WorldWideScience

Sample records for spatial correlations applied

  1. Applying and extending Oracle Spatial

    CERN Document Server

    Simon Gerard Greener, Siva Ravada

    2013-01-01

    This book is an advanced practical guide to applying and extending Oracle Spatial.This book is for existing users of Oracle and Oracle Spatial who have, at a minimum, basic operational experience of using Oracle or an equivalent database. Advanced skills are not required.

  2. A new methodology of spatial cross-correlation analysis.

    Science.gov (United States)

    Chen, Yanguang

    2015-01-01

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran's index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson's correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China's urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes.

  3. A New Methodology of Spatial Cross-Correlation Analysis

    Science.gov (United States)

    Chen, Yanguang

    2015-01-01

    Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran’s index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson’s correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China’s urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes. PMID:25993120

  4. Spatial photon correlations in multiple scattering media

    DEFF Research Database (Denmark)

    Smolka, Stephan; Muskens, O.; Lagendijk, A.

    2010-01-01

    We present the first angle-resolved measurements of spatial photon correlations that are induced by multiple scattering of light. The correlation relates multiple scattered photons at different spatial positions and depends on incident photon fluctuations.......We present the first angle-resolved measurements of spatial photon correlations that are induced by multiple scattering of light. The correlation relates multiple scattered photons at different spatial positions and depends on incident photon fluctuations....

  5. WHEN THE DISTURBANCES ARE SPATIALLY CORRELATED

    African Journals Online (AJOL)

    correlation, spatial error process. INTRODUCTION. Consider the linear regression model for spatial correlation y=XB +u, u=Ce, (1) where y is a Txl observable random vector, X is a Txk matrix of known constants with full column rank k, B is a k xl vector of unknown parameters,. :2 is a Txl random vector with expectation zero ...

  6. Spatial Correlation Of Streamflows: An Analytical Approach

    Science.gov (United States)

    Betterle, A.; Schirmer, M.; Botter, G.

    2016-12-01

    The interwoven space and time variability of climate and landscape properties results in complex and non-linear hydrological response of streamflow dynamics. Understanding how meteorologic and morphological characteristics of catchments affect similarity/dissimilarity of streamflow timeseries at their outlets represents a scientific challenge with application in water resources management, ecological studies and regionalization approaches aimed to predict streamflows in ungauged areas. In this study, we establish an analytical approach to estimate the spatial correlation of daily streamflows in two arbitrary locations within a given hydrologic district or river basin at seasonal and annual time scales. The method is based on a stochastic description of the coupled streamflow dynamics at the outlet of two catchments. The framework aims to express the correlation of daily streamflows at two locations along a river network as a function of a limited number of physical parameters characterizing the main underlying hydrological drivers, that include climate conditions, precipitation regime and catchment drainage rates. The proposed method portrays how heterogeneity of climate and landscape features affect the spatial variability of flow regimes along river systems. In particular, we show that frequency and intensity of synchronous effective rainfall events in the relevant contributing catchments are the main driver of the spatial correlation of daily discharge, whereas only pronounced differences in the drainage rate of the two basins bear a significant effect on the streamflow correlation. The topological arrangement of the two outlets also influences the underlying streamflow correlation, as we show that nested catchments tend to maximize the spatial correlation of flow regimes. The application of the method to a set of catchments in the South-Eastern US suggests the potential of the proposed tool for the characterization of spatial connections of flow regimes in the

  7. Fourth-Order Spatial Correlation of Thermal Light

    International Nuclear Information System (INIS)

    Wen Feng; Zhang Xun; Sun Jia; Song Jian-Ping; Zhang Yan-Peng; Xue Xin-Xin

    2014-01-01

    We investigate the fourth-order spatial correlation properties of pseudo-thermal light in the photon counting regime, and apply the Klyshko advanced-wave picture to describe the process of four-photon coincidence counting measurement. We deduce the theory of a proof-of-principle four-photon coincidence counting configuration, and find that if the four randomly radiated photons come from the same radiation area and are indistinguishable in principle, the fourth-order correlation of them is 24 times larger than that when four photons come from different radiation areas. In addition, we also show that the higher-order spatial correlation function can be decomposed into multiple lower-order correlation functions, and the contrast and visibility of low-order correlation peaks are less than those of higher orders, while the resolutions all are identical. This study may be useful for better understanding the four-photon interference and multi-channel correlation imaging

  8. Hierarchical clustering using correlation metric and spatial continuity constraint

    Science.gov (United States)

    Stork, Christopher L.; Brewer, Luke N.

    2012-10-02

    Large data sets are analyzed by hierarchical clustering using correlation as a similarity measure. This provides results that are superior to those obtained using a Euclidean distance similarity measure. A spatial continuity constraint may be applied in hierarchical clustering analysis of images.

  9. Correlation of Spatially Filtered Dynamic Speckles in Distance Measurement Application

    International Nuclear Information System (INIS)

    Semenov, Dmitry V.; Nippolainen, Ervin; Kamshilin, Alexei A.; Miridonov, Serguei V.

    2008-01-01

    In this paper statistical properties of spatially filtered dynamic speckles are considered. This phenomenon was not sufficiently studied yet while spatial filtering is an important instrument for speckles velocity measurements. In case of spatial filtering speckle velocity information is derived from the modulation frequency of filtered light power which is measured by photodetector. Typical photodetector output is represented by a narrow-band random noise signal which includes non-informative intervals. Therefore more or less precious frequency measurement requires averaging. In its turn averaging implies uncorrelated samples. However, conducting research we found that correlation is typical property not only of dynamic speckle patterns but also of spatially filtered speckles. Using spatial filtering the correlation is observed as a response of measurements provided to the same part of the object surface or in case of simultaneously using several adjacent photodetectors. Found correlations can not be explained using just properties of unfiltered dynamic speckles. As we demonstrate the subject of this paper is important not only from pure theoretical point but also from the point of applied speckle metrology. E.g. using single spatial filter and an array of photodetector can greatly improve accuracy of speckle velocity measurements

  10. Cell Matrix Remodeling Ability Shown by Image Spatial Correlation

    Science.gov (United States)

    Chiu, Chi-Li; Digman, Michelle A.; Gratton, Enrico

    2013-01-01

    Extracellular matrix (ECM) remodeling is a critical step of many biological and pathological processes. However, most of the studies to date lack a quantitative method to measure ECM remodeling at a scale comparable to cell size. Here, we applied image spatial correlation to collagen second harmonic generation (SHG) images to quantitatively evaluate the degree of collagen remodeling by cells. We propose a simple statistical method based on spatial correlation functions to determine the size of high collagen density area around cells. We applied our method to measure collagen remodeling by two breast cancer cell lines (MDA-MB-231 and MCF-7), which display different degrees of invasiveness, and a fibroblast cell line (NIH/3T3). We found distinct collagen compaction levels of these three cell lines by applying the spatial correlation method, indicating different collagen remodeling ability. Furthermore, we quantitatively measured the effect of Latrunculin B and Marimastat on MDA-MB-231 cell line collagen remodeling ability and showed that significant collagen compaction level decreases with these treatments. PMID:23935614

  11. Localization in a one-dimensional spatially correlated random potential

    International Nuclear Information System (INIS)

    Kasner, M.; Weller, W.

    1986-01-01

    The motion of an electron in a random one-dimensional spatially correlated potential is investigated. The spatial correlation is generated by a Markov chain. It is shown that the influence of the spatial correlation can be described by means of oscillating vertices usually neglected in the Berezinskii diagram technique. Correlation mainly leads to an increase of the localization length in comparison with an uncorrelated potential. However, there is a region of the parameter, where the localization decreases. (author)

  12. The pair correlation function of spatial Hawkes processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Torrisi, Giovanni Luca

    2007-01-01

    Spatial Hawkes processes can be considered as spatial versions of classical Hawkes processes. We derive the pair correlation function of stationary spatial Hawkes processes and discuss the connection to the Bartlett spectrum and other summary statistics. Particularly, results for Gaussian fertility...... rates and the extension to spatial Hawkes processes with random fertility rates are discussed....

  13. Spatial correlation length of normalized cone data in sand

    DEFF Research Database (Denmark)

    Firouzianbandpey, Sarah; Griffiths, D. V.; Ibsen, Lars Bo

    2014-01-01

    The main topic of this study is to assess the anisotropic spatial correlation lengths of a sand layer deposit based on cone penetration testing with pore pressure measurement (CPTu) data. Spatial correlation length can be an important factor in reliability analysis of geotechnical systems, yet it...

  14. Spatial correlations in compressible granular flows

    OpenAIRE

    Van Noije, T. P. C.; Ernst, M. H.; Brito López, Ricardo

    1998-01-01

    The clustering instability in freely evolving granular fluids manifests itself in the density-density correlation function and structure factor. These functions are calculated from fluctuating hydrodynamics. As time increases, the structure factor of density fluctuations develops a maximum, which shifts to smaller wave numbers (growing correlation length). Furthermore, the inclusion of longitudinal velocity fluctuations changes long-range correlations in the flow field qualitatively and exten...

  15. A model relating Eulerian spatial and temporal velocity correlations

    Science.gov (United States)

    Cholemari, Murali R.; Arakeri, Jaywant H.

    2006-03-01

    In this paper we propose a model to relate Eulerian spatial and temporal velocity autocorrelations in homogeneous, isotropic and stationary turbulence. We model the decorrelation as the eddies of various scales becoming decorrelated. This enables us to connect the spatial and temporal separations required for a certain decorrelation through the ‘eddy scale’. Given either the spatial or the temporal velocity correlation, we obtain the ‘eddy scale’ and the rate at which the decorrelation proceeds. This leads to a spatial separation from the temporal correlation and a temporal separation from the spatial correlation, at any given value of the correlation relating the two correlations. We test the model using experimental data from a stationary axisymmetric turbulent flow with homogeneity along the axis.

  16. Spatial correlations in compressible granular flows

    NARCIS (Netherlands)

    van Noije, T.P.C.; Ernst, M.H.; Brito, R.

    The clustering instability in freely evolving granular fluids manifests itself in the density-density correlation function and structure factor. These functions are calculated from fluctuating hydrodynamics. As time increases, the structure factor of density fluctuations develops a maximum, which

  17. Spatial correlation of probabilistic earthquake ground motion and loss

    Science.gov (United States)

    Wesson, R.L.; Perkins, D.M.

    2001-01-01

    Spatial correlation of annual earthquake ground motions and losses can be used to estimate the variance of annual losses to a portfolio of properties exposed to earthquakes A direct method is described for the calculations of the spatial correlation of earthquake ground motions and losses. Calculations for the direct method can be carried out using either numerical quadrature or a discrete, matrix-based approach. Numerical results for this method are compared with those calculated from a simple Monte Carlo simulation. Spatial correlation of ground motion and loss is induced by the systematic attenuation of ground motion with distance from the source, by common site conditions, and by the finite length of fault ruptures. Spatial correlation is also strongly dependent on the partitioning of the variability, given an event, into interevent and intraevent components. Intraevent variability reduces the spatial correlation of losses. Interevent variability increases spatial correlation of losses. The higher the spatial correlation, the larger the variance in losses to a port-folio, and the more likely extreme values become. This result underscores the importance of accurately determining the relative magnitudes of intraevent and interevent variability in ground-motion studies, because of the strong impact in estimating earthquake losses to a portfolio. The direct method offers an alternative to simulation for calculating the variance of losses to a portfolio, which may reduce the amount of calculation required.

  18. Comparison of different spatial transformations applied to EEG data: A case study of error processing.

    Science.gov (United States)

    Cohen, Michael X

    2015-09-01

    The purpose of this paper is to compare the effects of different spatial transformations applied to the same scalp-recorded EEG data. The spatial transformations applied are two referencing schemes (average and linked earlobes), the surface Laplacian, and beamforming (a distributed source localization procedure). EEG data were collected during a speeded reaction time task that provided a comparison of activity between error vs. correct responses. Analyses focused on time-frequency power, frequency band-specific inter-electrode connectivity, and within-subject cross-trial correlations between EEG activity and reaction time. Time-frequency power analyses showed similar patterns of midfrontal delta-theta power for errors compared to correct responses across all spatial transformations. Beamforming additionally revealed error-related anterior and lateral prefrontal beta-band activity. Within-subject brain-behavior correlations showed similar patterns of results across the spatial transformations, with the correlations being the weakest after beamforming. The most striking difference among the spatial transformations was seen in connectivity analyses: linked earlobe reference produced weak inter-site connectivity that was attributable to volume conduction (zero phase lag), while the average reference and Laplacian produced more interpretable connectivity results. Beamforming did not reveal any significant condition modulations of connectivity. Overall, these analyses show that some findings are robust to spatial transformations, while other findings, particularly those involving cross-trial analyses or connectivity, are more sensitive and may depend on the use of appropriate spatial transformations. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Spatial variability of correlated color temperature of lightning channels

    Directory of Open Access Journals (Sweden)

    Nobuaki Shimoji

    Full Text Available In this paper, we present the spatial variability of the correlated color temperature of lightning channel shown in a digital still image. In order to analyze the correlated color temperature, we calculated chromaticity coordinates of the lightning channels in the digital still image. From results, the spatial variation of the correlated color temperature of the lightning channel was confirmed. Moreover, the results suggest that the correlated color temperature and peak current of the lightning channels are related to each other. Keywords: Lightning, Color analysis, Correlated color temperature, Chromaticity coordinate, CIE 1931 xy-chromaticity diagram

  20. Spatial correlation between weed species densities and soil properties

    DEFF Research Database (Denmark)

    Walter, Mette; Christensen, Svend; Simmelsgaard, Svend Erik

    2002-01-01

    The spatial cross-correlation between weed species densities and six soil properties within fields was analysed using cross-semivariograms. The survey was carried out in three successive years in two fields. The most consistent relationship between weed species density (numbers m−2) and soil...... properties was negative cross-correlation between the density of Viola arvensis Murray and clay content. This correlation was found in both fields; however, the range of spatial dependence varied between fields. In one of the fields, the density of Lamium purpureum L. was positively cross......-correlated with the phosphorus content in the soil in all years. The density of Veronica spp. and Poa annua L. was negatively cross-correlated with pH in all three years. Other spatial cross-correlations that were found in this study were inconsistent over time or field site. The densities of some of the weed species were...

  1. Spatial correlation in precipitation trends in the Brazilian Amazon

    Science.gov (United States)

    Buarque, Diogo Costa; Clarke, Robin T.; Mendes, Carlos Andre Bulhoes

    2010-06-01

    A geostatistical analysis of variables derived from Amazon daily precipitation records (trends in annual precipitation totals, trends in annual maximum precipitation accumulated over 1-5 days, trend in length of dry spell, trend in number of wet days per year) gave results that are consistent with those previously reported. Averaged over the Brazilian Amazon region as a whole, trends in annual maximum precipitations were slightly negative, the trend in the length of dry spell was slightly positive, and the trend in the number of wet days in the year was slightly negative. For trends in annual maximum precipitation accumulated over 1-5 days, spatial correlation between trends was found to extend up to a distance equivalent to at least half a degree of latitude or longitude, with some evidence of anisotropic correlation. Time trends in annual precipitation were found to be spatially correlated up to at least ten degrees of separation, in both W-E and S-N directions. Anisotropic spatial correlation was strongly evident in time trends in length of dry spell with much stronger evidence of spatial correlation in the W-E direction, extending up to at least five degrees of separation, than in the S-N. Because the time trends analyzed are shown to be spatially correlated, it is argued that methods at present widely used to test the statistical significance of climate trends over time lead to erroneous conclusions if spatial correlation is ignored, because records from different sites are assumed to be statistically independent.

  2. Utilisation of spatial and temporal correlations in positron emission tomography

    International Nuclear Information System (INIS)

    Sureau, F.

    2008-06-01

    In this thesis we propose, implement, and evaluate algorithms improving spatial resolution in reconstructed images and reducing data noise in positron emission tomography imaging. These algorithms have been developed for a high resolution tomograph (HRRT) and applied to brain imaging, but can be used for other tomographs or studies. We first developed an iterative reconstruction algorithm including a stationary and isotropic model of resolution in image space, experimentally measured. We evaluated the impact of such a model of resolution in Monte-Carlo simulations, physical phantom experiments and in two clinical studies by comparing our algorithm with a reference reconstruction algorithm. This study suggests that biases due to partial volume effects are reduced, in particular in the clinical studies. Better spatial and temporal correlations are also found at the voxel level. However, other methods should be developed to further reduce data noise. We then proposed a maximum a posteriori de-noising algorithm that can be used for dynamic data to de-noise temporally raw data (sino-grams) or reconstructed images. The a priori modeled the coefficients in a wavelet basis of all the signals without noise (in an image or sinogram). We compared this technique with a reference de-noising method on replicated simulations. This illustrates the potential benefits of our approach of sinogram de-noising. (author)

  3. Spatial correlation analysis of urban traffic state under a perspective of community detection

    Science.gov (United States)

    Yang, Yanfang; Cao, Jiandong; Qin, Yong; Jia, Limin; Dong, Honghui; Zhang, Aomuhan

    2018-05-01

    Understanding the spatial correlation of urban traffic state is essential for identifying the evolution patterns of urban traffic state. However, the distribution of traffic state always has characteristics of large spatial span and heterogeneity. This paper adapts the concept of community detection to the correlation network of urban traffic state and proposes a new perspective to identify the spatial correlation patterns of traffic state. In the proposed urban traffic network, the nodes represent road segments, and an edge between a pair of nodes is added depending on the result of significance test for the corresponding correlation of traffic state. Further, the process of community detection in the urban traffic network (named GWPA-K-means) is applied to analyze the spatial dependency of traffic state. The proposed method extends the traditional K-means algorithm in two steps: (i) redefines the initial cluster centers by two properties of nodes (the GWPA value and the minimum shortest path length); (ii) utilizes the weight signal propagation process to transfer the topological information of the urban traffic network into a node similarity matrix. Finally, numerical experiments are conducted on a simple network and a real urban road network in Beijing. The results show that GWPA-K-means algorithm is valid in spatial correlation analysis of traffic state. The network science and community structure analysis perform well in describing the spatial heterogeneity of traffic state on a large spatial scale.

  4. A composite likelihood approach for spatially correlated survival data

    Science.gov (United States)

    Paik, Jane; Ying, Zhiliang

    2013-01-01

    The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory. PMID:24223450

  5. A composite likelihood approach for spatially correlated survival data.

    Science.gov (United States)

    Paik, Jane; Ying, Zhiliang

    2013-01-01

    The aim of this paper is to provide a composite likelihood approach to handle spatially correlated survival data using pairwise joint distributions. With e-commerce data, a recent question of interest in marketing research has been to describe spatially clustered purchasing behavior and to assess whether geographic distance is the appropriate metric to describe purchasing dependence. We present a model for the dependence structure of time-to-event data subject to spatial dependence to characterize purchasing behavior from the motivating example from e-commerce data. We assume the Farlie-Gumbel-Morgenstern (FGM) distribution and then model the dependence parameter as a function of geographic and demographic pairwise distances. For estimation of the dependence parameters, we present pairwise composite likelihood equations. We prove that the resulting estimators exhibit key properties of consistency and asymptotic normality under certain regularity conditions in the increasing-domain framework of spatial asymptotic theory.

  6. Measurement of spatial correlation functions using image processing techniques

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1985-01-01

    A procedure for using digital image processing techniques to measure the spatial correlation functions of composite heterogeneous materials is presented. Methods for eliminating undesirable biases and warping in digitized photographs are discussed. Fourier transform methods and array processor techniques for calculating the spatial correlation functions are treated. By introducing a minimal set of lattice-commensurate triangles, a method of sorting and storing the values of three-point correlation functions in a compact one-dimensional array is developed. Examples are presented at each stage of the analysis using synthetic photographs of cross sections of a model random material (the penetrable sphere model) for which the analytical form of the spatial correlations functions is known. Although results depend somewhat on magnification and on relative volume fraction, it is found that photographs digitized with 512 x 512 pixels generally have sufficiently good statistics for most practical purposes. To illustrate the use of the correlation functions, bounds on conductivity for the penetrable sphere model are calculated with a general numerical scheme developed for treating the singular three-dimensional integrals which must be evaluated

  7. Kolmogorov-Smirnov test for spatially correlated data

    Science.gov (United States)

    Olea, R.A.; Pawlowsky-Glahn, V.

    2009-01-01

    The Kolmogorov-Smirnov test is a convenient method for investigating whether two underlying univariate probability distributions can be regarded as undistinguishable from each other or whether an underlying probability distribution differs from a hypothesized distribution. Application of the test requires that the sample be unbiased and the outcomes be independent and identically distributed, conditions that are violated in several degrees by spatially continuous attributes, such as topographical elevation. A generalized form of the bootstrap method is used here for the purpose of modeling the distribution of the statistic D of the Kolmogorov-Smirnov test. The innovation is in the resampling, which in the traditional formulation of bootstrap is done by drawing from the empirical sample with replacement presuming independence. The generalization consists of preparing resamplings with the same spatial correlation as the empirical sample. This is accomplished by reading the value of unconditional stochastic realizations at the sampling locations, realizations that are generated by simulated annealing. The new approach was tested by two empirical samples taken from an exhaustive sample closely following a lognormal distribution. One sample was a regular, unbiased sample while the other one was a clustered, preferential sample that had to be preprocessed. Our results show that the p-value for the spatially correlated case is always larger that the p-value of the statistic in the absence of spatial correlation, which is in agreement with the fact that the information content of an uncorrelated sample is larger than the one for a spatially correlated sample of the same size. ?? Springer-Verlag 2008.

  8. Spatial correlation genetic algorithm for fractal image compression

    International Nuclear Information System (INIS)

    Wu, M.-S.; Teng, W.-C.; Jeng, J.-H.; Hsieh, J.-G.

    2006-01-01

    Fractal image compression explores the self-similarity property of a natural image and utilizes the partitioned iterated function system (PIFS) to encode it. This technique is of great interest both in theory and application. However, it is time-consuming in the encoding process and such drawback renders it impractical for real time applications. The time is mainly spent on the search for the best-match block in a large domain pool. In this paper, a spatial correlation genetic algorithm (SC-GA) is proposed to speed up the encoder. There are two stages for the SC-GA method. The first stage makes use of spatial correlations in images for both the domain pool and the range pool to exploit local optima. The second stage is operated on the whole image to explore more adequate similarities if the local optima are not satisfied. With the aid of spatial correlation in images, the encoding time is 1.5 times faster than that of traditional genetic algorithm method, while the quality of the retrieved image is almost the same. Moreover, about half of the matched blocks come from the correlated space, so fewer bits are required to represent the fractal transform and therefore the compression ratio is also improved

  9. The Threshold Hypothesis Applied to Spatial Skill and Mathematics

    Science.gov (United States)

    Freer, Daniel

    2017-01-01

    This cross-sectional study assessed the relation between spatial skills and mathematics in 854 participants across kindergarten, third grade, and sixth grade. Specifically, the study probed for a threshold for spatial skills when performing mathematics, above which spatial scores and mathematics scores would be significantly less related. This…

  10. Spatially correlated disorder in striped precursor magnetic modulations

    International Nuclear Information System (INIS)

    Porta, Marcel; Castan, Teresa; LLoveras, Pol; Planes, Antoni; Saxena, Avadh

    2007-01-01

    We use a Ginzburg-Landau model that includes long-range dipolar interactions and spatially correlated quenched-in disorder coupled to the local magnetization to study the properties of the precursor magnetic modulations as a function of the characteristics of the disorder. We find that although the modulation pattern is very robust and does not depend on details of the pair correlation function G(r), the scaling behaviour of the characteristic length of the striped magnetic modulations depends on the behaviour of G(r) for small values of r

  11. Universal Spatial Correlation Functions for Describing and Reconstructing Soil Microstructure

    Science.gov (United States)

    Skvortsova, Elena B.; Mallants, Dirk

    2015-01-01

    Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification

  12. Correlated density matrix theory of spatially inhomogeneous Bose fluids

    International Nuclear Information System (INIS)

    Gernoth, K.A.; Clark, J.W.; Ristig, M.L.

    1994-06-01

    In this paper, the variational Hartree-Jastrow theory of the ground state of spatially inhomogeneous Bose systems is extended to finite temperatures. The theory presented here is a generalization also in the sense that it extends the correlated density matrix approach, formulated previously for uniform Bose fluids, to systems with nonuniform density profiles. The method provides a framework in which the effects of thermal excitations on the spatial structure of a Bose fluid, as represented by the density profile and the two-body distribution functions, may be discussed on the basis on an ab initio microscopic description of the system. Thermal excitations make their appearance through self-consistently determined one-body and two-body potentials which enter the nonlinear, coupled Euler-Lagrange equations for the one-body density and for the pair distribution function. Since back-flow correlations are neglected, the excitations are described by a Feynman eigenvalue equation, suitably generalized to nonzero temperatures. The only external quantities entering the correlated density matrix theory elaborated here are the bare two-body interaction potential and, in actual applications, the boundary conditions to be imposed on the one-body density. 30 refs

  13. Spatial Correlation Characterization of a Full Dimension Massive MIMO System

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2017-02-07

    Elevation beamforming and Full Dimension MIMO (FD-MIMO) are currently active areas of research and standardization in 3GPP LTE-Advanced. FD-MIMO utilizes an active antenna array system (AAS), that provides the ability of adaptive electronic beam control over the elevation dimension, resulting in a better system performance as compared to the conventional 2D MIMO systems. FD-MIMO is more advantageous when amalgamated with massive MIMO systems, in that it exploits the additional degrees of freedom offered by a large number of antennas in the elevation. To facilitate the evaluation of these systems, a large effort in 3D channel modeling is needed. This paper aims at providing a summary of the recent 3GPP activity around 3D channel modeling. The 3GPP proposed approach to model antenna radiation pattern is compared with the ITU approach. A closed-form expression is then worked out for the spatial correlation function (SCF) for channels constituted by individual antenna elements in the array by exploiting results on spherical harmonics and Legendre polynomials. The proposed expression can be used to obtain correlation coefficients for any arbitrary 3D propagation environment. Simulation results corroborate and study the derived spatial correlation expression. The results are directly applicable to the analysis of future 5G 3D massive MIMO systems.

  14. Multivariate Receptor Models for Spatially Correlated Multipollutant Data

    KAUST Repository

    Jun, Mikyoung

    2013-08-01

    The goal of multivariate receptor modeling is to estimate the profiles of major pollution sources and quantify their impacts based on ambient measurements of pollutants. Traditionally, multivariate receptor modeling has been applied to multiple air pollutant data measured at a single monitoring site or measurements of a single pollutant collected at multiple monitoring sites. Despite the growing availability of multipollutant data collected from multiple monitoring sites, there has not yet been any attempt to incorporate spatial dependence that may exist in such data into multivariate receptor modeling. We propose a spatial statistics extension of multivariate receptor models that enables us to incorporate spatial dependence into estimation of source composition profiles and contributions given the prespecified number of sources and the model identification conditions. The proposed method yields more precise estimates of source profiles by accounting for spatial dependence in the estimation. More importantly, it enables predictions of source contributions at unmonitored sites as well as when there are missing values at monitoring sites. The method is illustrated with simulated data and real multipollutant data collected from eight monitoring sites in Harris County, Texas. Supplementary materials for this article, including data and R code for implementing the methods, are available online on the journal web site. © 2013 Copyright Taylor and Francis Group, LLC.

  15. 3D spatially-adaptive canonical correlation analysis: Local and global methods.

    Science.gov (United States)

    Yang, Zhengshi; Zhuang, Xiaowei; Sreenivasan, Karthik; Mishra, Virendra; Curran, Tim; Byrd, Richard; Nandy, Rajesh; Cordes, Dietmar

    2018-04-01

    Local spatially-adaptive canonical correlation analysis (local CCA) with spatial constraints has been introduced to fMRI multivariate analysis for improved modeling of activation patterns. However, current algorithms require complicated spatial constraints that have only been applied to 2D local neighborhoods because the computational time would be exponentially increased if the same method is applied to 3D spatial neighborhoods. In this study, an efficient and accurate line search sequential quadratic programming (SQP) algorithm has been developed to efficiently solve the 3D local CCA problem with spatial constraints. In addition, a spatially-adaptive kernel CCA (KCCA) method is proposed to increase accuracy of fMRI activation maps. With oriented 3D spatial filters anisotropic shapes can be estimated during the KCCA analysis of fMRI time courses. These filters are orientation-adaptive leading to rotational invariance to better match arbitrary oriented fMRI activation patterns, resulting in improved sensitivity of activation detection while significantly reducing spatial blurring artifacts. The kernel method in its basic form does not require any spatial constraints and analyzes the whole-brain fMRI time series to construct an activation map. Finally, we have developed a penalized kernel CCA model that involves spatial low-pass filter constraints to increase the specificity of the method. The kernel CCA methods are compared with the standard univariate method and with two different local CCA methods that were solved by the SQP algorithm. Results show that SQP is the most efficient algorithm to solve the local constrained CCA problem, and the proposed kernel CCA methods outperformed univariate and local CCA methods in detecting activations for both simulated and real fMRI episodic memory data. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Monte Carlo power iteration: Entropy and spatial correlations

    International Nuclear Information System (INIS)

    Nowak, Michel; Miao, Jilang; Dumonteil, Eric; Forget, Benoit; Onillon, Anthony; Smith, Kord S.; Zoia, Andrea

    2016-01-01

    Highlights: • We show that the entropy function might be misleading in criticality simulations. • We interpret the spatial fluctuations of the fission chains in terms of the key parameters of the simulated system. • We show that the behavior of the entropy function is related to the theory of neutron clustering. - Abstract: The behavior of Monte Carlo criticality simulations is often assessed by examining the convergence of the so-called entropy function. In this work, we shall show that the entropy function may lead to a misleading interpretation, and that potential issues occur when spatial correlations induced by fission events are important. We will support our analysis by examining the higher-order moments of the entropy function and the center of mass of the neutron population. Within the framework of a simplified model based on branching processes, we will relate the behavior of the spatial fluctuations of the fission chains to the key parameters of the simulated system, namely, the number of particles per generation, the reactor size and the migration area. Numerical simulations of a fuel rod and of a whole core suggest that the obtained results are quite general and hold true also for real-world applications.

  17. Time-varying correlations in global real estate markets: A multivariate GARCH with spatial effects approach

    Science.gov (United States)

    Gu, Huaying; Liu, Zhixue; Weng, Yingliang

    2017-04-01

    The present study applies the multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) with spatial effects approach for the analysis of the time-varying conditional correlations and contagion effects among global real estate markets. A distinguishing feature of the proposed model is that it can simultaneously capture the spatial interactions and the dynamic conditional correlations compared with the traditional MGARCH models. Results reveal that the estimated dynamic conditional correlations have exhibited significant increases during the global financial crisis from 2007 to 2009, thereby suggesting contagion effects among global real estate markets. The analysis further indicates that the returns of the regional real estate markets that are in close geographic and economic proximities exhibit strong co-movement. In addition, evidence of significantly positive leverage effects in global real estate markets is also determined. The findings have significant implications on global portfolio diversification opportunities and risk management practices.

  18. Two-particle spatial correlations in superfluid nuclei

    International Nuclear Information System (INIS)

    Pillet, N.; Berger, J.-F.; Sandulescu, N.; Schuck, P.

    2010-01-01

    We discuss the effect of pairing on two-neutron space correlations in deformed nuclei. The spatial correlations are described by the pairing tensor in coordinate space calculated in the HFB approach. Calculations are done using the D1S Gogny force. We show that the pairing tensor has a rather small extension in the relative coordinate, a feature observed earlier in spherical nuclei. It is pointed out that in deformed nuclei the coherence length corresponding to the pairing tensor has a pattern similar to what we have found previously in spherical nuclei; that is, it is maximal in the interior of the nucleus and then it decreases rather rapidly in the surface region, where it reaches a minimal value of about 2 fm. This minimal value of the coherence length in the surface is essentially determined by the finite size properties of single-particle states in the vicinity of the chemical potential and has little to do with enhanced pairing correlations in the nuclear surface. It is shown that in nuclei the coherence length is not a good indicator of the intensity of pairing correlations. This feature is contrasted with the situation in infinite matter.

  19. Summary of the Nevada Applied Ecology Group and correlative programs

    International Nuclear Information System (INIS)

    Friesen, H.N.

    1992-10-01

    This summary document presents results in a broad context; it is not limited to findings of the Nevada Applied Ecology Group. This book is organized to present the findings of the Nevada Applied Ecology Group and correlative programs in accordance with the originally stated objectives of the Nevada Applied Ecology Group. This plan, in essence, traces plutonium from its injection into the environment to movement in the ecosystem to development of cleanup techniques. Information on other radionuclides was also obtained and will be presented briefly. Chapter 1 presents a brief description of the ecological setting of the Test Range Complex. The results of investigations for plutonium distribution are presented in Chapter 2 for the area surrounding the Test Range Complex and in Chapter 3 for on-site locations. Chapters 4 and 5 present the results of investigations concerned with concentrations and movement, respectively, of plutonium in the ecosystem of the Test Range Complex, and Chapter 6 summarizes the potential hazard from this plutonium. Development of techniques for cleanup and treatment is presented in Chapter 7, and the inventory of radionuclides other than plutonium is presented briefly in Chapter 8

  20. Flow distributions and spatial correlations in human brain capillary networks

    Science.gov (United States)

    Lorthois, Sylvie; Peyrounette, Myriam; Larue, Anne; Le Borgne, Tanguy

    2015-11-01

    The vascular system of the human brain cortex is composed of a space filling mesh-like capillary network connected upstream and downstream to branched quasi-fractal arterioles and venules. The distribution of blood flow rates in these networks may affect the efficiency of oxygen transfer processes. Here, we investigate the distribution and correlation properties of blood flow velocities from numerical simulations in large 3D human intra-cortical vascular network (10000 segments) obtained from an anatomical database. In each segment, flow is solved from a 1D non-linear model taking account of the complex rheological properties of blood flow in microcirculation to deduce blood pressure, blood flow and red blood cell volume fraction distributions throughout the network. The network structural complexity is found to impart broad and spatially correlated Lagrangian velocity distributions, leading to power law transit time distributions. The origins of this behavior (existence of velocity correlations in capillary networks, influence of the coupling with the feeding arterioles and draining veins, topological disorder, complex blood rheology) are studied by comparison with results obtained in various model capillary networks of controlled disorder. ERC BrainMicroFlow GA615102, ERC ReactiveFronts GA648377.

  1. Concept of spatial channel theory applied to reactor shielding analysis

    International Nuclear Information System (INIS)

    Williams, M.L.; Engle, W.W. Jr.

    1977-01-01

    The concept of channel theory is used to locate spatial regions that are important in contributing to a shielding response. The method is analogous to the channel-theory method developed for ascertaining important energy channels in cross-section analysis. The mathematical basis for the theory is shown to be the generalized reciprocity relation, and sample problems are given to exhibit and verify properties predicted by the mathematical equations. A practical example is cited from the shielding analysis of the Fast Flux Test Facility performed at Oak Ridge National Laboratory, in which a perspective plot of channel-theory results was found useful in locating streaming paths around the reactor cavity shield

  2. Binary zone-plate array for a parallel joint transform correlator applied to face recognition.

    Science.gov (United States)

    Kodate, K; Hashimoto, A; Thapliya, R

    1999-05-10

    Taking advantage of small aberrations, high efficiency, and compactness, we developed a new, to our knowledge, design procedure for a binary zone-plate array (BZPA) and applied it to a parallel joint transform correlator for the recognition of the human face. Pairs of reference and unknown images of faces are displayed on a liquid-crystal spatial light modulator (SLM), Fourier transformed by the BZPA, intensity recorded on an optically addressable SLM, and inversely Fourier transformed to obtain correlation signals. Consideration of the bandwidth allows the relations among the channel number, the numerical aperture of the zone plates, and the pattern size to be determined. Experimentally a five-channel parallel correlator was implemented and tested successfully with a 100-person database. The design and the fabrication of a 20-channel BZPA for phonetic character recognition are also included.

  3. Spatial- and Time-Correlated Detection of Fission Fragments

    Directory of Open Access Journals (Sweden)

    Platkevic M.

    2012-02-01

    Full Text Available With the goal to measure angular correlations of fission fragments in rare fission decay (e.g. ternary and quaternary fission, a multi-detector coincidence system based on two and up to four position sensitive pixel detectors Timepix has been built. In addition to the high granularity, wide dynamic range and per pixel signal threshold, these devices are equipped with per pixel energy and time sensitivity providing more information (position, energy, time, enhances particle-type identification and selectivity of event-by-event detection. Operation of the device with the integrated USB 2.0 based readout interface FITPix and the control and data acquisition software tool Pixelman enables online visualization and flexible/adjustable operation for a different type of experiments. Spatially correlated fission fragments can be thus registered in coincidence. Similarly triggered measurements are performed using an integrated spectrometric module with analogue signal chain electronics. The current status of development together with demonstration of the technique with a 252Cf source is presented.

  4. A Big Spatial Data Processing Framework Applying to National Geographic Conditions Monitoring

    Directory of Open Access Journals (Sweden)

    F. Xiao

    2018-04-01

    Full Text Available In this paper, a novel framework for spatial data processing is proposed, which apply to National Geographic Conditions Monitoring project of China. It includes 4 layers: spatial data storage, spatial RDDs, spatial operations, and spatial query language. The spatial data storage layer uses HDFS to store large size of spatial vector/raster data in the distributed cluster. The spatial RDDs are the abstract logical dataset of spatial data types, and can be transferred to the spark cluster to conduct spark transformations and actions. The spatial operations layer is a series of processing on spatial RDDs, such as range query, k nearest neighbor and spatial join. The spatial query language is a user-friendly interface which provide people not familiar with Spark with a comfortable way to operation the spatial operation. Compared with other spatial frameworks, it is highlighted that comprehensive technologies are referred for big spatial data processing. Extensive experiments on real datasets show that the framework achieves better performance than traditional process methods.

  5. A Big Spatial Data Processing Framework Applying to National Geographic Conditions Monitoring

    Science.gov (United States)

    Xiao, F.

    2018-04-01

    In this paper, a novel framework for spatial data processing is proposed, which apply to National Geographic Conditions Monitoring project of China. It includes 4 layers: spatial data storage, spatial RDDs, spatial operations, and spatial query language. The spatial data storage layer uses HDFS to store large size of spatial vector/raster data in the distributed cluster. The spatial RDDs are the abstract logical dataset of spatial data types, and can be transferred to the spark cluster to conduct spark transformations and actions. The spatial operations layer is a series of processing on spatial RDDs, such as range query, k nearest neighbor and spatial join. The spatial query language is a user-friendly interface which provide people not familiar with Spark with a comfortable way to operation the spatial operation. Compared with other spatial frameworks, it is highlighted that comprehensive technologies are referred for big spatial data processing. Extensive experiments on real datasets show that the framework achieves better performance than traditional process methods.

  6. Comparison of different spatial transformations applied to EEG data: A case study of error processing

    NARCIS (Netherlands)

    Cohen, M.X.

    2015-01-01

    The purpose of this paper is to compare the effects of different spatial transformations applied to the same scalp-recorded EEG data. The spatial transformations applied are two referencing schemes (average and linked earlobes), the surface Laplacian, and beamforming (a distributed source

  7. Applying Spatial Indicators to Support Sustainable Urban Futures

    DEFF Research Database (Denmark)

    Petrov, Laura Oana; Shahumyan, Harutyun; Williams, Brendan

    2013-01-01

    structural analysis, FRAGSTATS, and ArcGIS software packages. The developed indicators form a valuable and complementary addition to the planning and policy process due to their interdisciplinary and practical nature. They were elaborated based on discussions with scientists, policy-makers and stakeholders......Indicators are helpful tools for land use management, particularly in the context of sustainable urban development. Together with scenarios they are a key requirement in order to produce information for stakeholders and policy-makers and aid their understanding of development processes. Using...... these information products and tools, policy-makers can be given the opportunity to spatially interrogate the driving forces and the current state of urban development. Understanding how trends will develop in the future and the possible impacts of their decisions on the development process is vital...

  8. New foundations for applied electromagnetics the spatial structure of fields

    CERN Document Server

    Mikki, Said

    2016-01-01

    This comprehensive new resource focuses on applied electromagnetics and takes readers beyond the conventional theory with the use of contemporary mathematics to improve the practical use of electromagnetics in emerging areas of field communications, wireless power transfer, metamaterials, MIMO and direction-of-arrival systems. The book explores the existing and novel theories and principles of electromagnetics in order to help engineers analyze and design devices for todays applications in wireless power transfers, NFC, and metamaterials.

