.

  14. Fabrication of an Absorber-Coupled MKID Detector and Readout for Sub-Millimeter and Far-Infrared Astronomy

    Science.gov (United States)

    Brown, Ari-David; Hsieh, Wen-Ting; Moseley, S. Harvey; Stevenson, Thomas R.; U-yen, Kongpop; Wollack, Edward J.

    2010-01-01

    We have fabricated absorber-coupled microwave kinetic inductance detector (MKID) arrays for sub-millimeter and farinfrared astronomy. Each detector array is comprised of lambda/2 stepped impedance resonators, a 1.5µm thick silicon membrane, and 380µm thick silicon walls. The resonators consist of parallel plate aluminum transmission lines coupled to low impedance Nb microstrip traces of variable length, which set the resonant frequency of each resonator. This allows for multiplexed microwave readout and, consequently, good spatial discrimination between pixels in the array. The Al transmission lines simultaneously act to absorb optical power and are designed to have a surface impedance and filling fraction so as to match the impedance of free space. Our novel fabrication techniques demonstrate high fabrication yield of MKID arrays on large single crystal membranes and sub-micron front-to-back alignment of the microstrip circuit.

  15. A balance principle approach for modeling phase transformation kinetics

    International Nuclear Information System (INIS)

    Lusk, M.; Krauss, G.; Jou, H.J.

    1995-01-01

    A balance principle is offered to model volume fraction kinetics of phase transformation kinetics at a continuum level. This microbalance provides a differential equation for transformation kinetics which is coupled to the differential equations governing the mechanical and thermal aspects of the process. Application here is restricted to diffusive transformations for the sake of clarity, although the principle is discussed for martensitic phase transitions as well. Avrami-type kinetics are shown to result from a special class of energy functions. An illustrative example using a 0.5% C Chromium steel demonstrates how TTT and CCT curves can be generated using a particularly simple effective energy function. (orig.)

  16. The mass angular scattering power method for determining the kinetic energies of clinical electron beams

    International Nuclear Information System (INIS)

    Blais, N.; Podgorsak, E.B.

    1992-01-01

    A method for determining the kinetic energy of clinical electron beams is described, based on the measurement in air of the spatial spread of a pencil electron beam which is produced from the broad clinical electron beam. As predicted by the Fermi-Eyges theory, the dose distribution measured in air on a plane, perpendicular to the incident direction of the initial pencil electron beam, is Gaussian. The square of its spatial spread is related to the mass angular scattering power which in turn is related to the kinetic energy of the electron beam. The measured spatial spread may thus be used to determine the mass angular scattering power, which is then used to determine the kinetic energy of the electron beam from the known relationship between mass angular scattering power and kinetic energy. Energies obtained with the mass angular scattering power method agree with those obtained with the electron range method. (author)

  17. Summary of the LLNL one-dimensional transport-kinetics model of the troposphere and stratosphere: 1981

    International Nuclear Information System (INIS)

    Wuebbles, D.J.

    1981-09-01

    Since the LLNL one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere was originally developed in 1972 (Chang et al., 1974), there have been many changes to the model's representation of atmospheric physical and chemical processes. A brief description is given of the current LLNL one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere

  18. The Einstein-Vlasov System/Kinetic Theory

    Directory of Open Access Journals (Sweden)

    Håkan Andréasson

    2002-12-01

    Full Text Available The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on nonrelativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically, and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (i.e., fluid models. This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to good comprehension of kinetic theory in general relativity.

  19. Kinetic Modifications to MHD Phenomena in Toroidal Plasmas

    International Nuclear Information System (INIS)

    Cheng, C.Z.; Gorelenkov, N.N.; Kramer, G.J.; Fredrickson, E.

    2004-01-01

    Particle kinetic effects involving small spatial and fast temporal scales can strongly affect MHD phenomena and the long time behavior of plasmas. In particular, kinetic effects such as finite ion gyroradii, trapped particle dynamics, and wave-particle resonances have been shown to greatly modify the stability of MHD modes. Here, the kinetic effects of trapped electron dynamics and finite ion gyroradii are shown to have a large stabilizing effect on kinetic ballooning modes in low aspect ratio toroidal plasmas such as NSTX [National Spherical Torus Experiment]. We also present the analysis of Toroidicity-induced Alfven Eigenmodes (TAEs) destabilized by fast neutral-beam injected ions in NSTX experiments and TAE stability in ITER due to alpha-particles and MeV negatively charged neutral beam injected ions

  20. Electron kinetics modeling in a weakly ionized gas

    International Nuclear Information System (INIS)

    Boeuf, Jean-Pierre

    1985-01-01

    This work presents some features of electron kinetics in a weakly ionized gas. After a summary of the basis and recent developments of the kinetic theory, and a review of the most efficient numerical techniques for solving the Boltzmann equation, several aspects of electron motion in gases are analysed. Relaxation phenomena toward equilibrium under a uniform electric field, and the question of the existence of the hydrodynamic regime are first studied. The coupling between electron kinetics and chemical kinetics due to second kind collisions in Nitrogen is then analysed; a quantitative description of the evolution of the energy balance, accounting for electron-molecule as well as molecule-molecule energy transfer is also given. Finally, electron kinetics in space charge distorted, highly non uniform electric fields (glow discharges, streamers propagation) is investigated with microscopic numerical methods based on Boltzmann and Poisson equations. (author) [fr

  1. Hydrodynamization and transient modes of expanding plasma in kinetic theory

    CERN Document Server

    Heller, Michal P.; Spalinski, Michal

    2016-01-01

    We study the transition to hydrodynamics in a weakly-coupled model of quark-gluon plasma given by kinetic theory in the relaxation time approximation. Our studies uncover qualitative similarities to the results on hydrodynamization in strongly coupled gauge theories. In particular, we demonstrate that the gradient expansion in this model has vanishing radius of convergence. The asymptotic character of the hydrodynamic gradient expansion is crucial for the recently discovered applicability of hydrodynamics at large gradients. Furthermore, the analysis of the resurgent properties of the series provides, quite remarkably, indication for the existence of a novel transient, damped oscillatory mode of expanding plasmas in kinetic theory.

  2. Spatial aspects of radiological physics and chemistry

    International Nuclear Information System (INIS)

    Green, A.E.S.; Rio, D.E.

    1983-01-01

    The spatial distributions of the early time yields of electrons, ions, excited atoms and molecules which follow deposition of low energy electrons in H 2 O vapor are first calculated using the spatial yield spectra methodology. These are used as source functions for the calculation of the effects of diffusion and kinetics upon the final distributions of neutral products

  3. Kinetic investigation of vanadium (V)/(IV) redox couple on electrochemically oxidized graphite electrodes

    International Nuclear Information System (INIS)

    Wang, Wenjun; Wei, Zengfu; Su, Wei; Fan, Xinzhuang; Liu, Jianguo; Yan, Chuanwei; Zeng, Chaoliu

    2016-01-01

    Highlights: • The VO_2"+/VO"2"+ redox reaction of the electrode could be facilitated to some extent with the increasing anodic corrosion. • A real reaction kinetic equation for the oxidation of VO"2"+ on the electrochemically oxidized electrode has been firstly obtained. • The establishment of the kinetic equation is conducive to predict polarization behaviors of the electrodes in engineering application. - Abstract: The morphology, surface composition, wettability and the kinetic parameters of the electrochemically oxidized graphite electrodes obtained under different anodic polarization conditions have been examined by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle measurements, steady-state polarization and cyclic voltammetry (CV) tests, with an attempt to investigate the inherent correlation between the physicochemical properties and the kinetic characteristics for carbon electrodes used in an all-vanadium redox flow battery (VRFB). When the anodic polarization potential raises up to 1.8 V vs. SCE, the anodic corrosion of the graphite might happen and a large number of oxygen-containing functional groups generate. The VO_2"+/VO"2"+ redox reaction can be facilitated and the reaction reversibility tends to become better with the increasing anodic potential, possibly owing to the increased surface oxides and the resulting improved wettability of the electrode. Based on this, a real reaction kinetic equation for the oxidation of VO"2"+ has been obtained on the electrode polarized at 1.8 V vs. SCE and it can be also well used to predict the polarization behavior of the oxidized electrode in vanadium (IV) acidic solutions.

  4. PUMA Version 6 Multiplatform with Facilities to be coupled with other Simulation Models

    International Nuclear Information System (INIS)

    Grant, Carlos

    2013-01-01

    PUMA is a code for nuclear reactor calculation used in all nuclear installations in Argentina for simulation of fuel management, power cycles and transient events by means of spatial kinetic diffusion theory in 3D. For the versions used up to now the WINDOWS platform was used with very good results. Nowadays PUMA must work in different operative systems, LINUX among others, and must also have facilities to be coupled with other models. For this reason this new version was reprogrammed in ADA, language oriented to a safe programming and be found in any operative system. In former versions PUMA was executed through macro instructions written in LOGO. For this version it is possible to use also PYTHON, which makes also possible the access in execution time to internal data of PUMA. The use of PYTHON allows a easy way to couple PUMA with other codes. The possibilities of this new version of PUMA are shown by means of examples of input data and process control using PYTHON and LOGO. It is discussed the implementation of this methodology in other codes to be coupled with PUMA for versions run in WINDOWS and LINUX. (author)

  5. Modern quantum kinetic theory and spectral line shapes

    International Nuclear Information System (INIS)

    Monchick, L.

    1991-01-01

    The modern quantum kinetic theory of spectral line shapes is outlined and a typical calculation of a Raman scattered line shape described. The distinguishing feature of this calculation is that it was completely ab initio and therefore constituted a test of modern quantum kinetic theory, the state of the art in computing molecular-scattering cross sections, and novel methods of solving kinetic equations. The computation employed a large assortment of tools: group theory, finite-element methods, classic methods of solving coupled sets of ordinary differential equations, graph methods of combining angular momenta, and matrix methods of solving integral equations. Agreement with experimental results was excellent. 13 refs

  6. TU-C-12A-11: Comparisons Between Cu-ATSM PET and DCE-CT Kinetic Parameters in Canine Sinonasal Tumors

    Energy Technology Data Exchange (ETDEWEB)

    La Fontaine, M; Bradshaw, T [University of Wisconsin, Madison, Wisconsin (United States); Kubicek, L [University of Florida, Gainesville, Florida (United States); Forrest, L [University of Wisconsin-Madison, Madison, Wisconsin (United States); Jeraj, R [University of Wisconsin, Madison, WI (United States)

    2014-06-15

    Purpose: Regions of poor perfusion within tumors may be associated with higher hypoxic levels. This study aimed to test this hypothesis by comparing measurements of hypoxia from Cu-ATSM PET to vasculature kinetic parameters from DCE-CT kinetic analysis. Methods: Ten canine patients with sinonasal tumors received one Cu-ATSM PET/CT scan and three DCE-CT scans prior to treatment. Cu-ATSM PET/CT and DCE-CT scans were registered and resampled to matching voxel dimensions. Kinetic analysis was performed on DCE-CT scans and for each patient, the resulting kinetic parameter values from the three DCE-CT scans were averaged together. Cu-ATSM SUVs were spatially correlated (r{sub spatial}) on a voxel-to-voxel basis against the following DCE-CT kinetic parameters: transit time (t{sub 1}), blood flow (F), vasculature fraction (v{sub 1}), and permeability (PS). In addition, whole-tumor comparisons were performed by correlating (r{sub ROI}) the mean Cu-ATSM SUV (SUV{sub mean}) with median kinetic parameter values. Results: The spatial correlations (r{sub spatial}) were poor and ranged from -0.04 to 0.21 for all kinetic parameters. These low spatial correlations may be due to high variability in the DCE-CT kinetic parameter voxel values between scans. In our hypothesis, t{sub 1} was expected to have a positive correlation, while F was expected to have a negative correlation to hypoxia. However, in wholetumor analysis the opposite was found for both t{sub 1} (r{sub ROI} = -0.25) and F (r{sub ROI} = 0.56). PS and v{sub 1} may depict angiogenic responses to hypoxia and found positive correlations to Cu-ATSM SUV for PS (r{sub ROI} = 0.41), and v{sub 1} (r{sub ROI} = 0.57). Conclusion: Low spatial correlations were found between Cu-ATSM uptake and DCE-CT vasculature parameters, implying that poor perfusion is not associated with higher hypoxic regions. Across patients, the most hypoxic tumors tended to have higher blood flow values, which is contrary to our initial hypothesis. Funding

  7. Weakening gravity on redshift-survey scales with kinetic matter mixing

    Energy Technology Data Exchange (ETDEWEB)

    D' Amico, Guido [Theoretical Physics Department, CERN, Geneva (Switzerland); Huang, Zhiqi [School of Physics and Astronomy, Sun Yat-Sen University, 135 Xingang Xi Road, 510275, Guangzhou (China); Mancarella, Michele; Vernizzi, Filippo [CEA, IPhT, CNRS, URA-2306, 91191 Gif-sur-Yvette cédex (France)

    2017-02-01

    We explore general scalar-tensor models in the presence of a kinetic mixing between matter and the scalar field, which we call Kinetic Matter Mixing. In the frame where gravity is de-mixed from the scalar this is due to disformal couplings of matter species to the gravitational sector, with disformal coefficients that depend on the gradient of the scalar field. In the frame where matter is minimally coupled, it originates from the so-called beyond Horndeski quadratic Lagrangian. We extend the Effective Theory of Interacting Dark Energy by allowing disformal coupling coefficients to depend on the gradient of the scalar field as well. In this very general approach, we derive the conditions to avoid ghost and gradient instabilities and we define Kinetic Matter Mixing independently of the frame metric used to described the action. We study its phenomenological consequences for a ΛCDM background evolution, first analytically on small scales. Then, we compute the matter power spectrum and the angular spectra of the CMB anisotropies and the CMB lensing potential, on all scales. We employ the public version of COOP, a numerical Einstein-Boltzmann solver that implements very general scalar-tensor modifications of gravity. Rather uniquely, Kinetic Matter Mixing weakens gravity on short scales, predicting a lower σ{sub 8} with respect to the ΛCDM case. We propose this as a possible solution to the tension between the CMB best-fit model and low-redshift observables.

  8. Souk: Spatial Observation of hUman Kinetics

    OpenAIRE

    Killijian , Marc-Olivier; Pasqua , Roberto; Roy , Matthieu; Trédan , Gilles; Zanon , Christophe

    2016-01-01

    International audience; Simulating human-centered pervasive systems requires accurate assumptions on the behavior of human groups. Recent models consider this behavior as a combination of both social and spatial factors. Yet, establishing accurate traces of human groups is difficult: current techniques capture either positions, or contacts, with a limited accuracy. In this paper, we introduce a new technique to capture such behaviors. The interest of this approach lies in the unprecedented ac...

  9. Measurement of kinetic inductance of superconducting wires and application for measuring flux state of Josephson-junction loops

    Energy Technology Data Exchange (ETDEWEB)

    Shimazu, Y.; Yokoyama, T

    2004-10-01

    In order to realize strong coupling in a system of multiple flux qubits with a DC-SQUID, the use of kinetic inductance is advantageous because it can be much larger than geometrical inductance for narrow superconducting wires. We measured the inductance associated with narrow Al wires, and estimated the contributions of kinetic and geometrical inductances. The London penetration depth which determines the kinetic inductance is evaluated. We fabricated samples of two Josephson-junction loops and a DC-SQUID which are all coupled with kinetic inductances. The observed magnetic flux due to the loops is in good agreement with the result of numerical simulation based on the estimated inductances.

  10. Theoretical and experimental investigations of efficient light coupling with spatially varied all dielectric striped waveguides

    Science.gov (United States)

    Yilmaz, Y. A.; Tandogan, S. E.; Hayran, Z.; Giden, I. H.; Turduev, M.; Kurt, H.

    2017-07-01

    Integrated photonic systems require efficient, compact, and broadband solutions for strong light coupling into and out of optical waveguides. The present work investigates an efficient optical power transferring the problem between optical waveguides having different widths of in/out terminals. We propose a considerably practical and feasible concept to implement and design an optical coupler by introducing gradually index modulation to the coupler section. The index profile of the coupler section is modulated with a Gaussian function by the help of striped waveguides. The effective medium theory is used to replace the original spatially varying index profile with dielectric stripes of a finite length/width having a constant effective refractive index. 2D and 3D finite-difference time-domain analyzes are utilized to investigate the sampling effect of the designed optical coupler and to determine the parameters that play a crucial role in enhancing the optical power transfer performance. Comparing the coupling performance of conventional benchmark adiabatic and butt couplers with the designed striped waveguide coupler, the corresponding coupling efficiency increases from approximately 30% to 95% over a wide frequency interval. In addition, to realize the realistic optical coupler appropriate to integrated photonic applications, the proposed structure is numerically designed on a silicon-on-insulator wafer. The implemented SOI platform based optical coupler operates in the telecom wavelength regime (λ = 1.55 μm), and the dimensions of the striped coupler are kept as 9.77 μm (along the transverse to propagation direction) and 7.69 μm (along the propagation direction) where the unit distance is fixed to be 465 nm. Finally, to demonstrate the operating design principle, the microwave experiments are conducted and the spot size conversion ratio as high as 7.1:1 is measured, whereas a coupling efficiency over 60% in the frequency range of 5.0-16.0 GHz has been also

  11. Experiments utilizing two coupled TRIGA-type reactors

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, G [Southern California Edison Co., Rosemead, CA (United States); Jones, B G; Miley, G H [University of Illinois (United States)

    1974-07-01

    times increased from 3.6 {+-} 0.3 ms to 8.0 {+-} 0.3 ms with the increase in k{sub eff}. The delay time decreased from 9.1 {+-} 0.3 ms to 7.4 {+-} 0.3 ms during the decrease in the initial period of the pulse. A series of pulses was also run to measure the spatial effects on the pulse in a critical core. A one-energy group point-reactor kinetics model was successfully used to describe the behavior of the system. The transient coupling coefficient between the two reactors in this model was described by a constant factor with a time displacement, which was the pulse propagation time through the connecting thermal column. The parameters found from this model agree well with those previously calculated in other studies by Miley and Doshi or those measured in the steady state. Additional models for spatial effects and for a time-dependent coupling coefficient in the transient mode were tested with the data. (author)

  12. A single-phase model for liquid-feed DMFCs with non-Tafel kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes (Spain)

    2007-09-27

    An isothermal single-phase 3D/1D model for liquid-feed direct methanol fuel cells (DMFC) is presented. Three-dimensional (3D) mass, momentum and species transport in the anode channels and gas diffusion layer is modeled using a commercial, finite-volume based, computational fluid dynamics (CFD) software complemented with user supplied subroutines. The 3D model is locally coupled to a one-dimensional (1D) model accounting for the electrochemical reactions in both the anode and the cathode, which provides a physically sound boundary condition for the velocity and methanol concentration fields at the anode gas diffusion layer/catalyst interface. The 1D model - comprising the membrane-electrode assembly, cathode gas diffusion layer, and cathode channel - assumes non-Tafel kinetics to describe the complex kinetics of the multi-step methanol oxidation reaction at the anode, and accounts for the mixed potential associated with methanol crossover, induced both by diffusion and electro-osmotic drag. Polarization curves computed for various methanol feed concentrations, temperatures, and methanol feed velocities show good agreement with recent experimental results. The spatial distribution of methanol in the anode channels, together with the distributions of current density, methanol crossover and fuel utilization at the anode catalyst layer, are also presented for different opperating conditions. (author)

  13. Aluminum corrosion product release kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Matt, E-mail: Matthew.Edwards@cnl.ca; Semmler, Jaleh; Guzonas, Dave; Chen, Hui Qun; Toor, Arshad; Hoendermis, Seanna

    2015-07-15

    Highlights: • Release of Al corrosion product was measured in simulated post-LOCA sump solutions. • Increased boron was found to enhance Al release kinetics at similar pH. • Models of Al release as functions of time, temperature, and pH were developed. - Abstract: The kinetics of aluminum corrosion product release was examined in solutions representative of post-LOCA sump water for both pressurized water and pressurized heavy-water reactors. Coupons of AA 6061 T6 were exposed to solutions in the pH 7–11 range at 40, 60, 90 and 130 °C. Solution samples were analyzed by inductively coupled plasma atomic emission spectroscopy, and coupon samples were analyzed by secondary ion mass spectrometry. The results show a distinct “boron effect” on the release kinetics, expected to be caused by an increase in the solubility of the aluminum corrosion products. New models were developed to describe both sets of data as functions of temperature, time, and pH (where applicable)

  14. Modular coupling of transport and chemistry: theory and model applications

    International Nuclear Information System (INIS)

    Pfingsten, W.

    1994-06-01

    For the description of complex processes in the near-field of a radioactive waste repository, the coupling of transport and chemistry is necessary. A reason for the relatively minor use of coupled codes in this area is the high amount of computer time and storage capacity necessary for calculations by conventional codes, and lack of available data. The simple application of the sequentially coupled code MCOTAC, which couples one-dimensional advective, dispersive and diffusive transport with chemical equilibrium complexation and precipitation/dissolution reactions in a porous medium, shows some promising features with respect to applicability to relevant problems. Transport, described by a random walk of multi-species particles, and chemical equilibrium calculations are solved separately, coupled only by an exchange term to ensure mass conservation. The modular-structured code was applied to three problems: a) incongruent dissolution of hydrated silicate gels, b) dissolution of portlandite and c) calcite dissolution and hypothetical dolomite precipitation. This allows for a comparison with other codes and their applications. The incongruent dissolution of cement phases, important for degradation of cementitious materials in a repository, can be included in the model without the problems which occur with a directly coupled code. The handling of a sharp multi-mineral front system showed a much faster calculation time compared to a directly coupled code application. Altogether, the results are in good agreement with other code calculations. Hence, the chosen modular concept of MCOTAC is more open to an easy extension of the code to include additional processes like sorption, kinetically controlled processes, transport in two or three spatial dimensions, and adaptation to new developments in computing (hardware and software), an important factor for applicability. (author) figs., tabs., refs

  15. NDMA formation by chloramination of ranitidine: Kinetics and mechanism

    KAUST Repository

    Le Roux, Julien; Gallard, Hervé ; Croue, Jean-Philippe; Papot, Sé bastien; Deborde, Marie

    2012-01-01

    The kinetics of decomposition of the pharmaceutical ranitidine (a major precursor of NDMA) during chloramination was investigated and some decomposition byproducts were identified by using high performance liquid chromatography coupled with mass

  16. A Coupled Calculation Suite for Atucha II Operational Transients Analysis

    International Nuclear Information System (INIS)

    Mazzantini, O.; Schivo, M.; Cesare, J.D.; Garbero, R.; Rivero, M.; Theler, G.

    2011-01-01

    While more than a decade ago reactor and thermal hydraulic calculations were tedious and often needed a lot of approximations and simplifications that forced the designers to take a very conservative approach, computational resources available nowadays allow engineers to cope with increasingly complex problems in a reasonable time. The use of best-estimate calculations provides tools to justify convenient engineering margins, reduces costs, and maximises economic benefits. In this direction, a suite of coupled best-estimate specific calculation codes was developed to analyse the behaviour of the Atucha II nuclear power plant in Argentina. The developed tool includes three-dimensional spatial neutron kinetics, a channel-level model of the core thermal hydraulics with subcooled boiling correlations, a one-dimensional model of the primary and secondary circuits including pumps, steam generators, heat exchangers, and the turbine with all their associated control loops, and a complete simulation of the reactor control, limitation, and protection system working in closed-loop conditions as a faithful representation of the real power plant. In the present paper, a description of the coupling scheme between the codes involved is given, and some examples of their application to Atucha II are shown

  17. Coupling aerosol surface and bulk chemistry with a kinetic double layer model (K2-SUB: oxidation of oleic acid by ozone

    Directory of Open Access Journals (Sweden)

    C. Pfrang

    2010-05-01

    Full Text Available We present a kinetic double layer model coupling aerosol surface and bulk chemistry (K2-SUB based on the PRA framework of gas-particle interactions (Pöschl-Rudich-Ammann, 2007. K2-SUB is applied to a popular model system of atmospheric heterogeneous chemistry: the interaction of ozone with oleic acid. We show that our modelling approach allows de-convoluting surface and bulk processes, which has been a controversial topic and remains an important challenge for the understanding and description of atmospheric aerosol transformation. In particular, we demonstrate how a detailed treatment of adsorption and reaction at the surface can be coupled to a description of bulk reaction and transport that is consistent with traditional resistor model formulations.

    From literature data we have derived a consistent set of kinetic parameters that characterise mass transport and chemical reaction of ozone at the surface and in the bulk of oleic acid droplets. Due to the wide range of rate coefficients reported from different experimental studies, the exact proportions between surface and bulk reaction rates remain uncertain. Nevertheless, the model results suggest an important role of chemical reaction in the bulk and an approximate upper limit of ~10−11 cm2 s−1 for the surface reaction rate coefficient. Sensitivity studies show that the surface accommodation coefficient of the gas-phase reactant has a strong non-linear influence on both surface and bulk chemical reactions. We suggest that K2-SUB may be used to design, interpret and analyse future experiments for better discrimination between surface and bulk processes in the oleic acid-ozone system as well as in other heterogeneous reaction systems of atmospheric relevance.

  18. Tight-coupling of groundwater flow and transport modelling engines with spatial databases and GIS technology: a new approach integrating Feflow and ArcGIS

    Directory of Open Access Journals (Sweden)

    Ezio Crestaz

    2012-09-01

    Full Text Available Implementation of groundwater flow and transport numerical models is generally a challenge, time-consuming and financially-demanding task, in charge to specialized modelers and consulting firms. At a later stage, within clearly stated limits of applicability, these models are often expected to be made available to less knowledgeable personnel to support/design and running of predictive simulations within more familiar environments than specialized simulation systems. GIS systems coupled with spatial databases appear to be ideal candidates to address problem above, due to their much wider diffusion and expertise availability. Current paper discusses the issue from a tight-coupling architecture perspective, aimed at integration of spatial databases, GIS and numerical simulation engines, addressing both observed and computed data management, retrieval and spatio-temporal analysis issues. Observed data can be migrated to the central database repository and then used to set up transient simulation conditions in the background, at run time, while limiting additional complexity and integrity failure risks as data duplication during data transfer through proprietary file formats. Similarly, simulation scenarios can be set up in a familiar GIS system and stored to spatial database for later reference. As numerical engine is tightly coupled with the GIS, simulations can be run within the environment and results themselves saved to the database. Further tasks, as spatio-temporal analysis (i.e. for postcalibration auditing scopes, cartography production and geovisualization, can then be addressed using traditional GIS tools. Benefits of such an approach include more effective data management practices, integration and availability of modeling facilities in a familiar environment, streamlining spatial analysis processes and geovisualization requirements for the non-modelers community. Major drawbacks include limited 3D and time-dependent support in

  19. Kinetic Studies of Oxidative Coupling of Methane Reaction on Model Catalysts

    KAUST Repository

    Khan, Abdulaziz M.

    2016-01-01

    the process to be commercialized despite the fact that great number of attempts to prepare catalysts were conducted so that it can be economically viable. Due to these limitations, understanding the mechanism and kinetics of the reaction can be utilized

  20. Effects of self-coupling and asymmetric output on metastable dynamical transient firing patterns in arrays of neurons with bidirectional inhibitory coupling.

    Science.gov (United States)

    Horikawa, Yo

    2016-04-01

    Metastable dynamical transient patterns in arrays of bidirectionally coupled neurons with self-coupling and asymmetric output were studied. First, an array of asymmetric sigmoidal neurons with symmetric inhibitory bidirectional coupling and self-coupling was considered and the bifurcations of its steady solutions were shown. Metastable dynamical transient spatially nonuniform states existed in the presence of a pair of spatially symmetric stable solutions as well as unstable spatially nonuniform solutions in a restricted range of the output gain of a neuron. The duration of the transients increased exponentially with the number of neurons up to the maximum number at which the spatially nonuniform steady solutions were stabilized. The range of the output gain for which they existed reduced as asymmetry in a sigmoidal output function of a neuron increased, while the existence range expanded as the strength of inhibitory self-coupling increased. Next, arrays of spiking neuron models with slow synaptic inhibitory bidirectional coupling and self-coupling were considered with computer simulation. In an array of Class 1 Hindmarsh-Rose type models, in which each neuron showed a graded firing rate, metastable dynamical transient firing patterns were observed in the presence of inhibitory self-coupling. This agreed with the condition for the existence of metastable dynamical transients in an array of sigmoidal neurons. In an array of Class 2 Bonhoeffer-van der Pol models, in which each neuron had a clear threshold between firing and resting, long-lasting transient firing patterns with bursting and irregular motion were observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Experimental study and kinetic modeling of the hydro-fluorination of uranium dioxide

    International Nuclear Information System (INIS)

    Pages, Simon

    2014-01-01

    A kinetic study of hydro-fluorination of uranium dioxide was performed between 375 and 475 C under partial pressures of HF between 42 and 720 mbar. The reaction was followed by thermogravimetry in isothermal and isobaric conditions. The kinetic data obtained coupled with a characterization of the powder before, during and after reaction by SEM, EDS, BET and XRD showed that the powder grains of UO 2 are transformed according a model of instantaneous germination, anisotropic growth and internal development. The rate limiting step of the growth process is the diffusion of HF in the UF 4 layer. A mechanism of growth of the UF 4 layer has been proposed. In the temperature and pressure range studied, the reaction is of first order with respect to HF and follows an Arrhenius law. A rate equation was determined and used to perform kinetic simulations which have shown a very good correlation with experience. Coupling of this rate equation with heat and mass transport phenomena allowed to perform simulations at the scale of a powder's agglomerate. They have shown that some structures of agglomerates influence the rate of diffusion of the gases in the porous medium and thereby influence the reaction rate. Finally kinetic simulations on powder's beds and pellets were carried out and compared with experimental rates. The experimental and simulated kinetic curves have the same paces, but improvements in the simulations are needed to accurately predict rates: the coupling between the three scales (grain, agglomerate, oven) would be a good example. (author) [fr

  2. Spatial kinetics in nuclear reactor systems. Chapter 4

    International Nuclear Information System (INIS)

    Owens, D.H.

    1980-01-01

    The problem of constructing a low-order linear lumped-parameter model of xenon-induced spatial power oscillations in a large, cylindrical nuclear power reactor to replace an (assumed known) nonlinear distributed parameter model is examined. Model expansion and finite difference methods are used together to provide a successful solution to the problem. (U.K.)

  3. Sandia reactor kinetics codes: SAK and PK1D

    International Nuclear Information System (INIS)

    Pickard, P.S.; Odom, J.P.

    1978-01-01

    The Sandia Kinetics code (SAK) is a one-dimensional coupled thermal-neutronics transient analysis code for use in simulation of reactor transients. The time-dependent cross section routines allow arbitrary time-dependent changes in material properties. The one-dimensional heat transfer routines are for cylindrical geometry and allow arbitrary mesh structure, temperature-dependent thermal properties, radiation treatment, and coolant flow and heat-transfer properties at the surface of a fuel element. The Point Kinetics 1 Dimensional Heat Transfer Code (PK1D) solves the point kinetics equations and has essentially the same heat-transfer treatment as SAK. PK1D can address extended reactor transients with minimal computer execution time

  4. Axion dark matter and Planck favor non-minimal couplings to gravity

    Energy Technology Data Exchange (ETDEWEB)

    Folkerts, Sarah, E-mail: sarah.folkerts@lmu.de [Arnold Sommerfeld Center, Ludwig-Maximilians-University, Theresienstr. 37, 80333 München (Germany); Germani, Cristiano, E-mail: cristiano.germani@lmu.de [Arnold Sommerfeld Center, Ludwig-Maximilians-University, Theresienstr. 37, 80333 München (Germany); Redondo, Javier, E-mail: javier.redondo@lmu.de [Arnold Sommerfeld Center, Ludwig-Maximilians-University, Theresienstr. 37, 80333 München (Germany); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München (Germany)

    2014-01-20

    Constraints on inflationary scenarios and isocurvature perturbations have excluded the simplest and most generic models of dark matter based on QCD axions. Considering non-minimal kinetic couplings of scalar fields to gravity substantially changes this picture. The axion can account for the observed dark matter density avoiding the overproduction of isocurvature fluctuations. Finally, we show that assuming the same non-minimal kinetic coupling to the axion (dark matter) and to the standard model Higgs boson (inflaton) provides a minimal picture of early time cosmology.

  5. Derivation of kinetic coefficients by atomistic methods for studying defect behavior in Mo

    International Nuclear Information System (INIS)

    Insepov, Z.; Rest, J.; Yacout, A.M.; Kuksin, A.Yu.; Norman, G.E.; Stegailov, V.V.; Starikov, S.V.; Yanilkin, A.V.

    2012-01-01

    Highlights: ► A multiscale concept couples molecular dynamics (MD) with ab initio and kinetic rate theory. ► Evolution of a system of self-interstitial atoms and vacancies in Mo is studied by MD. ► Formation of di-SIA clusters and SIA–vacancy recombination is analyzed. ► 1D diffusion of self-interstitials at various temperature and defect concentrations were studied. ► This paper provides a powerful predictive tool for simulating irradiation of nuclear materials. - Abstract: A multiscale concept for irradiated materials simulation is formulated based on coupling molecular dynamics simulations (MD) where the potential was obtained from ab initio data of energies of the basic defect structures, with kinetic mesoscale models. The evolution of a system containing self-interstitial atoms (SIAs) and vacancies in crystalline molybdenum is investigated by means of MD. The kinetics of formation of di-SIA clusters and SIA–vacancy recombination is analyzed via approaches used in the kinetic theory of radiation ageing. The effects of 1D diffusion of SIAs, temperature, and defect concentrations on the reaction rates are also studied. This approach can validate both the kinetic mechanisms and the appropriate kinetic coefficients, offering the potential to significantly reduce the uncertainty of the kinetic methodology and providing a powerful predictive tool for simulating irradiation behavior of nuclear materials.

  6. Oxidative desulfurization: kinetic modelling.

    Science.gov (United States)

    Dhir, S; Uppaluri, R; Purkait, M K

    2009-01-30

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel.

  7. Oxidative desulfurization: Kinetic modelling

    International Nuclear Information System (INIS)

    Dhir, S.; Uppaluri, R.; Purkait, M.K.

    2009-01-01

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H 2 O 2 over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel

  8. Coupled processes and the tropical climatology : part III : instabilities of the fully coupled climatology

    NARCIS (Netherlands)

    Dijkstra, H.A.; Neelin, J.D.

    1998-01-01

    Coupled processes between the equatorial ocean and atmosphere control the spatial structure of the annual mean state in the Pacific region,in particular the warm-pool/cold- tongue structure.At the same time,coupled processes are known to be responsible for the variability about this mean state,in

  9. Studies of combustion kinetics and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Gutman, D. [Catholic Univ. of America, Washington, DC (United States)

    1993-12-01

    The objective of the current research is to gain new quantitative knowledge of the kinetics and mechanisms of polyatomic free radicals which are important in hydrocarbon combustion processes. The special facility designed and built for these (which includes a heatable tubular reactor coupled to a photoionization mass spectrometer) is continually being improved. Where possible, these experimental studies are coupled with theoretical ones, sometimes conducted in collaboration with others, to obtain an improved understanding of the factors determining reactivity. The decomposition of acetyl radicals, isopropyl radicals, and n-propyl radicals have been studied as well as the oxidation of methylpropargyl radicals.

  10. Quorum Sensing in Populations of Spatially Extended Chaotic Oscillators Coupled Indirectly via a Heterogeneous Environment

    Science.gov (United States)

    Li, Bing-Wei; Cao, Xiao-Zhi; Fu, Chenbo

    2017-12-01

    Many biological and chemical systems could be modeled by a population of oscillators coupled indirectly via a dynamical environment. Essentially, the environment by which the individual element communicates with each other is heterogeneous. Nevertheless, most of previous works considered the homogeneous case only. Here we investigated the dynamical behaviors in a population of spatially distributed chaotic oscillators immersed in a heterogeneous environment. Various dynamical synchronization states (such as oscillation death, phase synchronization, and complete synchronized oscillation) as well as their transitions were explored. In particular, we uncovered a non-traditional quorum sensing transition: increasing the population density leaded to a transition from oscillation death to synchronized oscillation at first, but further increasing the density resulted in degeneration from complete synchronization to phase synchronization or even from phase synchronization to desynchronization. The underlying mechanism of this finding was attributed to the dual roles played by the population density. What's more, by treating the environment as another component of the oscillator, the full system was then effectively equivalent to a locally coupled system. This fact allowed us to utilize the master stability functions approach to predict the occurrence of complete synchronization oscillation, which agreed with that from the direct numerical integration of the system. The potential candidates for the experimental realization of our model were also discussed.

  11. [Dynamic coupling and spatial disparity of economic development and water environmental quality in Songhua River Basin of Jilin Province, Northeast China].

    Science.gov (United States)

    Yang, Li-Hua; Tong, Lian-Jun

    2013-02-01

    By using coupling model, this paper analyzed the relationships between the economic development and water environment quality in Songhua River Basin of Jilin Province from 1991 to 2010. During the study period, both the economic development index and the water environment index in the Basin showed an uptrend, basically in a coordination state. From the perspective of coupling coordination degree, the economic development and the water environment system were in interactive coupling, with the features of complexity, nonlinearity, and time-variation. As a whole, the coupling experienced three stages, i.e., low level stage, antagonistic stage, and breaking-in stage. As for the coupling degree, the coupling of the economic development and the water environment system was in the first quadrant, i.e., at a development stage of basic coordination. From the perspective of spatial disparity, the coupling degree of the economic development and the water environment system was higher in the upper reaches of the Songhua River Basin, including Changchun and Jilin, than in the lower reaches, including Songyuan and Baicheng. The coupling degree was not only significantly positively correlated with regional economic development, but also affected by the links between the regions as well as the industrial structure within the regions. The economic development of the cities in the upper reaches of the Songhua River Basin was obviously higher than that in the lower reaches, and, due to the adopting of more strict and effective measures for environmental protection and pollution emissions reduction, the water environment quality in the upper reaches of the Songhua River Basin was better.

  12. Nonlocal nonlinear coupling of kinetic sound waves

    Directory of Open Access Journals (Sweden)

    O. Lyubchyk

    2014-11-01

    Full Text Available We study three-wave resonant interactions among kinetic-scale oblique sound waves in the low-frequency range below the ion cyclotron frequency. The nonlinear eigenmode equation is derived in the framework of a two-fluid plasma model. Because of dispersive modifications at small wavelengths perpendicular to the background magnetic field, these waves become a decay-type mode. We found two decay channels, one into co-propagating product waves (forward decay, and another into counter-propagating product waves (reverse decay. All wavenumbers in the forward decay are similar and hence this decay is local in wavenumber space. On the contrary, the reverse decay generates waves with wavenumbers that are much larger than in the original pump waves and is therefore intrinsically nonlocal. In general, the reverse decay is significantly faster than the forward one, suggesting a nonlocal spectral transport induced by oblique sound waves. Even with low-amplitude sound waves the nonlinear interaction rate is larger than the collisionless dissipation rate. Possible applications regarding acoustic waves observed in the solar corona, solar wind, and topside ionosphere are briefly discussed.

  13. Chemical kinetics and combustion modelling with CFX 4

    Energy Technology Data Exchange (ETDEWEB)

    Stopford, P [AEA Technology, Computational Fluid Dynamics Services Harwell, Oxfordshire (United Kingdom)

    1998-12-31

    The presentation describes some recent developments in combustion and kinetics models used in the CFX software of AEA Technology. Three topics are highlighted: the development of coupled solvers in a traditional `SIMPLE`-based CFD code, the use of detailed chemical kinetics mechanism via `look-up` tables and the application of CFD to large-scale multi-burner combustion plant. The aim is identify those physical approximations and numerical methods that are likely to be most useful in the future and those areas where further developments are required. (author) 6 refs.

  14. Chemical kinetics and combustion modelling with CFX 4

    Energy Technology Data Exchange (ETDEWEB)

    Stopford, P. [AEA Technology, Computational Fluid Dynamics Services Harwell, Oxfordshire (United Kingdom)

    1997-12-31

    The presentation describes some recent developments in combustion and kinetics models used in the CFX software of AEA Technology. Three topics are highlighted: the development of coupled solvers in a traditional `SIMPLE`-based CFD code, the use of detailed chemical kinetics mechanism via `look-up` tables and the application of CFD to large-scale multi-burner combustion plant. The aim is identify those physical approximations and numerical methods that are likely to be most useful in the future and those areas where further developments are required. (author) 6 refs.

  15. Semi-continuous and multigroup models in extended kinetic theory

    International Nuclear Information System (INIS)

    Koller, W.

    2000-01-01

    The aim of this thesis is to study energy discretization of the Boltzmann equation in the framework of extended kinetic theory. In case that external fields can be neglected, the semi- continuous Boltzmann equation yields a sound basis for various generalizations. Semi-continuous kinetic equations describing a three component gas mixture interacting with monochromatic photons as well as a four component gas mixture undergoing chemical reactions are established and investigated. These equations reflect all major aspects (conservation laws, equilibria, H-theorem) of the full continuous kinetic description. For the treatment of the spatial dependence, an expansion of the distribution function in terms of Legendre polynomials is carried out. An implicit finite differencing scheme is combined with the operator splitting method. The obtained numerical schemes are applied to the space homogeneous study of binary chemical reactions and to spatially one-dimensional laser-induced acoustic waves. In the presence of external fields, the developed overlapping multigroup approach (with the spline-interpolation as its extension) is well suited for numerical studies. Furthermore, two formulations of consistent multigroup approaches to the non-linear Boltzmann equation are presented. (author)

  16. Development of a coupled code system based on system transient code, RETRAN, and 3-D neutronics code, MASTER

    International Nuclear Information System (INIS)

    Kim, K. D.; Jung, J. J.; Lee, S. W.; Cho, B. O.; Ji, S. K.; Kim, Y. H.; Seong, C. K.

    2002-01-01

    A coupled code system of RETRAN/MASTER has been developed for best-estimate simulations of interactions between reactor core neutron kinetics and plant thermal-hydraulics by incorporation of a 3-D reactor core kinetics analysis code, MASTER into system transient code, RETRAN. The soundness of the consolidated code system is confirmed by simulating the MSLB benchmark problem developed to verify the performance of a coupled kinetics and system transient codes by OECD/NEA

  17. Diphoton excess from hidden U(1 gauge symmetry with large kinetic mixing

    Directory of Open Access Journals (Sweden)

    Fuminobu Takahashi

    2016-09-01

    Full Text Available We show that the 750 GeV diphoton excess can be explained by introducing vector-like quarks and hidden fermions charged under a hidden U(1 gauge symmetry, which has a relatively large coupling constant as well as a significant kinetic mixing with U(1Y. With the large kinetic mixing, the standard model gauge couplings unify around 1017 GeV, suggesting the grand unified theory without too rapid proton decay. Our scenario predicts events with a photon and missing transverse momentum, and its cross section is related to that for the diphoton excess through the kinetic mixing. We also discuss other possible collider signatures and cosmology, including various ways to evade constraints on exotic stable charged particles. In some cases where the 750 GeV diphoton excess is due to diaxion decays, our scenario also predicts triphoton and tetraphoton signals.

  18. Understanding Mn-Based Intercalation Cathodes from Thermodynamics and Kinetics

    Directory of Open Access Journals (Sweden)

    Yin Xie

    2017-07-01

    Full Text Available A series of Mn-based intercalation compounds have been applied as the cathode materials of Li-ion batteries, such as LiMn2O4, LiNi1−x−yCoxMnyO2, etc. With open structures, intercalation compounds exhibit a wide variety of thermodynamic and kinetic properties depending on their crystal structures, host chemistries, etc. Understanding these materials from thermodynamic and kinetic points of view can facilitate the exploration of cathodes with better electrochemical performances. This article reviews the current available thermodynamic and kinetic knowledge on Mn-based intercalation compounds, including the thermal stability, structural intrinsic features, involved redox couples, phase transformations as well as the electrical and ionic conductivity.