  9. Spatial-Temporal Correlation Properties of the 3GPP Spatial Channel Model and the Kronecker MIMO Channel Model

    Directory of Open Access Journals (Sweden)

    Cheng-Xiang Wang

    2007-02-01

    Full Text Available The performance of multiple-input multiple-output (MIMO systems is greatly influenced by the spatial-temporal correlation properties of the underlying MIMO channels. This paper investigates the spatial-temporal correlation characteristics of the spatial channel model (SCM in the Third Generation Partnership Project (3GPP and the Kronecker-based stochastic model (KBSM at three levels, namely, the cluster level, link level, and system level. The KBSM has both the spatial separability and spatial-temporal separability at all the three levels. The spatial-temporal separability is observed for the SCM only at the system level, but not at the cluster and link levels. The SCM shows the spatial separability at the link and system levels, but not at the cluster level since its spatial correlation is related to the joint distribution of the angle of arrival (AoA and angle of departure (AoD. The KBSM with the Gaussian-shaped power azimuth spectrum (PAS is found to fit best the 3GPP SCM in terms of the spatial correlations. Despite its simplicity and analytical tractability, the KBSM is restricted to model only the average spatial-temporal behavior of MIMO channels. The SCM provides more insights of the variations of different MIMO channel realizations, but the implementation complexity is relatively high.

  10. Fast methods for spatially correlated multilevel functional data

    KAUST Repository

    Staicu, A.-M.

    2010-01-19

    We propose a new methodological framework for the analysis of hierarchical functional data when the functions at the lowest level of the hierarchy are correlated. For small data sets, our methodology leads to a computational algorithm that is orders of magnitude more efficient than its closest competitor (seconds versus hours). For large data sets, our algorithm remains fast and has no current competitors. Thus, in contrast to published methods, we can now conduct routine simulations, leave-one-out analyses, and nonparametric bootstrap sampling. Our methods are inspired by and applied to data obtained from a state-of-the-art colon carcinogenesis scientific experiment. However, our models are general and will be relevant to many new data sets where the object of inference are functions or images that remain dependent even after conditioning on the subject on which they are measured. Supplementary materials are available at Biostatistics online.

  11. Spatial and temporal distribution of fungicides applied to creeping bentgrass.

    Science.gov (United States)

    Hockemeyer, Kurt R; Latin, Richard

    2015-05-01

    Turf managers often rely on fungicides to limit damage caused by root diseases. Because fungicides are applied to aboveground surfaces and do not move basipetally, they are effective against root pathogens only when fungitoxic concentrations migrate to the rhizosphere. This research focused on the distribution of modern fungicides in verdure, thatch, sand, and roots of creeping bentgrass [ L. var. (Huds.) Farw.] maintained as a putting green. The fungicides azoxystrobin (methyl (E)-2-[2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl]-3-methoxyacrylate), propiconazole (1,2,4-triazole, 1-((2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2-yl)methyl), pyraclostrobin (carbamic acid, [2-[[[1-(4-chlorophenyl)-1H-pyrazol-3-yl]oxy]methyl]phenyl]methoxy-,methyl ester), and thiophanate-methyl (dimethyl 4,'4-o-phenylenebis[3-thioallophanate]) were applied to replicate field plots in a water volume of 815 L ha. Plots were sampled at 0, 3, 7, 10, 14, 17, and 21 d after application by extracting cores measuring 1.9 cm in diameter by 3.8 cm deep. Cores were separated into verdure/thatch, sand, and roots before quantitative determination (liquid chromatography, triple quadrupole mass spectrometry) of fungicide residues. Fungicide residues in verdure/thatch declined steadily with time and support previously reported results describing fungicide depletion. Fungicides were detected in roots and sand within 5 h of application at very low (1-15 mg kg) concentrations and remained at low levels throughout the sampling period. Fungicides differed with respect to amounts recovered per turfgrass component. Azoxystrobin and propiconazole were associated with roots for the duration of the experiment, but pyraclostrobin was nearly undetectable. Near-zero levels of all fungicides were detected in the sand component. Half-life values in the verdure/thatch component ranged from 2.3 to 18.9 d. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of

  12. Applying spatial clustering analysis to a township-level social vulnerability assessment in Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Yen Lin

    2016-09-01

    Full Text Available The degree of social vulnerability may vary according to the conditions and backgrounds of different locations, yet spatial clustering phenomena may exist when nearby spatial units exhibit similar characteristics. This study applied spatial autocorrelation statistics to analyze the spatial association of vulnerability among townships in Taiwan. The vulnerability was first assessed on the basis of a social vulnerability index that was constructed using Fuzzy Delphi and analytic hierarchy process methods. Subsequently, the corresponding indicator variables were applied to calculate standardized vulnerability assessment scores by using government data. According to the results of the vulnerability assessment in which T scores were normalized, the distribution of social vulnerabilities varied among the townships. The scores were further analyzed using spatial autocorrelation statistics for spatial clustering of vulnerability distribution. The Local G statistic identified 42 significant spatial association pockets, whereas the Global G statistic indicated no spatial phenomenon of clustering. This phenomenon was verified and explained by applying Moran's I statistics to examine the homogeneity and heterogeneity of spatial associations. Although both statistics were originally designed to identify the existence of spatial clustering, they serve diverse purposes, and the results can be compared to obtain additional insights into the distribution patterns of social vulnerability.

  13. Langevin Dynamics with Spatial Correlations as a Model for Electron-Phonon Coupling

    Science.gov (United States)

    Tamm, A.; Caro, M.; Caro, A.; Samolyuk, G.; Klintenberg, M.; Correa, A. A.

    2018-05-01

    Stochastic Langevin dynamics has been traditionally used as a tool to describe nonequilibrium processes. When utilized in systems with collective modes, traditional Langevin dynamics relaxes all modes indiscriminately, regardless of their wavelength. We propose a generalization of Langevin dynamics that can capture a differential coupling between collective modes and the bath, by introducing spatial correlations in the random forces. This allows modeling the electronic subsystem in a metal as a generalized Langevin bath endowed with a concept of locality, greatly improving the capabilities of the two-temperature model. The specific form proposed here for the spatial correlations produces a physical wave-vector and polarization dependency of the relaxation produced by the electron-phonon coupling in a solid. We show that the resulting model can be used for describing the path to equilibration of ions and electrons and also as a thermostat to sample the equilibrium canonical ensemble. By extension, the family of models presented here can be applied in general to any dense system, solids, alloys, and dense plasmas. As an example, we apply the model to study the nonequilibrium dynamics of an electron-ion two-temperature Ni crystal.

  14. Using Data Mining to Teach Applied Statistics and Correlation

    Science.gov (United States)

    Hartnett, Jessica L.

    2016-01-01

    This article describes two class activities that introduce the concept of data mining and very basic data mining analyses. Assessment data suggest that students learned some of the conceptual basics of data mining, understood some of the ethical concerns related to the practice, and were able to perform correlations via the Statistical Package for…

  15. Spatial Decomposition of Translational Water–Water Correlation Entropy in Binding Pockets

    Science.gov (United States)

    2015-01-01

    A number of computational tools available today compute the thermodynamic properties of water at surfaces and in binding pockets by using inhomogeneous solvation theory (IST) to analyze explicit-solvent simulations. Such methods enable qualitative spatial mappings of both energy and entropy around a solute of interest and can also be applied quantitatively. However, the entropy estimates of existing methods have, to date, been almost entirely limited to the first-order terms in the IST’s entropy expansion. These first-order terms account for localization and orientation of water molecules in the field of the solute but not for the modification of water–water correlations by the solute. Here, we present an extension of the Grid Inhomogeneous Solvation Theory (GIST) approach which accounts for water–water translational correlations. The method involves rewriting the two-point density of water in terms of a conditional density and utilizes the efficient nearest-neighbor entropy estimation approach. Spatial maps of this second order term, for water in and around the synthetic host cucurbit[7]uril and in the binding pocket of the enzyme Factor Xa, reveal mainly negative contributions, indicating solute-induced water–water correlations relative to bulk water; particularly strong signals are obtained for sites at the entrances of cavities or pockets. This second-order term thus enters with the same, negative, sign as the first order translational and orientational terms. Numerical and convergence properties of the methodology are examined. PMID:26636620

  16. Kinoform optics applied to X-ray photon correlation spectroscopy.

    Science.gov (United States)

    Sandy, A R; Narayanan, S; Sprung, M; Su, J-D; Evans-Lutterodt, K; Isakovic, A F; Stein, A

    2010-05-01

    Moderate-demagnification higher-order silicon kinoform focusing lenses have been fabricated to facilitate small-angle X-ray photon correlation spectroscopy (XPCS) experiments. The geometric properties of such lenses, their focusing performance and their applicability for XPCS measurements are described. It is concluded that one-dimensional vertical X-ray focusing via silicon kinoform lenses significantly increases the usable coherent flux from third-generation storage-ring light sources for small-angle XPCS experiments.

  17. Accounting for connectivity and spatial correlation in the optimal placement of wildlife habitat

    Science.gov (United States)

    John Hof; Curtis H. Flather

    1996-01-01

    This paper investigates optimization approaches to simultaneously modelling habitat fragmentation and spatial correlation between patch populations. The problem is formulated with habitat connectivity affecting population means and variances, with spatial correlations accounted for in covariance calculations. Population with a pre-specifled confidence level is then...

  18. Correlation Factors Describing Primary and Spatial Sensations of Sound Fields

    Science.gov (United States)

    ANDO, Y.

    2002-11-01

    The theory of subjective preference of the sound field in a concert hall is established based on the model of human auditory-brain system. The model consists of the autocorrelation function (ACF) mechanism and the interaural crosscorrelation function (IACF) mechanism for signals arriving at two ear entrances, and the specialization of human cerebral hemispheres. This theory can be developed to describe primary sensations such as pitch or missing fundamental, loudness, timbre and, in addition, duration sensation which is introduced here as a fourth. These four primary sensations may be formulated by the temporal factors extracted from the ACF associated with the left hemisphere and, spatial sensations such as localization in the horizontal plane, apparent source width and subjective diffuseness are described by the spatial factors extracted from the IACF associated with the right hemisphere. Any important subjective responses of sound fields may be described by both temporal and spatial factors.

  19. Applied TICs in Education and its correlation in Academic Performance

    Directory of Open Access Journals (Sweden)

    Jenny Maritza Rosero Lozano

    2016-08-01

    Full Text Available In the present study, we want to determinate the correlation between educational TICS application and the academic effiency in the subject of programmation in Structured languages which lasted 10 months and It was developed with 5 educators, 73 legal representatives and 103 students who belong to the services Technician bachelor, speciality in Informatic applications. It is based in the Constructivism by Jean Piaget, in the techniques focused in the personalized teaching in the significant learning theory by D´ıaz Barriga. The correlation coefficient by Pearson was used for measuring the different variables. The results revealed the low academic effiency of the students in the subject. It motivated the development of a propose which was a ”WEBQUEST”designed in Exelearning that allows to create learning materials which combine text with multimedia elements and It does not require internet to execute the functions with the purpose of facilitating the student body development in its abilities, capacities and skills, the educator can use it as a didatic strategy because It helps to keep an active and creative participation of the students and It allows to the users to acquire knowledge and skills in the computer programms creation. The software was tested and validated by the educational community, It has as a result a big acceptance, good perspectives in its use and the improvement in the students academic effiency.

  20. Spatial occupancy models applied to atlas data show Southern Ground Hornbills strongly depend on protected areas.

    Science.gov (United States)

    Broms, Kristin M; Johnson, Devin S; Altwegg, Res; Conquest, Loveday L

    2014-03-01

    Determining the range of a species and exploring species--habitat associations are central questions in ecology and can be answered by analyzing presence--absence data. Often, both the sampling of sites and the desired area of inference involve neighboring sites; thus, positive spatial autocorrelation between these sites is expected. Using survey data for the Southern Ground Hornbill (Bucorvus leadbeateri) from the Southern African Bird Atlas Project, we compared advantages and disadvantages of three increasingly complex models for species occupancy: an occupancy model that accounted for nondetection but assumed all sites were independent, and two spatial occupancy models that accounted for both nondetection and spatial autocorrelation. We modeled the spatial autocorrelation with an intrinsic conditional autoregressive (ICAR) model and with a restricted spatial regression (RSR) model. Both spatial models can readily be applied to any other gridded, presence--absence data set using a newly introduced R package. The RSR model provided the best inference and was able to capture small-scale variation that the other models did not. It showed that ground hornbills are strongly dependent on protected areas in the north of their South African range, but less so further south. The ICAR models did not capture any spatial autocorrelation in the data, and they took an order, of magnitude longer than the RSR models to run. Thus, the RSR occupancy model appears to be an attractive choice for modeling occurrences at large spatial domains, while accounting for imperfect detection and spatial autocorrelation.

  1. Generating spatial precipitation ensembles: impact of temporal correlation structure

    Science.gov (United States)

    Rakovec, O.; Hazenberg, P.; Torfs, P. J. J. F.; Weerts, A. H.; Uijlenhoet, R.

    2012-09-01

    Sound spatially distributed rainfall fields including a proper spatial and temporal error structure are of key interest for hydrologists to force hydrological models and to identify uncertainties in the simulated and forecasted catchment response. The current paper presents a temporally coherent error identification method based on time-dependent multivariate spatial conditional simulations, which are conditioned on preceding simulations. A sensitivity analysis and real-world experiment are carried out within the hilly region of the Belgian Ardennes. Precipitation fields are simulated for pixels of 10 km × 10 km resolution. Uncertainty analyses in the simulated fields focus on (1) the number of previous simulation hours on which the new simulation is conditioned, (2) the advection speed of the rainfall event, (3) the size of the catchment considered, and (4) the rain gauge density within the catchment. The results for a sensitivity analysis show for typical advection speeds >20 km h-1, no uncertainty is added in terms of across ensemble spread when conditioned on more than one or two previous hourly simulations. However, for the real-world experiment, additional uncertainty can still be added when conditioning on a larger number of previous simulations. This is because for actual precipitation fields, the dynamics exhibit a larger spatial and temporal variability. Moreover, by thinning the observation network with 50%, the added uncertainty increases only slightly and the cross-validation shows that the simulations at the unobserved locations are unbiased. Finally, the first-order autocorrelation coefficients show clear temporal coherence in the time series of the areal precipitation using the time-dependent multivariate conditional simulations, which was not the case using the time-independent univariate conditional simulations. The presented work can be easily implemented within a hydrological calibration and data assimilation framework and can be used as an

  2. Generating spatial precipitation ensembles: impact of temporal correlation structure

    Directory of Open Access Journals (Sweden)

    O. Rakovec

    2012-09-01

    Full Text Available Sound spatially distributed rainfall fields including a proper spatial and temporal error structure are of key interest for hydrologists to force hydrological models and to identify uncertainties in the simulated and forecasted catchment response. The current paper presents a temporally coherent error identification method based on time-dependent multivariate spatial conditional simulations, which are conditioned on preceding simulations. A sensitivity analysis and real-world experiment are carried out within the hilly region of the Belgian Ardennes. Precipitation fields are simulated for pixels of 10 km × 10 km resolution. Uncertainty analyses in the simulated fields focus on (1 the number of previous simulation hours on which the new simulation is conditioned, (2 the advection speed of the rainfall event, (3 the size of the catchment considered, and (4 the rain gauge density within the catchment. The results for a sensitivity analysis show for typical advection speeds >20 km h−1, no uncertainty is added in terms of across ensemble spread when conditioned on more than one or two previous hourly simulations. However, for the real-world experiment, additional uncertainty can still be added when conditioning on a larger number of previous simulations. This is because for actual precipitation fields, the dynamics exhibit a larger spatial and temporal variability. Moreover, by thinning the observation network with 50%, the added uncertainty increases only slightly and the cross-validation shows that the simulations at the unobserved locations are unbiased. Finally, the first-order autocorrelation coefficients show clear temporal coherence in the time series of the areal precipitation using the time-dependent multivariate conditional simulations, which was not the case using the time-independent univariate conditional simulations. The presented work can be easily implemented within a hydrological calibration and data assimilation

  3. Improved Side Information Generation for Distributed Video Coding by Exploiting Spatial and Temporal Correlations

    Directory of Open Access Journals (Sweden)

    Ye Shuiming

    2009-01-01

    Full Text Available Distributed video coding (DVC is a video coding paradigm allowing low complexity encoding for emerging applications such as wireless video surveillance. Side information (SI generation is a key function in the DVC decoder, and plays a key-role in determining the performance of the codec. This paper proposes an improved SI generation for DVC, which exploits both spatial and temporal correlations in the sequences. Partially decoded Wyner-Ziv (WZ frames, based on initial SI by motion compensated temporal interpolation, are exploited to improve the performance of the whole SI generation. More specifically, an enhanced temporal frame interpolation is proposed, including motion vector refinement and smoothing, optimal compensation mode selection, and a new matching criterion for motion estimation. The improved SI technique is also applied to a new hybrid spatial and temporal error concealment scheme to conceal errors in WZ frames. Simulation results show that the proposed scheme can achieve up to 1.0 dB improvement in rate distortion performance in WZ frames for video with high motion, when compared to state-of-the-art DVC. In addition, both the objective and perceptual qualities of the corrupted sequences are significantly improved by the proposed hybrid error concealment scheme, outperforming both spatial and temporal concealments alone.

  4. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity

    International Nuclear Information System (INIS)

    Schorb, Martin; Briggs, John A.G.

    2014-01-01

    Performing fluorescence microscopy and electron microscopy on the same sample allows fluorescent signals to be used to identify and locate features of interest for subsequent imaging by electron microscopy. To carry out such correlative microscopy on vitrified samples appropriate for structural cryo-electron microscopy it is necessary to perform fluorescence microscopy at liquid-nitrogen temperatures. Here we describe an adaptation of a cryo-light microscopy stage to permit use of high-numerical aperture objectives. This allows high-sensitivity and high-resolution fluorescence microscopy of vitrified samples. We describe and apply a correlative cryo-fluorescence and cryo-electron microscopy workflow together with a fiducial bead-based image correlation procedure. This procedure allows us to locate fluorescent bacteriophages in cryo-electron microscopy images with an accuracy on the order of 50 nm, based on their fluorescent signal. It will allow the user to precisely and unambiguously identify and locate objects and events for subsequent high-resolution structural study, based on fluorescent signals. - Highlights: • Workflow for correlated cryo-fluorescence and cryo-electron microscopy. • Cryo-fluorescence microscopy setup incorporating a high numerical aperture objective. • Fluorescent signals located in cryo-electron micrographs with 50 nm spatial precision

  5. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Schorb, Martin [Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany); Briggs, John A.G., E-mail: john.briggs@embl.de [Structural and Computational Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany); Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, D-69117 Heidelberg (Germany)

    2014-08-01

    Performing fluorescence microscopy and electron microscopy on the same sample allows fluorescent signals to be used to identify and locate features of interest for subsequent imaging by electron microscopy. To carry out such correlative microscopy on vitrified samples appropriate for structural cryo-electron microscopy it is necessary to perform fluorescence microscopy at liquid-nitrogen temperatures. Here we describe an adaptation of a cryo-light microscopy stage to permit use of high-numerical aperture objectives. This allows high-sensitivity and high-resolution fluorescence microscopy of vitrified samples. We describe and apply a correlative cryo-fluorescence and cryo-electron microscopy workflow together with a fiducial bead-based image correlation procedure. This procedure allows us to locate fluorescent bacteriophages in cryo-electron microscopy images with an accuracy on the order of 50 nm, based on their fluorescent signal. It will allow the user to precisely and unambiguously identify and locate objects and events for subsequent high-resolution structural study, based on fluorescent signals. - Highlights: • Workflow for correlated cryo-fluorescence and cryo-electron microscopy. • Cryo-fluorescence microscopy setup incorporating a high numerical aperture objective. • Fluorescent signals located in cryo-electron micrographs with 50 nm spatial precision.

  6. Behavioral correlates of the distributed coding of spatial context.

    Science.gov (United States)

    Anderson, Michael I; Killing, Sarah; Morris, Caitlin; O'Donoghue, Alan; Onyiagha, Dikennam; Stevenson, Rosemary; Verriotis, Madeleine; Jeffery, Kathryn J

    2006-01-01

    Hippocampal place cells respond heterogeneously to elemental changes of a compound spatial context, suggesting that they form a distributed code of context, whereby context information is shared across a population of neurons. The question arises as to what this distributed code might be useful for. The present study explored two possibilities: one, that it allows contexts with common elements to be disambiguated, and the other, that it allows a given context to be associated with more than one outcome. We used two naturalistic measures of context processing in rats, rearing and thigmotaxis (boundary-hugging), to explore how rats responded to contextual novelty and to relate this to the behavior of place cells. In experiment 1, rats showed dishabituation of rearing to a novel reconfiguration of familiar context elements, suggesting that they perceived the reconfiguration as novel, a behavior that parallels that of place cells in a similar situation. In experiment 2, rats were trained in a place preference task on an open-field arena. A change in the arena context triggered renewed thigmotaxis, and yet navigation continued unimpaired, indicating simultaneous representation of both the altered contextual and constant spatial cues. Place cells similarly exhibited a dual population of responses, consistent with the hypothesis that their activity underlies spatial behavior. Together, these experiments suggest that heterogeneous context encoding (or "partial remapping") by place cells may function to allow the flexible assignment of associations to contexts, a faculty that could be useful in episodic memory encoding. Copyright (c) 2006 Wiley-Liss, Inc.

  7. Investigation of spatial correlation in MR images of human cerebral white matter using geostatistical methods

    International Nuclear Information System (INIS)

    Keil, Fabian

    2014-01-01

    Investigating the structure of human cerebral white matter is gaining interest in the neurological as well as in the neuroscientific community. It has been demonstrated in many studies that white matter is a very dynamic structure, rather than a static construct which does not change for a lifetime. That means, structural changes within white matter can be observed even on short timescales, e.g. in the course of normal ageing, neurodegenerative diseases or even during learning processes. To investigate these changes, one method of choice is the texture analysis of images obtained from white matter. In this regard, MRI plays a distinguished role as it provides a completely non-invasive way of acquiring in vivo images of human white matter. This thesis adapted a statistical texture analysis method, known as variography, to quantify the spatial correlation of human cerebral white matter based on MR images. This method, originally introduced in geoscience, relies on the idea of spatial correlation in geological phenomena: in naturally grown structures near things are correlated stronger to each other than distant things. This work reveals that the geological principle of spatial correlation can be applied to MR images of human cerebral white matter and proves that variography is an adequate method to quantify alterations therein. Since the process of MRI data acquisition is completely different to the measuring process used to quantify geological phenomena, the variographic analysis had to be adapted carefully to MR methods in order to provide a correctly working methodology. Therefore, theoretical considerations were evaluated with numerical samples in a first, and validated with real measurements in a second step. It was shown that MR variography facilitates to reduce the information stored in the texture of a white matter image to a few highly significant parameters, thereby quantifying heterogeneity and spatial correlation distance with an accuracy better than 5

  8. Investigation of spatial correlation in MR images of human cerebral white matter using geostatistical methods

    Energy Technology Data Exchange (ETDEWEB)

    Keil, Fabian

    2014-03-20

    Investigating the structure of human cerebral white matter is gaining interest in the neurological as well as in the neuroscientific community. It has been demonstrated in many studies that white matter is a very dynamic structure, rather than a static construct which does not change for a lifetime. That means, structural changes within white matter can be observed even on short timescales, e.g. in the course of normal ageing, neurodegenerative diseases or even during learning processes. To investigate these changes, one method of choice is the texture analysis of images obtained from white matter. In this regard, MRI plays a distinguished role as it provides a completely non-invasive way of acquiring in vivo images of human white matter. This thesis adapted a statistical texture analysis method, known as variography, to quantify the spatial correlation of human cerebral white matter based on MR images. This method, originally introduced in geoscience, relies on the idea of spatial correlation in geological phenomena: in naturally grown structures near things are correlated stronger to each other than distant things. This work reveals that the geological principle of spatial correlation can be applied to MR images of human cerebral white matter and proves that variography is an adequate method to quantify alterations therein. Since the process of MRI data acquisition is completely different to the measuring process used to quantify geological phenomena, the variographic analysis had to be adapted carefully to MR methods in order to provide a correctly working methodology. Therefore, theoretical considerations were evaluated with numerical samples in a first, and validated with real measurements in a second step. It was shown that MR variography facilitates to reduce the information stored in the texture of a white matter image to a few highly significant parameters, thereby quantifying heterogeneity and spatial correlation distance with an accuracy better than 5

  9. Multivariate Receptor Models for Spatially Correlated Multipollutant Data

    KAUST Repository

    Jun, Mikyoung; Park, Eun Sug

    2013-01-01

    The goal of multivariate receptor modeling is to estimate the profiles of major pollution sources and quantify their impacts based on ambient measurements of pollutants. Traditionally, multivariate receptor modeling has been applied to multiple air

  10. Measurement-Based Spatial Correlation and Capacity of Indoor Distributed MIMO System

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2013-01-01

    Full Text Available Distributed MIMO (D-MIMO system is one of the candidates for future wireless access networks. In this study, the spatial correlation and capacity in indoor D-MIMO system are presented. All results are from the actual channel measurements in typical indoor scenarios, including office and corridor. Based on measured data, spatial correlation coefficients between distributed transmitting antennas are analyzed. Although the literature about D-MIMO system assumes the small scale fading between distributed antennas is independent, we find that spatial correlation may still exist in specific propagation scenario. This correlation can also degrade the performance of D-MIMO system. To mitigate the impact of spatial correlation, one efficient method is to use transmitting antenna selection technique.

  11. Continuous-wave spatial quantum correlations of light induced by multiple scattering

    DEFF Research Database (Denmark)

    Smolka, Stephan; Ott, Johan Raunkjær; Huck, Alexander

    2012-01-01

    and reflectance. Utilizing frequency-resolved quantum noise measurements, we observe that the strength of the spatial quantum correlation function can be controlled by changing the quantum state of an incident bright squeezed-light source. Our results are found to be in excellent agreement with the developed......We present theoretical and experimental results on spatial quantum correlations induced by multiple scattering of nonclassical light. A continuous-mode quantum theory is derived that enables determining the spatial quantum correlation function from the fluctuations of the total transmittance...... theory and form a basis for future research on, e. g., quantum interference of multiple quantum states in a multiple scattering medium....

  12. Spatial Correlation of PAN UWB-MIMO Channel Including User Dynamics

    DEFF Research Database (Denmark)

    Wang, Yu; Kovacs, Istvan Zsolt; Pedersen, Gert Frølund

    . It is found the channel shows spatial correlated wideband power, and spatial uncorrelated complex channel coefficients at different frequencies and delays with respect to a correlation coefficient threshold of 0.7. The Kronecker model is proved not suitable for the investigated scenarios. The MIMO UWB channel......In this paper we present and analyze spatial correlation properties of indoor 4x2 MIMO UWB channels in personal area network (PAN) scenarios. The presented results are based on measurement of radio links between an access point like device and a hand held or belt mounted device with dynamic user...

  13. Considering built environment and spatial correlation in modeling pedestrian injury severity.

    Science.gov (United States)

    Prato, Carlo G; Kaplan, Sigal; Patrier, Alexandre; Rasmussen, Thomas K

    2018-01-02

    This study looks at mitigating and aggravating factors that are associated with the injury severity of pedestrians when they have crashes with another road user and overcomes existing limitations in the literature by focusing attention on the built environment and considering spatial correlation across crashes. Reports for 6,539 pedestrian crashes occurred in Denmark between 2006 and 2015 were merged with geographic information system resources containing detailed information about the built environment and exposure at the crash locations. A linearized spatial logit model estimated the probability of pedestrians sustaining a severe or fatal injury conditional on the occurrence of a crash with another road user. This study confirms previous findings about older pedestrians and intoxicated pedestrians being the most vulnerable road users and crashes with heavy vehicles and in roads with higher speed limits being related to the most severe outcomes. This study provides novel perspectives by showing positive spatial correlations of crashes with the same severity outcomes and emphasizing the role of the built environment in the proximity of the crash. This study emphasizes the need for thinking about traffic calming measures, illumination solutions, road maintenance programs, and speed limit reductions. Moreover, this study emphasizes the role of the built environment, because shopping areas, residential areas, and walking traffic density are positively related to a reduction in pedestrian injury severity. Often, these areas have in common a larger pedestrian mass that is more likely to make other road users more aware and attentive, whereas the same does not seem to apply to areas with lower pedestrian density.

  14. Hinges of Correlation: Spatial Devices of Social Coexistence

    DEFF Research Database (Denmark)

    Lunde Nielsen, Espen

    2015-01-01

    This project investigates the coexistence of and the correlation between the inhabitants within my apartment building, using artistic practices and my own lived experience. These everyday spaces form the primary interface between the individual and the larger social entity of the city. Consciously...

  15. Improving Geoscience Students' Spatial Thinking Skills: Applying Cognitive Science Research in the Classroom

    Science.gov (United States)

    Ormand, C. J.; Shipley, T. F.; Manduca, C. A.; Tikoff, B.

    2011-12-01

    Spatial thinking skills are critical to success in many subdisciplines of the geosciences (and beyond). There are many components of spatial thinking, such as mental rotation, penetrative visualization, disembedding, perspective taking, and navigation. Undergraduate students in introductory and upper-level geoscience courses bring a wide variety of spatial skill levels to the classroom, as measured by psychometric tests of many of these components of spatial thinking. Furthermore, it is not unusual for individual students to excel in some of these areas while struggling in others. Although pre- and post-test comparisons show that student skill levels typically improve over the course of an academic term, average gains are quite modest. This suggests that it may be valuable to develop interventions to help undergraduate students develop a range of spatial skills that can be used to solve geoscience problems. Cognitive science research suggests a number of strong strategies for building students' spatial skills. Practice is essential, and time on task is correlated to improvement. Progressive alignment may be used to scaffold students' successes on simpler problems, allowing them to see how more complex problems are related to those they can solve. Gesturing has proven effective in moving younger students from incorrect problem-solving strategies to correct strategies in other disciplines. These principles can be used to design instructional materials to improve undergraduate geoscience students' spatial skills; we will present some examples of such materials.

  16. Spatial correlation in Bayesian logistic regression with misclassification

    DEFF Research Database (Denmark)

    Bihrmann, Kristine; Toft, Nils; Nielsen, Søren Saxmose

    2014-01-01

    Standard logistic regression assumes that the outcome is measured perfectly. In practice, this is often not the case, which could lead to biased estimates if not accounted for. This study presents Bayesian logistic regression with adjustment for misclassification of the outcome applied to data...

  17. Fast methods for spatially correlated multilevel functional data

    KAUST Repository

    Staicu, A.-M.; Crainiceanu, C. M.; Carroll, R. J.

    2010-01-01

    -one-out analyses, and nonparametric bootstrap sampling. Our methods are inspired by and applied to data obtained from a state-of-the-art colon carcinogenesis scientific experiment. However, our models are general and will be relevant to many new data sets where

  18. Correlation diagnostics of random spatially nonuniform optical fields

    International Nuclear Information System (INIS)

    Angel'skii, O.V.

    1992-01-01

    This review examines some questions concerning the capabilities of interference and polarization-interference correlation diagnostics of the amplitude-phase characteristics of random optical fields for the purpose of identifying these fields and then studying the corresponding objects. The diagnostics of random phase objects is discussed separately in the case in which the phase dispersion of the inhomogeneities is less than and greater than one. The outlook is promising for the use of the correlation dimensionality of chaos in a field as a diagnostic parameter. It is also shown that the use of interference principles for a parallel processing of large data files can substantially increase the speed of processing systems. 32 refs., 8 figs

  19. Diffuse correlation tomography reveals spatial and temporal difference in blood flow changes among murine femoral grafts

    Science.gov (United States)

    Han, Songfeng; Proctor, Ashley R.; Benoit, Danielle S. W.; Choe, Regine

    2017-07-01

    Diffuse correlation tomography was utilized to noninvasively monitor 3D blood flow changes in three types of healing mouse femoral grafts. Results reveal the spatial and temporal difference among the groups.

  20. Observation of spatial quantum correlations induced by multiple scattering of nonclassical light

    DEFF Research Database (Denmark)

    Smolka, Stephan; Huck, Alexander; Andersen, Ulrik Lund

    2009-01-01

    and negative spatial quantum correlations are observed when varying the quantum state incident to the multiple scattering medium, and the strength of the correlations is controlled by the number of photons. The experimental results are in excellent agreement with recent theoretical proposals by implementing......We present the experimental realization of spatial quantum correlations of photons that are induced by multiple scattering of squeezed light. The quantum correlation relates photons propagating along two different light paths through the random medium and is infinite in range. Both positive...... the full quantum model of multiple scattering....

  1. Spatial-Temporal Similarity Correlation between Public Transit Passengers Using Smart Card Data

    Directory of Open Access Journals (Sweden)

    Hamed Faroqi

    2017-01-01

    Full Text Available The increasing availability of public transit smart card data has enabled several studies to focus on identifying passengers with similar spatial and/or temporal trip characteristics. However, this paper goes one step further by investigating the relationship between passengers’ spatial and temporal characteristics. For the first time, this paper investigates the correlation of the spatial similarity with the temporal similarity between public transit passengers by developing spatial similarity and temporal similarity measures for the public transit network with a novel passenger-based perspective. The perspective considers the passengers as agents who can make multiple trips in the network. The spatial similarity measure takes into account direction as well as the distance between the trips of the passengers. The temporal similarity measure considers both the boarding and alighting time in a continuous linear space. The spatial-temporal similarity correlation between passengers is analysed using histograms, Pearson correlation coefficients, and hexagonal binning. Also, relations between the spatial and temporal similarity values with the trip time and length are examined. The proposed methodology is implemented for four-day smart card data including 80,000 passengers in Brisbane, Australia. The results show a nonlinear spatial-temporal similarity correlation among the passengers.

  2. Microstructure taxonomy based on spatial correlations: Application to microstructure coarsening

    International Nuclear Information System (INIS)

    Fast, Tony; Wodo, Olga; Ganapathysubramanian, Baskar; Kalidindi, Surya R.

    2016-01-01

    To build materials knowledge, rigorous description of the material structure and associated tools to explore and exploit information encoded in the structure are needed. These enable recognition, categorization and identification of different classes of microstructure and ultimately enable to link structure with properties of materials. Particular interest lies in the protocols capable of mining the essential information in large microstructure datasets and building robust knowledge systems that can be easily accessed, searched, and shared by the broader materials community. In this paper, we develop a protocol based on automated tools to classify microstructure taxonomies in the context of coarsening behavior which is important for long term stability of materials. Our new concepts for enhanced description of the local microstructure state provide flexibility of description. The mathematical description of microstructure that capture crucial attributes of the material, although central to building materials knowledge, is still elusive. The new description captures important higher order spatial information, but at the same time, allows down sampling if less information is needed. We showcase the classification protocol by studying coarsening of binary polymer blends and classifying steady state structures. We study several microstructure descriptions by changing the microstructure local state order and discretization and critically evaluate their efficacy. Our analysis revealed the superior properties of microstructure representation is based on the first order-gradient of the atomic fraction.

  3. Subcortical regional morphology correlates with fluid and spatial intelligence.

    Science.gov (United States)

    Burgaleta, Miguel; MacDonald, Penny A; Martínez, Kenia; Román, Francisco J; Álvarez-Linera, Juan; Ramos González, Ana; Karama, Sherif; Colom, Roberto

    2014-05-01

    Neuroimaging studies have revealed associations between intelligence and brain morphology. However, researchers have focused primarily on the anatomical features of the cerebral cortex, whereas subcortical structures, such as the basal ganglia (BG), have often been neglected despite extensive functional evidence on their relation with higher-order cognition. Here we performed shape analyses to understand how individual differences in BG local morphology account for variability in cognitive performance. Structural MRI was acquired in 104 young adults (45 men, 59 women, mean age = 19.83, SD = 1.64), and the outer surface of striatal structures (caudate, nucleus accumbens, and putamen), globus pallidus, and thalamus was estimated for each subject and hemisphere. Further, nine cognitive tests were used to measure fluid (Gf), crystallized (Gc), and spatial intelligence (Gv). Latent scores for these factors were computed by means of confirmatory factor analysis and regressed vertex-wise against subcortical shape (local displacements of vertex position), controlling for age, sex, and adjusted for brain size. Significant results (FDR intelligence-related prefrontal areas. Copyright © 2013 Wiley Periodicals, Inc.

  4. Applying Spatially Distributed Rainfall to a Hydrological Model in a Tropical Watershed, Manoa Watershed, in Hawaii

    Science.gov (United States)

    Huang, Y. F.; Tsang, Y. P.

    2017-12-01

    Rainfall in Hawaii is characterized with high spatial and temporal variability. In the south side of Oahu, the Manoa watershed, with an area of 11 km2, has the annual maximum rainfall of 3900mm and the minimum rainfall of 1000 mm. Despite this high spatial heterogeneity, the rain gage network seems insufficiently capture this pattern. When simulating stream flow and predicting floods with hydrological models in Hawaii, the model performance is often unsatisfactory because of inadequate representation of rainfall data. Longman et al. (in prep.) have developed the spatially distributed daily rainfall across the Hawaiian Islands by applying ordinary kriging, yet these data have not been applied to hydrological models. In this study, we used the Soil and Water Assessment Tool (SWAT) model to assess the streamflow simulation by applying spatially-distributed rainfall in the Manoa watershed. We first used point daily-rainfall at Lyon Arboretum from National Center of Environmental Information (NCEI) as the uniform rainfall input. Secondly, we summarized sub-watershed mean rainfall from the daily spatial-statistical rainfall. Both rainfall data are available from 1999 to 2014. The SWAT was set up for five-year warm-up, nine-year calibration, and two-year validation. The model parameters were calibrated and validated with four U.S. Geological Survey stream gages. We compared the calibrated watershed parameters, characteristics, and assess the streamflow hydrographs from these two rainfall inputs. The differences and improvement of using spatially distributed rainfall input in SWAT were discussed. In addition to improving the model by the representation of rainfall, this study helped us having a better understanding of the watershed hydrological response in Hawaii.

  5. Spatial Distortion of Vibration Modes via Magnetic Correlation of Impurities

    Science.gov (United States)

    Krasniqi, F. S.; Zhong, Y.; Epp, S. W.; Foucar, L.; Trigo, M.; Chen, J.; Reis, D. A.; Wang, H. L.; Zhao, J. H.; Lemke, H. T.; Zhu, D.; Chollet, M.; Fritz, D. M.; Hartmann, R.; Englert, L.; Strüder, L.; Schlichting, I.; Ullrich, J.

    2018-03-01

    Long wavelength vibrational modes in the ferromagnetic semiconductor Ga0.91 Mn0.09 As are investigated using time resolved x-ray diffraction. At room temperature, we measure oscillations in the x-ray diffraction intensity corresponding to coherent vibrational modes with well-defined wavelengths. When the correlation of magnetic impurities sets in, we observe the transition of the lattice into a disordered state that does not support coherent modes at large wavelengths. Our measurements point toward a magnetically induced broadening of long wavelength vibrational modes in momentum space and their quasilocalization in the real space. More specifically, long wavelength vibrational modes cannot be assigned to a single wavelength but rather should be represented as a superposition of plane waves with different wavelengths. Our findings have strong implications for the phonon-related processes, especially carrier-phonon and phonon-phonon scattering, which govern the electrical conductivity and thermal management of semiconductor-based devices.

  6. Spatially correlated heterogeneous aspirations to enhance network reciprocity

    Science.gov (United States)

    Tanimoto, Jun; Nakata, Makoto; Hagishima, Aya; Ikegaya, Naoki

    2012-02-01

    Perc & Wang demonstrated that aspiring to be the fittest under conditions of pairwise strategy updating enhances network reciprocity in structured populations playing 2×2 Prisoner's Dilemma games (Z. Wang, M. Perc, Aspiring to the fittest and promoted of cooperation in the Prisoner's Dilemma game, Physical Review E 82 (2010) 021115; M. Perc, Z. Wang, Heterogeneous aspiration promotes cooperation in the Prisoner's Dilemma game, PLOS one 5 (12) (2010) e15117). Through numerical simulations, this paper shows that network reciprocity is even greater if heterogeneous aspirations are imposed. We also suggest why heterogeneous aspiration fosters network reciprocity. It distributes strategy updating speed among agents in a manner that fortifies the initially allocated cooperators' clusters against invasion. This finding prompted us to further enhance the usual heterogeneous aspiration cases for heterogeneous network topologies. We find that a negative correlation between degree and aspiration level does extend cooperation among heterogeneously structured agents.

  7. Augmented GNSS Differential Corrections Minimum Mean Square Error Estimation Sensitivity to Spatial Correlation Modeling Errors

    Directory of Open Access Journals (Sweden)

    Nazelie Kassabian

    2014-06-01

    Full Text Available Railway signaling is a safety system that has evolved over the last couple of centuries towards autonomous functionality. Recently, great effort is being devoted in this field, towards the use and exploitation of Global Navigation Satellite System (GNSS signals and GNSS augmentation systems in view of lower railway track equipments and maintenance costs, that is a priority to sustain the investments for modernizing the local and regional lines most of which lack automatic train protection systems and are still manually operated. The objective of this paper is to assess the sensitivity of the Linear Minimum Mean Square Error (LMMSE algorithm to modeling errors in the spatial correlation function that characterizes true pseudorange Differential Corrections (DCs. This study is inspired by the railway application; however, it applies to all transportation systems, including the road sector, that need to be complemented by an augmentation system in order to deliver accurate and reliable positioning with integrity specifications. A vector of noisy pseudorange DC measurements are simulated, assuming a Gauss-Markov model with a decay rate parameter inversely proportional to the correlation distance that exists between two points of a certain environment. The LMMSE algorithm is applied on this vector to estimate the true DC, and the estimation error is compared to the noise added during simulation. The results show that for large enough correlation distance to Reference Stations (RSs distance separation ratio values, the LMMSE brings considerable advantage in terms of estimation error accuracy and precision. Conversely, the LMMSE algorithm may deteriorate the quality of the DC measurements whenever the ratio falls below a certain threshold.

  8. Spatial correlation of energy deposition events in irradiated liquid water

    International Nuclear Information System (INIS)

    Hamm, R.N.; Wright, H.A.; Turner, J.E.; Ritchie, R.H.

    1978-01-01

    Monte Carlo electron transport computer code is used to study in detail the slowing down of electrons and all of their secondaries with initial energies up to 1.5 MeV in liquid water. The probability distributions for the number of ionizations and for the energy deposited in cubical volume elements from electron tracks in the water are analyzed. Both the electron energies and the sizes of the cubical cells are varied. Results are shown for electron energies between 100 eV and 10 keV and for cell sizes between 40 A and 1500 A. Good general agreement is found with results presented by Paretzke at the last symposium. The code can be used to obtain other basic distributions of importance in microdosimetry. As an example, microdosimetric single-event spectra for 500-eV electrons are computed in cubes with edges that range in size from 40 A to 200 A. The importance of correlations is shown explicitly in a comparison of secondary electrons produced by 60 Co and 50-keV photons

  9. Applying Spatial Audio to Human Interfaces: 25 Years of NASA Experience

    Science.gov (United States)

    Begault, Durand R.; Wenzel, Elizabeth M.; Godfrey, Martine; Miller, Joel D.; Anderson, Mark R.

    2010-01-01

    From the perspective of human factors engineering, the inclusion of spatial audio within a human-machine interface is advantageous from several perspectives. Demonstrated benefits include the ability to monitor multiple streams of speech and non-speech warning tones using a cocktail party advantage, and for aurally-guided visual search. Other potential benefits include the spatial coordination and interaction of multimodal events, and evaluation of new communication technologies and alerting systems using virtual simulation. Many of these technologies were developed at NASA Ames Research Center, beginning in 1985. This paper reviews examples and describes the advantages of spatial sound in NASA-related technologies, including space operations, aeronautics, and search and rescue. The work has involved hardware and software development as well as basic and applied research.

  10. Effect of spatially correlated noise on coherence resonance in a network of excitable cells

    International Nuclear Information System (INIS)

    Kwon, Okyu; Jo, Hang-Hyun; Moon, Hie-Tae

    2005-01-01

    We study the effect of spatially correlated noise on coherence resonance (CR) in a Watts-Strogatz small-world network of Fitz Hugh-Nagumo neurons, where the noise correlation decays exponentially with distance between neurons. It is found that CR is considerably improved just by a small fraction of long-range connections for an intermediate coupling strength. For other coupling strengths, an abrupt change in CR occurs following the drastic fracture of the clustered structures in the network. Our study shows that spatially correlated noise plays a significant role in the phenomenon of CR reinforcing the role of the clustered structure of the system

  11. Quantum diffraction and interference of spatially correlated photon pairs and its Fourier-optical analysis

    International Nuclear Information System (INIS)

    Shimizu, Ryosuke; Edamatsu, Keiichi; Itoh, Tadashi

    2006-01-01

    We present one- and two-photon diffraction and interference experiments involving parametric down-converted photon pairs. By controlling the divergence of the pump beam in parametric down-conversion, the diffraction-interference pattern produced by an object changes from a quantum (perfectly correlated) case to a classical (uncorrelated) one. The observed diffraction and interference patterns are accurately reproduced by Fourier-optical analysis taking into account the quantum spatial correlation. We show that the relation between the spatial correlation and the object size plays a crucial role in the formation of both one- and two-photon diffraction-interference patterns

  12. Overcoming artificial spatial correlations in simulations of superstructure domain growth with parallel Monte Carlo algorithms

    International Nuclear Information System (INIS)

    Schleier, W.; Besold, G.; Heinz, K.

    1992-01-01

    The authors study the applicability of parallelized/vectorized Monte Carlo (MC) algorithms to the simulation of domain growth in two-dimensional lattice gas models undergoing an ordering process after a rapid quench below an order-disorder transition temperature. As examples they consider models with 2 x 1 and c(2 x 2) equilibrium superstructures on the square and rectangular lattices, respectively. They also study the case of phase separation ('1 x 1' islands) on the square lattice. A generalized parallel checkerboard algorithm for Kawasaki dynamics is shown to give rise to artificial spatial correlations in all three models. However, only if superstructure domains evolve do these correlations modify the kinetics by influencing the nucleation process and result in a reduced growth exponent compared to the value from the conventional heat bath algorithm with random single-site updates. In order to overcome these artificial modifications, two MC algorithms with a reduced degree of parallelism ('hybrid' and 'mask' algorithms, respectively) are presented and applied. As the results indicate, these algorithms are suitable for the simulation of superstructure domain growth on parallel/vector computers. 60 refs., 10 figs., 1 tab

  13. Characterization of the spatial structure of local functional connectivity using multi-distance average correlation measures.

    Science.gov (United States)

    Macia, Didac; Pujol, Jesus; Blanco-Hinojo, Laura; Martínez-Vilavella, Gerard; Martín-Santos, Rocío; Deus, Joan

    2018-04-24

    There is ample evidence from basic research in neuroscience of the importance of local cortico-cortical networks. Millimetric resolution is achievable with current functional MRI (fMRI) scanners and sequences, and consequently a number of "local" activity similarity measures have been defined to describe patterns of segregation and integration at this spatial scale. We have introduced the use of Iso-Distant local Average Correlation (IDAC), easily defined as the average fMRI temporal correlation of a given voxel with other voxels placed at increasingly separated iso-distant intervals, to characterize the curve of local fMRI signal similarities. IDAC curves can be statistically compared using parametric multivariate statistics. Furthermore, by using RGB color-coding to display jointly IDAC values belonging to three different distance lags, IDAC curves can also be displayed as multi-distance IDAC maps. We applied IDAC analysis to a sample of 41 subjects scanned under two different conditions, a resting state and an auditory-visual continuous stimulation. Multi-distance IDAC mapping was able to discriminate between gross anatomo-functional cortical areas and, moreover, was sensitive to modulation between the two brain conditions in areas known to activate and de-activate during audio-visual tasks. Unlike previous fMRI local similarity measures already in use, our approach draws special attention to the continuous smooth pattern of local functional connectivity.

  14. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function

    DEFF Research Database (Denmark)

    Lacevic, N.; Starr, F. W.; Schrøder, Thomas

    2003-01-01

    correlation function g4(r,t) and corresponding "structure factor" S4(q,t) which measure the spatial correlations between the local liquid density at two points in space, each at two different times, and so are sensitive to dynamical heterogeneity. We study g4(r,t) and S4(q,t) via molecular dynamics......Relaxation in supercooled liquids above their glass transition and below the onset temperature of "slow" dynamics involves the correlated motion of neighboring particles. This correlated motion results in the appearance of spatially heterogeneous dynamics or "dynamical heterogeneity." Traditional...... two-point time-dependent density correlation functions, while providing information about the transient "caging" of particles on cooling, are unable to provide sufficiently detailed information about correlated motion and dynamical heterogeneity. Here, we study a four-point, time-dependent density...

  15. Estimates of spatial correlation in volcanic tuff, Yucca Mountain, Nevada: Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Rautman, C.A.

    1991-02-01

    The spatial correlation structure of volcanic tuffs at and near the site of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada, is estimated using samples obtained from surface outcrops and drill holes. Data are examined for four rock properties: porosity, air permeability, saturated hydraulic conductivity, and dry bulk density. Spatial continuity patterns are identified in both lateral and vertical (stratigraphic) dimensions. The data are examined for the Calico Hills tuff stratigraphic unit and also without regard for stratigraphy. Variogram models fitted to the sample data from the tuffs of Calico Hills indicate that porosity is correlated laterally over distances of up to 3000 feet. If air permeability and saturated conductivity values are viewed as semi-interchangeable for purposes of identifying spatial structure, the data suggest a maximum range of correlation of 300 to 500 feet without any obvious horizontal to vertical anisotropy. Continuity exists over vertical distances of roughly 200 feet. Similar variogram models fitted to sample data taken from vertical drill holes without regard for stratigraphy suggest that correlation exists over distances of 500 to 800 feet for each rock property examined. Spatial correlation of rock properties violates the sample-independence assumptions of classical statistics to a degree not usually acknowledged. In effect, the existence of spatial structure reduces the ''equivalent'' number of samples below the number of physical samples. This reduction in the effective sampling density has important implications for site characterization for the Yucca Mountain Project. 19 refs., 43 figs., 5 tabs

  16. Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows

    Science.gov (United States)

    Gay-Balmaz, François; Holm, Darryl D.

    2018-01-01

    Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.

  17. Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows

    Science.gov (United States)

    Gay-Balmaz, François; Holm, Darryl D.

    2018-06-01

    Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.

  18. Spatial and statistical methods for correlating the interaction between groundwater contamination and tap water exposure in karst regions

    Science.gov (United States)

    Padilla, I. Y.; Rivera, V. L.; Macchiavelli, R. E.; Torres Torres, N. I.

    2016-12-01

    Groundwater systems in karst regions are highly vulnerable to contamination and have an enormous capacity to store and rapidly convey pollutants to potential exposure zones over long periods of time. Contaminants in karst aquifers used for drinking water purposes can, therefore, enter distributions lines and the tap water point of use. This study applies spatial and statistical analytical methods to assess potential correlations between contaminants in a karst groundwater system in northern Puerto Rico and exposure in the tap water. It focuses on chlorinated volatile organic compounds (CVOC) and phthalates because of their ubiquitous presence in the environment and the potential public health impacts. The work integrates historical data collected from regulatory agencies and current field measurements involving groundwater and tap water sampling and analysis. Contaminant distributions and cluster analysis is performed with Geographic Information System technology. Correlations between detection frequencies and contaminants concentration in source groundwater and tap water point of use are assessed using Pearson's Chi Square and T-Test analysis. Although results indicate that correlations are contaminant-specific, detection frequencies are generally higher for total CVOC in groundwater than tap water samples, but greater for phthalates in tap water than groundwater samples. Spatial analysis shows widespread distribution of CVOC and phthalates in both groundwater and tap water, suggesting that contamination comes from multiple sources. Spatial correlation analysis indicates that association between tap water and groundwater contamination depends on the source and type of contaminants, spatial location, and time. Full description of the correlations may, however, need to take into consideration variable anthropogenic interventions.

  19. A DATA FIELD METHOD FOR URBAN REMOTELY SENSED IMAGERY CLASSIFICATION CONSIDERING SPATIAL CORRELATION

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2016-06-01

    Full Text Available Spatial correlation between pixels is important information for remotely sensed imagery classification. Data field method and spatial autocorrelation statistics have been utilized to describe and model spatial information of local pixels. The original data field method can represent the spatial interactions of neighbourhood pixels effectively. However, its focus on measuring the grey level change between the central pixel and the neighbourhood pixels results in exaggerating the contribution of the central pixel to the whole local window. Besides, Geary’s C has also been proven to well characterise and qualify the spatial correlation between each pixel and its neighbourhood pixels. But the extracted object is badly delineated with the distracting salt-and-pepper effect of isolated misclassified pixels. To correct this defect, we introduce the data field method for filtering and noise limitation. Moreover, the original data field method is enhanced by considering each pixel in the window as the central pixel to compute statistical characteristics between it and its neighbourhood pixels. The last step employs a support vector machine (SVM for the classification of multi-features (e.g. the spectral feature and spatial correlation feature. In order to validate the effectiveness of the developed method, experiments are conducted on different remotely sensed images containing multiple complex object classes inside. The results show that the developed method outperforms the traditional method in terms of classification accuracies.

  20. Managing the spatial properties and photon correlations in squeezed non-classical twisted light

    Science.gov (United States)

    Zakharov, R. V.; Tikhonova, O. V.

    2018-05-01

    Spatial photon correlations and mode content of the squeezed vacuum light generated in a system of two separated nonlinear crystals is investigated. The contribution of both the polar and azimuthal modes with non-zero orbital angular momentum is analyzed. The control and engineering of the spatial properties and degree of entanglement of the non-classical squeezed light by changing the distance between crystals and pump parameters is demonstrated. Methods for amplification of certain spatial modes and managing the output mode content and intensity profile of quantum twisted light are suggested.

  1. SPATIAL CORRELATION BETWEEN PHYSICAL PROPERTIES OF SOIL AND WEEDS IN TWO MANAGEMENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    Valter Roberto Schaffrath

    2015-02-01

    Full Text Available The spatial correlation between soil properties and weeds is relevant in agronomic and environmental terms. The analysis of this correlation is crucial for the interpretation of its meaning, for influencing factors such as dispersal mechanisms, seed production and survival, and the range of influence of soil management techniques. This study aimed to evaluate the spatial correlation between the physical properties of soil and weeds in no-tillage (NT and conventional tillage (CT systems. The following physical properties of soil and weeds were analyzed: soil bulk density, macroporosity, microporosity, total porosity, aeration capacity of soil matrix, soil water content at field capacity, weed shoot biomass, weed density, Commelina benghalensis density, and Bidens pilosa density. Generally, the ranges of the spatial correlations were higher in NT than in CT. The cross-variograms showed that many variables have a structure of combined spatial variation and can therefore be mapped from one another by co-kriging. This combined variation also allows inferences about the physical and biological meanings of the study variables. Results also showed that soil management systems influence the spatial dependence structure significantly.

  2. Quantifying spatial scaling patterns and their local and regional correlates in headwater streams: implications for resilience

    Directory of Open Access Journals (Sweden)

    Emma Göthe

    2014-09-01

    Full Text Available The distribution of functional traits within and across spatiotemporal scales has been used to quantify and infer the relative resilience across ecosystems. We use explicit spatial modeling to evaluate within- and cross-scale redundancy in headwater streams, an ecosystem type with a hierarchical and dendritic network structure. We assessed the cross-scale distribution of functional feeding groups of benthic invertebrates in Swedish headwater streams during two seasons. We evaluated functional metrics, i.e., Shannon diversity, richness, and evenness, and the degree of redundancy within and across modeled spatial scales for individual feeding groups. We also estimated the correlates of environmental versus spatial factors of both functional composition and the taxonomic composition of functional groups for each spatial scale identified. Measures of functional diversity and within-scale redundancy of functions were similar during both seasons, but both within- and cross-scale redundancy were low. This apparent low redundancy was partly attributable to a few dominant taxa explaining the spatial models. However, rare taxa with stochastic spatial distributions might provide additional information and should therefore be considered explicitly for complementing future resilience assessments. Otherwise, resilience may be underestimated. Finally, both environmental and spatial factors correlated with the scale-specific functional and taxonomic composition. This finding suggests that resilience in stream networks emerges as a function of not only local conditions but also regional factors such as habitat connectivity and invertebrate dispersal.

  3. Quantifying spatial scaling patterns and their local and regional correlates in headwater streams: Implications for resilience

    Science.gov (United States)

    Gothe, Emma; Sandin, Leonard; Allen, Craig R.; Angeler, David G.

    2014-01-01

    The distribution of functional traits within and across spatiotemporal scales has been used to quantify and infer the relative resilience across ecosystems. We use explicit spatial modeling to evaluate within- and cross-scale redundancy in headwater streams, an ecosystem type with a hierarchical and dendritic network structure. We assessed the cross-scale distribution of functional feeding groups of benthic invertebrates in Swedish headwater streams during two seasons. We evaluated functional metrics, i.e., Shannon diversity, richness, and evenness, and the degree of redundancy within and across modeled spatial scales for individual feeding groups. We also estimated the correlates of environmental versus spatial factors of both functional composition and the taxonomic composition of functional groups for each spatial scale identified. Measures of functional diversity and within-scale redundancy of functions were similar during both seasons, but both within- and cross-scale redundancy were low. This apparent low redundancy was partly attributable to a few dominant taxa explaining the spatial models. However, rare taxa with stochastic spatial distributions might provide additional information and should therefore be considered explicitly for complementing future resilience assessments. Otherwise, resilience may be underestimated. Finally, both environmental and spatial factors correlated with the scale-specific functional and taxonomic composition. This finding suggests that resilience in stream networks emerges as a function of not only local conditions but also regional factors such as habitat connectivity and invertebrate dispersal.

  4. Linear mixing model applied to coarse spatial resolution data from multispectral satellite sensors

    Science.gov (United States)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1993-01-01

    A linear mixing model was applied to coarse spatial resolution data from the NOAA Advanced Very High Resolution Radiometer. The reflective component of the 3.55-3.95 micron channel was used with the two reflective channels 0.58-0.68 micron and 0.725-1.1 micron to run a constrained least squares model to generate fraction images for an area in the west central region of Brazil. The fraction images were compared with an unsupervised classification derived from Landsat TM data acquired on the same day. The relationship between the fraction images and normalized difference vegetation index images show the potential of the unmixing techniques when using coarse spatial resolution data for global studies.

  5. The Effect of Spatial Interference Correlation and Jamming on Secrecy in Cellular Networks

    KAUST Repository

    Ali, Konpal S.

    2017-06-02

    Recent studies on secure wireless communication have shed light on a scenario where interference has a desirable impact on network performance. Particularly, assuming independent interference-power fluctuations at the eavesdropper and the receiver, opportunistic secure-information transfer can occur on the legitimate-link. However, interference is spatially correlated due to the common set of interfering sources, which may diminish the opportunistic-secure-spectrum-access (OSSA) probability. We study and quantify the effect of spatial interference correlation on OSSA in cellular-networks and investigate the potential of full-duplex jamming (FDJ) solutions. The results highlight the scenarios where FDJ improves OSSA performance.

  6. The Effect of Spatial Interference Correlation and Jamming on Secrecy in Cellular Networks

    KAUST Repository

    Ali, Konpal S.; Elsawy, Hesham; Haenggi, Martin; Alouini, Mohamed-Slim

    2017-01-01

    Recent studies on secure wireless communication have shed light on a scenario where interference has a desirable impact on network performance. Particularly, assuming independent interference-power fluctuations at the eavesdropper and the receiver, opportunistic secure-information transfer can occur on the legitimate-link. However, interference is spatially correlated due to the common set of interfering sources, which may diminish the opportunistic-secure-spectrum-access (OSSA) probability. We study and quantify the effect of spatial interference correlation on OSSA in cellular-networks and investigate the potential of full-duplex jamming (FDJ) solutions. The results highlight the scenarios where FDJ improves OSSA performance.

  7. Horizontal Residual Mean Circulation: Evaluation of Spatial Correlations in Coarse Resolution Ocean Models

    Science.gov (United States)

    Li, Y.; McDougall, T. J.

    2016-02-01

    Coarse resolution ocean models lack knowledge of spatial correlations between variables on scales smaller than the grid scale. Some researchers have shown that these spatial correlations play a role in the poleward heat flux. In order to evaluate the poleward transport induced by the spatial correlations at a fixed horizontal position, an equation is obtained to calculate the approximate transport from velocity gradients. The equation involves two terms that can be added to the quasi-Stokes streamfunction (based on temporal correlations) to incorporate the contribution of spatial correlations. Moreover, these new terms do not need to be parameterized and is ready to be evaluated by using model data directly. In this study, data from a high resolution ocean model have been used to estimate the accuracy of this HRM approach for improving the horizontal property fluxes in coarse-resolution ocean models. A coarse grid is formed by sub-sampling and box-car averaging the fine grid scale. The transport calculated on the coarse grid is then compared to the transport on original high resolution grid scale accumulated over a corresponding number of grid boxes. The preliminary results have shown that the estimate on coarse resolution grids roughly match the corresponding transports on high resolution grids.

  8. Spatial and temporal correlation in dynamic, multi-electron quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Godunov, A.L.; McGuire, J.H.; Shakov, Kh.Kh. [Department of Physics, Tulane University, New Orleans, LA (United States); Ivanov, P.B.; Shipakov, V.A. [Troitsk Institute for Innovation and Fusion Research, Troitsk (Russian Federation); Merabet, H.; Bruch, R.; Hanni, J. [Department of Physics, University of Nevada Reno, Reno, NV (United States)

    2001-12-28

    Cross sections for ionization with excitation and for double excitation in helium are evaluated in a full second Born calculation. These full second Born calculations are compared to calculations in the independent electron approximation, where spatial correlation between the electrons is removed. Comparison is also made to calculations in the independent time approximation, where time correlation between the electrons is removed. The two-electron transitions considered here are caused by interactions with incident protons and electrons with velocities ranging between 2 and 10 au. Good agreement is found between our full calculations and experiment, except for the lowest velocities, where higher Born terms are expected to be significant. Spatial electron correlation, arising from internal electron-electron interactions, and time correlation, arising from time ordering of the external interactions, can both give rise to observable effects. Our method may be used for photon impact. (author)

  9. Laser correlation velocimetry performance in diesel applications: spatial selectivity and velocity sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Hespel, Camille [Universite d' Orleans, Laboratoire PRISME, Orleans (France); Blaisot, Jean-Bernard; Gazon, Matthieu; Godard, Gilles [CORIA, UMR 6614, CNRS, Universite et INSA de Rouen, Saint Etienne du Rouvray (France)

    2012-07-15

    The characterization of diesel jets in the near field of the nozzle exit still presents challenges for experimenters. Detailed velocity measurements are needed to characterize diesel injector performance and also to establish boundary conditions for CFD codes. The present article examines the efficiency of laser correlation velocimetry (LCV) applied to diesel spray characterization. A new optical configuration based on a long-distance microscope was tested, and special care was taken to examine the spatial selectivity of the technique. Results show that the depth of the measurement volume (along the laser beam) of LCV extends beyond the depth of field of the imaging setup. The LCV results were also found to be particularly sensitive to high-speed elements of a spray. Results from high-pressure diesel jets in a back-pressure environment indicate that this technique is particularly suited to the very near field of the nozzle exit, where the flow is the narrowest and where the velocity distribution is not too large. It is also shown that the performance of the LCV technique is controlled by the filtering and windowing parameters used in the processing of the raw signals. (orig.)

  10. Laser correlation velocimetry performance in diesel applications: spatial selectivity and velocity sensitivity

    Science.gov (United States)

    Hespel, Camille; Blaisot, Jean-Bernard; Gazon, Matthieu; Godard, Gilles

    2012-07-01

    The characterization of diesel jets in the near field of the nozzle exit still presents challenges for experimenters. Detailed velocity measurements are needed to characterize diesel injector performance and also to establish boundary conditions for CFD codes. The present article examines the efficiency of laser correlation velocimetry (LCV) applied to diesel spray characterization. A new optical configuration based on a long-distance microscope was tested, and special care was taken to examine the spatial selectivity of the technique. Results show that the depth of the measurement volume (along the laser beam) of LCV extends beyond the depth of field of the imaging setup. The LCV results were also found to be particularly sensitive to high-speed elements of a spray. Results from high-pressure diesel jets in a back-pressure environment indicate that this technique is particularly suited to the very near field of the nozzle exit, where the flow is the narrowest and where the velocity distribution is not too large. It is also shown that the performance of the LCV technique is controlled by the filtering and windowing parameters used in the processing of the raw signals.

  11. The change in spatial distribution of upper trapezius muscle activity is correlated to contraction duration.

    Science.gov (United States)

    Farina, Dario; Leclerc, Frédéric; Arendt-Nielsen, Lars; Buttelli, Olivier; Madeleine, Pascal

    2008-02-01

    The aim of the study was to confirm the hypothesis that the longer a contraction is sustained, the larger are the changes in the spatial distribution of muscle activity. For this purpose, surface electromyographic (EMG) signals were recorded with a 13 x 5 grid of electrodes from the upper trapezius muscle of 11 healthy male subjects during static contractions with shoulders 90 degrees abducted until endurance. The entropy (degree of uniformity) and center of gravity of the EMG root mean square map were computed to assess spatial inhomogeneity in muscle activation and changes over time in EMG amplitude spatial distribution. At the endurance time, entropy decreased (mean+/-SD, percent change 2.0+/-1.6%; Pgrid) root mean square was positively correlated with the shift in the center of gravity (R(2)=0.51, P<0.05). Moreover, the shift in the center of gravity was negatively correlated to both initial and final (at the endurance) entropy (R(2)=0.54 and R(2)=0.56, respectively; P<0.01 in both cases), indicating that subjects with less uniform root mean square maps had larger shift of the center of gravity over time. The spatial changes in root mean square EMG were likely due to spatially-dependent changes in motor unit activation during the sustained contraction. It was concluded that the changes in spatial muscle activity distribution play a role in the ability to maintain a static contraction.

  12. Characterizing the spatial variations and correlations of large rainstorms for landslide study

    Directory of Open Access Journals (Sweden)

    L. Gao

    2017-09-01

    Full Text Available Rainfall is the primary trigger of landslides in Hong Kong; hence, rainstorm spatial distribution is an important piece of information in landslide hazard analysis. The primary objective of this paper is to quantify spatial correlation characteristics of three landslide-triggering large storms in Hong Kong. The spatial maximum rolling rainfall is represented by a rotated ellipsoid trend surface and a random field of residuals. The maximum rolling 4, 12, 24, and 36 h rainfall amounts of these storms are assessed via surface trend fitting, and the spatial correlation of the detrended residuals is determined through studying the scales of fluctuation along eight directions. The principal directions of the surface trend are between 19 and 43°, and the major and minor axis lengths are 83–386 and 55–79 km, respectively. The scales of fluctuation of the residuals are found between 5 and 30 km. The spatial distribution parameters for the three large rainstorms are found to be similar to those for four ordinary rainfall events. The proposed rainfall spatial distribution model and parameters help define the impact area, rainfall intensity and local topographic effects for landslide hazard evaluation in the future.

  13. Spatial Correlation of Pathology and Perfusion Changes within the Cortex and White Matter in Multiple Sclerosis.

    Science.gov (United States)

    Mulholland, A D; Vitorino, R; Hojjat, S-P; Ma, A Y; Zhang, L; Lee, L; Carroll, T J; Cantrell, C G; Figley, C R; Aviv, R I

    2018-01-01

    The spatial correlation between WM and cortical GM disease in multiple sclerosis is controversial and has not been previously assessed with perfusion MR imaging. We sought to determine the nature of association between lobar WM, cortical GM, volume and perfusion. Nineteen individuals with secondary-progressive multiple sclerosis, 19 with relapsing-remitting multiple sclerosis, and 19 age-matched healthy controls were recruited. Quantitative MR perfusion imaging was used to derive CBF, CBV, and MTT within cortical GM, WM, and T2-hyperintense lesions. A 2-step multivariate linear regression (corrected for age, disease duration, and Expanded Disability Status Scale) was used to assess correlations between perfusion and volume measures in global and lobar normal-appearing WM, cortical GM, and T2-hyperintense lesions. The Bonferroni adjustment was applied as appropriate. Global cortical GM and WM volume was significantly reduced for each group comparison, except cortical GM volume of those with relapsing-remitting multiple sclerosis versus controls. Global and lobar cortical GM CBF and CBV were reduced in secondary-progressive multiple sclerosis compared with other groups but not for relapsing-remitting multiple sclerosis versus controls. Global and lobar WM CBF and CBV were not significantly different across groups. The distribution of lobar cortical GM and WM volume reduction was disparate, except for the occipital lobes in patients with secondary-progressive multiple sclerosis versus those with relapsing-remitting multiple sclerosis. Moderate associations were identified between lobar cortical GM and lobar normal-appearing WM volume in controls and in the left temporal lobe in relapsing-remitting multiple sclerosis. No significant associations occurred between cortical GM and WM perfusion or volume. Strong correlations were observed between cortical-GM perfusion, normal appearing WM and lesional perfusion, with respect to each global and lobar region within HC, and

  14. Spatial correlation structure of the ionosphere predicted by geomagnetic indices and application to global field modelling

    Science.gov (United States)

    Holschneider, M.; Ferrat, K.; Lesur, V.; Stolle, C.

    2017-12-01

    Ionospheric fields are modelled in terms of random structures taking into account a mean behaviour as well as random fluctuations which are described through two point correlation kernels. These kernels are estimated from long time series of numerical simulations from various models. These correlations are best expressed in SM system of coordinates. For the moment we limit ourselves to spatial correlations only in this coordinate system. We study the influence of various indices as possible predictor parameters for these correlations as well as seasonal effects. The various time series of ionospheric fields are stored in a HDF5 database which is accessible via a web interface. The obtained correlation structures serve as prior information to separate external and internal field components from observatory based measurements. We present a model that predicts the correlations as a function of time and some geomagnetic indices. First results of the inversion from observatory data are presented.

  15. Tools for Multimode Quantum Information: Modulation, Detection, and Spatial Quantum Correlations

    DEFF Research Database (Denmark)

    Lassen, Mikael Østergaard; Delaubert, Vincent; Janousek, Jirí

    2007-01-01

    We present here all the tools required for continuous variable parallel quantum information protocols based on spatial multi-mode quantum correlations and entanglement. We describe techniques for encoding and detecting this quantum information with high efficiency in the individual modes. We use ...

  16. Modelling the distribution of fish accounting for spatial correlation and overdispersion

    DEFF Research Database (Denmark)

    Lewy, Peter; Kristensen, Kasper

    2009-01-01

    correlation between observations. It is therefore possible to predict and interpolate unobserved densities at any location in the area. This is important for obtaining unbiased estimates of stock concentration and other measures depending on the distribution in the entire area. Results show that the spatial...

  17. Revealing Spatial Variation and Correlation of Urban Travels from Big Trajectory Data

    Science.gov (United States)

    Li, X.; Tu, W.; Shen, S.; Yue, Y.; Luo, N.; Li, Q.

    2017-09-01

    With the development of information and communication technology, spatial-temporal data that contain rich human mobility information are growing rapidly. However, the consistency of multi-mode human travel behind multi-source spatial-temporal data is not clear. To this aim, we utilized a week of taxies' and buses' GPS trajectory data and smart card data in Shenzhen, China to extract city-wide travel information of taxi, bus and metro and tested the correlation of multi-mode travel characteristics. Both the global correlation and local correlation of typical travel indicator were examined. The results show that: (1) Significant differences exist in of urban multi-mode travels. The correlation between bus travels and taxi travels, metro travel and taxi travels are globally low but locally high. (2) There are spatial differences of the correlation relationship between bus, metro and taxi travel. These findings help us understanding urban travels deeply therefore facilitate both the transport policy making and human-space interaction research.

  18. REVEALING SPATIAL VARIATION AND CORRELATION OF URBAN TRAVELS FROM BIG TRAJECTORY DATA

    Directory of Open Access Journals (Sweden)

    X. Li

    2017-09-01

    Full Text Available With the development of information and communication technology, spatial-temporal data that contain rich human mobility information are growing rapidly. However, the consistency of multi-mode human travel behind multi-source spatial-temporal data is not clear. To this aim, we utilized a week of taxies’ and buses’ GPS trajectory data and smart card data in Shenzhen, China to extract city-wide travel information of taxi, bus and metro and tested the correlation of multi-mode travel characteristics. Both the global correlation and local correlation of typical travel indicator were examined. The results show that: (1 Significant differences exist in of urban multi-mode travels. The correlation between bus travels and taxi travels, metro travel and taxi travels are globally low but locally high. (2 There are spatial differences of the correlation relationship between bus, metro and taxi travel. These findings help us understanding urban travels deeply therefore facilitate both the transport policy making and human-space interaction research.

  19. Spatially varying cross-correlation coefficients in the presence of nugget effects

    KAUST Repository

    Kleiber, William; Genton, Marc G.

    2012-01-01

    We derive sufficient conditions for the cross-correlation coefficient of a multivariate spatial process to vary with location when the spatial model is augmented with nugget effects. The derived class is valid for any choice of covariance functions, and yields substantial flexibility between multiple processes. The key is to identify the cross-correlation coefficient matrix with a contraction matrix, which can be either diagonal, implying a parsimonious formulation, or a fully general contraction matrix, yielding greater flexibility but added model complexity. We illustrate the approach with a bivariate minimum and maximum temperature dataset in Colorado, allowing the two variables to be positively correlated at low elevations and nearly independent at high elevations, while still yielding a positive definite covariance matrix. © 2012 Biometrika Trust.

  20. Probing heterogeneous dynamics from spatial density correlation in glass-forming liquids.

    Science.gov (United States)

    Li, Yan-Wei; Zhu, You-Liang; Sun, Zhao-Yan

    2016-12-01

    We numerically investigate the connection between spatial density correlation and dynamical heterogeneity in glass-forming liquids. We demonstrate that the cluster size defined by the spatial aggregation of densely packed particles (DPPs) can better capture the difference between the dynamics of the Lennard-Jones glass model and the Weeks-Chandler-Andersen truncation model than the commonly used pair correlation functions. More interestingly, we compare the mobility of DPPs and loosely packed particles, and we find that high local density correlates well with slow dynamics in systems with relatively hard repulsive interactions but links to mobile ones in the system with soft repulsive interactions at one relaxation time scale. Our results show clear evidence that the above model dependence behavior stems from the hopping motion of DPPs at the end of the caging stage due to the compressive nature of soft repulsive spheres, which activates the dynamics of DPPs in the α relaxation stage.

  1. Spatially varying cross-correlation coefficients in the presence of nugget effects

    KAUST Repository

    Kleiber, William

    2012-11-29

    We derive sufficient conditions for the cross-correlation coefficient of a multivariate spatial process to vary with location when the spatial model is augmented with nugget effects. The derived class is valid for any choice of covariance functions, and yields substantial flexibility between multiple processes. The key is to identify the cross-correlation coefficient matrix with a contraction matrix, which can be either diagonal, implying a parsimonious formulation, or a fully general contraction matrix, yielding greater flexibility but added model complexity. We illustrate the approach with a bivariate minimum and maximum temperature dataset in Colorado, allowing the two variables to be positively correlated at low elevations and nearly independent at high elevations, while still yielding a positive definite covariance matrix. © 2012 Biometrika Trust.

  2. Correlation between electron-irradiation defects and applied stress in graphene: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Kida, Shogo; Yamamoto, Masaya; Kawata, Hiroaki; Hirai, Yoshihiko; Yasuda, Masaaki, E-mail: yasuda@pe.osakafu-u.ac.jp [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Tada, Kazuhiro [Department of Electrical and Control Systems Engineering, National Institute of Technology, Toyama College, Toyama 939-8630 (Japan)

    2015-09-15

    Molecular dynamics (MD) simulations are performed to study the correlation between electron irradiation defects and applied stress in graphene. The electron irradiation effect is introduced by the binary collision model in the MD simulation. By applying a tensile stress to graphene, the number of adatom-vacancy (AV) and Stone–Wales (SW) defects increase under electron irradiation, while the number of single-vacancy defects is not noticeably affected by the applied stress. Both the activation and formation energies of an AV defect and the activation energy of an SW defect decrease when a tensile stress is applied to graphene. Applying tensile stress also relaxes the compression stress associated with SW defect formation. These effects induced by the applied stress cause the increase in AV and SW defect formation under electron irradiation.

  3. Spatial correlations, clustering and percolation-like transitions in homicide crimes

    Science.gov (United States)

    Alves, L. G. A.; Lenzi, E. K.; Mendes, R. S.; Ribeiro, H. V.

    2015-07-01

    The spatial dynamics of criminal activities has been recently studied through statistical physics methods; however, models and results have been focusing on local scales (city level) and much less is known about these patterns at larger scales, e.g. at a country level. Here we report on a characterization of the spatial dynamics of the homicide crimes along the Brazilian territory using data from all cities (˜5000) in a period of more than thirty years. Our results show that the spatial correlation function in the per capita homicides decays exponentially with the distance between cities and that the characteristic correlation length displays an acute increasing trend in the latest years. We also investigate the formation of spatial clusters of cities via a percolation-like analysis, where clustering of cities and a phase-transition-like behavior describing the size of the largest cluster as a function of a homicide threshold are observed. This transition-like behavior presents evolutive features characterized by an increasing in the homicide threshold (where the transitions occur) and by a decreasing in the transition magnitudes (length of the jumps in the cluster size). We believe that our work sheds new light on the spatial patterns of criminal activities at large scales, which may contribute for better political decisions and resources allocation as well as opens new possibilities for modeling criminal activities by setting up fundamental empirical patterns at large scales.

  4. Quantum metrology subject to spatially correlated Markovian noise: restoring the Heisenberg limit

    International Nuclear Information System (INIS)

    Jeske, Jan; Cole, Jared H; Huelga, Susana F

    2014-01-01

    Environmental noise can hinder the metrological capabilities of entangled states. While the use of entanglement allows for Heisenberg-limited resolution, the largest permitted by quantum mechanics, deviations from strictly unitary dynamics quickly restore the standard scaling dictated by the central limit theorem. Product and maximally entangled states become asymptotically equivalent when the noisy evolution is both local and strictly Markovian. However, temporal correlations in the noise have been shown to lift this equivalence while fully (spatially) correlated noise allows for the identification of decoherence-free subspaces. Here we analyze precision limits in the presence of noise with finite correlation length and show that there exist robust entangled state preparations which display persistent Heisenberg scaling despite the environmental decoherence, even for small correlation length. Our results emphasize the relevance of noise correlations in the study of quantum advantage and could be relevant beyond metrological applications. (paper)

  5. Extending Correlation Filter-Based Visual Tracking by Tree-Structured Ensemble and Spatial Windowing.

    Science.gov (United States)

    Gundogdu, Erhan; Ozkan, Huseyin; Alatan, A Aydin

    2017-11-01

    Correlation filters have been successfully used in visual tracking due to their modeling power and computational efficiency. However, the state-of-the-art correlation filter-based (CFB) tracking algorithms tend to quickly discard the previous poses of the target, since they consider only a single filter in their models. On the contrary, our approach is to register multiple CFB trackers for previous poses and exploit the registered knowledge when an appearance change occurs. To this end, we propose a novel tracking algorithm [of complexity O(D) ] based on a large ensemble of CFB trackers. The ensemble [of size O(2 D ) ] is organized over a binary tree (depth D ), and learns the target appearance subspaces such that each constituent tracker becomes an expert of a certain appearance. During tracking, the proposed algorithm combines only the appearance-aware relevant experts to produce boosted tracking decisions. Additionally, we propose a versatile spatial windowing technique to enhance the individual expert trackers. For this purpose, spatial windows are learned for target objects as well as the correlation filters and then the windowed regions are processed for more robust correlations. In our extensive experiments on benchmark datasets, we achieve a substantial performance increase by using the proposed tracking algorithm together with the spatial windowing.

  6. Feasibility of real-time calculation of correlation integral derived statistics applied to EGG time series

    NARCIS (Netherlands)

    van den Broek, PLC; van Egmond, J; van Rijn, CM; Takens, F; Coenen, AML; Booij, LHDJ

    2005-01-01

    Background: This study assessed the feasibility of online calculation of the correlation integral (C(r)) aiming to apply C(r)derived statistics. For real-time application it is important to reduce calculation time. It is shown how our method works for EEG time series. Methods: To achieve online

  7. Feasibility of real-time calculation of correlation integral derived statistics applied to EEG time series

    NARCIS (Netherlands)

    Broek, P.L.C. van den; Egmond, J. van; Rijn, C.M. van; Takens, F.; Coenen, A.M.L.; Booij, L.H.D.J.

    2005-01-01

    This study assessed the feasibility of online calculation of the correlation integral (C(r)) aiming to apply C(r)-derived statistics. For real-time application it is important to reduce calculation time. It is shown how our method works for EEG time series. Methods: To achieve online calculation of

  8. Ensemble correlation PIV applied to bubble plumes rising in a bubble column.

    NARCIS (Netherlands)

    Delnoij, E.; Westerweel, J.; Deen, N.G.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1999-01-01

    This paper discusses an ensemble correlation, double-exposure single-frame, particle image velocimetry (PIV) technique that can be applied to study dispersed gas¿liquid two-phase flows. The essentials of this technique will be reviewed and several important issues concerning the implementation of

  9. Spatial Distribution Characteristics of Healthcare Facilities in Nanjing: Network Point Pattern Analysis and Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Jianhua Ni

    2016-08-01

    Full Text Available The spatial distribution of urban service facilities is largely constrained by the road network. In this study, network point pattern analysis and correlation analysis were used to analyze the relationship between road network and healthcare facility distribution. The weighted network kernel density estimation method proposed in this study identifies significant differences between the outside and inside areas of the Ming city wall. The results of network K-function analysis show that private hospitals are more evenly distributed than public hospitals, and pharmacy stores tend to cluster around hospitals along the road network. After computing the correlation analysis between different categorized hospitals and street centrality, we find that the distribution of these hospitals correlates highly with the street centralities, and that the correlations are higher with private and small hospitals than with public and large hospitals. The comprehensive analysis results could help examine the reasonability of existing urban healthcare facility distribution and optimize the location of new healthcare facilities.

  10. Spatial correlation of the ionsphere total electron content at the equatorial anomaly crest

    International Nuclear Information System (INIS)

    Huang, Y.