  19. Particle production after inflation with non-minimal derivative coupling to gravity

    International Nuclear Information System (INIS)

    Ema, Yohei; Jinno, Ryusuke; Nakayama, Kazunori; Mukaida, Kyohei

    2015-01-01

    We study cosmological evolution after inflation in models with non-minimal derivative coupling to gravity. The background dynamics is solved and particle production associated with rapidly oscillating Hubble parameter is studied in detail. In addition, production of gravitons through the non-minimal derivative coupling with the inflaton is studied. We also find that the sound speed squared of the scalar perturbation oscillates between positive and negative values when the non-minimal derivative coupling dominates over the minimal kinetic term. This may lead to an instability of this model. We point out that the particle production rates are the same as those in the Einstein gravity with the minimal kinetic term, if we require the sound speed squared is positive definite

  20. Models of the Dynamics of Spatially Separated Broadband Electromagnetic Fields Interacting with Resonant Atoms

    Science.gov (United States)

    Basharov, A. M.

    2018-03-01

    The Markov model of spontaneous emission of an atom localized in a spatial region with a broadband electromagnetic field with zero photon density is considered in the conditions of coupling of the electromagnetic field with the broadband field of a neighboring space. The evolution operator of the system and the kinetic equation for the atom are obtained. It is shown that the field coupling constant affects the rate of spontaneous emission of the atom, but is not manifested in the atomic frequency shift. The analytic expression for the radiative decay constant for the atom is found to be analogous in a certain sense to the expression for the decay constant for a singly excited localized ensemble of identical atoms in the conditions when the effect of stabilization of its excited state by the Stark interaction with the vacuum broadband electromagnetic field is manifested. The model is formulated based on quantum stochastic differential equations of the non- Wiener type and the generalized algebra of the Ito differential of quantum random processes.

  1. Beyond the Cahn-Hilliard equation: a vacancy-based kinetic theory

    International Nuclear Information System (INIS)

    Nastar, M.

    2011-01-01

    A Self-Consistent Mean Field (SCMF) kinetic theory including an explicit description of the vacancy diffusion mechanism is developed. The present theory goes beyond the usual local equilibrium hypothesis. It is applied to the study of the early time spinodal decomposition in alloys. The resulting analytical expression of the structure function highlights the contribution of the vacancy diffusion mechanism. Instead of the single amplification rate of the Cahn-Hillard linear theory, the linearized SCMF kinetic equations involve three constant rates, first one describing the vacancy relaxation kinetics, second one related to the kinetic coupling between local concentrations and pair correlations and the third one representing the spinodal amplification rate. Starting from the same vacancy diffusion model, we perform kinetic Monte Carlo simulations of a Body Centered Cubic (BCC) demixting alloy. The resulting spherically averaged structure function is compared to the SCMF predictions. Both qualitative and quantitative agreements are satisfying. (authors)

  2. Screw-vector bond graphs for kinetic-static modelling and analysis of mechanisms

    International Nuclear Information System (INIS)

    Bidard, Catherine

    1994-01-01

    This dissertation deals with the kinetic-static modelling and analysis of spatial mechanisms used in robotics systems. A framework is proposed, which embodies a geometrical and a network approach for kinetic-static modelling. For this purpose we use screw theory and bond graphs. A new form of bond graphs is introduced: the screw-vector bond graph, whose power variables are defined to be wrenches and twists expressed as intrinsic screw-vectors. The mechanism is then identified as a network, whose components are kinematic pairs and whose topology is described by a directed graph. A screw-vector Simple Junction Structure represents the topological constraints. Kinematic pairs are represented by one-port elements, defined by two reciprocal screw-vector spaces. Using dual bases of screw-vectors, a generic decomposition of kinematic pair elements is given. The reduction of kinetic-static models of series and parallel kinematic chains is used in order to derive kinetic-static functional models in geometric form. Thereupon, the computational causality assignment is adapted for the graphical analysis of the mobility and the functioning of spatial mechanisms, based on completely or incompletely specified models. (author) [fr

  3. Beyond mean-field approximations for accurate and computationally efficient models of on-lattice chemical kinetics

    Science.gov (United States)

    Pineda, M.; Stamatakis, M.

    2017-07-01

    Modeling the kinetics of surface catalyzed reactions is essential for the design of reactors and chemical processes. The majority of microkinetic models employ mean-field approximations, which lead to an approximate description of catalytic kinetics by assuming spatially uncorrelated adsorbates. On the other hand, kinetic Monte Carlo (KMC) methods provide a discrete-space continuous-time stochastic formulation that enables an accurate treatment of spatial correlations in the adlayer, but at a significant computation cost. In this work, we use the so-called cluster mean-field approach to develop higher order approximations that systematically increase the accuracy of kinetic models by treating spatial correlations at a progressively higher level of detail. We further demonstrate our approach on a reduced model for NO oxidation incorporating first nearest-neighbor lateral interactions and construct a sequence of approximations of increasingly higher accuracy, which we compare with KMC and mean-field. The latter is found to perform rather poorly, overestimating the turnover frequency by several orders of magnitude for this system. On the other hand, our approximations, while more computationally intense than the traditional mean-field treatment, still achieve tremendous computational savings compared to KMC simulations, thereby opening the way for employing them in multiscale modeling frameworks.

  4. Sum rule limitations of kinetic particle-production models

    International Nuclear Information System (INIS)

    Knoll, J.; CEA Centre d'Etudes Nucleaires de Grenoble, 38; Guet, C.

    1988-04-01

    Photoproduction and absorption sum rules generalized to systems at finite temperature provide a stringent check on the validity of kinetic models for the production of hard photons in intermediate energy nuclear collisions. We inspect such models for the case of nuclear matter at finite temperature employed in a kinetic regime which copes those encountered in energetic nuclear collisions, and find photon production rates which significantly exceed the limits imposed by the sum rule even under favourable concession. This suggests that coherence effects are quite important and the production of photons cannot be considered as an incoherent addition of individual NNγ production processes. The deficiencies of present kinetic models may also apply for the production of probes such as the pion which do not couple perturbatively to the nuclear currents. (orig.)

  5. Chemistry with spatial control using particles and streams†

    Science.gov (United States)

    Kalinin, Yevgeniy V.; Murali, Adithya

    2012-01-01

    Spatial control of chemical reactions, with micro- and nanometer scale resolution, has important consequences for one pot synthesis, engineering complex reactions, developmental biology, cellular biochemistry and emergent behavior. We review synthetic methods to engineer this spatial control using chemical diffusion from spherical particles, shells and polyhedra. We discuss systems that enable both isotropic and anisotropic chemical release from isolated and arrayed particles to create inhomogeneous and spatially patterned chemical fields. In addition to such finite chemical sources, we also discuss spatial control enabled with laminar flow in 2D and 3D microfluidic networks. Throughout the paper, we highlight applications of spatially controlled chemistry in chemical kinetics, reaction-diffusion systems, chemotaxis and morphogenesis. PMID:23145348

  6. Biodegradation kinetics for pesticide exposure assessment.

    Science.gov (United States)

    Wolt, J D; Nelson, H P; Cleveland, C B; van Wesenbeeck, I J

    2001-01-01

    Understanding pesticide risks requires characterizing pesticide exposure within the environment in a manner that can be broadly generalized across widely varied conditions of use. The coupled processes of sorption and soil degradation are especially important for understanding the potential environmental exposure of pesticides. The data obtained from degradation studies are inherently variable and, when limited in extent, lend uncertainty to exposure characterization and risk assessment. Pesticide decline in soils reflects dynamically coupled processes of sorption and degradation that add complexity to the treatment of soil biodegradation data from a kinetic perspective. Additional complexity arises from study design limitations that may not fully account for the decline in microbial activity of test systems, or that may be inadequate for considerations of all potential dissipation routes for a given pesticide. Accordingly, kinetic treatment of data must accommodate a variety of differing approaches starting with very simple assumptions as to reaction dynamics and extending to more involved treatments if warranted by the available experimental data. Selection of the appropriate kinetic model to describe pesticide degradation should rely on statistical evaluation of the data fit to ensure that the models used are not overparameterized. Recognizing the effects of experimental conditions and methods for kinetic treatment of degradation data is critical for making appropriate comparisons among pesticide biodegradation data sets. Assessment of variability in soil half-life among soils is uncertain because for many pesticides the data on soil degradation rate are limited to one or two soils. Reasonable upper-bound estimates of soil half-life are necessary in risk assessment so that estimated environmental concentrations can be developed from exposure models. Thus, an understanding of the variable and uncertain distribution of soil half-lives in the environment is

  7. Coupling Chemical Kinetics and Flashes in Reactive, Thermal and Compositional Reservoir Simulation

    DEFF Research Database (Denmark)

    Kristensen, Morten Rode; Gerritsen, Margot G.; Thomsen, Per Grove

    2007-01-01

    of convergence and error test failures by more than 50% compared to direct integration without the new algorithm. To facilitate the algorithmic development we construct a virtual kinetic cell model. We use implicit one-step ESDIRK (Explicit Singly Diagonal Implicit Runge-Kutta) methods for integration......Phase changes are known to cause convergence problems for integration of stiff kinetics in thermal and compositional reservoir simulations. We propose an algorithm for detection and location of phase changes based on discrete event system theory. The algorithm provides a robust way for handling...... the switching of variables and equations required when the number of phases changes. We extend the method to handle full phase equilibrium described by an equation of state. Experiments show that the new algorithm improves the robustness of the integration process near phase boundaries by lowering the number...

  8. Multiple spatial scaling and the weak-coupling approximation. I. General formulation and equilibrium theory

    Energy Technology Data Exchange (ETDEWEB)

    Kleinsmith, P E [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1976-04-01

    Multiple spatial scaling is incorporated in a modified form of the Bogoliubov plasma cluster expansion; then this proposed reformulation of the plasma weak-coupling approximation is used to derive, from the BBGKY Hierarchy, a decoupled set of equations for the one-and two-particle distribution functions in the limit as the plasma parameter goes to zero. Because the reformulated cluster expansion permits retention of essential two-particle collisional information in the limiting equations, while simultaneously retaining the well-established Debye-scale relative ordering of the correlation functions, decoupling of the Hierarchy is accomplished without introduction of the divergence problems encountered in the Bogoliubov theory, as is indicated by an exact solution of the limiting equations for the equilibrium case. To establish additional links with existing plasma equilibrium theories, the two-particle equilibrium correlation function is used to calculate the interaction energy and the equation of state. The limiting equation for the equilibrium three-particle correlation function is then developed, and a formal solution is obtained.

  9. Les trajectoires spatiales d’activité des couples The spatial trajectories of couples’ activities

    Directory of Open Access Journals (Sweden)

    Eva Lelièvre

    2010-07-01

    Full Text Available Après avoir examiné les avancées récentes de l’observation et de l’analyse des contextes des parcours individuels en démographie, nous proposons ici de traiter le premier niveau interpersonnel des biographies liées : celui des deux membres d’un couple. Pour cela nous reconstituons la trajectoire de l’espace d’activité des deux conjoints formée des lieux de résidence et de travail qui se succèdent tout au long de leur union à partir des données de l’enquête Biographies et entourage de l’Ined. Puis nous présentons une approche holiste de ces trajectoires permettant d’en dégager une typologie grâce à la mise en œuvre d’une analyse qualitative harmonique dont nous détaillons les principes. La description de ces trajectoires éclaire les arbitrages des couples qui se jouent dans les stratégies de localisation, au confluent du travail, de la famille et du logement. Néanmoins, une discussion précise des limites et des pistes futures est proposée pour dépasser cette première application.After an overview of recent trends in data collection and of the different strategies applied to the demographic analysis of life courses embedded in their context, this paper presents the analysis of a specific level of interpersonal interaction : the intertwined dynamics of the life courses of both members of a couple. To this end, we reconstruct the dynamics of the activity space of couples defined as the territory covered by their place(s of residence and place(s of work since the beginning of their union, taking advantage of a rich data source, the INED Biographies et entourage survey. We then detail the principles of the data analysis method (Qualitative Harmonic Analysis. The description drawn from the typology obtained sheds light on the choices couples make for their residential moves, taking into account their family and occupational priorities. The limits of the method and future research paths are then discussed in

  10. Dynamical hysteresis and spatial synchronization in coupled non

    Indian Academy of Sciences (India)

    ... of complex biological systems, e.g. seizures in the epileptic brain can be viewed as transitions between different dynamical phases caused by time dependence in the brain's internal coupling. ... Pramana – Journal of Physics | News.

  11. Nucleation and Growth Kinetics from LaMer Burst Data.

    Science.gov (United States)

    Chu, Daniel B K; Owen, Jonathan S; Peters, Baron

    2017-10-12

    In LaMer burst nucleation, the individual nucleation events happen en masse, quasi-simultaneously, and at nearly identical homogeneous conditions. These properties make LaMer burst nucleation important for applications that require monodispersed particles and also for theoretical analyses. Sugimoto and co-workers predicted that the number of nuclei generated during a LaMer burst depends only on the solute supply rate and the growth rate, independent of the nucleation kinetics. Some experiments confirm that solute supply kinetics control the number of nuclei, but flaws in the original theoretical analysis raise questions about the predicted roles of growth and nucleation kinetics. We provide a rigorous analysis of the coupled equations that govern concentrations of nuclei and solutes. Our analysis confirms that the number of nuclei is largely determined by the solute supply and growth rates, but our predicted relationship differs from that of Sugimoto et al. Moreover, we find that additional nucleus size dependent corrections should emerge in systems with slow growth kinetics. Finally, we show how the nucleation kinetics determine the particle size distribution. We suggest that measured particle size distributions might therefore provide ways to test theoretical models of homogeneous nucleation kinetics.

  12. Fast Search and Adaptive Resolution for Complex Particle Kinetics

    Science.gov (United States)

    Larson, David J.

    2005-10-01

    A new plasma simulation algorithm, intended to bridge the gap between Eulerian fluid and kinetic regimes, is now being used for a variety of applications in ICF and weapon effects. The CPK method (Complex Particle Kinetic) concept [1] uses an ensemble of macro-particles with a Gaussian spatial profile and a Mawellian velocity distribution to represent particle distributions in phase space. Time evolution is modeled by a combination of Lagrangian motion and internal evolution within each individual macro-particle. Collisional particle-particle interactions [2] are facilitated by sorting particles into bins depending of the particle size. Different bin levels are connected by a linked list. Searching for neighboring particles is highly efficient because the search is limited to particles in neighboring bins with the possibility of interaction. The bin structure also allows the computation of various spatial moments at different resolutions. Combining the results of the moment calculations yields information on where and when increased resolution is necessary. We will present details of the particle binning process along with progress towards our goal of simulating the transition from continuum to fully kinetic physics. [1] D. W. Hewett, J. Comp. Phys. 189 (2003). [2] D. J. Larson, J. Comp. Phys. 188 (2003).

  13. A consistent hierarchy of generalized kinetic equation approximations to the master equation applied to surface catalysis.

    Science.gov (United States)

    Herschlag, Gregory J; Mitran, Sorin; Lin, Guang

    2015-06-21

    We develop a hierarchy of approximations to the master equation for systems that exhibit translational invariance and finite-range spatial correlation. Each approximation within the hierarchy is a set of ordinary differential equations that considers spatial correlations of varying lattice distance; the assumption is that the full system will have finite spatial correlations and thus the behavior of the models within the hierarchy will approach that of the full system. We provide evidence of this convergence in the context of one- and two-dimensional numerical examples. Lower levels within the hierarchy that consider shorter spatial correlations are shown to be up to three orders of magnitude faster than traditional kinetic Monte Carlo methods (KMC) for one-dimensional systems, while predicting similar system dynamics and steady states as KMC methods. We then test the hierarchy on a two-dimensional model for the oxidation of CO on RuO2(110), showing that low-order truncations of the hierarchy efficiently capture the essential system dynamics. By considering sequences of models in the hierarchy that account for longer spatial correlations, successive model predictions may be used to establish empirical approximation of error estimates. The hierarchy may be thought of as a class of generalized phenomenological kinetic models since each element of the hierarchy approximates the master equation and the lowest level in the hierarchy is identical to a simple existing phenomenological kinetic models.

  14. Shaping the composition profiles in heteroepitaxial quantum dots: Interplay of thermodynamic and kinetic effects

    Directory of Open Access Journals (Sweden)

    C. Georgiou

    2014-07-01

    Full Text Available Atomistic Monte Carlo simulations, coupling thermodynamic and kinetic effects, resolve a longstanding controversy regarding the origin of composition profiles in heteroepitaxial SiGe quantum dots. It is shown that profiles with cores rich in the unstrained (Si component derive from near-equilibrium processes and intraisland diffusion. Profiles with cores rich in the strained (Ge component are of nonequilibrium nature, i.e., they are strain driven but kinetically limited. They are shaped by the distribution of kinetic barriers of atomic diffusion in the islands. The diffusion pathways are clearly revealed for the first time. Geometrical kinetics play a minor role.

  15. Coupling of unidimensional neutron kinetics to thermal hydraulics in parallel channels; Acoplamiento de cinetica neutronica unidimensional a canales termohidraulicos en paralelo

    Energy Technology Data Exchange (ETDEWEB)

    Cecenas F, M.; Campos G, R.M. [IIE, Av. Reforma 113, Col. Palmira, Cuernavaca, Morelos (Mexico)]. e-mail: mcf@iie.org.mx

    2003-07-01

    In this work the dynamic behavior of a consistent system in fifteen channels in parallel that represent the reactor core of a BWR type, coupled of a kinetic neutronic model in one dimension is studied by means of time series. The arrangement of channels is obtained collapsing the assemblies that it consists the core to an arrangement of channels prepared in straight lines, and it is coupled to the unidimensional solution of the neutron diffusion equation. This solution represents the radial power distribution, and initially the static solution is obtained to verify that the one modeling core is critic. The coupled set nuclear-thermal hydraulics it is solved numerically by means of a net of CPUs working in the outline teacher-slave by means of Parallel Virtual Machine (PVM), subject to the restriction that the pressure drop is equal for each channel, which is executed iterating on the refrigerant distribution. The channels are dimensioned according to the one Stability Benchmark of the Ringhals swedish plant, organized by the Nuclear Energy Agency in 1994. From the information of this benchmark it is obtained the axial power profile for each channel, which is assumed as invariant in the time. To obtain the time series, the system gets excited with white noise (sequence that statistically obeys to a normal distribution with zero media), so that the power generated in each channel it possesses the same ones characteristics of a typical signal obtained by means of the acquisition of those signals of neutron flux in a BWR reactor. (Author)

  16. An h-adaptive mesh method for Boltzmann-BGK/hydrodynamics coupling

    International Nuclear Information System (INIS)

    Cai Zhenning; Li Ruo

    2010-01-01

    We introduce a coupled method for hydrodynamic and kinetic equations on 2-dimensional h-adaptive meshes. We adopt the Euler equations with a fast kinetic solver in the region near thermodynamical equilibrium, while use the Boltzmann-BGK equation in kinetic regions where fluids are far from equilibrium. A buffer zone is created around the kinetic regions, on which a gradually varying numerical flux is adopted. Based on the property of a continuously discretized cut-off function which describes how the flux varies, the coupling will be conservative. In order for the conservative 2-dimensional specularly reflective boundary condition to be implemented conveniently, the discrete Maxwellian is approximated by a high order continuous formula with improved accuracy on a disc instead of on a square domain. The h-adaptive method can work smoothly with a time-split numerical scheme. Through h-adaptation, the cell number is greatly reduced. This method is particularly suitable for problems with hydrodynamics breakdown on only a small part of the whole domain, so that the total efficiency of the algorithm can be greatly improved. Three numerical examples are presented to validate the proposed method and demonstrate its efficiency.

  17. A feasible kinetic model for the hydrogen oxidation on ruthenium electrodes

    International Nuclear Information System (INIS)

    Rau, M.S.; Gennero de Chialvo, M.R.; Chialvo, A.C.

    2010-01-01

    The hydrogen oxidation reaction (hor) was studied on a polycrystalline ruthenium electrode in H 2 SO 4 solution at different rotation rates (ω). The experimental polarization curves recorded on steady state show the existence of a maximum current with a non-linear dependence of the current density on ω 1/2 . On the basis of the Tafel-Heyrovsky-Volmer kinetic mechanism, coupled with a process of inhibition of active sites by the reversible electroadsorption of hydroxyl species, it was possible to appropriately describe the origin of the maximum current. The corresponding set of kinetic parameters was also calculated from the correlation of the experimental results with the proposed kinetic model.

  18. Qualification of the coupled RELAP5/PANTHER/COBRA code package for licensing applications

    International Nuclear Information System (INIS)

    Schneidesch, C.R.; Zhang Jinzhao

    2004-01-01

    A coupled thermal hydraulics-neutronics code package has been developed at Tractebel Engineering (TE), in which the best-estimate thermal-hydraulic system code, RELAP5/mod2.5, is coupled with the full three-dimensional reactor core kinetics code, PANTHER, via the dynamic data exchange interface, TALINK. The Departure from Nucleate Boiling Ratio (DNBR) is calculated by the sub-channel thermal-hydraulic analysis code COBRA-3C. The package provides the capability to accurately simulate the key physical phenomena in nuclear power plant accidents with strong asymmetric behaviours and system-core interactions. This paper presents the TE coupled code package and focuses on the methodology followed for qualifying it for licensing applications. The qualification of the coupling demonstrated the robustness achieved by the combined 3-D neutron kinetics/system T-H code package for transient simulations. The coupled TE code package has been qualified and will be used at Tractebel Engineering (TE) for analyzing asymmetric PWR accidents with strong core-system interactions

  19. Electron phonon couplings in 2D perovskite probed by ultrafast photoinduced absorption spectroscopy

    Science.gov (United States)

    Huynh, Uyen; Ni, Limeng; Rao, Akshay

    We use the time-resolved photoinduced absorption (PIA) spectroscopy with 20fs time resolution to investigate the electron phonon coupling in the self-assembled hybrid organic layered perovskite, the hexyl ammonium lead iodide compound (C6H13NH3)2 (PbI4) . The coupling results in the broadening and asymmetry of its temperature-dependence photoluminescence spectra. The exact time scale of this coupling, however, wasn't reported experimentally. Here we show that using an ultrashort excitation pulse allows us to resolve from PIA kinetics the oscillation of coherent longitudinal optical phonons that relaxes and self-traps electrons to lower energy states within 200 fs. The 200fs relaxation time is equivalent to a coupling strength of 40meV. Two coupled phonon modes are also identified as about 100 cm-1 and 300 cm-1 from the FFT spectrum of the PIA kinetics. The lower energy mode is consistent with previous reports and Raman spectrum but the higher energy one hasn't been observed before.

  20. Spatial coherence resonance and spatial pattern transition induced by the decrease of inhibitory effect in a neuronal network

    Science.gov (United States)

    Tao, Ye; Gu, Huaguang; Ding, Xueli

    2017-10-01

    Spiral waves were observed in the biological experiment on rat brain cortex with the application of carbachol and bicuculline which can block inhibitory coupling from interneurons to pyramidal neurons. To simulate the experimental spiral waves, a two-dimensional neuronal network composed of pyramidal neurons and inhibitory interneurons was built. By decreasing the percentage of active inhibitory interneurons, the random-like spatial patterns change to spiral waves and to random-like spatial patterns or nearly synchronous behaviors. The spiral waves appear at a low percentage of inhibitory interneurons, which matches the experimental condition that inhibitory couplings of the interneurons were blocked. The spiral waves exhibit a higher order or signal-to-noise ratio (SNR) characterized by spatial structure function than both random-like spatial patterns and nearly synchronous behaviors, which shows that changes of the percentage of active inhibitory interneurons can induce spatial coherence resonance-like behaviors. In addition, the relationship between the coherence degree and the spatial structures of the spiral waves is identified. The results not only present a possible and reasonable interpretation to the spiral waves observed in the biological experiment on the brain cortex with disinhibition, but also reveal that the spiral waves exhibit more ordered degree in spatial patterns.

  1. Spatial structure of kinetic energy spectra in LES simulations of flow in an offshore wind farm

    Science.gov (United States)

    Fruh, Wolf-Gerrit; Creech, Angus

    2017-04-01

    The evolution of wind turbine and wind farm wakes was investigated numerically for the case of Lillgrund wind farm consisting of a tightly packed array of 48 turbines. The simulations for a number of wind directions at a free wind speed of just under the rated wind speed in a neutrally stable atmosphere were carried out using Large-Eddy Simulations with the adaptive Finite-Element CFD solver Fluidity. The results were interpolated from the irregularly spaced mesh nodes onto a regular grid with comparable spatial resolution at horizontal slices at various heights. To investigate the development of the wake as the flow evolves through the array, spectra of the kinetic energy in sections perpendicular to the wind directions within the wake and to the sides of the array were calculated. This paper will present the key features and spectral slopes of the flow as a function of downstream distance from the front turbine through and beyond the array. The main focus will be on the modification of the spectra as the flow crosses a row of turbines followed by its decay in the run-up to the next row, but we will also present to wake decay of the wind farm wake downstream of the array.

  2. Coupling Intensive Land Use and Landscape Ecological Security for Urban Sustainability: An Integrated Socioeconomic Data and Spatial Metrics Analysis in Hangzhou City

    Directory of Open Access Journals (Sweden)

    Xiaoteng Cen

    2015-01-01

    Full Text Available Despite the unprecedented rate of urbanization throughout the world, human society is still facing the challenge of coordinating urban socioeconomic development and ecological conservation. In this article, we integrated socioeconomic data and spatial metrics to investigate the coupling relationship between intensive land use (ILU system and landscape ecological security (LES system for urban sustainable development, and to determine how these systems interact with each other. The values of ILU and LES were first calculated according to two evaluation subsystems under the pressure-state-response (PSR framework. A coupling model was then established to analyze the coupling relationship within these two subsystems. The results showed that the levels of both subsystems were generally increasing, but there were several fluctuation changes in LES. The interaction in each system was time lagged; urban land use/cover change (LUCC and ecosystem transformation were determined by political business cycles and influenced by specific factors. The coupling relationship underwent a coordinated development mode from 1992–2012. From the findings we concluded that the coupling system maintained a stable condition and underwent evolving threshold values. The integrated ILU and LES system was a coupling system in which subsystems were related to each other and internal elements had mutual effects. Finally, it was suggested that our results provided a multi-level interdisciplinary perspective on linking socioeconomic-ecological systems. The implications for urban sustainable development were also discussed.

  3. Tunneling Kinetics and Nonadiabatic Proton-Coupled Electron Transfer in Proteins: The Effect of Electric Fields and Anharmonic Donor-Acceptor Interactions.

    Science.gov (United States)

    Salna, Bridget; Benabbas, Abdelkrim; Russo, Douglas; Champion, Paul M

    2017-07-20

    A proper description of proton donor-acceptor (D-A) distance fluctuations is crucial for understanding tunneling in proton-coupled electron transport (PCET). The typical harmonic approximation for the D-A potential results in a Gaussian probability distribution, which does not appropriately reflect the electronic repulsion forces that increase the energetic cost of sampling shorter D-A distances. Because these shorter distances are the primary channel for thermally activated tunneling, the analysis of tunneling kinetics depends sensitively on the inherently anharmonic nature of the D-A interaction. Thus, we have used quantum chemical calculations to account for the D-A interaction and developed an improved model for the analysis of experimental tunneling kinetics. Strong internal electric fields are also considered and found to contribute significantly to the compressive forces when the D-A distance distribution is positioned below the van der Waals contact distance. This model is applied to recent experiments on the wild type (WT) and a double mutant (DM) of soybean lipoxygenase-1 (SLO). The compressive force necessary to prepare the tunneling-active distribution in WT SLO is found to fall in the ∼ nN range, which greatly exceeds the measured values of molecular motor and protein unfolding forces. This indicates that ∼60-100 MV/cm electric fields, aligned along the D-A bond axis, must be generated by an enzyme conformational interconversion that facilitates the PCET tunneling reaction. Based on the absolute value of the measured tunneling rate, and using previously calculated values of the electronic matrix element, the population of this tunneling-active conformation is found to lie in the range 10 -5 -10 -7 , indicating this is a rare structural fluctuation that falls well below the detection threshold of recent ENDOR experiments. Additional analysis of the DM tunneling kinetics leads to a proposal that a disordered (high entropy) conformation could be

  4. Relativistic theory of nuclear spin-rotation tensor with kinetically balanced rotational London orbitals

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yunlong; Zhang, Yong; Liu, Wenjian, E-mail: liuwjbdf@gmail.com [Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871 (China)

    2014-10-28

    Both kinetically balanced (KB) and kinetically unbalanced (KU) rotational London orbitals (RLO) are proposed to resolve the slow basis set convergence in relativistic calculations of nuclear spin-rotation (NSR) coupling tensors of molecules containing heavy elements [Y. Xiao and W. Liu, J. Chem. Phys. 138, 134104 (2013)]. While they perform rather similarly, the KB-RLO Ansatz is clearly preferred as it ensures the correct nonrelativistic limit even with a finite basis. Moreover, it gives rise to the same “direct relativistic mapping” between nuclear magnetic resonance shielding and NSR coupling tensors as that without using the London orbitals [Y. Xiao, Y. Zhang, and W. Liu, J. Chem. Theory Comput. 10, 600 (2014)].

  5. Kinetic modeling of microbially-driven redox chemistry of radionuclides in subsurface environments: Coupling transport, microbial metabolism and geochemistry

    International Nuclear Information System (INIS)

    Wang, Yifeng; Papenguth, Hans W.

    2000-01-01

    Microbial degradation of organic matter is a driving force in many subsurface geochemical systems, and therefore may have significant impacts on the fate of radionuclides released into subsurface environments. In this paper, the authors present a general reaction-transport model for microbial metabolism, redox chemistry, and radionuclide migration in subsurface systems. The model explicitly accounts for biomass accumulation and the coupling of radionuclide redox reactions with major biogeochemical processes. Based on the consideration that the biomass accumulation in subsurface environments is likely to achieve a quasi-steady state, they have accordingly modified the traditional microbial growth kinetic equation. They justified the use of the biogeochemical models without the explicit representation of biomass accumulation, if the interest of modeling is in the net impact of microbial reactions on geochemical processes. They then applied their model to a scenario in which an oxic water flow containing both uranium and completing organic ligands is recharged into an oxic aquifer in a carbonate formation. The model simulation shows that uranium can be reduced and therefore immobilized in the anoxic zone created by microbial degradation

  6. Kinetic modeling of microbially-driven redox chemistry of radionuclides in subsurface environments: Coupling transport, microbial metabolism and geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    WANG,YIFENG; PAPENGUTH,HANS W.

    2000-05-04

    Microbial degradation of organic matter is a driving force in many subsurface geochemical systems, and therefore may have significant impacts on the fate of radionuclides released into subsurface environments. In this paper, the authors present a general reaction-transport model for microbial metabolism, redox chemistry, and radionuclide migration in subsurface systems. The model explicitly accounts for biomass accumulation and the coupling of radionuclide redox reactions with major biogeochemical processes. Based on the consideration that the biomass accumulation in subsurface environments is likely to achieve a quasi-steady state, they have accordingly modified the traditional microbial growth kinetic equation. They justified the use of the biogeochemical models without the explicit representation of biomass accumulation, if the interest of modeling is in the net impact of microbial reactions on geochemical processes. They then applied their model to a scenario in which an oxic water flow containing both uranium and completing organic ligands is recharged into an oxic aquifer in a carbonate formation. The model simulation shows that uranium can be reduced and therefore immobilized in the anoxic zone created by microbial degradation.

  7. Coupling of the spatial-temporal distributions of nutrients and physical conditions in the southern Yellow Sea

    Science.gov (United States)

    Wei, Qin-Sheng; Yu, Zhi-Gang; Wang, Bao-Dong; Fu, Ming-Zhu; Xia, Chang-Shui; Liu, Lu; Ge, Ren-Feng; Wang, Hui-Wu; Zhan, Run

    2016-04-01

    This study investigated the coupling of the spatial-temporal variations in nutrient distributions and physical conditions in the southern Yellow Sea (SYS) using data compiled from annual-cycle surveys conducted in 2006-2007 as well as satellite-derived sea-surface temperature (SST) images. The influence of physical dynamics on the distribution and transport of nutrients varied spatially and seasonally in the SYS. The Changjiang Diluted Water (CDW) plume (in summertime), the Subei Coastal Water (SCW) (year-round), and the Lubei Coastal Current (LCC) (in wintertime) served as important sources of nutrients in the inshore area in a dynamic environment. The saline Taiwan Warm Current (TWC) might transport nutrients to the northeast region of the Changjiang Estuary in the summer, and this nutrient source began to increase from spring to summer and decrease when autumn arrived. Three types of nutrient fronts, i.e., estuarine, offshore, and coastal, were identified. A circular nutrient front caused by cross-shelf transport of SCW in the southeast shelf bank area in the winter and spring was observed. The southeastward flow of western coastal cold water in the SYS might be an important conduit for cross-shelf nutrient exchange between the SYS and the East China Sea (ECS). The tongue-shaped low-nutrient region in the western study area in the wintertime was driven by the interaction of the southward Yellow Sea Western Coastal Current (YSWCC) and the biological activity. The vertically variable SCM (subsurface Chl-a maximum) in the central SYS was controlled by coupled physical-chemical processes that involved stratification and associated nutricline. The average nutrient fluxes into the euphotic zone due to upwelling near the frontal zone of the Yellow Sea Cold Water Mass (YSCWM) in the summer are estimated here for the first time: 1.4 ± 0.9 × 103 μmol/m2/d, 0.1 ± 0.1 × 103 μmol/m2/d, and 2.0 ± 1.3 × 103 μmol/m2/d for DIN, PO4-P, and SiO3-Si, respectively. The

  8. Kinetic study and thermal decomposition behavior of viscoelastic memory foam

    International Nuclear Information System (INIS)

    Garrido, María A.; Font, Rafael; Conesa, Juan A.

    2016-01-01

    Highlights: • The thermal degradation has been studied under three different atmospheres. • Pyrolysis and combustion kinetic models have been proposed. • Evolved products under different atmospheres have been analyzed by TG-FTIR and TG-MS. - Abstract: A systematic investigation of the thermal decomposition of viscoelastic memory foam (VMF) was performed using thermogravimetric analysis (TGA) to obtain the kinetic parameters, and thermogravimetric analysis coupled to Fourier Transformed Infrared Spectrometry (TGA-FTIR) and thermogravimetric analysis coupled to Mass Spectrometry (TGA-MS) to obtain detailed information of evolved products on pyrolysis and oxidative degradations. Two consecutive nth-order reactions were employed to correlate the experimental data from dynamic and isothermal runs performed at three different heating rates (5, 10 and 20 K/min) under an inert atmosphere. On the other hand, for the kinetic study of the oxidative decomposition, the data from combustion (synthetic air) and poor oxygen combustion (N_2:O_2 = 9:1) runs, at three heating rates and under dynamic and isothermal conditions, were correlated simultaneously. A kinetic model consisting of three consecutive reactions presented a really good correlation in all runs. TGA-FTIR analysis showed that the main gases released during the pyrolysis of VMF were determined as ether and aliphatic hydrocarbons, whereas in combustion apart from the previous gases, aldehydes, amines and CO_2 have also been detected as the main gases. These results were confirmed by the TGA-MS.

  9. Inflationary models with non-minimally derivative coupling

    International Nuclear Information System (INIS)

    Yang, Nan; Fei, Qin; Gong, Yungui; Gao, Qing

    2016-01-01

    We derive the general formulae for the scalar and tensor spectral tilts to the second order for the inflationary models with non-minimally derivative coupling without taking the high friction limit. The non-minimally kinetic coupling to Einstein tensor brings the energy scale in the inflationary models down to be sub-Planckian. In the high friction limit, the Lyth bound is modified with an extra suppression factor, so that the field excursion of the inflaton is sub-Planckian. The inflationary models with non-minimally derivative coupling are more consistent with observations in the high friction limit. In particular, with the help of the non-minimally derivative coupling, the quartic power law potential is consistent with the observational constraint at 95% CL. (paper)

  10. Instabilities and chaos in a kinetic equation for active nematics

    International Nuclear Information System (INIS)

    Shi, Xia-qing; Ma, Yu-qiang; Chaté, Hugues

    2014-01-01

    We study dry active nematics at the kinetic equation level, stressing the differences with the well-known Doi theory for non-active rods near thermal equilibrium. By deriving hydrodynamic equations from the kinetic equation, we show analytically that these two description levels share the same qualitative phase diagram, as defined by the linear instability limits of spatially-homogeneous solutions. In particular, we show that the ordered, homogeneous state is unstable in a region bordering the linear onset of nematic order, and is only linearly stable deeper in the ordered phase. Direct simulations of the kinetic equation reveal that its solutions are chaotic in the region of linear instability of the ordered homogeneous state. The local mechanisms for this large-scale chaos are discussed. (paper)

  11. Coupled oscillators as models of phantom and scalar field cosmologies

    International Nuclear Information System (INIS)

    Faraoni, Valerio

    2004-01-01

    We study a toy model for phantom cosmology recently introduced in the literature and consisting of two oscillators, one of which carries negative kinetic energy. The results are compared with the exact phase space picture obtained for similar dynamical systems describing, respectively, a massive canonical scalar field conformally coupled to the spacetime curvature and a conformally coupled massive phantom. Finally, the dynamical system describing exactly a minimally coupled phantom is studied and compared with the toy model

  12. Experimental Methods Related to Coupled Fast-Thermal Systems at the RB Reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    2002-01-01

    In addition to the review of RB reactor characteristics this presentation is focused on the coupled fast-thermal systems achieved at the reactor. The following experimental methods are presented: neutron spectra measurements; steady state experiments and kinetic measurements ( β eff ) related to the coupled fast-thermal cores

  13. Two decades of spatiotemporal variations in subduction zone coupling offshore Japan

    Science.gov (United States)

    Loveless, John P.; Meade, Brendan J.

    2016-02-01

    Spatial patterns of interplate coupling on global subduction zones can be used to guide seismic hazard assessment, but estimates of coupling are often constrained using a limited temporal range of geodetic data. Here we analyze ∼19 years of geodetic observations from the GEONET network to assess time-dependent variations in the spatial distribution of coupling on the subduction zones offshore Japan. We divide the position time series into five, ∼3.75-year epochs each decomposed into best-fit velocity, annual periodic signals, coseismic offsets, and postseismic effects following seven major earthquakes. Nominally interseismic velocities are interpreted in terms of a combination of tectonic block motions and earthquake cycle activity. The duration of the inferred postseismic activity covaries with the linear velocity. To address this trade-off, we assume that the nominally interseismic velocity at each station varies minimally from epoch to epoch. This approach is distinct from prior time-series analysis across the earthquake cycle in that position data are not detrended using preseismic velocity, which inherently assumes that interseismic processes are spatially stable through time, but rather the best-fit velocity at each station may vary between epochs. These velocities reveal significant consistency since 1996 in the spatial distribution of coupling on the Nankai subduction zone, with variation limited primarily to the Tokai and Bungo Channel regions, where long-term slow slip events have occurred, and persistently coupled regions coincident with areas that slipped during historic great earthquakes. On the Sagami subduction zone south of Tokyo, we also estimate relatively stable coupling through time. On the Japan-Kuril Trench, we image significant coupling variations owing to effects of the 1994 MW = 7.7 Sanriku-oki, 2003 MW = 8.2 Tokachi-oki, and 2011 MW = 9.0 Tohoku-oki earthquakes. In particular, strong coupling becomes more spatially extensive following

  14. Determination of High-affinity Antibody-antigen Binding Kinetics Using Four Biosensor Platforms.

    Science.gov (United States)

    Yang, Danlin; Singh, Ajit; Wu, Helen; Kroe-Barrett, Rachel

    2017-04-17

    Label-free optical biosensors are powerful tools in drug discovery for the characterization of biomolecular interactions. In this study, we describe the use of four routinely used biosensor platforms in our laboratory to evaluate the binding affinity and kinetics of ten high-affinity monoclonal antibodies (mAbs) against human proprotein convertase subtilisin kexin type 9 (PCSK9). While both Biacore T100 and ProteOn XPR36 are derived from the well-established Surface Plasmon Resonance (SPR) technology, the former has four flow cells connected by serial flow configuration, whereas the latter presents 36 reaction spots in parallel through an improvised 6 x 6 crisscross microfluidic channel configuration. The IBIS MX96 also operates based on the SPR sensor technology, with an additional imaging feature that provides detection in spatial orientation. This detection technique coupled with the Continuous Flow Microspotter (CFM) expands the throughput significantly by enabling multiplex array printing and detection of 96 reaction sports simultaneously. In contrast, the Octet RED384 is based on the BioLayer Interferometry (BLI) optical principle, with fiber-optic probes acting as the biosensor to detect interference pattern changes upon binding interactions at the tip surface. Unlike the SPR-based platforms, the BLI system does not rely on continuous flow fluidics; instead, the sensor tips collect readings while they are immersed in analyte solutions of a 384-well microplate during orbital agitation. Each of these biosensor platforms has its own advantages and disadvantages. To provide a direct comparison of these instruments' ability to provide quality kinetic data, the described protocols illustrate experiments that use the same assay format and the same high-quality reagents to characterize antibody-antigen kinetics that fit the simple 1:1 molecular interaction model.

  15. From strong to weak coupling in holographic models of thermalization

    Energy Technology Data Exchange (ETDEWEB)

    Grozdanov, Sašo; Kaplis, Nikolaos [Instituut-Lorentz for Theoretical Physics, Leiden University,Niels Bohrweg 2, Leiden 2333 CA (Netherlands); Starinets, Andrei O. [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2016-07-29

    We investigate the analytic structure of thermal energy-momentum tensor correlators at large but finite coupling in quantum field theories with gravity duals. We compute corrections to the quasinormal spectra of black branes due to the presence of higher derivative R{sup 2} and R{sup 4} terms in the action, focusing on the dual to N=4 SYM theory and Gauss-Bonnet gravity. We observe the appearance of new poles in the complex frequency plane at finite coupling. The new poles interfere with hydrodynamic poles of the correlators leading to the breakdown of hydrodynamic description at a coupling-dependent critical value of the wave-vector. The dependence of the critical wave vector on the coupling implies that the range of validity of the hydrodynamic description increases monotonically with the coupling. The behavior of the quasinormal spectrum at large but finite coupling may be contrasted with the known properties of the hierarchy of relaxation times determined by the spectrum of a linearized kinetic operator at weak coupling. We find that the ratio of a transport coefficient such as viscosity to the relaxation time determined by the fundamental non-hydrodynamic quasinormal frequency changes rapidly in the vicinity of infinite coupling but flattens out for weaker coupling, suggesting an extrapolation from strong coupling to the kinetic theory result. We note that the behavior of the quasinormal spectrum is qualitatively different depending on whether the ratio of shear viscosity to entropy density is greater or less than the universal, infinite coupling value of ℏ/4πk{sub B}. In the former case, the density of poles increases, indicating a formation of branch cuts in the weak coupling limit, and the spectral function shows the appearance of narrow peaks. We also discuss the relation of the viscosity-entropy ratio to conjectured bounds on relaxation time in quantum systems.

  16. Coupling spin qubits via superconductors

    DEFF Research Database (Denmark)

    Leijnse, Martin; Flensberg, Karsten

    2013-01-01

    We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed...... Andreev reflection. This induces a gate-controlled singlet-triplet splitting which, with an appropriate superconductor geometry, remains large for dot separations within the superconducting coherence length. Furthermore, we show that when two double-dot singlet-triplet qubits are tunnel coupled...... to a superconductor with finite charging energy, crossed Andreev reflection enables a strong two-qubit coupling over distances much larger than the coherence length....

  17. Modelling of the Rod Control System in the coupled code RELAP5-QUABOX/CUBBOX

    International Nuclear Information System (INIS)

    Bencik, V.; Feretic, D.; Grgic, D.