    1984-01-01

    The spatial correlation of the ionospheric total electron content (TEC) at the equatorial anomaly crest was studied by recording Faraday rotation angle of the ETS-II geostationary satellite at Lunping and Kaohsiung whose subionospheric points are located at 23.0 0 N, 121.0 0 N, and 20.9 0 N, 121.1 0 E, respectively, and are about 280 km apart. The results show that the spatial correlation of TEC at the equatorial crest region is smaller than that at other places. The day-to-day variabilities of TEC differences between two subionospheric points are quite large. The day-to-day variabilities of the fountain effect seem to play an important role

  11. Effects of fading and spatial correlation on node selection for estimation in Wireless Sensor Networks

    KAUST Repository

    Al-Murad, Tamim M.

    2010-06-01

    In densely deployed sensor networks, correlation among measurements may be high. Spatial sampling through node selection is usually used to minimize this correlation and to save energy consumption. However because of the fading nature of the wireless channels, extra care should be taken when performing this sampling. In this paper, we develop expressions for the distortion which include the channel effects. The asymptotic behavior of the distortion as the number of sensors or total transmit power increase without bound is also investigated. Further, based on the channel and position information we propose and test several node selection schemes.

  12. Frequency and spatial correlation functions in a fading communication channel through the ionosphere

    International Nuclear Information System (INIS)

    Liu, C.H.; Yeh, K.C.

    1975-01-01

    Equations for the two-frequency two-position mutual coherence functions are derived under the usual parabolic and Markov approximations. These equations are then solved numerically. It is shown that the mutual coherence functions occur naturally in the study of pulse distortion through a random communication channel and in the investigation of signal correlations. Contour plots of correlation functions show the possibility of having equal values at two frequency separations for a given spatial separation. This behavior is explainable in terms of overlapping Fresnel zones

  13. Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Directory of Open Access Journals (Sweden)

    Joel Saltz

    2018-04-01

    Full Text Available Summary: Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumor-infiltrating lymphocytes (TILs based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment. : Tumor-infiltrating lymphocytes (TILs were identified from standard pathology cancer images by a deep-learning-derived “computational stain” developed by Saltz et al. They processed 5,202 digital images from 13 cancer types. Resulting TIL maps were correlated with TCGA molecular data, relating TIL content to survival, tumor subtypes, and immune profiles. Keywords: digital pathology, immuno-oncology, machine learning, lymphocytes, tumor microenvironment, deep learning, tumor-infiltrating lymphocytes, artificial intelligence, bioinformatics, computer vision

  14. The Neural Correlates of Spatial and Object Working Memory in Elderly and Parkinson's Disease Subjects

    OpenAIRE

    Caminiti, Silvia P.; Siri, Chiara; Guidi, Lucia; Antonini, Angelo; Perani, Daniela

    2015-01-01

    This fMRI study deals with the neural correlates of spatial and objects working memory (SWM and OWM) in elderly subjects (ESs) and idiopathic Parkinson’s disease (IPD). Normal aging and IPD can be associated with a WM decline. In IPD population, some studies reported similar SWM and OWM deficits; others reported a greater SWM than OWM impairment. In the present fMRI research, we investigated whether compensated IPD patients and elderly subjects with comparable performance during the execution...

  15. Z-1 perturbation theory applied to the correlation energy problem of atoms

    International Nuclear Information System (INIS)

    Robinson, B.H.

    1975-01-01

    Rayleigh--Schroedinger Perturbation Theory is applied to obtain directly exact and explicit analytic formulas for the electron correlation energies of N electron systems in terms of their pairwise interactions through second order in Z -1 , where Z is the nucleus of the atom. It is demonstrated that the second order correlation energy may be expressed as exactly the sum of pairwise correlation energies. In the case of no zeroth order degeneracy, the zeroth and first order terms vanish. The expression for the pairwise energies is an infinite sum, all terms of which are of the same sign. There is no numerical differencing. In the case of zeroth order degeneracy it is shown that the above statement concerning the second order energy still holds, but the expressions are a bit more complicated. It is shown that they ''almost'' reduce to a much simpler form. Also, the computation of the first order correlation energy is considered

  16. Spatial Correlation in the Ambient Core Noise Field of a Turbofan Engine

    Science.gov (United States)

    Miles, Jeffrey Hilton

    2012-01-01

    An acoustic transfer function relating combustion noise and turbine exit noise in the presence of enclosed ambient core noise is investigated using a dynamic system model and an acoustic system model for the particular turbofan engine studied and for a range of operating conditions. Measurements of cross-spectra magnitude and phase between the combustor and turbine exit and auto-spectra at the turbine exit and combustor are used to show the presence of indirect and direct combustion noise over the frequency range of 0 400 Hz. The procedure used evaluates the ratio of direct to indirect combustion noise. The procedure used also evaluates the post-combustion residence time in the combustor which is a factor in the formation of thermal NOx and soot in this region. These measurements are masked by the ambient core noise sound field in this frequency range which is observable since the transducers are situated within an acoustic wavelength of one another. An ambient core noise field model based on one and two dimensional spatial correlation functions is used to replicate the spatially correlated response of the pair of transducers. The spatial correlation function increases measured attenuation due to destructive interference and masks the true attenuation of the turbine.

  17. Generating Improved Experimental Designs with Spatially and Genetically Correlated Observations Using Mixed Models

    Directory of Open Access Journals (Sweden)

    Lazarus K. Mramba

    2018-03-01

    Full Text Available The aim of this study was to generate and evaluate the efficiency of improved field experiments while simultaneously accounting for spatial correlations and different levels of genetic relatedness using a mixed models framework for orthogonal and non-orthogonal designs. Optimality criteria and a search algorithm were implemented to generate randomized complete block (RCB, incomplete block (IB, augmented block (AB and unequally replicated (UR designs. Several conditions were evaluated including size of the experiment, levels of heritability, and optimality criteria. For RCB designs with half-sib or full-sib families, the optimization procedure yielded important improvements under the presence of mild to strong spatial correlation levels and relatively low heritability values. Also, for these designs, improvements in terms of overall design efficiency (ODE% reached values of up to 8.7%, but these gains varied depending on the evaluated conditions. In general, for all evaluated designs, higher ODE% values were achieved from genetically unrelated individuals compared to experiments with half-sib and full-sib families. As expected, accuracy of prediction of genetic values improved as levels of heritability and spatial correlations increased. This study has demonstrated that important improvements in design efficiency and prediction accuracies can be achieved by optimizing how the levels of a treatment are assigned to the experimental units.

  18. The Effect of Velocity Correlation on the Spatial Evolution of Breakthrough Curves in Heterogeneous Media

    Science.gov (United States)

    Massoudieh, A.; Dentz, M.; Le Borgne, T.

    2017-12-01

    In heterogeneous media, the velocity distribution and the spatial correlation structure of velocity for solute particles determine the breakthrough curves and how they evolve as one moves away from the solute source. The ability to predict such evolution can help relating the spatio-statistical hydraulic properties of the media to the transport behavior and travel time distributions. While commonly used non-local transport models such as anomalous dispersion and classical continuous time random walk (CTRW) can reproduce breakthrough curve successfully by adjusting the model parameter values, they lack the ability to relate model parameters to the spatio-statistical properties of the media. This in turns limits the transferability of these models. In the research to be presented, we express concentration or flux of solutes as a distribution over their velocity. We then derive an integrodifferential equation that governs the evolution of the particle distribution over velocity at given times and locations for a particle ensemble, based on a presumed velocity correlation structure and an ergodic cross-sectional velocity distribution. This way, the spatial evolution of breakthrough curves away from the source is predicted based on cross-sectional velocity distribution and the connectivity, which is expressed by the velocity transition probability density. The transition probability is specified via a copula function that can help construct a joint distribution with a given correlation and given marginal velocities. Using this approach, we analyze the breakthrough curves depending on the velocity distribution and correlation properties. The model shows how the solute transport behavior evolves from ballistic transport at small spatial scales to Fickian dispersion at large length scales relative to the velocity correlation length.

  19. Integrating Hands-On Undergraduate Research in an Applied Spatial Science Senior Level Capstone Course

    Science.gov (United States)

    Kulhavy, David L.; Unger, Daniel R.; Hung, I-Kuai; Douglass, David

    2015-01-01

    A senior within a spatial science Ecological Planning capstone course designed an undergraduate research project to increase his spatial science expertise and to assess the hands-on instruction methodology employed within the Bachelor of Science in Spatial Science program at Stephen F Austin State University. The height of 30 building features…

  20. A new maximum likelihood blood velocity estimator incorporating spatial and temporal correlation

    DEFF Research Database (Denmark)

    Schlaikjer, Malene; Jensen, Jørgen Arendt

    2001-01-01

    and space. This paper presents a new estimator (STC-MLE), which incorporates the correlation property. It is an expansion of the maximum likelihood estimator (MLE) developed by Ferrara et al. With the MLE a cross-correlation analysis between consecutive RF-lines on complex form is carried out for a range...... of possible velocities. In the new estimator an additional similarity investigation for each evaluated velocity and the available velocity estimates in a temporal (between frames) and spatial (within frames) neighborhood is performed. An a priori probability density term in the distribution...... of the observations gives a probability measure of the correlation between the velocities. Both the MLE and the STC-MLE have been evaluated on simulated and in-vivo RF-data obtained from the carotid artery. Using the MLE 4.1% of the estimates deviate significantly from the true velocities, when the performance...

  1. Understanding structure of urban traffic network based on spatial-temporal correlation analysis

    Science.gov (United States)

    Yang, Yanfang; Jia, Limin; Qin, Yong; Han, Shixiu; Dong, Honghui

    2017-08-01

    Understanding the structural characteristics of urban traffic network comprehensively can provide references for improving road utilization rate and alleviating traffic congestion. This paper focuses on the spatial-temporal correlations between different pairs of traffic series and proposes a complex network-based method of constructing the urban traffic network. In the network, the nodes represent road segments, and an edge between a pair of nodes is added depending on the result of significance test for the corresponding spatial-temporal correlation. Further, a modified PageRank algorithm, named the geographical weight-based PageRank algorithm (GWPA), is proposed to analyze the spatial distribution of important segments in the road network. Finally, experiments are conducted by using three kinds of traffic series collected from the urban road network in Beijing. Experimental results show that the urban traffic networks constructed by three traffic variables all indicate both small-world and scale-free characteristics. Compared with the results of PageRank algorithm, GWPA is proved to be valid in evaluating the importance of segments and identifying the important segments with small degree.

  2. The correlated k-distribution technique as applied to the AVHRR channels

    Science.gov (United States)

    Kratz, David P.

    1995-01-01

    Correlated k-distributions have been created to account for the molecular absorption found in the spectral ranges of the five Advanced Very High Resolution Radiometer (AVHRR) satellite channels. The production of the k-distributions was based upon an exponential-sum fitting of transmissions (ESFT) technique which was applied to reference line-by-line absorptance calculations. To account for the overlap of spectral features from different molecular species, the present routines made use of the multiplication transmissivity property which allows for considerable flexibility, especially when altering relative mixing ratios of the various molecular species. To determine the accuracy of the correlated k-distribution technique as compared to the line-by-line procedure, atmospheric flux and heating rate calculations were run for a wide variety of atmospheric conditions. For the atmospheric conditions taken into consideration, the correlated k-distribution technique has yielded results within about 0.5% for both the cases where the satellite spectral response functions were applied and where they were not. The correlated k-distribution's principal advantages is that it can be incorporated directly into multiple scattering routines that consider scattering as well as absorption by clouds and aerosol particles.

  3. Spatial analysis techniques applied to uranium prospecting in Chihuahua State, Mexico

    Science.gov (United States)

    Hinojosa de la Garza, Octavio R.; Montero Cabrera, María Elena; Sanín, Luz H.; Reyes Cortés, Manuel; Martínez Meyer, Enrique

    2014-07-01

    To estimate the distribution of uranium minerals in Chihuahua, the advanced statistical model "Maximun Entropy Method" (MaxEnt) was applied. A distinguishing feature of this method is that it can fit more complex models in case of small datasets (x and y data), as is the location of uranium ores in the State of Chihuahua. For georeferencing uranium ores, a database from the United States Geological Survey and workgroup of experts in Mexico was used. The main contribution of this paper is the proposal of maximum entropy techniques to obtain the mineral's potential distribution. For this model were used 24 environmental layers like topography, gravimetry, climate (worldclim), soil properties and others that were useful to project the uranium's distribution across the study area. For the validation of the places predicted by the model, comparisons were done with other research of the Mexican Service of Geological Survey, with direct exploration of specific areas and by talks with former exploration workers of the enterprise "Uranio de Mexico". Results. New uranium areas predicted by the model were validated, finding some relationship between the model predictions and geological faults. Conclusions. Modeling by spatial analysis provides additional information to the energy and mineral resources sectors.

  4. Estimating the spatial distribution of field-applied mushroom compost in the Brandywine-Christina River Basin using multispectral remote sensing

    Science.gov (United States)

    Moxey, Kelsey A.

    The world's greatest concentration of mushroom farms is settled within the Brandywine-Christina River Basin in Chester County in southeastern Pennsylvania. This industry produces a nutrient-rich byproduct known as spent mushroom compost, which has been traditionally applied to local farm fields as an organic fertilizer and soil amendment. While mushroom compost has beneficial properties, the possible over-application to farm fields could potentially degrade stream water quality. The goal of this study was to estimate the spatial extent and intensity of field-applied mushroom compost. We applied a remote sensing approach using Landsat multispectral imagery. We utilized the soil line technique, using the red and near-infrared bands, to estimate differences in soil wetness as a result of increased soil organic matter content from mushroom compost. We validated soil wetness estimates by examining the spectral response of references sites. We performed a second independent validation analysis using expert knowledge from agricultural extension agents. Our results showed that the soil line based wetness index worked well. The spectral validation illustrated that compost changes the spectral response of soil because of changes in wetness. The independent expert validation analysis produced a strong significant correlation between our remotely-sensed wetness estimates and the empirical ratings of compost application intensities. Overall, the methodology produced realistic spatial distributions of field-applied compost application intensities across the study area. These spatial distributions will be used for follow-up studies to assess the effect of spent mushroom compost on stream water quality.

  5. On the role of spatial phase and phase correlation in vision, illusion, and cognition.

    Science.gov (United States)

    Gladilin, Evgeny; Eils, Roland

    2015-01-01

    Numerous findings indicate that spatial phase bears an important cognitive information. Distortion of phase affects topology of edge structures and makes images unrecognizable. In turn, appropriately phase-structured patterns give rise to various illusions of virtual image content and apparent motion. Despite a large body of phenomenological evidence not much is known yet about the role of phase information in neural mechanisms of visual perception and cognition. Here, we are concerned with analysis of the role of spatial phase in computational and biological vision, emergence of visual illusions and pattern recognition. We hypothesize that fundamental importance of phase information for invariant retrieval of structural image features and motion detection promoted development of phase-based mechanisms of neural image processing in course of evolution of biological vision. Using an extension of Fourier phase correlation technique, we show that the core functions of visual system such as motion detection and pattern recognition can be facilitated by the same basic mechanism. Our analysis suggests that emergence of visual illusions can be attributed to presence of coherently phase-shifted repetitive patterns as well as the effects of acuity compensation by saccadic eye movements. We speculate that biological vision relies on perceptual mechanisms effectively similar to phase correlation, and predict neural features of visual pattern (dis)similarity that can be used for experimental validation of our hypothesis of "cognition by phase correlation."

  6. On the role of spatial phase and phase correlation in vision, illusion and cognition

    Directory of Open Access Journals (Sweden)

    Evgeny eGladilin

    2015-04-01

    Full Text Available Numerous findings indicate that spatial phase bears an important cognitive information. Distortion of phase affects topology of edge structures and makes images unrecognizable. In turn, appropriately phase-structured patterns give rise to various illusions of virtual image content and apparent motion. Despite a large body of phenomenological evidence not much is known yet about the role of phase information in neural mechanisms of visual perception and cognition. Here, we are concerned with analysis of the role of spatial phase in computational and biological vision, emergence of visual illusions and pattern recognition. We hypothesize that fundamental importance of phase information for invariant retrieval of structural image features and motion detection promoted development of phase-based mechanisms of neural image processing in course of evolution of biological vision. Using an extension of Fourier phase correlation technique, we show that the core functions of visual system such as motion detection and pattern recognition can be facilitated by the same basic mechanism. Our analysis suggests that emergence of visual illusions can be attributed to presence of coherently phase-shifted repetitive patterns as well as the effects of acuity compensation by saccadic eye movements. We speculate that biological vision relies on perceptual mechanisms effectively similar to phase correlation, and predict neural features of visual pattern (dissimilarity that can be used for experimental validation of our hypothesis of 'cognition by phase correlation'.

  7. Velocity correlations and spatial dependencies between neighbors in a unidirectional flow of pedestrians

    Science.gov (United States)

    Porzycki, Jakub; WÄ s, Jarosław; Hedayatifar, Leila; Hassanibesheli, Forough; Kułakowski, Krzysztof

    2017-08-01

    The aim of the paper is an analysis of self-organization patterns observed in the unidirectional flow of pedestrians. On the basis of experimental data from Zhang et al. [J. Zhang et al., J. Stat. Mech. (2011) P06004, 10.1088/1742-5468/2011/06/P06004], we analyze the mutual positions and velocity correlations between pedestrians when walking along a corridor. The angular and spatial dependencies of the mutual positions reveal a spatial structure that remains stable during the crowd motion. This structure differs depending on the value of n , for the consecutive n th -nearest-neighbor position set. The preferred position for the first-nearest neighbor is on the side of the pedestrian, while for further neighbors, this preference shifts to the axis of movement. The velocity correlations vary with the angle formed by the pair of neighboring pedestrians and the direction of motion and with the time delay between pedestrians' movements. The delay dependence of the correlations shows characteristic oscillations, produced by the velocity oscillations when striding; however, a filtering of the main frequency of individual striding out reduces the oscillations only partially. We conclude that pedestrians select their path directions so as to evade the necessity of continuously adjusting their speed to their neighbors'. They try to keep a given distance, but follow the person in front of them, as well as accepting and observing pedestrians on their sides. Additionally, we show an empirical example that illustrates the shape of a pedestrian's personal space during movement.

  8. Multilevel discretized random field models with 'spin' correlations for the simulation of environmental spatial data

    International Nuclear Information System (INIS)

    Žukovič, Milan; Hristopulos, Dionissios T

    2009-01-01

    A current problem of practical significance is how to analyze large, spatially distributed, environmental data sets. The problem is more challenging for variables that follow non-Gaussian distributions. We show by means of numerical simulations that the spatial correlations between variables can be captured by interactions between 'spins'. The spins represent multilevel discretizations of environmental variables with respect to a number of pre-defined thresholds. The spatial dependence between the 'spins' is imposed by means of short-range interactions. We present two approaches, inspired by the Ising and Potts models, that generate conditional simulations of spatially distributed variables from samples with missing data. Currently, the sampling and simulation points are assumed to be at the nodes of a regular grid. The conditional simulations of the 'spin system' are forced to respect locally the sample values and the system statistics globally. The second constraint is enforced by minimizing a cost function representing the deviation between normalized correlation energies of the simulated and the sample distributions. In the approach based on the N c -state Potts model, each point is assigned to one of N c classes. The interactions involve all the points simultaneously. In the Ising model approach, a sequential simulation scheme is used: the discretization at each simulation level is binomial (i.e., ± 1). Information propagates from lower to higher levels as the simulation proceeds. We compare the two approaches in terms of their ability to reproduce the target statistics (e.g., the histogram and the variogram of the sample distribution), to predict data at unsampled locations, as well as in terms of their computational complexity. The comparison is based on a non-Gaussian data set (derived from a digital elevation model of the Walker Lake area, Nevada, USA). We discuss the impact of relevant simulation parameters, such as the domain size, the number of

  9. Multilevel discretized random field models with 'spin' correlations for the simulation of environmental spatial data

    Science.gov (United States)

    Žukovič, Milan; Hristopulos, Dionissios T.

    2009-02-01

    A current problem of practical significance is how to analyze large, spatially distributed, environmental data sets. The problem is more challenging for variables that follow non-Gaussian distributions. We show by means of numerical simulations that the spatial correlations between variables can be captured by interactions between 'spins'. The spins represent multilevel discretizations of environmental variables with respect to a number of pre-defined thresholds. The spatial dependence between the 'spins' is imposed by means of short-range interactions. We present two approaches, inspired by the Ising and Potts models, that generate conditional simulations of spatially distributed variables from samples with missing data. Currently, the sampling and simulation points are assumed to be at the nodes of a regular grid. The conditional simulations of the 'spin system' are forced to respect locally the sample values and the system statistics globally. The second constraint is enforced by minimizing a cost function representing the deviation between normalized correlation energies of the simulated and the sample distributions. In the approach based on the Nc-state Potts model, each point is assigned to one of Nc classes. The interactions involve all the points simultaneously. In the Ising model approach, a sequential simulation scheme is used: the discretization at each simulation level is binomial (i.e., ± 1). Information propagates from lower to higher levels as the simulation proceeds. We compare the two approaches in terms of their ability to reproduce the target statistics (e.g., the histogram and the variogram of the sample distribution), to predict data at unsampled locations, as well as in terms of their computational complexity. The comparison is based on a non-Gaussian data set (derived from a digital elevation model of the Walker Lake area, Nevada, USA). We discuss the impact of relevant simulation parameters, such as the domain size, the number of

  10. How can mental maps, applied to the coast environment, help in collecting and analyzing spatial representations?

    Directory of Open Access Journals (Sweden)

    Servane Gueben-Venière

    2011-09-01

    Full Text Available Après avoir été principalement utilisées en géographie urbaine, puis quelque peu mises de côté par les géographes, les cartes mentales font désormais l’objet d’un regain d’intérêt, en particulier dans le champ de la géographie de l’environnement. Appliquées à l’espace littoral et employées en complément de l’entretien, elles se révèlent être non seulement un bon outil de recueil des représentations spatiales, mais aussi une aide précieuse pour leur analyse. Cet article s’appuie sur l’exemple de l’utilisation des cartes mentales dans le poster scientifique Des ingénieurs de plus en plus « verts ». Évolution du regard des ingénieurs en charge de la gestion du littoral néerlandais, lauréat du concours organisé par le forum de l’École Doctorale de Géographie de Paris de 2011.After having been mainly used in urban geography, then cast aside by the geographers, mental maps are now the object of renewed interest, particularly in the field of environmental geography. Applied to the coast, and used as a supplement to the interview, these maps are not only of great assistance in collecting spatial representations, but also helpful in analyzing them. This article uses the example of the integration of mental maps in the scientific poster “Des ingénieurs de plus en plus “verts”. Évolution du regard des ingénieurs en charge de la gestion du littoral néerlandais”(Engineers are ‘greener and greener’. Evolution of the thinking of engineers in charge of Dutch coastal management., prize-winner of the competition organized by the Paris Doctoral School of Geography Forum in 2011.

  11. What Do They Have in Common? Drivers of Streamflow Spatial Correlation and Prediction of Flow Regimes in Ungauged Locations

    Science.gov (United States)

    Betterle, A.; Radny, D.; Schirmer, M.; Botter, G.

    2017-12-01

    The spatial correlation of daily streamflows represents a statistical index encapsulating the similarity between hydrographs at two arbitrary catchment outlets. In this work, a process-based analytical framework is utilized to investigate the hydrological drivers of streamflow spatial correlation through an extensive application to 78 pairs of stream gauges belonging to 13 unregulated catchments in the eastern United States. The analysis provides insight on how the observed heterogeneity of the physical processes that control flow dynamics ultimately affect streamflow correlation and spatial patterns of flow regimes. Despite the variability of recession properties across the study catchments, the impact of heterogeneous drainage rates on the streamflow spatial correlation is overwhelmed by the spatial variability of frequency and intensity of effective rainfall events. Overall, model performances are satisfactory, with root mean square errors between modeled and observed streamflow spatial correlation below 10% in most cases. We also propose a method for estimating streamflow correlation in the absence of discharge data, which proves useful to predict streamflow regimes in ungauged areas. The method consists in setting a minimum threshold on the modeled flow correlation to individuate hydrologically similar sites. Catchment outlets that are most correlated (ρ>0.9) are found to be characterized by analogous streamflow distributions across a broad range of flow regimes.

  12. Restoring method for missing data of spatial structural stress monitoring based on correlation

    Science.gov (United States)

    Zhang, Zeyu; Luo, Yaozhi

    2017-07-01

    Long-term monitoring of spatial structures is of great importance for the full understanding of their performance and safety. The missing part of the monitoring data link will affect the data analysis and safety assessment of the structure. Based on the long-term monitoring data of the steel structure of the Hangzhou Olympic Center Stadium, the correlation between the stress change of the measuring points is studied, and an interpolation method of the missing stress data is proposed. Stress data of correlated measuring points are selected in the 3 months of the season when missing data is required for fitting correlation. Data of daytime and nighttime are fitted separately for interpolation. For a simple linear regression when single point's correlation coefficient is 0.9 or more, the average error of interpolation is about 5%. For multiple linear regression, the interpolation accuracy is not significantly increased after the number of correlated points is more than 6. Stress baseline value of construction step should be calculated before interpolating missing data in the construction stage, and the average error is within 10%. The interpolation error of continuous missing data is slightly larger than that of the discrete missing data. The data missing rate of this method should better not exceed 30%. Finally, a measuring point's missing monitoring data is restored to verify the validity of the method.

  13. Spatial but not temporal numerosity thresholds correlate with formal math skills in children.

    Science.gov (United States)

    Anobile, Giovanni; Arrighi, Roberto; Castaldi, Elisa; Grassi, Eleonora; Pedonese, Lara; Moscoso, Paula A M; Burr, David C

    2018-03-01

    Humans and other animals are able to make rough estimations of quantities using what has been termed the approximate number system (ANS). Much evidence suggests that sensitivity to numerosity correlates with symbolic math capacity, leading to the suggestion that the ANS may serve as a start-up tool to develop symbolic math. Many experiments have demonstrated that numerosity perception transcends the sensory modality of stimuli and their presentation format (sequential or simultaneous), but it remains an open question whether the relationship between numerosity and math generalizes over stimulus format and modality. Here we measured precision for estimating the numerosity of clouds of dots and sequences of flashes or clicks, as well as for paired comparisons of the numerosity of clouds of dots. Our results show that in children, formal math abilities correlate positively with sensitivity for estimation and paired-comparisons of the numerosity of visual arrays of dots. However, precision of numerosity estimation for sequences of flashes or sounds did not correlate with math, although sensitivities in all estimations tasks (for sequential or simultaneous stimuli) were strongly correlated with each other. In adults, we found no significant correlations between math scores and sensitivity to any of the psychophysical tasks. Taken together these results support the existence of a generalized number sense, and go on to demonstrate an intrinsic link between mathematics and perception of spatial, but not temporal numerosity. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  14. Spatial correlation in matter-wave interference as a measure of decoherence, dephasing, and entropy

    Science.gov (United States)

    Chen, Zilin; Beierle, Peter; Batelaan, Herman

    2018-04-01

    The loss of contrast in double-slit electron diffraction due to dephasing and decoherence processes is studied. It is shown that the spatial intensity correlation function of diffraction patterns can be used to distinguish between dephasing and decoherence. This establishes a measure of time reversibility that does not require the determination of coherence terms of the density matrix, while von Neumann entropy, another measure of time reversibility, does require coherence terms. This technique is exciting in view of the need to understand and control the detrimental experimental effect of contrast loss and for fundamental studies on the transition from the classical to the quantum regime.

  15. Outage probability analysis of wireless sensor networks in the presence of channel fading and spatial correlation

    KAUST Repository

    Al-Murad, Tamim M.

    2011-07-01

    Evaluating the reliability of wireless sensor networks is becoming more important as theses networks are being used in crucial applications. The outage probability defined as the probability that the error in the system exceeds a maximum acceptable threshold has recently been used as a measure of the reliability of such systems. In this work we find the outage probability of wireless sensor network in different scenarios of distributed sensing where sensors\\' readings are affected by spatial correlation and in the presence of channel fading. © 2011 IEEE.

  16. An iterative detection method of MIMO over spatial correlated frequency selective channel: using list sphere decoding for simplification

    Science.gov (United States)

    Shi, Zhiping; Yan, Bing

    2010-08-01

    In multiple-input multiple-output(MIMO) wireless systems, combining good channel codes(e.g., Non-binary Repeat Accumulate codes) with adaptive turbo equalization is a good option to get better performance and lower complexity under Spatial Correlated Frequency Selective(SCFS) Channel. The key of this method is after joint antennas MMSE detection (JAD/MMSE) based on interruption cancelling using soft information, considering the detection result as an output of a Gaussian equivalent flat fading channel, and performing maximum likelihood detection(ML) to get more correct estimated result. But the using of ML brings great complexity increase, which is not allowed. In this paper, a low complexity method called list sphere decoding is introduced and applied to replace the ML in order to simplify the adaptive iterative turbo equalization system.

  17. Characterizing short-range vs. long-range spatial correlations in dislocation distributions

    Energy Technology Data Exchange (ETDEWEB)

    Chevy, Juliette, E-mail: juliette.chevy@gmail.com [Laboratoire de Glaciologie et Geophysique de l' Environnement-CNRS, 54 rue Moliere, 38402 St. Martin d' Heres (France)] [Laboratoire Science et Ingenierie des Materiaux et Procedes, Grenoble INP-CNRS-UJF, BP 75, 38402 St. Martin d' Heres Cedex (France); Fressengeas, Claude; Lebyodkin, Mikhail; Taupin, Vincent [Laboratoire de Physique et Mecanique des Materiaux, Universite Paul Verlaine-Metz/CNRS, Ile du Saulcy, 57045 Metz Cedex (France); Bastie, Pierre [Laboratoire de Spectrometrie Physique, BP 87, 38402 St. Martin d' Heres Cedex (France)] [Institut Laue Langevin, BP 156, 38042 Grenoble Cedex 9 (France); Duval, Paul [Laboratoire de Glaciologie et Geophysique de l' Environnement-CNRS, 54 rue Moliere, 38402 St. Martin d' Heres (France)

    2010-03-15

    Hard X-ray diffraction experiments have provided evidence of a strongly heterogeneous distribution of dislocation densities along the axis of cylindrical ice single crystals oriented for basal slip in torsion creep. The dislocation arrangements showed a complex scale-invariant character, which was analyzed by means of statistical and multifractal techniques. A trend to decreasing autocorrelation of the dislocation distribution was observed as deformation proceeds. At low strain levels, long-range spatial correlations control the distribution, but short-range correlations in relation with cross-slip progressively prevail when strain increases. This trend was reproduced by a model based on field dislocation dynamics, a theory accounting for both long-range elastic interactions and short-range interactions through transport of dislocation densities.

  18. Characterizing short-range vs. long-range spatial correlations in dislocation distributions

    International Nuclear Information System (INIS)

    Chevy, Juliette; Fressengeas, Claude; Lebyodkin, Mikhail; Taupin, Vincent; Bastie, Pierre; Duval, Paul

    2010-01-01

    Hard X-ray diffraction experiments have provided evidence of a strongly heterogeneous distribution of dislocation densities along the axis of cylindrical ice single crystals oriented for basal slip in torsion creep. The dislocation arrangements showed a complex scale-invariant character, which was analyzed by means of statistical and multifractal techniques. A trend to decreasing autocorrelation of the dislocation distribution was observed as deformation proceeds. At low strain levels, long-range spatial correlations control the distribution, but short-range correlations in relation with cross-slip progressively prevail when strain increases. This trend was reproduced by a model based on field dislocation dynamics, a theory accounting for both long-range elastic interactions and short-range interactions through transport of dislocation densities.

  19. Impact of spatially correlated pore-scale heterogeneity on drying porous media

    Science.gov (United States)

    Borgman, Oshri; Fantinel, Paolo; Lühder, Wieland; Goehring, Lucas; Holtzman, Ran

    2017-07-01

    We study the effect of spatially-correlated heterogeneity on isothermal drying of porous media. We combine a minimal pore-scale model with microfluidic experiments with the same pore geometry. Our simulated drying behavior compares favorably with experiments, considering the large sensitivity of the emergent behavior to the uncertainty associated with even small manufacturing errors. We show that increasing the correlation length in particle sizes promotes preferential drying of clusters of large pores, prolonging liquid connectivity and surface wetness and thus higher drying rates for longer periods. Our findings improve our quantitative understanding of how pore-scale heterogeneity impacts drying, which plays a role in a wide range of processes ranging from fuel cells to curing of paints and cements to global budgets of energy, water and solutes in soils.

  20. Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1998-01-01

    An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye et al. [J. Appl. Phys. 28, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that, for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well

  1. Spatial correlation analysis of seismic noise for STAR X-ray infrastructure design

    Science.gov (United States)

    D'Alessandro, Antonino; Agostino, Raffaele; Festa, Lorenzo; Gervasi, Anna; Guerra, Ignazio; Palmer, Dennis T.; Serafini, Luca

    2014-05-01

    . For this reason, we performed some measurements of seismic noise in order to characterize the environmental noise in the site in which the X-ray accelerator arise. For the characterization of the site, we carried out several passive seismic monitoring experiments at different times of the day and in different weather conditions. We recorded microtremor using an array of broadband 3C seismic sensors arranged along the linear accelerator. For each measurement point, we determined the displacement, velocity and acceleration spectrogram and power spectral density of both horizontal and vertical components. We determined also the microtremor horizontal to vertical spectral ratio as function of azimuth to individuate the main ground vibration direction and detect the existence of site or building resonance frequencies. We applied a rotation matrix to transform the North-South and East-West signal components in transversal and radial components, respect to the direction of the linear accelerator. Subsequently, for each couple of seismic stations we determined the coherence function to analyze the seismic noise spatial correlation. These analyses have allowed us to exhaustively characterize the seismic noise of the study area, from the point of view of the power and space-time variability, both in frequency and wavelength.

  2. Spatial correlation of conductive filaments for multiple switching cycles in CBRAM

    KAUST Repository

    Pey, K. L.

    2014-06-01

    Conducting bridge random access memory (CBRAM) is one of the potential technologies being considered for replacement of Flash memory for non-volatile data storage. CBRAM devices operate on the principle of nucleation and rupture of metallic filaments. One key concern for commercializing this technology is the question of variability which could arise due to nucleation of multiple filaments across the device at spatially different locations. The spatial spread of the filament location may cause long tails at the low and high percentile regions for the switching parameter distribution as the new filament that nucleates may have a completely different shape and size. It is therefore essential to probe whether switching in CBRAM occurs every time at the same filament location or whether there are other new filaments that could nucleate during repeated cycling with some spatial correlation (if any) to the original filament. To investigate this issue, we make use of a metal-insulator-semiconductor (M-I-S) transistor test structure with Ni as the top electrode and HfOx/SiOx as the dielectric stack. In-situ stressing using a nano-tip on the M-I-S stack is performed and the filament is imaged in real-time using a high resolution transmission electron microscope (TEM). We also extract the location of the filament (LFIL) along the channel of the transistor after the nucleation stage using the weighted proportion of the source and drain currents. © 2014 IEEE.

  3. Spatial and temporal correlation between beach and wave processes: implications for bar-berm sediment transition

    Science.gov (United States)

    Joevivek, V.; Chandrasekar, N.; Saravanan, S.; Anandakumar, H.; Thanushkodi, K.; Suguna, N.; Jaya, J.

    2018-06-01

    Investigation of a beach and its wave conditions is highly requisite for understanding the physical processes in a coast. This study composes spatial and temporal correlation between beach and nearshore processes along the extensive sandy beach of Nagapattinam coast, southeast peninsular India. The data collection includes beach profile, wave data, and intertidal sediment samples for 2 years from January 2011 to January 2013. The field data revealed significant variability in beach and wave morphology during the northeast (NE) and southwest (SW) monsoon. However, the beach has been stabilized by the reworking of sediment distribution during the calm period. The changes in grain sorting and longshore sediment transport serve as a clear evidence of the sediment migration that persevered between foreshore and nearshore regions. The Empirical Orthogonal Function (EOF) analysis and Canonical Correlation Analysis (CCA) were utilized to investigate the spatial and temporal linkages between beach and nearshore criterions. The outcome of the multivariate analysis unveiled that the seasonal variations in the wave climate tends to influence the bar-berm sediment transition that is discerned in the coast.

  4. Spatial correlation characterization of a uniform circular array in 3D MIMO systems

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2016-08-11

    In this paper, we consider a uniform circular array (UCA) of directional antennas at the base station (BS) and the mobile station (MS) and derive an exact closed-form expression for the spatial correlation present in the 3D multiple-input multiple-output (MIMO) channel constituted by these arrays. The underlying method leverages the mathematical convenience of the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials. In contrast to the existing results, this generalized closed-form expression is independent of the form of the underlying angular distributions and antenna patterns. Moreover, the incorporation of the elevation dimension into the antenna pattern and channel model renders the proposed expression extremely useful for the performance evaluation of 3D MIMO systems in the future. Verification is achieved with the help of simulation results, which highlight the dependence of the spatial correlation on channel and array parameters. An interesting interplay between the mean angle of departure (AoD), angular spread and the positioning of antennas in the array is demonstrated. © 2016 IEEE.

  5. Spatial correlation characterization of a uniform circular array in 3D MIMO systems

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain; Kammoun, Abla; Debbah, Merouane; Alouini, Mohamed-Slim

    2016-01-01

    In this paper, we consider a uniform circular array (UCA) of directional antennas at the base station (BS) and the mobile station (MS) and derive an exact closed-form expression for the spatial correlation present in the 3D multiple-input multiple-output (MIMO) channel constituted by these arrays. The underlying method leverages the mathematical convenience of the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials. In contrast to the existing results, this generalized closed-form expression is independent of the form of the underlying angular distributions and antenna patterns. Moreover, the incorporation of the elevation dimension into the antenna pattern and channel model renders the proposed expression extremely useful for the performance evaluation of 3D MIMO systems in the future. Verification is achieved with the help of simulation results, which highlight the dependence of the spatial correlation on channel and array parameters. An interesting interplay between the mean angle of departure (AoD), angular spread and the positioning of antennas in the array is demonstrated. © 2016 IEEE.

  6. Learning to echolocate in sighted people: a correlational study on attention, working memory and spatial abilities.

    Science.gov (United States)

    Ekkel, M R; van Lier, R; Steenbergen, B

    2017-03-01

    Echolocation can be beneficial for the orientation and mobility of visually impaired people. Research has shown considerable individual differences for acquiring this skill. However, individual characteristics that affect the learning of echolocation are largely unknown. In the present study, we examined individual factors that are likely to affect learning to echolocate: sustained and divided attention, working memory, and spatial abilities. To that aim, sighted participants with normal hearing performed an echolocation task that was adapted from a previously reported size-discrimination task. In line with existing studies, we found large individual differences in echolocation ability. We also found indications that participants were able to improve their echolocation ability. Furthermore, we found a significant positive correlation between improvement in echolocation and sustained and divided attention, as measured in the PASAT. No significant correlations were found with our tests regarding working memory and spatial abilities. These findings may have implications for the development of guidelines for training echolocation that are tailored to the individual with a visual impairment.

  7. Spatial and temporal correlation between beach and wave processes: implications for bar-berm sediment transition

    Science.gov (United States)

    Joevivek, V.; Chandrasekar, N.; Saravanan, S.; Anandakumar, H.; Thanushkodi, K.; Suguna, N.; Jaya, J.

    2017-06-01

    Investigation of a beach and its wave conditions is highly requisite for understanding the physical processes in a coast. This study composes spatial and temporal correlation between beach and nearshore processes along the extensive sandy beach of Nagapattinam coast, southeast peninsular India. The data collection includes beach profile, wave data, and intertidal sediment samples for 2 years from January 2011 to January 2013. The field data revealed significant variability in beach and wave morphology during the northeast (NE) and southwest (SW) monsoon. However, the beach has been stabilized by the reworking of sediment distribution during the calm period. The changes in grain sorting and longshore sediment transport serve as a clear evidence of the sediment migration that persevered between foreshore and nearshore regions. The Empirical Orthogonal Function (EOF) analysis and Canonical Correlation Analysis (CCA) were utilized to investigate the spatial and temporal linkages between beach and nearshore criterions. The outcome of the multivariate analysis unveiled that the seasonal variations in the wave climate tends to influence the bar-berm sediment transition that is discerned in the coast.

  8. Correlation of spatial climate/weather maps and the advantages of using the Mahalanobis metric in predictions

    OpenAIRE

    Stephenson, D. B.

    2011-01-01

    he skill in predicting spatially varying weather/climate maps depends on the definition of the measure of similarity between the maps. Under the justifiable approximation that the anomaly maps are distributed multinormally, it is shown analytically that the choice of weighting metric, used in defining the anomaly correlation between spatial maps, can change the resulting probability distribution of the correlation coefficient. The estimate of the numbers of degrees of freedom based on the var...