    1999-01-01

    There is a general agreement that for many light water reactor transient calculations, it is necessary to use a multidimensional neutron kinetics model coupled to sophisticated thermal-hydraulic models in order to obtain satisfactory results. These calculations are needed for a variety of applications for licensing safety analyses, probabilistic risk assessment, operational support, and training. At FER, Zagreb, a coupling of 3D neutronics code QUABOX/CUBBOX and system code RELAP5 was performed. In the paper the Rod Control System model in the RELAP5 part of the coupled code is presented. A first testing of the model was performed by calculation of reactor trip from full power for NPP Krsko. Results of 3D neutronics calculation obtained by coupled code QUABOX/CUBBOX were compared with point kinetics calculation performed with RELAP5 stand alone code.(author)

  18. Kinetic theory of two-temperature polyatomic plasmas

    Science.gov (United States)

    Orlac'h, Jean-Maxime; Giovangigli, Vincent; Novikova, Tatiana; Roca i Cabarrocas, Pere

    2018-03-01

    We investigate the kinetic theory of two-temperature plasmas for reactive polyatomic gas mixtures. The Knudsen number is taken proportional to the square root of the mass ratio between electrons and heavy-species, and thermal non-equilibrium between electrons and heavy species is allowed. The kinetic non-equilibrium framework also requires a weak coupling between electrons and internal energy modes of heavy species. The zeroth-order and first-order fluid equations are derived by using a generalized Chapman-Enskog method. Expressions for transport fluxes are obtained in terms of macroscopic variable gradients and the corresponding transport coefficients are expressed as bracket products of species perturbed distribution functions. The theory derived in this paper provides a consistent fluid model for non-thermal multicomponent plasmas.

  19. Comparison of the results of the fifth dynamic AER benchmark-a benchmark for coupled thermohydraulic system/three-dimensional hexagonal kinetic core models

    International Nuclear Information System (INIS)

    Kliem, S.

    1998-01-01

    The fifth dynamic benchmark was defined at seventh AER-Symposium, held in Hoernitz, Germany in 1997. It is the first benchmark for coupled thermohydraulic system/three-dimensional hexagonal neutron kinetic core models. In this benchmark the interaction between the components of a WWER-440 NPP with the reactor core has been investigated. The initiating event is a symmetrical break of the main steam header at the end of the first fuel cycle and hot shutdown conditions with one control rod group stucking. This break causes an overcooling of the primary circuit. During this overcooling the scram reactivity is compensated and the scrammed reactor becomes re critical. The calculation was continued until the highly-borated water from the high pressure injection system terminated the power excursion. Each participant used own best-estimate nuclear cross section data. Only the initial subcriticality at the beginning of the transient was given. Solutions were received from Kurchatov Institute Russia with the code BIPR8/ATHLET, VTT Energy Finland with HEXTRAN/SMABRE, NRI Rez Czech Republic with DYN3/ATHLET, KFKI Budapest Hungary with KIKO3D/ATHLET and from FZR Germany with the code DYN3D/ATHLET.In this paper the results are compared. Beside the comparison of global results, the behaviour of several thermohydraulic and neutron kinetic parameters is presented to discuss the revealed differences between the solutions.(Authors)

  20. Stochastic calculus of protein filament formation under spatial confinement

    Science.gov (United States)

    Michaels, Thomas C. T.; Dear, Alexander J.; Knowles, Tuomas P. J.

    2018-05-01

    The growth of filamentous aggregates from precursor proteins is a process of central importance to both normal and aberrant biology, for instance as the driver of devastating human disorders such as Alzheimer's and Parkinson's diseases. The conventional theoretical framework for describing this class of phenomena in bulk is based upon the mean-field limit of the law of mass action, which implicitly assumes deterministic dynamics. However, protein filament formation processes under spatial confinement, such as in microdroplets or in the cellular environment, show intrinsic variability due to the molecular noise associated with small-volume effects. To account for this effect, in this paper we introduce a stochastic differential equation approach for investigating protein filament formation processes under spatial confinement. Using this framework, we study the statistical properties of stochastic aggregation curves, as well as the distribution of reaction lag-times. Moreover, we establish the gradual breakdown of the correlation between lag-time and normalized growth rate under spatial confinement. Our results establish the key role of spatial confinement in determining the onset of stochasticity in protein filament formation and offer a formalism for studying protein aggregation kinetics in small volumes in terms of the kinetic parameters describing the aggregation dynamics in bulk.

  1. Two-way coupling of magnetohydrodynamic simulations with embedded particle-in-cell simulations

    Science.gov (United States)

    Makwana, K. D.; Keppens, R.; Lapenta, G.

    2017-12-01

    We describe a method for coupling an embedded domain in a magnetohydrodynamic (MHD) simulation with a particle-in-cell (PIC) method. In this two-way coupling we follow the work of Daldorff et al. (2014) [19] in which the PIC domain receives its initial and boundary conditions from MHD variables (MHD to PIC coupling) while the MHD simulation is updated based on the PIC variables (PIC to MHD coupling). This method can be useful for simulating large plasma systems, where kinetic effects captured by particle-in-cell simulations are localized but affect global dynamics. We describe the numerical implementation of this coupling, its time-stepping algorithm, and its parallelization strategy, emphasizing the novel aspects of it. We test the stability and energy/momentum conservation of this method by simulating a steady-state plasma. We test the dynamics of this coupling by propagating plasma waves through the embedded PIC domain. Coupling with MHD shows satisfactory results for the fast magnetosonic wave, but significant distortion for the circularly polarized Alfvén wave. Coupling with Hall-MHD shows excellent coupling for the whistler wave. We also apply this methodology to simulate a Geospace Environmental Modeling (GEM) challenge type of reconnection with the diffusion region simulated by PIC coupled to larger scales with MHD and Hall-MHD. In both these cases we see the expected signatures of kinetic reconnection in the PIC domain, implying that this method can be used for reconnection studies.

  2. Iteration scheme for implicit calculations of kinetic and equilibrium chemical reactions in fluid dynamics

    International Nuclear Information System (INIS)

    Ramshaw, J.D.; Chang, C.H.

    1995-01-01

    An iteration scheme for the implicit treatment of equilibrium chemical reactions in partial equilibrium flow has previously been described. Here we generalize this scheme to kinetic reactions as well as equilibrium reactions. This extends the applicability of the scheme to problems with kinetic reactions that are fast in regions of the flow field but slow in others. The resulting scheme thereby provides a single unified framework for the implicit treatment of an arbitrary number of coupled equilibrium and kinetic reactions in chemically reacting fluid flow. 10 refs., 2 figs

  3. Analytic solutions of the multigroup space-time reactor kinetics equations

    International Nuclear Information System (INIS)

    Lee, C.E.; Rottler, S.

    1986-01-01

    The development of analytical and numerical solutions to the reactor kinetics equations is reviewed. Analytic solutions of the multigroup space-time reactor kinetics equations are developed for bare and reflected slabs and spherical reactors for zero flux, zero current and extrapolated endpoint boundary conditions. The material properties of the reactors are assumed constant in space and time, but spatially-dependent source terms and initial conditions are investigated. The system of partial differential equations is reduced to a set of linear ordinary differential equations by the Laplace transform method. These equations are solved by matrix Green's functions yielding a general matrix solution for the neutron flux and precursor concentration in the Laplace transform space. The detailed pole structure of the Laplace transform matrix solutions is investigated. The temporally- and spatially-dependent solutions are determined from the inverse Laplace transform using the Cauchy residue theorem, the theorem of Frobenius, a knowledge of the detailed pole structure and matrix operators. (author)

  4. A tilted fiber-optic plate coupled CCD detector for high resolution neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongyul; Cho, Gyuseong [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Jongyul; Hwy, Limchang; Kim, Taejoo; Lee, Kyehong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Seungwook [Pusan National Univ., Pusan (Korea, Republic of)

    2013-05-15

    One of these efforts is that a tilted scintillator geometry and lens coupled CCD detector for neutron imaging system were used to improve spatial resolution in one dimension. The increased spatial resolution in one dimension was applied to fuel cell study. However, a lens coupled CCD detector has lower sensitivity than a fiber-optic plate coupled CCD detector due to light loss. In this research, a tilted detector using fiber-optic plate coupled CCD detector was developed to improve resolution and sensitivity. In addition, a tilted detector can prevent an image sensor from direct radiation damage. Neutron imaging has been used for fuel cell study, lithium ion battery study, and many scientific applications. High quality neutron imaging is demanded for more detailed studies of applications, and spatial resolution should be considered to get high quality neutron imaging. Therefore, there were many efforts to improve spatial resolution.

  5. Ion Kinetics in the Solar Wind: Coupling Global Expansion to Local Microphysics

    Czech Academy of Sciences Publication Activity Database

    Matteini, L.; Hellinger, Petr; Landi, S.; Trávníček, Pavel M.; Velli, M.

    2012-01-01

    Roč. 172, 1-4 (2012), s. 373-396 ISSN 0038-6308 Grant - others:ESA(XE) PECS 98068; AVO(CZ) IAA300420702 Program:IA Institutional research plan: CEZ:AV0Z10030501; CEZ:AV0Z30420517 Keywords : solar wind * ion kinetics * numerical simulations Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.519, year: 2012

  6. Kinetics of Reactive Fronts in Porous Media: quantification through a laboratory experiment

    Science.gov (United States)

    De Anna, P.; Jimenez-Martinez, J.; Turuban, R.; Tabuteau, H.; Derrien, M.; Le Borgne, T.; Meheust, Y.

    2013-12-01

    The kinetics of reaction fronts in heterogeneous flows is tightly linked to the mixing dynamics governed by the combined action of stretching, diffusion and dispersion. Focusing on porous media flows, with a new experimental setup we show that the invading solute is organized into stretched lamellae, whose deformation and coalescence control the effective reaction kinetics of the mixing limited bimolecular reaction A + B --> C. While the classic advection-dispersion theory predicts a scaling of the cumulative product mass of C as t^(0.5), we observe two distinct kinetics regimes, one characterized by the stretching and the other by the coalescence of the invading lamellae, in which the mass of C scales faster than t^(0.5). The proposed experimental set up allows for direct quantification of mixing and reactive transport in porous media with a high spatial resolution, at the pore scale. The analogous two dimensional porous medium consists in a Hele-Shaw cell containing a single layer of cylindrical solid grains built by soft lithography. On the one hand, the measurement of the local, intra-pore, conservative concentration field is done using a fluorescent tracer. On the other hand, considering a fast bimolecular advection-dispersion reaction A + B --> C occurring as A displaces B, we quantify the reaction kinetics from the spatially-resolved measurement of the pore scale reaction rate, using a chemiluminescent reaction.

  7. Reactor kinetics - pulse and steady state

    Energy Technology Data Exchange (ETDEWEB)

    Estes, B F; Morris, F M [Sandia Laboratories (United States)

    1974-07-01

    An analytical model has been developed which couples the nuclear and thermal characteristics of the Annular Core Pulse Reactor (ACPR) into a solution which describes both the neutron kinetics of the reactor and the temperature behavior of a fuel-moderator element. The model describes both pulse and steady state operations. This paper describes the important aspects of the reactor, the fuel- moderator elements, the neutron kinetic equations of the reactor, and the time-temperature behavior of a fuel-moderator element that is being subjected to the maximum power density in the core. The parameters which are utilized in the equations are divided into two classes, those that can be measured directly and those that are assumed to be known (each is described briefly). Some of the solutions which demonstrate the versatility of the analytical model are described. (author)

  8. Application of coupled codes for safety analysis and licensing issues

    International Nuclear Information System (INIS)

    Langenbuch, S.; Velkov, K.

    2006-01-01

    An overview is given on the development and the advantages of coupled codes which integrate 3D neutron kinetics into thermal-hydraulic system codes. The work performed within GRS by coupling the thermal-hydraulic system code ATHLET and the 3D neutronics code QUABOX/CUBBOX is described as an example. The application of the coupled codes as best-estimate simulation tools for safety analysis is discussed. Some examples from German licensing practices are given which demonstrate how the improved analytical methods of coupled codes have contributed to solve licensing issues related to optimized and more economical use of fuel. (authors)

  9. Warm Inflation with Nonminimal Derivative Coupling

    International Nuclear Information System (INIS)

    Rashidi, N.; Nozari, Kourosh; Shoukrani, M.

    2014-01-01

    We study the effects of the nonminimal derivative coupling on the dissipative dynamics of the warm inflation where the scalar field is nonminimally coupled to gravity via its kinetic term. We present a detailed calculation of the cosmological perturbations in this setup. We use the recent observational data from the joint data set of WMAP9 + BAO + H 0 and also the Planck satellite data to constrain our model parameters for natural and chaotic inflation potentials. We study also the levels of non-Gaussianity in this warm inflation model and we confront the result with recent observational data from the Planck satellite

  10. Evaluation of a commercial electro-kinetically pumped sheath-flow nanospray interface coupled to an automated capillary zone electrophoresis system.

    Science.gov (United States)

    Peuchen, Elizabeth H; Zhu, Guije; Sun, Liangliang; Dovichi, Norman J

    2017-03-01

    Capillary zone electrophoresis-electrospray ionization-mass spectrometry (CZE-ESI-MS) is attracting renewed attention for proteomic and metabolomic analysis. An important reason for this interest is the maturation and commercialization of interfaces for coupling CZE with ESI-MS. One of these interfaces is an electro-kinetically pumped sheath flow nanospray interface developed by the Dovichi group, in which a very low sheath flow is generated based on electroosmosis within a glass emitter. CMP Scientific has commercialized this interface as the EMASS-II ion source. In this work, we compared the performance of the EMASS-II ion source with our in-house system. The performance of the systems is equivalent. We also coupled the EMASS-II ion source with a PrinCE Next|480 capillary electrophoresis autosampler and an Orbitrap mass spectrometer, and analyzed this system's performance in terms of sensitivity, reproducibility, and separation performance for separation of tryptic digests, intact proteins, and amino acids. The system produced reproducible analysis of BSA digest; the RSDs of peptide intensity and migration time across 24 runs were less than 20 and 6%, respectively. The system produced a linear calibration curve of intensity across a 30-fold range of tryptic digest concentration. The combination of a commercial autosampler and electrospray interface efficiently separated amino acids, peptides, and intact proteins, and only required 5 μL of sample for analysis. Graphical Abstract The commercial and locally constructed versions of the interface provide similar numbers of protein identifications from a Xenopus laevis fertilized egg digest.

  11. Using a spatially-distributed hydrologic biogeochemistry model with nitrogen transport to study the spatial variation of carbon stocks and fluxes in a Critical Zone Observatory

    Science.gov (United States)

    Shi, Y.; Eissenstat, D. M.; He, Y.; Davis, K. J.

    2017-12-01

    Most current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve topographically driven land surface heterogeneity (e.g., lateral water flow, soil moisture, soil temperature, solar radiation) or the spatial pattern of nutrient availability. A spatially distributed forest biogeochemical model with nitrogen transport, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM, and adding an advection dominated nitrogen transport module. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model, and is augmented by adding a topographic solar radiation module. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while nitrogen is transported among model grids via surface and subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation, while BBGC provides Flux-PIHM with spatially-distributed leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills Critical Zone Observatory. The model-predicted aboveground vegetation carbon and soil carbon distributions generally agree with the macro patterns observed within the watershed. The importance of abiotic variables (including soil moisture, soil temperature, solar radiation, and soil mineral nitrogen) in predicting aboveground carbon distribution is calculated using a random forest. The result suggests that the spatial pattern of aboveground carbon is controlled by the distribution of soil mineral nitrogen. A Flux-PIHM-BGC simulation

  12. Three species one-dimensional kinetic model for weakly ionized plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J., E-mail: jorge.gonzalez@upm.es; Donoso, J. M.; Tierno, S. P. [Department of Applied Physics, Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, 28040 Madrid (Spain)

    2016-06-15

    A three species one-dimensional kinetic model is presented for a spatially homogeneous weakly ionized plasma subjected to the action of a time varying electric field. Planar geometry is assumed, which means that the plasma evolves in the privileged direction of the field. The energy transmitted to the electric charges is channelized to the neutrals thanks to collisions, a mechanism that influences the plasma dynamics. Charge-charge interactions have been designed as a one-dimensional collision term equivalent to the Landau operator used for fully ionized plasmas. Charge-neutral collisions are modelled by a conservative drift-diffusion operator in the Dougherty's form. The resulting set of coupled integro-differential equations is solved with the stable and robust propagator integral method. This semi–analytical method feasibility accounts for non–linear effects without appealing to linearisation or simplifications, providing conservative physically meaningful solutions even for initial or emerging sharp velocity distribution function profiles. It is found that charge-neutral collisions exert a significant effect since a quite different plasma evolution arises if compared to the collisionless limit. In addition, substantial differences in the system motion are found for constant and temperature dependent collision frequencies cases.

  13. Multimode dynamics in a network with resource mediated coupling

    DEFF Research Database (Denmark)

    Postnov, D.E.; Sosnovtseva, Olga; Scherbakov, P.

    2008-01-01

    state of the individual unit. With this coupling, a spatially inhomogenous state with mixed high and lowamplitude oscillations in the individual units can arise. To examine generic phenomena associated with this type of interaction we consider a chain of resistively coupled electronic oscillators...... connected to a common power supply. The two- oscillator system displays antiphase synchronization, and it is interesting to note that two- mode oscillations continue to exist outside of the parameter range in which oscillations occur for the individual unit. At low coupling strengths, the multioscillator...... system shows high dimensional quasiperiodicity with little tendency for synchronization. At higher coupling strengths, one typically observes spatial clustering involving a few oscillating units. We describe three different scenarios according to which the cluster can slide along the chain as the bias...

  14. Kinetic Simulations of Type II Radio Burst Emission Processes

    Science.gov (United States)

    Ganse, U.; Spanier, F. A.; Vainio, R. O.

    2011-12-01

    The fundamental emission process of Type II Radio Bursts has been under discussion for many decades. While analytic deliberations point to three wave interaction as the source for fundamental and harmonic radio emissions, sparse in-situ observational data and high computational demands for kinetic simulations have not allowed for a definite conclusion to be reached. A popular model puts the radio emission into the foreshock region of a coronal mass ejection's shock front, where shock drift acceleration can create eletrcon beam populations in the otherwise quiescent foreshock plasma. Beam-driven instabilities are then assumed to create waves, forming the starting point of three wave interaction processes. Using our kinetic particle-in-cell code, we have studied a number of emission scenarios based on electron beam populations in a CME foreshock, with focus on wave-interaction microphysics on kinetic scales. The self-consistent, fully kinetic simulations with completely physical mass-ratio show fundamental and harmonic emission of transverse electromagnetic waves and allow for detailled statistical analysis of all contributing wavemodes and their couplings.

  15. Impact of Mutual Coupling and Polarization of Antennas on BER Performances of Spatial Multiplexing MIMO Systems

    Directory of Open Access Journals (Sweden)

    Jianfeng Zheng

    2012-01-01

    Full Text Available This paper is aimed at studying the impacts of mutual coupling, matching networks, and polarization of antennas on performances of Multiple-Input Multiple-Output (MIMO systems employing Spatial Multiplexing (SM. In particular, the uncoded average Bit Error Rate (BER of MIMO systems is investigated. An accurate signal analysis framework based on circuit network parameters is presented to describe the transmit/receive characteristics of the matched/unmatched antenna array. The studied arrays consist of matched/unmatched compact copolarization and polarization diversity antenna array. Monte-Carlo numerical simulations are used to study the BER performances of the SM MIMO systems using maximum-likelihood and/or zero-forcing detection schemes. The simulation results demonstrate that the use of matching networks can improve the BER performance of SM MIMO systems significantly, and the BER performance deterioration due to antenna orientation randomness can be compensated by use of polarization diversity antenna arrays.

  16. Kinetic approach to the explanation of fatigue effect in ferroelectric materials

    International Nuclear Information System (INIS)

    Shur, V.Ya.; Rumyantsev, E.L.; Nikolaeva, E.V.; Shishkin, E.I.; Baturin, I.S.

    2002-01-01

    The new kinetic approach to explanation of the fatigue effect in the ferroelectrics consistent change in the area and geometry of the switched-over part of the sample by the cyclic switch-over, accompanied by the origination and growth of the kinetic frozen domains, is considered. It is supposed, that the fatigue effect is conditioned by the self-organizing formation of the spatially nonuniform internal shift field due to the delay of the voluminous scanning of the depolarizing field. The changes in the value of the switched charge and the switch-over current amplitude, calculated through the computerized simulation of the domains kinetics by the cyclic switch-over are in good agreement with the experimental data, obtained in thin films of the lead zirconate-titanate [ru

  17. Processes of aggression described by kinetic method

    Science.gov (United States)

    Aristov, V. V.; Ilyin, O.

    2014-12-01

    In the last decades many investigations have been devoted to theoretical models in new areas concerning description of different biological, sociological and historical processes. In the present paper we suggest a model of the Nazi Germany invasion of Poland, France and USSR based on the kinetic theory. We model this process with the Cauchy boundary problem for the two-element kinetic equations with spatial initial conditions. The solution of the problem is given in the form of traveling wave. The propagation velocity of a frontline depends on the quotient between initial forces concentrations. Moreover it is obtained that the general solution of the model can be expressed in terms of quadratures and elementary functions. Finally it is shown that the frontline velocities are complied with the historical data.

  18. Processes of aggression described by kinetic method

    International Nuclear Information System (INIS)

    Aristov, V. V.; Ilyin, O.

    2014-01-01

    In the last decades many investigations have been devoted to theoretical models in new areas concerning description of different biological, sociological and historical processes. In the present paper we suggest a model of the Nazi Germany invasion of Poland, France and USSR based on the kinetic theory. We model this process with the Cauchy boundary problem for the two-element kinetic equations with spatial initial conditions. The solution of the problem is given in the form of traveling wave. The propagation velocity of a frontline depends on the quotient between initial forces concentrations. Moreover it is obtained that the general solution of the model can be expressed in terms of quadratures and elementary functions. Finally it is shown that the frontline velocities are complied with the historical data

  19. Processes of aggression described by kinetic method

    Energy Technology Data Exchange (ETDEWEB)

    Aristov, V. V.; Ilyin, O. [Dorodnicyn Computing Centre of Russian Academy of Sciences, Vavilova str. 40, Moscow, 119333 (Russian Federation)

    2014-12-09

    In the last decades many investigations have been devoted to theoretical models in new areas concerning description of different biological, sociological and historical processes. In the present paper we suggest a model of the Nazi Germany invasion of Poland, France and USSR based on the kinetic theory. We model this process with the Cauchy boundary problem for the two-element kinetic equations with spatial initial conditions. The solution of the problem is given in the form of traveling wave. The propagation velocity of a frontline depends on the quotient between initial forces concentrations. Moreover it is obtained that the general solution of the model can be expressed in terms of quadratures and elementary functions. Finally it is shown that the frontline velocities are complied with the historical data.

  20. Synchronization as Aggregation: Cluster Kinetics of Pulse-Coupled Oscillators.

    Science.gov (United States)

    O'Keeffe, Kevin P; Krapivsky, P L; Strogatz, Steven H

    2015-08-07

    We consider models of identical pulse-coupled oscillators with global interactions. Previous work showed that under certain conditions such systems always end up in sync, but did not quantify how small clusters of synchronized oscillators progressively coalesce into larger ones. Using tools from the study of aggregation phenomena, we obtain exact results for the time-dependent distribution of cluster sizes as the system evolves from disorder to synchrony.

  1. Kinetics of particle deposition at heterogeneous surfaces

    Science.gov (United States)

    Stojiljković, D. Lj.; Vrhovac, S. B.

    2017-12-01

    The random sequential adsorption (RSA) approach is used to analyze adsorption of spherical particles of fixed diameter d0 on nonuniform surfaces covered by square cells arranged in a square lattice pattern. To characterize such pattern two dimensionless parameters are used: the cell size α and the cell-cell separation β, measured in terms of the particle diameter d0. Adsorption is assumed to occur if the particle (projected) center lies within a cell area. We focus on the kinetics of deposition process in the case when no more than a single disk can be placed onto any square cell (α deposition process is not consistent with the power law behavior. However, if the geometry of the pattern approaches towards ;noninteracting conditions; (β > 1), when adsorption on each cell can be decoupled, approach of the coverage fraction θ(t) to θJ becomes closer to the exponential law. Consequently, changing the pattern parameters in the present model allows to interpolate the deposition kinetics between the continuum limit and the lattice-like behavior. Structural properties of the jammed-state coverings are studied in terms of the radial distribution function g(r) and spatial distribution of particles inside the cell. Various, non-trivial spatial distributions are observed depending on the geometry of the pattern.

  2. Trivial constraints on orbital-free kinetic energy density functionals

    Science.gov (United States)

    Luo, Kai; Trickey, S. B.

    2018-03-01

    Approximate kinetic energy density functionals (KEDFs) are central to orbital-free density functional theory. Limitations on the spatial derivative dependencies of KEDFs have been claimed from differential virial theorems. We identify a central defect in the argument: the relationships are not true for an arbitrary density but hold only for the minimizing density and corresponding chemical potential. Contrary to the claims therefore, the relationships are not constraints and provide no independent information about the spatial derivative dependencies of approximate KEDFs. A simple argument also shows that validity for arbitrary v-representable densities is not restored by appeal to the density-potential bijection.

  3. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, Masashi [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  4. Kinetic modeling and exploratory numerical simulation of chloroplastic starch degradation

    Directory of Open Access Journals (Sweden)

    Nag Ambarish

    2011-06-01

    Full Text Available Abstract Background Higher plants and algae are able to fix atmospheric carbon dioxide through photosynthesis and store this fixed carbon in large quantities as starch, which can be hydrolyzed into sugars serving as feedstock for fermentation to biofuels and precursors. Rational engineering of carbon flow in plant cells requires a greater understanding of how starch breakdown fluxes respond to variations in enzyme concentrations, kinetic parameters, and metabolite concentrations. We have therefore developed and simulated a detailed kinetic ordinary differential equation model of the degradation pathways for starch synthesized in plants and green algae, which to our knowledge is the most complete such model reported to date. Results Simulation with 9 internal metabolites and 8 external metabolites, the concentrations of the latter fixed at reasonable biochemical values, leads to a single reference solution showing β-amylase activity to be the rate-limiting step in carbon flow from starch degradation. Additionally, the response coefficients for stromal glucose to the glucose transporter kcat and KM are substantial, whereas those for cytosolic glucose are not, consistent with a kinetic bottleneck due to transport. Response coefficient norms show stromal maltopentaose and cytosolic glucosylated arabinogalactan to be the most and least globally sensitive metabolites, respectively, and β-amylase kcat and KM for starch to be the kinetic parameters with the largest aggregate effect on metabolite concentrations as a whole. The latter kinetic parameters, together with those for glucose transport, have the greatest effect on stromal glucose, which is a precursor for biofuel synthetic pathways. Exploration of the steady-state solution space with respect to concentrations of 6 external metabolites and 8 dynamic metabolite concentrations show that stromal metabolism is strongly coupled to starch levels, and that transport between compartments serves to

  5. Coupling tests of parallel channels to modal neutronic kinetics; Pruebas de acoplamiento de canales paralelos a cinetica neutronica modal

    Energy Technology Data Exchange (ETDEWEB)

    Cecenas F, M.; Campos G, R.M. [IIE, 62490 Cuernavaca, Morelos (Mexico)]. e-mail: mcf@iie.org.mx

    2007-07-01

    In this work the initial results of the joining of an arrangement of 36 channels in parallel are studied to a modal neutronic kinetic model to represent the core of a BWR type reactor. The set of channels is obtained group the assemblies of that it consists the core in an arrangement of concentric rings, for later on to subdivide each ring in four parts to assign each segment to a quadrant of the core. The obtained channels are coupled to a modal kinetics model that considers the fundamental way and the first harmonic. The obtained solution represents the radial distribution and power azimuthal, the one which is feedback to the channels to update the thermohydraulic variables. The restriction that the pressure drop is same for each channel it is only imposed as initial condition, like part of the stationary state, and it is allowed that the pressure drop in the assemblies them it is different in each channel during a reactivity interference. For the tests to the system, it is convenient to select a relatively big core and that it operates near their stability frontier, for that the channels are dimensioning according to the case 9 of the Stability Benchmark of the Ringhals Swedish plant, organized by the Nuclear Energy Agency in 1994. In general, they reproduce the results of this benchmark, when reproducing oscillations outside of phase, with the additional results that the quadrants 1 and 2 of the core present oscillations of more width that the quadrants 3 and 4. The set group nuclear-thermohydraulics it is solved numerically by means of the outline master-slave of distributed calculation implemented by means of Parallel Virtual Machine (PVM). (Author)

  6. Coherent Vortices in Strongly Coupled Liquids

    International Nuclear Information System (INIS)

    Ashwin, J.; Ganesh, R.

    2011-01-01

    Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are unique in the sense that their average potential energy per particle dominates over the average kinetic energy. Using ''first principles'' molecular dynamics (MD) simulations, we report for the first time the emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD simulations reveal that the tripolar vortices persist over several turn over times and hence may be observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal.

  7. Coherent Vortices in Strongly Coupled Liquids

    Science.gov (United States)

    Ashwin, J.; Ganesh, R.

    2011-04-01

    Strongly coupled liquids are ubiquitous in both nature and laboratory plasma experiments. They are unique in the sense that their average potential energy per particle dominates over the average kinetic energy. Using “first principles” molecular dynamics (MD) simulations, we report for the first time the emergence of isolated coherent tripolar vortices from the evolution of axisymmetric flows in a prototype two-dimensional (2D) strongly coupled liquid, namely, the Yukawa liquid. Linear growth rates directly obtained from MD simulations are compared with a generalized hydrodynamic model. Our MD simulations reveal that the tripolar vortices persist over several turn over times and hence may be observed in strongly coupled liquids such as complex plasma, liquid metals and astrophysical systems such as white dwarfs and giant planetary interiors, thereby making the phenomenon universal.

  8. Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments

    DEFF Research Database (Denmark)

    Knab, Nina J.; Dale, Andrew W.; Lettmann, Karsten

    2008-01-01

    The free energy yield of microbial respiration reactions in anaerobic marine sediments must be sufficient to be conserved as biologically usable energy in the form of ATP. Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SRR) has a very low standard free energy yield of ΔG  = -33...... yield was rarely less than -20 kJ mol-1 and was mostly rather constant throughout this zone. The kinetic drive was highest at the lower part of the SMTZ, matching the occurrence of maximum AOM rates. The results show that the location of maximum AOM rates is determined by a combination of thermodynamic...... and kinetic drive, whereas the rate activity mainly depends on kinetic regulation....

  9. An observationally-driven kinetic approach to coronal heating

    Science.gov (United States)

    Moraitis, K.; Toutountzi, A.; Isliker, H.; Georgoulis, M.; Vlahos, L.; Chintzoglou, G.

    2016-11-01

    heat electrons and ions with minor enhancements of the local resistivity. This statistical result is independent from the nature of the extrapolation and the spatial resolution of the modeled active-region corona. This finding should be coupled with a complete plasma treatment to determine whether a quasi-steady temperature similar to that of the ambient corona can be maintained, either via a kinetic or via a hybrid, kinetic and fluid, plasma treatment. The finding can also be extended to the quiet solar corona, provided that the currently undetected nanoflares are frequent enough to account for the lower (compared to active regions) energy losses in this case.

  10. Kinetics of diffusion-controlled and ballistically-controlled reactions

    International Nuclear Information System (INIS)

    Redner, S.

    1995-01-01

    The kinetics of diffusion-controlled two-species annihilation, A+B → O and single-species ballistically-controlled annihilation, A+A → O are investigated. For two-species annihilation, we describe the basic mechanism that leads to the formation of a coarsening mosaic of A- and B-domains. The implications of this picture on the distribution of reactants is discussed. For ballistic annihilation, dimensional analysis shows that the concentration and rms velocity decay as c∼t -α and v∼t -β , respectively, with α+β = 1 in any spatial dimension. Analysis of the Boltzmann equation for the evolution of the velocity distribution yields accurate predictions for the kinetics. New phenomena associated with discrete initial velocity distributions and with mixed ballistic and diffusive reactant motion are also discussed. (author)

  11. Spatial and thickness dependence of coupling interaction of surface states and influence on transport and optical properties of few-layer Bi2Se3

    Science.gov (United States)

    Li, Zhongjun; Chen, Shi; Sun, Jiuyu; Li, Xingxing; Qiu, Huaili; Yang, Jinlong

    2018-02-01

    Coupling interaction between the bottom and top surface electronic states and the influence on transport and optical properties of Bi2Se3 thin films with 1-8 quintuple layers (QLs) have been investigated by first principles calculations. Obvious spatial and thickness dependences of coupling interaction are found by analyzing hybridization of two surface states. In the thin film with a certain thickness, from the outer to inner atomic layers, the coupling interaction exhibits an increasing trend. On the other hand, as thickness increases, the coupling interaction shows a disproportionate decrease trend. Moreover, the system with 3 QLs exhibits stronger interaction than that with 2 QLs. The presence of coupling interaction would suppress destructive interference of surface states and enhance resistance in various degrees. In view of the inversely proportional relation to transport channel width, the resistance of thin films should show disproportionate thickness dependence. This prediction is qualitatively consistent with the transport measurements at low temperature. Furthermore, the optical properties also exhibit obvious thickness dependence. Especially as the thickness increases, the coupling interaction results in red and blue shifts of the multiple-peak structures in low and high energy regions of imaginary dielectric function, respectively. The red shift trend is in agreement with the recent experimental observation and the blue shift is firstly predicted by the present calculation. The present results give a concrete understanding of transport and optical properties in devices based on Bi2Se3 thin films with few QLs.

  12. Nonlinear saturation of the trapped-ion mode by mode coupling in two dimensions

    International Nuclear Information System (INIS)

    Cohen, B.I.; Tang, W.M.

    1977-01-01

    A study of the nonlinear saturation by mode coupling of the dissipative trapped-ion mode is presented in which both radial and poloidal variations are considered. The saturation mechanism consists of the nonlinear coupling via E x B convection of energy from linearly unstable modes to stable modes. Stabilization is provided at short poloidal wavelengths by Landau damping from trapped and circulating ions, at short radial wavelengths by effects associated with the finite ion banana excursions and at long wavelengths by ion collisions. A one-dimensional, nonlinear partial differential equation for the electrostatic potential derived in earlier work is extended to two dimensions and to third order in amplitude. Included systematically are kinetic effects, e.g., Landau damping and its spatial dependence due to magnetic shear. The stability and accessibility of equilibria are considered in detail for cases far from as well as close to marginal stability. In the first case three-wave interactions are found to be important when the spectrum of unstable modes is sufficiently narrow. In the latter case, it is found that for a single unstable mode, a four-wave interaction can provide the dominant saturation mechanism. Cross-field transport is calculated, and the scaling of results is considered for tokamak parameters

  13. Nuclear-coupled thermal-hydraulic nonlinear stability analysis using a novel BWR reduced order model. Pt. 1. The effects of using drift flux versus homogeneous equilibrium models

    International Nuclear Information System (INIS)

    Dokhane, A.; Henning, D.; Chawla, R.; Rizwan-Uddin

    2003-01-01

    BWR stability analysis at PSI, as at other research centres, is usually carried out employing complex system codes. However, these do not allow a detailed investigation of the complete manifold of all possible solutions of the associated nonlinear differential equation set. A novel analytical, reduced order model for BWR stability has been developed at PSI, in several successive steps. In the first step, the thermal-hydraulic model was used for studying the thermal-hydraulic instabilities. A study was then conducted of the one-channel nuclear-coupled thermal-hydraulic dynamics in a BWR by adding a simple point kinetic model for neutron kinetics and a model for the fuel heat conduction dynamics. In this paper, a two-channel nuclear-coupled thermal-hydraulic model is introduced to simulate the out-of phase oscillations in a BWR. This model comprises three parts: spatial mode neutron kinetics with the fundamental and fist azimuthal modes; fuel heat conduction dynamics; and thermal-hydraulics model. This present model is an extension of the Karve et al. model i.e., a drift flux model is used instead of the homogeneous equilibrium model for two-phase flow, and lambda modes are used instead of the omega modes for the neutron kinetics. This two-channel model is employed in stability and bifurcation analyses, carried out using the bifurcation code BIFDD. The stability boundary (SB) and the nature of the Poincare-Andronov-Hopf bifurcation (PAF-B) are determined and visualized in a suitable two-dimensional parameter/state space. A comparative study of the homogeneous equilibrium model (HEM) and the drift flux model (DFM) is carried out to investigate the effects of the DFM parameters the void distribution parameter C 0 and the drift velocity V gi -on the SB, the nature of PAH bifurcation, and on the type of oscillation mode (in-phase or out-of-phase). (author)

  14. Tokamak wave coupling and heating in the ICRF

    International Nuclear Information System (INIS)

    Romero, H.; Scharer, J.; Sund, R.

    1983-01-01

    The authors consider wave propagation in the vicinity of the Ion Cyclotron Range of Frequencies (ICRF) in general tokamak geometries. The problem of wave coupling by means of waveguides is addressed. In particular, the reflection coefficient for a simple TE 10 waveguide is obtained by taking into account both the z and y spectrum of the launcher. In order to take into account spatial gradients in the plasma medium, they use a one-dimensional slab model of the plasma. Good coupling and heating results are obtained for the first few harmonics for sufficiently weak edge density gradient and > about 1 keV core temperatures. To analyze the heating of the plasma interior in the presence of ICRF, a 2-D differential equation is being developed which takes into account spatial gradients and mode coupling

  15. Coupling Effect between Mechanical Loading and Chemical Reactions

    Czech Academy of Sciences Publication Activity Database

    Klika, Václav; Maršík, František

    2009-01-01

    Roč. 113, č. 44 (2009), s. 14689-14697 ISSN 1520-6106 R&D Projects: GA ČR(CZ) GA106/08/0557 Institutional research plan: CEZ:AV0Z20760514 Keywords : coupling * dynamic loading * reaction kinetics Subject RIV: FI - Traumatology, Orthopedics Impact factor: 3.471, year: 2009

  16. Dynamic Model of Basic Oxygen Steelmaking Process Based on Multi-zone Reaction Kinetics: Model Derivation and Validation

    Science.gov (United States)

    Rout, Bapin Kumar; Brooks, Geoff; Rhamdhani, M. Akbar; Li, Zushu; Schrama, Frank N. H.; Sun, Jianjun

    2018-04-01

    A multi-zone kinetic model coupled with a dynamic slag generation model was developed for the simulation of hot metal and slag composition during the basic oxygen furnace (BOF) operation. The three reaction zones (i) jet impact zone, (ii) slag-bulk metal zone, (iii) slag-metal-gas emulsion zone were considered for the calculation of overall refining kinetics. In the rate equations, the transient rate parameters were mathematically described as a function of process variables. A micro and macroscopic rate calculation methodology (micro-kinetics and macro-kinetics) were developed to estimate the total refining contributed by the recirculating metal droplets through the slag-metal emulsion zone. The micro-kinetics involves developing the rate equation for individual droplets in the emulsion. The mathematical models for the size distribution of initial droplets, kinetics of simultaneous refining of elements, the residence time in the emulsion, and dynamic interfacial area change were established in the micro-kinetic model. In the macro-kinetics calculation, a droplet generation model was employed and the total amount of refining by emulsion was calculated by summing the refining from the entire population of returning droplets. A dynamic FetO generation model based on oxygen mass balance was developed and coupled with the multi-zone kinetic model. The effect of post-combustion on the evolution of slag and metal composition was investigated. The model was applied to a 200-ton top blowing converter and the simulated value of metal and slag was found to be in good agreement with the measured data. The post-combustion ratio was found to be an important factor in controlling FetO content in the slag and the kinetics of Mn and P in a BOF process.

  17. Synchronization and suppression of chaos in non-locally coupled ...

    Indian Academy of Sciences (India)

    Abstract. We considered coupled map lattices with long-range interactions to study the spatiotemporal behaviour of spatially extended dynamical systems. Coupled map lattices have been intensively investigated as models to understand many spatiotemporal phenomena observed in extended system, and consequently ...

  18. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.

    Science.gov (United States)

    Cohen, Michael X; Ridderinkhof, K Richard

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz), followed by a later alpha-band (8-12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.

  19. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.

    Directory of Open Access Journals (Sweden)

    Michael X Cohen

    Full Text Available Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz, followed by a later alpha-band (8-12 Hz conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz, alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.

  20. EEG Source Reconstruction Reveals Frontal-Parietal Dynamics of Spatial Conflict Processing

    Science.gov (United States)

    Cohen, Michael X; Ridderinkhof, K. Richard

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30–50 Hz), followed by a later alpha-band (8–12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4–8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions. PMID:23451201

  1. Investigations of the VVER-1000 coolant transient benchmark phase 1 with the coupled code system RELAP5/PARCS

    International Nuclear Information System (INIS)

    Sanchez-Espinoza, Victor Hugo

    2008-07-01

    As part of the reactor dynamics activities of FZK/IRS, the qualification of best-estimate coupled code systems for reactor safety evaluations is a key step toward improving their prediction capability and acceptability. The VVER-1000 Coolant Transient Benchmark Phase 1 represents an excellent opportunity to validate the simulation capability of the coupled code system RELAP5/PACRS regarding both the thermal hydraulic plant response (RELAP5) using measured data obtained during commissioning tests at the Kozloduy nuclear power plant unit 6 and the neutron kinetics models of PARCS for hexagonal geometries. The Phase 1 is devoted to the analysis of the switching on of one main coolant pump while the other three pumps are in operation. It includes the following exercises: (a) investigation of the integral plant response using a best-estimate thermal hydraulic system code with a point kinetics model (b) analysis of the core response for given initial and transient thermal hydraulic boundary conditions using a coupled code system with 3D-neutron kinetics model and (c) investigation of the integral plant response using a best-estimate coupled code system with 3D-neutron kinetics. Already before the test, complex flow conditions exist within the RPV e.g. coolant mixing in the upper plenum caused by the reverse flow through the loop-3 with the stopped pump. The test is initiated by switching on the main coolant pump of loop-3 that leads to a reversal of the flow through the respective piping. After about 13 s the mass flow rate through this loop reaches values comparable with the one of the other loops. During this time period, the increased primary coolant flow causes a reduction of the core averaged coolant temperature and thus an increase of the core power. Later on, the power stabilizes at a level higher than the initial power. In this analysis, special attention is paid on the prediction of the spatial asymmetrical core cooling during the test and its effects on the

  2. Investigations of the VVER-1000 coolant transient benchmark phase 1 with the coupled code system RELAP5/PARCS

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Espinoza, Victor Hugo

    2008-07-15

    As part of the reactor dynamics activities of FZK/IRS, the qualification of best-estimate coupled code systems for reactor safety evaluations is a key step toward improving their prediction capability and acceptability. The VVER-1000 Coolant Transient Benchmark Phase 1 represents an excellent opportunity to validate the simulation capability of the coupled code system RELAP5/PACRS regarding both the thermal hydraulic plant response (RELAP5) using measured data obtained during commissioning tests at the Kozloduy nuclear power plant unit 6 and the neutron kinetics models of PARCS for hexagonal geometries. The Phase 1 is devoted to the analysis of the switching on of one main coolant pump while the other three pumps are in operation. It includes the following exercises: (a) investigation of the integral plant response using a best-estimate thermal hydraulic system code with a point kinetics model (b) analysis of the core response for given initial and transient thermal hydraulic boundary conditions using a coupled code system with 3D-neutron kinetics model and (c) investigation of the integral plant response using a best-estimate coupled code system with 3D-neutron kinetics. Already before the test, complex flow conditions exist within the RPV e.g. coolant mixing in the upper plenum caused by the reverse flow through the loop-3 with the stopped pump. The test is initiated by switching on the main coolant pump of loop-3 that leads to a reversal of the flow through the respective piping. After about 13 s the mass flow rate through this loop reaches values comparable with the one of the other loops. During this time period, the increased primary coolant flow causes a reduction of the core averaged coolant temperature and thus an increase of the core power. Later on, the power stabilizes at a level higher than the initial power. In this analysis, special attention is paid on the prediction of the spatial asymmetrical core cooling during the test and its effects on the

  3. On couplings to matter in massive (bi-)gravity

    International Nuclear Information System (INIS)

    Rham, Claudia de; Ribeiro, Raquel H; Heisenberg, Lavinia

    2015-01-01

    We investigate the coupling to matter in ghost-free massive (bi-)gravity. When species in the matter sector couple covariantly to only one metric, we show that at one-loop these couplings do not spoil the special structure of the graviton potential. When the same species couples directly to both metrics we show that a ghost is present at the classical level and that loops destroy the special structure of the potential at an unacceptably low scale. We then propose a new ‘composite’ effective metric built out of both metrics. When matter fields couple covariantly to this effective metric, the would be Boulware–Deser (BD) ghost is absent in different representative limits. At one-loop such couplings do not detune the special structure of the potential. We conjecture that matter can couple covariantly to that effective metric in all generality without introducing any BD ghost below a cut-off scale parametrically larger than the strong coupling scale. We also discuss alternative couplings to matter where the kinetic and potential terms of the matter field couple to different metrics. In both cases we discuss preliminary implications for cosmology. (paper)

  4. Kinetic Studies of Oxidative Coupling of Methane Reaction on Model Catalysts

    KAUST Repository

    Khan, Abdulaziz M.