  9. Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology using RUSLE with GIS

    Science.gov (United States)

    Zeng, Cheng; Wang, Shijie; Bai, Xiaoyong; Li, Yangbing; Tian, Yichao; Li, Yue; Wu, Luhua; Luo, Guangjie

    2017-07-01

    Although some scholars have studied soil erosion in karst landforms, analyses of the spatial and temporal evolution of soil erosion and correlation analyses with spatial elements have been insufficient. The lack of research has led to an inaccurate assessment of environmental effects, especially in the mountainous area of Wuling in China. Soil erosion and rocky desertification in this area influence the survival and sustainability of a population of 0.22 billion people. This paper analyzes the spatiotemporal evolution of soil erosion and explores its relationship with rocky desertification using GIS technology and the revised universal soil loss equation (RUSLE). Furthermore, this paper analyzes the relationship between soil erosion and major natural elements in southern China. The results are as follows: (1) from 2000 to 2013, the proportion of the area experiencing micro-erosion and mild erosion was at increasing risk in contrast to areas where moderate and high erosion are decreasing. The area changes in this time sequence reflect moderate to high levels of erosion tending to convert into micro-erosion and mild erosion. (2) The soil erosion area on the slope, at 15-35°, accounted for 60.59 % of the total erosion area, and the corresponding soil erosion accounted for 40.44 %. (3) The annual erosion rate in the karst region decreased much faster than in the non-karst region. Soil erosion in all of the rock outcrop areas indicates an improving trend, and dynamic changes in soil erosion significantly differ among the various lithological distribution belts. (4) The soil erosion rate decreased in the rocky desertification regions, to below moderate levels, but increased in the severe rocky desertification areas. The temporal and spatial variations in soil erosion gradually decreased in the study area. Differences in the spatial distribution between lithology and rocky desertification induced extensive soil loss. As rocky desertification became worse, the erosion

  10. Nearest neighbor imputation using spatial-temporal correlations in wireless sensor networks.

    Science.gov (United States)

    Li, YuanYuan; Parker, Lynne E

    2014-01-01

    Missing data is common in Wireless Sensor Networks (WSNs), especially with multi-hop communications. There are many reasons for this phenomenon, such as unstable wireless communications, synchronization issues, and unreliable sensors. Unfortunately, missing data creates a number of problems for WSNs. First, since most sensor nodes in the network are battery-powered, it is too expensive to have the nodes retransmit missing data across the network. Data re-transmission may also cause time delays when detecting abnormal changes in an environment. Furthermore, localized reasoning techniques on sensor nodes (such as machine learning algorithms to classify states of the environment) are generally not robust enough to handle missing data. Since sensor data collected by a WSN is generally correlated in time and space, we illustrate how replacing missing sensor values with spatially and temporally correlated sensor values can significantly improve the network's performance. However, our studies show that it is important to determine which nodes are spatially and temporally correlated with each other. Simple techniques based on Euclidean distance are not sufficient for complex environmental deployments. Thus, we have developed a novel Nearest Neighbor (NN) imputation method that estimates missing data in WSNs by learning spatial and temporal correlations between sensor nodes. To improve the search time, we utilize a k d-tree data structure, which is a non-parametric, data-driven binary search tree. Instead of using traditional mean and variance of each dimension for k d-tree construction, and Euclidean distance for k d-tree search, we use weighted variances and weighted Euclidean distances based on measured percentages of missing data. We have evaluated this approach through experiments on sensor data from a volcano dataset collected by a network of Crossbow motes, as well as experiments using sensor data from a highway traffic monitoring application. Our experimental

  11. Applying Spatial-Temporal Model and Game Theory to Asymmetric Threat Prediction

    National Research Council Canada - National Science Library

    Wei, Mo; Chen, Genshe; Cruz, Jr., Jose B; Haynes, Leonard; Kruger, Martin

    2007-01-01

    .... In most Command and Control "C2" applications, the existing techniques, such as spatial-temporal point models for ECOA prediction or Discrete Choice Model "DCM", assume that insurgent attack features...

  12. The spatial spread of schistosomiasis: A multidimensional network model applied to Saint-Louis region, Senegal

    Science.gov (United States)

    Ciddio, Manuela; Mari, Lorenzo; Sokolow, Susanne H.; De Leo, Giulio A.; Casagrandi, Renato; Gatto, Marino

    2017-10-01

    Schistosomiasis is a parasitic, water-related disease that is prevalent in tropical and subtropical areas of the world, causing severe and chronic consequences especially among children. Here we study the spatial spread of this disease within a network of connected villages in the endemic region of the Lower Basin of the Senegal River, in Senegal. The analysis is performed by means of a spatially explicit metapopulation model that couples local-scale eco-epidemiological dynamics with spatial mechanisms related to human mobility (estimated from anonymized mobile phone records), snail dispersal and hydrological transport of schistosome larvae along the main water bodies of the region. Results show that the model produces epidemiological patterns consistent with field observations, and point out the key role of spatial connectivity on the spread of the disease. These findings underline the importance of considering different transport pathways in order to elaborate disease control strategies that can be effective within a network of connected populations.

  13. Quantum correlated cluster mean-field theory applied to the transverse Ising model.

    Science.gov (United States)

    Zimmer, F M; Schmidt, M; Maziero, Jonas

    2016-06-01

    Mean-field theory (MFT) is one of the main available tools for analytical calculations entailed in investigations regarding many-body systems. Recently, there has been a surge of interest in ameliorating this kind of method, mainly with the aim of incorporating geometric and correlation properties of these systems. The correlated cluster MFT (CCMFT) is an improvement that succeeded quite well in doing that for classical spin systems. Nevertheless, even the CCMFT presents some deficiencies when applied to quantum systems. In this article, we address this issue by proposing the quantum CCMFT (QCCMFT), which, in contrast to its former approach, uses general quantum states in its self-consistent mean-field equations. We apply the introduced QCCMFT to the transverse Ising model in honeycomb, square, and simple cubic lattices and obtain fairly good results both for the Curie temperature of thermal phase transition and for the critical field of quantum phase transition. Actually, our results match those obtained via exact solutions, series expansions or Monte Carlo simulations.

  14. A Study of the Efficiency of Spatial Indexing Methods Applied to Large Astronomical Databases

    Science.gov (United States)

    Donaldson, Tom; Berriman, G. Bruce; Good, John; Shiao, Bernie

    2018-01-01

    Spatial indexing of astronomical databases generally uses quadrature methods, which partition the sky into cells used to create an index (usually a B-tree) written as database column. We report the results of a study to compare the performance of two common indexing methods, HTM and HEALPix, on Solaris and Windows database servers installed with a PostgreSQL database, and a Windows Server installed with MS SQL Server. The indexing was applied to the 2MASS All-Sky Catalog and to the Hubble Source catalog. On each server, the study compared indexing performance by submitting 1 million queries at each index level with random sky positions and random cone search radius, which was computed on a logarithmic scale between 1 arcsec and 1 degree, and measuring the time to complete the query and write the output. These simulated queries, intended to model realistic use patterns, were run in a uniform way on many combinations of indexing method and indexing level. The query times in all simulations are strongly I/O-bound and are linear with number of records returned for large numbers of sources. There are, however, considerable differences between simulations, which reveal that hardware I/O throughput is a more important factor in managing the performance of a DBMS than the choice of indexing scheme. The choice of index itself is relatively unimportant: for comparable index levels, the performance is consistent within the scatter of the timings. At small index levels (large cells; e.g. level 4; cell size 3.7 deg), there is large scatter in the timings because of wide variations in the number of sources found in the cells. At larger index levels, performance improves and scatter decreases, but the improvement at level 8 (14 min) and higher is masked to some extent in the timing scatter caused by the range of query sizes. At very high levels (20; 0.0004 arsec), the granularity of the cells becomes so high that a large number of extraneous empty cells begin to degrade

  15. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, M. [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain); Laser Processing Group, Instituto de Óptica “Daza de Valdés,” CSIC, 28006-Madrid (Spain); Fuentes, L. M. [Departamento de Física Aplicada, Universidad de Valladolid, 47011-Valladolid (Spain); Grützmacher, K.; Pérez, C., E-mail: concha@opt.uva.es; Rosa, M. I. de la [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain)

    2014-10-07

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.

  16. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    International Nuclear Information System (INIS)

    Garcia-Lechuga, M.; Fuentes, L. M.; Grützmacher, K.; Pérez, C.; Rosa, M. I. de la

    2014-01-01

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.

  17. Spatial correlation in 3D MIMO channels using fourier coefficients of power spectrums

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-03-01

    In this paper, an exact closed-form expression for the Spatial Correlation Function (SCF) is derived for the standardized three-dimensional (3D) multiple-input multiple-output (MIMO) channel. This novel SCF is developed for a uniform linear array of antennas with non-isotropic antenna patterns. The proposed method resorts to the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials to obtain a closed-form expression for the SCF for arbitrary angular distributions and antenna patterns. The resulting expression depends on the underlying angular distributions and antenna patterns through the Fourier Series (FS) coefficients of power azimuth and elevation spectrums. The novelty of the proposed method lies in the SCF being valid for any 3D propagation environment. Numerical results validate the proposed analytical expression and study the impact of angular spreads on the correlation. The derived SCF will help evaluate the performance of correlated 3D MIMO channels in the future. © 2015 IEEE.

  18. Spatial correlations in intense ionospheric scintillations - comparison between numerical computation and observation

    International Nuclear Information System (INIS)

    Kumagai, H.

    1987-01-01

    The spatial correlations in intense ionospheric scintillations were analyzed by comparing numerical results with observational ones. The observational results were obtained by spaced-receiver scintillation measurements of VHF satellite radiowave. The numerical computation was made by using the fourth-order moment equation with fairly realistic ionospheric irregularity models, in which power-law irregularities with spectral index 4, both thin and thick slabs, and both isotropic and anisotropic irregularities, were considered. Evolution of the S(4) index and the transverse correlation function was computed. The numerical result that the transverse correlation distance decreases with the increase in S(4) was consistent with that obtained in the observation, suggesting that multiple scattering plays an important role in the intense scintillations observed. The anisotropy of irregularities proved to act as if the density fluctuation increased. This effect, as well as the effect of slab thickness, was evaluated by the total phase fluctuations that the radiowave experienced in the slab. On the basis of the comparison, the irregularity height and electron-density fluctuation which is necessary to produce a particular strength of scintillation were estimated. 30 references

  19. Hybrid optical CDMA-FSO communications network under spatially correlated gamma-gamma scintillation.

    Science.gov (United States)

    Jurado-Navas, Antonio; Raddo, Thiago R; Garrido-Balsells, José María; Borges, Ben-Hur V; Olmos, Juan José Vegas; Monroy, Idelfonso Tafur

    2016-07-25

    In this paper, we propose a new hybrid network solution based on asynchronous optical code-division multiple-access (OCDMA) and free-space optical (FSO) technologies for last-mile access networks, where fiber deployment is impractical. The architecture of the proposed hybrid OCDMA-FSO network is thoroughly described. The users access the network in a fully asynchronous manner by means of assigned fast frequency hopping (FFH)-based codes. In the FSO receiver, an equal gain-combining technique is employed along with intensity modulation and direct detection. New analytical formalisms for evaluating the average bit error rate (ABER) performance are also proposed. These formalisms, based on the spatially correlated gamma-gamma statistical model, are derived considering three distinct scenarios, namely, uncorrelated, totally correlated, and partially correlated channels. Numerical results show that users can successfully achieve error-free ABER levels for the three scenarios considered as long as forward error correction (FEC) algorithms are employed. Therefore, OCDMA-FSO networks can be a prospective alternative to deliver high-speed communication services to access networks with deficient fiber infrastructure.

  20. Socio-economic factors of bacillary dysentery based on spatial correlation analysis in Guangxi Province, China.

    Directory of Open Access Journals (Sweden)

    Chengjing Nie

    Full Text Available BACKGROUND: In the past decade, bacillary dysentery was still a big public health problem in China, especially in Guangxi Province, where thousands of severe diarrhea cases occur every year. METHODS: Reported bacillary dysentery cases in Guangxi Province were obtained from local Centers for Diseases Prevention and Control. The 14 socio-economic indexes were selected as potential explanatory variables for the study. The spatial correlation analysis was used to explore the associations between the selected factors and bacillary dysentery incidence at county level, which was based on the software of ArcGIS10.2 and GeoDA 0.9.5i. RESULTS: The proportion of primary industry, the proportion of younger than 5-year-old children in total population, the number of hospitals per thousand persons and the rates of bacillary dysentery incidence show statistically significant positive correlation. But the proportion of secondary industry, per capital GDP, per capital government revenue, rural population proportion, popularization rate of tap water in rural area, access rate to the sanitation toilets in rural, number of beds in hospitals per thousand persons, medical and technical personnel per thousand persons and the rate of bacillary dysentery incidence show statistically significant negative correlation. The socio-economic factors can be divided into four aspects, including economic development, health development, medical development and human own condition. The four aspects were not isolated from each other, but interacted with each other.

  1. Summary of the Nevada Applied Ecology Group and correlative programs. Version 1

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, H.N. [Raytheon Services Nevada, Las Vegas, NV (United States)

    1992-10-01

    This summary document presents results in a broad context; it is not limited to findings of the Nevada Applied Ecology Group. This book is organized to present the findings of the Nevada Applied Ecology Group and correlative programs in accordance with the originally stated objectives of the Nevada Applied Ecology Group. This plan, in essence, traces plutonium from its injection into the environment to movement in the ecosystem to development of cleanup techniques. Information on other radionuclides was also obtained and will be presented briefly. Chapter 1 presents a brief description of the ecological setting of the Test Range Complex. The results of investigations for plutonium distribution are presented in Chapter 2 for the area surrounding the Test Range Complex and in Chapter 3 for on-site locations. Chapters 4 and 5 present the results of investigations concerned with concentrations and movement, respectively, of plutonium in the ecosystem of the Test Range Complex, and Chapter 6 summarizes the potential hazard from this plutonium. Development of techniques for cleanup and treatment is presented in Chapter 7, and the inventory of radionuclides other than plutonium is presented briefly in Chapter 8.

  2. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    Science.gov (United States)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  3. Optimization of spatial light distribution through genetic algorithms for vision systems applied to quality control

    International Nuclear Information System (INIS)

    Castellini, P; Cecchini, S; Stroppa, L; Paone, N

    2015-01-01

    The paper presents an adaptive illumination system for image quality enhancement in vision-based quality control systems. In particular, a spatial modulation of illumination intensity is proposed in order to improve image quality, thus compensating for different target scattering properties, local reflections and fluctuations of ambient light. The desired spatial modulation of illumination is obtained by a digital light projector, used to illuminate the scene with an arbitrary spatial distribution of light intensity, designed to improve feature extraction in the region of interest. The spatial distribution of illumination is optimized by running a genetic algorithm. An image quality estimator is used to close the feedback loop and to stop iterations once the desired image quality is reached. The technique proves particularly valuable for optimizing the spatial illumination distribution in the region of interest, with the remarkable capability of the genetic algorithm to adapt the light distribution to very different target reflectivity and ambient conditions. The final objective of the proposed technique is the improvement of the matching score in the recognition of parts through matching algorithms, hence of the diagnosis of machine vision-based quality inspections. The procedure has been validated both by a numerical model and by an experimental test, referring to a significant problem of quality control for the washing machine manufacturing industry: the recognition of a metallic clamp. Its applicability to other domains is also presented, specifically for the visual inspection of shoes with retro-reflective tape and T-shirts with paillettes. (paper)

  4. Considering built environment and spatial correlation in modelling pedestrian injury severity

    DEFF Research Database (Denmark)

    Prato, Carlo G.; Kaplan, Sigal; Patrier, Alexandre

    traffic calming measures, illumination solutions, road maintenance programs and speed limit reductions. Moreover, this study emphasises the role of the built environment, as shopping areas, residential areas, and walking traffic density are positively related to a reduction in pedestrian injury severity......This study looks at mitigating and aggravating factors that are associated with the injury severity of pedestrians when they have crashes with another road user and overcomes existing limitations in the literature by posing attention on the built environment and considering spatial correlation...... of pedestrians to sustain a severe or fatal injury conditional on the occurrence of a crash with another road user. This study confirms previous findings about older pedestrians and intoxicated pedestrians being the most vulnerable road users, and crashes with heavy vehicles and in roads with higher speed limits...

  5. Considering built environment and spatial correlation in modelling pedestrian injury severity

    DEFF Research Database (Denmark)

    Prato, Carlo G.; Kaplan, Sigal; Patrier, Alexandre

    2018-01-01

    traffic calming measures, illumination solutions, road maintenance programs and speed limit reductions. Moreover, this study emphasises the role of the built environment, as shopping areas, residential areas, and walking traffic density are positively related to a reduction in pedestrian injury severity......This study looks at mitigating and aggravating factors that are associated with the injury severity of pedestrians when they have crashes with another road user and overcomes existing limitations in the literature by posing attention on the built environment and considering spatial correlation...... of pedestrians to sustain a severe or fatal injury conditional on the occurrence of a crash with another road user. This study confirms previous findings about older pedestrians and intoxicated pedestrians being the most vulnerable road users, and crashes with heavy vehicles and in roads with higher speed limits...

  6. Two phase formation of massive elliptical galaxies: study through cross-correlation including spatial effect

    Science.gov (United States)

    Modak, Soumita; Chattopadhyay, Tanuka; Chattopadhyay, Asis Kumar

    2017-11-01

    Area of study is the formation mechanism of the present-day population of elliptical galaxies, in the context of hierarchical cosmological models accompanied by accretion and minor mergers. The present work investigates the formation and evolution of several components of the nearby massive early-type galaxies (ETGs) through cross-correlation function (CCF), using the spatial parameters right ascension (RA) and declination (DEC), and the intrinsic parameters mass (M_{*}) and size. According to the astrophysical terminology, here these variables, namely mass, size, RA and DEC are termed as parameters, whereas the unknown constants involved in the kernel function are called hyperparameters. Throughout this paper, the parameter size is used to represent the effective radius (Re). Following Huang et al. (2013a), each nearby ETG is divided into three parts on the basis of its Re value. We study the CCF between each of these three components of nearby massive ETGs and the ETGs in the high redshift range, 0.5conflict raised in a previous work (De et al. 2014) suggesting other possibilities for the formation of the outermost part. A probable cause of this improvement is the inclusion of the spatial effects in addition to the other parameters in the study.

  7. Spatial organization and correlation properties quantify structural changes on mesoscale of parenchymatous plant tissue

    Energy Technology Data Exchange (ETDEWEB)

    Valous, N. A.; Delgado, A.; Sun, D.-W., E-mail: dawen.sun@ucd.ie [School of Biosystems Engineering, University College Dublin, National University of Ireland, Belfield, Dublin 4, Dublin (Ireland); Drakakis, K. [Complex and Adaptive Systems Laboratory, University College Dublin, National University of Ireland, Belfield, Dublin 4, Dublin (Ireland)

    2014-02-14

    The study of plant tissue parenchyma's intercellular air spaces contributes to the understanding of anatomy and physiology. This is challenging due to difficulty in making direct measurements of the pore space and the complex mosaic of parenchymatous tissue. The architectural complexity of pore space has shown that single geometrical measurements are not sufficient for characterization. The inhomogeneity of distribution depends not only on the percentage content of phase, but also on how the phase fills the space. The lacunarity morphometric, as multiscale measure, provides information about the distribution of gaps that correspond to degree of spatial organization in parenchyma. Additionally, modern theories have suggested strategies, where the focus has shifted from the study of averages and histograms to the study of patterns in data fluctuations. Detrended fluctuation analysis provides information on the correlation properties of the parenchyma at different spatial scales. The aim is to quantify (with the aid of the aforementioned metrics), the mesostructural changes—that occur from one cycle of freezing and thawing—in the void phase of pome fruit parenchymatous tissue, acquired with X-ray microcomputed tomography. Complex systems methods provide numerical indices and detailed insights regarding the freezing-induced modifications upon the arrangement of cells and voids. These structural changes have the potential to lead to physiological disorders. The work can further stimulate interest for the analysis of internal plant tissue structures coupled with other physico-chemical processes or phenomena.

  8. Spatial organization and correlation properties quantify structural changes on mesoscale of parenchymatous plant tissue

    International Nuclear Information System (INIS)

    Valous, N. A.; Delgado, A.; Sun, D.-W.; Drakakis, K.

    2014-01-01

    The study of plant tissue parenchyma's intercellular air spaces contributes to the understanding of anatomy and physiology. This is challenging due to difficulty in making direct measurements of the pore space and the complex mosaic of parenchymatous tissue. The architectural complexity of pore space has shown that single geometrical measurements are not sufficient for characterization. The inhomogeneity of distribution depends not only on the percentage content of phase, but also on how the phase fills the space. The lacunarity morphometric, as multiscale measure, provides information about the distribution of gaps that correspond to degree of spatial organization in parenchyma. Additionally, modern theories have suggested strategies, where the focus has shifted from the study of averages and histograms to the study of patterns in data fluctuations. Detrended fluctuation analysis provides information on the correlation properties of the parenchyma at different spatial scales. The aim is to quantify (with the aid of the aforementioned metrics), the mesostructural changes—that occur from one cycle of freezing and thawing—in the void phase of pome fruit parenchymatous tissue, acquired with X-ray microcomputed tomography. Complex systems methods provide numerical indices and detailed insights regarding the freezing-induced modifications upon the arrangement of cells and voids. These structural changes have the potential to lead to physiological disorders. The work can further stimulate interest for the analysis of internal plant tissue structures coupled with other physico-chemical processes or phenomena

  9. Fractional Progress Toward Understanding the Fractional Diffusion Limit: The Electromagnetic Response of Spatially Correlated Geomaterials

    Science.gov (United States)

    Weiss, C. J.; Beskardes, G. D.; Everett, M. E.

    2016-12-01

    In this presentation we review the observational evidence for anomalous electromagnetic diffusion in near-surface geophysical exploration and how such evidence is consistent with a detailed, spatially-correlated geologic medium. To date, the inference of multi-scale geologic correlation is drawn from two independent methods of data analysis. The first of which is analogous to seismic move-out, where the arrival time of an electromagnetic pulse is plotted as a function of transmitter/receiver separation. The "anomalous" diffusion is evident by the fractional-order power law behavior of these arrival times, with an exponent value between unity (pure diffusion) and 2 (lossless wave propagation). The second line of evidence comes from spectral analysis of small-scale fluctuations in electromagnetic profile data which cannot be explained in terms of instrument, user or random error. Rather, the power-law behavior of the spectral content of these signals (i.e., power versus wavenumber) and their increments reveals them to lie in a class of signals with correlations over multiple length scales, a class of signals known formally as fractional Brownian motion. Numerical results over simulated geology with correlated electrical texture - representative of, for example, fractures, sedimentary bedding or metamorphic lineation - are consistent with the (albeit limited, but growing) observational data, suggesting a possible mechanism and modeling approach for a more realistic geology. Furthermore, we show how similar simulated results can arise from a modeling approach where geologic texture is economically captured by a modified diffusion equation containing exotic, but manageable, fractional derivatives. These derivatives arise physically from the generalized convolutional form for the electromagnetic constitutive laws and thus have merit beyond mere mathematical convenience. In short, we are zeroing in on the anomalous, fractional diffusion limit from two converging

  10. Spatially resolved D-T(2) correlation NMR of porous media.

    Science.gov (United States)

    Zhang, Yan; Blümich, Bernhard

    2014-05-01

    Within the past decade, 2D Laplace nuclear magnetic resonance (NMR) has been developed to analyze pore geometry and diffusion of fluids in porous media on the micrometer scale. Many objects like rocks and concrete are heterogeneous on the macroscopic scale, and an integral analysis of microscopic properties provides volume-averaged information. Magnetic resonance imaging (MRI) resolves this spatial average on the contrast scale set by the particular MRI technique. Desirable contrast parameters for studies of fluid transport in porous media derive from the pore-size distribution and the pore connectivity. These microscopic parameters are accessed by 1D and 2D Laplace NMR techniques. It is therefore desirable to combine MRI and 2D Laplace NMR to image functional information on fluid transport in porous media. Because 2D Laplace resolved MRI demands excessive measuring time, this study investigates the possibility to restrict the 2D Laplace analysis to the sum signals from low-resolution pixels, which correspond to pixels of similar amplitude in high-resolution images. In this exploratory study spatially resolved D-T2 correlation maps from glass beads and mortar are analyzed. Regions of similar contrast are first identified in high-resolution images to locate corresponding pixels in low-resolution images generated with D-T2 resolved MRI for subsequent pixel summation to improve the signal-to-noise ratio of contrast-specific D-T2 maps. This method is expected to contribute valuable information on correlated sample heterogeneity from the macroscopic and the microscopic scales in various types of porous materials including building materials and rock. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Fractal analytical approach of urban form based on spatial correlation function

    International Nuclear Information System (INIS)

    Chen, Yanguang

    2013-01-01

    Highlights: ► Many fractal parameter relations of cities can be derived by scaling analysis. ► The area-radius scaling of cities suggests a spatial correlation function. ► Spectral analysis can be used to estimate fractal dimension values of urban form. ► The valid range of fractal dimension of urban form comes between 1.5 and 2. ► The traditional scale concept will be replaced by scaling concept in geography. -- Abstract: Urban form has been empirically demonstrated to be of scaling invariance and can be described with fractal geometry. However, the rational range of fractal dimension value and the relationships between various fractal indicators of cities are not yet revealed in theory. By mathematical deduction and transform (e.g., Fourier transform), I find that scaling analysis, spectral analysis, and spatial correlation analysis are all associated with fractal concepts and can be integrated into a new approach to fractal analysis of cities. This method can be termed ‘3S analyses’ of urban form. Using the 3S analysis, I derived a set of fractal parameter equations, by which different fractal parameters of cities can be linked up with one another. Each fractal parameter has its own reasonable extent of values. According to the fractal parameter equations, the intersection of the rational ranges of different fractal parameters suggests the proper scale of the fractal dimension of urban patterns, which varies from 1.5 to 2. The fractal dimension equations based on the 3S analysis and the numerical relationships between different fractal parameters are useful for geographers to understand urban evolution and potentially helpful for future city planning

  12. Designs of Optoelectronic Trinary Signed-Digit Multiplication by use of Joint Spatial Encodings and Optical Correlation

    Science.gov (United States)

    Cherri, Abdallah K.

    1999-02-01

    Trinary signed-digit (TSD) symbolic-substitution-based (SS-based) optical adders, which were recently proposed, are used as the basic modules for designing highly parallel optical multiplications by use of cascaded optical correlators. The proposed multiplications perform carry-free generation of the multiplication partial products of two words in constant time. Also, three different multiplication designs are presented, and new joint spatial encodings for the TSD numbers are introduced. The proposed joint spatial encodings allow one to reduce the SS computation rules involved in optical multiplication. In addition, the proposed joint spatial encodings increase the space bandwidth product of the spatial light modulators of the optical system. This increase is achieved by reduction of the numbers of pixels in the joint spatial encodings for the input TSD operands as well as reduction of the number of pixels used in the proposed matched spatial filters for the optical multipliers.

  13. Spatial accuracy of a simplified disaggregation method for traffic emissions applied in seven mid-sized Chilean cities

    Science.gov (United States)

    Ossés de Eicker, Margarita; Zah, Rainer; Triviño, Rubén; Hurni, Hans

    The spatial accuracy of top-down traffic emission inventory maps obtained with a simplified disaggregation method based on street density was assessed in seven mid-sized Chilean cities. Each top-down emission inventory map was compared against a reference, namely a more accurate bottom-up emission inventory map from the same study area. The comparison was carried out using a combination of numerical indicators and visual interpretation. Statistically significant differences were found between the seven cities with regard to the spatial accuracy of their top-down emission inventory maps. In compact cities with a simple street network and a single center, a good accuracy of the spatial distribution of emissions was achieved with correlation values>0.8 with respect to the bottom-up emission inventory of reference. In contrast, the simplified disaggregation method is not suitable for complex cities consisting of interconnected nuclei, resulting in correlation valuessituation to get an overview on the spatial distribution of the emissions generated by traffic activities.

  14. Statistics for Time-Series Spatial Data: Applying Survival Analysis to Study Land-Use Change

    Science.gov (United States)

    Wang, Ninghua Nathan

    2013-01-01

    Traditional spatial analysis and data mining methods fall short of extracting temporal information from data. This inability makes their use difficult to study changes and the associated mechanisms of many geographic phenomena of interest, for example, land-use. On the other hand, the growing availability of land-change data over multiple time…

  15. Developing and Testing an Online Tool for Teaching GIS Concepts Applied to Spatial Decision-Making

    Science.gov (United States)

    Carver, Steve; Evans, Andy; Kingston, Richard

    2004-01-01

    The development and testing of a Web-based GIS e-learning resource is described. This focuses on the application of GIS for siting a nuclear waste disposal facility and the associated principles of spatial decision-making using Boolean and weighted overlay methods. Initial student experiences in using the system are analysed as part of a research…

  16. Spatially resolved vertical vorticity in solar supergranulation using helioseismology and local correlation tracking

    Science.gov (United States)

    Langfellner, J.; Gizon, L.; Birch, A. C.

    2015-09-01

    Flow vorticity is a fundamental property of turbulent convection in rotating systems. Solar supergranules exhibit a preferred sense of rotation, which depends on the hemisphere. This is due to the Coriolis force acting on the diverging horizontal flows. We aim to spatially resolve the vertical flow vorticity of the average supergranule at different latitudes, both for outflow and inflow regions. To measure the vertical vorticity, we use two independent techniques: time-distance helioseismology (TD) and local correlation tracking of granules in intensity images (LCT) using data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Both maps are corrected for center-to-limb systematic errors. We find that 8 h TD and LCT maps of vertical vorticity are highly correlated at large spatial scales. Associated with the average supergranule outflow, we find tangential (vortical) flows that reach about 10 m s-1 in the clockwise direction at 40° latitude. In average inflow regions, the tangential flow reaches the same magnitude, but in the anticlockwise direction. These tangential velocities are much smaller than the radial (diverging) flow component (300 m s-1 for the average outflow and 200 m s-1 for the average inflow). The results for TD and LCT as measured from HMI are in excellent agreement for latitudes between -60° and 60°. From HMI LCT, we measure the vorticity peak of the average supergranule to have a full width at half maximum of about 13 Mm for outflows and 8 Mm for inflows. This is larger than the spatial resolution of the LCT measurements (about 3 Mm). On the other hand, the vorticity peak in outflows is about half the value measured at inflows (e.g., 4 × 10-6 s-1 clockwise compared to 8 × 10-6 s-1 anticlockwise at 40° latitude). Results from the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) obtained in 2010 are biased compared to the HMI/SDO results for the same period

  17. Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology using RUSLE with GIS

    Directory of Open Access Journals (Sweden)

    C. Zeng

    2017-07-01

    Full Text Available Although some scholars have studied soil erosion in karst landforms, analyses of the spatial and temporal evolution of soil erosion and correlation analyses with spatial elements have been insufficient. The lack of research has led to an inaccurate assessment of environmental effects, especially in the mountainous area of Wuling in China. Soil erosion and rocky desertification in this area influence the survival and sustainability of a population of 0.22 billion people. This paper analyzes the spatiotemporal evolution of soil erosion and explores its relationship with rocky desertification using GIS technology and the revised universal soil loss equation (RUSLE. Furthermore, this paper analyzes the relationship between soil erosion and major natural elements in southern China. The results are as follows: (1 from 2000 to 2013, the proportion of the area experiencing micro-erosion and mild erosion was at increasing risk in contrast to areas where moderate and high erosion are decreasing. The area changes in this time sequence reflect moderate to high levels of erosion tending to convert into micro-erosion and mild erosion. (2 The soil erosion area on the slope, at 15–35°, accounted for 60.59 % of the total erosion area, and the corresponding soil erosion accounted for 40.44 %. (3 The annual erosion rate in the karst region decreased much faster than in the non-karst region. Soil erosion in all of the rock outcrop areas indicates an improving trend, and dynamic changes in soil erosion significantly differ among the various lithological distribution belts. (4 The soil erosion rate decreased in the rocky desertification regions, to below moderate levels, but increased in the severe rocky desertification areas. The temporal and spatial variations in soil erosion gradually decreased in the study area. Differences in the spatial distribution between lithology and rocky desertification induced extensive soil loss. As rocky desertification

  18. Current data warehousing and OLAP technologies’ status applied to spatial databases

    Directory of Open Access Journals (Sweden)

    Diego Orlando Abril Fradel

    2007-01-01

    Full Text Available Organisations require their information on a timely, dynamic, friendly, centralised and easy-to-access basis for analysing it and taking correct decisions at the right time. Centralisation can be achieved with data warehouse technology. On-line analytical processing (OLAP is used for analysis. Technologies using graphics and maps in data presentation can be exploited for an overall view of a company and helping to take better decisions. Geo- graphic information systems (GIS are useful for spatially locating information and representing it using maps. Data warehouses are generally implemented with a multidimensional data model to make OLAP analysis easier. A fundamental point in this model is the definition of measurements and dimensions; geography lies within such dimensions. Many researchers have concluded that the geographic dimension is another attribute for describing data in current analysis systems but without having an in-depth study of its spatial feature and without locating them on a map, like GIS does. Seen this way, interoperability is necessary between GIS and OLAP (called spatial OLAP or SOLAP and several entities are currently researching this. This document summarises the current status of such research.

  19. Methane fugitive emissions quantification using the novel 'plume camera' (spatial correlation) method

    Science.gov (United States)

    Crosson, E.; Rella, C.

    2012-12-01

    Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Given that the global warming potential of methane is many times greater than that of carbon dioxide, the importance of quantifying methane emissions becomes clear. The rapidly increasing reliance on shale gas (or other unconventional sources) is only intensifying the interest in fugitive methane releases. Natural gas (which is predominantly methane) is an attractive energy source, as it emits 40% less carbon dioxide per Joule of energy generated than coal. However, if just a small percentage of the natural gas consumed is lost due to fugitive emissions during production, processing, or transport, this global warming benefit is lost (Howarth et al. 2012). It is therefore imperative, as production of natural gas increases, that the fugitive emissions of methane are quantified accurately. Traditional direct measurement techniques often involve physical access of the leak itself to quantify the emissions rate, and are generally require painstaking effort to first find the leak and then quantify the emissions rate. With over half a million natural gas producing wells in the U.S. (U.S. Energy Information Administration), not including the associated processing, storage, and transport facilities, and with each facility having hundreds or even thousands of fittings that can potentially leak, the need is clear to develop methodologies that can provide a rapid and accurate assessment of the total emissions rate on a per-well head basis. In this paper we present a novel method for emissions quantification which uses a 'plume camera' with three 'pixels' to quantify emissions using direct measurements of methane concentration in the downwind plume. By analyzing the spatial correlation between the pixels, the spatial extent of the instantaneous plume can be inferred. This information, when combined with the wind speed through the measurement plane, provides a direct

  20. Environmental Correlation and Spatial Autocorrelation of Soil Properties in Keller Peninsula, Maritime Antarctica

    Directory of Open Access Journals (Sweden)

    André Geraldo de Lima Moraes

    2018-01-01

    Full Text Available ABSTRACT: The pattern of variation in soil and landform properties in relation to environmental covariates are closely related to soil type distribution. The aim of this study was to apply digital soil mapping techniques to analysis of the pattern of soil property variation in relation to environmental covariates under periglacial conditions at Keller Peninsula, Maritime Antarctica. We considered the hypothesis that covariates normally used for environmental correlation elsewhere can be adequately employed in periglacial areas in Maritime Antarctica. For that purpose, 138 soil samples from 47 soil sites were collected for analysis of soil chemical and physical properties. We tested the correlation between soil properties (clay, potassium, sand, organic carbon, and pH and environmental covariates. The environmental covariates selected were correlated with soil properties according to the terrain attributes of the digital elevation model (DEM. The models evaluated were linear regression, ordinary kriging, and regression kriging. The best performance was obtained using normalized height as a covariate, with an R2 of 0.59 for sand. In contrast, the lowest R2 of 0.15 was obtained for organic carbon, also using the regression kriging method. Overall, results indicate that, despite the predominant periglacial conditions, the environmental covariates normally used for digital terrain mapping of soil properties worldwide can be successfully employed for understanding the main variations in soil properties and soil-forming factors in this region.

  1. Applying spatial reasoning to topographical data with a grounded geographical ontology

    OpenAIRE

    Mallenby, D.; Bennett, B.

    2007-01-01

    Grounding an ontology upon geographical data has been pro-\\ud posed as a method of handling the vagueness in the domain more effectively. In order to do this, we require methods of reasoning about the spatial relations between the regions within the data. This stage can be computationally expensive, as we require information on the location of\\ud points in relation to each other. This paper illustrates how using knowledge about regions allows us to reduce the computation required in an effici...

  2. Impact of Non-Idealities System on Spatial Correlation in a Multi-Probe Based MIMO OTA Setup

    DEFF Research Database (Denmark)

    Fan, Wei; Nielsen, Jesper Ødum; Carreño, Xavier

    2013-01-01

    MIMO OTA testing methodologies are being intensively investigated by CTIA and 3GPP, where a multi-probe anechoic chamber based solution is an important candidate for future standardized testing. In this paper, the probes located on an OTA ring are used to reproduce the channel spatial information....... This paper investigates the extent to which we can emulate the channel spatial characteristics inside the test zone where the device under test is located. The focus is on performance deterioration introduced by system non-idealities on spatial correlation emulation in practical MIMO OTA test systems....

  3. Spatially Resolved Two-Color Diffusion Measurements in Human Skin Applied to Transdermal Liposome Penetration

    DEFF Research Database (Denmark)

    Brewer, Jonathan; Bloksgaard, Maria; Kubiak, Jakub

    2013-01-01

    A multiphoton excitation-based fluorescence fluctuation spectroscopy method, Raster image correlation spectroscopy (RICS), was used to measure the local diffusion coefficients of distinct model fluorescent substances in excised human skin. In combination with structural information obtained by mu......; doi:10.1038/jid.2012.461....

  4. A spatial approach of magnitude-squared coherence applied to selective attention detection.

    Science.gov (United States)

    Bonato Felix, Leonardo; de Souza Ranaudo, Fernando; D'affonseca Netto, Aluizio; Ferreira Leite Miranda de Sá, Antonio Mauricio

    2014-05-30

    Auditory selective attention is the human ability of actively focusing in a certain sound stimulus while avoiding all other ones. This ability can be used, for example, in behavioral studies and brain-machine interface. In this work we developed an objective method - called Spatial Coherence - to detect the side where a subject is focusing attention to. This method takes into consideration the Magnitude Squared Coherence and the topographic distribution of responses among electroencephalogram electrodes. The individuals were stimulated with amplitude-modulated tones binaurally and were oriented to focus attention to only one of the stimuli. The results indicate a contralateral modulation of ASSR in the attention condition and are in agreement with prior studies. Furthermore, the best combination of electrodes led to a hit rate of 82% for 5.03 commands per minute. Using a similar paradigm, in a recent work, a maximum hit rate of 84.33% was achieved, but with a greater a classification time (20s, i.e. 3 commands per minute). It seems that Spatial Coherence is a useful technique for detecting focus of auditory selective attention. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Is a matrix exponential specification suitable for the modeling of spatial correlation structures?

    Science.gov (United States)

    Strauß, Magdalena E; Mezzetti, Maura; Leorato, Samantha

    2017-05-01

    This paper investigates the adequacy of the matrix exponential spatial specifications (MESS) as an alternative to the widely used spatial autoregressive models (SAR). To provide as complete a picture as possible, we extend the analysis to all the main spatial models governed by matrix exponentials comparing them with their spatial autoregressive counterparts. We propose a new implementation of Bayesian parameter estimation for the MESS model with vague prior distributions, which is shown to be precise and computationally efficient. Our implementations also account for spatially lagged regressors. We further allow for location-specific heterogeneity, which we model by including spatial splines. We conclude by comparing the performances of the different model specifications in applications to a real data set and by running simulations. Both the applications and the simulations suggest that the spatial splines are a flexible and efficient way to account for spatial heterogeneities governed by unknown mechanisms.

  6. Pore Network Modeling: Alternative Methods to Account for Trapping and Spatial Correlation

    KAUST Repository

    De La Garza Martinez, Pablo

    2016-05-01

    Pore network models have served as a predictive tool for soil and rock properties with a broad range of applications, particularly in oil recovery, geothermal energy from underground reservoirs, and pollutant transport in soils and aquifers [39]. They rely on the representation of the void space within porous materials as a network of interconnected pores with idealised geometries. Typically, a two-phase flow simulation of a drainage (or imbibition) process is employed, and by averaging the physical properties at the pore scale, macroscopic parameters such as capillary pressure and relative permeability can be estimated. One of the most demanding tasks in these models is to include the possibility of fluids to remain trapped inside the pore space. In this work I proposed a trapping rule which uses the information of neighboring pores instead of a search algorithm. This approximation reduces the simulation time significantly and does not perturb the accuracy of results. Additionally, I included spatial correlation to generate the pore sizes using a matrix decomposition method. Results show higher relative permeabilities and smaller values for irreducible saturation, which emphasizes the effects of ignoring the intrinsic correlation seen in pore sizes from actual porous media. Finally, I implemented the algorithm from Raoof et al. (2010) [38] to generate the topology of a Fontainebleau sandstone by solving an optimization problem using the steepest descent algorithm with a stochastic approximation for the gradient. A drainage simulation is performed on this representative network and relative permeability is compared with published results. The limitations of this algorithm are discussed and other methods are suggested to create a more faithful representation of the pore space.