    2016-04-26

    With the increasing production of natural gas as a result of the advancement in the technology, methane conversion to more valuable products has become a must. One of the most attractive processes which allow the utilization of the world’s most abundant hydrocarbon is the oxidative coupling. The main advantage of this process is the ability of converting methane into higher paraffins and olefins (primarily C2) in a direct way using a single reactor. Nevertheless, low C2+ yields have prevented the process to be commercialized despite the fact that great number of attempts to prepare catalysts were conducted so that it can be economically viable. Due to these limitations, understanding the mechanism and kinetics of the reaction can be utilized in improving the catalysts’ performance. The reaction involves the formation of methyl radicals that undergo gas-phase radical reactions. CH4 activation is believed to be done the surface oxygen species. However, recent studies showed that, in addition to the surface oxygen mediated pathway, an OH radical mediated pathway have a large contribution on the CH4 activation. The experiments of Li/MgO, Sr/La2O3 and NaWO4/SiO2 catalysts revealed variation of behavior in activity and selectivity. In addition, water effect analysis showed that Li/MgO deactivate at the presence of water due to sintering phenomena and the loss of active sites. On the other hand, negative effect on the C2 yield and CH4 conversion rate was observed with Sr/La2O3 with increasing the water partial pressure. Na2WO4/SiO2 showed a positive behavior with water in terms of CH4 conversion and C2 yield. In addition, the increment in CH4 conversion rate was found to be proportional with PO2 ¼ PH2O ½ which is consistent with the formation of OH radicals and the OH-mediated pathway. Experiments of using ring-dye laser, which is used to detect OH in combustion experiments, were tried in order to detect OH radicals in the gas-phase of the catalyst. Nevertheless

  5. Statistical safety evaluation of BWR turbine trip scenario using coupled neutron kinetics and thermal hydraulics analysis code SKETCH-INS/TRACE5.0

    International Nuclear Information System (INIS)

    Ichikawa, Ryoko; Masuhara, Yasuhiro; Kasahara, Fumio

    2012-01-01

    The Best Estimate Plus Uncertainty (BEPU) method has been prepared for the regulatory cross-check analysis at Japan Nuclear Energy Safety Organization (JNES) on base of the three-dimensional neutron-kinetics/thermal-hydraulics coupled code SKETCH-INS/TRACE5.0. In the preparation, TRACE5.0 is verified against the large-scale thermal-hydraulic tests carried out with NUPEC facility. These tests were focused on the pressure drop of steam-liquid two phase flow and void fraction distribution. From the comparison of the experimental data with other codes (RELAP5/MOD3.3 and TRAC-BF1), TRACE5.0 was judged better than other codes. It was confirmed that TRACE5.0 has high reliability for thermal hydraulics behavior and are used as a best-estimate code for the statistical safety evaluation. Next, the coupled code SKETCH-INS/TRACE5.0 was applied to turbine trip tests performed at the Peach Bottom-2 BWR4 Plant. The turbine trip event shows the rapid power peak due to the voids collapse with the pressure increase. The analyzed peak value of core power is better simulated than the previous version SKETCH-INS/TRAC-BF1. And the statistical safety evaluation using SKETCH-INS/TRACE5.0 was applied to the loss of load transient for examining the influence of the choice of sampling method. (author)

  6. A global model for SF6 plasmas coupling reaction kinetics in the gas phase and on the surface of the reactor walls

    International Nuclear Information System (INIS)

    Kokkoris, George; Panagiotopoulos, Apostolos; Gogolides, Evangelos; Goodyear, Andy; Cooke, Mike

    2009-01-01

    Gas phase and reactor wall-surface kinetics are coupled in a global model for SF 6 plasmas. A complete set of gas phase and surface reactions is formulated. The rate coefficients of the electron impact reactions are based on pertinent cross section data from the literature, which are integrated over a Druyvesteyn electron energy distribution function. The rate coefficients of the surface reactions are adjustable parameters and are calculated by fitting the model to experimental data from an inductively coupled plasma reactor, i.e. F atom density and pressure change after the ignition of the discharge. The model predicts that SF 6 , F, F 2 and SF 4 are the dominant neutral species while SF 5 + and F - are the dominant ions. The fit sheds light on the interaction between the gas phase and the reactor walls. A loss mechanism for SF x radicals by deposition of a fluoro-sulfur film on the reactor walls is needed to predict the experimental data. It is found that there is a net production of SF 5 , F 2 and SF 6 , and a net consumption of F, SF 3 and SF 4 on the reactor walls. Surface reactions as well as reactions between neutral species in the gas phase are found to be important sources and sinks of the neutral species.

  7. The Eschenmoser coupling reaction under continuous-flow conditions

    Science.gov (United States)

    Singh, Sukhdeep; Köhler, J Michael; Schober, Andreas

    2011-01-01

    Summary The Eschenmoser coupling is a useful carbon–carbon bond forming reaction which has been used in various different synthesis strategies. The reaction proceeds smoothly if S-alkylated ternary thioamides or thiolactames are used. In the case of S-alkylated secondary thioamides or thiolactames, the Eschenmoser coupling needs prolonged reaction times and elevated temperatures to deliver valuable yields. We have used a flow chemistry system to promote the Eschenmoser coupling under enhanced reaction conditions in order to convert the demanding precursors such as S-alkylated secondary thioamides and thiolactames in an efficient way. Under pressurized reaction conditions at about 220 °C, the desired Eschenmoser coupling products were obtained within 70 s residence time. The reaction kinetics was investigated and 15 examples of different building block combinations are given. PMID:21915222

  8. The Eschenmoser coupling reaction under continuous-flow conditions

    Directory of Open Access Journals (Sweden)

    Sukhdeep Singh

    2011-08-01

    Full Text Available The Eschenmoser coupling is a useful carbon–carbon bond forming reaction which has been used in various different synthesis strategies. The reaction proceeds smoothly if S-alkylated ternary thioamides or thiolactames are used. In the case of S-alkylated secondary thioamides or thiolactames, the Eschenmoser coupling needs prolonged reaction times and elevated temperatures to deliver valuable yields. We have used a flow chemistry system to promote the Eschenmoser coupling under enhanced reaction conditions in order to convert the demanding precursors such as S-alkylated secondary thioamides and thiolactames in an efficient way. Under pressurized reaction conditions at about 220 °C, the desired Eschenmoser coupling products were obtained within 70 s residence time. The reaction kinetics was investigated and 15 examples of different building block combinations are given.

  9. Kinetic parameter estimation from attenuated SPECT projection measurements

    International Nuclear Information System (INIS)

    Reutter, B.W.; Gullberg, G.T.

    1998-01-01

    Conventional analysis of dynamically acquired nuclear medicine data involves fitting kinetic models to time-activity curves generated from regions of interest defined on a temporal sequence of reconstructed images. However, images reconstructed from the inconsistent projections of a time-varying distribution of radiopharmaceutical acquired by a rotating SPECT system can contain artifacts that lead to biases in the estimated kinetic parameters. To overcome this problem the authors investigated the estimation of kinetic parameters directly from projection data by modeling the data acquisition process. To accomplish this it was necessary to parametrize the spatial and temporal distribution of the radiopharmaceutical within the SPECT field of view. In a simulated transverse slice, kinetic parameters were estimated for simple one compartment models for three myocardial regions of interest, as well as for the liver. Myocardial uptake and washout parameters estimated by conventional analysis of noiseless simulated data had biases ranging between 1--63%. Parameters estimated directly from the noiseless projection data were unbiased as expected, since the model used for fitting was faithful to the simulation. Predicted uncertainties (standard deviations) of the parameters obtained for 500,000 detected events ranged between 2--31% for the myocardial uptake parameters and 2--23% for the myocardial washout parameters

  10. Improved stiffness confinement method within the coarse mesh finite difference framework for efficient spatial kinetics calculation

    International Nuclear Information System (INIS)

    Park, Beom Woo; Joo, Han Gyu

    2015-01-01

    Highlights: • The stiffness confinement method is combined with multigroup CMFD with SENM nodal kernel. • The systematic methods for determining the shape and amplitude frequencies are established. • Eigenvalue problems instead of fixed source problems are solved in the transient calculation. • It is demonstrated that much larger time step sizes can be used with the SCM–CMFD method. - Abstract: An improved Stiffness Confinement Method (SCM) is formulated within the framework of the coarse mesh finite difference (CMFD) formulation for efficient multigroup spatial kinetics calculation. The algorithm for searching for the amplitude frequency that makes the dynamic eigenvalue unity is developed in a systematic way along with the methods for determining the shape and precursor frequencies. A nodal calculation scheme is established within the CMFD framework to incorporate the cross section changes due to thermal feedback and dynamic frequency update. The conditional nodal update scheme is employed such that the transient calculation is performed mostly with the CMFD formulation and the CMFD parameters are conditionally updated by intermittent nodal calculations. A quadratic representation of amplitude frequency is introduced as another improvement. The performance of the improved SCM within the CMFD framework is assessed by comparing the solution accuracy and computing times for the NEACRP control rod ejection benchmark problems with those obtained with the Crank–Nicholson method with exponential transform (CNET). It is demonstrated that the improved SCM is beneficial for large time step size calculations with stability and accuracy enhancement

  11. Ion Kinetics in the Solar Wind: Coupling Global Expansion to Local Microphysics

    Czech Academy of Sciences Publication Activity Database

    Matteini, L.; Hellinger, Petr; Landi, S.; Trávníček, Pavel M.; Velli, M.

    2012-01-01

    Roč. 172, 1-4 (2012), s. 373-396 ISSN 0038-6308 R&D Projects: GA AV ČR IAA300420702 Grant - others:ESA(XE) PECS 98068 Institutional research plan: CEZ:AV0Z30420517; CEZ:AV0Z10030501 Keywords : Solar wind * Ion kinetics * Numerical simulations Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 5.519, year: 2012 http://link.springer.com/article/10.1007%2Fs11214-011-9774-z#

  12. Point Genetics: A New Concept to Assess Neutron Kinetics

    International Nuclear Information System (INIS)

    Klein Meulekamp, R.; Kuijper, J.C.; Schikorr, M.

    2005-01-01

    Point genetic equations are introduced. These equations are similar to the well-known point kinetic equations but characterize and couple individual fission generations in subcritical systems. Point genetic equations are able to describe dynamic behavior of source-driven subcritical systems on shorter timescales than is possible with point kinetic equations. Point genetic parameters can be used as a first-order characterization of the system and can be calculated using standard Monte Carlo techniques; the implementation in other calculational schemes seems straightforward. A Godiva sphere is considered to show the applicability of the point genetic equations in describing a detector response on short timescales. For this system the point genetic parameters are calculated and compared with reference calculations. Typical dynamic source behavior is considered by studying a transient in which the neutron source energy decreases from 20 to 1 MeV. For all cases studied, the point genetic equations are compared to full space-time kinetic solutions, and it is shown that point genetics performs well

  13. Using a spatially-distributed hydrologic biogeochemistry model to study the spatial variation of carbon processes in a Critical Zone Observatory

    Science.gov (United States)

    Shi, Y.; Eissenstat, D. M.; Davis, K. J.; He, Y.

    2016-12-01

    Forest carbon processes are affected by, among other factors, soil moisture, soil temperature, soil nutrients and solar radiation. Most of the current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve the topographically driven hill-slope land surface heterogeneity or the spatial pattern of nutrient availability. A spatially distributed forest ecosystem model, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while soil nitrogen is transported among model grids via subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation information, while BBGC provides Flux-PIHM with leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). Model results suggest that the vegetation and soil carbon distribution is primarily constrained by nitorgen availability (affected by nitorgen transport via topographically driven subsurface flow), and also constrained by solar radiation and root zone soil moisture. The predicted vegetation and soil carbon distribution generally agrees with the macro pattern observed within the watershed. The coupled ecosystem-hydrologic model provides an important tool to study the impact of topography on watershed carbon processes, as well as the impact of climate change on water resources.

  14. A group-kinetic theory of turbulent collective collisions

    International Nuclear Information System (INIS)

    Tchen, C.M.; Misguich, J.H.

    1983-05-01

    The main objective is the derivation of the kinetic equation of turbulence which has a memory in the turbulent collision integral. We consider the basic pair-interaction, and the interaction between a fluctuation and the organized cluster of other fluctuations in the collection systems, called the multiple interaction. By a group-scaling procedure, a fluctuation is decomposed into three groups to represent the three coupled transport processes of evolution, transport coefficient, and relaxation. The kinetic equation of the scaled singlet distribution is capable of investigating the spectrum of turbulence without the need of the knowledge of the pair distribution. The exact propagator describes the detailed trajectory in the phase space, and is fundamental to the Lagrangian-Eulerian transformation. We calculate the propagator and its scaled groups by means of a probability of retrograde transition. Thus our derivation of the kinetic equation of the distribution involves a parallel development of the kinetic equations of the propagator and the transition probability. In this way, we can avoid the assumptions of independence and normality. Our result shows that the multiple interaction contributes to a shielding and an enchancement of the collision in weak turbulence and strong turbulence, respectively. The weak turbulence is dominated by the wave resonance, and the strong turbulence is dominated by the diffusion

  15. Kinetics of steel slag leaching: Batch tests and modeling

    International Nuclear Information System (INIS)

    De Windt, Laurent; Chaurand, Perrine; Rose, Jerome

    2011-01-01

    Reusing steel slag as an aggregate for road construction requires to characterize the leaching kinetics and metal releases. In this study, basic oxygen furnace (BOF) steel slag were subjected to batch leaching tests at liquid to solid ratios (L/S) of 10 and 100 over 30 days; the leachate chemistry being regularly sampled in time. A geochemical model of the steel slag is developed and validated from experimental data, particularly the evolution with leaching of mineralogical composition of the slag and trace element speciation. Kinetics is necessary for modeling the primary phase leaching, whereas a simple thermodynamic equilibrium approach can be used for secondary phase precipitation. The proposed model simulates the kinetically-controlled dissolution (hydrolysis) of primary phases, the precipitation of secondary phases (C-S-H, hydroxide and spinel), the pH and redox conditions, and the progressive release of major elements as well as the metals Cr and V. Modeling indicates that the dilution effect of the L/S ratio is often coupled to solubility-controlled processes, which are sensitive to both the pH and the redox potential. A sensitivity analysis of kinetic uncertainties on the modeling of element releases is performed.

  16. VVER-1000 coolant transient benchmark. Phase 1 (V1000CT-1). Vol. 3: summary results of exercise 2 on coupled 3-D kinetics/core thermal-hydraulics

    International Nuclear Information System (INIS)

    2007-01-01

    In the field of coupled neutronics/thermal-hydraulics computation there is a need to enhance scientific knowledge in order to develop advanced modelling techniques for new nuclear technologies and concepts, as well as current applications. (authors) Recently developed best-estimate computer code systems for modelling 3-D coupled neutronics/thermal-hydraulics transients in nuclear cores and for the coupling of core phenomena and system dynamics need to be compared against each other and validated against results from experiments. International benchmark studies have been set up for this purpose. The present volume is a follow-up to the first two volumes. While the first described the specification of the benchmark, the second presented the results of the first exercise that identified the key parameters and important issues concerning the thermal-hydraulic system modelling of the simulated transient caused by the switching on of a main coolant pump when the other three were in operation. Volume 3 summarises the results for Exercise 2 of the benchmark that identifies the key parameters and important issues concerning the 3-D neutron kinetics modelling of the simulated transient. These studies are based on an experiment that was conducted by Bulgarian and Russian engineers during the plant-commissioning phase at the VVER-1000 Kozloduy Unit 6. The final volume will soon be published, completing Phase 1 of this study. (authors)

  17. Remodelling of cellular excitation (reaction) and intercellular coupling (diffusion) by chronic atrial fibrillation represented by a reaction-diffusion system

    Science.gov (United States)

    Zhang, Henggui; Garratt, Clifford J.; Kharche, Sanjay; Holden, Arun V.

    2009-06-01

    Human atrial tissue is an excitable system, in which myocytes are excitable elements, and cell-to-cell electrotonic interactions are via diffusive interactions of cell membrane potentials. We developed a family of excitable system models for human atrium at cellular, tissue and anatomical levels for both normal and chronic atrial fibrillation (AF) conditions. The effects of AF-induced remodelling of cell membrane ionic channels (reaction kinetics) and intercellular gap junctional coupling (diffusion) on atrial excitability, conduction of excitation waves and dynamics of re-entrant excitation waves are quantified. Both ionic channel and gap junctional coupling remodelling have rate dependent effects on atrial propagation. Membrane channel conductance remodelling allows the propagation of activity at higher rates than those sustained in normal tissue or in tissue with gap junctional remodelling alone. Membrane channel conductance remodelling is essential for the propagation of activity at rates higher than 300/min as seen in AF. Spatially heterogeneous gap junction coupling remodelling increased the risk of conduction block, an essential factor for the genesis of re-entry. In 2D and 3D anatomical models, the dynamical behaviours of re-entrant excitation waves are also altered by membrane channel modelling. This study provides insights to understand the pro-arrhythmic effects of AF-induced reaction and diffusion remodelling in atrial tissue.

  18. Implosion anisotropy of neutron kinetic energy distributions as measured with the neutron time-of-flight diagnostics at the National Ignition Facility

    Science.gov (United States)

    Hartouni, Edward; Eckart, Mark; Field, John; Grim, Gary; Hatarik, Robert; Moore, Alastair; Munro, David; Sayer, Daniel; Schlossberg, David

    2017-10-01

    Neutron kinetic energy distributions from fusion reactions are characterized predominantly by the excess energy, Q, of the fusion reaction and the variance of kinetic energy which is related to the thermal temperature of the plasma as shown by e.g. Brysk. High statistics, high quality neutron time-of-flight spectra obtained at the National Ignition Facility provide a means of measuring small changes to the neutron kinetic energy due to the spatial and temporal distribution of plasma temperature, density and velocity. The modifications to the neutron kinetic energy distribution as described by Munro include plasma velocity terms with spatial orientation, suggesting that the neutron kinetic energy distributions could be anisotropic when viewed by multiple lines-of-sight. These anisotropies provide a diagnostic of burn averaged plasma velocity distributions. We present the results of measurements made for a variety of DT implosions and discuss their possible physical interpretations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  19. Modelling reveals kinetic advantages of co-transcriptional splicing.

    Directory of Open Access Journals (Sweden)

    Stuart Aitken

    2011-10-01

    Full Text Available Messenger RNA splicing is an essential and complex process for the removal of intron sequences. Whereas the composition of the splicing machinery is mostly known, the kinetics of splicing, the catalytic activity of splicing factors and the interdependency of transcription, splicing and mRNA 3' end formation are less well understood. We propose a stochastic model of splicing kinetics that explains data obtained from high-resolution kinetic analyses of transcription, splicing and 3' end formation during induction of an intron-containing reporter gene in budding yeast. Modelling reveals co-transcriptional splicing to be the most probable and most efficient splicing pathway for the reporter transcripts, due in part to a positive feedback mechanism for co-transcriptional second step splicing. Model comparison is used to assess the alternative representations of reactions. Modelling also indicates the functional coupling of transcription and splicing, because both the rate of initiation of transcription and the probability that step one of splicing occurs co-transcriptionally are reduced, when the second step of splicing is abolished in a mutant reporter.

  20. Modelling reveals kinetic advantages of co-transcriptional splicing.

    Science.gov (United States)

    Aitken, Stuart; Alexander, Ross D; Beggs, Jean D

    2011-10-01

    Messenger RNA splicing is an essential and complex process for the removal of intron sequences. Whereas the composition of the splicing machinery is mostly known, the kinetics of splicing, the catalytic activity of splicing factors and the interdependency of transcription, splicing and mRNA 3' end formation are less well understood. We propose a stochastic model of splicing kinetics that explains data obtained from high-resolution kinetic analyses of transcription, splicing and 3' end formation during induction of an intron-containing reporter gene in budding yeast. Modelling reveals co-transcriptional splicing to be the most probable and most efficient splicing pathway for the reporter transcripts, due in part to a positive feedback mechanism for co-transcriptional second step splicing. Model comparison is used to assess the alternative representations of reactions. Modelling also indicates the functional coupling of transcription and splicing, because both the rate of initiation of transcription and the probability that step one of splicing occurs co-transcriptionally are reduced, when the second step of splicing is abolished in a mutant reporter.

  1. Weak and strong coupling equilibration in nonabelian gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Keegan, Liam [Physics Department, Theory Unit, CERN,CH-1211 Genève 23 (Switzerland); Kurkela, Aleksi [Physics Department, Theory Unit, CERN,CH-1211 Genève 23 (Switzerland); Faculty of Science and Technology, University of Stavanger,4036 Stavanger (Norway); Romatschke, Paul [Department of Physics, 390 UCB, University of Colorado at Boulder,Boulder, CO (United States); Center for Theory of Quantum Matter, University of Colorado,Boulder, Colorado 80309 (United States); Schee, Wilke van der [Center for Theoretical Physics, MIT,Cambridge, MA 02139 (United States); Zhu, Yan [Department of Physics, University of Jyväskyla, P.O. Box 35, FI-40014 University of Jyväskylä (Finland); Helsinki Institute of Physics,P.O. Box 64, 00014 University of Helsinki (Finland)

    2016-04-06

    We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of the system.

  2. Weak and strong coupling equilibration in nonabelian gauge theories

    International Nuclear Information System (INIS)

    Keegan, Liam; Kurkela, Aleksi; Romatschke, Paul; Schee, Wilke van der; Zhu, Yan

    2016-01-01

    We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of the system.

  3. Conformational kinetics of aliphatic tails

    Science.gov (United States)

    Ferrarini, Alberta; Moro, Giorgio; Nordio, Pier Luigi

    The master equation describing the random walk between sites identified with the stable conformers of a chain molecule, represents the extension to the time domain of the Rotational Isomeric State model. The asymptotic analysis of the multidimensional diffusion equation in the continuous torsional variables subjected to the configurational potential, provides a rigorous justification for the discrete models, and it supplies, without resorting to phenomenological parameters, molecular definitions of the kinetic rates for the conformational transitions occurring at each segment of the chain. The coupling between the torsional variables is fully taken into account, giving rise to cooperative effects. A complete calculation of the specific correlation functions which describe the time evolution of the angular functions probed by N.M.R. and dielectric relaxation measurements, has been performed for alkyl chains attached to a massive core. The resulting behaviour has been compared with the decay of trans and gauche populations of specific bonds, expressed in terms of suitable correlation functions whose time integrals lead quite naturally to the definition of effective kinetic constants for the conformational transitions.

  4. Simultaneous measurement of polymerization stress and curing kinetics for photo-polymerized composites with high filler contents.

    Science.gov (United States)

    Wang, Zhengzhi; Landis, Forrest A; Giuseppetti, Anthony A M; Lin-Gibson, Sheng; Chiang, Martin Y M

    2014-12-01

    Photopolymerized composites are used in a broad range of applications with their performance largely directed by reaction kinetics and contraction accompanying polymerization. The present study was to demonstrate an instrument capable of simultaneously collecting multiple kinetics parameters for a wide range of photopolymerizable systems: degree of conversion (DC), reaction exotherm, and polymerization stress (PS). Our system consisted of a cantilever beam-based instrument (tensometer) that has been optimized to capture a large range of stress generated by lightly-filled to highly-filled composites. The sample configuration allows the tensometer to be coupled to a fast near infrared (NIR) spectrometer collecting spectra in transmission mode. Using our instrument design, simultaneous measurements of PS and DC are performed, for the first time, on a commercial composite with ≈80% (by mass) silica particle fillers. The in situ NIR spectrometer collects more than 10 spectra per second, allowing for thorough characterization of reaction kinetics. With increased instrument sensitivity coupled with the ability to collect real time reaction kinetics information, we show that the external constraint imposed by the cantilever beam during polymerization could affect the rate of cure and final degree of polymerization. The present simultaneous measurement technique is expected to provide new insights into kinetics and property relationships for photopolymerized composites with high filler content such as dental restorative composites. Published by Elsevier Ltd.

  5. Co-immobilized Coupled Enzyme Systems in Biotechnology

    Science.gov (United States)

    2010-01-01

    coimmobilized by ~n­ capsulation in silica spheres that were formed by a polymer -templated silicificatiOn reaction (Betancor et al., 2006). Nitrobenzene...F. , FERNANDEZ-LAFUENTE, R. , GUISAN J. M. (2005). Stabilization of enzymes by multipoint immobilization of thiolated proteins on new epoxy-thiol... polymer monoliths in microftuidic devices for steady- state kinetic analysis and spatially separated multi-enzyme reactions. Analytical Chemistry, 79

  6. Catastrophic Disruption Threshold and Maximum Deflection from Kinetic Impact

    Science.gov (United States)

    Cheng, A. F.

    2017-12-01

    The use of a kinetic impactor to deflect an asteroid on a collision course with Earth was described in the NASA Near-Earth Object Survey and Deflection Analysis of Alternatives (2007) as the most mature approach for asteroid deflection and mitigation. The NASA DART mission will demonstrate asteroid deflection by kinetic impact at the Potentially Hazardous Asteroid 65803 Didymos in October, 2022. The kinetic impactor approach is considered to be applicable with warning times of 10 years or more and with hazardous asteroid diameters of 400 m or less. In principle, a larger kinetic impactor bringing greater kinetic energy could cause a larger deflection, but input of excessive kinetic energy will cause catastrophic disruption of the target, leaving possibly large fragments still on collision course with Earth. Thus the catastrophic disruption threshold limits the maximum deflection from a kinetic impactor. An often-cited rule of thumb states that the maximum deflection is 0.1 times the escape velocity before the target will be disrupted. It turns out this rule of thumb does not work well. A comparison to numerical simulation results shows that a similar rule applies in the gravity limit, for large targets more than 300 m, where the maximum deflection is roughly the escape velocity at momentum enhancement factor β=2. In the gravity limit, the rule of thumb corresponds to pure momentum coupling (μ=1/3), but simulations find a slightly different scaling μ=0.43. In the smaller target size range that kinetic impactors would apply to, the catastrophic disruption limit is strength-controlled. A DART-like impactor won't disrupt any target asteroid down to significantly smaller size than the 50 m below which a hazardous object would not penetrate the atmosphere in any case unless it is unusually strong.

  7. CINESP - computational program of spatial kinetics for nuclear reactors in the one-two dimension multigroup diffusion theory

    International Nuclear Information System (INIS)

    Santos, R.S. dos

    1993-01-01

    This paper presents a computational program to solve numerically the reactor kinetics equations in the multigroup diffusion theory. One or two-dimensional problems in cylindrical or Cartesian geometries, with any number of energy and delayed-neutron precursors groups are dealt with. The main input and output of the program are briefly discussed. Various results demonstrate the accuracy and versatility of the program, when compared with other kinetics programs. (author)

  8. A tool model for predicting atmospheric kinetics with sensitivity analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A package( a tool model) for program of predicting atmospheric chemical kinetics with sensitivity analysis is presented. The new direct method of calculating the first order sensitivity coefficients using sparse matrix technology to chemical kinetics is included in the tool model, it is only necessary to triangularize the matrix related to the Jacobian matrix of the model equation. The Gear type procedure is used to integrate amodel equation and its coupled auxiliary sensitivity coefficient equations. The FORTRAN subroutines of the model equation, the sensitivity coefficient equations, and their Jacobian analytical expressions are generated automatically from a chemical mechanism. The kinetic representation for the model equation and its sensitivity coefficient equations, and their Jacobian matrix is presented. Various FORTRAN subroutines in packages, such as SLODE, modified MA28, Gear package, with which the program runs in conjunction are recommended.The photo-oxidation of dimethyl disulfide is used for illustration.

  9. Multicritical dynamical phase diagrams of the kinetic Blume-Emery-Griffiths model with repulsive biquadratic coupling in an oscillating field

    Energy Technology Data Exchange (ETDEWEB)

    Temizer, Umuet [Department of Physics, Bozok University, 66100 Yozgat (Turkey); Kantar, Ersin [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2008-06-15

    We study, within a mean-field approach, the stationary states of the kinetic Blume-Emery-Griffiths model with repulsive biquadratic coupling under the presence of a time-varying (sinusoidal) magnetic field. We employ the Glauber-type stochastic dynamics to construct set of dynamic equations of motion. The behavior of the time dependence of the order parameters and the behavior of the average order parameters in a period, which is also called the dynamic order parameters, as functions of the reduced temperature are investigated. The dynamic phase transition points are calculated and phase diagrams are presented in the reduced magnetic field amplitude and reduced temperature plane. The dynamical transition from one regime to the other can be of first- or second order depending on the region in the phase diagram. According to the values of the crystal field interaction or single-ion anisotropy constant and biquadratic exchange constant, we find 20 fundamental types of phase diagrams which exhibit many dynamic critical points, such as tricritical points, zero-temperature critical points, double critical end points, critical end point, triple point and multicritical point. Moreover, besides a disordered and ordered phases, seven coexistence phase regions exist in the system.

  10. Nonequilibrium electron energy-loss kinetics in metal clusters

    CERN Document Server

    Guillon, C; Fatti, N D; Vallee, F

    2003-01-01

    Ultrafast energy exchanges of a non-Fermi electron gas with the lattice are investigated in silver clusters with sizes ranging from 4 to 26 nm using a femtosecond pump-probe technique. The results yield evidence for a cluster-size-dependent slowing down of the short-time energy losses of the electron gas when it is strongly athermal. A constant rate is eventually reached after a few hundred femtoseconds, consistent with the electron gas internal thermalization kinetics, this behaviour reflecting evolution from an individual to a collective electron-lattice type of coupling. The timescale of this transient regime is reduced in small nanoparticles, in agreement with speeding up of the electron-electron interactions with size reduction. The experimental results are in quantitative agreement with numerical simulations of the electron kinetics.

  11. Computer simulations of disordering and amorphization kinetics in intermetallic compounds

    International Nuclear Information System (INIS)

    Spaczer, M.; Victoria, M.

    1995-01-01

    Molecular dynamics computer simulations on three intermetallic compounds, Cu 3 Au, Ni 3 Al and NiAl, have been performed to investigate the kinetics of the disordering and amorphization processes. These systems were chosen because reliable embedded atom potentials were developed for the constituent species and their alloys, and also because extended experimental results are available for them. Previous simulations of collision cascades with 5 keV Cu and Ni primary knock-out atom (PKA) showed a significant difference between the evolution of the short range order (SRO) and the crystalline order (CO) parameters in all of the intermetallics: a complete loss of the crystalline structure and only partial chemical disorder in the core of the cascade [T. Diaz de la Rubia et al., Phys. Rev. B 47 (1993) 11483; M. Spaczer et al., Phys. Rev. B 50 (1994) 13204]. The present paper deals with the simulation of the amorphization process in NiAl by 5 and 15 keV Ni PKAs. The kinetic energy of the atoms in the simulated systems was removed on different time scales to mimic strong or weak coupling between electrons and phonons. No evidence of amorphization was found at the end of the cascades created by the 5 keV recoils. However, the 15 keV PKA events showed that (i) in the no-coupling case the system evolved to a highly disordered state, (ii) an amorphous region with about 100 non-lattice atoms was found in the case of weak coupling, (iii) the locally melted and recrystallized region collapsed to a small dislocation loop when medium coupling was used and (iv) a highly ordered state resulted in the case of strong coupling. (orig.)

  12. Heavy fuel oil pyrolysis and combustion: kinetics and evolved gases investigated by TGA-FTIR

    KAUST Repository

    Abdul Jameel, Abdul Gani; Han, Yunqing; Brignoli, Omar; Telalovic, Selvedin; Elbaz, Ayman M.; Im, Hong G.; Roberts, William L.; Sarathy, Mani

    2017-01-01

    investigated using non-isothermal thermo-gravimetric analysis (TGA) coupled with a Fourier-transform infrared (FTIR) spectrometer. TG and DTG (differential thermo-gravimetry) were used for the kinetic analysis and to study the mass loss characteristics due

  13. Calculation of an accident with delayed scram at NPP Greifswald using the coupled code DYN3D/ATHLET

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, S

    1998-10-01

    Complex computer codes modeling the whole reactor system including 3D neutron kinetics in combination with advanced thermohydraulic plant models become more and more important for the safety assessment of nuclear reactors. Transients or experiments with both neutron kinetic and thermalhydraulic data are needed for the validation of such coupled codes like DYN3D/ATHLET. First of all measured results from nuclear power plant (NPP) transients should be used, because the experimental thermalhydraulic facilities do not offer the possibility to model space-dependent neutron kinetic effects and research reactors with reliably measured 3D neutron kinetic data do not allow to study thermalhydraulic feedback effects. In this paper, an accident with delayed scram which occurred in 1989 at the NPP Greifswald is analyzed. Calculations of this accident were carried out with the goal to validate the coupled code DYN3D/ATHLET. (orig.)

  14. Calculation of an accident with delayed scram at NPP Greifswald using the coupled code DYN3D/ATHLET

    International Nuclear Information System (INIS)

    Kliem, S.

    1998-01-01

    Complex computer codes modeling the whole reactor system including 3D neutron kinetics in combination with advanced thermohydraulic plant models become more and more important for the safety assessment of nuclear reactors. Transients or experiments with both neutron kinetic and thermalhydraulic data are needed for the validation of such coupled codes like DYN3D/ATHLET. First of all measured results from nuclear power plant (NPP) transients should be used, because the experimental thermalhydraulic facilities do not offer the possibility to model space-dependent neutron kinetic effects and research reactors with reliably measured 3D neutron kinetic data do not allow to study thermalhydraulic feedback effects. In this paper, an accident with delayed scram which occurred in 1989 at the NPP Greifswald is analyzed. Calculations of this accident were carried out with the goal to validate the coupled code DYN3D/ATHLET. (orig.)

  15. Parameters assessment of the inductively-coupled circuit for wireless power transfer

    Science.gov (United States)

    Isaev, Yu N.; Vasileva, O. V.; Budko, A. A.; Lefebvre, S.

    2017-02-01

    In this paper, a wireless power transfer model through the example of inductively-coupled coils of irregular shape in software package COMSOL Multiphysics is studied. Circuit parameters, such as inductance, coil resistance and self-capacitance were defined through electromagnetic energy by the finite-element method. The study was carried out according to Helmholtz equation. Spatial distribution of current per unit depending on frequency and the coupling coefficient for analysis of resonant frequency and spatial distribution of the vector magnetic potential at different distances between coils were presented. The resulting algorithm allows simulating the wireless power transfer between the inductively coupled coils of irregular shape with the assessment of the optimal parameters.

  16. Non-kinetic capabilities: complementing the kinetic prevalence to targeting

    OpenAIRE

    Ducheine, P.

    2014-01-01

    Targeting is used in military doctrine to describe a military operational way, using (military) means to influence a target (or addressee) in order to achieve designated political and/or military goals. The four factors italicized are used to analyse non-kinetic targeting, complementing our knowledge and understanding of the kinetic prevalence. Paradoxically, non-kinetic targeting is not recognized as a separate concept: kinetic and non-kinetic are intertwined facets of targeting. Kinetic tar...

  17. Investigation of nucleation kinetics in H2SO4 vapor through modeling of gas phase kinetics coupled with particle dynamics

    Science.gov (United States)

    Carlsson, Philip T. M.; Zeuch, Thomas

    2018-03-01

    We have developed a new model utilizing our existing kinetic gas phase models to simulate experimental particle size distributions emerging in dry supersaturated H2SO4 vapor homogeneously produced by rapid oxidation of SO2 through stabilized Criegee-Intermediates from 2-butene ozonolysis. We use a sectional method for simulating the particle dynamics. The particle treatment in the model is based on first principles and takes into account the transition from the kinetic to the diffusion-limited regime. It captures the temporal evolution of size distributions at the end of the ozonolysis experiment well, noting a slight underrepresentation of coagulation effects for larger particle sizes. The model correctly predicts the shape and the modes of the experimentally observed particle size distributions. The predicted modes show an extremely high sensitivity to the H2SO4 evaporation rates of the initially formed H2SO4 clusters (dimer to pentamer), which were arbitrarily restricted to decrease exponentially with increasing cluster size. In future, the analysis presented in this work can be extended to allow a direct validation of quantum chemically predicted stabilities of small H2SO4 clusters, which are believed to initiate a significant fraction of atmospheric new particle formation events. We discuss the prospects and possible limitations of the here presented approach.

  18. Coupling the photon kinetics of soft photons with high energy photons

    Science.gov (United States)

    Silva, L. O.; Bingham, R.

    2017-10-01

    The description of electromagnetic fields based on the generalized photon kinetic theory, which takes advantage of the Wigner-Moyal description for the corresponding classical field theory, is capable of capturing collective plasma dynamics in the relativistic regime driven by broadband incoherent or partially coherent sources. We explore the possibility to extend this description to include the dynamics of hard photons in the plasma, whose interaction is dominated by single scattering processes. Examples of the modification of classical plasma instabilities due to the presence of hard photons is discussed. Work supported by the European Research Council (ERC-AdG-2015 InPairs Grant No. 695088).

  19. High-resolution Statistics of Solar Wind Turbulence at Kinetic Scales Using the Magnetospheric Multiscale Mission

    Energy Technology Data Exchange (ETDEWEB)

    Chasapis, Alexandros; Matthaeus, W. H.; Parashar, T. N.; Maruca, B. A. [University of Delaware, Newark, DE (United States); Fuselier, S. A.; Burch, J. L. [Southwest Research Institute, San Antonio, TX (United States); Phan, T. D. [Space Sciences Laboratory, University of California, Berkeley, CA (United States); Moore, T. E.; Pollock, C. J.; Gershman, D. J. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Torbert, R. B. [University of New Hampshire, Durham, NH (United States); Russell, C. T.; Strangeway, R. J., E-mail: chasapis@udel.edu [University of California, Los Angeles, CA (United States)

    2017-07-20

    Using data from the Magnetospheric Multiscale (MMS) and Cluster missions obtained in the solar wind, we examine second-order and fourth-order structure functions at varying spatial lags normalized to ion inertial scales. The analysis includes direct two-spacecraft results and single-spacecraft results employing the familiar Taylor frozen-in flow approximation. Several familiar statistical results, including the spectral distribution of energy, and the sale-dependent kurtosis, are extended down to unprecedented spatial scales of ∼6 km, approaching electron scales. The Taylor approximation is also confirmed at those small scales, although small deviations are present in the kinetic range. The kurtosis is seen to attain very high values at sub-proton scales, supporting the previously reported suggestion that monofractal behavior may be due to high-frequency plasma waves at kinetic scales.

  20. Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere–ocean–wave model

    Directory of Open Access Journals (Sweden)

    K. R. Prakash

    2018-04-01

    Full Text Available A coupled atmosphere–ocean–wave model was used to examine mixing in the upper-oceanic layers under the influence of a very severe cyclonic storm Phailin over the Bay of Bengal (BoB during 10–14 October 2013. The coupled model was found to improve the sea surface temperature over the uncoupled model. Model simulations highlight the prominent role of cyclone-induced near-inertial oscillations in subsurface mixing up to the thermocline depth. The inertial mixing introduced by the cyclone played a central role in the deepening of the thermocline and mixed layer depth by 40 and 15 m, respectively. For the first time over the BoB, a detailed analysis of inertial oscillation kinetic energy generation, propagation, and dissipation was carried out using an atmosphere–ocean–wave coupled model during a cyclone. A quantitative estimate of kinetic energy in the oceanic water column, its propagation, and its dissipation mechanisms were explained using the coupled atmosphere–ocean–wave model. The large shear generated by the inertial oscillations was found to overcome the stratification and initiate mixing at the base of the mixed layer. Greater mixing was found at the depths where the eddy kinetic diffusivity was large. The baroclinic current, holding a larger fraction of kinetic energy than the barotropic current, weakened rapidly after the passage of the cyclone. The shear induced by inertial oscillations was found to decrease rapidly with increasing depth below the thermocline. The dampening of the mixing process below the thermocline was explained through the enhanced dissipation rate of turbulent kinetic energy upon approaching the thermocline layer. The wave–current interaction and nonlinear wave–wave interaction were found to affect the process of downward mixing and cause the dissipation of inertial oscillations.

  1. Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere-ocean-wave model

    Science.gov (United States)

    Prakash, Kumar Ravi; Nigam, Tanuja; Pant, Vimlesh

    2018-04-01

    A coupled atmosphere-ocean-wave model was used to examine mixing in the upper-oceanic layers under the influence of a very severe cyclonic storm Phailin over the Bay of Bengal (BoB) during 10-14 October 2013. The coupled model was found to improve the sea surface temperature over the uncoupled model. Model simulations highlight the prominent role of cyclone-induced near-inertial oscillations in subsurface mixing up to the thermocline depth. The inertial mixing introduced by the cyclone played a central role in the deepening of the thermocline and mixed layer depth by 40 and 15 m, respectively. For the first time over the BoB, a detailed analysis of inertial oscillation kinetic energy generation, propagation, and dissipation was carried out using an atmosphere-ocean-wave coupled model during a cyclone. A quantitative estimate of kinetic energy in the oceanic water column, its propagation, and its dissipation mechanisms were explained using the coupled atmosphere-ocean-wave model. The large shear generated by the inertial oscillations was found to overcome the stratification and initiate mixing at the base of the mixed layer. Greater mixing was found at the depths where the eddy kinetic diffusivity was large. The baroclinic current, holding a larger fraction of kinetic energy than the barotropic current, weakened rapidly after the passage of the cyclone. The shear induced by inertial oscillations was found to decrease rapidly with increasing depth below the thermocline. The dampening of the mixing process below the thermocline was explained through the enhanced dissipation rate of turbulent kinetic energy upon approaching the thermocline layer. The wave-current interaction and nonlinear wave-wave interaction were found to affect the process of downward mixing and cause the dissipation of inertial oscillations.

  2. Separation-induced boundary layer transition: Modeling with a non-linear eddy-viscosity model coupled with the laminar kinetic energy equation

    International Nuclear Information System (INIS)

    Vlahostergios, Z.; Yakinthos, K.; Goulas, A.

    2009-01-01

    We present an effort to model the separation-induced transition on a flat plate with a semi-circular leading edge, using a cubic non-linear eddy-viscosity model combined with the laminar kinetic energy. A non-linear model, compared to a linear one, has the advantage to resolve the anisotropic behavior of the Reynolds-stresses in the near-wall region and it provides a more accurate expression for the generation of turbulence in the transport equation of the turbulence kinetic energy. Although in its original formulation the model is not able to accurately predict the separation-induced transition, the inclusion of the laminar kinetic energy increases its accuracy. The adoption of the laminar kinetic energy by the non-linear model is presented in detail, together with some additional modifications required for the adaption of the laminar kinetic energy into the basic concepts of the non-linear eddy-viscosity model. The computational results using the proposed combined model are shown together with the ones obtained using an isotropic linear eddy-viscosity model, which adopts also the laminar kinetic energy concept and in comparison with the existing experimental data.

  3. Non-equilibrium plasma kinetics of reacting CO: an improved state to state approach

    Science.gov (United States)

    Pietanza, L. D.; Colonna, G.; Capitelli, M.

    2017-12-01

    Non-equilibrium plasma kinetics of reacting CO for conditions typically met in microwave discharges have been developed based on the coupling of excited state kinetics and the Boltzmann equation for the electron energy distribution function (EEDF). Particular attention is given to the insertion in the vibrational kinetics of a complete set of electron molecule resonant processes linking the whole vibrational ladder of the CO molecule, as well as to the role of Boudouard reaction, i.e. the process of forming CO2 by two vibrationally excited CO molecules, in shaping the vibrational distribution of CO and promoting reaction channels assisted by vibrational excitation (pure vibrational mechanisms, PVM). PVM mechanisms can become competitive with electron impact dissociation processes (DEM) in the activation of CO. A case study reproducing the conditions of a microwave discharge has been considered following the coupled kinetics also in the post discharge conditions. Results include the evolution of EEDF in discharge and post discharge conditions highlighting the role of superelastic vibrational and electronic collisions in shaping the EEDF. Moreover, PVM rate coefficients and DEM ones are studied as a function of gas temperature, showing a non-Arrhenius behavior, i.e. the rate coefficients increase with decreasing gas temperature as a result of a vibrational-vibrational (V-V) pumping up mechanism able to form plateaux in the vibrational distribution function. The accuracy of the results is discussed in particular in connection to the present knowledge of the activation energy of the Boudouard process.

  4. Reaction kinetics of bond rotations in graphene

    KAUST Repository

    Skowron, Stephen T.; Koroteev, Victor O.; Baldoni, Matteo; Lopatin, Sergei; Zurutuza, Amaia; Chuvilin, Andrey; Besley, Elena

    2016-01-01

    The formation and healing processes of the fundamental topological defect in graphitic materials, the Stone-Wales (SW) defect, are brought into a chemical context by considering the rotation of a carbon-carbon bond as chemical reaction. We investigate the rates and mechanisms of these SW transformations in graphene at the atomic scale using transmission electron microscopy. We develop a statistical atomic kinetics formalism, using direct observations obtained under different conditions to determine key kinetic parameters of the reactions. Based on the obtained statistics we quantify thermally and irradiation induced routes, identifying a thermal process of healing with an activation energy consistent with predicted adatom catalysed mechanisms. We discover exceptionally high rates for irradiation induced SW healing, incompatible with the previously assumed mechanism of direct knock-on damage and indicating the presence of an efficient nonadiabatic coupling healing mechanism involving beam induced electronic excitations of the SW defect.

  5. Reaction kinetics of bond rotations in graphene

    KAUST Repository

    Skowron, Stephen T.

    2016-04-12

    The formation and healing processes of the fundamental topological defect in graphitic materials, the Stone-Wales (SW) defect, are brought into a chemical context by considering the rotation of a carbon-carbon bond as chemical reaction. We investigate the rates and mechanisms of these SW transformations in graphene at the atomic scale using transmission electron microscopy. We develop a statistical atomic kinetics formalism, using direct observations obtained under different conditions to determine key kinetic parameters of the reactions. Based on the obtained statistics we quantify thermally and irradiation induced routes, identifying a thermal process of healing with an activation energy consistent with predicted adatom catalysed mechanisms. We discover exceptionally high rates for irradiation induced SW healing, incompatible with the previously assumed mechanism of direct knock-on damage and indicating the presence of an efficient nonadiabatic coupling healing mechanism involving beam induced electronic excitations of the SW defect.

  6. Development of LMR basic design technology - Development of 3-D multi-group nodal kinetics code for liquid metal reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Hyun [Kyunghee University, Seoul (Korea, Republic of)

    1996-07-01

    A development project of 3-dimensional kinetics code for ALMR has three level of works. In the first level, a multi-group, nodal kinetics code for the HEX-Z geometry has been developed. A code showed very good results for the static analysis as well as for the kinetics problems. At the second level, a core thermal-hydraulic analysis code was developed for the temperature feedback calculation in ALMR transients analysis. This code is coupled with kinetics code. A sodium property table was programmed and tested to the KAERI data and thermal feedback model was developed and coupled in code. Benchmarking of T/H calculation has been performed and showed fairly good results. At the third level of research work, reactivity feedback model for structure thermal expansion is developed and added to the code. At present, basic model was studied. However, code development in now on going. Benchmarking of this model developed can not be done because of lack of data. 31 refs., 17 tabs., 38 figs. (author)

  7. Optimal power and distribution control for weakly-coupled-core reactor

    International Nuclear Information System (INIS)

    Oohori, Takahumi; Kaji, Ikuo

    1977-01-01

    A numerical procedure has been devised for obtaining the optimal power and distribution control for a weakly-coupled-core reactor. Several difficulties were encountered in solving this optimization problem: (1) nonlinearity of the reactor kinetics equations; (2) neutron-leakage interaction between the cores; (3) localized power changes occurring in addition to the total power changes; (4) constraints imposed on the states - e.g. reactivity, reactor period. To obviate these difficulties, use is made of the generalized Newton method to convert the problem into an iterative sequence of linear programming problems, after approximating the differential equations and the integral performance criterion by a set of discrete algebraic equations. In this procedure, a heuristic but effective method is used for deriving an initial approximation, which is then made to converge toward the optimal solution. Delayed-neutron one-group point reactor models embodying transient temperature feed-back to the reactivity are used in obtaining the kinetics equations for the weakly-coupled-core reactor. The criterion adopted for determining the optimality is a norm relevant to the deviations of neutron density from the desired trajectories or else to the time derivatives of the neutron density; uniform control intervals are prescribed. Examples are given of two coupled-core reactors with typical parameters to illustrate the results obtained with this procedure. A comparison is also made between the coupled-core reactor and the one-point reactor. (auth.)

  8. Turbulent kinetic energy balance measurements in the wake of a low-pressure turbine blade

    International Nuclear Information System (INIS)

    Sideridis, A.; Yakinthos, K.; Goulas, A.

    2011-01-01

    The turbulent kinetic energy budget in the wake generated by a high lift, low-pressure two-dimensional blade cascade of the T106 profile was investigated experimentally using hot-wire anemometry. The purpose of this study is to examine the transport mechanism of the turbulent kinetic energy and provide validation data for turbulence modeling. Point measurements were conducted on a high spatial resolution, two-dimensional grid that allowed precise derivative calculations. Positioning of the probe was achieved using a high accuracy traversing mechanism. The turbulent kinetic energy (TKE) convection, production, viscous diffusion and turbulent diffusion were all obtained directly from experimental measurements. Dissipation and pressure diffusion were calculated indirectly using techniques presented and validated by previous investigators. Results for all terms of the turbulent kinetic energy budget are presented and discussed in detail in the present work.

  9. Stability of Einstein static universe in gravity theory with a non-minimal derivative coupling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qihong [Hunan Normal University, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); Zunyi Normal College, School of Physics and Electronic Science, Zunyi (China); Wu, Puxun [Hunan Normal University, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China); Peking University, Center for High Energy Physics, Beijing (China); Yu, Hongwei [Hunan Normal University, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China)

    2018-01-15

    The emergent mechanism provides a possible way to resolve the big-bang singularity problem by assuming that our universe originates from the Einstein static (ES) state. Thus, the existence of a stable ES solution becomes a very crucial prerequisite for the emergent scenario. In this paper, we study the stability of an ES universe in gravity theory with a non-minimal coupling between the kinetic term of a scalar field and the Einstein tensor. We find that the ES solution is stable under both scalar and tensor perturbations when the model parameters satisfy certain conditions, which indicates that the big-bang singularity can be avoided successfully by the emergent mechanism in the non-minimally kinetic coupled gravity. (orig.)

  10. Stability of Einstein static universe in gravity theory with a non-minimal derivative coupling

    Science.gov (United States)

    Huang, Qihong; Wu, Puxun; Yu, Hongwei

    2018-01-01

    The emergent mechanism provides a possible way to resolve the big-bang singularity problem by assuming that our universe originates from the Einstein static (ES) state. Thus, the existence of a stable ES solution becomes a very crucial prerequisite for the emergent scenario. In this paper, we study the stability of an ES universe in gravity theory with a non-minimal coupling between the kinetic term of a scalar field and the Einstein tensor. We find that the ES solution is stable under both scalar and tensor perturbations when the model parameters satisfy certain conditions, which indicates that the big-bang singularity can be avoided successfully by the emergent mechanism in the non-minimally kinetic coupled gravity.

  11. Enzyme kinetics of hevamine, a chitinase from the rubber tree Hevea brasiliensis

    NARCIS (Netherlands)

    Bokma, Evert; Barends, Thomas; Terwisscha van Scheltinga, Anke C.; Dijkstra, Bauke W.; Beintema, Jaap J.

    2000-01-01

    The enzyme kinetics of hevamine, a chitinase from the rubber tree Hevea brasiliensis, were studied in detail with a new enzyme assay. In this assay, the enzyme reaction products were derivatized by reductive coupling to a chromophore, Products mere separated by HPLC and the amount of product was

  12. A Global Modeling Framework for Plasma Kinetics: Development and Applications

    Science.gov (United States)

    Parsey, Guy Morland

    The modern study of plasmas, and applications thereof, has developed synchronously with com- puter capabilities since the mid-1950s. Complexities inherent to these charged-particle, many- body, systems have resulted in the development of multiple simulation methods (particle-in-cell, fluid, global modeling, etc.) in order to both explain observed phenomena and predict outcomes of plasma applications. Recognizing that different algorithms are chosen to best address specific topics of interest, this thesis centers around the development of an open-source global model frame- work for the focused study of non-equilibrium plasma kinetics. After verification and validation of the framework, it was used to study two physical phenomena: plasma-assisted combustion and the recently proposed optically-pumped rare gas metastable laser. Global models permeate chemistry and plasma science, relying on spatial averaging to focus attention on the dynamics of reaction networks. Defined by a set of species continuity and energy conservation equations, the required data and constructed systems are conceptually similar across most applications, providing a light platform for exploratory and result-search parameter scan- ning. Unfortunately, it is common practice for custom code to be developed for each application-- an enormous duplication of effort which negatively affects the quality of the software produced. Presented herein, the Python-based Kinetic Global Modeling framework (KGMf) was designed to support all modeling phases: collection and analysis of reaction data, construction of an exportable system of model ODEs, and a platform for interactive evaluation and post-processing analysis. A symbolic ODE system is constructed for interactive manipulation and generation of a Jacobian, both of which are compiled as operation-optimized C-code. Plasma-assisted combustion and ignition (PAC/PAI) embody the modernization of burning fuel by opening up new avenues of control and optimization

  13. A semi-Lagrangian transport method for kinetic problems with application to dense-to-dilute polydisperse reacting spray flows

    Energy Technology Data Exchange (ETDEWEB)

    Doisneau, François, E-mail: fdoisne@sandia.gov; Arienti, Marco, E-mail: marient@sandia.gov; Oefelein, Joseph C., E-mail: oefelei@sandia.gov

    2017-01-15

    For sprays, as described by a kinetic disperse phase model strongly coupled to the Navier–Stokes equations, the resolution strategy is constrained by accuracy objectives, robustness needs, and the computing architecture. In order to leverage the good properties of the Eulerian formalism, we introduce a deterministic particle-based numerical method to solve transport in physical space, which is simple to adapt to the many types of closures and moment systems. The method is inspired by the semi-Lagrangian schemes, developed for Gas Dynamics. We show how semi-Lagrangian formulations are relevant for a disperse phase far from equilibrium and where the particle–particle coupling barely influences the transport; i.e., when particle pressure is negligible. The particle behavior is indeed close to free streaming. The new method uses the assumption of parcel transport and avoids to compute fluxes and their limiters, which makes it robust. It is a deterministic resolution method so that it does not require efforts on statistical convergence, noise control, or post-processing. All couplings are done among data under the form of Eulerian fields, which allows one to use efficient algorithms and to anticipate the computational load. This makes the method both accurate and efficient in the context of parallel computing. After a complete verification of the new transport method on various academic test cases, we demonstrate the overall strategy's ability to solve a strongly-coupled liquid jet with fine spatial resolution and we apply it to the case of high-fidelity Large Eddy Simulation of a dense spray flow. A fuel spray is simulated after atomization at Diesel engine combustion chamber conditions. The large, parallel, strongly coupled computation proves the efficiency of the method for dense, polydisperse, reacting spray flows.

  14. Kinetic and fluid theory of microwave breakdown in air

    International Nuclear Information System (INIS)

    Roussel-Dupre, R.A.; Murphy, T.; Johnson, A.

    1987-01-01

    We have developed time-dependent fluid and kinetic treatments of electron transport in air in the presence of a propagating microwave pulse. In both cases the HPM pulses are assumed to be of short enough duration so that electron spatial diffusion can be neglected. In addition, we limit our calculations to the non-relativistic regime where effects due to the ponderomotive force are negligible. 6 refs., 4 figs

  15. Estimation of beech pyrolysis kinetic parameters by Shuffled Complex Evolution.

    Science.gov (United States)

    Ding, Yanming; Wang, Changjian; Chaos, Marcos; Chen, Ruiyu; Lu, Shouxiang

    2016-01-01

    The pyrolysis kinetics of a typical biomass energy feedstock, beech, was investigated based on thermogravimetric analysis over a wide heating rate range from 5K/min to 80K/min. A three-component (corresponding to hemicellulose, cellulose and lignin) parallel decomposition reaction scheme was applied to describe the experimental data. The resulting kinetic reaction model was coupled to an evolutionary optimization algorithm (Shuffled Complex Evolution, SCE) to obtain model parameters. To the authors' knowledge, this is the first study in which SCE has been used in the context of thermogravimetry. The kinetic parameters were simultaneously optimized against data for 10, 20 and 60K/min heating rates, providing excellent fits to experimental data. Furthermore, it was shown that the optimized parameters were applicable to heating rates (5 and 80K/min) beyond those used to generate them. Finally, the predicted results based on optimized parameters were contrasted with those based on the literature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Pulsed IR Heating Studies of Single-Molecule DNA Duplex Dissociation Kinetics and Thermodynamics

    Science.gov (United States)

    Holmstrom, Erik D.; Dupuis, Nicholas F.; Nesbitt, David J.

    2014-01-01

    Single-molecule fluorescence spectroscopy is a powerful technique that makes it possible to observe the conformational dynamics associated with biomolecular processes. The addition of precise temperature control to these experiments can yield valuable thermodynamic information about equilibrium and kinetic rate constants. To accomplish this, we have developed a microscopy technique based on infrared laser overtone/combination band absorption to heat small (≈10−11 liter) volumes of water. Detailed experimental characterization of this technique reveals three major advantages over conventional stage heating methods: 1), a larger range of steady-state temperatures (20–100°C); 2), substantially superior spatial (≤20 μm) control; and 3), substantially superior temporal (≈1 ms) control. The flexibility and breadth of this spatial and temporally resolved laser-heating approach is demonstrated in single-molecule fluorescence assays designed to probe the dissociation of a 21 bp DNA duplex. These studies are used to support a kinetic model based on nucleic acid end fraying that describes dissociation for both short (10 bp) DNA duplexes. These measurements have been extended to explore temperature-dependent kinetics for the 21 bp construct, which permit determination of single-molecule activation enthalpies and entropies for DNA duplex dissociation. PMID:24411254

  17. Analyzing Students’ Level of Understanding on Kinetic Theory of Gases

    Science.gov (United States)

    Nurhuda, T.; Rusdiana, D.; Setiawan, W.

    2017-02-01

    The purpose of this research is to analysis students’ level of understanding on gas kinetic theory. The method used is descriptive analytic with 32 students at the 11th grade of one high school in Bandung city as a sample. The sample was taken using random sampling technique. Data collection tool used is an essay test with 23 questions. The instrument was used to identify students’ level of understanding and was judged by four expert judges before it was employed, from 27 questions become to 23 questions, for data collection. Questions used are the conceptual understanding including the competence to explain, extrapolate, translate and interpret. Kinetic theory of gases section that was tested includes ideal gas law, kinetic molecular theory and equipartition of energy. The result shows from 0-4 level of understanding, 19% of the students have partial understanding on the 3th level and 81% of them have partial understanding with a specific misconception on 2th level. For the future research, it is suggested to overcome these conceptual understanding with an Interactive Lecture Demonstrations teaching model and coupled with some teaching materials based on multi-visualization because kinetic theory of gases is a microscopic concept.

  18. Mechanisms of Coupled Vibrational Relaxation and Dissociation in Carbon Dioxide.

    Science.gov (United States)

    Armenise, Iole; Kustova, Elena

    2018-05-21

    A complete vibrational state-specific kinetic scheme describing dissociating carbon dioxide mixtures is proposed. CO 2 symmetric, bending and asymmetric vibrations and dissociation-recombination are strongly coupled through inter-mode vibrational energy transfers. Comparative study of state-resolved rate coefficients is carried out; the effect of different transitions may vary considerably with temperature. A non-equilibrium 1-D boundary layer flow typical to hypersonic planetary entry is studied in the state-to-state approach. To assess the sensitivity of fluid-dynamic variables and heat transfer to various vibrational transitions and chemical reactions, corresponding processes are successively included to the kinetic scheme. It is shown that vibrational-translational (VT) transitions in the symmetric and asymmetric modes do not alter the flow and can be neglected whereas the VT 2 exchange in the bending mode is the main channel of vibrational relaxation. Inter-mode vibrational exchanges affect the flow implicitly, through energy redistribution enhancing VT relaxation; the dominating role belongs to near-resonant transitions between symmetric and bending modes as well as between CO molecules and CO 2 asymmetric mode. Strong coupling between VT 2 relaxation and chemical reactions is emphasized. While vibrational distributions and average vibrational energy show strong dependence on the kinetic scheme, the heat flux is more sensitive to chemical reactions.

  19. Measurements for kinetic parameters estimation in the RA-0 research reactor

    International Nuclear Information System (INIS)

    Gomez, A; Bellino, P A

    2012-01-01

    In the present work, measurements based on the neutron noise technique and the inverse kinetic method were performed to estimate the different kinetic parameters of the reactor in its critical state. By means of the neutron noise technique, we obtained the current calibration factor of the ionization chamber M6 belonging to the power range channels of the reactor instrumentation. The maximum current allowed compatible with the maximum power authorized by the operation license was also obtained. Using the neutron noise technique, the reduced mean reproduction time (Λ*) was estimated. This parameter plays a fundamental role in the deterministic analysis of criticality accidents. Comparison with previous values justified performing new measurements to study systematic trends in the value of Λ*. Using the inverse kinetics method, the reactivity worth of the control rods was estimated, confirming the existence of spatial effects and trends previously observed (author)

  20. Heavy metal evaporation kinetics in thermal waste treatment processes

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Ch; Stucki, S; Schuler, A J [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    To investigate the evaporation kinetics of heavy metals, experiments were performed by conventional thermogravimetry and a new method using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The new method allows online measurements in time intervals that are typically below one minute. The evaporation of Cd, Cu, Pb, and Zn from synthetic mixtures and filter ashes from municipal solid waste incineration (MSWI) was of major interest. (author) 2 figs., 4 refs.

  1. Predictive uncertainty reduction in coupled neutron-kinetics/thermal hydraulics modeling of the BWR-TT2 benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Badea, Aurelian F., E-mail: aurelian.badea@kit.edu [Karlsruhe Institute of Technology, Vincenz-Prießnitz-Str. 3, 76131 Karlsruhe (Germany); Cacuci, Dan G. [Center for Nuclear Science and Energy/Dept. of ME, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States)

    2017-03-15

    Highlights: • BWR Turbine Trip 2 (BWR-TT2) benchmark. • Substantial (up to 50%) reduction of uncertainties in the predicted transient power. • 6660 uncertain model parameters were calibrated. - Abstract: By applying a comprehensive predictive modeling methodology, this work demonstrates a substantial (up to 50%) reduction of uncertainties in the predicted total transient power in the BWR Turbine Trip 2 (BWR-TT2) benchmark while calibrating the numerical simulation of this benchmark, comprising 6090 macroscopic cross sections, and 570 thermal-hydraulics parameters involved in modeling the phase-slip correlation, transient outlet pressure, and total mass flow. The BWR-TT2 benchmark is based on an experiment that was carried out in 1977 in the NPP Peach Bottom 2, involving the closure of the turbine stop valve which caused a pressure wave that propagated with attenuation into the reactor core. The condensation of the steam in the reactor core caused by the pressure increase led to a positive reactivity insertion. The subsequent rise of power was limited by the feedback and the insertion of the control rods. The BWR-TT2 benchmark was modeled with the three-dimensional reactor physics code system DYN3D, by coupling neutron kinetics with two-phase thermal-hydraulics. All 6660 DYN3D model parameters were calibrated by applying a predictive modeling methodology that combines experimental and computational information to produce optimally predicted best-estimate results with reduced predicted uncertainties. Simultaneously, the predictive modeling methodology yields optimally predicted values for the BWR total transient power while reducing significantly the accompanying predicted standard deviations.

  2. Predictive uncertainty reduction in coupled neutron-kinetics/thermal hydraulics modeling of the BWR-TT2 benchmark

    International Nuclear Information System (INIS)

    Badea, Aurelian F.; Cacuci, Dan G.

    2017-01-01

    Highlights: • BWR Turbine Trip 2 (BWR-TT2) benchmark. • Substantial (up to 50%) reduction of uncertainties in the predicted transient power. • 6660 uncertain model parameters were calibrated. - Abstract: By applying a comprehensive predictive modeling methodology, this work demonstrates a substantial (up to 50%) reduction of uncertainties in the predicted total transient power in the BWR Turbine Trip 2 (BWR-TT2) benchmark while calibrating the numerical simulation of this benchmark, comprising 6090 macroscopic cross sections, and 570 thermal-hydraulics parameters involved in modeling the phase-slip correlation, transient outlet pressure, and total mass flow. The BWR-TT2 benchmark is based on an experiment that was carried out in 1977 in the NPP Peach Bottom 2, involving the closure of the turbine stop valve which caused a pressure wave that propagated with attenuation into the reactor core. The condensation of the steam in the reactor core caused by the pressure increase led to a positive reactivity insertion. The subsequent rise of power was limited by the feedback and the insertion of the control rods. The BWR-TT2 benchmark was modeled with the three-dimensional reactor physics code system DYN3D, by coupling neutron kinetics with two-phase thermal-hydraulics. All 6660 DYN3D model parameters were calibrated by applying a predictive modeling methodology that combines experimental and computational information to produce optimally predicted best-estimate results with reduced predicted uncertainties. Simultaneously, the predictive modeling methodology yields optimally predicted values for the BWR total transient power while reducing significantly the accompanying predicted standard deviations.

  3. User Guide for the R5EXEC Coupling Interface in the RELAP5-3D Code

    Energy Technology Data Exchange (ETDEWEB)

    Forsmann, J. Hope [Idaho National Lab. (INL), Idaho Falls, ID (United States); Weaver, Walter L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    This report describes the R5EXEC coupling interface in the RELAP5-3D computer code from the users perspective. The information in the report is intended for users who want to couple RELAP5-3D to other thermal-hydraulic, neutron kinetics, or control system simulation codes.

  4. Kinetics of coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Seery, D.J.; Freihaut, J.D.; Proscia, W.M. (United Technologies Research Center, East Hartford, CT (USA)); Howard, J.B.; Peters, W.; Hsu, J.; Hajaligol, M.; Sarofim, A. (Massachusetts Inst. of Tech., Cambridge, MA (USA)); Jenkins, R.; Mallin, J.; Espindola-Merin, B. (Pennsylvania State Univ., University Park, PA (USA)); Essenhigh, R.; Misra, M.K. (Ohio State Univ., Columbus, OH (USA))

    1989-07-01

    This report contains results of a coordinated, multi-laboratory investigation of coal devolatilization. Data is reported pertaining to the devolatilization for bituminous coals over three orders of magnitude in apparent heating rate (100 to 100,000 + {degree}C/sec), over two orders of magnitude in particle size (20 to 700 microns), final particle temperatures from 400 to 1600{degree}C, heat transfer modes ranging from convection to radiative, ambient pressure ranging from near vacuum to one atmosphere pressure. The heat transfer characteristics of the reactors are reported in detail. It is assumed the experimental results are to form the basis of a devolatilization data base. Empirical rate expressions are developed for each phase of devolatilization which, when coupled to an awareness of the heat transfer rate potential of a particular devolatilization reactor, indicate the kinetics emphasized by a particular system reactor plus coal sample. The analysis indicates the particular phase of devolatilization that will be emphasized by a particular reactor type and, thereby, the kinetic expressions appropriate to that devolatilization system. Engineering rate expressions are developed from the empirical rate expressions in the context of a fundamental understanding of coal devolatilization developed in the course of the investigation. 164 refs., 223 figs., 44 tabs.

  5. Spatial light modulation for mode conditioning

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin

    We demonstrate patented techniques for generating tuneable complex field distributions for controllable coupling to high-order guided modes of micro-structured fibres. The optical Fourier transform of binary phase-only patterns which are encoded on a computer-controlled spatial light modulator......, generates complex field distributions for selective launching of a desired mode. Both the amplitude and the phase of the programmable fields are modulated by straightforward and fast adjustments of simple pre-defined binary phase-only diffractive patterns. Experiments demonstrate tuneable coupling...

  6. Initial state dependence of nonlinear kinetic equations: The classical electron gas

    International Nuclear Information System (INIS)

    Marchetti, M.C.; Cohen, E.G.D.; Dorfman, J.R.; Kirkpatrick, T.R.

    1985-01-01

    The method of nonequilibrium cluster expansion is used to study the decay to equilibrium of a weakly coupled inhomogeneous electron gas prepared in a local equilibrium state at the initial time, t=0. A nonlinear kinetic equation describing the long time behavior of the one-particle distribution function is obtained. For consistency, initial correlations have to be taken into account. The resulting kinetic equation-differs from that obtained when the initial state of the system is assumed to be factorized in a product of one-particle functions. The question of to what extent correlations in the initial state play an essential role in determining the form of the kinetic equation at long times is discussed. To that end, the present calculations are compared wih results obtained before for hard sphere gases and in general with strong short-range forces. A partial answer is proposed and some open questions are indicated

  7. Impact of historical mining assessed in soils by kinetic extraction and lead isotopic ratios

    International Nuclear Information System (INIS)

    Camizuli, E.; Monna, F.; Bermond, A.; Manouchehri, N.; Besançon, S.; Losno, R.; Oort, F. van; Labanowski, J.; Perreira, A.; Chateau, C.; Alibert, P.

    2014-01-01

    The aim of this study is to estimate the long-term behaviour of trace metals, in two soils differently impacted by past mining. Topsoils from two 1 km 2 zones in the forested Morvan massif (France) were sampled to assess the spatial distribution of Cd, Cu, Pb and Zn. The first zone had been contaminated by historical mining. As expected, it exhibits higher trace-metal levels and greater spatial heterogeneity than the second non-contaminated zone, supposed to represent the local background. One soil profile from each zone was investigated in detail to estimate metal behaviour, and hence, bioavailability. Kinetic extractions were performed using EDTA on three samples: the A horizon from both soil profiles and the B horizon from the contaminated soil. For all three samples, kinetic extractions can be modelled by two first-order reactions. Similar kinetic behaviour was observed for all metals, but more metal was extracted from the contaminated A horizon than from the B horizon. More surprising is the general predominance of the residual fraction over the “labile” and “less labile” pools. Past anthropogenic inputs may have percolated over time through the soil profiles because of acidic pH conditions. Stable organo-metallic complexes may also have been formed over time, reducing metal availability. These processes are not mutually exclusive. After kinetic extraction, the lead isotopic compositions of the samples exhibited different signatures, related to contamination history and intrinsic soil parameters. However, no variation in lead signature was observed during the extraction experiment, demonstrating that the “labile” and “less labile” lead pools do not differ in terms of origin. Even if trace metals resulting from past mining and metallurgy persist in soils long after these activities have ceased, kinetic extractions suggest that metals, at least for these particular forest soils, do not represent a threat for biota. - Highlights: • Trace

  8. Impact of historical mining assessed in soils by kinetic extraction and lead isotopic ratios

    Energy Technology Data Exchange (ETDEWEB)

    Camizuli, E., E-mail: estelle.camizuli@u-bourgogne.fr [UMR 6298, ArTeHiS, Université de Bourgogne — CNRS — Culture, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France); Monna, F. [UMR 6298, ArTeHiS, Université de Bourgogne — CNRS — Culture, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France); Bermond, A.; Manouchehri, N.; Besançon, S. [Institut des sciences et industries du vivant et de l' environnement (AgroParisTech), Laboratoire de Chimie Analytique, 16, rue Claude Bernard, 75231 Paris Cedex 05 (France); Losno, R. [UMR 7583, LISA, Universités Paris 7-Paris 12 — CNRS, 61 av. du Gal de Gaulle, 94010 Créteil Cedex (France); Oort, F. van [UR 251, Pessac, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, RD 10, 78026 Versailles Cedex (France); Labanowski, J. [UMR 7285, IC2MP, Université de Poitiers — CNRS, 4, rue Michel Brunet, 86022 Poitiers (France); Perreira, A. [UMR 6298, ArTeHiS, Université de Bourgogne — CNRS — Culture, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France); Chateau, C. [UFR SVTE, Université de Bourgogne, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France); Alibert, P. [UMR 6282, Biogeosciences, Université de Bourgogne — CNRS, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France)

    2014-02-01

    The aim of this study is to estimate the long-term behaviour of trace metals, in two soils differently impacted by past mining. Topsoils from two 1 km{sup 2} zones in the forested Morvan massif (France) were sampled to assess the spatial distribution of Cd, Cu, Pb and Zn. The first zone had been contaminated by historical mining. As expected, it exhibits higher trace-metal levels and greater spatial heterogeneity than the second non-contaminated zone, supposed to represent the local background. One soil profile from each zone was investigated in detail to estimate metal behaviour, and hence, bioavailability. Kinetic extractions were performed using EDTA on three samples: the A horizon from both soil profiles and the B horizon from the contaminated soil. For all three samples, kinetic extractions can be modelled by two first-order reactions. Similar kinetic behaviour was observed for all metals, but more metal was extracted from the contaminated A horizon than from the B horizon. More surprising is the general predominance of the residual fraction over the “labile” and “less labile” pools. Past anthropogenic inputs may have percolated over time through the soil profiles because of acidic pH conditions. Stable organo-metallic complexes may also have been formed over time, reducing metal availability. These processes are not mutually exclusive. After kinetic extraction, the lead isotopic compositions of the samples exhibited different signatures, related to contamination history and intrinsic soil parameters. However, no variation in lead signature was observed during the extraction experiment, demonstrating that the “labile” and “less labile” lead pools do not differ in terms of origin. Even if trace metals resulting from past mining and metallurgy persist in soils long after these activities have ceased, kinetic extractions suggest that metals, at least for these particular forest soils, do not represent a threat for biota. - Highlights: • Trace

  9. Kinetic Profiles in NSTX Plasmas

    International Nuclear Information System (INIS)

    Bell, R.E.; LeBlanc, B.P.; Bourdelle, C.; Ernst, D.R.; Fredrickson, E.D.; Gates, D.A.; Hosea, J.C.; Johnson, D.W.; Kaye, S.M.; Maingi, R.; Medley, S.; Menard, J.E.; Mueller, D.; Ono, M.; Paoletti, F.; Peng, M.; Sabbagh, S.A.; Stutman, D.; Swain, D.W.; Synakowski, E.J.; Wilson, J.R.

    2001-01-01

    The National Spherical Torus Experiment (NSTX) is a low aspect ratio (R/a approximately 1.3) device with auxiliary heating from neutral-beam injection (NBI) and high-harmonic fast-wave heating (HHFW). Typical NSTX parameters are R(subscript ''0'') = 85 cm, a = 67 cm, I(subscript ''p'') = 0.7-1.4 MA, B(subscript ''phi'') = 0.25-0.45 T. Three co-directed deuterium neutral-beam sources have injected P(subscript ''NB'') less than or equal to 4.7 MW. HHFW plasmas typically have delivered P(subscript ''RF'') less than or equal to 3 MW. Important to the understanding of NSTX confinement are the new kinetic profile diagnostics: a multi-pulse Thomson scattering system (MPTS) and a charge-exchange recombination spectroscopy (CHERS) system. The MPTS diagnostic currently measures electron density and temperature profiles at 30 Hz at ten spatial locations. The CHERS system has recently become available to measure carbon ion temperature and toroidal flow at 17 radial positions spanning the outer half of the minor radius with 20 msec time resolution during NBI. Experiments conducted during the last year have produced a wide range of kinetic profiles in NSTX. Some interesting examples are presented below

  10. Thermal behavior and transformation kinetics of titanium dioxide nanocrystallites prepared by coupling agents

    International Nuclear Information System (INIS)

    Chen, W.C.; Wang, Y.T.; Shih, C.J.

    2010-01-01

    Coupling agents have been widely used to retard the sintering of silver paste and minimize co-firing defects due to densification mismatch between silver and dielectrics. The thermal-decomposition and crystallization behavior of the coupling agent is a subject of great concern. To elucidate what is responsible for the oxidation, Ti organometallic compounds were calcined at different temperatures (350, 400, 500, 600 o C) for 2 h and the crystallization behavior was determined by X-ray diffraction (XRD). The activation energy for crystallization of coupling agents was studied by using isothermal methods. According to the quantitative XRD method, the values calculated by the Johnson-Mehi-Avrami equation are 134.9 kJ mol -1 . The growth morphology parameters are 1.061, 0.915, 1.016 respectively. Combining the results of DTA, XRD and TEM, it is found that formation of nanocrystallized titania accompanies the combustion of organometallic compounds.

  11. Thermal behavior and transformation kinetics of titanium dioxide nanocrystallites prepared by coupling agents

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.C. [School of Dentistry, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Wang, Y.T. [Department of Medical Research and Education, Chen Hsin General Hospital, 45 Cheng-Hsin Street, Pai-Tou, Taipei 11220, Taiwan (China); Shih, C.J., E-mail: cjshih@kmu.edu.t [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100 Shi-Chuan1st Road, Kaohsiung 80708, Taiwan (China)

    2010-02-04

    Coupling agents have been widely used to retard the sintering of silver paste and minimize co-firing defects due to densification mismatch between silver and dielectrics. The thermal-decomposition and crystallization behavior of the coupling agent is a subject of great concern. To elucidate what is responsible for the oxidation, Ti organometallic compounds were calcined at different temperatures (350, 400, 500, 600 {sup o}C) for 2 h and the crystallization behavior was determined by X-ray diffraction (XRD). The activation energy for crystallization of coupling agents was studied by using isothermal methods. According to the quantitative XRD method, the values calculated by the Johnson-Mehi-Avrami equation are 134.9 kJ mol{sup -1}. The growth morphology parameters are 1.061, 0.915, 1.016 respectively. Combining the results of DTA, XRD and TEM, it is found that formation of nanocrystallized titania accompanies the combustion of organometallic compounds.

  12. Flagging and correcting non-spectral matrix interferences with spatial emission profiles and gradient dilution in inductively coupled plasma-atomic emission spectrometry

    International Nuclear Information System (INIS)

    Cheung, Yan; Schwartz, Andrew J.; Chan, George C.-Y.; Hieftje, Gary M.

    2015-01-01

    Matrix interference remains one of the most daunting challenges commonly encountered in inductively coupled plasma-atomic emission spectrometry (ICP-AES). In the present study, a method is described that enables identification and correction of matrix interferences in axial-viewed ICP-AES through a combination of spatial mapping and on-line gradient dilution. Cross-sectional emission maps of the plasma are used to indicate the presence of non-spectral (plasma-related and sample-introduction-related) matrix interferences. In particular, apparent concentrations of an analyte species determined at various radial locations in the plasma differ in the presence of a matrix interference, which allows the interference to be flagged. To correct for the interference, progressive, on-line dilution of the sample, performed by a gradient high-performance liquid-chromatograph pump, is utilized. The spatially dependent intensities of analyte emission are monitored at different levels of sample dilution. As the dilution proceeds, the matrix-induced signal variation is reduced. At a dilution where the determined concentrations become independent of location in the plasma, the matrix interference is minimized. - Highlights: • Non-spectral matrix interference in ICP-AES is flagged and minimized. • Emission from different locations of the plasma are collected simultaneously. • Spatially dependent determined concentrations indicate the presence of interference. • Gradient dilution is performed on both calibration standards and sample. • Optimal dilution factor to minimize interference is found as dilution increases

  13. Flagging and correcting non-spectral matrix interferences with spatial emission profiles and gradient dilution in inductively coupled plasma-atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Yan; Schwartz, Andrew J.; Chan, George C.-Y.; Hieftje, Gary M., E-mail: hieftje@indiana.edu

    2015-08-01

    Matrix interference remains one of the most daunting challenges commonly encountered in inductively coupled plasma-atomic emission spectrometry (ICP-AES). In the present study, a method is described that enables identification and correction of matrix interferences in axial-viewed ICP-AES through a combination of spatial mapping and on-line gradient dilution. Cross-sectional emission maps of the plasma are used to indicate the presence of non-spectral (plasma-related and sample-introduction-related) matrix interferences. In particular, apparent concentrations of an analyte species determined at various radial locations in the plasma differ in the presence of a matrix interference, which allows the interference to be flagged. To correct for the interference, progressive, on-line dilution of the sample, performed by a gradient high-performance liquid-chromatograph pump, is utilized. The spatially dependent intensities of analyte emission are monitored at different levels of sample dilution. As the dilution proceeds, the matrix-induced signal variation is reduced. At a dilution where the determined concentrations become independent of location in the plasma, the matrix interference is minimized. - Highlights: • Non-spectral matrix interference in ICP-AES is flagged and minimized. • Emission from different locations of the plasma are collected simultaneously. • Spatially dependent determined concentrations indicate the presence of interference. • Gradient dilution is performed on both calibration standards and sample. • Optimal dilution factor to minimize interference is found as dilution increases.

  14. Three-dimensional space-time kinetic analysis with CORETRAN and RETRAN-3D of the NEACRP PWR rod ejection benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Ferroukhi, H.; Coddington, P

    2001-03-01

    One of the activities within the STARS project, in the Laboratory for Reactor Physics and System Behaviour; is the development of a coupling methodology between the three-dimensional, space-time kinetics codes CORETRAN and RETRAN-3D in order to perform core and plant transient analyses of the Swiss LWRs. The CORETRAN code is a 3-D full-core simulator, intended to be used for core-related analyses, while RETRAN-3D is the three-dimensional kinetics version of the plant system code RETRAN, and can therefore be used for best-estimate analyses of a wide range of transients in both PWRs and BWRs. Because the neutronics solver in both codes is based on the same kinetics model, one important advantage is that the codes can be coupled so that the initial conditions for a RETRAN-3D plant analysis are generated by a detailed-core, steady-state calculation using CORETRAN. As a first step towards using CORETRAN and RETRAN-3D for kinetic applications, the NEACRP PWR rod ejection benchmark has been analyzed with both codes, and is presented in this paper. The first objective is to verify the consistency between the static and kinetic solutions of the two codes, and so gain confidence in the coupling methodology. The second objective is to assess the CORETRAN and RETRAN-3D solutions for a well-defined RIA transient, comparing with previously published results. In parallel, several sensitivity studies have been performed in an attempt to identify models and calculational options important for a correct analysis of an RIA event in a LWR using these two codes. (author)

  15. Performance of neutron kinetics models for ADS transient analyses

    International Nuclear Information System (INIS)

    Rineiski, A.; Maschek, W.; Rimpault, G.

    2002-01-01

    Within the framework of the SIMMER code development, neutron kinetics models for simulating transients and hypothetical accidents in advanced reactor systems, in particular in Accelerator Driven Systems (ADSs), have been developed at FZK/IKET in cooperation with CE Cadarache. SIMMER is a fluid-dynamics/thermal-hydraulics code, coupled with a structure model and a space-, time- and energy-dependent neutronics module for analyzing transients and accidents. The advanced kinetics models have also been implemented into KIN3D, a module of the VARIANT/TGV code (stand-alone neutron kinetics) for broadening application and for testing and benchmarking. In the paper, a short review of the SIMMER and KIN3D neutron kinetics models is given. Some typical transients related to ADS perturbations are analyzed. The general models of SIMMER and KIN3D are compared with more simple techniques developed in the context of this work to get a better understanding of the specifics of transients in subcritical systems and to estimate the performance of different kinetics options. These comparisons may also help in elaborating new kinetics models and extending existing computation tools for ADS transient analyses. The traditional point-kinetics model may give rather inaccurate transient reaction rate distributions in an ADS even if the material configuration does not change significantly. This inaccuracy is not related to the problem of choosing a 'right' weighting function: the point-kinetics model with any weighting function cannot take into account pronounced flux shape variations related to possible significant changes in the criticality level or to fast beam trips. To improve the accuracy of the point-kinetics option for slow transients, we have introduced a correction factor technique. The related analyses give a better understanding of 'long-timescale' kinetics phenomena in the subcritical domain and help to evaluate the performance of the quasi-static scheme in a particular case. One

  16. CHEMSIMUL: A simulator for chemical kinetics

    International Nuclear Information System (INIS)

    Kirkegaard, P.; Bjergbakke, E.

    1999-01-01

    CHEMSIMUL is a computer program system for numerical simulation of chemical reaction systems. It can be used for modeling complex kinetics in many contexts, in particular radiolytic processes. It contains a translator module and a module for solving the resulting coupled nonlinear ordinary differential equations. An overview of the program system is given, and its use is illustrated by examples. A number of special features are described, in particular a method for verifying the mass balance. Moreover, the document contains a complete User's Guide for running CHEMSIMUL on a PC or another computer. Finally, the mathematical implementation is discussed. (au)

  17. Kinetic and Thermodynamic Analysis of Acetyl-CoA Activation of Staphylococcus aureus Pyruvate Carboxylase.

    Science.gov (United States)

    Westerhold, Lauren E; Bridges, Lance C; Shaikh, Saame Raza; Zeczycki, Tonya N

    2017-07-11

    Allosteric regulation of pyruvate carboxylase (PC) activity is pivotal to maintaining metabolic homeostasis. In contrast, dysregulated PC activity contributes to the pathogenesis of numerous diseases, rendering PC a possible target for allosteric therapeutic development. Recent research efforts have focused on demarcating the role of acetyl-CoA, one of the most potent activators of PC, in coordinating catalytic events within the multifunctional enzyme. Herein, we report a kinetic and thermodynamic analysis of acetyl-CoA activation of the Staphylococcus aureus PC (SaPC)-catalyzed carboxylation of pyruvate to identify novel means by which acetyl-CoA synchronizes catalytic events within the PC tetramer. Kinetic and linked-function analysis, or thermodynamic linkage analysis, indicates that the substrates of the biotin carboxylase and carboxyl transferase domain are energetically coupled in the presence of acetyl-CoA. In contrast, both kinetic and energetic coupling between the two domains is lost in the absence of acetyl-CoA, suggesting a functional role for acetyl-CoA in facilitating the long-range transmission of substrate-induced conformational changes within the PC tetramer. Interestingly, thermodynamic activation parameters for the SaPC-catalyzed carboxylation of pyruvate are largely independent of acetyl-CoA. Our results also reveal the possibility that global conformational changes give rise to observed species-specific thermodynamic activation parameters. Taken together, our kinetic and thermodynamic results provide a possible allosteric mechanism by which acetyl-CoA coordinates catalysis within the PC tetramer.