  7. Pore Network Modeling: Alternative Methods to Account for Trapping and Spatial Correlation

    KAUST Repository

    De La Garza Martinez, Pablo

    2016-01-01

    Pore network models have served as a predictive tool for soil and rock properties with a broad range of applications, particularly in oil recovery, geothermal energy from underground reservoirs, and pollutant transport in soils and aquifers [39]. They rely on the representation of the void space within porous materials as a network of interconnected pores with idealised geometries. Typically, a two-phase flow simulation of a drainage (or imbibition) process is employed, and by averaging the physical properties at the pore scale, macroscopic parameters such as capillary pressure and relative permeability can be estimated. One of the most demanding tasks in these models is to include the possibility of fluids to remain trapped inside the pore space. In this work I proposed a trapping rule which uses the information of neighboring pores instead of a search algorithm. This approximation reduces the simulation time significantly and does not perturb the accuracy of results. Additionally, I included spatial correlation to generate the pore sizes using a matrix decomposition method. Results show higher relative permeabilities and smaller values for irreducible saturation, which emphasizes the effects of ignoring the intrinsic correlation seen in pore sizes from actual porous media. Finally, I implemented the algorithm from Raoof et al. (2010) [38] to generate the topology of a Fontainebleau sandstone by solving an optimization problem using the steepest descent algorithm with a stochastic approximation for the gradient. A drainage simulation is performed on this representative network and relative permeability is compared with published results. The limitations of this algorithm are discussed and other methods are suggested to create a more faithful representation of the pore space.

  8. Comparison of infrared and 3D digital image correlation techniques applied for mechanical testing of materials

    Science.gov (United States)

    Krstulović-Opara, Lovre; Surjak, Martin; Vesenjak, Matej; Tonković, Zdenko; Kodvanj, Janoš; Domazet, Željko

    2015-11-01

    To investigate the applicability of infrared thermography as a tool for acquiring dynamic yielding in metals, a comparison of infrared thermography with three dimensional digital image correlation has been made. Dynamical tension tests and three point bending tests of aluminum alloys have been performed to evaluate results obtained by IR thermography in order to detect capabilities and limits for these two methods. Both approaches detect pastification zone migrations during the yielding process. The results of the tension test and three point bending test proved the validity of the IR approach as a method for evaluating the dynamic yielding process when used on complex structures such as cellular porous materials. The stability of the yielding process in the three point bending test, as contrary to the fluctuation of the plastification front in the tension test, is of great importance for the validation of numerical constitutive models. The research proved strong performance, robustness and reliability of the IR approach when used to evaluate yielding during dynamic loading processes, while the 3D DIC method proved to be superior in the low velocity loading regimes. This research based on two basic tests, proved the conclusions and suggestions presented in our previous research on porous materials where middle wave infrared thermography was applied.

  9. Compress compound images in H.264/MPGE-4 AVC by exploiting spatial correlation.

    Science.gov (United States)

    Lan, Cuiling; Shi, Guangming; Wu, Feng

    2010-04-01

    Compound images are a combination of text, graphics and natural image. They present strong anisotropic features, especially on the text and graphics parts. These anisotropic features often render conventional compression inefficient. Thus, this paper proposes a novel coding scheme from the H.264 intraframe coding. In the scheme, two new intramodes are developed to better exploit spatial correlation in compound images. The first is the residual scalar quantization (RSQ) mode, where intrapredicted residues are directly quantized and coded without transform. The second is the base colors and index map (BCIM) mode that can be viewed as an adaptive color quantization. In this mode, an image block is represented by several representative colors, referred to as base colors, and an index map to compress. Every block selects its coding mode from two new modes and the previous intramodes in H.264 by rate-distortion optimization (RDO). Experimental results show that the proposed scheme improves the coding efficiency even more than 10 dB at most bit rates for compound images and keeps a comparable efficient performance to H.264 for natural images.

  10. Spatial Temporal Image Correlation Spectroscopy (STICS) for Flow Analysis with Application for Blood Flow Mapping

    International Nuclear Information System (INIS)

    Rossow, Molly; Gratton, Enrico; Mantulin, William M.

    2009-01-01

    It is important for surgeons to be able to measure blood flow in exposed arterioles during surgery. We report our progress in the development of an optical technique that will measure blood flow in surgically exposed blood vessels and enable previously difficult measurements. By monitoring optical fluctuations, the optical technique, based on Spatial Temporal Image Correlation (STICS), will directly measure the velocity of micron-scale particles--such as red blood cells. It will complement existing technology and provide qualitative measurements that were not previously possible. It relies on the concept that blood, when viewed on a small enough scale, is an inhomogeneous substance. Individual blood cells passing between a near-infrared light source and a detector will cause fluctuations in the transmitted optical signal. The speed, direction, and flow pattern of blood cells can be determined from these optical fluctuations. We present a series of computer simulations and experiments on phantom and animal systems to test this technique's ability to map complex flow patterns.

  11. The Smoothing Artifact of Spatially Constrained Canonical Correlation Analysis in Functional MRI

    Directory of Open Access Journals (Sweden)

    Dietmar Cordes

    2012-01-01

    Full Text Available A wide range of studies show the capacity of multivariate statistical methods for fMRI to improve mapping of brain activations in a noisy environment. An advanced method uses local canonical correlation analysis (CCA to encompass a group of neighboring voxels instead of looking at the single voxel time course. The value of a suitable test statistic is used as a measure of activation. It is customary to assign the value to the center voxel; however, this is a choice of convenience and without constraints introduces artifacts, especially in regions of strong localized activation. To compensate for these deficiencies, different spatial constraints in CCA have been introduced to enforce dominance of the center voxel. However, even if the dominance condition for the center voxel is satisfied, constrained CCA can still lead to a smoothing artifact, often called the “bleeding artifact of CCA”, in fMRI activation patterns. In this paper a new method is introduced to measure and correct for the smoothing artifact for constrained CCA methods. It is shown that constrained CCA methods corrected for the smoothing artifact lead to more plausible activation patterns in fMRI as shown using data from a motor task and a memory task.

  12. Spatial Temporal Image Correlation Spectroscopy (STICS) for Flow Analysis with Application for Blood Flow Mapping (abstract)

    Science.gov (United States)

    Rossow, Molly; Mantulin, William M.; Gratton, Enrico

    2009-04-01

    It is important for surgeons to be able to measure blood flow in exposed arterioles during surgery. We report our progress in the development of an optical technique that will measure blood flow in surgically exposed blood vessels and enable previously difficult measurements. By monitoring optical fluctuations, the optical technique, based on Spatial Temporal Image Correlation (STICS), will directly measure the velocity of micron-scale particles-such as red blood cells. It will complement existing technology and provide qualitative measurements that were not previously possible. It relies on the concept that blood, when viewed on a small enough scale, is an inhomogeneous substance. Individual blood cells passing between a near-infrared light source and a detector will cause fluctuations in the transmitted optical signal. The speed, direction, and flow pattern of blood cells can be determined from these optical fluctuations. We present a series of computer simulations and experiments on phantom and animal systems to test this technique's ability to map complex flow patterns.

  13. High order spatial expansion for the method of characteristics applied to 3-D geometries

    International Nuclear Information System (INIS)

    Naymeh, L.; Masiello, E.; Sanchez, R.

    2013-01-01

    The method of characteristics is an efficient and flexible technique to solve the neutron transport equation and has been extensively used in two-dimensional calculations because it permits to deal with complex geometries. However, because of a very fast increase in storage requirements and number of floating operations, its direct application to three-dimensional routine transport calculations it is not still possible. In this work we introduce and analyze several modifications aimed to reduce memory requirements and to diminish the computing burden. We explore high-order spatial approximation, the use of intermediary trajectory-dependent flux expansions and the possibility of dynamic trajectory reconstruction from local tracking for typed subdomains. (authors)

  14. Density dependence of the fine-differential disturbed gamma-gamma-spatial correlation in gaseous 111InI-sources

    International Nuclear Information System (INIS)

    Schuetter, K.

    1985-01-01

    An instrument for measuring a time-differential disturbed angular correlation was developed. Using this instrument the disturbance of the spatial correlation of the γ-quanta of the 171-245 keV γ-γ-cascade in 111 Cd was examined in dependence of the density of the gaseous 111 InI-systems and the time difference between the emission of the both γ-quanta. (BBOE)

  15. Spatial correlations of Diceroprocta apache and its host plants: Evidence for a negative impact from Tamarix invasion

    Science.gov (United States)

    Ellingson, A.R.; Andersen, D.C.

    2002-01-01

    1. The hypothesis that the habitat-scale spatial distribution of the Apache cicada Diceroprocta apache Davis is unaffected by the presence of the invasive exotic saltcedar Tamarix ramosissima was tested using data from 205 1-m2 quadrats placed within the flood-plain of the Bill Williams River, Arizona, U.S.A. Spatial dependencies within and between cicada density and habitat variables were estimated using Moran's I and its bivariate analogue to discern patterns and associations at spatial scales from 1 to 30 m.2. Apache cicadas were spatially aggregated in high-density clusters averaging 3 m in diameter. A positive association between cicada density, estimated by exuvial density, and the per cent canopy cover of a native tree, Goodding's willow Salix gooddingii, was detected in a non-spatial correlation analysis. No non-spatial association between cicada density and saltcedar canopy cover was detected.3. Tests for spatial cross-correlation using the bivariate IYZ indicated the presence of a broad-scale negative association between cicada density and saltcedar canopy cover. This result suggests that large continuous stands of saltcedar are associated with reduced cicada density. In contrast, positive associations detected at spatial scales larger than individual quadrats suggested a spill-over of high cicada density from areas featuring Goodding's willow canopy into surrounding saltcedar monoculture.4. Taken together and considered in light of the Apache cicada's polyphagous habits, the observed spatial patterns suggest that broad-scale factors such as canopy heterogeneity affect cicada habitat use more than host plant selection. This has implications for management of lower Colorado River riparian woodlands to promote cicada presence and density through maintenance or creation of stands of native trees as well as manipulation of the characteristically dense and homogeneous saltcedar canopies.

  16. The spatial distribution of LGR5+ cells correlates with gastric cancer progression.

    Directory of Open Access Journals (Sweden)

    Eva Simon

    Full Text Available In this study we tested the prevalence, histoanatomical distribution and tumour biological significance of the Wnt target protein and cancer stem cell marker LGR5 in tumours of the human gastrointestinal tract. Differential expression of LGR5 was studied on transcriptional (real-time polymerase chain reaction and translational level (immunohistochemistry in malignant and corresponding non-malignant tissues of 127 patients comprising six different primary tumour sites, i.e. oesophagus, stomach, liver, pancreas, colon and rectum. The clinico-pathological significance of LGR5 expression was studied in 100 patients with gastric carcinoma (GC. Non-neoplastic tissue usually harboured only very few scattered LGR5(+ cells. The corresponding carcinomas of the oesophagus, stomach, liver, pancreas, colon and rectum showed significantly more LGR5(+ cells as well as significantly higher levels of LGR5-mRNA compared with the corresponding non-neoplastic tissue. Double staining experiments revealed a coexpression of LGR5 with the putative stem cell markers CD44, Musashi-1 and ADAM17. Next we tested the hypothesis that the sequential changes of gastric carcinogenesis, i.e. chronic atrophic gastritis, intestinal metaplasia and invasive carcinoma, are associated with a reallocation of the LGR5(+ cells. Interestingly, the spatial distribution of LGR5 changed: in non-neoplastic stomach mucosa, LGR5(+ cells were found predominantly in the mucous neck region; in intestinal metaplasia LGR5(+ cells were localized at the crypt base, and in GC LGR5(+ cells were present at the luminal surface, the tumour centre and the invasion front. The expression of LGR5 in the tumour centre and invasion front of GC correlated significantly with the local tumour growth (T-category and the nodal spread (N-category. Furthermore, patients with LGR5(+ GCs had a shorter median survival (28.0±8.6 months than patients with LGR5(- GCs (54.5±6.3 months. Our results show that LGR5 is

  17. Spatial vulnerability assessment : methodology for the community and district level applied to floods in Buzi, Mozambique

    International Nuclear Information System (INIS)

    Kienberger, S.

    2010-01-01

    Within this thesis a conceptual model is presented which allows for the definition of a vulnerability assessment according to its time and spatial scale and within a multi-dimensional framework, which should help to design and develop appropriate methodologies and adaptation of concepts for the required scale of implementation. Building on past experiences with participatory approaches in community mapping in the District of Buzi in Mozambique, the relevance of such approaches for a community-based disaster risk reduction framework is analysed. Finally, methodologies are introduced which allow the assessment of vulnerability and the prioritisation of vulnerability factors at the community level. At the district level, homogenous vulnerability regions are identified through the application of integrated modelling approaches which build on expert knowledge and weightings. A set of indicators is proposed, which allow the modelling of vulnerability in a data-scarce environment. In developing these different methodologies for the community and district levels, it has been identified that the monitoring of vulnerability and the identification of trends is essential to addressing the objective of a continuous and improved disaster risk management. In addition to the technical and methodological challenges discussed in this thesis, the commitment from different stakeholders and the availability of capacity in different domains is essential for the successful, practical implementation of the developed approaches. (author)

  18. TRENDS IN FLOODS AND LOW FLOWS IN THE UNITED STATES: IMPACT OF SPATIAL CORRELATION. (R824992,R826888)

    Science.gov (United States)

    Trends in flood and low flows in the US were evaluated using a regional average Kendall's S trend test at two spatial scales and over two timeframes. Field significance was assessed using a bootstrap methodology to account for the observed regional cross-correlation of streamflow...

  19. The Correlation between Pre-Service Science Teachers' Astronomy Achievement, Attitudes towards Astronomy and Spatial Thinking Skills

    Science.gov (United States)

    Türk, Cumhur

    2016-01-01

    The purpose of this study was to examine the changes in pre-service Science teachers' astronomy achievement, attitudes towards astronomy and skills for spatial thinking in terms of their years of study. Another purpose of the study was to find out whether there was correlation between pre-service teachers' astronomy achievement, attitudes towards…

  20. Quantification of Fugitive Methane Emissions with Spatially Correlated Measurements Collected with Novel Plume Camera

    Science.gov (United States)

    Tsai, Tracy; Rella, Chris; Crosson, Eric

    2013-04-01

    Quantification of fugitive methane emissions from unconventional natural gas (i.e. shale gas, tight sand gas, etc.) production, processing, and transport is essential for scientists, policy-makers, and the energy industry, because methane has a global warming potential of at least 21 times that of carbon dioxide over a span of 100 years [1]. Therefore, fugitive emissions reduce any environmental benefits to using natural gas instead of traditional fossil fuels [2]. Current measurement techniques involve first locating all the possible leaks and then measuring the emission of each leak. This technique is a painstaking and slow process that cannot be scaled up to the large size of the natural gas industry in which there are at least half a million natural gas wells in the United States alone [3]. An alternative method is to calculate the emission of a plume through dispersion modeling. This method is a scalable approach since all the individual leaks within a natural gas facility can be aggregated into a single plume measurement. However, plume dispersion modeling requires additional knowledge of the distance to the source, atmospheric turbulence, and local topography, and it is a mathematically intensive process. Therefore, there is a need for an instrument capable of simple, rapid, and accurate measurements of fugitive methane emissions on a per well head scale. We will present the "plume camera" instrument, which simultaneously measures methane at different spatial points or pixels. The spatial correlation between methane measurements provides spatial information of the plume, and in addition to the wind measurement collected with a sonic anemometer, the flux can be determined. Unlike the plume dispersion model, this approach does not require knowledge of the distance to the source and atmospheric conditions. Moreover, the instrument can fit inside a standard car such that emission measurements can be performed on a per well head basis. In a controlled experiment

  1. Two-dimensional optical correlation spectroscopy applied to liquid/glass dynamics

    OpenAIRE

    Lazonder, Kees; Pshenichnikov, Maxim S.; Wiersma, Douwe A.; Corkum, Paul; Jonas, David M.; Miller, R.J. Dwayne.; Weiner, Andrew M.

    2007-01-01

    Correlation spectroscopy was used to study the effects of temperature and phase changes on liquid and glass solvent dynamics. By assessing the eccentricity of the elliptic shape of a 2D optical correlation spectrum the value of the underlying frequency-frequency correlation function can be retrieved through a very simple relationship. This method yielded both intuitive clues and a quantitative measure of the dynamics of the system.

  2. Ergodic channel capacity of spatial correlated multiple-input multiple-output free space optical links using multipulse pulse-position modulation

    Science.gov (United States)

    Wang, Huiqin; Wang, Xue; Cao, Minghua

    2017-02-01

    The spatial correlation extensively exists in the multiple-input multiple-output (MIMO) free space optical (FSO) communication systems due to the channel fading and the antenna space limitation. Wilkinson's method was utilized to investigate the impact of spatial correlation on the MIMO FSO communication system employing multipulse pulse-position modulation. Simulation results show that the existence of spatial correlation reduces the ergodic channel capacity, and the reception diversity is more competent to resist this kind of performance degradation.

  3. Effect of spatially correlated noise on stochastic synchronization in globally coupled FitzHugh-Nagumo neuron systems

    Directory of Open Access Journals (Sweden)

    Yange Shao

    2014-01-01

    Full Text Available The phenomenon of stochastic synchronization in globally coupled FitzHugh-Nagumo (FHN neuron system subjected to spatially correlated Gaussian noise is investigated based on dynamical mean-field approximation (DMA and direct simulation (DS. Results from DMA are in good quantitative or qualitative agreement with those from DS for weak noise intensity and larger system size. Whether the consisting single FHN neuron is staying at the resting state, subthreshold oscillatory regime, or the spiking state, our investigation shows that the synchronization ratio of the globally coupled system becomes higher as the noise correlation coefficient increases, and thus we conclude that spatial correlation has an active effect on stochastic synchronization, and the neurons can achieve complete synchronization in the sense of statistics when the noise correlation coefficient tends to one. Our investigation also discloses that the noise spatial correlation plays the same beneficial role as the global coupling strength in enhancing stochastic synchronization in the ensemble. The result might be useful in understanding the information coding mechanism in neural systems.

  4. Inverse modeling applied to Scanning Capacitance Microscopy for improved spatial resolution and accuracy

    International Nuclear Information System (INIS)

    McMurray, J. S.; Williams, C. C.

    1998-01-01

    Scanning Capacitance Microscopy (SCM) is capable of providing two-dimensional information about dopant and carrier concentrations in semiconducting devices. This information can be used to calibrate models used in the simulation of these devices prior to manufacturing and to develop and optimize the manufacturing processes. To provide information for future generations of devices, ultra-high spatial accuracy (<10 nm) will be required. One method, which potentially provides a means to obtain these goals, is inverse modeling of SCM data. Current semiconducting devices have large dopant gradients. As a consequence, the capacitance probe signal represents an average over the local dopant gradient. Conversion of the SCM signal to dopant density has previously been accomplished with a physical model which assumes that no dopant gradient exists in the sampling area of the tip. The conversion of data using this model produces results for abrupt profiles which do not have adequate resolution and accuracy. A new inverse model and iterative method has been developed to obtain higher resolution and accuracy from the same SCM data. This model has been used to simulate the capacitance signal obtained from one and two-dimensional ideal abrupt profiles. This simulated data has been input to a new iterative conversion algorithm, which has recovered the original profiles in both one and two dimensions. In addition, it is found that the shape of the tip can significantly impact resolution. Currently SCM tips are found to degrade very rapidly. Initially the apex of the tip is approximately hemispherical, but quickly becomes flat. This flat region often has a radius of about the original hemispherical radius. This change in geometry causes the silicon directly under the disk to be sampled with approximately equal weight. In contrast, a hemispherical geometry samples most strongly the silicon centered under the SCM tip and falls off quickly with distance from the tip's apex. Simulation

  5. Integrating spatially explicit indices of abundance and habitat quality: an applied example for greater sage-grouse management.

    Science.gov (United States)

    Coates, Peter S; Casazza, Michael L; Ricca, Mark A; Brussee, Brianne E; Blomberg, Erik J; Gustafson, K Benjamin; Overton, Cory T; Davis, Dawn M; Niell, Lara E; Espinosa, Shawn P; Gardner, Scott C; Delehanty, David J

    2016-02-01

    intensity across multiple spatial scales. As applied to sage-grouse, the composite map identifies spatially explicit management categories within sagebrush steppe that are most critical to sustaining sage-grouse populations as well as those areas where changes in land use would likely have minimal impact. Importantly, collaborative efforts among stakeholders guide which intersections of habitat selection indices and abundance and space use classes are used to define management categories. Because sage-grouse are an umbrella species, our joint-index modelling approach can help target effective conservation for other sagebrush obligate species and can be readily applied to species in other ecosystems with similar life histories, such as central-placed breeding.

  6. Integrating spatially explicit indices of abundance and habitat quality: an applied example for greater sage-grouse management

    Science.gov (United States)

    Coates, Peter S.; Casazza, Michael L.; Ricca, Mark A.; Brussee, Brianne E.; Blomberg, Erik J.; Gustafson, K. Benjamin; Overton, Cory T.; Davis, Dawn M.; Niell, Lara E.; Espinosa, Shawn P.; Gardner, Scott C.; Delehanty, David J.

    2016-01-01

    multiple spatial scales. As applied to sage-grouse, the composite map identifies spatially explicit management categories within sagebrush steppe that are most critical to sustaining sage-grouse populations as well as those areas where changes in land use would likely have minimal impact. Importantly, collaborative efforts among stakeholders guide which intersections of habitat selection indices and abundance and space use classes are used to define management categories. Because sage-grouse are an umbrella species, our joint-index modelling approach can help target effective conservation for other sagebrush obligate species, and can be readily applied to species in other ecosystems with similar life histories, such as central-placed breeding.

  7. Cognitive specialization for verbal vs. spatial ability in men and women : Neural and behavioral correlates

    NARCIS (Netherlands)

    Yeo, Ronald A.; Ryman, Sephira G.; Thompson, Melissa E.; van den Heuvel, Martijn P.; de Reus, Marcel A.; Pommy, Jessica; Seaman, Brandi; Jung, Rex E.

    2016-01-01

    An important dimension of individual differences, independent of general cognitive ability (GCA), is specialization for verbal or spatial ability. In this study we investigated neuroanatomic, network, and personality features associated with verbal vs. spatial ability. Healthy young adults (N = 244)

  8. Improved Spatial Ability Correlated with Left Hemisphere Dysfunction in Turner's Syndrome. Implications for Mechanism.

    Science.gov (United States)

    Rovet, Joanne F.

    This study contrasts the performance of a 17-year-old female subject with Turner's syndrome before and after developing left temporal lobe seizures, as a means of identifying the mechanism responsible for the Turner's syndrome spatial impairment. The results revealed a deficit in spatial processing before onset of the seizure disorder. Results…

  9. Spatial dependence and correlation of rainfall in the Danube catchment and its role in flood risk assessment.

    Science.gov (United States)

    Martina, M. L. V.; Vitolo, R.; Todini, E.; Stephenson, D. B.; Cook, I. M.

    2009-04-01

    The possibility that multiple catastrophic events occur within a given timespan and affect the same portfolio of insured properties may induce enhanced risk. For this reason, in the insurance industry it is of interest to characterise not only the point probability of catastrophic events, but also their spatial structure. As far as floods are concerned it is important to determine the probability of having multiple simultaneous events in different parts of the same basin: in this case, indeed, the loss in a portfolio can be significantly different. Understanding the spatial structure of the precipitation field is a necessary step for the proper modelling of the spatial dependence and correlation of river discharge. Several stochastic models are available in the scientific literature for the multi-site generation of precipitation. Although most models achieve good performance in modelling mean values, temporal variability and inter-site dependence of extremes are still delicate issues. In this work we aim at identifying the main spatial characteristics of the precipitation structure and then at analysing them in a real case. We consider data from a large network of raingauges in the Danube catchment. This catchment is a good example of a large-scale catchment where the spatial correlation of flood events can radically change the effect in term of flood damage.

  10. Spatial Correlation Analysis between Particulate Matter 10 (PM10) Hazard and Respiratory Diseases in Chiang Mai Province, Thailand

    Science.gov (United States)

    Trang, N. Ha; Tripathi, N. K.

    2014-11-01

    Every year, during dry season, Chiang Mai and other northern provinces of Thailand face the problem of haze which is mainly generated by the burning of agricultural waste and forest fire, contained high percentage of particulate matter. Particulate matter 10 (PM10), being very small in size, can be inhaled easily to the deepest parts of the human lung and throat respiratory functions. Due to this, it increases the risk of respiratory diseases mainly in the case of continuous exposure to this seasonal smog. MODIS aerosol images (MOD04) have been used for four weeks in March 2007 for generating the hazard map by linking to in-situ values of PM10. Simple linear regression model between PM10 and AOD got fair correlation with R2 = 0.7 and was applied to transform PM10 pattern. The hazard maps showed the dominance of PM10 in northern part of Chiang Mai, especially in second week of March when PM10 level was three to four times higher than standard. The respiratory disease records and public health station of each village were collected from Provincial Public Health Department in Chiang Mai province. There are about 300 public health stations out of 2070 villages; hence thiessen polygon was created to determine the representative area of each public health station. Within each thiessen polygon, respiratory disease incident rate (RDIR) was calculated based on the number of patients and population. Global Moran's I was computed for RDIR to explore spatial pattern of diseases through four weeks of March. Moran's I index depicted a cluster pattern of respiratory diseases in 2nd week than other weeks. That made sense for a relationship between PM10 and respiratory diseases infections. In order to examine how PM10 affect the human respiratory system, geographically weighted regression model was used to observe local correlation coefficient between RDIR and PM10 across study area. The result captured a high correlation between respiratory diseases and high level of PM10 in

  11. Neural correlates of spatial navigation changes in mild cognitive impairment and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Kamil eVlček

    2014-03-01

    Full Text Available Although the memory impairment is a hallmark of Alzheimer’s disease (AD, AD has also been characterized by spatial disorientation, which is present from its early stages. Spatial disorientation in AD manifests itself in getting lost in familiar and unfamiliar places and have been characterized more specifically using spatial navigation tests in both real space and virtual environments as an impairment in multiple spatial abilities, including allocentric and egocentric navigation strategies, visuospatial perception or selection of relevant information for successful navigation. Patients suffering mild cognitive impairment (MCI, who are at a high risk of development of dementia, show impairment in a subset of these abilities, mainly connected with allocentric and egocentric processing. While spatial disorientation in typical AD patients probably reflects neurodegenerative changes in medial and posterior temporal, parietal and frontal lobes and retrosplenial cortex, the impairment of spatial navigation in MCI seem to be connected mainly with the medial temporal and also parietal brain changes. In this review we will summarize the signs of brain disease in most MCI and AD patients showing in various tasks of spatial memory and navigation.

  12. Spatial variations of storm runoff pollution and their correlation with land-use in a rapidly urbanizing catchment in China.

    Science.gov (United States)

    Qin, Hua-Peng; Khu, Soon-Thiam; Yu, Xiang-Ying

    2010-09-15

    The composition of land use for a rapidly urbanizing catchment is usually heterogeneous, and this may result in significant spatial variations of storm runoff pollution and increase the difficulties of water quality management. The Shiyan Reservoir catchment, a typical rapidly urbanizing area in China, is chosen as a study area, and temporary monitoring sites were set at the downstream of its 6 sub-catchments to synchronously measure rainfall, runoff and water quality during 4 storm events in 2007 and 2009. Due to relatively low frequency monitoring, the IHACRES and exponential pollutant wash-off simulation models are used to interpolate the measured data to compensate for data insufficiency. Three indicators, event pollutant loads per unit area (EPL), event mean concentration (EMC) and pollutant loads transported by the first 50% of runoff volume (FF50), were used to describe the runoff pollution for different pollutants in each sub-catchment during the storm events, and the correlations between runoff pollution spatial variations and land-use patterns were tested by Spearman's rank correlation analysis. The results indicated that similar spatial variation trends were found for different pollutants (EPL or EMC) in light storm events, which strongly correlate with the proportion of residential land use; however, they have different trends in heavy storm events, which correlate with not only the residential land use, but also agricultural and bare land use. And some pairs of pollutants (such as COD/BOD, NH(3)-N/TN) might have the similar source because they have strong or moderate positive spatial correlation. Moreover, the first flush intensity (FF50) varies with impervious land areas and different interception ratio of initial storm runoff volume should be adopted in different sub-catchments. Copyright 2010 Elsevier B.V. All rights reserved.

  13. A GIS-based spatial correlation analysis for ambient air pollution and AECOPD hospitalizations in Jinan, China.

    Science.gov (United States)

    Wang, Wenqiao; Ying, Yangyang; Wu, Quanyuan; Zhang, Haiping; Ma, Dedong; Xiao, Wei

    2015-03-01

    workplace associated with a 7% (95%CI: [3.3%, 10%]) increase of hospitalizations due to AECOPD. Ambient air pollution is correlated with AECOPD hospitalizations spatially. A 10 μg/m(3) increase of PM10 at workplace was associated with a 7% (95%CI: [3.3%, 10%]) increase of hospitalizations due to AECOPD in Jinan, 2009. As a spatial data processing tool, GIS has novel and great potential on air pollutants exposure assessment and spatial analysis in AECOPD research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. A Correlational Study of Seven Projective Spatial Structures with Regard to the Phases of the MOON^

    Science.gov (United States)

    Wellner, Karen Linette

    1995-01-01

    This study investigated the relationship between projective spatial structures and the ability to construct a scientific model. In addition, gender-related performance and the influence of prior astronomy experience on task success were evaluated. Sixty-one college science undergraduates were individually administered Piagetian tasks to assess for projective spatial structures and the ability to set up a phases of the moon model. The spatial tasks included: (a) Mountains task (coordination of perspectives); (b) Railroad task (size and intervals of objects with increasing distance); (c) Telephone Poles task (masking and ordering objects); and (d) Shadows task (spatial relationships between an object and its shadow, dependent upon the object's orientation). Cramer coefficient analyses indicated that significant relationships existed between Moon task and spatial task success. In particular, the Shadows task, requiring subjects to draw shadows of objects in different orientations, proved most difficult and was most strongly associated with with a subject's understanding of lunar phases. Chi-square tests for two independent samples were used to analyze gender performance differences on each of the Ave tasks. Males performed significantly better at a.05 significance level in regard to the Shadows task and the Moon task. Chi-square tests for two independent samples showed no significant difference in Moon task performance between subjects with astronomy or Earth science coursework, and those without such science classroom experience. Overall, only six subjects passed all seven projective spatial structure tasks. Piaget (1967) contends that concrete -operational spatial structures must be established before an individual is able to develop formal-operational patterns of thinking. The results of this study indicate that 90% of the interviewed science majors are still operating at the concrete-operational level. Several educational implications were drawn from this study

  15. Neural correlates of spatial navigation changes in mild cognitive impairment and Alzheimer's disease

    Czech Academy of Sciences Publication Activity Database

    Vlček, Kamil; Laczó, J.

    2014-01-01

    Roč. 8, Mar 17 (2014), s. 89 ISSN 1662-5153 R&D Projects: GA MZd(CZ) NT13386 Grant - others:GA MŠk(CZ) ED1.100/02/0123 Institutional support: RVO:67985823 Keywords : spatial navigation * Alzheimer’s disease * spatial disorientation * brain changes * mild cognitive impairment Subject RIV: FH - Neurology Impact factor: 3.270, year: 2014

  16. Evaluation of icing drag coefficient correlations applied to iced propeller performance prediction

    Science.gov (United States)

    Miller, Thomas L.; Shaw, R. J.; Korkan, K. D.

    1987-01-01

    Evaluation of three empirical icing drag coefficient correlations is accomplished through application to a set of propeller icing data. The various correlations represent the best means currently available for relating drag rise to various flight and atmospheric conditions for both fixed-wing and rotating airfoils, and the work presented here ilustrates and evaluates one such application of the latter case. The origins of each of the correlations are discussed, and their apparent capabilities and limitations are summarized. These correlations have been made to be an integral part of a computer code, ICEPERF, which has been designed to calculate iced propeller performance. Comparison with experimental propeller icing data shows generally good agreement, with the quality of the predicted results seen to be directly related to the radial icing extent of each case. The code's capability to properly predict thrust coefficient, power coefficient, and propeller efficiency is shown to be strongly dependent on the choice of correlation selected, as well as upon proper specificatioon of radial icing extent.

  17. Many-body correlation effects in the spatially separated electron and hole layers in the coupled quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Babichenko, V.S. [RRC Kurchatov Institute, Kurchatov Sq., 1, 123182 Moscow (Russian Federation); Polishchuk, I.Ya., E-mail: iyppolishchuk@gmail.com [RRC Kurchatov Institute, Kurchatov Sq., 1, 123182 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700, 9, Institutskii per., Dolgoprudny, Moscow Region (Russian Federation)

    2014-11-15

    The many-body correlation effects in the spatially separated electron and hole layers in the coupled quantum wells are investigated. A special case of the many-component electron–hole system is considered. It is shown that if the hole mass is much greater than the electron mass, the negative correlation energy is mainly determined by the holes. The ground state of the system is found to be the 2D electron–hole liquid with the energy smaller than the exciton phase. It is shown that the system decays into the spatially separated neutral electron–hole drops if the initially created charge density in the layers is smaller than the certain critical value n{sub eq}.

  18. Perseveration effects in detection tasks with correlated decision intervals. [applied to pilot collision avoidance

    Science.gov (United States)

    Gai, E. G.; Curry, R. E.

    1978-01-01

    An investigation of the behavior of the human decisionmaker is described for a task related to the problem of a pilot using a traffic situation display to avoid collisions. This sequential signal detection task is characterized by highly correlated signals with time varying strength. Experimental results are presented and the behavior of the observers is analyzed using the theory of Markov processes and classical signal detection theory. Mathematical models are developed which describe the main result of the experiment: that correlation in sequential signals induced perseveration in the observer response and a strong tendency to repeat their previous decision, even when they were wrong.

  19. Discrete capacity limits and neuroanatomical correlates of visual short-term memory for objects and spatial locations.

    Science.gov (United States)

    Konstantinou, Nikos; Constantinidou, Fofi; Kanai, Ryota

    2017-02-01

    Working memory is responsible for keeping information in mind when it is no longer in view, linking perception with higher cognitive functions. Despite such crucial role, short-term maintenance of visual information is severely limited. Research suggests that capacity limits in visual short-term memory (VSTM) are correlated with sustained activity in distinct brain areas. Here, we investigated whether variability in the structure of the brain is reflected in individual differences of behavioral capacity estimates for spatial and object VSTM. Behavioral capacity estimates were calculated separately for spatial and object information using a novel adaptive staircase procedure and were found to be unrelated, supporting domain-specific VSTM capacity limits. Voxel-based morphometry (VBM) analyses revealed dissociable neuroanatomical correlates of spatial versus object VSTM. Interindividual variability in spatial VSTM was reflected in the gray matter density of the inferior parietal lobule. In contrast, object VSTM was reflected in the gray matter density of the left insula. These dissociable findings highlight the importance of considering domain-specific estimates of VSTM capacity and point to the crucial brain regions that limit VSTM capacity for different types of visual information. Hum Brain Mapp 38:767-778, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. [Spatial distribution of COD and the correlations with other parameters in the northern region of Lake Taihu].

    Science.gov (United States)

    Zhang, Yun-lin; Yang, Long-yuan; Qin, Bo-qiang; Gao, Guang; Luo, Lian-cong; Zhu, Guang-wei; Liu, Ming-liang

    2008-06-01

    Spatial variation of chemical oxygen demand (COD) concentration was documented and significant correlations between COD concentration and chromophoric dissolved organic matter (CDOM) absorption, fluorescence, DOC concentration were found based on a cruise sampling in the northern region of Lake Taihu in summer including 42 samplings. The possible source of COD was also discussed using every two cruise samplings in summer and winter, respectively. The COD concentration ranged from 3.77 to 7.96 mg x L(-1) with a mean value of (5.90 +/- 1.54) mg x L(-1). The mean COD concentrations in Meiliang Bay and the central lake basin were (6.93 +/- 0.89) mg x L(-1) and (4.21 +/- 0.49) mg x L(-1) respectively. A significant spatial difference was found between Meiliang Bay and the central lake basin in COD concentration, CDOM absorption coefficient, fluorescence, DOC and phytoplankton pigment concentrations, decreasing from the river mouth to inner bay, outer bay and the central lake basin. Significant correlations between COD concentration and CDOM absorption, fluorescence, DOC concentration, suggested that COD concentration could be estimated and organic pollution could be assessed using CDOM absorption retrieved from remote sensing images. Significant and positive correlation was found between COD concentration and chlorophyll a concentration in summer. However, the correlation was weak or no correlation was found in winter. Furthermore, a significant higher COD concentration was found in summer than in winter (p summer, except for river terrestrial input.

  1. Pilot study for supervised target detection applied to spatially registered multiparametric MRI in order to non-invasively score prostate cancer.

    Science.gov (United States)

    Mayer, Rulon; Simone, Charles B; Skinner, William; Turkbey, Baris; Choykey, Peter

    2018-03-01

    Gleason Score (GS) is a validated predictor of prostate cancer (PCa) disease progression and outcomes. GS from invasive needle biopsies suffers from significant inter-observer variability and possible sampling error, leading to underestimating disease severity ("underscoring") and can result in possible complications. A robust non-invasive image-based approach is, therefore, needed. Use spatially registered multi-parametric MRI (MP-MRI), signatures, and supervised target detection algorithms (STDA) to non-invasively GS PCa at the voxel level. This study retrospectively analyzed 26 MP-MRI from The Cancer Imaging Archive. The MP-MRI (T2, Diffusion Weighted, Dynamic Contrast Enhanced) were spatially registered to each other, combined into stacks, and stitched together to form hypercubes. Multi-parametric (or multi-spectral) signatures derived from a training set of registered MP-MRI were transformed using statistics-based Whitening-Dewhitening (WD). Transformed signatures were inserted into STDA (having conical decision surfaces) applied to registered MP-MRI determined the tumor GS. The MRI-derived GS was quantitatively compared to the pathologist's assessment of the histology of sectioned whole mount prostates from patients who underwent radical prostatectomy. In addition, a meta-analysis of 17 studies of needle biopsy determined GS with confusion matrices and was compared to the MRI-determined GS. STDA and histology determined GS are highly correlated (R = 0.86, p < 0.02). STDA more accurately determined GS and reduced GS underscoring of PCa relative to needle biopsy as summarized by meta-analysis (p < 0.05). This pilot study found registered MP-MRI, STDA, and WD transforms of signatures shows promise in non-invasively GS PCa and reducing underscoring with high spatial resolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The spatial prediction of landslide susceptibility applying artificial neural network and logistic regression models: A case study of Inje, Korea

    Science.gov (United States)

    Saro, Lee; Woo, Jeon Seong; Kwan-Young, Oh; Moung-Jin, Lee

    2016-02-01

    The aim of this study is to predict landslide susceptibility caused using the spatial analysis by the application of a statistical methodology based on the GIS. Logistic regression models along with artificial neutral network were applied and validated to analyze landslide susceptibility in Inje, Korea. Landslide occurrence area in the study were identified based on interpretations of optical remote sensing data (Aerial photographs) followed by field surveys. A spatial database considering forest, geophysical, soil and topographic data, was built on the study area using the Geographical Information System (GIS). These factors were analysed using artificial neural network (ANN) and logistic regression models to generate a landslide susceptibility map. The study validates the landslide susceptibility map by comparing them with landslide occurrence areas. The locations of landslide occurrence were divided randomly into a training set (50%) and a test set (50%). A training set analyse the landslide susceptibility map using the artificial network along with logistic regression models, and a test set was retained to validate the prediction map. The validation results revealed that the artificial neural network model (with an accuracy of 80.10%) was better at predicting landslides than the logistic regression model (with an accuracy of 77.05%). Of the weights used in the artificial neural network model, `slope' yielded the highest weight value (1.330), and `aspect' yielded the lowest value (1.000). This research applied two statistical analysis methods in a GIS and compared their results. Based on the findings, we were able to derive a more effective method for analyzing landslide susceptibility.

  3. The spatial prediction of landslide susceptibility applying artificial neural network and logistic regression models: A case study of Inje, Korea

    Directory of Open Access Journals (Sweden)

    Saro Lee

    2016-02-01

    Full Text Available The aim of this study is to predict landslide susceptibility caused using the spatial analysis by the application of a statistical methodology based on the GIS. Logistic regression models along with artificial neutral network were applied and validated to analyze landslide susceptibility in Inje, Korea. Landslide occurrence area in the study were identified based on interpretations of optical remote sensing data (Aerial photographs followed by field surveys. A spatial database considering forest, geophysical, soil and topographic data, was built on the study area using the Geographical Information System (GIS. These factors were analysed using artificial neural network (ANN and logistic regression models to generate a landslide susceptibility map. The study validates the landslide susceptibility map by comparing them with landslide occurrence areas. The locations of landslide occurrence were divided randomly into a training set (50% and a test set (50%. A training set analyse the landslide susceptibility map using the artificial network along with logistic regression models, and a test set was retained to validate the prediction map. The validation results revealed that the artificial neural network model (with an accuracy of 80.10% was better at predicting landslides than the logistic regression model (with an accuracy of 77.05%. Of the weights used in the artificial neural network model, ‘slope’ yielded the highest weight value (1.330, and ‘aspect’ yielded the lowest value (1.000. This research applied two statistical analysis methods in a GIS and compared their results. Based on the findings, we were able to derive a more effective method for analyzing landslide susceptibility.