  18. Analysis of the coupling coordination between transportation infrastructure investment and economic development in Hubei province

    Directory of Open Access Journals (Sweden)

    Wenxia Zhai

    2017-06-01

    Full Text Available The relationship between transportation infrastructure investment and regional economic growth has been the focus of domestic and foreign academic research. Using the models of coupling degree and coupling coordination degree, this paper calculated the coupling degree and coupling coordination degree between the comprehensive level of transportation infrastructure investment and economic development in Hubei province and its 17 cities, and analyzed its temporal and spatial characteristics. The result showed that, from 2001 to 2013, the coupling and coupling coordination between transportation infrastructure investment and economic development in Hubei province were on a steady rise in the time sequence characteristics. It experienced the upgrade from the uncoordinated – nearly uncoordinated – barely coordinated – intermediately coordinated stages. In the year of 2013, the coupling and coupling coordination of transportation infrastructure investment and economic development in the 17 prefecture-level cities of Hubei Province showed a very uneven spatial difference. Good coordination, primary coordination, barely coordinate, and barely in-coordination are distributed in the province. The average coordination degree of the 17 prefecture-level cities in Hubei is relatively low, and there is a negative tend to expand the difference. This study has confirmed the relationship between transportation infrastructure investment and the economic development to be in an interactive coupling and coordination, but in different regions and different stages, the degree of coordination has obvious spatial and temporal differences.

  19. Measurement of nonlinear mode coupling of tearing fluctuations

    International Nuclear Information System (INIS)

    Assadi, S.; Prager, S.C.; Sidikman, K.L.

    1992-03-01

    Three-wave nonlinear coupling of spatial Fourier modes is measured in the MST reversed field pinch by applying bi-spectral analysis to magnetic fluctuations measured at the plasma edge at 64 toroidal locations and 16 poloidal locations, permitting observation of coupling over 8 polodial modes and 32 toroidal modes. Comparison to bi-spectra predicted by MHD computation indicates reasonably good agreement. However, during the crash phase of the sawtooth oscillation the nonlinear coupling is strongly enhanced, concomittant with a broadened (presumably nonlinearly generated) k-spectrum

  20. A bioenergetics-kinetics coupled modeling study on subsurface microbial metabolism in a field biostimulation experiment

    Science.gov (United States)

    Jin, Q.; Zheng, Z.; Zhu, C.

    2006-12-01

    Microorganisms in nature conserve energy by catalyzing various geochemical reactions. To build a quantitative relationship between geochemical conditions and metabolic rates, we propose a bioenergetics-kinetics coupled modeling approach. This approach describes microbial community as a metabolic network, i.e., fermenting microbes degrade organic substrates while aerobic respirer, nitrate reducer, metal reducer, sulfate reducer, and methanogen consume the fermentation products. It quantifies the control of substrate availability and biological energy conservation on the metabolic rates using thermodynamically consistent rate laws. We applied this simulation approach to study the progress of microbial metabolism during a field biostimulation experiment conducted in Oak Ridge, Tennessee. In the experiment, ethanol was injected into a monitoring well and groundwater was sampled to monitor changes in the chemistry. With time, concentrations of ethanol and SO42- decreased while those of NH4+, Fe2+, and Mn2+ increased. The simulation results fitted well to the observation, indicating simultaneous ethanol degradation and terminal electron accepting processes. The rates of aerobic respiration and denitrification were mainly controlled by substrate concentrations while those of ethanol degradation, sulfate reduction, and methanogenesis were controlled dominantly by the energy availability. The simulation results suggested two different microbial growth statuses in the subsurface. For the functional groups with significant growth, variations with time in substrate concentrations demonstrated a typical S curve. For the groups without significant growth, initial decreases in substrate concentrations were linear with time. Injecting substrates followed by monitoring environmental chemistry therefore provides a convenient approach to characterize microbial growth in the subsurface where methods for direct observation are currently unavailable. This research was funded by the

  1. Kinetic attractor phase diagrams of active nematic suspensions: the dilute regime.

    Science.gov (United States)

    Forest, M Gregory; Wang, Qi; Zhou, Ruhai

    2015-08-28

    Large-scale simulations by the authors of the kinetic-hydrodynamic equations for active polar nematics revealed a variety of spatio-temporal attractors, including steady and unsteady, banded (1d) and cellular (2d) spatial patterns. These particle scale activation-induced attractors arise at dilute nanorod volume fractions where the passive equilibrium phase is isotropic, whereas all previous model simulations have focused on the semi-dilute, nematic equilibrium regime and mostly on low-moment orientation tensor and polarity vector models. Here we extend our previous results to complete attractor phase diagrams for active nematics, with and without an explicit polar potential, to map out novel spatial and dynamic transitions, and to identify some new attractors, over the parameter space of dilute nanorod volume fraction and nanorod activation strength. The particle-scale activation parameter corresponds experimentally to a tunable force dipole strength (so-called pushers with propulsion from the rod tail) generated by active rod macromolecules, e.g., catalysis with the solvent phase, ATP-induced propulsion, or light-activated propulsion. The simulations allow 2d spatial variations in all flow and orientational variables and full spherical orientational degrees of freedom; the attractors correspond to numerical integration of a coupled system of 125 nonlinear PDEs in 2d plus time. The phase diagrams with and without the polar interaction potential are remarkably similar, implying that polar interactions among the rodlike particles are not essential to long-range spatial and temporal correlations in flow, polarity, and nematic order. As a general rule, above a threshold, low volume fractions induce 1d banded patterns, whereas higher yet still dilute volume fractions yield 2d patterns. Again as a general rule, varying activation strength at fixed volume fraction induces novel dynamic transitions. First, stationary patterns saturate the instability of the isotropic

  2. Medium properties and total energy coupling in underground explosions

    International Nuclear Information System (INIS)

    Kurtz, S.R.

    1975-01-01

    A phenomenological model is presented that allows the direct calculation of the effects of variations in medium properties on the total energy coupling between the medium and an underground explosion. The model presented is based upon the assumption that the shock wave generated in the medium can be described as a spherical blast wave at early times. The total energy coupled to the medium is then simply the sum of the kinetic and internal energies of this blast wave. Results obtained by use of this model indicate that the energy coupling is more strongly affected by the medium's porosity than by its water content. These results agree well with those obtained by summing the energy deposited by the blast wave as a function of range

  3. Electron magnetic reconnection without ion coupling in Earth's turbulent magnetosheath

    Science.gov (United States)

    Phan, T. D.; Eastwood, J. P.; Shay, M. A.; Drake, J. F.; Sonnerup, B. U. Ö.; Fujimoto, M.; Cassak, P. A.; Øieroset, M.; Burch, J. L.; Torbert, R. B.; Rager, A. C.; Dorelli, J. C.; Gershman, D. J.; Pollock, C.; Pyakurel, P. S.; Haggerty, C. C.; Khotyaintsev, Y.; Lavraud, B.; Saito, Y.; Oka, M.; Ergun, R. E.; Retino, A.; Le Contel, O.; Argall, M. R.; Giles, B. L.; Moore, T. E.; Wilder, F. D.; Strangeway, R. J.; Russell, C. T.; Lindqvist, P. A.; Magnes, W.

    2018-05-01

    Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region6. In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.

  4. Research needs for coupling geochemical and flow models for nuclear waste isolation

    International Nuclear Information System (INIS)

    Pearson, F.J. Jr.

    1985-01-01

    An overview of coupling geochemical and flow models for nuclear waste disposal is presented and research needs are discussed. Topics considered include, chemical effects on flow, fluid and rock properties, pressure effects, water-rock equilibria, and reaction kinetics. 25 references

  5. Gravity- and non-gravity-mediated couplings in multiple-field inflation

    International Nuclear Information System (INIS)

    Bernardeau, Francis

    2010-01-01

    Mechanisms for the generation of primordial non-Gaussian metric fluctuations in the context of multiple-field inflation are reviewed. As long as kinetic terms remain canonical, it appears that nonlinear couplings inducing non-Gaussianities can be split into two types. The extension of the one-field results to multiple degrees of freedom leads to gravity-mediated couplings that are ubiquitous but generally modest. Multiple-field inflation offers however the possibility of generating non-gravity-mediated coupling in isocurvature directions that can eventually induce large non-Gaussianities in the metric fluctuations. The robustness of the predictions of such models is eventually examined in view of a case study derived from a high-energy physics construction.

  6. Analysis of the Temporal Response of Coupled Asymmetrical Zero-Power Subcritical Bare Metal Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Klain, Kimberly L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-21

    The behavior of symmetrical coupled-core systems has been extensively studied, yet there is a dearth of research on asymmetrical systems due to the increased complexity of the analysis of such systems. In this research, the multipoint kinetics method is applied to asymmetrical zeropower, subcritical, bare metal reactor systems. Existing research on asymmetrical reactor systems assumes symmetry in the neutronic coupling; however, it will be shown that this cannot always be assumed. Deep subcriticality adds another layer of complexity and requires modification of the multipoint kinetics equations to account for the effect of the external neutron source. A modified set of multipoint kinetics equations is derived with this in mind. Subsequently, the Rossi-alpha equations are derived for a two-region asymmetrical reactor system. The predictive capabilities of the radiation transport code MCNP6 for neutron noise experiments are shown in a comparison to the results of a series of Rossi-alpha measurements performed by J. Mihalczo utilizing a coupled set of symmetrical bare highly-enriched uranium (HEU) cylinders. The ptrac option within MCNP6 can generate time-tagged counts in a cell (list-mode data). The list-mode data can then be processed similarly to measured data to obtain values for system parameters such as the dual prompt neutron decay constants observable in a coupled system. The results from the ptrac simulations agree well with the historical measured values. A series of case studies are conducted to study the effects of geometrical asymmetry in the coupling between two bare metal HEU cylinders. While the coupling behavior of symmetrical systems has been reported on extensively, that of asymmetrical systems remains sparse. In particular, it appears that there has been no previous research in obtaining the coupling time constants for asymmetrically-coupled systems. The difficulty in observing such systems is due in part to the inability to determine the

  7. Code Coupling for Multi-Dimensional Core Transient Analysis

    International Nuclear Information System (INIS)

    Park, Jin-Woo; Park, Guen-Tae; Park, Min-Ho; Ryu, Seok-Hee; Um, Kil-Sup; Lee Jae-Il

    2015-01-01

    After the CEA ejection, the nuclear power of the reactor dramatically increases in an exponential behavior until the Doppler effect becomes important and turns the reactivity balance and power down to lower levels. Although this happens in a very short period of time, only few seconds, the energy generated can be very significant and cause fuel failures. The current safety analysis methodology which is based on overly conservative assumptions with the point kinetics model results in quite adverse consequences. Thus, KEPCO Nuclear Fuel(KNF) is developing the multi-dimensional safety analysis methodology to mitigate the consequences of the single CEA ejection accident. For this purpose, three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST, which have transient calculation performance, were coupled using message passing interface (MPI). This paper presents the methodology used for code coupling and the preliminary simulation results with the coupled code system (CHASER). Multi-dimensional core transient analysis code system, CHASER, has been developed and it was applied to simulate a single CEA ejection accident. CHASER gave a good prediction of multi-dimensional core transient behaviors during transient. In the near future, the multi-dimension CEA ejection analysis methodology using CHASER is planning to be developed. CHASER is expected to be a useful tool to gain safety margin for reactivity initiated accidents (RIAs), such as a single CEA ejection accident

  8. Code Coupling for Multi-Dimensional Core Transient Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo; Park, Guen-Tae; Park, Min-Ho; Ryu, Seok-Hee; Um, Kil-Sup; Lee Jae-Il [KEPCO NF, Daejeon (Korea, Republic of)

    2015-05-15

    After the CEA ejection, the nuclear power of the reactor dramatically increases in an exponential behavior until the Doppler effect becomes important and turns the reactivity balance and power down to lower levels. Although this happens in a very short period of time, only few seconds, the energy generated can be very significant and cause fuel failures. The current safety analysis methodology which is based on overly conservative assumptions with the point kinetics model results in quite adverse consequences. Thus, KEPCO Nuclear Fuel(KNF) is developing the multi-dimensional safety analysis methodology to mitigate the consequences of the single CEA ejection accident. For this purpose, three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST, which have transient calculation performance, were coupled using message passing interface (MPI). This paper presents the methodology used for code coupling and the preliminary simulation results with the coupled code system (CHASER). Multi-dimensional core transient analysis code system, CHASER, has been developed and it was applied to simulate a single CEA ejection accident. CHASER gave a good prediction of multi-dimensional core transient behaviors during transient. In the near future, the multi-dimension CEA ejection analysis methodology using CHASER is planning to be developed. CHASER is expected to be a useful tool to gain safety margin for reactivity initiated accidents (RIAs), such as a single CEA ejection accident.

  9. Isotopic studies on oxidative methane coupling over samarium oxide

    International Nuclear Information System (INIS)

    Otsuka, Kiyoshi; Inaida, Masakatsu; Wada, Yuji; Komatsu, Takayuki; Morikawa, Akira

    1989-01-01

    The evident kinetic isotope effect was observed for the formations of ethylene and ethane through the oxidative coupling of methane on Sm 2 O 3 , when CH 4 and CD 4 were used as the reactants. Ethanes formed in the reaction of a mixture of CH 4 , CD 4 , and O 2 were C 2 H 6 , C 2 H 3 D 3 , and C 2 D 6 as major products. These results indicate that the rate-determining step of the reaction is abstraction of hydrogen from methane and that ethane is formed through the coupling of methyl intermediate. (author)

  10. Stochastic population dynamics in spatially extended predator-prey systems

    Science.gov (United States)

    Dobramysl, Ulrich; Mobilia, Mauro; Pleimling, Michel; Täuber, Uwe C.

    2018-02-01

    Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in biological systems. Numerical and analytic tools from non-equilibrium statistical physics capture the stochastic kinetics of these complex interacting many-particle systems beyond rate equation approximations. Including spatial structure and stochastic noise in models for predator-prey competition invalidates the neutral Lotka-Volterra population cycles. Stochastic models yield long-lived erratic oscillations stemming from a resonant amplification mechanism. Spatially extended predator-prey systems display noise-stabilized activity fronts that generate persistent correlations. Fluctuation-induced renormalizations of the oscillation parameters can be analyzed perturbatively via a Doi-Peliti field theory mapping of the master equation; related tools allow detailed characterization of extinction pathways. The critical steady-state and non-equilibrium relaxation dynamics at the predator extinction threshold are governed by the directed percolation universality class. Spatial predation rate variability results in more localized clusters, enhancing both competing species’ population densities. Affixing variable interaction rates to individual particles and allowing for trait inheritance subject to mutations induces fast evolutionary dynamics for the rate distributions. Stochastic spatial variants of three-species competition with ‘rock-paper-scissors’ interactions metaphorically describe cyclic dominance. These models illustrate intimate connections between population dynamics and evolutionary game theory, underscore the role of fluctuations to drive populations toward extinction, and demonstrate how space can support species diversity. Two-dimensional cyclic three-species May-Leonard models are characterized by the emergence of spiraling patterns whose properties are elucidated by a mapping onto a complex

  11. Ionospheric feedback effects on the quasi-stationary coupling between LLBL and postnoon/evening discrete auroral arcs

    Directory of Open Access Journals (Sweden)

    M. M. Echim

    2008-05-01

    Full Text Available We discuss a model for the quasi-stationary coupling between magnetospheric sheared flows in the dusk sector and discrete auroral arcs, previously analyzed for the case of a uniform height-integrated Pedersen conductivity (ΣP. Here we introduce an ionospheric feedback as the variation of ΣP with the energy flux of precipitating magnetospheric electrons (εem. One key-component of the model is the kinetic description of the interface between the duskward LLBL and the plasma sheet that gives the profile of Φm, the magnetospheric electrostatic potential. The velocity shear in the dusk LLBL plays the role of a generator for the auroral circuit closing through Pedersen currents in the auroral ionosphere. The field-aligned current density, j||, and the energy flux of precipitating electrons are given by analytic functions of the field-aligned potential drop, ΔΦ, derived from standard kinetic models of the adiabatic motion of particles. The ionospheric electrostatic potential, Φi (and implicitely ΔΦ is determined from the current continuity equation in the ionosphere. We obtain values of ΔΦ of the order of kilovolt and of j|| of the order of tens of μA/m2 in thin regions of the order of several kilometers at 200 km altitude. The spatial scale is significantly smaller and the peak values of ΔΦ, j|| and εem are higher than in the case of a uniform ΣP. Effects on the postnoon/evening auroral arc electrodynamics due to variations of dusk LLBL and solar wind dynamic and kinetic pressure are discussed. In thin regions (of the order of kilometer embedding the maximum of ΔΦ we evidence a non-linear regime of the current-voltage relationship. The model predicts also that visible arcs form when the velocity shear in LLBL is above a threshold value depending on the generator and ionospheric plasma properties. Brighter arcs are obtained for increased velocity shear in the LLBL; their spatial scale remains virtually unmodified. The field

  12. Flocculation kinetics of kaolinite : role of aqueous phase species

    Energy Technology Data Exchange (ETDEWEB)

    House, P.; Wang, C.; Dhadli, N. [Shell Canada Ltd., Calgary, AB (Canada)

    2010-07-01

    Flocculation kinetics were used to study the rate-based processes that lead to aggregate growth and breakage of kaolinite in oil sands tailings. The role of aqueous phase species on aggregate growth, breakage and flocculant de-activation was studied. Collision efficiency and deactivation parameters were presented. The study showed that collisions can be efficient when the adsorption of the polymer is thermodynamically favorable. Up to 94 percent of adsorption takes place at the kaolinite edge. Studies have shown that hydrogen bonding sites on the kaolinite disappear with increases in pH values. The impact of molecular level interactions on flocculation kinetics were assessed in order to determine collision efficiencies and aggregate breakage rates. A focused beam reflectance model was used to monitor flocculation kinetics in situ. The period over which reflectance was observed was coupled with the laser velocity to determine the chord length of the particle. The kinetics of flocculation were observed for a 10 minute period. The effects of pH, calcium additions, and EDTA chelating agent additions were investigated. The study showed that calcium additions accelerate the rate of flocculant growth dramatically, and provide a much higher collision efficiency. Flocculants formed in the presence of calcium were weaker. The presence of salts promoted polymer adsorption by non-specific Van der Waals forces. tabs., figs.

  13. Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil.

    Science.gov (United States)

    Mao, Xinyu; Han, Fengxiang X; Shao, Xiaohou; Guo, Kai; McComb, Jacqueline; Arslan, Zikri; Zhang, Zhanyu

    2016-03-01

    The objectives of this study were to investigate distribution and solubility of Pb, Cs and As in soils under electrokinetic field and examine the processes of coupled electrokinetic phytoremediation of polluted soils. The elevated bioavailability and bioaccumulation of Pb, As and Cs in paddy soil under an electro-kinetic field (EKF) were studied. The results show that the EKF treatment is effective on lowering soil pH to around 1.5 near the anode which is beneficial for the dissolution of metal(loid)s, thus increasing their overall solubility. The acidification in the anode soil efficiently increased the water soluble (SOL) and exchangeable (EXC) Pb, As and Cs, implying enhanced solubility and elevated overall potential bioavailability in the anode region while lower solubility in the cathode areas. Bioaccumulations of Pb, As and Cs were largely determined by the nature of elements, loading levels and EKF treatment. The native Pb in soil usually is not bioavailable. However, EKF treatment tends to transfer Pb to the SOL and EXC fractions improving the phytoextraction efficiency. Similarly, EKF transferred more EXC As and Cs to the SOL fraction significantly increasing their bioaccumulation in plant roots and shoots. Pb and As were accumulated more in plant roots than in shoots while Cs was accumulated more in shoots due to its similarity of chemical properties to potassium. Indian mustard, spinach and cabbage are good accumulators for Cs. Translocation of Pb, As and Cs from plant roots to shoots were enhanced by EKF. However, this study indicated the overall low phytoextraction efficiency of these plants. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Dynamic positron emission tomography image restoration via a kinetics-induced bilateral filter.

    Directory of Open Access Journals (Sweden)

    Zhaoying Bian

    Full Text Available Dynamic positron emission tomography (PET imaging is a powerful tool that provides useful quantitative information on physiological and biochemical processes. However, low signal-to-noise ratio in short dynamic frames makes accurate kinetic parameter estimation from noisy voxel-wise time activity curves (TAC a challenging task. To address this problem, several spatial filters have been investigated to reduce the noise of each frame with noticeable gains. These filters include the Gaussian filter, bilateral filter, and wavelet-based filter. These filters usually consider only the local properties of each frame without exploring potential kinetic information from entire frames. Thus, in this work, to improve PET parametric imaging accuracy, we present a kinetics-induced bilateral filter (KIBF to reduce the noise of dynamic image frames by incorporating the similarity between the voxel-wise TACs using the framework of bilateral filter. The aim of the proposed KIBF algorithm is to reduce the noise in homogeneous areas while preserving the distinct kinetics of regions of interest. Experimental results on digital brain phantom and in vivo rat study with typical (18F-FDG kinetics have shown that the present KIBF algorithm can achieve notable gains over other existing algorithms in terms of quantitative accuracy measures and visual inspection.

  15. A simple and fast kinetic assay for the determination of fructan exohydrolase activity in perennial ryegrass (Lolium perenne L.

    Directory of Open Access Journals (Sweden)

    Anna eGasperl

    2015-12-01

    Full Text Available Despite the fact that fructans are the main constituent of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates, little knowledge is available on the regulation of the enzymes involved in fructan metabolism. The analysis of enzyme activities involved in this process has been hampered by the low affinity of the fructan enzymes for sucrose and fructans used as fructosyl donor. Further, the analysis of fructan composition and enzyme activities is restricted to specialized labs with access to suited HPLC equipment and appropriate fructan standards. The degradation of fructan polymers with high degree of polymerization (DP by fructan exohydrolases (FEHs to fructosyloligomers is important to liberate energy in the form of fructan, but also under conditions where the generation of low DP polymers is required. Based on published protocols employing enzyme coupled endpoint reactions in single cuvettes, we developed a simple and fast kinetic 1-FEH assay. This assay can be performed in multi-well plate format using plate readers to determine the activity of 1-FEH against 1-kestotriose, resulting in a significant time reduction. Kinetic assays allow an optimal and more precise determination of enzyme activities compared to endpoint assays, and enable to check the quality of any reaction with respect to linearity of the assay. The enzyme coupled kinetic 1-FEH assay was validated in a case study showing the expected increase in 1-FEH activity during cold treatment. This assay is cost effective and could be performed by any lab with access to a plate reader suited for kinetic measurements and readings at 340 nm, and is highly suited to assess temporal changes and relative differences in 1-FEH activities. Thus, this enzyme coupled kinetic 1-FEH assay is of high importance both to the field of basic fructan research and plant breeding.

  16. Long term socio-ecological research across temporal and spatial scales

    Science.gov (United States)

    Singh, S. J.; Haberl, H.

    2012-04-01

    Long term socio-ecological research across temporal and spatial scales Simron Jit Singh and Helmut Haberl Institute of Social Ecology, Vienna, Austria Understanding trajectories of change in coupled socio-ecological (or human-environment) systems requires monitoring and analysis at several spatial and temporal scales. Long-term ecosystem research (LTER) is a strand of research coupled with observation systems and infrastructures (LTER sites) aimed at understanding how global change affects ecosystems around the world. In recent years it has been increasingly recognized that sustainability concerns require extending this approach to long-term socio-ecological research, i.e. a more integrated perspective that focuses on interaction processes between society and ecosystems over longer time periods. Thus, Long-Term Socio-Ecological Research, abbreviated LTSER, aims at observing, analyzing, understanding and modelling of changes in coupled socio-ecological systems over long periods of time. Indeed, the magnitude of the problems we now face is an outcome of a much longer process, accelerated by industrialisation since the nineteenth century. The paper will provide an overview of a book (in press) on LTSER with particular emphasis on 'socio-ecological transitions' in terms of material, energy and land use dynamics across temporal and spatial scales.

  17. Towards Geo-spatial Hypermedia: Concepts and Prototype Implementation

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Vestergaard, Peter Posselt; Ørbæk, Peter

    2002-01-01

    This paper combines spatial hypermedia with techniques from Geographical Information Systems and location based services. We describe the Topos 3D Spatial Hypermedia system and how it has been developed to support geo-spatial hypermedia coupling hypermedia information to model representations...... of real world buildings and landscapes. The prototype experiments are primarily aimed at supporting architects and landscape architects in their work on site. Here it is useful to be able to superimpose and add different layers of information to, e.g. a landscape depending on the task being worked on. We...... and indirect navigation. Finally, we conclude with a number of research issues which are central to the future development of geo-spatial hypermedia, including design issues in combining metaphorical and literal hypermedia space, as well as a discussion of the role of spatial parsing in a geo-spatial context....

  18. Spatial diagnostics of the laser induced lithium fluoride plasma

    Energy Technology Data Exchange (ETDEWEB)

    Baig, M. A.; Qamar, Aisha; Fareed, M. A.; Anwar-ul-Haq, M.; Ali, Raheel [Atomic and Molecular Physics Laboratory, Department of Physics, Quaid-i-Azam University, 45320 Islamabad (Pakistan)

    2012-06-15

    We present spatial characteristics of the lithium fluoride plasma generated by the fundamental and second harmonic of a Nd:YAG laser. The plume emission has been recorded spatially using five spectrometers covering the spectral region from 200 nm to 720 nm. The electron density is measured from the Stark broadened line profile of the line at 610.37 nm, whereas the plasma temperature has been determined using the Boltzmann plot method including all the observed spectral lines of lithium. Both the plasma parameters; electron density and plasma temperature decrease with the increase of the distance from the target surface. The thermal conduction towards the target, the radiative cooling of the plasma, and the conversion of thermal energy into kinetic energy are the main mechanisms responsible for the spatially decrease of the plasma parameters.

  19. A high-order method for the integration of the Galerkin semi-discretized nuclear reactor kinetics equations

    International Nuclear Information System (INIS)

    Vargas, L.

    1988-01-01

    The numerical approximate solution of the space-time nuclear reactor kinetics equation is investigated using a finite-element discretization of the space variable and a high order integration scheme for the resulting semi-discretized parabolic equation. The Galerkin method with spatial piecewise polynomial Lagrange basis functions are used to obtained a continuous time semi-discretized form of the space-time reactor kinetics equation. A temporal discretization is then carried out with a numerical scheme based on the Iterated Defect Correction (IDC) method using piecewise quadratic polynomials or exponential functions. The kinetics equations are thus solved with in a general finite element framework with respect to space as well as time variables in which the order of convergence of the spatial and temporal discretizations is consistently high. A computer code GALFEM/IDC is developed, to implement the numerical schemes described above. This issued to solve a one space dimensional benchmark problem. The results of the numerical experiments confirm the theoretical arguments and show that the convergence is very fast and the overall procedure is quite efficient. This is due to the good asymptotic properties of the numerical scheme which is of third order in the time interval

  20. Local gauge coupling running in supersymmetric gauge theories on orbifolds

    International Nuclear Information System (INIS)

    Hillenbach, M.

    2007-01-01

    By extending Feynman's path integral calculus to fields which respect orbifold boundary conditions we provide a straightforward and convenient framework for loop calculations on orbifolds. We take advantage of this general method to investigate supersymmetric Abelian and non-Abelian gauge theories in five, six and ten dimensions where the extra dimensions are compactified on an orbifold. We consider hyper and gauge multiplets in the bulk and calculate the renormalization of the gauge kinetic term which in particular allows us to determine the gauge coupling running. The renormalization of the higher dimensional theories in orbifold spacetimes exhibits a rich structure with three principal effects: Besides the ordinary renormalization of the bulk gauge kinetic term the loop effects may require the introduction of both localized gauge kinetic terms at the fixed points/planes of the orbifold and higher dimensional operators. (orig.)

  1. Local gauge coupling running in supersymmetric gauge theories on orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Hillenbach, M.

    2007-11-21

    By extending Feynman's path integral calculus to fields which respect orbifold boundary conditions we provide a straightforward and convenient framework for loop calculations on orbifolds. We take advantage of this general method to investigate supersymmetric Abelian and non-Abelian gauge theories in five, six and ten dimensions where the extra dimensions are compactified on an orbifold. We consider hyper and gauge multiplets in the bulk and calculate the renormalization of the gauge kinetic term which in particular allows us to determine the gauge coupling running. The renormalization of the higher dimensional theories in orbifold spacetimes exhibits a rich structure with three principal effects: Besides the ordinary renormalization of the bulk gauge kinetic term the loop effects may require the introduction of both localized gauge kinetic terms at the fixed points/planes of the orbifold and higher dimensional operators. (orig.)

  2. Numerical and computational aspects of the coupled three-dimensional core/ plant simulations: organization for economic cooperation and development/ U.S. nuclear regulatory commission pressurized water reactor main-steam-line-break benchmark-II. 3. Analysis of the OECD TMI-1 Main-Steam- Line-Break Benchmark Accident Using the Coupled RELAP5/PANTHER Codes

    International Nuclear Information System (INIS)

    Schneidesch, C.R.; Guisset, J.P.; Zhang, J.; Bryce, P.; Parkes, M.

    2001-01-01

    The RELAP5 best-estimate thermal-hydraulic system code has been coupled with the PANTHER three-dimensional (3-D) neutron kinetics code via the TALINK dynamic data exchange control and processing tool. The coupled RELAP5/PANTHER code package is being qualified and will be used at British Energy (BE) and Tractebel Energy Engineering (TEE), independently, to analyze pressurized water reactor (PWR) transients where strong core-system interactions occur. The Organization for Economic Cooperation and Development/Nuclear Energy Agency PWR Main-Steam-Line-Break (MSLB) Benchmark problem was performed to demonstrate the capability of the coupled code package to simulate such transients, and this paper reports the BE and TEE contributions. In the first exercise, a point-kinetics (PK) calculation is performed using the RELAP5 code. Two solutions have been derived for the PK case. The first corresponds to scenario, 1 where calculations are carried out using the original (BE) rod worth and where no significant return to power (RTP) occurs. The second corresponds to scenario 2 with arbitrarily reduced rod worth in order to obtain RTP (and was not part of the 'official' results). The results, as illustrated in Fig. 1, show that the thermalhydraulic system response and rod worth are essential in determining the core response. The second exercise consists of a 3-D neutron kinetics transient calculation driven by best-estimate time-dependent core inlet conditions on a 18 T and H zones basis derived from TRAC-PF1/MOD2 (PSU), again analyzing two scenarios of different rod worths. Two sets of PANTHER solutions were submitted for exercise 2. The first solution uses a spatial discretization of one node per assembly and 24 core axial layers for both flux and T and H mesh. The second is characterized by spatial refinement (2 x 2 nodes per assembly, 48 core layers for flux, and T and H calculation), time refinement (half-size time steps), and an increased radial discretization for solution

  3. A kinetic model for the transport of electrons in a graphene layer

    Energy Technology Data Exchange (ETDEWEB)

    Fermanian Kammerer, Clotilde, E-mail: Clotilde.Fermanian@u-pec.fr [Laboratoire d' Analyse et de Mathématiques Appliquées, Université Paris Est and CNRS, 61, avenue du Général de Gaulle, 94010 Créteil Cedex (France); Méhats, Florian, E-mail: florian.mehats@univ-rennes1.fr [Institut de Recherche Mathématique de Rennes, IPSO Inria team, Université Rennes 1 and CNRS, Campus de Beaulieu, 35042 Rennes cedex (France)

    2016-12-15

    In this article, we propose a new numerical scheme for the computation of the transport of electrons in a graphene device. The underlying quantum model for graphene is a massless Dirac equation, whose eigenvalues display a conical singularity responsible for non-adiabatic transitions between the two modes. We first derive a kinetic model which takes the form of two Boltzmann equations coupled by a collision operator modeling the non-adiabatic transitions. This collision term includes a Landau–Zener transfer term and a jump operator whose presence is essential in order to ensure a good energy conservation during the transitions. We propose an algorithmic realization of the semi-group solving the kinetic model, by a particle method. We give analytic justification of the model and propose a series of numerical experiments studying the influences of the various sources of errors between the quantum and the kinetic models.

  4. Matching time and spatial scales of rapid solidification: dynamic TEM experiments coupled to CALPHAD-informed phase-field simulations

    Science.gov (United States)

    Perron, Aurelien; Roehling, John D.; Turchi, Patrice E. A.; Fattebert, Jean-Luc; McKeown, Joseph T.

    2018-01-01

    A combination of dynamic transmission electron microscopy (DTEM) experiments and CALPHAD-informed phase-field simulations was used to study rapid solidification in Cu-Ni thin-film alloys. Experiments—conducted in the DTEM—consisted of in situ laser melting and determination of the solidification kinetics by monitoring the solid-liquid interface and the overall microstructure evolution (time-resolved measurements) during the solidification process. Modelling of the Cu-Ni alloy microstructure evolution was based on a phase-field model that included realistic Gibbs energies and diffusion coefficients from the CALPHAD framework (thermodynamic and mobility databases). DTEM and post mortem experiments highlighted the formation of microsegregation-free columnar grains with interface velocities varying from ˜0.1 to ˜0.6 m s-1. After an ‘incubation’ time, the velocity of the planar solid-liquid interface accelerated until solidification was complete. In addition, a decrease of the temperature gradient induced a decrease in the interface velocity. The modelling strategy permitted the simulation (in 1D and 2D) of the solidification process from the initially diffusion-controlled to the nearly partitionless regimes. Finally, results of DTEM experiments and phase-field simulations (grain morphology, solute distribution, and solid-liquid interface velocity) were consistent at similar time (μs) and spatial scales (μm).

  5. Time-asymptotic interaction of flocking particles and an incompressible viscous fluid

    International Nuclear Information System (INIS)

    Bae, Hyeong-Ohk; Choi, Young-Pil; Ha, Seung-Yeal; Kang, Moon-Jin

    2012-01-01

    We present a new coupled kinetic-fluid model for the interactions between Cucker–Smale (C–S) flocking particles and incompressible fluid on the periodic spatial domain T d . Our coupled system consists of the kinetic C–S equation and the incompressible Navier–Stokes equations, and these two systems are coupled through the drag force. For the proposed model, we provide a global existence of weak solutions and a priori time-asymptotic exponential flocking estimates for any smooth flow, when the kinematic viscosity of the fluid is sufficiently large. The velocity of individual C–S particles and fluid velocity tend to the averaged time-dependent particle velocities exponentially fast

  6. Persistent chimera states in nonlocally coupled phase oscillators

    OpenAIRE

    Suda, Yusuke; Okuda, Koji

    2015-01-01

    Chimera states in the systems of nonlocally coupled phase oscillators are considered stable in the continuous limit of spatially distributed oscillators. However, it is reported that in the numerical simulations without taking such limit, chimera states are chaotic transient and finally collapse into the completely synchronous solution. In this Rapid Communication, we numerically study chimera states by using the coupling function different from the previous studies and obtain the result that...

  7. Taylor's series method for solving the nonlinear point kinetics equations

    International Nuclear Information System (INIS)

    Nahla, Abdallah A.

    2011-01-01

    Highlights: → Taylor's series method for nonlinear point kinetics equations is applied. → The general order of derivatives are derived for this system. → Stability of Taylor's series method is studied. → Taylor's series method is A-stable for negative reactivity. → Taylor's series method is an accurate computational technique. - Abstract: Taylor's series method for solving the point reactor kinetics equations with multi-group of delayed neutrons in the presence of Newtonian temperature feedback reactivity is applied and programmed by FORTRAN. This system is the couples of the stiff nonlinear ordinary differential equations. This numerical method is based on the different order derivatives of the neutron density, the precursor concentrations of i-group of delayed neutrons and the reactivity. The r th order of derivatives are derived. The stability of Taylor's series method is discussed. Three sets of applications: step, ramp and temperature feedback reactivities are computed. Taylor's series method is an accurate computational technique and stable for negative step, negative ramp and temperature feedback reactivities. This method is useful than the traditional methods for solving the nonlinear point kinetics equations.

  8. Hydrogen desorption kinetics from zirconium hydride and zirconium metal in vacuum

    International Nuclear Information System (INIS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.

    2014-01-01

    The kinetics of hydrogen desorption from zirconium hydride is important in many nuclear design and safety applications. In this paper, a coordinated experimental and modeling study has been used to explicitly demonstrate the applicability of existing kinetic theories for hydrogen desorption from zirconium hydride and α-zirconium. A static synthesis method was used to produce δ-zirconium hydride, and the crystallographic phases of the zirconium hydride were confirmed by X-ray diffraction (XRD). Three obvious stages, involving δ-zirconium hydride, a two-phase region, and α-zirconium, were observed in the hydrogen desorption spectra of two zirconium hydride specimens with H/Zr ratios of 1.62 and 1.64, respectively, which were obtained using thermal desorption spectroscopy (TDS). A continuous, one-dimensional, two-phase moving boundary model, coupled with the zero- and second-order kinetics of hydrogen desorption from δ-zirconium hydride and α-zirconium, respectively, has been developed to reproduce the TDS experimental results. A comparison of the modeling predictions with the experimental results indicates that a zero-order kinetic model is valid for description of hydrogen flux away from the δ-hydride phase, and that a second-order kinetic model works well for hydrogen desorption from α-Zr if the activation energy of desorption is optimized to be 70% of the value reported in the literature

  9. Kinetic Typography

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Djonov, Emilia

    2014-01-01

    After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images.......After discussing broad cultural drivers behind the development of kinetic typography, the chapter outlines an approach to analysing kinetic typography which is based on Halliday's theory of transitivity, as applied by Kress and Van Leeuwen to visual images....

  10. Multi-GPU unsteady 2D flow simulation coupled with a state-to-state chemical kinetics

    Science.gov (United States)

    Tuttafesta, Michele; Pascazio, Giuseppe; Colonna, Gianpiero

    2016-10-01

    In this work we are presenting a GPU version of a CFD code for high enthalpy reacting flow, using the state-to-state approach. In supersonic and hypersonic flows, thermal and chemical non-equilibrium is one of the fundamental aspects that must be taken into account for the accurate characterization of the plasma and state-to-state kinetics is the most accurate approach used for this kind of problems. This model consists in writing a continuity equation for the population of each vibrational level of the molecules in the mixture, determining at the same time the species densities and the distribution of the population in internal levels. An explicit scheme is employed here to integrate the governing equations, so as to exploit the GPU structure and obtain an efficient algorithm. The best performances are obtained for reacting flows in state-to-state approach, reaching speedups of the order of 100, thanks to the use of an operator splitting scheme for the kinetics equations.

  11. Spatially Localized Particle Energization by Landau Damping in Current Sheets

    Science.gov (United States)

    Howes, G. G.; Klein, K. G.; McCubbin, A. J.

    2017-12-01

    Understanding the mechanisms of particle energization through the removal of energy from turbulent fluctuations in heliospheric plasmas is a grand challenge problem in heliophysics. Under the weakly collisional conditions typical of heliospheric plasma, kinetic mechanisms must be responsible for this energization, but the nature of those mechanisms remains elusive. In recent years, the spatial localization of plasma heating near current sheets in the solar wind and numerical simulations has gained much attention. Here we show, using the innovative and new field-particle correlation technique, that the spatially localized particle energization occurring in a nonlinear gyrokinetic simulation has the velocity space signature of Landau damping, suggesting that this well-known collisionless damping mechanism indeed actively leads to spatially localized heating in the vicinity of current sheets.

  12. Coupled effects of natural and anthropogenic controls on seasonal and spatial variations of river water quality during baseflow in a coastal watershed of Southeast China.

    Directory of Open Access Journals (Sweden)

    Jinliang Huang

    demonstrates that the coupled effects of natural and anthropogenic controls involved in watershed processes, contribute to the seasonal and spatial variation of headwater stream water quality in a coastal watershed with high spatial variability and intensive anthropogenic activities.

  13. Performance analysis and acceleration of explicit integration for large kinetic networks using batched GPU computations

    Energy Technology Data Exchange (ETDEWEB)

    Shyles, Daniel [University of Tennessee (UT); Dongarra, Jack J. [University of Tennessee, Knoxville (UTK); Guidry, Mike W. [ORNL; Tomov, Stanimire Z. [ORNL; Billings, Jay Jay [ORNL; Brock, Benjamin A. [ORNL; Haidar Ahmad, Azzam A. [ORNL

    2016-09-01

    Abstract—We demonstrate the systematic implementation of recently-developed fast explicit kinetic integration algorithms that solve efficiently N coupled ordinary differential equations (subject to initial conditions) on modern GPUs. We take representative test cases (Type Ia supernova explosions) and demonstrate two or more orders of magnitude increase in efficiency for solving such systems (of realistic thermonuclear networks coupled to fluid dynamics). This implies that important coupled, multiphysics problems in various scientific and technical disciplines that were intractable, or could be simulated only with highly schematic kinetic networks, are now computationally feasible. As examples of such applications we present the computational techniques developed for our ongoing deployment of these new methods on modern GPU accelerators. We show that similarly to many other scientific applications, ranging from national security to medical advances, the computation can be split into many independent computational tasks, each of relatively small-size. As the size of each individual task does not provide sufficient parallelism for the underlying hardware, especially for accelerators, these tasks must be computed concurrently as a single routine, that we call batched routine, in order to saturate the hardware with enough work.

  14. Spiral Waves and Multiple Spatial Coherence Resonances Induced by Colored Noise in Neuronal Network

    International Nuclear Information System (INIS)

    Tang Zhao; Li Yuye; Xi Lei; Jia Bing; Gu Huaguang

    2012-01-01

    Gaussian colored noise induced spatial patterns and spatial coherence resonances in a square lattice neuronal network composed of Morris-Lecar neurons are studied. Each neuron is at resting state near a saddle-node bifurcation on invariant circle, coupled to its nearest neighbors by electronic coupling. Spiral waves with different structures and disordered spatial structures can be alternately induced within a large range of noise intensity. By calculating spatial structure function and signal-to-noise ratio (SNR), it is found that SNR values are higher when the spiral structures are simple and are lower when the spatial patterns are complex or disordered, respectively. SNR manifest multiple local maximal peaks, indicating that the colored noise can induce multiple spatial coherence resonances. The maximal SNR values decrease as the correlation time of the noise increases. These results not only provide an example of multiple resonances, but also show that Gaussian colored noise play constructive roles in neuronal network. (general)

  15. Critical features of coupling parameter in synchronization of small world neural networks

    International Nuclear Information System (INIS)

    Li Yanlong; Ma Jun; Xu Wenke; Li Hongbo; Wu Min

    2008-01-01

    The critical features of a coupling parameter in the synchronization of small world neural networks are investigated. A power law decay form is observed in this spatially extended system, the larger linked degree becomes, the larger critical coupling intensity. There exists maximal and minimal critical coupling intensity for synchronization in the extended system. An approximate synchronization diagram has been constructed. In the case of partial coupling, a primary result is presented about the critical coupling fraction for various linked degree of networks

  16. Fast kinetics of calcium dissociation from calsequestrin

    Directory of Open Access Journals (Sweden)

    MARIANELA BELTRÁN

    2006-01-01

    Full Text Available We measured the kinetics of calcium dissociation from calsequestrin in solution or forming part of isolated junctional sarcoplasmic reticulum membranes by mixing calsequestrin equilibrated with calcium with calcium-free solutions in a stopped-flow system. In parallel, we measured the kinetics of the intrinsic fluorescence changes that take place following calcium dissociation from calsequestrin. We found that at 25ºC calcium dissociation was 10-fold faster for calsequestrin attached to junctional membranes (k = 109 s-1 than in solution. These results imply that calcium dissociation from calsequestrin in vivo is not rate limiting during excitation-contraction coupling. In addition, we found that the intrinsic fluorescence decrease for calsequestrin in solution or forming part of junctional membranes was significantly slower than the rates of calcium dissociation. The kinetics of intrinsic fluorescence changes had two components for calsequestrin associated to junctional membranes and only one for calsequestrin in solution; the faster component was 8-fold faster (k = 54.1 s-1 than the slower component (k = 6.9 s-1, which had the same k value as for calsequestrin in solution. These combined results suggest that the presence of calsequestrin at high concentrations in a restricted space, such as when bound to the junctional membrane, accelerates calcium dissociation and the resulting structural changes, presumably as a result of cooperative molecular interactions.

  17. Emergent behavior in a coupled economic and coastline model for beach nourishment

    Directory of Open Access Journals (Sweden)

    E. D. Lazarus

    2011-12-01

    Full Text Available Developed coastal areas often exhibit a strong systemic coupling between shoreline dynamics and economic dynamics. "Beach nourishment", a common erosion-control practice, involves mechanically depositing sediment from outside the local littoral system onto an actively eroding shoreline to alter shoreline morphology. Natural sediment-transport processes quickly rework the newly engineered beach, causing further changes to the shoreline that in turn affect subsequent beach-nourishment decisions. To the limited extent that this landscape/economic coupling has been considered, evidence suggests that towns tend to employ spatially myopic economic strategies under which individual towns make isolated decisions that do not account for their neighbors. What happens when an optimization strategy that explicitly ignores spatial interactions is incorporated into a physical model that is spatially dynamic? The long-term attractor that develops for the coupled system (the state and behavior to which the system evolves over time is unclear. We link an economic model, in which town-manager agents choose economically optimal beach-nourishment intervals according to past observations of their immediate shoreline, to a simplified coastal-dynamics model that includes alongshore sediment transport and background erosion (e.g. from sea-level rise. Simulations suggest that feedbacks between these human and natural coastal processes can generate emergent behaviors. When alongshore sediment transport and spatially myopic nourishment decisions are coupled, increases in the rate of sea-level rise can destabilize economically optimal nourishment practices into a regime characterized by the emergence of chaotic shoreline evolution.

  18. Transient competitive complexation in biological kinetic isotope fractionation explains nonsteady isotopic effects: Theory and application to denitrification in soils

    Science.gov (United States)

    Maggi, Federico; Riley, William J.

    2009-12-01

    The theoretical formulation of biological kinetic isotope fractionation often assumes first-order or Michaelis-Menten kinetics, the latter solved under the quasi-steady state assumption. Both formulations lead to a constant isotope fractionation factor, therefore they may return incorrect estimations of isotopic effects and misleading interpretations of isotopic signatures when fractionation is not a steady process. We have analyzed the isotopic signature of denitrification in biogeochemical soil systems by Menyailo and Hungate (2006) in which high and variable 15N-N2O enrichment during N2O production and inverse isotope fractionation during N2O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with Michaelis-Menten kinetics. When Michaelis-Menten kinetics were coupled to Monod kinetics to describe biomass and enzyme dynamics, and the quasi-steady state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observed concentrations, and variable and inverse isotope fractionations. These results imply a substantial revision in modeling isotopic effects, suggesting that steady state kinetics such as first-order, Rayleigh, and classic Michaelis-Menten kinetics should be superseded by transient kinetics in conjunction with biomass and enzyme dynamics.

  19. Programmed coherent coupling in a synthetic DNA-based excitonic circuit

    Science.gov (United States)

    Boulais, Étienne; Sawaya, Nicolas P. D.; Veneziano, Rémi; Andreoni, Alessio; Banal, James L.; Kondo, Toru; Mandal, Sarthak; Lin, Su; Schlau-Cohen, Gabriela S.; Woodbury, Neal W.; Yan, Hao; Aspuru-Guzik, Alán; Bathe, Mark

    2018-02-01

    Natural light-harvesting systems spatially organize densely packed chromophore aggregates using rigid protein scaffolds to achieve highly efficient, directed energy transfer. Here, we report a synthetic strategy using rigid DNA scaffolds to similarly program the spatial organization of densely packed, discrete clusters of cyanine dye aggregates with tunable absorption spectra and strongly coupled exciton dynamics present in natural light-harvesting systems. We first characterize the range of dye-aggregate sizes that can be templated spatially by A-tracts of B-form DNA while retaining coherent energy transfer. We then use structure-based modelling and quantum dynamics to guide the rational design of higher-order synthetic circuits consisting of multiple discrete dye aggregates within a DX-tile. These programmed circuits exhibit excitonic transport properties with prominent circular dichroism, superradiance, and fast delocalized exciton transfer, consistent with our quantum dynamics predictions. This bottom-up strategy offers a versatile approach to the rational design of strongly coupled excitonic circuits using spatially organized dye aggregates for use in coherent nanoscale energy transport, artificial light-harvesting, and nanophotonics.

  20. Stress enhanced calcium kinetics in a neuron.

    Science.gov (United States)

    Kant, Aayush; Bhandakkar, Tanmay K; Medhekar, Nikhil V

    2018-02-01

    Accurate modeling of the mechanobiological response of a Traumatic Brain Injury is beneficial toward its effective clinical examination, treatment and prevention. Here, we present a stress history-dependent non-spatial kinetic model to predict the microscale phenomena of secondary insults due to accumulation of excess calcium ions (Ca[Formula: see text]) induced by the macroscale primary injuries. The model is able to capture the experimentally observed increase and subsequent partial recovery of intracellular Ca[Formula: see text] concentration in response to various types of mechanical impulses. We further establish the accuracy of the model by comparing our predictions with key experimental observations.

  1. Study and discretization of kinetic models and fluid models at low Mach number

    International Nuclear Information System (INIS)

    Dellacherie, Stephane

    2011-01-01

    This thesis summarizes our work between 1995 and 2010. It concerns the analysis and the discretization of Fokker-Planck or semi-classical Boltzmann kinetic models and of Euler or Navier-Stokes fluid models at low Mach number. The studied Fokker-Planck equation models the collisions between ions and electrons in a hot plasma, and is here applied to the inertial confinement fusion. The studied semi-classical Boltzmann equations are of two types. The first one models the thermonuclear reaction between a deuterium ion and a tritium ion producing an α particle and a neutron particle, and is also in our case used to describe inertial confinement fusion. The second one (known as the Wang-Chang and Uhlenbeck equations) models the transitions between electronic quantified energy levels of uranium and iron atoms in the AVLIS isotopic separation process. The basic properties of these two Boltzmann equations are studied, and, for the Wang-Chang and Uhlenbeck equations, a kinetic-fluid coupling algorithm is proposed. This kinetic-fluid coupling algorithm incited us to study the relaxation concept for gas and immiscible fluids mixtures, and to underline connections with classical kinetic theory. Then, a diphasic low Mach number model without acoustic waves is proposed to model the deformation of the interface between two immiscible fluids induced by high heat transfers at low Mach number. In order to increase the accuracy of the results without increasing computational cost, an AMR algorithm is studied on a simplified interface deformation model. These low Mach number studies also incited us to analyse on cartesian meshes the inaccuracy at low Mach number of Godunov schemes. Finally, the LBM algorithm applied to the heat equation is justified

  2. Spatial and spectral effects in subcritical system pulsed experiments

    International Nuclear Information System (INIS)

    Dulla, S.; Nervo, M.; Ravetto, P.; Carta, M.

    2013-01-01

    Accurate neutronic models are needed for the interpretation of pulsed experiments in subcritical systems. In this work, the extent of spatial and spectral effects in the pulse propagation phenomena is investigated and the analysis is applied to the GUINEVERE experiment. The multigroup cross section data is generated by the Monte Carlo SERPENT code and the neutronic evolution following the source pulse is simulated by a kinetic diffusion code. The results presented show that important spatial and spectral aspects need to be properly accounted for and that a detailed energy approach may be needed to adequately capture the physical features of the system to the pulse injection. (authors)

  3. SWATMOD-PREP: Graphical user interface for preparing coupled SWAT-modflow simulations

    Science.gov (United States)

    This paper presents SWATMOD-Prep, a graphical user interface that couples a SWAT watershed model with a MODFLOW groundwater flow model. The interface is based on a recently published SWAT-MODFLOW code that couples the models via mapping schemes. The spatial layout of SWATMOD-Prep guides the user t...

  4. Deciphering Intrinsic Inter-subunit Couplings that Lead to Sequential Hydrolysis of F 1 -ATPase Ring

    Science.gov (United States)

    Dai, Liqiang; Flechsig, Holger; Yu, Jin

    2017-10-01

    The rotary sequential hydrolysis of metabolic machine F1-ATPase is a prominent feature to reveal high coordination among multiple chemical sites on the stator F1 ring, which also contributes to tight coupling between the chemical reaction and central {\\gamma}-shaft rotation. High-speed AFM experiments discovered that the sequential hydrolysis was maintained on the F1 ring even in the absence of the {\\gamma} rotor. To explore how the intrinsic sequential performance arises, we computationally investigated essential inter-subunit couplings on the hexameric ring of mitochondrial and bacterial F1. We first reproduced the sequential hydrolysis schemes as experimentally detected, by simulating tri-site ATP hydrolysis cycles on the F1 ring upon kinetically imposing inter-subunit couplings to substantially promote the hydrolysis products release. We found that it is key for certain ATP binding and hydrolysis events to facilitate the neighbor-site ADP and Pi release to support the sequential hydrolysis. The kinetically feasible couplings were then scrutinized through atomistic molecular dynamics simulations as well as coarse-grained simulations, in which we enforced targeted conformational changes for the ATP binding or hydrolysis. Notably, we detected the asymmetrical neighbor-site opening that would facilitate the ADP release upon the enforced ATP binding, and computationally captured the complete Pi release through charge hopping upon the enforced neighbor-site ATP hydrolysis. The ATP-hydrolysis triggered Pi release revealed in current TMD simulation confirms a recent prediction made from statistical analyses of single molecule experimental data in regard to the role ATP hydrolysis plays. Our studies, therefore, elucidate both the concerted chemical kinetics and underlying structural dynamics of the inter-subunit couplings that lead to the rotary sequential hydrolysis of the F1 ring.

  5. Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon.

    Science.gov (United States)

    Chang, Hai-Xing; Huang, Yun; Fu, Qian; Liao, Qiang; Zhu, Xun

    2016-04-01

    Understanding and optimizing the microalgae growth process is an essential prerequisite for effective CO2 capture using microalgae in photobioreactors. In this study, the kinetic characteristics of microalgae Chlorella vulgaris growth in response to light intensity and dissolved inorganic carbon (DIC) concentration were investigated. The greatest values of maximum biomass concentration (Xmax) and maximum specific growth rate (μmax) were obtained as 2.303 g L(-1) and 0.078 h(-1), respectively, at a light intensity of 120 μmol m(-2) s(-1) and DIC concentration of 17 mM. Based on the results, mathematical models describing the coupled effects of light intensity and DIC concentration on microalgae growth and CO2 biofixation are proposed. The models are able to predict the temporal evolution of C. vulgaris growth and CO2 biofixation rates from lag to stationary phases. Verification experiments confirmed that the model predictions agreed well with the experimental results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Kinetics of the maintenance of the epidermis

    Science.gov (United States)

    Zhdanov, Vladimir P.; Cho, Nam-Joon

    2013-08-01

    The epidermis is the outermost layer of skin. It is comprised of keratin-containing cells called keratinocytes. Functionally, the epidermis serves as a physical barrier that can prevent infection and regulate body hydration. Maintenance and repair of the epidermis are important for human health. Mechanistically, these processes occur primarily via proliferation and differentiation of stem cells located in the basal monolayer. These processes are believed to depend on cell-cell communication and spatial constraints but existing kinetic models focus mainly on proliferation and differentiation. To address this issue, we present a mean-field kinetic model that takes these additional factors into account and describes the epidermis at a biosystem level. The corresponding equations operate with the populations of stem cells and differentiated cells in the basal layer. The keratinocytes located above the basal layer are treated at a more coarse-grained level by considering the thickness of the epidermis. The model clarifies the likely role of various negative feedbacks that may control the epidermis and, accordingly, provides insight into the cellular mechanisms underlying complex biological phenomena such as wound healing.

  7. Kinetic Models for Topological Nearest-Neighbor Interactions

    Science.gov (United States)

    Blanchet, Adrien; Degond, Pierre

    2017-12-01

    We consider systems of agents interacting through topological interactions. These have been shown to play an important part in animal and human behavior. Precisely, the system consists of a finite number of particles characterized by their positions and velocities. At random times a randomly chosen particle, the follower, adopts the velocity of its closest neighbor, the leader. We study the limit of a system size going to infinity and, under the assumption of propagation of chaos, show that the limit kinetic equation is a non-standard spatial diffusion equation for the particle distribution function. We also study the case wherein the particles interact with their K closest neighbors and show that the corresponding kinetic equation is the same. Finally, we prove that these models can be seen as a singular limit of the smooth rank-based model previously studied in Blanchet and Degond (J Stat Phys 163:41-60, 2016). The proofs are based on a combinatorial interpretation of the rank as well as some concentration of measure arguments.

  8. Fiber-coupling efficiency of Gaussian-Schell model beams through an ocean to fiber optical communication link

    Science.gov (United States)

    Hu, Beibei; Shi, Haifeng; Zhang, Yixin

    2018-06-01

    We theoretically study the fiber-coupling efficiency of Gaussian-Schell model beams propagating through oceanic turbulence. The expression of the fiber-coupling efficiency is derived based on the spatial power spectrum of oceanic turbulence and the cross-spectral density function. Our work shows that the salinity fluctuation has a greater impact on the fiber-coupling efficiency than temperature fluctuation does. We can select longer λ in the "ocean window" and higher spatial coherence of light source to improve the fiber-coupling efficiency of the communication link. We also can achieve the maximum fiber-coupling efficiency by choosing design parameter according specific oceanic turbulence condition. Our results are able to help the design of optical communication link for oceanic turbulence to fiber sensor.

  9. Small amplitude Kinetic Alfven waves in a superthermal electron-positron-ion plasma

    Science.gov (United States)

    Adnan, Muhammad; Mahmood, Sahahzad; Qamar, Anisa; Tribeche, Mouloud

    2016-11-01

    We are investigating the propagating properties of coupled Kinetic Alfven-acoustic waves in a low beta plasma having superthermal electrons and positrons. Using the standard reductive perturbation method, a nonlinear Korteweg-de Vries (KdV) type equation is derived which describes the evolution of Kinetic Alfven waves. It is found that nonlinearity and Larmor radius effects can compromise and give rise to solitary structures. The parametric role of superthermality and positron content on the characteristics of solitary wave structures is also investigated. It is found that only sub-Alfvenic and compressive solitons are supported in the present model. The present study may find applications in a low β electron-positron-ion plasma having superthermal electrons and positrons.

  10. Increase of nonlinear signal distortions due to linear mode coupling in space division multiplexed systems

    DEFF Research Database (Denmark)

    Kutluyarov, Ruslan V.; Bagmanov, Valeriy Kh; Antonov, Vyacheslav V.

    2017-01-01

    This paper is focused on the analysis of linear and nonlinear mode coupling in space division multiplexed (SDM) optical communications over step-index fiber in few-mode regime. Linear mode coupling is caused by the fiber imperfections, while the nonlinear coupling is caused by the Kerr......-nonlinearities. Therefore, we use the system of generalized coupled nonlinear Schrödinger equations (GCNLSE) to describe the signal propagation. We analytically show that the presence of linear mode coupling may cause increasing of the nonlinear signal distortions. For the detailed study we solve GCNLSE numerically...... for the standard step index fiber at the wavelength of 850 nm in the basis of spatial modes with helical phase front (vortex modes) and for a special kind of few-mode fiber with enlarged core, providing propagation of five spatial modes at 1550 nm. Simulation results confirm that the linear mode coupling may lead...

  11. Three-dimensional stability of solitary kinetic Alfven waves and ion-acoustic waves

    International Nuclear Information System (INIS)

    Ghosh, G.; Das, K.P.

    1994-01-01

    Starting from a set of equations that lead to a linear dispersion relation coupling kinetic Alfven waves and ion-acoustic waves, three-dimensional KdV equations are derived for these waves. These equations are then used to investigate the three-dimensional stability of solitary kinetic Alfven waves and ion-acoustic waves by the small-k perturbation expansion method of Rowlands and Infeld. For kinetic Alfven waves it is found that there is instability if the direction of the plane-wave perturbation lies inside a cone, and the growth rate of the instability attains a maximum when the direction of the perturbation lies in the plane containing the external magnetic field and the direction of propagation of the solitary wave. For ion-acoustic waves the growth rate of instability attains a maximum when the direction of the perturbation lies in a plane perpendicular to the direction of propagation of the solitary wave. (Author)

  12. Heat fluctuations in Ising models coupled with two different heat baths

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli, A; Gonnella, G [Dipartimento di Fisica, Universita di Bari and Istituto Nazionale di Fisica Nucleare, Sezione di Bari, via Amendola 173, 70126 Bari (Italy); Corberi, F [Dipartimento di Matematica ed Informatica, via Ponte don Melillo, Universita di Salerno, 84084 Fisciano (Italy)

    2008-08-22

    Monte Carlo simulations of Ising models coupled to heat baths at two different temperatures are used to study a fluctuation relation for the heat exchanged between the two thermostats in a time {tau}. Different kinetics (single-spin-flip or spin-exchange Kawasaki dynamics), transition rates (Glauber or Metropolis), and couplings between the system and the thermostats have been considered. In every case the fluctuation relation is verified in the large {tau} limit, both in the disordered and in the low temperature phase. Finite-{tau} corrections are shown to obey a scaling behavior. (fast track communication)

  13. Optimization of coupled multiphysics methodology for safety analysis of pebble bed modular reactor

    Science.gov (United States)

    Mkhabela, Peter Tshepo

    methodology for the PBMR to provide reference solutions. Investigation of different aspects of the coupled methodology and development of efficient kinetics treatment for the PBMR were carried out, which accounts for all feedback phenomena in an efficient manner. The OECD/NEA PBMR-400 coupled code benchmark was used as a test matrix for the proposed investigations. The integrated thermal-hydraulics and neutronics (multi-physics) methods were extended to enable modeling of a wider range of transients pertinent to the PBMR. First, the effect of the spatial mapping schemes (spatial coupling) was studied and quantified for different types of transients, which resulted in implementation of improved mapping methodology based on user defined criteria. The second aspect that was studied and optimized is the temporal coupling and meshing schemes between the neutronics and thermal-hydraulics time step selection algorithms. The coupled code convergence was achieved supplemented by application of methods to accelerate it. Finally, the modeling of all feedback phenomena in PBMRs was investigated and a novel treatment of cross-section dependencies was introduced for improving the representation of cross-section variations. The added benefit was that in the process of studying and improving the coupled multi-physics methodology more insight was gained into the physics and dynamics of PBMR, which will help also to optimize the PBMR design and improve its safety. One unique contribution of the PhD research is the investigation of the importance of the correct representation of the three-dimensional (3-D) effects in the PBMR analysis. The performed studies demonstrated that explicit 3-D modeling of control rod movement is superior and removes the errors associated with the grey curtain (2-D homogenized) approximation.

  14. Thermodynamic activity-based intrinsic enzyme kinetic sheds light on enzyme-solvent interactions.

    Science.gov (United States)

    Grosch, Jan-Hendrik; Wagner, David; Nistelkas, Vasilios; Spieß, Antje C

    2017-01-01

    The reaction medium has major impact on biocatalytic reaction systems and on their economic significance. To allow for tailored medium engineering, thermodynamic phenomena, intrinsic enzyme kinetics, and enzyme-solvent interactions have to be discriminated. To this end, enzyme reaction kinetic modeling was coupled with thermodynamic calculations based on investigations of the alcohol dehydrogenase from Lactobacillus brevis (LbADH) in monophasic water/methyl tert-butyl ether (MTBE) mixtures as a model solvent. Substrate concentrations and substrate thermodynamic activities were varied separately to identify the individual thermodynamic and kinetic effects on the enzyme activity. Microkinetic parameters based on concentration and thermodynamic activity were derived to successfully identify a positive effect of MTBE on the availability of the substrate to the enzyme, but a negative effect on the enzyme performance. In conclusion, thermodynamic activity-based kinetic modeling might be a suitable tool to initially curtail the type of enzyme-solvent interactions and thus, a powerful first step to potentially understand the phenomena that occur in nonconventional media in more detail. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:96-103, 2017. © 2016 American Institute of Chemical Engineers.

  15. Hybrid molecular–continuum methods: From prototypes to coupling software

    KAUST Repository

    Neumann, Philipp

    2014-02-01

    In this contribution, we review software requirements in hybrid molecular-continuum simulations. For this purpose, we analyze a prototype implementation which combines two frameworks-the Molecular Dynamics framework MarDyn and the framework Peano for spatially adaptive mesh-based simulations-and point out particular challenges of a general coupling software. Based on this analysis, we discuss the software design of our recently published coupling tool. We explain details on its overall structure and show how the challenges that arise in respective couplings are resolved by the software. © 2013 Elsevier Ltd. All rights reserved.

  16. BWR transient analysis using neutronic / thermal hydraulic coupled codes including uncertainty quantification

    International Nuclear Information System (INIS)

    Hartmann, C.; Sanchez, V.; Tietsch, W.; Stieglitz, R.

    2012-01-01

    The KIT is involved in the development and qualification of best estimate methodologies for BWR transient analysis in cooperation with industrial partners. The goal is to establish the most advanced thermal hydraulic system codes coupled with 3D reactor dynamic codes to be able to perform a more realistic evaluation of the BWR behavior under accidental conditions. For this purpose a computational chain based on the lattice code (SCALE6/GenPMAXS), the coupled neutronic/thermal hydraulic code (TRACE/PARCS) as well as a Monte Carlo based uncertainty and sensitivity package (SUSA) has been established and applied to different kind of transients of a Boiling Water Reactor (BWR). This paper will describe the multidimensional models of the plant elaborated for TRACE and PARCS to perform the investigations mentioned before. For the uncertainty quantification of the coupled code TRACE/PARCS and specifically to take into account the influence of the kinetics parameters in such studies, the PARCS code has been extended to facilitate the change of model parameters in such a way that the SUSA package can be used in connection with TRACE/PARCS for the U and S studies. This approach will be presented in detail. The results obtained for a rod drop transient with TRACE/PARCS using the SUSA-methodology showed clearly the importance of some kinetic parameters on the transient progression demonstrating that the coupling of a best-estimate coupled codes with uncertainty and sensitivity tools is very promising and of great importance for the safety assessment of nuclear reactors. (authors)

  17. Kinetic Monte Carlo modeling of chemical reactions coupled with heat transfer.

    Science.gov (United States)

    Castonguay, Thomas C; Wang, Feng

    2008-03-28

    In this paper, we describe two types of effective events for describing heat transfer in a kinetic Monte Carlo (KMC) simulation that may involve stochastic chemical reactions. Simulations employing these events are referred to as KMC-TBT and KMC-PHE. In KMC-TBT, heat transfer is modeled as the stochastic transfer of "thermal bits" between adjacent grid points. In KMC-PHE, heat transfer is modeled by integrating the Poisson heat equation for a short time. Either approach is capable of capturing the time dependent system behavior exactly. Both KMC-PHE and KMC-TBT are validated by simulating pure heat transfer in a rod and a square and modeling a heated desorption problem where exact numerical results are available. KMC-PHE is much faster than KMC-TBT and is used to study the endothermic desorption of a lattice gas. Interesting findings from this study are reported.

  18. Numerical nodal simulation of the axial power distribution within nuclear reactors using a kinetics diffusion model. I

    International Nuclear Information System (INIS)

    Barros, R.C. de.

    1992-05-01

    Presented here is a new numerical nodal method for the simulation of the axial power distribution within nuclear reactors using the one-dimensional one speed kinetics diffusion model with one group of delayed neutron precursors. Our method is based on a spectral analysis of the nodal kinetics equations. These equations are obtained by integrating the original kinetics equations separately over a time step and over a spatial node, and then considering flat approximations for the forward difference terms. These flat approximations are the only approximations that are considered in the method. As a result, the spectral nodal method for space - time reactor kinetics generates numerical solutions for space independent problems or for time independent problems that are completely free from truncation errors. We show numerical results to illustrate the method's accuracy for coarse mesh calculations. (author)

  19. Development and verification of a coupled code system RETRAN-MASTER-TORC

    International Nuclear Information System (INIS)

    Cho, J.Y.; Song, J.S.; Joo, H.G.; Zee, S.Q.

    2004-01-01

    Recently, coupled thermal-hydraulics (T-H) and three-dimensional kinetics codes have been widely used for the best-estimate simulations such as the main steam line break (MSLB) and locked rotor problems. This work is to develop and verify one of such codes by coupling the system T-H code RETRAN, the 3-D kinetics code MASTER and sub-channel analysis code TORC. The MASTER code has already been applied to such simulations after coupling with the MARS or RETRAN-3D multi-dimensional system T-H codes. The MASTER code contains a sub-channel analysis code COBRA-III C/P, and the coupled systems MARSMASTER-COBRA and RETRAN-MASTER-COBRA had been already developed and verified. With these previous studies, a new coupled system of RETRAN-MASTER-TORC is to be developed and verified for the standard best-estimate simulation code package in Korea. The TORC code has already been applied to the thermal hydraulics design of the several ABB/CE type plants and Korean Standard Nuclear Power Plants (KSNP). This justifies the choice of TORC rather than COBRA. Because the coupling between RETRAN and MASTER codes are already established and verified, this work is simplified to couple the TORC sub-channel T-H code with the MASTER neutronics code. The TORC code is a standalone code that solves the T-H equations for a given core problem from reading the input file and finally printing the converged solutions. However, in the coupled system, because TORC receives the pin power distributions from the neutronics code MASTER and transfers the T-H results to MASTER iteratively, TORC needs to be controlled by the MASTER code and does not need to solve the given problem completely at each iteration step. By this reason, the coupling of the TORC code with the MASTER code requires several modifications in the I/O treatment, flow iteration and calculation logics. The next section of this paper describes the modifications in the TORC code. The TORC control logic of the MASTER code is then followed. The

  20. NDMA formation by chloramination of ranitidine: Kinetics and mechanism

    KAUST Repository

    Le Roux, Julien

    2012-10-16

    The kinetics of decomposition of the pharmaceutical ranitidine (a major precursor of NDMA) during chloramination was investigated and some decomposition byproducts were identified by using high performance liquid chromatography coupled with mass spectrometry (HPLC-MS). The reaction between monochloramine and ranitidine followed second order kinetics and was acid-catalyzed. Decomposition of ranitidine formed different byproducts depending on the applied monochloramine concentration. Most identified products were chlorinated and hydroxylated analogues of ranitidine. In excess of monochloramine, nucleophilic substitution between ranitidine and monochloramine led to byproducts that are critical intermediates involved in the formation of NDMA, for example, a carbocation formed from the decomposition of the methylfuran moiety of ranitidine. A complete mechanism is proposed to explain the high formation yield of NDMA from chloramination of ranitidine. These results are of great importance to understand the formation of NDMA by chloramination of tertiary amines. © 2012 American Chemical Society.

  1. Polar Coordinate Lattice Boltzmann Kinetic Modeling of Detonation Phenomena

    International Nuclear Information System (INIS)

    Lin Chuan-Dong; Li Ying-Jun; Xu Ai-Guo; Zhang Guang-Cai

    2014-01-01

    A novel polar coordinate lattice Boltzmann kinetic model for detonation phenomena is presented and applied to investigate typical implosion and explosion processes. In this model, the change of discrete distribution function due to local chemical reaction is dynamically coupled into the modified lattice Boltzmann equation which could recover the Navier—Stokes equations, including contribution of chemical reaction, via the Chapman—Enskog expansion. For the numerical investigations, the main focuses are the nonequilibrium behaviors in these processes. The system at the disc center is always in its thermodynamic equilibrium in the highly symmetric case. The internal kinetic energies in different degrees of freedom around the detonation front do not coincide. The dependence of the reaction rate on the pressure, influences of the shock strength and reaction rate on the departure amplitude of the system from its local thermodynamic equilibrium are probed. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  2. Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation.

    Directory of Open Access Journals (Sweden)

    Andrea Ciliberto

    2007-03-01

    Full Text Available In metabolic networks, metabolites are usually present in great excess over the enzymes that catalyze their interconversion, and describing the rates of these reactions by using the Michaelis-Menten rate law is perfectly valid. This rate law assumes that the concentration of enzyme-substrate complex (C is much less than the free substrate concentration (S0. However, in protein interaction networks, the enzymes and substrates are all proteins in comparable concentrations, and neglecting C with respect to S0 is not valid. Borghans, DeBoer, and Segel developed an alternative description of enzyme kinetics that is valid when C is comparable to S0. We extend this description, which Borghans et al. call the total quasi-steady state approximation, to networks of coupled enzymatic reactions. First, we analyze an isolated Goldbeter-Koshland switch when enzymes and substrates are present in comparable concentrations. Then, on the basis of a real example of the molecular network governing cell cycle progression, we couple two and three Goldbeter-Koshland switches together to study the effects of feedback in networks of protein kinases and phosphatases. Our analysis shows that the total quasi-steady state approximation provides an excellent kinetic formalism for protein interaction networks, because (1 it unveils the modular structure of the enzymatic reactions, (2 it suggests a simple algorithm to formulate correct kinetic equations, and (3 contrary to classical Michaelis-Menten kinetics, it succeeds in faithfully reproducing the dynamics of the network both qualitatively and quantitatively.

  3. Photon-noise limited sensitivity in titanium nitride kinetic inductance detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hubmayr, J., E-mail: hubmayr@nist.gov; Beall, J.; Becker, D.; Cho, H.-M.; Hilton, G. C.; Li, D.; Pappas, D. P.; Van Lanen, J.; Vissers, M. R.; Gao, J. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 (United States); Devlin, M.; Dober, B. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd St., Philadelphia, Pennsylvania 19104 (United States); Groppi, C.; Mauskopf, P. [School of Earth and Space Exploration, Arizona State University, 781 S Terrace Rd., Tempe, Arizona 85281 (United States); Irwin, K. D. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Wang, Y. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 (United States); Quantum Optoelectronics Laboratory, Southwest Jiaotong University, Chengdu (China); Wei, L. F. [Quantum Optoelectronics Laboratory, Southwest Jiaotong University, Chengdu (China)

    2015-02-16

    We demonstrate photon-noise limited performance at sub-millimeter wavelengths in feedhorn-coupled, microwave kinetic inductance detectors made of a TiN/Ti/TiN trilayer superconducting film, tuned to have a transition temperature of 1.4 K. Micro-machining of the silicon-on-insulator wafer backside creates a quarter-wavelength backshort optimized for efficient coupling at 250 μm. Using frequency read out and when viewing a variable temperature blackbody source, we measure device noise consistent with photon noise when the incident optical power is >0.5 pW, corresponding to noise equivalent powers >3×10{sup −17} W/√(Hz). This sensitivity makes these devices suitable for broadband photometric applications at these wavelengths.

  4. Michelson interferometer based spatial phase shift shearography.

    Science.gov (United States)

    Xie, Xin; Yang, Lianxiang; Xu, Nan; Chen, Xu

    2013-06-10

    This paper presents a simple spatial phase shift shearography based on the Michelson interferometer. The Michelson interferometer based shearographic system has been widely utilized in industry as a practical nondestructive test tool. In the system, the Michelson interferometer is used as a shearing device to generate a shearing distance by tilting a small angle in one of the two mirrors. In fact, tilting the mirror in the Michelson interferometer also generates spatial frequency shift. Based on this feature, we introduce a simple Michelson interferometer based spatial phase shift shearography. The Fourier transform (FT) method is applied to separate the spectrum on the spatial frequency domain. The phase change due to the loading can be evaluated using a properly selected windowed inverse-FT. This system can generate a phase map of shearography by using only a single image. The effects of shearing angle, spatial resolution of couple charge device camera, and filter methods are discussed in detail. The theory and the experimental results are presented.

  5. EAST kinetic equilibrium reconstruction combining with Polarimeter-Interferometer internal measurement constraints

    Science.gov (United States)

    Lian, H.; Liu, H. Q.; Li, K.; Zou, Z. Y.; Qian, J. P.; Wu, M. Q.; Li, G. Q.; Zeng, L.; Zang, Q.; Lv, B.; Jie, Y. X.; EAST Team

    2017-12-01

    Plasma equilibrium reconstruction plays an important role in the tokamak plasma research. With a high temporal and spatial resolution, the POlarimeter-INTerferometer (POINT) system on EAST has provided effective measurements for 102s H-mode operation. Based on internal Faraday rotation measurements provided by the POINT system, the equilibrium reconstruction with a more accurate core current profile constraint has been demonstrated successfully on EAST. Combining other experimental diagnostics and external magnetic fields measurement, the kinetic equilibrium has also been reconstructed on EAST. Take the pressure and edge current information from kinetic EFIT into the equilibrium reconstruction with Faraday rotation constraint, the new equilibrium reconstruction not only provides a more accurate internal current profile but also contains edge current and pressure information. One time slice result using new kinetic equilibrium reconstruction with POINT data constraints is demonstrated in this paper and the result shows there is a reversed shear of q profile and the pressure profile is also contained. The new improved equilibrium reconstruction is greatly helpful to the future theoretical analysis.

  6. Enzymes or redox couples? The kinetics of thioredoxin and glutaredoxin reactions in a systems biology context

    NARCIS (Netherlands)

    Pillay, Ché S.; Hofmeyr, Jan Hendrik S; Olivier, Brett G.; Snoep, Jacky L.; Rohwer, Johann M.

    2009-01-01

    Systems biology approaches, such as kinetic modelling, could provide valuable insights into how thioredoxins, glutaredoxins and peroxiredoxins (here collectively called redoxins), and the systems that reduce these molecules are regulated. However, it is not clear whether redoxins should be described

  7. A kinetic model for the first stage of pygas upgrading

    Directory of Open Access Journals (Sweden)

    J. L. de Medeiros

    2007-03-01

    Full Text Available Pyrolysis gasoline - PYGAS - is an intermediate boiling product of naphtha steam cracking with a high octane number and high aromatic/unsaturated contents. Due to stabilization concerns, PYGAS must be hydrotreated in two stages. The first stage uses a mild trickle-bed conversion for removing extremely reactive species (styrene, dienes and olefins prior to the more severe second stage where sulfured and remaining olefins are hydrogenated in gas phase. This work addresses the reaction network and two-phase kinetic model for the first stage of PYGAS upgrading. Nonlinear estimation was used for model tuning with kinetic data obtained in bench-scale trickle-bed hydrogenation with a commercial Pd/Al2O3 catalyst. On-line sampling experiments were designed to study the influence of variables - temperature and spatial velocity - on the conversion of styrene, dienes and olefins.

  8. Covalent bonding of chloroanilines to humic constituents: Pathways, kinetics, and stability

    International Nuclear Information System (INIS)

    Kong, Deyang; Xia, Qing; Liu, Guoqiang; Huang, Qingguo; Lu, Junhe

    2013-01-01

    Covalent coupling to natural humic constituents comprises an important transformation pathway for anilinic pollutants in the environment. We systematically investigated the reactions of chlorine substituted anilines with catechol and syringic acid in horseradish peroxidase (HRP) catalyzed systems. It was demonstrated that although nucleophilic addition was the mechanism of covalent bonding to both catechol and syringic acid, chloroanilines coupled to the 2 humic constituents via slightly different pathways. 1,4-addition and 1,2-addition are involved to catechol and syringic acid, respectively. 1,4-addition showed empirical 2nd order kinetics and this pathway seemed to be more permanent than 1,2-addition. Stability experiments demonstrated that cross-coupling products with syringic acid could be easily released in acidic conditions. However, cross-coupling with catechol was relatively stable at similar conditions. Thus, the environmental behavior and bioavailability of the coupling products should be carefully assessed. -- Highlights: •Chloroanilines covalently coupled to humic constituents in HRP catalyzed processes, which facilitated their transformation. •MS technique was employed to analyze the coupling products and therefore elucidate the reaction pathways. •Chloroanilines couple to catechol and syringic acid via 1,4- and 1,2-nucleophilic addition pathways, respectively. •Cross-coupling products formed via 1,4-nucleophilic addition pathway were more stable than those via 1,2-addition pathway. -- Bound residues of chloroanilines formed via 1,2- and 1,4-nucleophilic addition pathways showed different stability

  9. Effective gravitational coupling in modified teleparallel theories

    Science.gov (United States)

    Abedi, Habib; Capozziello, Salvatore; D'Agostino, Rocco; Luongo, Orlando

    2018-04-01

    In the present study, we consider an extended form of teleparallel Lagrangian f (T ,ϕ ,X ) , as function of a scalar field ϕ , its kinetic term X and the torsion scalar T . We use linear perturbations to obtain the equation of matter density perturbations on sub-Hubble scales. The gravitational coupling is modified in scalar modes with respect to the one of general relativity, albeit vector modes decay and do not show any significant effects. We thus extend these results by involving multiple scalar field models. Further, we study conformal transformations in teleparallel gravity and we obtain the coupling as the scalar field is nonminimally coupled to both torsion and boundary terms. Finally, we propose the specific model f (T ,ϕ ,X )=T +∂μϕ ∂μϕ +ξ T ϕ2 . To check its goodness, we employ the observational Hubble data, constraining the coupling constant, ξ , through a Monte Carlo technique based on the Metropolis-Hastings algorithm. Hence, fixing ξ to its best-fit value got from our numerical analysis, we calculate the growth rate of matter perturbations and we compare our outcomes with the latest measurements and the predictions of the Λ CDM model.

  10. Development of temporal and spatial bimanual coordination during childhood

    OpenAIRE

    de Boer, B.J.; Peper, C.E.; Beek, P.J.

    2012-01-01

    Developmental changes in bimanual coordination were examined in four age groups: 6/7, 10/11, 14/15 years, and young adults. Temporal coupling was assessed through the stabilizing contributions of interlimb interactions related to planning, error correction, and reflexes during rhythmic wrist movements, by comparing various unimanual and bimanual tasks involving passive and active movements. Spatial coupling was assessed via bimanual line-circle drawing. With increasing age, temporal stability...

  11. Theory of Kinetics of Registration and Anti-Registration in Lipid Bilayers

    Science.gov (United States)

    Olmsted, Peter; Williamson, John

    Lipid bilayer leaflets are often treated as if they are coupled; i.e., that the two leaflets undergo simultaneous transitions between phases, and that domains involve both leaflets together in a registered fashion. We present theory and simulation showing how interleaflet couplings and hydrophobic mismatch can lead to a complex phase diagram with multiple metastable two-phase and three-phase states. Many of these states can be discerned in the experimental literature, and are expected in the early stages of coarsening when domains are sub-micron (and thus perhaps of significance to lipid rafts). We present different kinetic scenarios for transitions between these state, and show how lipid flip flop can surprisingly lead to non-symmetric anti-registered patterns.

  12. Contribution to the modelling and multi-scale numerical simulation of kinetic electron transport in hot plasma

    International Nuclear Information System (INIS)

    Mallet, J.

    2012-01-01

    This research thesis stands at the crossroad of plasma physics, numerical analysis and applied mathematics. After an introduction presenting the problematic and previous works, the author recalls some basis of classical kinetic models for plasma physics (collisionless kinetic theory and Vlasov equation, collisional kinetic theory with the non-relativistic Maxwell-Fokker-Plansk system) and describes the fundamental properties of the collision operators such as conservation laws, entropy dissipation, and so on. He reports the improvement of a deterministic numerical method to solve the non-relativistic Vlasov-Maxwell system coupled with Fokker-Planck-Landau type operators. The efficiency of each high order scheme is compared. The evolution of the hot spot is studied in the case of thermonuclear reactions in the centre of the pellet in a weakly collisional regime. The author focuses on the simulation of the kinetic electron collisional transport in inertial confinement fusion (ICF) between the laser absorption zone and the ablation front. A new approach is then introduced to reduce the huge computation time obtained with kinetic models. In a last chapter, the kinetic continuous equation in spherical domain is described and a new model is chosen for collisions in order to preserve collision properties

  13. Reasons for Implementing Movement in Kinetic Architecture

    Science.gov (United States)

    Cudzik, Jan; Nyka, Lucyna

    2017-10-01

    The paper gives insights into different forms of movement in contemporary architecture and examines them based on the reasons for their implementation. The main objective of the paper is to determine: the degree to which the complexity of kinematic architecture results from functional and spatial needs and what other motivations there are. The method adopted to investigate these questions involves theoretical studies and comparative analyses of architectural objects with different forms of movement imbedded in their structure. Using both methods allowed delving into reasons that lie behind the implementation of movement in contemporary kinetic architecture. As research shows, there is a constantly growing range of applications with kinematic solutions inserted in buildings’ structures. The reasons for their implementation are manifold and encompass pursuits of functional qualities, environmental performance, spatial effects, social interactions and new aesthetics. In those early projects based on simple mechanisms, the main motives were focused on functional values and in later experiments - on improving buildings’ environmental performance. Additionally, in recent proposals, a significant quest could be detected toward kinematic solutions that are focused on factors related to alternative aesthetics and innovative spatial effects. Research reveals that the more complicated form of movement, the more often the reason for its implementation goes beyond the traditionally understood “function”. However, research also shows that the effects resulting from investigations on spatial qualities of architecture and new aesthetics often appear to provide creative insights into new functionalities in architecture.

  14. Cesium removal and kinetics equilibrium: Precipitation kinetics

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1999-01-01

    This task consisted of both non-radioactive and radioactive (tracer) tests examining the influence of potentially significant variables on cesium tetraphenylborate precipitation kinetics. The work investigated the time required to reach cesium decontamination and the conditions that affect the cesium precipitation kinetics

  15. A Kinetics Model for KrF Laser Amplifiers

    Science.gov (United States)

    Giuliani, J. L.; Kepple, P.; Lehmberg, R.; Obenschain, S. P.; Petrov, G.

    1999-11-01

    A computer kinetics code has been developed to model the temporal and spatial behavior of an e-beam pumped KrF laser amplifier. The deposition of the primary beam electrons is assumed to be spatially uniform and the energy distribution function of the nascent electron population is calculated to be near Maxwellian below 10 eV. For an initial Kr/Ar/F2 composition, the code calculates the densities of 24 species subject to over 100 reactions with 1-D spatial resolution (typically 16 zones) along the longitudinal lasing axis. Enthalpy accounting for each process is performed to partition the energy into internal, thermal, and radiative components. The electron as well as the heavy particle temperatures are followed for energy conservation and excitation rates. Transport of the lasing photons is performed along the axis on a dense subgrid using the method of characteristics. Amplified spontaneous emission is calculated using a discrete ordinates approach and includes contributions to the local intensity from the whole amplifier volume. Specular reflection off side walls and the rear mirror are included. Results of the model will be compared with data from the NRL NIKE laser and other published results.

  16. Solubility of the transport equation in the kinetics of coagulation and fragmentation

    International Nuclear Information System (INIS)

    Dubovskii, P B

    2001-01-01

    We prove a local existence theorem for a continuous solution of the spatially inhomogeneous kinetic coagulation-fragmentation model of Smoluchowski. Then we prove the solubility of the problem in the large in the class of continuous functions. It is important to emphasize that we admit unbounded integral kernels in both cases. The uniqueness of the solution and its continuous dependence on the input data are also demonstrated

  17. Network topology and Turing instabilities in small arrays of diffusively coupled reactors

    International Nuclear Information System (INIS)

    Horsthemke, Werner; Lam, Kwan; Moore, Peter K.