  4. Spatial noise correlations of a chain of ultracold fermions: A numerical study

    International Nuclear Information System (INIS)

    Luescher, Andreas; Laeuchli, Andreas M.; Noack, Reinhard M.

    2007-01-01

    We present a numerical study of noise correlations, i.e., density-density correlations in momentum space, in the extended fermionic Hubbard model in one dimension. In experiments with ultracold atoms, these noise correlations can be extracted from time-of-flight images of the expanding cloud. Using the density-matrix renormalization group method to investigate the Hubbard model at various fillings and interactions, we confirm that the noise correlations contain full information on the most important fluctuations present in the system. We point out the importance of the sum rules fulfilled by the noise correlations and show that they yield nonsingular structures beyond the predictions of bosonization approaches. Noise correlations can thus serve as a universal probe of order and can be used to characterize the many-body states of cold atoms in optical lattices

  5. Neural correlates of reward-based spatial learning in persons with cocaine dependence.

    Science.gov (United States)

    Tau, Gregory Z; Marsh, Rachel; Wang, Zhishun; Torres-Sanchez, Tania; Graniello, Barbara; Hao, Xuejun; Xu, Dongrong; Packard, Mark G; Duan, Yunsuo; Kangarlu, Alayar; Martinez, Diana; Peterson, Bradley S

    2014-02-01

    Dysfunctional learning systems are thought to be central to the pathogenesis of and impair recovery from addictions. The functioning of the brain circuits for episodic memory or learning that support goal-directed behavior has not been studied previously in persons with cocaine dependence (CD). Thirteen abstinent CD and 13 healthy participants underwent MRI scanning while performing a task that requires the use of spatial cues to navigate a virtual-reality environment and find monetary rewards, allowing the functional assessment of the brain systems for spatial learning, a form of episodic memory. Whereas both groups performed similarly on the reward-based spatial learning task, we identified disturbances in brain regions involved in learning and reward in CD participants. In particular, CD was associated with impaired functioning of medial temporal lobe (MTL), a brain region that is crucial for spatial learning (and episodic memory) with concomitant recruitment of striatum (which normally participates in stimulus-response, or habit, learning), and prefrontal cortex. CD was also associated with enhanced sensitivity of the ventral striatum to unexpected rewards but not to expected rewards earned during spatial learning. We provide evidence that spatial learning in CD is characterized by disturbances in functioning of an MTL-based system for episodic memory and a striatum-based system for stimulus-response learning and reward. We have found additional abnormalities in distributed cortical regions. Consistent with findings from animal studies, we provide the first evidence in humans describing the disruptive effects of cocaine on the coordinated functioning of multiple neural systems for learning and memory.

  6. Applying big data technologies in the financial sector – using sentiment analysis to identify correlations in the stock market

    Directory of Open Access Journals (Sweden)

    Eszter Katalin Bognár

    2016-06-01

    Full Text Available The aim of this article is to introduce a system that is capable of collecting and analyzing different types of financial data to support traders in their decision - making. Oracle’s Big Data platform Oracle Advanced Analytics was utilized, which extends the Oracle Database with Oracle R, thus providing the opportunity to run embedded R scripts on the database server to speed up data processing. The extract, transform and load (ETL process was combined with a dictionary - based sentiment analysis module to examine cross - correlation and causality between numerical and textual financial data for a 10 week period. A notable correlation (0.42 was found between daily news sentiment scores and daily stock returns. By applying cross - correlation analysis and Granger causality testing, the results show that the news’ impact is incorporated into stock prices rapidly, having the highest correlation on the first day, while the returns’ impact on market sentiment is seen only after a few days.

  7. Applying the RUSLE and the USLE-M on hillslopes where runoff production during an erosion event is spatially variable

    Science.gov (United States)

    Kinnell, P. I. A.

    2014-11-01

    The assumption that runoff is produced uniformly over the eroding area underlies the traditional use of Universal Soil Loss Equation (USLE) and the revised version of it, the RUSLE. However, although the application of the USLE/RUSLE to segments on one dimensional hillslopes and cells on two-dimensional hillslopes is based on the assumption that each segment or cell is spatially uniform, factors such as soil infiltration, and hence runoff production, may vary spatially between segments or cells. Results from equations that focus on taking account of spatially variable runoff when applying the USLE/RUSLE and the USLE-M, the modification of the USLE/RUSLE that replaces the EI30 index by the product of EI30 and the runoff ratio, in hillslopes during erosion events where runoff is not produced uniformly were compared on a hypothetical a 300 m long one-dimensional hillslope with a spatially uniform gradient. Results were produced for situations where all the hillslope was tilled bare fallow and where half of the hillslope was cropped with corn and half was tilled bare fallow. Given that the erosive stress within a segment or cell depends on the volume of surface water flowing through the segment or cell, soil loss can be expected to increase not only with distance from the point where runoff begins but also directly with runoff when it varies about the average for the slope containing the segment or cell. The latter effect was achieved when soil loss was predicted using the USLE-M but not when the USLE/RUSLE slope length factor for a segment using an effective upslope length that varies with the ratio of the upslope runoff coefficient and the runoff coefficient for the slope to the bottom of the segment or cell was used. The USLE-M also predicted deposition to occur in a segment containing corn when an area with tilled bare fallow soil existed immediately upslope of it because the USLE-M models erosion on runoff and soil loss plots as a transport limited system. In a

  8. Fluorescence Spectroscopy Applied to Monitoring Biodiesel Degradation: Correlation with Acid Value and UV Absorption Analyses.

    Science.gov (United States)

    Vasconcelos, Maydla Dos Santos; Passos, Wilson Espíndola; Lescanos, Caroline Honaiser; Pires de Oliveira, Ivan; Trindade, Magno Aparecido Gonçalves; Caires, Anderson Rodrigues Lima; Muzzi, Rozanna Marques

    2018-01-01

    The techniques used to monitor the quality of the biodiesel are intensely discussed in the literature, partly because of the different oil sources and their intrinsic physicochemical characteristics. This study aimed to monitor the thermal degradation of the fatty acid methyl esters of Sesamum indicum L. and Raphanus sativus L. biodiesels (SILB and RSLB, resp.). The results showed that both biodiesels present a high content of unsaturated fatty acids, ∼84% (SILB) and ∼90% (RSLB). The SILB had a high content of polyunsaturated linoleic fatty acid (18  :  2), about 49%, and the oleic monounsaturated (18  :  1), ∼34%. On the other hand, RSLB presented a considerable content of linolenic fatty acid (18  :  3), ∼11%. The biodiesel samples were thermal degraded at 110°C for 48 hours, and acid value, UV absorption, and fluorescence spectroscopy analysis were carried out. The results revealed that both absorption and fluorescence presented a correlation with acid value as a function of degradation time by monitoring absorptions at 232 and 270 nm as well as the emission at 424 nm. Although the obtained correlation is not completely linear, a direct correlation was observed in both cases, revealing that both properties can be potentially used for monitoring the biodiesel degradation.

  9. Fluorescence Spectroscopy Applied to Monitoring Biodiesel Degradation: Correlation with Acid Value and UV Absorption Analyses

    Directory of Open Access Journals (Sweden)

    Maydla dos Santos Vasconcelos

    2018-01-01

    Full Text Available The techniques used to monitor the quality of the biodiesel are intensely discussed in the literature, partly because of the different oil sources and their intrinsic physicochemical characteristics. This study aimed to monitor the thermal degradation of the fatty acid methyl esters of Sesamum indicum L. and Raphanus sativus L. biodiesels (SILB and RSLB, resp.. The results showed that both biodiesels present a high content of unsaturated fatty acids, ∼84% (SILB and ∼90% (RSLB. The SILB had a high content of polyunsaturated linoleic fatty acid (18  :  2, about 49%, and the oleic monounsaturated (18  :  1, ∼34%. On the other hand, RSLB presented a considerable content of linolenic fatty acid (18  :  3, ∼11%. The biodiesel samples were thermal degraded at 110°C for 48 hours, and acid value, UV absorption, and fluorescence spectroscopy analysis were carried out. The results revealed that both absorption and fluorescence presented a correlation with acid value as a function of degradation time by monitoring absorptions at 232 and 270 nm as well as the emission at 424 nm. Although the obtained correlation is not completely linear, a direct correlation was observed in both cases, revealing that both properties can be potentially used for monitoring the biodiesel degradation.

  10. Cognitive correlates of spatial navigation: Associations between executive functioning and the virtual Morris Water Task.

    Science.gov (United States)

    Korthauer, L E; Nowak, N T; Frahmand, M; Driscoll, I

    2017-01-15

    Although effective spatial navigation requires memory for objects and locations, navigating a novel environment may also require considerable executive resources. The present study investigated associations between performance on the virtual Morris Water Task (vMWT), an analog version of a nonhuman spatial navigation task, and neuropsychological tests of executive functioning and spatial performance in 75 healthy young adults. More effective vMWT performance (e.g., lower latency and distance to reach hidden platform, greater distance in goal quadrant on a probe trial, fewer path intersections) was associated with better verbal fluency, set switching, response inhibition, and ability to mentally rotate objects. Findings also support a male advantage in spatial navigation, with sex moderating several associations between vMWT performance and executive abilities. Overall, we report a robust relationship between executive functioning and navigational skill, with some evidence that men and women may differentially recruit cognitive abilities when navigating a novel environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Correlation analysis of lung cancer and urban spatial factor: based on survey in Shanghai.

    Science.gov (United States)

    Wang, Lan; Zhao, Xiaojing; Xu, Wangyue; Tang, Jian; Jiang, Xiji

    2016-09-01

    The density of particulate matter (PM) in mega-cities in China such as Beijing and Shanghai has exceeded basic standards for health in recent years. Human exposure to PMs has been identified as traceable and controllable factor among all complicated risk factors for lung cancer. While the improvement of air quality needs tremendous efforts and time, certain revision of PM's density might happen associated with the adjustment of built environment. It is also proved that urban built environment is directly relevant to respiratory disease. Studies have respectively explored the indoor and outdoor factors on respiratory diseases. More comprehensive spatial factors need to be analyzed to understand the cumulative effect of built environment upon respiratory system. This interdisciplinary study examines the impact of both indoor (including age of housing, interval after decoration, indoor humidity etc.) and outdoor spatial factors (including density, parking, green spaces etc.) on lung cancer. A survey of lung cancer patients and a control group has been conducted in 2014 and 2015. A total of 472 interviewees are randomly selected within a pool of local residents who have resided in Shanghai for more than 5 years. Data are collected including their socio-demographic factors, lifestyle factors, and external and internal residential area factors. Regression models are established based on collected data to analyze the associations between lung cancer and urban spatial factors. Regression models illustrate that lung cancer presents significantly associated with a number of spatial factors. Significant outdoor spatial factors include external traffic volume (P=0.003), main plant type (P=0.035 for trees) of internal green space, internal water body (P=0.027) and land use of surrounding blocks (P=0.005 for residential areas of 7-9 floors, P=0.000 for residential areas of 4-6 floors, P=0.006 for business/commercial areas over 10 floors, P=0.005 for business/commercial areas of

  12. Mineralogy of the clay fraction of alfisols in two slope curvatures: IV - spatial correlation with physical properties

    Directory of Open Access Journals (Sweden)

    Livia Arantes Camargo

    2013-04-01

    Full Text Available Although the influence of clay mineralogy on soil physical properties has been widely studied, spatial relationships between these features in Alfisols have rarely been examined. The purpose of this work was to relate the clay minerals and physical properties of an Alfisol of sandstone origin in two slope curvatures. The crystallographic properties such as mean crystallite size (MCS and width at half height (WHH of hematite, goethite, kaolinite and gibbsite; contents of hematite and goethite; aluminium substitution (AS and specific surface area (SSA of hematite and goethite; the goethite/(goethite+hematite and kaolinite/(kaolinite+gibbsite ratios; and the citrate/bicarbonate/dithionite extractable Fe (Fe d were correlated with the soil physical properties through Pearson correlation coefficients and cross-semivariograms. The correlations found between aluminium substitution in goethite and the soil physical properties suggest that the degree of crystallinity of this mineral influences soil properties used as soil quality indicators. Thus, goethite with a high aluminium substitution resulted in large aggregate sizes and a high porosity, and also in a low bulk density and soil penetration resistance. The presence of highly crystalline gibbsite resulted in a high density and micropore content, as well as in smaller aggregates. Interpretation of the cross-semivariogram and classification of landscape compartments in terms of the spatial dependence pattern for the relief-dependent physical and mineralogical properties of the soil proved an effective supplementary method for assessing Pearson correlations between the soil physical and mineralogical properties.

  13. Triple collocation-based estimation of spatially correlated observation error covariance in remote sensing soil moisture data assimilation

    Science.gov (United States)

    Wu, Kai; Shu, Hong; Nie, Lei; Jiao, Zhenhang

    2018-01-01

    Spatially correlated errors are typically ignored in data assimilation, thus degenerating the observation error covariance R to a diagonal matrix. We argue that a nondiagonal R carries more observation information making assimilation results more accurate. A method, denoted TC_Cov, was proposed for soil moisture data assimilation to estimate spatially correlated observation error covariance based on triple collocation (TC). Assimilation experiments were carried out to test the performance of TC_Cov. AMSR-E soil moisture was assimilated with a diagonal R matrix computed using the TC and assimilated using a nondiagonal R matrix, as estimated by proposed TC_Cov. The ensemble Kalman filter was considered as the assimilation method. Our assimilation results were validated against climate change initiative data and ground-based soil moisture measurements using the Pearson correlation coefficient and unbiased root mean square difference metrics. These experiments confirmed that deterioration of diagonal R assimilation results occurred when model simulation is more accurate than observation data. Furthermore, nondiagonal R achieved higher correlation coefficient and lower ubRMSD values over diagonal R in experiments and demonstrated the effectiveness of TC_Cov to estimate richly structuralized R in data assimilation. In sum, compared with diagonal R, nondiagonal R may relieve the detrimental effects of assimilation when simulated model results outperform observation data.

  14. Digital Image Correlation Techniques Applied to Large Scale Rocket Engine Testing

    Science.gov (United States)

    Gradl, Paul R.

    2016-01-01

    Rocket engine hot-fire ground testing is necessary to understand component performance, reliability and engine system interactions during development. The J-2X upper stage engine completed a series of developmental hot-fire tests that derived performance of the engine and components, validated analytical models and provided the necessary data to identify where design changes, process improvements and technology development were needed. The J-2X development engines were heavily instrumented to provide the data necessary to support these activities which enabled the team to investigate any anomalies experienced during the test program. This paper describes the development of an optical digital image correlation technique to augment the data provided by traditional strain gauges which are prone to debonding at elevated temperatures and limited to localized measurements. The feasibility of this optical measurement system was demonstrated during full scale hot-fire testing of J-2X, during which a digital image correlation system, incorporating a pair of high speed cameras to measure three-dimensional, real-time displacements and strains was installed and operated under the extreme environments present on the test stand. The camera and facility setup, pre-test calibrations, data collection, hot-fire test data collection and post-test analysis and results are presented in this paper.

  15. Pre-analysis techniques applied to area-based correlation aiming Digital Terrain Model generation

    Directory of Open Access Journals (Sweden)

    Maurício Galo

    2005-12-01

    Full Text Available Area-based matching is an useful procedure in some photogrammetric processes and its results are of crucial importance in applications such as relative orientation, phototriangulation and Digital Terrain Model generation. The successful determination of correspondence depends on radiometric and geometric factors. Considering these aspects, the use of procedures that previously estimate the quality of the parameters to be computed is a relevant issue. This paper describes these procedures and it is shown that the quality prediction can be computed before performing matching by correlation, trough the analysis of the reference window. This procedure can be incorporated in the correspondence process for Digital Terrain Model generation and Phototriangulation. The proposed approach comprises the estimation of the variance matrix of the translations from the gray levels in the reference window and the reduction of the search space using the knowledge of the epipolar geometry. As a consequence, the correlation process becomes more reliable, avoiding the application of matching procedures in doubtful areas. Some experiments with simulated and real data are presented, evidencing the efficiency of the studied strategy.

  16. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones

    Directory of Open Access Journals (Sweden)

    Qiulong Yang

    2018-01-01

    Full Text Available Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP and Volunteer Observation System (VOS were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line

  17. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones

    Science.gov (United States)

    Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli

    2018-01-01

    Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near

  18. Spatial correlation of atmospheric wind at scales relevant for large scale wind turbines

    Science.gov (United States)

    Bardal, L. M.; Sætran, L. R.

    2016-09-01

    Wind measurements a short distance upstream of a wind turbine can provide input for a feedforward wind turbine controller. Since the turbulent wind field will be different at the point/plane of measurement and the rotor plane the degree of correlation between wind speed at two points in space both in the longitudinal and lateral direction should be evaluated. This study uses a 2D array of mast mounted anemometers to evaluate cross-correlation of longitudinal wind speed. The degree of correlation is found to increase with height and decrease with atmospheric stability. The correlation is furthermore considerably larger for longitudinal separation than for lateral separation. The integral length scale of turbulence is also considered.

  19. Brain correlates of the orientation of auditory spatial attention onto speaker location in a "cocktail-party" situation.

    Science.gov (United States)

    Lewald, Jörg; Hanenberg, Christina; Getzmann, Stephan

    2016-10-01

    Successful speech perception in complex auditory scenes with multiple competing speakers requires spatial segregation of auditory streams into perceptually distinct and coherent auditory objects and focusing of attention toward the speaker of interest. Here, we focused on the neural basis of this remarkable capacity of the human auditory system and investigated the spatiotemporal sequence of neural activity within the cortical network engaged in solving the "cocktail-party" problem. Twenty-eight subjects localized a target word in the presence of three competing sound sources. The analysis of the ERPs revealed an anterior contralateral subcomponent of the N2 (N2ac), computed as the difference waveform for targets to the left minus targets to the right. The N2ac peaked at about 500 ms after stimulus onset, and its amplitude was correlated with better localization performance. Cortical source localization for the contrast of left versus right targets at the time of the N2ac revealed a maximum in the region around left superior frontal sulcus and frontal eye field, both of which are known to be involved in processing of auditory spatial information. In addition, a posterior-contralateral late positive subcomponent (LPCpc) occurred at a latency of about 700 ms. Both these subcomponents are potential correlates of allocation of spatial attention to the target under cocktail-party conditions. © 2016 Society for Psychophysiological Research.

  20. On the role of spatial phase and phase correlation in vision, illusion, and cognition

    OpenAIRE

    Gladilin, Evgeny; Eils, Roland

    2015-01-01

    Numerous findings indicate that spatial phase bears an important cognitive information. Distortion of phase affects topology of edge structures and makes images unrecognizable. In turn, appropriately phase-structured patterns give rise to various illusions of virtual image content and apparent motion. Despite a large body of phenomenological evidence not much is known yet about the role of phase information in neural mechanisms of visual perception and cognition. Here, we are concerned with a...

  1. On the role of spatial phase and phase correlation in vision, illusion and cognition

    OpenAIRE

    Evgeny eGladilin; Roland eEils; Roland eEils

    2015-01-01

    Numerous findings indicate that spatial phase bears an important cognitive information. Distortion of phase affects topology of edge structures and makes images unrecognizable. In turn, appropriately phase-structured patterns give rise to various illusions of virtual image content and apparent motion. Despite a large body of phenomenological evidence not much is known yet about the role of phase information in neural mechanisms of visual perception and cognition. Here, we are concerned with a...

  2. An integrated approach of analytical network process and fuzzy based spatial decision making systems applied to landslide risk mapping

    Science.gov (United States)

    Abedi Gheshlaghi, Hassan; Feizizadeh, Bakhtiar

    2017-09-01

    Landslides in mountainous areas render major damages to residential areas, roads, and farmlands. Hence, one of the basic measures to reduce the possible damage is by identifying landslide-prone areas through landslide mapping by different models and methods. The purpose of conducting this study is to evaluate the efficacy of a combination of two models of the analytical network process (ANP) and fuzzy logic in landslide risk mapping in the Azarshahr Chay basin in northwest Iran. After field investigations and a review of research literature, factors affecting the occurrence of landslides including slope, slope aspect, altitude, lithology, land use, vegetation density, rainfall, distance to fault, distance to roads, distance to rivers, along with a map of the distribution of occurred landslides were prepared in GIS environment. Then, fuzzy logic was used for weighting sub-criteria, and the ANP was applied to weight the criteria. Next, they were integrated based on GIS spatial analysis methods and the landslide risk map was produced. Evaluating the results of this study by using receiver operating characteristic curves shows that the hybrid model designed by areas under the curve 0.815 has good accuracy. Also, according to the prepared map, a total of 23.22% of the area, amounting to 105.38 km2, is in the high and very high-risk class. Results of this research are great of importance for regional planning tasks and the landslide prediction map can be used for spatial planning tasks and for the mitigation of future hazards in the study area.

  3. Introduction to the transverse spatial correlations in spontaneous parametric down-conversion through the biphoton birth zone

    International Nuclear Information System (INIS)

    Schneeloch, James; Howell, John C

    2016-01-01

    As a tutorial to the spatial aspects of spontaneous parametric downconversion (SPDC), we present a detailed first-principles derivation of the transverse correlation width of photon pairs in degenerate collinear SPDC. This width defines the size of a biphoton birth zone, the region where the signal and idler photons are likely to be found when conditioning on the position of the destroyed pump photon. Along the way, we discuss the quantum-optical calculation of the amplitude for the SPDC process, as well as its simplified form for nearly collinear degenerate phase matching. Following this, we show how this biphoton amplitude can be approximated with a double-Gaussian wavefunction, and give a brief discussion of the measurement statistics (and subsequent convenience) of such double-Gaussian wavefunctions. Next, we use this approximation to get a simplified estimation of the transverse correlation width, and compare it to more accurate calculations as well as experimental results. We then conclude with a discussion of the concept of a biphoton birth zone, using it to develop intuition for the tradeoff between the first-order spatial coherence and bipohoton correlations in SPDC. (tutorial)

  4. A Generalized Spatial Correlation Model for 3D MIMO Channels based on the Fourier Coefficients of Power Spectrums

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain

    2015-05-07

    Previous studies have confirmed the adverse impact of fading correlation on the mutual information (MI) of two-dimensional (2D) multiple-input multiple-output (MIMO) systems. More recently, the trend is to enhance the system performance by exploiting the channel’s degrees of freedom in the elevation, which necessitates the derivation and characterization of three-dimensional (3D) channels in the presence of spatial correlation. In this paper, an exact closed-form expression for the Spatial Correlation Function (SCF) is derived for 3D MIMO channels. This novel SCF is developed for a uniform linear array of antennas with nonisotropic antenna patterns. The proposed method resorts to the spherical harmonic expansion (SHE) of plane waves and the trigonometric expansion of Legendre and associated Legendre polynomials. The resulting expression depends on the underlying arbitrary angular distributions and antenna patterns through the Fourier Series (FS) coefficients of power azimuth and elevation spectrums. The novelty of the proposed method lies in the SCF being valid for any 3D propagation environment. The developed SCF determines the covariance matrices at the transmitter and the receiver that form the Kronecker channel model. In order to quantify the effects of correlation on the system performance, the information-theoretic deterministic equivalents of the MI for the Kronecker model are utilized in both mono-user and multi-user cases. Numerical results validate the proposed analytical expressions and elucidate the dependence of the system performance on azimuth and elevation angular spreads and antenna patterns. Some useful insights into the behaviour of MI as a function of downtilt angles are provided. The derived model will help evaluate the performance of correlated 3D MIMO channels in the future.

  5. Correlation of spatial climate/weather maps and the advantages of using the Mahalanobis metric in predictions

    Science.gov (United States)

    Stephenson, D. B.

    1997-10-01

    The skill in predicting spatially varying weather/climate maps depends on the definition of the measure of similarity between the maps. Under the justifiable approximation that the anomaly maps are distributed multinormally, it is shown analytically that the choice of weighting metric, used in defining the anomaly correlation between spatial maps, can change the resulting probability distribution of the correlation coefficient. The estimate of the numbers of degrees of freedom based on the variance of the correlation distribution can vary from unity up to the number of grid points depending on the choice of weighting metric. The (pseudo-) inverse of the sample covariance matrix acts as a special choice for the metric in that it gives a correlation distribution which has minimal kurtosis and maximum dimension. Minimal kurtosis suggests that the average predictive skill might be improved due to the rarer occurrence of troublesome outlier patterns far from the mean state. Maximum dimension has a disadvantage for analogue prediction schemes in that it gives the minimum number of analogue states. This metric also has an advantage in that it allows one to powerfully test the null hypothesis of multinormality by examining the second and third moments of the correlation coefficient which were introduced by Mardia as invariant measures of multivariate kurtosis and skewness. For these reasons, it is suggested that this metric could be usefully employed in the prediction of weather/climate and in fingerprinting anthropogenic climate change. The ideas are illustrated using the bivariate example of the observed monthly mean sea-level pressures at Darwin and Tahitifrom 1866 1995.

  6. Designing spatial correlation of quantum dots: towards self-assembled three-dimensional structures

    International Nuclear Information System (INIS)

    Bortoleto, J R R; Zelcovit, J G; Gutierrez, H R; Bettini, J; Cotta, M A

    2008-01-01

    Buried two-dimensional arrays of InP dots were used as a template for the lateral ordering of self-assembled quantum dots. The template strain field can laterally organize compressive (InAs) as well as tensile (GaP) self-assembled nanostructures in a highly ordered square lattice. High-resolution transmission electron microscopy measurements show that the InAs dots are vertically correlated to the InP template, while the GaP dots are vertically anti-correlated, nucleating in the position between two buried InP dots. Finite InP dot size effects are observed to originate InAs clustering but do not affect GaP dot nucleation. The possibility of bilayer formation with different vertical correlations suggests a new path for obtaining three-dimensional pseudocrystals

  7. An effective correlated mean-field theory applied in the spin-1/2 Ising ferromagnetic model

    Energy Technology Data Exchange (ETDEWEB)

    Roberto Viana, J.; Salmon, Octávio R. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil); Ricardo de Sousa, J. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil); National Institute of Science and Technology for Complex Systems, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Neto, Minos A.; Padilha, Igor T. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil)

    2014-11-15

    We developed a new treatment for mean-field theory applied in spins systems, denominated effective correlated mean-field (ECMF). We apply this theory to study the spin-1/2 Ising ferromagnetic model with nearest-neighbor interactions on a square lattice. We use clusters of finite sizes and study the criticality of the ferromagnetic system, where we obtain a convergence of critical temperature for the value k{sub B}T{sub c}/J≃2.27905±0.00141. Also the behavior of magnetic and thermodynamic properties, using the condition of minimum energy of the physical system is obtained. - Highlights: • We developed spin models to study real magnetic systems. • We study the thermodynamic and magnetic properties of the ferromagnetism. • We enhanced a mean-field theory applied in spins models.

  8. Multi-Hierarchical Gray Correlation Analysis Applied in the Selection of Green Building Design Scheme

    Science.gov (United States)

    Wang, Li; Li, Chuanghong

    2018-02-01

    As a sustainable form of ecological structure, green building is widespread concerned and advocated in society increasingly nowadays. In the survey and design phase of preliminary project construction, carrying out the evaluation and selection of green building design scheme, which is in accordance with the scientific and reasonable evaluation index system, can improve the ecological benefits of green building projects largely and effectively. Based on the new Green Building Evaluation Standard which came into effect on January 1, 2015, the evaluation index system of green building design scheme is constructed taking into account the evaluation contents related to the green building design scheme. We organized experts who are experienced in construction scheme optimization to mark and determine the weight of each evaluation index through the AHP method. The correlation degree was calculated between each evaluation scheme and ideal scheme by using multilevel gray relational analysis model and then the optimal scheme was determined. The feasibility and practicability of the evaluation method are verified by introducing examples.

  9. Combination of canonical correlation analysis and empirical mode decomposition applied to denoising the labor electrohysterogram.

    Science.gov (United States)

    Hassan, Mahmoud; Boudaoud, Sofiane; Terrien, Jérémy; Karlsson, Brynjar; Marque, Catherine

    2011-09-01

    The electrohysterogram (EHG) is often corrupted by electronic and electromagnetic noise as well as movement artifacts, skeletal electromyogram, and ECGs from both mother and fetus. The interfering signals are sporadic and/or have spectra overlapping the spectra of the signals of interest rendering classical filtering ineffective. In the absence of efficient methods for denoising the monopolar EHG signal, bipolar methods are usually used. In this paper, we propose a novel combination of blind source separation using canonical correlation analysis (BSS_CCA) and empirical mode decomposition (EMD) methods to denoise monopolar EHG. We first extract the uterine bursts by using BSS_CCA then the biggest part of any residual noise is removed from the bursts by EMD. Our algorithm, called CCA_EMD, was compared with wavelet filtering and independent component analysis. We also compared CCA_EMD with the corresponding bipolar signals to demonstrate that the new method gives signals that have not been degraded by the new method. The proposed method successfully removed artifacts from the signal without altering the underlying uterine activity as observed by bipolar methods. The CCA_EMD algorithm performed considerably better than the comparison methods.

  10. On the spatial and temporal correlations in experimentation with agricultural| applications

    DEFF Research Database (Denmark)

    Ersbøll, Annette Kjær

    1994-01-01

    introduction to spatio-temporal models in part 3. Classical statistical analysis normally assumes independent observations. Therefore, knowledge concerning the spatial and temporal relation between plots and between measurements are not included in this kind of analysis. However, agricultural experiments often...... layouts. The optimal design and layout from a statistical point of view is the one with the smallest residual variance. The residual ariance between plots consists of an error term which depends on the plot size (the dispersion variance) and an error term independent of the plot size (assumed...

  11. Ventral Tegmental Area and Substantia Nigra Neural Correlates of Spatial Learning

    Science.gov (United States)

    Martig, Adria K.; Mizumori, Sheri J. Y.

    2011-01-01

    The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) may provide modulatory signals that, respectively, influence hippocampal (HPC)- and striatal-dependent memory. Electrophysiological studies investigating neural correlates of learning and memory of dopamine (DA) neurons during classical conditioning tasks have found DA…

  12. Nonlocality, Correlations, and Magnetotransport in a Spatially Modulated Two-Dimensional Electron Gas

    Science.gov (United States)

    Raichev, O. E.

    2018-04-01

    It is shown that the classical commensurability phenomena in weakly modulated two-dimensional electron systems is a manifestation of the intrinsic properties of the correlation functions describing a homogeneous electron gas in a magnetic field. The theory demonstrates the importance for consideration of nonlocal response and removes the gap between classical and quantum approaches to magnetotransport in such systems.

  13. Spatial properties of twin-beam correlations at low- to high-intensity transition

    Czech Academy of Sciences Publication Activity Database

    Machulka, R.; Haderka, Ondřej; Peřina Jr., J.; Lamperti, M.; Allevi, A.; Bondani, M.

    2014-01-01

    Roč. 22, č. 11 (2014), 13374-13379 ISSN 1094-4087 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : twin-beam correlations * photon pairs * speckle patterns Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.488, year: 2014

  14. Characteristics and correlation of various radiation measuring methods in spatial radiation measurement

    International Nuclear Information System (INIS)

    Yoneda, Kazuhiro; Tonouchi, Shigemasa

    1992-01-01

    When the survey of the state of natural radiation distribution was carried out, for the purpose of examining the useful measuring method, the comparison of the γ-ray dose rate calculated from survey meter method, in-situ measuring method and the measuring method by sampling soil was carried out. Between the in-situ measuring method and the survey meter method, the correlation Y=0.986X+5.73, r=0.903, n=18, P<0.01 was obtained, and the high correlation having the inclination of nearly 1 was shown. Between the survey meter method and the measuring method by sampling soil, the correlation Y=1.297X-10.30, r=0.966, n=20 P<0.01 was obtained, and the high correlation was shown, but as for the dose rate contribution, the disparities of 36% in U series, 6% in Th series and 20% in K-40 were observed. For the survey of the state of natural radiation distribution, the method of using in combination the survey meter method and the in-situ measuring method or the measuring method by sampling soil is suitable. (author)

  15. Robust Unit Commitment Considering the Temporal and Spatial Correlations of Wind Farms Using a Data-Adaptive Approach

    DEFF Research Database (Denmark)

    Zhang, Yipu; Ai, Xiaomeng; Wen, Jinyu

    2018-01-01

    . In this paper, a novel data-adaptive robust optimization method for the unit commitment is proposed for the power system with wind farms integrated. The extreme scenario extraction and the two stage robust optimization are combined in the proposed method. The data-adaptive set consisting of a few extreme...... scenarios is derived to reduce the conservativeness by considering the temporal and spatial correlations of multiple wind farms. Numerical results demonstrate that the proposed data-adaptive robust optimization algorithm is less conservative than the current two-stage optimization approaches while maintains...

  16. Synthesis of dynamic phase profile by the correlation technique for spatial control of optical beams in multiplexing and switching

    Science.gov (United States)

    Bugaychuk, Svitlana A.; Gnatovskyy, Vladimir O.; Sidorenko, Andrey V.; Pryadko, Igor I.; Negriyko, Anatoliy M.

    2015-11-01

    New approach for the correlation technique, which is based on multiple periodic structures to create a controllable angular spectrum, is proposed and investigated both theoretically and experimentally. The transformation of an initial laser beam occurs due to the actions of consecutive phase periodic structures, which may differ by their parameters. Then, after the Fourier transformation of a complex diffraction field, the output diffraction orders will be changed both by their intensities and by their spatial position. The controllable change of output angular spectrum is carried out by a simple control of the parameters of the periodic structures. We investigate several simple examples of such management.

  17. Panel data models with spatial correlation: Estimation theory and an empirical investigation of the United States wholesale gasoline industry

    Science.gov (United States)

    Kapoor, Mudit

    The first part of my dissertation considers the estimation of a panel data model with error components that are both spatially and time-wise correlated. The dissertation combines widely used model for spatial correlation (Cliff and Ord (1973, 1981)) with the classical error component panel data model. I introduce generalizations of the generalized moments (GM) procedure suggested in Kelejian and Prucha (1999) for estimating the spatial autoregressive parameter in case of a single cross section. I then use those estimators to define feasible generalized least squares (GLS) procedures for the regression parameters. I give formal large sample results concerning the consistency of the proposed GM procedures, as well as the consistency and asymptotic normality of the proposed feasible GLS procedures. The new estimators remain computationally feasible even in large samples. The second part of my dissertation employs a Cliff-Ord-type model to empirically estimate the nature and extent of price competition in the US wholesale gasoline industry. I use data on average weekly wholesale gasoline price for 289 terminals (distribution facilities) in the US. Data on demand factors, cost factors and market structure that affect price are also used. I consider two time periods, a high demand period (August 1999) and a low demand period (January 2000). I find a high level of competition in prices between neighboring terminals. In particular, price in one terminal is significantly and positively correlated to the price of its neighboring terminal. Moreover, I find this to be much higher during the low demand period, as compared to the high demand period. In contrast to previous work, I include for each terminal the characteristics of the marginal customer by controlling for demand factors in the neighboring location. I find these demand factors to be important during period of high demand and insignificant during the low demand period. Furthermore, I have also considered spatial

  18. Spatial and environmental correlates of organism colonization and infection in the neonatal intensive care unit.

    Science.gov (United States)

    Goldstein, Neal D; Tuttle, Deborah; Tabb, Loni P; Paul, David A; Eppes, Stephen C

    2018-05-01

    To examine organism colonization and infection in the neonatal intensive care unit as a result of environmental and spatial factors. A retrospective cohort of infants admitted between 2006 and 2015 (n = 11 428), to assess the relationship between location and four outcomes: methicillin-resistant Staphylococcus aureus (MRSA) colonization; culture-confirmed late-onset sepsis; and, if intubated, endotracheal tube colonization with Pseudomonas aeruginosa or Klebsiella pneumonia. Independent risk factors were identified with mixed-effects logistic regression models and Moran's I for spatial autocorrelation. All four outcomes statistically clustered by location; neighboring colonization also influenced risk of MRSA (p < 0.05). For P. aeruginosa, being in a location with space for more medical equipment was associated with 2.61 times the odds of colonization (95% CrI: 1.19, 5.78). Extrinsic factors partially explained risk for neonatal colonization and infection. For P. aeruginosa, infection prevention efforts at locations with space for more equipment may lower future colonization.

  19. Tracking down abstract linguistic meaning: neural correlates of spatial frame of reference ambiguities in language.

    Directory of Open Access Journals (Sweden)

    Gabriele Janzen

    Full Text Available This functional magnetic resonance imaging (fMRI study investigates a crucial parameter in spatial description, namely variants in the frame of reference chosen. Two frames of reference are available in European languages for the description of small-scale assemblages, namely the intrinsic (or object-oriented frame and the relative (or egocentric frame. We showed participants a sentence such as "the ball is in front of the man", ambiguous between the two frames, and then a picture of a scene with a ball and a man--participants had to respond by indicating whether the picture did or did not match the sentence. There were two blocks, in which we induced each frame of reference by feedback. Thus for the crucial test items, participants saw exactly the same sentence and the same picture but now from one perspective, now the other. Using this method, we were able to precisely pinpoint the pattern of neural activation associated with each linguistic interpretation of the ambiguity, while holding the perceptual stimuli constant. Increased brain activity in bilateral parahippocampal gyrus was associated with the intrinsic frame of reference whereas increased activity in the right superior frontal gyrus and in the parietal lobe was observed for the relative frame of reference. The study is among the few to show a distinctive pattern of neural activation for an abstract yet specific semantic parameter in language. It shows with special clarity the nature of the neural substrate supporting each frame of spatial reference.

  20. Spatial correlations and probability density function of the phase difference in a developed speckle-field: numerical and natural experiments

    International Nuclear Information System (INIS)

    Mysina, N Yu; Maksimova, L A; Ryabukho, V P; Gorbatenko, B B

    2015-01-01

    Investigated are statistical properties of the phase difference of oscillations in speckle-fields at two points in the far-field diffraction region, with different shapes of the scatterer aperture. Statistical and spatial nonuniformity of the probability density function of the field phase difference is established. Numerical experiments show that, for the speckle-fields with an oscillating alternating-sign transverse correlation function, a significant nonuniformity of the probability density function of the phase difference in the correlation region of the field complex amplitude, with the most probable values 0 and p, is observed. A natural statistical interference experiment using Young diagrams has confirmed the results of numerical experiments. (laser applications and other topics in quantum electronics)

  1. Memory-induced sign reversals of the spatial cross-correlation for particles in viscoelastic shear flows

    International Nuclear Information System (INIS)

    Sauga, Ako; Laas, Katrin; Mankin, Romi

    2015-01-01

    Highlights: • Cross-correlation (CC) of coordinates of particles in viscoelastic shear flows is discussed. • Expressions for CC functions subjected to both internal and external noises are presented. • Impact of internal and external noises on CC functions are compared. • Memory-induced reentrant sign reversals of the spatial cross-moment are established. - Abstract: The behavior of shear-induced cross-correlation functions between particle fluctuations along orthogonal directions in the shear plane for harmonically trapped Brownian particles in a viscoelastic shear flow is studied. A generalized Langevin equation with a power-law-type memory kernel is used to model the complex structure of the viscoelastic media. Interaction with fluctuations of environmental parameters is modeled by a multiplicative white Gaussian noise, by an internal fractional Gaussian noise, and by an additive external white noise. It is shown that the presence of a memory has a profound effect on the behavior of the cross-correlation functions. Particularly, memory-induced reentrant sign reversals of the spatial cross-moment between orthogonal random displacements of a particle are established, i.e., an increase of the memory exponent can cause the sign reversal from positive to negative, but by a further increase of the memory exponent a reentrant transition from negative to positive values appears. Similarities and differences between the behavior of the models with additive internal and external noises are considered. It is shown that additive external and internal noises cause qualitatively different dependencies of the cross-correlation functions on the time lag. The occurrence of energetic instability due to the influence of multiplicative noise is also discussed.

  2. A spatial interference minimization strategy for the correlated LTE downlink channel

    OpenAIRE

    Nordin, R; Armour, SMD; McGeehan, JP

    2010-01-01

    In a downlink transmission, users can benefit from the high capacity gain achieved by transmitting independent data streams from multiple antennas to multiple users sharing the same physical time-frequency resources. This technique is known as multiuser MIMO (MU-MIMO). However, performance of MU-MIMO is sensitive towards propagation imperfections, such as time dispersion and inter-stream interference due to antenna correlation. In this paper we investigate the performance of MUMIMO operation ...