    2004-01-01

    We study the effect of the network structure on the diffusion-induced instability to nonuniform steady states in arrays of diffusively coupled reactors. The kinetics is given by the Lengyel-Epstein model, and we derive the conditions for Turing instabilities in all arrays of two, three, and four reactors

  18. Nonlocal electron kinetics and spectral line emission in the positive column of an argon glow discharge

    International Nuclear Information System (INIS)

    Golubovskii, Yu; Kalanov, D; Gorchakov, S; Uhrlandt, D

    2015-01-01

    Modern non-local electron kinetics theory predicts several interesting effects connected with spectral line emission from the positive column in the range of low and medium pressures and currents. Some theoretical works describe non-monotonic behavior of the radial profiles of line emission at intermediate pressures and currents between the validity ranges of the non-local and local approximation of the electron kinetics. Despite a great number of publications, there have been no systematic measurements attempting to confirm these theoretical predictions through experiments. In this work the radial profiles of the line emission from the positive column of an argon glow discharge have been measured with high spatial resolution and new effects caused by the narrowing and broadening of the spatial emission profiles with dependence on discharge conditions have been discovered. The effect of intensity maximum shift predicted by theory using a self-consistent model was not found in the experiment. The properties of the spectral line radiation are influenced by the peculiarities of the formation of the high-energy tail of the electron energy distribution function. An interpretation of the observed effects based on the non-local character of the electron kinetics in radially inhomogeneous fields is given. The obtained experimental data are compared with the results of calculations. (paper)

  19. Study on coupling of three-dimension space time neutron kinetics model and RELAP5 and improvement of RELAP5

    International Nuclear Information System (INIS)

    Gui Xuewen; Cai Qi; Luo Bangqi

    2007-01-01

    A two-group three-dimension space-time neutron kinetics model is applied to the RELAP5 code, which replaces the point reactor kinetics model. A visual operation interface is designed to convenience interactive operation between operator and computer. The calculation results and practical applications indicate that the functions and precision of improved RELAP5 are enhanced and can be easily used. The improved RELAP5 has a good application perspective in nuclear power plant simulation. (authors)

  20. Collective spin correlations and entangled state dynamics in coupled quantum dots

    Science.gov (United States)

    Maslova, N. S.; Arseyev, P. I.; Mantsevich, V. N.

    2018-02-01

    Here we demonstrate that the dynamics of few-electron states in a correlated quantum-dot system coupled to an electronic reservoir is governed by the symmetry properties of the total system leading to the collective behavior of all the electrons. Time evolution of two-electron states in a correlated double quantum dot after coupling to the reservoir has been analyzed by means of kinetic equations for pseudoparticle occupation numbers with constraint on possible physical states. It was revealed that the absolute value of the spin correlation function and the degree of entanglement for two-electron states could considerably increase after coupling to the reservoir. The obtained results demonstrate the possibility of a controllable tuning of both the spin correlation function and the concurrence value in a coupled quantum-dot system by changing of the gate voltage applied to the barrier separating the dots.

  1. Kinetic energy and scalar spectra in high Rayleigh number axially homogeneous buoyancy driven turbulence

    Science.gov (United States)

    Pawar, Shashikant S.; Arakeri, Jaywant H.

    2016-06-01

    Kinetic energy and scalar spectra from the measurements in high Rayleigh number axially homogeneous buoyancy driven turbulent flow are presented. Kinetic energy and concentration (scalar) spectra are obtained from the experiments wherein density difference is created using brine and fresh water and temperature spectra are obtained from the experiments in which heat is used. Scaling of the frequency spectra of lateral and longitudinal velocity near the tube axis is closer to the Kolmogorov-Obukhov scaling, while the scalar spectra show some evidence of dual scaling, Bolgiano-Obukhov scaling followed by Obukhov-Corrsin scaling. These scalings are also observed in the corresponding second order spatial structure functions of velocity and concentration fluctuations.

  2. An approach to stability analysis of spatial xenon oscillations in WWER-1000 reactors

    International Nuclear Information System (INIS)

    Parhizkari, H.; Aghaie, M.; Zolfaghari, A.; Minuchehr, A.

    2015-01-01

    Highlights: • The multipoint methodology is developed for xenon oscillation in the BNPP. • The axial, radial and azimuthal offsets are calculated in the BOC and EOC. • It is shown that the all of oscillation modes are safe in the BOC. • The axial oscillation is not safe in the EOC and needs governor control system. • The multipoint kinetics show good agreement for spatial oscillations. - Abstract: Spatial power oscillations due to spatial distribution of xenon transient are well known as xenon oscillation in large reactors. Xenon-induced spatial power oscillations occur as a result of rapid perturbations to power distribution that cause the xenon and iodine distribution to be out of phase with the perturbed power distribution. This results in a shift in xenon and iodine distributions that causes the power distribution to change in an opposite direction from the initial perturbation. In this paper xenon-induced power oscillation is described by a system of differential equations with non-linearity between xenon and flux distributions; the dynamics of process is described by a discrete distributed parameter model, with the neutron flux, the delayed neutrons, the core temperature and the xenon and iodine concentrations as the “states” of the system. It is shown that it is possible to describe the discrete distributed-parameter as a set of coupled point-reactor models. It is also shown that using this scheme it is possible to analyze the control aspects of a multi-section large core reactor by treating only two adjacent sections of the core. To illustrate the capability and efficiency of the proposed scheme Bushehr Nuclear Power Plant, BNPP, which is a WWER-1000 reactor, is chosen to show the performance of the methodology. The axial, azimuthal and radial power oscillation at the beginning of cycle, BOC, and the end of cycle, EOC, for BNPP are investigated; the results are in good agreement with safety analysis report of the reference plant

  3. Reply to 'Comment on kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry' by J. Griffioen

    Science.gov (United States)

    Hunter, K. S.; Van Cappellen, P.

    2000-01-01

    Our paper, 'Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry' (Hunter et al., 1998), presents a theoretical exploration of biogeochemical reaction networks and their importance to the biogeochemistry of groundwater systems. As with any other model, the kinetic reaction-transport model developed in our paper includes only a subset of all physically, biologically and chemically relevant processes in subsurface environments. It considers aquifer systems where the primary energy source driving microbial activity is the degradation of organic matter. In addition to the primary biodegradation pathways of organic matter (i.e. respiration and fermentation), the redox chemistry of groundwaters is also affected by reactions not directly involving organic matter oxidation. We refer to the latter as secondary reactions. By including secondary redox reactions which consume reduced reaction products (e.g., Mn2+, FeS, H2S), and in the process compete with microbial heterotrophic populations for available oxidants (i.e. O2, NO3-, Mn(IV), Fe(III), SO42-), we predict spatio-temporal distributions of microbial activity which differ significantly from those of models which consider only the biodegradation reactions. That is, the secondary reactions have a significant impact on the distributions of the rates of heterotrophic and chemolithotrophic metabolic pathways. We further show that secondary redox reactions, as well as non-redox reactions, significantly influence the acid-base chemistry of groundwaters. The distributions of dissolved inorganic redox species along flowpaths, however, are similar in simulations with and without secondary reactions (see Figs. 3(b) and 7(b) in Hunter et al., 1998), indicating that very different biogeochemical reaction dynamics may lead to essentially the same chemical redox zonation of a groundwater system.

  4. Chemical kinetics and modeling of planetary atmospheres

    Science.gov (United States)

    Yung, Yuk L.

    1990-01-01

    A unified overview is presented for chemical kinetics and chemical modeling in planetary atmospheres. The recent major advances in the understanding of the chemistry of the terrestrial atmosphere make the study of planets more interesting and relevant. A deeper understanding suggests that the important chemical cycles have a universal character that connects the different planets and ultimately link together the origin and evolution of the solar system. The completeness (or incompleteness) of the data base for chemical kinetics in planetary atmospheres will always be judged by comparison with that for the terrestrial atmosphere. In the latter case, the chemistry of H, O, N, and Cl species is well understood. S chemistry is poorly understood. In the atmospheres of Jovian planets and Titan, the C-H chemistry of simple species (containing 2 or less C atoms) is fairly well understood. The chemistry of higher hydrocarbons and the C-N, P-N chemistry is much less understood. In the atmosphere of Venus, the dominant chemistry is that of chlorine and sulfur, and very little is known about C1-S coupled chemistry. A new frontier for chemical kinetics both in the Earth and planetary atmospheres is the study of heterogeneous reactions. The formation of the ozone hole on Earth, the ubiquitous photochemical haze on Venus and in the Jovian planets and Titan all testify to the importance of heterogeneous reactions. It remains a challenge to connect the gas phase chemistry to the production of aerosols.

  5. Stochastic dynamics of spatial effects in fragmentation of clusters

    International Nuclear Information System (INIS)

    Salinas-Rodriguez, E.; Rodriguez, R.F.; Zamora, J.M.

    1991-01-01

    We use a stochastic approach to study the effects of spatial in homogeneities in the kinetics of a fragmentation model which occurs in cluster breakup and polymer degradation. The analytical form of the cluster size distribution function is obtained for both the discrete and continuous limits. From it we calculate numerically the average size and volume of the clusters, their total concentration and the total scattering of the dispersion in both limits. The influence of spatial effects is explicitly shown in the last two quantities. From our description the equations for the equal-time and the two times density correlation functions are also derived in the continuous limit. Finally, the perspectives and limitations of our approach are discussed (Author)

  6. CORTAP: a coupled neutron kinetics-heat transfer digital computer program for the dynamic simulation of the high temperature gas cooled reactor core

    International Nuclear Information System (INIS)

    Cleveland, J.C.

    1977-01-01

    CORTAP (Core Transient Analysis Program) was developed to predict the dynamic behavior of the High Temperature Gas Cooled Reactor (HTGR) core under normal operational transients and postulated accident conditions. CORTAP is used both as a stand-alone component simulation and as part of the HTGR nuclear steam supply (NSS) system simulation code ORTAP. The core thermal neutronic response is determined by solving the heat transfer equations for the fuel, moderator and coolant in an average powered region of the reactor core. The space independent neutron kinetics equations are coupled to the heat transfer equations through a rapidly converging iterative technique. The code has the capability to determine conservative fuel, moderator, and coolant temperatures in the ''hot'' fuel region. For transients involving a reactor trip, the core heat generation rate is determined from an expression for decay heat following a scram. Nonlinear effects introduced by temperature dependent fuel, moderator, and coolant properties are included in the model. CORTAP predictions will be compared with dynamic test results obtained from the Fort St. Vrain reactor owned by Public Service of Colorado, and, based on these comparisons, appropriate improvements will be made in CORTAP

  7. Focus: Nucleation kinetics of shear bands in metallic glass.

    Science.gov (United States)

    Wang, J Q; Perepezko, J H

    2016-12-07

    The development of shear bands is recognized as the primary mechanism in controlling the plastic deformability of metallic glasses. However, the kinetics of the nucleation of shear bands has received limited attention. The nucleation of shear bands in metallic glasses (MG) can be investigated using a nanoindentation method to monitor the development of the first pop-in event that is a signature of shear band nucleation. The analysis of a statistically significant number of first pop-in events demonstrates the stochastic behavior that is characteristic of nucleation and reveals a multimodal behavior associated with local spatial heterogeneities. The shear band nucleation rate of the two nucleation modes and the associated activation energy, activation volume, and site density were determined by loading rate experiments. The nucleation activation energy is very close to the value that is characteristic of the β relaxation in metallic glass. The identification of the rate controlling kinetics for shear band nucleation offers guidance for promoting plastic flow in metallic glass.

  8. The protonation state around TyrD/TyrD• in photosystem II is reflected in its biphasic oxidation kinetics.

    Science.gov (United States)

    Sjöholm, Johannes; Ho, Felix; Ahmadova, Nigar; Brinkert, Katharina; Hammarström, Leif; Mamedov, Fikret; Styring, Stenbjörn

    2017-02-01

    The tyrosine residue D2-Tyr160 (Tyr D ) in photosystem II (PSII) can be oxidized through charge equilibrium with the oxygen evolving complex in PSII. The kinetics of the electron transfer from Tyr D has been followed using time-resolved EPR spectroscopy after triggering the oxidation of pre-reduced Tyr D by a short laser flash. After its oxidation Tyr D is observed as a neutral radical (Tyr D • ) indicating that the oxidation is coupled to a deprotonation event. The redox state of Tyr D was reported to be determined by the two water positions identified in the crystal structure of PSII [Saito et al. (2013) Proc. Natl. Acad. Sci. USA 110, 7690]. To assess the mechanism of the proton coupled electron transfer of Tyr D the oxidation kinetics has been followed in the presence of deuterated buffers, thereby resolving the kinetic isotope effect (KIE) of Tyr D oxidation at different H/D concentrations. Two kinetic phases of Tyr D oxidation - the fast phase (msec-sec time range) and the slow phase (tens of seconds time range) were resolved as was previously reported [Vass and Styring (1991) Biochemistry 30, 830]. In the presence of deuterated buffers the kinetics was significantly slower compared to normal buffers. Furthermore, although the kinetics were faster at both high pH and pD values the observed KIE was found to be similar (~2.4) over the whole pL range investigated. We assign the fast and slow oxidation phases to two populations of PSII centers with different water positions, proximal and distal respectively, and discuss possible deprotonation events in the vicinity of Tyr D . Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Utilization of rotor kinetic energy storage for hybrid vehicles

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  10. Performance evaluation of a sub-millimeter spatial resolution PET detector module using a digital silicon photomultiplier coupled LGSO array

    Energy Technology Data Exchange (ETDEWEB)

    Leem, Hyun Tae [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Choi, Yong, E-mail: ychoi@sogang.ac.kr [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Kim, Kyu Bom; Lee, Sangwon [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Yamamoto, Seiichi [Department of Medical Technology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Yeom, Jung-Yeol, E-mail: jungyeol@korea.ac.kr [School of Biomedical Engineering, Korea University, Seoul (Korea, Republic of)

    2017-02-21

    In positron emission tomography (PET) for breast, brain and small animal imaging, the spatial resolution of a PET detector is crucial to obtain high quality PET images. In this study, a PET detector for sub-millimeter spatial resolution imaging purpose was assembled using 4×4 pixels of a digital silicon photomultiplier (dSiPM, DPC-3200-22-44, Philips) coupled with a 15×15 LGSO array with BaSO{sub 4} reflector, and a 1 mm thick acrylic light guide for light distribution between the dSiPM pixels. The active area of each dSiPM pixel was 3.2×3.9 mm{sup 2} and the size of each LGSO scintillator element was 0.7×0.7×6 mm{sup 3}. In this paper, we experimentally demonstrated the performance of the PET detector by measuring the energy resolution, 2D flood map, peak to valley (P/V) ratio, and coincidence resolving time (CRT). All measurements were performed at a temperature of 10±1 ℃. The average energy resolution was 15.6% (without correcting for saturation effects) at 511 keV and the best CRT was 242±5 ps. The 2D flood map obtained with an energy window of 400–600 keV demonstrated clear identification of all pixels, and the average P/V ratio of the X- and Y-directions were 7.31 and 7.81, respectively. This study demonstrated that the PET detector could be suitable for application in high resolution PET while achieving good timing resolution.

  11. Heparin kinetics

    International Nuclear Information System (INIS)

    Swart, C.A.M. de.

    1983-01-01

    The author has studied the kinetics of heparin and heparin fractions after intravenous administration in humans and in this thesis the results of this study are reported. Basic knowledge about the physico-chemical properties of heparin and its interactions with proteins resulting in anticoagulant and lipolytic effects are discussed in a review (chapter II), which also comprises some clinical aspects of heparin therapy. In chapter III the kinetics of the anticoagulant effect are described after intravenous administration of five commercial heparin preparations. A mathematical model is presented that fits best to these kinetics. The kinetics of the anticoagulant and lipolytic effects after intravenous injection of various 35 S-radiolabelled heparin fractions and their relationship with the disappearance of the radiolabel are described in chapter IV. Chapter V gives a description of the kinetics of two radiolabels after injection of in vitro formed complexes consisting of purified, 125 I-radiolabelled antithrombin III and various 35 S-radiolabelled heparin fractions. (Auth.)

  12. Convective drying of osmo-dehydrated apple slices: kinetics and spatial behavior of effective mass diffusivity and moisture content

    Science.gov (United States)

    de Farias Aires, Juarez Everton; da Silva, Wilton Pereira; de Almeida Farias Aires, Kalina Lígia Cavalcante; da Silva Júnior, Aluízio Freire; da Silva e Silva, Cleide Maria Diniz Pereira

    2018-04-01

    The main objective of this study is the presentation of a numerical model of liquid diffusion for the description of the convective drying of apple slices submitted to pretreatment of osmotic dehydration able of predicting the spatial distribution of effective mass diffusivity values in apple slabs. Two models that use numerical solutions of the two-dimensional diffusion equation in Cartesian coordinates with the boundary condition of third kind were proposed to describe drying. The first one does not consider the shrinkage of the product and assumes that the process parameters remain constant along the convective drying. The second one considers the shrinkage of the product and assumes that the effective mass diffusivity of water varies according to the local value of the water content in the apple samples. Process parameters were estimated from experimental data through an optimizer coupled to the numerical solutions. The osmotic pretreatment did not reduce the drying time in relation to the fresh fruits when the drying temperature was equal to 40 °C. The use of the temperature of 60 °C led to a reduction in the drying time. The model that considers the variations in the dimensions of the product and the variation in the effective mass diffusivity proved to be more adequate to describe the process.

  13. Effects of small-world connectivity on noise-induced temporal and spatial order in neural media

    International Nuclear Information System (INIS)

    Perc, Matjaz

    2007-01-01

    We present an overview of possible effects of small-world connectivity on noise-induced temporal and spatial order in a two-dimensional network of excitable neural media with FitzHugh-Nagumo local dynamics. Small-world networks are characterized by a given fraction of so-called long-range couplings or shortcut links that connect distant units of the system, while all other units are coupled in a diffusive-like manner. Interestingly, already a small fraction of these long-range couplings can have wide-ranging effects on the temporal as well as spatial noise-induced dynamics of the system. Here we present two main effects. First, we show that the temporal order, characterized by the autocorrelation of a firing-rate function, can be greatly enhanced by the introduction of small-world connectivity, whereby the effect increases with the increasing fraction of introduced shortcut links. Second, we show that the introduction of long-range couplings induces disorder of otherwise ordered, spiral-wave-like, noise-induced patterns that can be observed by exclusive diffusive connectivity of spatial units. Thereby, already a small fraction of shortcut links is sufficient to destroy coherent pattern formation in the media. Although the two results seem contradictive, we provide an explanation considering the inherent scale-free nature of small-world networks, which on one hand, facilitates signal transduction and thus temporal order in the system, whilst on the other hand, disrupts the internal spatial scale of the media thereby hindering the existence of coherent wave-like patterns. Additionally, the importance of spatially versus temporally ordered neural network functioning is discussed

  14. Ion-neutral gas reactions in a collision/reaction cell in inductively coupled plasma mass spectrometry: Correlation of ion signal decrease to kinetic rate constants

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Patrick J. [Trace Element Research Laboratory, School of Earth Sciences, The Ohio State University, 125 S. Oval Mall, Columbus, OH 43210 (United States); Department of Chemistry, The Ohio State University, 120 18th Avenue, Columbus, OH 43210 (United States); Olesik, John W., E-mail: olesik.2@osu.edu [Trace Element Research Laboratory, School of Earth Sciences, The Ohio State University, 125 S. Oval Mall, Columbus, OH 43210 (United States)

    2015-03-01

    Reaction gas flow rate dependent Ar{sub 2}{sup +} and Ar{sup +} signals are correlated to fundamental kinetic rate coefficients. A simple calculation, assuming that gas exits the reaction cell due only to effusion, is described to estimate the gas pressure in the reaction cell. The value of the product of the kinetic rate constant and the ion residence time in the reaction cell can be determined from experimental measurement of the decrease in an ion signal as a function of reaction gas flow rate. New kinetic rate constants are determined for the reaction of CH{sub 3}F with Ar{sup +} and Ar{sub 2}{sup +}. - Highlights: • How to determine pressure and the product of the kinetic rate constant times the ion residence time in reaction cell • Relate measured ICP-DRC-MS signals versus gas flow rate to kinetic rate constants measured previously using SIFT-MS • Describe how to determine previously unmeasured kinetic rate constants using ICP-DRC-MS.

  15. A coupled transport and solid mechanics formulation with improved reaction kinetics parameters for modeling oxidation and decomposition in a uranium hydride bed.

    Energy Technology Data Exchange (ETDEWEB)

    Salloum, Maher N.; Shugard, Andrew D.; Kanouff, Michael P.; Gharagozloo, Patricia E.

    2013-03-01

    Modeling of reacting flows in porous media has become particularly important with the increased interest in hydrogen solid-storage beds. An advanced type of storage bed has been proposed that utilizes oxidation of uranium hydride to heat and decompose the hydride, releasing the hydrogen. To reduce the cost and time required to develop these systems experimentally, a valid computational model is required that simulates the reaction of uranium hydride and oxygen gas in a hydrogen storage bed using multiphysics finite element modeling. This SAND report discusses the advancements made in FY12 (since our last SAND report SAND2011-6939) to the model developed as a part of an ASC-P&EM project to address the shortcomings of the previous model. The model considers chemical reactions, heat transport, and mass transport within a hydride bed. Previously, the time-varying permeability and porosity were considered uniform. This led to discrepancies between the simulated results and experimental measurements. In this work, the effects of non-uniform changes in permeability and porosity due to phase and thermal expansion are accounted for. These expansions result in mechanical stresses that lead to bed deformation. To describe this, a simplified solid mechanics model for the local variation of permeability and porosity as a function of the local bed deformation is developed. By using this solid mechanics model, the agreement between our reacting bed model and the experimental data is improved. Additionally, more accurate uranium hydride oxidation kinetics parameters are obtained by fitting the experimental results from a pure uranium hydride oxidation measurement to the ones obtained from the coupled transport-solid mechanics model. Finally, the coupled transport-solid mechanics model governing equations and boundary conditions are summarized and recommendations are made for further development of ARIA and other Sandia codes in order for them to sufficiently implement the model.

  16. The effect of compressibility on the Alfven spatial resonance heating

    International Nuclear Information System (INIS)

    Azevedo, C.A.

    1984-01-01

    The effect of compressibility of magnetic field line on the damping rate of Alfven spatial resonance heating for a high beta plasma (Kinetic pressure/magnetic pressure) was analysed, using the ideal MHD (Magnetohydrodynamic) model in cylindrical geometry for a diffuse θ-pinch with conducting wall. The dispersion relation was obtained solving the equation of motion in the plasma and vacuum regions together with boundary conditions. (Author) [pt

  17. Ratio of bulk to shear viscosity in a quasigluon plasma: from weak to strong coupling

    CERN Document Server

    Bluhm, M; Redlich, K

    2012-01-01

    The ratio of bulk to shear viscosity is expected to exhibit a different behaviour in weakly and in strongly coupled systems. This can be expressed by the dependence of the ratio on the squared sound velocity. In the high temperature QCD plasma at small running coupling, the viscosity ratio is uniquely determined by a quadratic dependence on the conformality measure, whereas in certain strongly coupled and nearly conformal theories this dependence is linear. Employing an effective kinetic theory of quasiparticle excitations with medium-modified dispersion relation, we analyze the ratio of bulk to shear viscosity of the gluon plasma. We show that in this approach the viscosity ratio comprises both dependencies found by means of weak coupling perturbative and strong coupling holographic techniques.

  18. Coupled electron-photon radiation transport

    International Nuclear Information System (INIS)

    Lorence, L.; Kensek, R.P.; Valdez, G.D.; Drumm, C.R.; Fan, W.C.; Powell, J.L.

    2000-01-01

    Massively-parallel computers allow detailed 3D radiation transport simulations to be performed to analyze the response of complex systems to radiation. This has been recently been demonstrated with the coupled electron-photon Monte Carlo code, ITS. To enable such calculations, the combinatorial geometry capability of ITS was improved. For greater geometrical flexibility, a version of ITS is under development that can track particles in CAD geometries. Deterministic radiation transport codes that utilize an unstructured spatial mesh are also being devised. For electron transport, the authors are investigating second-order forms of the transport equations which, when discretized, yield symmetric positive definite matrices. A novel parallelization strategy, simultaneously solving for spatial and angular unknowns, has been applied to the even- and odd-parity forms of the transport equation on a 2D unstructured spatial mesh. Another second-order form, the self-adjoint angular flux transport equation, also shows promise for electron transport

  19. Co-simulation coupling spectral/finite elements for 3D soil/structure interaction problems

    Science.gov (United States)

    Zuchowski, Loïc; Brun, Michael; De Martin, Florent

    2018-05-01

    The coupling between an implicit finite elements (FE) code and an explicit spectral elements (SE) code has been explored for solving the elastic wave propagation in the case of soil/structure interaction problem. The coupling approach is based on domain decomposition methods in transient dynamics. The spatial coupling at the interface is managed by a standard coupling mortar approach, whereas the time integration is dealt with an hybrid asynchronous time integrator. An external coupling software, handling the interface problem, has been set up in order to couple the FE software Code_Aster with the SE software EFISPEC3D.

  20. Anomalous dispersion in correlated porous media: a coupled continuous time random walk approach

    Science.gov (United States)

    Comolli, Alessandro; Dentz, Marco

    2017-09-01

    We study the causes of anomalous dispersion in Darcy-scale porous media characterized by spatially heterogeneous hydraulic properties. Spatial variability in hydraulic conductivity leads to spatial variability in the flow properties through Darcy's law and thus impacts on solute and particle transport. We consider purely advective transport in heterogeneity scenarios characterized by broad distributions of heterogeneity length scales and point values. Particle transport is characterized in terms of the stochastic properties of equidistantly sampled Lagrangian velocities, which are determined by the flow and conductivity statistics. The persistence length scales of flow and transport velocities are imprinted in the spatial disorder and reflect the distribution of heterogeneity length scales. Particle transitions over the velocity length scales are kinematically coupled with the transition time through velocity. We show that the average particle motion follows a coupled continuous time random walk (CTRW), which is fully parameterized by the distribution of flow velocities and the medium geometry in terms of the heterogeneity length scales. The coupled CTRW provides a systematic framework for the investigation of the origins of anomalous dispersion in terms of heterogeneity correlation and the distribution of conductivity point values. We derive analytical expressions for the asymptotic scaling of the moments of the spatial particle distribution and first arrival time distribution (FATD), and perform numerical particle tracking simulations of the coupled CTRW to capture the full average transport behavior. Broad distributions of heterogeneity point values and lengths scales may lead to very similar dispersion behaviors in terms of the spatial variance. Their mechanisms, however are very different, which manifests in the distributions of particle positions and arrival times, which plays a central role for the prediction of the fate of dissolved substances in

  1. Kinetics of DNA tile dimerization.

    Science.gov (United States)

    Jiang, Shuoxing; Yan, Hao; Liu, Yan

    2014-06-24

    Investigating how individual molecular components interact with one another within DNA nanoarchitectures, both in terms of their spatial and temporal interactions, is fundamentally important for a better understanding of their physical behaviors. This will provide researchers with valuable insight for designing more complex higher-order structures that can be assembled more efficiently. In this report, we examined several spatial factors that affect the kinetics of bivalent, double-helical (DH) tile dimerization, including the orientation and number of sticky ends (SEs), the flexibility of the double helical domains, and the size of the tiles. The rate constants we obtained confirm our hypothesis that increased nucleation opportunities and well-aligned SEs accelerate tile-tile dimerization. Increased flexibility in the tiles causes slower dimerization rates, an effect that can be reversed by introducing restrictions to the tile flexibility. The higher dimerization rates of more rigid tiles results from the opposing effects of higher activation energies and higher pre-exponential factors from the Arrhenius equation, where the pre-exponential factor dominates. We believe that the results presented here will assist in improved implementation of DNA tile based algorithmic self-assembly, DNA based molecular robotics, and other specific nucleic acid systems, and will provide guidance to design and assembly processes to improve overall yield and efficiency.

  2. Triheterometallic Lanthanide Complexes Prepared from Kinetically Inert Lanthanide Building Blocks

    DEFF Research Database (Denmark)

    Sørensen, Thomas Just; Tropiano, Manuel; Kenwright, Alan M.

    2017-01-01

    Three molecular structures, each containing three different lanthanide(III) centres, have been prepared by coupling three kinetically inert lanthanide(III) complexes in an Ugi reaction. These 2 kDa molecules were purified by dialysis and characterised by NMR and luminescence techniques. The photo...... and lanthanide(III) centres in these molecules inhibits the efficient sensitisation of europium. We conclude that the intramolecular collisions required for efficient Dexter energy transfer from the sensitiser to the lanthanide(III) centre can be prevented by steric congestion....

  3. Development and verification of a three-dimensional core model for WWR type reactors and its coupling with the accident code ATHLET. Final report

    International Nuclear Information System (INIS)

    Grundmann, U.; Lucas, D.; Mittag, S.; Rohde, U.

    1995-04-01

    The main goal of the project was the coupling of the 3D core model DYN3D for Russian VVER-type reactors, which has been developed in the RCR, with the thermohydraulic code ATHLET. The coupling has been realized on two basically different ways: - The implementation of only the neutron kinetics model of DYN3D into ATHLET (internal coupling), - the connection of the complete DYN3D core model including neutron kinetics, thermohydraulics and fuel rod model via data interfaces at the core top and bottom (external coupling). For the test of the coupling, comparative calculations between internal and external coupling versions have been carried out for a LOCA and a reactivity transient. Complementary goals of the project were: - The development of a DYN3D version for burn-up calculations, - the verification of DYN3D on benchmark tasks and experimental data on fuel rod behaviour, - a study on the extension of the neutron-physical data base. The project contributed to the development of advanced tools for the safety analysis of VVER-type reactors. Future work is aimed to the verification of the coupled code complex DYN3D-ATHLET. (orig.) [de

  4. Research on the decision-making model of land-use spatial optimization

    Science.gov (United States)

    He, Jianhua; Yu, Yan; Liu, Yanfang; Liang, Fei; Cai, Yuqiu

    2009-10-01

    Using the optimization result of landscape pattern and land use structure optimization as constraints of CA simulation results, a decision-making model of land use spatial optimization is established coupled the landscape pattern model with cellular automata to realize the land use quantitative and spatial optimization simultaneously. And Huangpi district is taken as a case study to verify the rationality of the model.

  5. Indirect coupling of phosphate release to de novo tension generation during muscle contraction.

    Science.gov (United States)

    Davis, J S; Rodgers, M E

    1995-01-01

    A key question in muscle contraction is how tension generation is coupled to the chemistry of the actomyosin ATPase. Biochemical and mechanochemical experiments link tension generation to a change in structure associated with phosphate release. Length-jump and temperature-jump experiments, on the other hand, implicate phase 2slow, a significantly faster, markedly strain-sensitive kinetic process in tension generation. We use a laser temperature jump to probe the kinetics and mechanism of tension generation in skinned rabbit psoas fibers--an appropriate method since both phosphate release and phase 2slow are readily perturbed by temperature. Kinetics characteristic of the structural change associated with phosphate release are observed only when phosphate is added to fibers. When present, it causes a reduction in fiber tension; otherwise, no force is generated when it is perturbed. We therefore exclude this step from tension generation. The kinetics of de novo tension generation by the temperature-jump equivalent of phase 2slow appear unaffected by phosphate binding. We therefore propose that phosphate release is indirectly coupled to de novo tension generation via a steady-state flux through an irreversible step. We conclude that tension generation occurs in the absence of chemical change as the result of an entropy-driven transition between strongly bound crossbridges in the actomyosin-ADP state. The mechanism resembles the operation of a clock, with phosphate release providing the energy to tension the spring, and the irreversible step functions as the escapement mechanism, which is followed in turn by tension generation as the movement of the hands. Images Fig. 6 PMID:7479824

  6. Equilibration and hydrodynamics at strong and weak coupling

    Science.gov (United States)

    van der Schee, Wilke

    2017-11-01

    We give an updated overview of both weak and strong coupling methods to describe the approach to a plasma described by viscous hydrodynamics, a process now called hydrodynamisation. At weak coupling the very first moments after a heavy ion collision is described by the colour-glass condensate framework, but quickly thereafter the mean free path is long enough for kinetic theory to become applicable. Recent simulations indicate thermalization in a time t ∼ 40(η / s) 4 / 3 / T [L. Keegan, A. Kurkela, P. Romatschke, W. van der Schee, Y. Zhu, Weak and strong coupling equilibration in nonabelian gauge theories, JHEP 04 (2016) 031. arxiv:arXiv:1512.05347, doi:10.1007/JHEP04(2016)031], with T the temperature at that time and η / s the shear viscosity divided by the entropy density. At (infinitely) strong coupling it is possible to mimic heavy ion collisions by using holography, which leads to a dual description of colliding gravitational shock waves. The plasma formed hydrodynamises within a time of 0.41/T recent extension found corrections to this result for finite values of the coupling, when η / s is bigger than the canonical value of 1/4π, which leads to t ∼ (0.41 + 1.6 (η / s - 1 / 4 π)) / T [S. Grozdanov, W. van der Schee, Coupling constant corrections in holographic heavy ion collisions, arxiv:arXiv:1610.08976]. Future improvements include the inclusion of the effects of the running coupling constant in QCD.

  7. Spatial pattern formation induced by Gaussian white noise.

    Science.gov (United States)

    Scarsoglio, Stefania; Laio, Francesco; D'Odorico, Paolo; Ridolfi, Luca

    2011-02-01

    The ability of Gaussian noise to induce ordered states in dynamical systems is here presented in an overview of the main stochastic mechanisms able to generate spatial patterns. These mechanisms involve: (i) a deterministic local dynamics term, accounting for the local rate of variation of the field variable, (ii) a noise component (additive or multiplicative) accounting for the unavoidable environmental disturbances, and (iii) a linear spatial coupling component, which provides spatial coherence and takes into account diffusion mechanisms. We investigate these dynamics using analytical tools, such as mean-field theory, linear stability analysis and structure function analysis, and use numerical simulations to confirm these analytical results. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. First passage times for multiple particles with reversible target-binding kinetics

    Science.gov (United States)

    Grebenkov, Denis S.

    2017-10-01

    We investigate the first passage problem for multiple particles that diffuse towards a target, partially adsorb there, and then desorb after a finite exponentially distributed residence time. We search for the first time when m particles undergoing such reversible target-binding kinetics are found simultaneously on the target that may trigger an irreversible chemical reaction or a biophysical event. Even if the particles are independent, the finite residence time on the target yields an intricate temporal coupling between particles. We compute analytically the mean first passage time (MFPT) for two independent particles by mapping the original problem to higher-dimensional surface-mediated diffusion and solving the coupled partial differential equations. The respective effects of the adsorption and desorption rates on the MFPT are revealed and discussed.

  9. Dual-Mode Measurement and Theoretical Analysis of Evaporation Kinetics of Binary Mixtures

    Science.gov (United States)

    Song, Hanyu; He, Chi-Ruei; Basdeo, Carl; Li, Ji-Qin; Ye, Dezhuang; Kalonia, Devendra; Li, Si-Yu; Fan, Tai-Hsi

    Theoretical and experimental investigations are presented for the precision measurement of evaporation kinetics of binary mixtures using a quartz crystal resonator. A thin layer of light alcohol mixture including a volatile (methanol) and a much less volatile (1-butanol) components is deployed on top of the resonator. The normal or acoustic mode is to detect the moving liquid-vapor interface due to evaporation with a great spatial precision on the order of microns, and simultaneously the shear mode is used for in-situ detection of point viscosity or concentration of the mixture near the resonator. A one-dimensional theoretical model is developed to describe the underlying mass transfer and interfacial transport phenomena. Along with the modeling results, the transient evaporation kinetics, moving interface, and the stratification of viscosity of the liquid mixture during evaporation are simultaneously measured by the impedance response of the shear and longitudinal waves emitted from the resonator. The system can be used to characterize complicated evaporation kinetics involving multi-component fuels. American Chemical Society Petroleum Research Fund, NSF CMMI-0952646.

  10. Modeling of subtle kinetic processes in plasma simulation

    International Nuclear Information System (INIS)

    Sydora, R.D.; Decyk, V.K.; Dawson, J.M.

    1988-01-01

    A new diagnostic method for plasma simulation models is presented which enables one to probe the subtle dielectric properties of the plasma medium. The procedure involves the removal of the background plasma response in order to isolate the effects of small perturbing influences which are externally added. We have found the technique accurately describes fundamental kinetic plasma behavior such as the shielding of individual test charges and currents. Wave emission studies and drag of test particles has been carried out in explicit particle algorithms as well as large time step implicit and gyrokinetic models. Accurate plasma behavior is produced and it is possible to investigate in detail, processes which can be compared with plasma kinetic theory. The technique of subtraction is not only limited to particle simulation models but also can be used in MHD or fluid models where resolution is difficult due to the intensity of the background response relative to the phenomena one is interested in measuring, such as a weakly grouwing instability or nonlinear mode coupling effect. (author)

  11. A new kinetic model for human iodine metabolism

    International Nuclear Information System (INIS)

    Ficken, V.J.; Allen, E.W.; Adams, G.D.

    1985-01-01

    A new kinetic model of iodine metabolism incorporating preferential organification of tyrosil (TYR) residues of thyroglobulin is developed and evaluated for euthyroid (n=5) and hyperthyroid (n=11) subjects. Iodine and peripheral T4 metabolims were measured with oral /sup 131/I-NaI and intravenous /sup 125/I-74 respectively. Data (obtained over 10 days) and kinetic model are analyzed using the SAAM27 program developed by Berman (1978). Compartment rate constants (mean rate per hour +- ISD) are tabulated in this paper. Thyroid and renal iodide clearance compare favorably with values reported in the literature. TYR rate constants were not unique; however, values obtained are within the range of rate constants determined from the invitro data reported by others. Intraluminal iodine as coupled TYR is predicted to be 21% for euthyroid and 59% for hyperthyroid subjects compared to analytical chemical methods of 30% and 51% respectively determined elsewhere. The authors plan to evaluate this model as a method of predicting the thyroid radiation dose from orally administered I/sup 131/

  12. A methodology for analysing lateral coupled behavior of high speed railway vehicles and structures

    International Nuclear Information System (INIS)

    AntolIn, P; Goicolea, J M; Astiz, M A; Alonso, A

    2010-01-01

    Continuous increment of the speed of high speed trains entails the increment of kinetic energy of the trains. The main goal of this article is to study the coupled lateral behavior of vehicle-structure systems for high speed trains. Non linear finite element methods are used for structures whereas multibody dynamics methods are employed for vehicles. Special attention must be paid when dealing with contact rolling constraints for coupling bridge decks and train wheels. The dynamic models must include mixed variables (displacements and creepages). Additionally special attention must be paid to the contact algorithms adequate to wheel-rail contact. The coupled vehicle-structure system is studied in a implicit dynamic framework. Due to the presence of very different systems (trains and bridges), different frequencies are involved in the problem leading to stiff systems. Regarding to contact methods, a main branch is studied in normal contact between train wheels and bridge decks: penalty method. According to tangential contact FastSim algorithm solves the tangential contact at each time step solving a differential equation involving relative displacements and creepage variables. Integration for computing the total forces in the contact ellipse domain is performed for each train wheel and each solver iteration. Coupling between trains and bridges requires a special treatment according to the kinetic constraints imposed in the wheel-rail pair and the load transmission. A numerical example is performed.

  13. A methodology for analysing lateral coupled behavior of high speed railway vehicles and structures

    Science.gov (United States)

    Antolín, P.; Goicolea, J. M.; Astiz, M. A.; Alonso, A.

    2010-06-01

    Continuous increment of the speed of high speed trains entails the increment of kinetic energy of the trains. The main goal of this article is to study the coupled lateral behavior of vehicle-structure systems for high speed trains. Non linear finite element methods are used for structures whereas multibody dynamics methods are employed for vehicles. Special attention must be paid when dealing with contact rolling constraints for coupling bridge decks and train wheels. The dynamic models must include mixed variables (displacements and creepages). Additionally special attention must be paid to the contact algorithms adequate to wheel-rail contact. The coupled vehicle-structure system is studied in a implicit dynamic framework. Due to the presence of very different systems (trains and bridges), different frequencies are involved in the problem leading to stiff systems. Regarding to contact methods, a main branch is studied in normal contact between train wheels and bridge decks: penalty method. According to tangential contact FastSim algorithm solves the tangential contact at each time step solving a differential equation involving relative displacements and creepage variables. Integration for computing the total forces in the contact ellipse domain is performed for each train wheel and each solver iteration. Coupling between trains and bridges requires a special treatment according to the kinetic constraints imposed in the wheel-rail pair and the load transmission. A numerical example is performed.

  14. Equations for the kinetic modeling of supersonically flowing electrically excited lasers

    International Nuclear Information System (INIS)

    Lind, R.C.

    1973-01-01

    The equations for the kinetic modeling of a supersonically flowing electrically excited laser system are presented. The work focuses on the use of diatomic gases, in particular carbon monoxide mixtures. The equations presented include the vibrational rate equation which describes the vibrational population distribution, the electron, ion and electronic level rate equations, the gasdynamic equations for an ionized gas in the presence of an applied electric field, and the free electron Boltzmann equation including flow and gradient coupling terms. The model developed accounts for vibration--vibration collisions, vibration-translation collisions, electron-molecule inelastic excitation and superelastic de-excitation collisions, charge particle collisions, ionization and three body recombination collisions, elastic collisions, and radiative decay, all of which take place in such a system. A simplified form of the free electron Boltzmann equation is developed and discussed with emphasis placed on its coupling with the supersonic flow. A brief description of a possible solution procedure for the set of coupled equations is discussed

  15. Film growth kinetics and electric field patterning during electrospray deposition of block copolymer thin films

    Science.gov (United States)

    Toth, Kristof; Hu, Hanqiong; Choo, Youngwoo; Loewenberg, Michael; Osuji, Chinedum

    The delivery of sub-micron droplets of dilute polymer solutions to a heated substrate by electrospray deposition (ESD) enables precisely controlled and continuous growth of block copolymer (BCP) thin films. Here we explore patterned deposition of BCP films by spatially varying the electric field at the substrate using an underlying charged grid, as well as film growth kinetics. Numerical analysis was performed to examine pattern fidelity by considering the trajectories of charged droplets during flight through imposed periodic field variations in the vicinity of the substrate. Our work uncovered an unexpected modality for improving the resolution of the patterning process via stronger field focusing through the use of a second oppositely charged grid beneath a primary focusing array, with an increase in highly localized droplet deposition on the intersecting nodes of the grid. Substrate coverage kinetics are considered for homopolymer deposition in the context of simple kinetic models incorporating temperature and molecular weight dependence of diffusivity. By contrast, film coverage kinetics for block copolymer depositions are additionally convoluted with preferential wetting and thickness-periodicity commensurability effects. NSF GRFP.

  16. The influence of precipitation kinetics on trace element partitioning between solid and liquid solutions: A coupled fluid dynamics/thermodynamics framework to predict distribution coefficients

    Science.gov (United States)

    Kavner, A.

    2017-12-01

    In a multicomponent multiphase geochemical system undergoing a chemical reaction such as precipitation and/or dissolution, the partitioning of species between phases is determined by a combination of thermodynamic properties and transport processes. The interpretation of the observed distribution of trace elements requires models integrating coupled chemistry and mechanical transport. Here, a framework is presented that predicts the kinetic effects on the distribution of species between two reacting phases. Based on a perturbation theory combining Navier-Stokes fluid flow and chemical reactivity, the framework predicts rate-dependent partition coefficients in a variety of different systems. We present the theoretical framework, with applications to two systems: 1. species- and isotope-dependent Soret diffusion of species in a multicomponent silicate melt subjected to a temperature gradient, and 2. Elemental partitioning and isotope fractionation during precipitation of a multicomponent solid from a multicomponent liquid phase. Predictions will be compared with results from experimental studies. The approach has applications for understanding chemical exchange in at boundary layers such as the Earth's surface magmatic systems and at the core/mantle boundary.

  17. Radial Distribution Functions of Strongly Coupled Two-Temperature Plasmas

    Science.gov (United States)

    Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.

    2017-10-01

    We present tests of three theoretical models for the radial distribution functions (RDFs) in two-temperature strongly coupled plasmas. RDFs are useful in extending plasma thermodynamics and kinetic theory to strong coupling, but they are usually known only for thermal equilibrium or for approximate one-component model plasmas. Accurate two-component modeling is necessary to understand the impact of strong coupling on inter-species transport, e.g., ambipolar diffusion and electron-ion temperature relaxation. We demonstrate that the Seuferling-Vogel-Toeppfer (SVT) extension of the hypernetted chain equations not only gives accurate RDFs (as compared with classical molecular dynamics simulations), but also has a simple connection with the Yukawa OCP model. This connection gives a practical means to recover the structure of the electron background from knowledge of the ion-ion RDF alone. Using the model RDFs in Effective Potential Theory, we report the first predictions of inter-species transport coefficients of strongly coupled plasmas far from equilibrium. This work is s