  3. Spatial Frames of Reference in Traditional Negev Arabic: Language-to-Cognition Correlation.

    Science.gov (United States)

    Cerqueglini, Letizia

    2015-09-01

    Linguistic and cognitive tasks on spatial Frames of Reference (FoRs) in Traditional Negev Arabic (TNA) show that TNA is a referentially promiscuous language, using Intrinsic, Relative and Absolute FoRs. FoRs are selected in context according to culture-specific features of the ground (G). TNA speakers exclusively use the Absolute FoR in cognitive tasks, similarly to Mesoamerican languages (Bohnemeyer et al. in Proceedings of the 36th Annual Conference of the Cognitive Science Society, Austin, 2014). Absolute FoR in TNA is anchored on the four cardinal directions. Nevertheless, in TNA and in other varieties of Nomadic Arabic, geocentric sub-types of the Absolute FoR are also observable. Indeed, as in other Absolute-framing systems worldwide, different anchoring strategies (geocentric and astronomic) tend to coexist. I define their coexistence "Absolute Referential Modularity" (ARM). ARM appears in TNA in cognitive referential tasks and in some lexical items, not in linguistic tasks (as elaborated by Levinson et al. in Space stimuli kit 1.2: November 1992. Max Planck Institute for Psycholinguistics, Nijmegen, pp 7-14, 1992). Cardinal directions across Nomadic Arabic varieties show great cultural salience. They are associated with concrete geographical elements and encode topological relations: east-west axis encodes the mountain-sea opposition, beside many symbolic meanings, and encodes the oppositions Up/Down and Inside (familiar)/Outside (foreign). The detection of cognitive and linguistic Absolute referential practices-characterized by Modularity-and the cultural salience of cardinal directions within the whole Nomadic Arabic linguistic group, support the bias for Absolute cognition in promiscuous systems and its antecedence with respect to later linguistic referential strategies (Bohnemeyer et al. 2014). TNA linguistic promiscuity represents an innovation with respect to the cognitive concepts and demonstrates that language first generates semantic structures

  4. A Hidden Markov Model Representing the Spatial and Temporal Correlation of Multiple Wind Farms

    DEFF Research Database (Denmark)

    Fang, Jiakun; Su, Chi; Hu, Weihao

    2015-01-01

    To accommodate the increasing wind energy with stochastic nature becomes a major issue on power system reliability. This paper proposes a methodology to characterize the spatiotemporal correlation of multiple wind farms. First, a hierarchical clustering method based on self-organizing maps is ado....... The proposed statistical modeling framework is compatible with the sequential power system reliability analysis. A case study on optimal sizing and location of fast-response regulation sources is presented.......To accommodate the increasing wind energy with stochastic nature becomes a major issue on power system reliability. This paper proposes a methodology to characterize the spatiotemporal correlation of multiple wind farms. First, a hierarchical clustering method based on self-organizing maps...... is adopted to categorize the similar output patterns of several wind farms into joint states. Then the hidden Markov model (HMM) is then designed to describe the temporal correlations among these joint states. Unlike the conventional Markov chain model, the accumulated wind power is taken into consideration...

  5. Fluxes by eddy correlation over heterogeneous landscape: How shall we apply the Reynolds average?

    Science.gov (United States)

    Dobosy, R.

    2007-12-01

    tilde denotes the departure of base-state≠(2) from base-state≠(1). It represents surface≠C's characteristic bias. The equation is defined only over class≠C. A similar equation applies to each surface class. The first and second righthand terms express interaction of the departure quantities with surface≠C's characteristic bias. These terms are zero if the base states are simple means. The third term becomes important if class C has a significant bias both in vertical motion and in its characteristic values of a. A practical example from 2005 June 18 at 1015 LST in Illinois is illustrative. Turbulence measurements were made by aircraft at 20≠m above ground along a 50≠km track approximately evenly divided between corn and soybean. Corn (type≠C) was growing quickly, increasing the mixing ratio of moisture (r) and reducing that of CO2 (a), relative to soybean. Soybean characteristically heated the air and favored updrafts. These biases were evident in r¯*)C, a¯*)C, θ¯*)C, and w¯*)C relative to their corresponding averages over soybean. In particular the bias in CO2 mixing ratio, negative over corn and positive over soybean, was about 20% of the standard deviation of a*. Nevertheless, neither surface type strongly favored vertical motion, giving the encouraging result that the two approaches do not differ by more than an insignificant few per cent. The theoretical analysis indicates care, however, where extensive areas of both bare soil and vegetated land may enhance the bias in vertical motion between different components of the landscape.

  6. Complex Networks Dynamics Based on Events-Phase Synchronization and Intensity Correlation Applied to The Anomaly Patterns and Extremes in The Tropical African Climate System

    Science.gov (United States)

    Oluoch, K.; Marwan, N.; Trauth, M.; Loew, A.; Kurths, J.

    2012-04-01

    The African continent lie almost entirely within the tropics and as such its (tropical) climate systems are predominantly governed by the heterogeneous, spatial and temporal variability of the Hadley and Walker circulations. The variabilities in these meridional and zonal circulations lead to intensification or suppression of the intensities, durations and frequencies of the Inter-tropical Convergence Zone (ICTZ) migration, trade winds and subtropical high-pressure regions and the continental monsoons. The above features play a central role in determining the African rainfall spatial and temporal variability patterns. The current understanding of these climate features and their influence on the rainfall patterns is not sufficiently understood. Like many real-world systems, atmospheric-oceanic processes exhibit non-linear properties that can be better explored using non-linear (NL) methods of time-series analysis. Over the recent years, the complex network approach has evolved as a powerful new player in understanding spatio-temporal dynamics and evolution of complex systems. Together with NL techniques, it is continuing to find new applications in many areas of science and technology including climate research. We would like to use these two powerful methods to understand the spatial structure and dynamics of African rainfall anomaly patterns and extremes. The method of event synchronization (ES) developed by Quiroga et al., 2002 and first applied to climate networks by Malik et al., 2011 looks at correlations with a dynamic time lag and as such, it is a more intuitive way to correlate a complex and heterogeneous system like climate networks than a fixed time delay most commonly used. On the other hand, the short comings of ES is its lack of vigorous test statistics for the significance level of the correlations, and the fact that only the events' time indices are synchronized while all information about how the relative intensities propagate within network

  7. Visualization and Analysis of Wireless Sensor Network Data for Smart Civil Structure Applications Based On Spatial Correlation Technique

    Science.gov (United States)

    Chowdhry, Bhawani Shankar; White, Neil M.; Jeswani, Jai Kumar; Dayo, Khalil; Rathi, Manorma

    2009-07-01

    Disasters affecting infrastructure, such as the 2001 earthquakes in India, 2005 in Pakistan, 2008 in China and the 2004 tsunami in Asia, provide a common need for intelligent buildings and smart civil structures. Now, imagine massive reductions in time to get the infrastructure working again, realtime information on damage to buildings, massive reductions in cost and time to certify that structures are undamaged and can still be operated, reductions in the number of structures to be rebuilt (if they are known not to be damaged). Achieving these ideas would lead to huge, quantifiable, long-term savings to government and industry. Wireless sensor networks (WSNs) can be deployed in buildings to make any civil structure both smart and intelligent. WSNs have recently gained much attention in both public and research communities because they are expected to bring a new paradigm to the interaction between humans, environment, and machines. This paper presents the deployment of WSN nodes in the Top Quality Centralized Instrumentation Centre (TQCIC). We created an ad hoc networking application to collect real-time data sensed from the nodes that were randomly distributed throughout the building. If the sensors are relocated, then the application automatically reconfigures itself in the light of the new routing topology. WSNs are event-based systems that rely on the collective effort of several micro-sensor nodes, which are continuously observing a physical phenomenon. WSN applications require spatially dense sensor deployment in order to achieve satisfactory coverage. The degree of spatial correlation increases with the decreasing inter-node separation. Energy consumption is reduced dramatically by having only those sensor nodes with unique readings transmit their data. We report on an algorithm based on a spatial correlation technique that assures high QoS (in terms of SNR) of the network as well as proper utilization of energy, by suppressing redundant data transmission

  8. Aphasia and unilateral spatial neglect due to acute thalamic hemorrhage: clinical correlations and outcomes.

    Science.gov (United States)

    Osawa, Aiko; Maeshima, Shinichiro

    2016-04-01

    Thalamic hemorrhages are associated with a variety of cognitive dysfunctions, and it is well known that such cognitive changes constitute a limiting factor of recovery of the activities of daily living (ADL). The relationship between cognitive dysfunction and hematomas is unclear. In this study, we investigated the relationship between aphasia/neglect and hematoma volume, hematoma type, and the ADL. One hundred fifteen patients with thalamic hemorrhage (70 men and 45 women) were studied. Their mean age was 68.9 ± 10.3 years, and patients with both left and right lesions were included. We calculated hematoma volume and examined the presence or absence of aphasia/neglect and the relationships between these dysfunctions and hematoma volume, hematoma type, and the ADL. Fifty-nine patients were found to have aphasia and 35 were found to have neglect. Although there was no relationship between hematoma type and cognitive dysfunction, hematoma volume showed a correlation with the severity of cognitive dysfunction. The ADL score and ratio of patient discharge for patients with aphasia/neglect were lower than those for patients without aphasia/neglect. We observed a correlation between the hematoma volume in thalamic hemorrhage and cognitive dysfunction. Aphasia/neglect is found frequently in patients with acute thalamic hemorrhage and may influence the ADL.

  9. Reduced Rank Mixed Effects Models for Spatially Correlated Hierarchical Functional Data

    KAUST Repository

    Zhou, Lan

    2010-03-01

    Hierarchical functional data are widely seen in complex studies where sub-units are nested within units, which in turn are nested within treatment groups. We propose a general framework of functional mixed effects model for such data: within unit and within sub-unit variations are modeled through two separate sets of principal components; the sub-unit level functions are allowed to be correlated. Penalized splines are used to model both the mean functions and the principal components functions, where roughness penalties are used to regularize the spline fit. An EM algorithm is developed to fit the model, while the specific covariance structure of the model is utilized for computational efficiency to avoid storage and inversion of large matrices. Our dimension reduction with principal components provides an effective solution to the difficult tasks of modeling the covariance kernel of a random function and modeling the correlation between functions. The proposed methodology is illustrated using simulations and an empirical data set from a colon carcinogenesis study. Supplemental materials are available online.

  10. Spatial distribution of the earthquakes in the Vrancea zone and tectonic correlations

    International Nuclear Information System (INIS)

    Bala, Andrei; Diaconescu, Mihai; Biter, Mircea

    2001-01-01

    The tectonic plate evolution of the whole Carpathian Arc and Pannonian back-arc Basin indicates that at least three tectonic units have been in contact and at the same time in relative motion: the East European Plate, the Moesian plate and the Intra-Alpine plate. There were plotted graphically all the earthquake hypocentres from the period 1982-2000 situated in an area which includes Vrancea zone. Because of the great number of events plotted, they were found to describe well the limits of the tectonic plate (plate fragment?) which is supposed to be subducted in this region down to 200 km depth. The hypothesis of a plate fragment delaminated from an older subduction can not be overruled. These limits were put in direct relations with the known geology and tectonics of the area. Available fault plane solutions for the crustal earthquakes are analyzed in correlation with the main faults of the area. A graphic plot of the sunspot number is correlated with the occurrence of the earthquakes with magnitudes greater than 5. (authors)

  11. Neural Correlates Associated with Successful Working Memory Performance in Older Adults as Revealed by Spatial ICA

    Science.gov (United States)

    Saliasi, Emi; Geerligs, Linda; Lorist, Monicque M.; Maurits, Natasha M.

    2014-01-01

    To investigate which neural correlates are associated with successful working memory performance, fMRI was recorded in healthy younger and older adults during performance on an n-back task with varying task demands. To identify functional networks supporting working memory processes, we used independent component analysis (ICA) decomposition of the fMRI data. Compared to younger adults, older adults showed a larger neural (BOLD) response in the more complex (2-back) than in the baseline (0-back) task condition, in the ventral lateral prefrontal cortex (VLPFC) and in the right fronto-parietal network (FPN). Our results indicated that a higher BOLD response in the VLPFC was associated with increased performance accuracy in older adults, in both the baseline and the more complex task condition. This ‘BOLD-performance’ relationship suggests that the neural correlates linked with successful performance in the older adults are not uniquely related to specific working memory processes present in the complex but not in the baseline task condition. Furthermore, the selective presence of this relationship in older but not in younger adults suggests that increased neural activity in the VLPFC serves a compensatory role in the aging brain which benefits task performance in the elderly. PMID:24911016

  12. Neural correlates of British sign language comprehension: spatial processing demands of topographic language.

    Science.gov (United States)

    MacSweeney, Mairéad; Woll, Bencie; Campbell, Ruth; Calvert, Gemma A; McGuire, Philip K; David, Anthony S; Simmons, Andrew; Brammer, Michael J

    2002-10-01

    In all signed languages used by deaf people, signs are executed in "sign space" in front of the body. Some signed sentences use this space to map detailed "real-world" spatial relationships directly. Such sentences can be considered to exploit sign space "topographically." Using functional magnetic resonance imaging, we explored the extent to which increasing the topographic processing demands of signed sentences was reflected in the differential recruitment of brain regions in deaf and hearing native signers of the British Sign Language. When BSL signers performed a sentence anomaly judgement task, the occipito-temporal junction was activated bilaterally to a greater extent for topographic than nontopographic processing. The differential role of movement in the processing of the two sentence types may account for this finding. In addition, enhanced activation was observed in the left inferior and superior parietal lobules during processing of topographic BSL sentences. We argue that the left parietal lobe is specifically involved in processing the precise configuration and location of hands in space to represent objects, agents, and actions. Importantly, no differences in these regions were observed when hearing people heard and saw English translations of these sentences. Despite the high degree of similarity in the neural systems underlying signed and spoken languages, exploring the linguistic features which are unique to each of these broadens our understanding of the systems involved in language comprehension.

  13. Are objects the same as groups? ERP correlates of spatial attentional guidance by irrelevant feature similarity.

    Science.gov (United States)

    Kasai, Tetsuko; Moriya, Hiroki; Hirano, Shingo

    2011-07-05

    It has been proposed that the most fundamental units of attentional selection are "objects" that are grouped according to Gestalt factors such as similarity or connectedness. Previous studies using event-related potentials (ERPs) have shown that object-based attention is associated with modulations of the visual-evoked N1 component, which reflects an early cortical mechanism that is shared with spatial attention. However, these studies only examined the case of perceptually continuous objects. The present study examined the case of separate objects that are grouped according to feature similarity (color, shape) by indexing lateralized potentials at posterior sites in a sustained-attention task that involved bilateral stimulus arrays. A behavioral object effect was found only for task-relevant shape similarity. Electrophysiological results indicated that attention was guided to the task-irrelevant side of the visual field due to achromatic-color similarity in N1 (155-205 ms post-stimulus) and early N2 (210-260 ms) and due to shape similarity in early N2 and late N2 (280-400 ms) latency ranges. These results are discussed in terms of selection mechanisms and object/group representations. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Climate change impact assessment on flow regime by incorporating spatial correlation and scenario uncertainty

    Science.gov (United States)

    Vallam, P.; Qin, X. S.

    2017-07-01

    Flooding risk is increasing in many parts of the world and may worsen under climate change conditions. The accuracy of predicting flooding risk relies on reasonable projection of meteorological data (especially rainfall) at the local scale. The current statistical downscaling approaches face the difficulty of projecting multi-site climate information for future conditions while conserving spatial information. This study presents a combined Long Ashton Research Station Weather Generator (LARS-WG) stochastic weather generator and multi-site rainfall simulator RainSim (CLWRS) approach to investigate flow regimes under future conditions in the Kootenay Watershed, Canada. To understand the uncertainty effect stemming from different scenarios, the climate output is fed into a hydrologic model. The results showed different variation trends of annual peak flows (in 2080-2099) based on different climate change scenarios and demonstrated that the hydrological impact would be driven by the interaction between snowmelt and peak flows. The proposed CLWRS approach is useful where there is a need for projection of potential climate change scenarios.

  15. Characterization of microscopic deformation through two-point spatial correlation functions.

    Science.gov (United States)

    Huang, Guan-Rong; Wu, Bin; Wang, Yangyang; Chen, Wei-Ren

    2018-01-01

    The molecular rearrangements of most fluids under flow and deformation do not directly follow the macroscopic strain field. In this work, we describe a phenomenological method for characterizing such nonaffine deformation via the anisotropic pair distribution function (PDF). We demonstrate how the microscopic strain can be calculated in both simple shear and uniaxial extension, by perturbation expansion of anisotropic PDF in terms of real spherical harmonics. Our results, given in the real as well as the reciprocal space, can be applied in spectrum analysis of small-angle scattering experiments and nonequilibrium molecular dynamics simulations of soft matter under flow.

  16. Characterization of microscopic deformation through two-point spatial correlation functions

    Science.gov (United States)

    Huang, Guan-Rong; Wu, Bin; Wang, Yangyang; Chen, Wei-Ren

    2018-01-01

    The molecular rearrangements of most fluids under flow and deformation do not directly follow the macroscopic strain field. In this work, we describe a phenomenological method for characterizing such nonaffine deformation via the anisotropic pair distribution function (PDF). We demonstrate how the microscopic strain can be calculated in both simple shear and uniaxial extension, by perturbation expansion of anisotropic PDF in terms of real spherical harmonics. Our results, given in the real as well as the reciprocal space, can be applied in spectrum analysis of small-angle scattering experiments and nonequilibrium molecular dynamics simulations of soft matter under flow.

  17. Spatial correlations between browsing on balsam fir by white-tailed deer and the nutritional value of neighboring winter forage.

    Science.gov (United States)

    Champagne, Emilie; Moore, Ben D; Côté, Steeve D; Tremblay, Jean-Pierre

    2018-03-01

    Associational effects, that is, the influence of neighboring plants on herbivory suffered by a plant, are an outcome of forage selection. Although forage selection is a hierarchical process, few studies have investigated associational effects at multiple spatial scales. Because the nutritional quality of plants can be spatially structured, it might differently influence associational effects across multiple scales. Our objective was to determine the radius of influence of neighbor density and nutritional quality on balsam fir ( Abies balsamea ) herbivory by white-tailed deer ( Odocoileus virginianus ) in winter. We quantified browsing rates on fir and the density and quality of neighboring trees in a series of 10-year-old cutovers on Anticosti Island (Canada). We used cross-correlations to investigate relationships between browsing rates and the density and nutritional quality of neighboring trees at distances up to 1,000 m. Balsam fir and white spruce ( Picea glauca ) fiber content and dry matter in vitro true digestibility were correlated with fir browsing rate at the finest extra-patch scale (across distance of up to 50 m) and between cutover areas (300-400 m). These correlations suggest associational effects, that is, low nutritional quality of neighbors reduces the likelihood of fir herbivory (associational defense). Our results may indicate associational effects mediated by intraspecific variation in plant quality and suggest that these effects could occur at scales from tens to hundreds of meters. Understanding associational effects could inform strategies for restoration or conservation; for example, planting of fir among existing natural regeneration could be concentrated in areas of low nutritional quality.

  18. Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy

    International Nuclear Information System (INIS)

    Jesse, Stephen; Kalinin, Sergei V

    2009-01-01

    An approach for the analysis of multi-dimensional, spectroscopic-imaging data based on principal component analysis (PCA) is explored. PCA selects and ranks relevant response components based on variance within the data. It is shown that for examples with small relative variations between spectra, the first few PCA components closely coincide with results obtained using model fitting, and this is achieved at rates approximately four orders of magnitude faster. For cases with strong response variations, PCA allows an effective approach to rapidly process, de-noise, and compress data. The prospects for PCA combined with correlation function analysis of component maps as a universal tool for data analysis and representation in microscopy are discussed.

  19. Improving neutron spectrometer performances through spatial and focusing effects: Investigation of spatial correlation focusing influence on the resolution in diffraction and phonon scattering experiments

    International Nuclear Information System (INIS)

    Popovici, M.

    1986-09-01

    A consistent treatment of the optics of three-axis spectrometers with curved perfect crystals, the gradient of lattice spacing accounted for, is presented. The mosaic crystal case is treated within the same computational scheme. From the computational point of view, the perfect crystals case is not the zero mosaic spread limit of the mosaic crystals case. The estimation of the residual line-widths in conditions of reciprocal-space focusing allows the discussion of the possibilities and limitations of using spatial correlation effects for improving spectrometer performances. A computer programme is presented which makes it possible to calculate both analytically and numerically the optimal arrangements and the deviations of the optimal parameter values. The optimization of parameters not involved in the analytically expressed reciprocal-space focusing conditions is also possible with this programme. The experimental results presented in this paper show that both the line-widths and the absolute intensities can also be described with reasonable accuracy for the perfect curved crystals case. It is shown experimentally that even at low-flux reactors one can obtain with the aid of perfect curved crystals good resolutions at measurable intensities which are generally higher than those obtainable in conventional spectrometers with flat mosaic crystals

  20. Determination and correlation of spatial distribution of trace elements in normal and neoplastic breast tissues evaluated by μ-XRF

    International Nuclear Information System (INIS)

    Silva, M.P.; Oliveira, M.A.; Poletti, M.E.

    2012-01-01

    Full text: Some trace elements, naturally present in breast tissues, participate in a large number of biological processes, which include among others, activation or inhibition of enzymatic reactions and changes on cell membranes permeability, suggesting that these elements may influence carcinogenic processes. Thus, knowledge of the amounts of these elements and their spatial distribution in normal and neoplastic tissues may help in understanding the role of these elements in the carcinogenic process and tumor progression of breast cancers. Concentrations of trace elements like Ca, Fe, Cu and Zn, previously studied at LNLS using TXRF and conventional XRF, were elevated in neoplastic breast tissues compared to normal tissues. In this study we determined the spatial distribution of these elements in normal and neoplastic breast tissues using μ-XRF technique. We analyzed 22 samples of normal and neoplastic breast tissues (malignant and benign) obtained from paraffin blocks available for study at the Department of Pathology HC-FMRP/USP. From the blocks, a small fraction of material was removed and subjected to histological sections of 60 μm thick made with a microtome. The slices where placed in holder samples and covered with ultralen film. Tissue samples were irradiated with a white beam of synchrotron radiation. The samples were positioned at 45 degrees with respect to the incident beam on a table with 3 freedom degrees (x, y and z), allowing independent positioning of the sample in these directions. The white beam was collimated by a 20 μm microcapillary and samples were fully scanned. At each step, a spectrum was detected for 10 s. The fluorescence emitted by elements present in the sample was detected by a Si (Li) detector with 165 eV at 5.9 keV energy resolution, placed at 90 deg with respect to the incident beam. Results reveal that trace elements Ca-Zn and Fe-Cu could to be correlated in malignant breast tissues. Quantitative results, achieved by Spearman

  1. Correlation between hypocenter depth, antecedent precipitation and earthquake-induced landslide spatial distribution

    Science.gov (United States)

    Fukuoka, Hiroshi; Watanabe, Eisuke

    2017-04-01

    Since Keefer published the paper on earthquake magnitude and affected area, maximum epicentral/fault distance of induced landslide distribution in 1984, showing the envelope of plots, a lot of studies on this topic have been conducted. It has been generally supposed that landslides have been triggered by shallow quakes and more landslides are likely to occur with heavy rainfalls immediately before the quake. In order to confirm this, we have collected 22 case records of earthquake-induced landslide distribution in Japan and examined the effect of hypocenter depth and antecedent precipitation. Earthquake magnitude by JMA (Japan Meteorological Agency) of the cases are from 4.5 to 9.0. Analysis on hycpocenter depth showed the deeper quake cause wider distribution. Antecedent precipitation was evaluated using the Soil Water Index (SWI), which was developed by JMA for issuing landslide alert. We could not find meaningful correlation between SWI and the earthquake-induced landslide distribution. Additionally, we found that smaller minimum size of collected landslides results in wider distribution especially between 1,000 to 100,000 m2.

  2. Multi-criteria correlation of tephra deposits to source centres applied in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Hopkins, Jenni L.; Wilson, Colin J. N.; Millet, Marc-Alban; Leonard, Graham S.; Timm, Christian; McGee, Lucy E.; Smith, Ian E. M.; Smith, Euan G. C.

    2017-07-01

    Linking tephras back to their source centre(s) in volcanic fields is crucial not only to reconstruct the eruptive history of the volcanic field but also to understand tephra dispersal patterns and thus the potential hazards posed by a future eruption. Here we present a multi-disciplinary approach to correlate distal basaltic tephra deposits from the Auckland Volcanic Field (AVF) to their source centres using proximal whole-rock geochemical signatures. In order to achieve these correlations, major and trace element tephra-derived glass compositions are compared with published and newly obtained whole-rock geochemical data for the entire field. The results show that incompatible trace element ratios (e.g. (Gd/Yb)N, (La/Yb)N, (Zr/Yb)N) vary widely across the AVF (e.g. (La/Yb)N = 5 to 40) but show a more restricted range within samples from a single volcanic centre (e.g. (La/Yb)N = 5 to 10). These ratios are also the least affected by fractional crystallisation and are therefore the most appropriate geochemical tools for correlation between tephra and whole-rock samples. However, findings for the AVF suggest that each volcanic centre does not have a unique geochemical signature in the field as a whole, thus preventing unambiguous correlation of tephras to source centre using geochemistry alone. A number of additional criteria are therefore combined to further constrain the source centres of the distal tephras including age, eruption scale, and location (of centres, and sites where tephra were sampled). The combination of tephrostratigraphy, 40Ar/39Ar dating and morphostratigraphic constraints allow, for the first time, the relative and absolute ordering of 48 of 53 volcanic centres of the Auckland Volcanic Field to be resolved. Eruption frequencies are shown to vary between 0.13 and 1.5 eruptions/kyr and repose periods between individual eruptions vary from <0.1 to 13 kyr, with 23 of the 48 centres shown to have pre-eruptive repose periods of <1000 years. No spatial

  3. Characterization of Impact Damage in Ultra-High Performance Concrete Using Spatially Correlated Nanoindentation/SEM/EDX

    Science.gov (United States)

    Moser, R. D.; Allison, P. G.; Chandler, M. Q.

    2013-12-01

    Little work has been done to study the fundamental material behaviors and failure mechanisms of cement-based materials including ordinary Portland cement concrete and ultra-high performance concretes (UHPCs) under high strain impact and penetration loads at lower length scales. These high strain rate loadings have many possible effects on UHPCs at the microscale and nanoscale, including alterations in the hydration state and bonding present in phases such as calcium silicate hydrate, in addition to fracture and debonding. In this work, the possible chemical and physical changes in UHPCs subjected to high strain rate impact and penetration loads were investigated using a novel technique wherein nanoindentation measurements were spatially correlated with images using scanning electron microscopy and chemical composition using energy dispersive x-ray microanalysis. Results indicate that impact degrades both the elastic modulus and indentation hardness of UHPCs, and in particular hydrated phases, with damage likely occurring due to microfracturing and debonding.

  4. Fano lineshapes of 'Peak-tracking chip' spatial profiles analyzed with correlation analysis for bioarray imaging and refractive index sensing

    KAUST Repository

    Bougot-Robin, K.

    2013-05-22

    The asymmetric Fano resonance lineshapes, resulting from interference between background and a resonant scattering, is archetypal in resonant waveguide grating (RWG) reflectivity. Resonant profile shift resulting from a change of refractive index (from fluid medium or biomolecules at the chip surface) is classically used to perform label-free sensing. Lineshapes are sometimes sampled at discretized “detuning” values to relax instrumental demands, the highest reflectivity element giving a coarse resonance estimate. A finer extraction, needed to increase sensor sensitivity, can be obtained using a correlation approach, correlating the sensed signal to a zero-shifted reference signal. Fabrication process is presented leading to discrete Fano profiles. Our findings are illustrated with resonance profiles from silicon nitride RWGs operated at visible wavelengths. We recently demonstrated that direct imaging multi-assay RWGs sensing may be rendered more reliable using “chirped” RWG chips, by varying a RWG structure parameter. Then, the spatial reflectivity profiles of tracks composed of RWGs units with slowly varying filling factor (thus slowly varying resonance condition) are measured under monochromatic conditions. Extracting the resonance location using spatial Fano profiles allows multiplex refractive index based sensing. Discretization and sensitivity are discussed both through simulation and experiment for different filling factor variation, here Δf=0.0222 and Δf=0.0089. This scheme based on a “Peak-tracking chip” demonstrates a new technique for bioarray imaging using a simpler set-up that maintains high performance with cheap lenses, with down to Δn=2×10-5 RIU sensitivity for the highest sampling of Fano lineshapes. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  5. Fano lineshapes of 'Peak-tracking chip' spatial profiles analyzed with correlation analysis for bioarray imaging and refractive index sensing

    KAUST Repository

    Bougot-Robin, K.; Li, S.; Yue, W.; Chen, L. Q.; Zhang, Xixiang; Wen, W. J.; Benisty, H.

    2013-01-01

    The asymmetric Fano resonance lineshapes, resulting from interference between background and a resonant scattering, is archetypal in resonant waveguide grating (RWG) reflectivity. Resonant profile shift resulting from a change of refractive index (from fluid medium or biomolecules at the chip surface) is classically used to perform label-free sensing. Lineshapes are sometimes sampled at discretized “detuning” values to relax instrumental demands, the highest reflectivity element giving a coarse resonance estimate. A finer extraction, needed to increase sensor sensitivity, can be obtained using a correlation approach, correlating the sensed signal to a zero-shifted reference signal. Fabrication process is presented leading to discrete Fano profiles. Our findings are illustrated with resonance profiles from silicon nitride RWGs operated at visible wavelengths. We recently demonstrated that direct imaging multi-assay RWGs sensing may be rendered more reliable using “chirped” RWG chips, by varying a RWG structure parameter. Then, the spatial reflectivity profiles of tracks composed of RWGs units with slowly varying filling factor (thus slowly varying resonance condition) are measured under monochromatic conditions. Extracting the resonance location using spatial Fano profiles allows multiplex refractive index based sensing. Discretization and sensitivity are discussed both through simulation and experiment for different filling factor variation, here Δf=0.0222 and Δf=0.0089. This scheme based on a “Peak-tracking chip” demonstrates a new technique for bioarray imaging using a simpler set-up that maintains high performance with cheap lenses, with down to Δn=2×10-5 RIU sensitivity for the highest sampling of Fano lineshapes. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  6. Spatially correlated two-dimensional arrays of semiconductor and metal quantum dots in GaAs-based heterostructures

    International Nuclear Information System (INIS)

    Nevedomskiy, V. N.; Bert, N. A.; Chaldyshev, V. V.; Preobrazhernskiy, V. V.; Putyato, M. A.; Semyagin, B. R.

    2015-01-01

    A single molecular-beam epitaxy process is used to produce GaAs-based heterostructures containing two-dimensional arrays of InAs semiconductor quantum dots and AsSb metal quantum dots. The twodimensional array of AsSb metal quantum dots is formed by low-temperature epitaxy which provides a large excess of arsenic in the epitaxial GaAs layer. During the growth of subsequent layers at a higher temperature, excess arsenic forms nanoinclusions, i.e., metal quantum dots in the GaAs matrix. The two-dimensional array of such metal quantum dots is created by the δ doping of a low-temperature GaAs layer with antimony which serves as a precursor for the heterogeneous nucleation of metal quantum dots and accumulates in them with the formation of AsSb metal alloy. The two-dimensional array of InAs semiconductor quantum dots is formed via the Stranski–Krastanov mechanism at the GaAs surface. Between the arrays of metal and semiconductor quantum dots, a 3-nm-thick AlAs barrier layer is grown. The total spacing between the arrays of metal and semiconductor quantum dots is 10 nm. Electron microscopy of the structure shows that the arrangement of metal quantum dots and semiconductor quantum dots in the two-dimensional arrays is spatially correlated. The spatial correlation is apparently caused by elastic strain and stress fields produced by both AsSb metal and InAs semiconductor quantum dots in the GaAs matrix

  7. Characterization of a nuclear compartment shared by nuclear bodies applying ectopic protein expression and correlative light and electron microscopy

    International Nuclear Information System (INIS)

    Richter, Karsten; Reichenzeller, Michaela; Goerisch, Sabine M.; Schmidt, Ute; Scheuermann, Markus O.; Herrmann, Harald; Lichter, Peter

    2005-01-01

    To investigate the accessibility of interphase nuclei for nuclear body-sized particles, we analyzed in cultured cells from human origin by correlative fluorescence and electron microscopy (EM) the bundle-formation of Xenopus-vimentin targeted to the nucleus via a nuclear localization signal (NLS). Moreover, we investigated the spatial relationship of speckles, Cajal bodies, and crystalline particles formed by Mx1 fused to yellow fluorescent protein (YFP), with respect to these bundle arrays. At 37 deg C, the nucleus-targeted, temperature-sensitive Xenopus vimentin was deposited in focal accumulations. Upon shift to 28 deg C, polymerization was induced and filament arrays became visible. Within 2 h after temperature shift, arrays were found to be composed of filaments loosely embedded in the nucleoplasm. The filaments were restricted to limited areas of the nucleus between focal accumulations. Upon incubation at 28 deg C for several hours, NLS vimentin filaments formed bundles looping throughout the nuclei. Speckles and Cajal bodies frequently localized in direct neighborhood to vimentin bundles. Similarly, small crystalline particles formed by YFP-tagged Mx1 also located next to vimentin bundles. Taking into account that nuclear targeted vimentin locates in the interchromosomal domain (ICD), we conclude that nuclear body-sized particles share a common nuclear space which is controlled by higher order chromatin organization

  8. Applying spatial regression to evaluate risk factors for microbiological contamination of urban groundwater sources in Juba, South Sudan

    Science.gov (United States)

    Engström, Emma; Mörtberg, Ulla; Karlström, Anders; Mangold, Mikael

    2017-06-01

    This study developed methodology for statistically assessing groundwater contamination mechanisms. It focused on microbial water pollution in low-income regions. Risk factors for faecal contamination of groundwater-fed drinking-water sources were evaluated in a case study in Juba, South Sudan. The study was based on counts of thermotolerant coliforms in water samples from 129 sources, collected by the humanitarian aid organisation Médecins Sans Frontières in 2010. The factors included hydrogeological settings, land use and socio-economic characteristics. The results showed that the residuals of a conventional probit regression model had a significant positive spatial autocorrelation (Moran's I = 3.05, I-stat = 9.28); therefore, a spatial model was developed that had better goodness-of-fit to the observations. The most significant factor in this model ( p-value 0.005) was the distance from a water source to the nearest Tukul area, an area with informal settlements that lack sanitation services. It is thus recommended that future remediation and monitoring efforts in the city be concentrated in such low-income regions. The spatial model differed from the conventional approach: in contrast with the latter case, lowland topography was not significant at the 5% level, as the p-value was 0.074 in the spatial model and 0.040 in the traditional model. This study showed that statistical risk-factor assessments of groundwater contamination need to consider spatial interactions when the water sources are located close to each other. Future studies might further investigate the cut-off distance that reflects spatial autocorrelation. Particularly, these results advise research on urban groundwater quality.

  9. Defeat and entrapment: more than meets the eye? Applying network analysis to estimate dimensions of highly correlated constructs.

    Science.gov (United States)

    Forkmann, Thomas; Teismann, Tobias; Stenzel, Jana-Sophie; Glaesmer, Heide; de Beurs, Derek

    2018-01-25

    Defeat and entrapment have been shown to be of central relevance to the development of different disorders. However, it remains unclear whether they represent two distinct constructs or one overall latent variable. One reason for the unclarity is that traditional factor analytic techniques have trouble estimating the right number of clusters in highly correlated data. In this study, we applied a novel approach based on network analysis that can deal with correlated data to establish whether defeat and entrapment are best thought of as one or multiple constructs. Explanatory graph analysis was used to estimate the number of dimensions within the 32 items that make up the defeat and entrapment scales in two samples: an online community sample of 480 participants, and a clinical sample of 147 inpatients admitted to a psychiatric hospital after a suicidal attempt or severe suicidal crisis. Confirmatory Factor analysis (CFA) was used to test whether the proposed structure fits the data. In both samples, bootstrapped exploratory graph analysis suggested that the defeat and entrapment items belonged to different dimensions. Within the entrapment items, two separate dimensions were detected, labelled internal and external entrapment. Defeat appeared to be multifaceted only in the online sample. When comparing the CFA outcomes of the one, two, three and four factor models, the one factor model was preferred. Defeat and entrapment can be viewed as distinct, yet, highly associated constructs. Thus, although replication is needed, results are in line with theories differentiating between these two constructs.

  10. Correlates of biological soil crust abundance across a continuum of spatial scales: Support for a hierarchical conceptual model

    Science.gov (United States)

    Bowker, M.A.; Belnap, J.; Davidson, D.W.; Goldstein, H.

    2006-01-01

    1. Desertification negatively impacts a large proportion of the global human population and > 30% of the terrestrial land surface. Better methods are needed to detect areas that are at risk of desertification and to ameliorate desertified areas. Biological soil crusts are an important soil lichen-moss-microbial community that can be used toward these goals, as (i) bioindicators of desertification damage and (ii) promoters of soil stability and fertility. 2. We identified environmental factors that correlate with soil crust occurrence on the landscape and might be manipulated to assist recovery of soil crusts in degraded areas. We conducted three studies on the Colorado Plateau, USA, to investigate the hypotheses that soil fertility [particularly phosphorus (P), manganese (Mn) and zinc (Zn)] and/or moisture limit soil crust lichens and mosses at four spatial scales. 3. In support of the soil fertility hypothesis, we found that lichen-moss crusts were positively correlated with several nutrients [Mn, Zn, potassium (K) and magnesium (Mg) were most consistent] at three of four spatial scales ranging from 3.5 cm2 in area to c. 800 km2. In contrast, P was negatively correlated with lichen-moss crusts at three scales. 4. Community composition varied with micro-aspect on ridges in the soil crust. Three micro-aspects [north-north-west (NNW), east-north-east (ENE) and TOP] supported greater lichen and moss cover than the warmer, windward and more xeric micro-aspects [west-south-west (WSW) and south-south-east (SSE)]. This pattern was poorly related to soil fertility; rather, it was consistent with the moisture limitation hypothesis. 5. Synthesis and application. Use of crusts as desertification bioindicators requires knowledge of a site's potential for crust cover in the absence of desertification. We present a multi-scale model of crust potential as a function of site properties. Future quantitative studies can use this model to guide sampling efforts. Also, our results

  11. Spatial correlation of action potential duration and diastolic dysfunction in transgenic and drug-induced LQT2 rabbits.

    Science.gov (United States)

    Odening, Katja E; Jung, Bernd A; Lang, Corinna N; Cabrera Lozoya, Rocio; Ziupa, David; Menza, Marius; Relan, Jatin; Franke, Gerlind; Perez Feliz, Stefanie; Koren, Gideon; Zehender, Manfred; Bode, Christoph; Brunner, Michael; Sermesant, Maxime; Föll, Daniela

    2013-10-01

    Enhanced dispersion of action potential duration (APD) is a major contributor to long QT syndrome (LQTS)-related arrhythmias. To investigate spatial correlations of regional heterogeneities in cardiac repolarization and mechanical function in LQTS. Female transgenic LQTS type 2 (LQT2; n = 11) and wild-type littermate control (LMC) rabbits (n = 9 without E4031 and n = 10 with E4031) were subjected to phase contrast magnetic resonance imaging to assess regional myocardial velocities. In the same rabbits' hearts, monophasic APDs were assessed in corresponding segments. In LQT2 and E4031-treated rabbits, APD was longer in all left ventricular segments (P < .01) and APD dispersion was greater than that in LMC rabbits (P < .01). In diastole, peak radial velocities (Vr) were reduced in LQT2 and E4031-treated compared to LMC rabbits in LV base and mid (LQT2: -3.36 ± 0.4 cm/s, P < .01; E4031-treated: -3.24 ± 0.6 cm/s, P < .0001; LMC: -4.42 ± 0.5 cm/s), indicating an impaired diastolic function. Regionally heterogeneous diastolic Vr correlated with APD (LQT2: correlation coefficient [CC] 0.38, P = .01; E4031-treated: CC 0.42, P < .05). Time-to-diastolic peak Vr were prolonged in LQT2 rabbits (LQT2: 196.8 ± 2.9 ms, P < .001; E4031-treated: 199.5 ± 2.2 ms, P < .0001, LMC 183.1 ± 1.5), indicating a prolonged contraction duration. Moreover, in transgenic LQT2 rabbits, diastolic time-to-diastolic peak Vr correlated with APD (CC 0.47, P = .001). In systole, peak Vr were reduced in LQT2 and E4031-treated rabbits (P < .01) but longitudinal velocities or ejection fraction did not differ. Finally, random forest machine learning algorithms enabled a differentiation between LQT2, E4031-treated, and LMC rabbits solely based on "mechanical" magnetic resonance imaging data. The prolongation of APD led to impaired diastolic and systolic function in transgenic and drug-induced LQT2 rabbits. APD correlated with regional diastolic dysfunction, indicating that LQTS is not purely an

  12. Can spatial autocorrelation method be applied to arbitrary array shape; Kukan jiko sokanho no nin`i array eno tekiyo kanosei

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H; Iwamoto, K; Saito, T; Tachibana, M [Iwate University, Iwate (Japan). Faculty of Engineering

    1997-05-27

    Methods to learn underground structures by utilizing the dispersion phenomenon of surface waves contained in microtremors include the frequency-wave number analysis method (the F-K method) and the spatial autocorrelation method (the SAC method). Despite the fact that the SAC method is capable of exploring structures at greater depths, the method is not utilized because of its stringent restriction in arrangement of seismometers during observation that they must be arranged evenly on the same circumference. In order to eliminate this restriction in the SAC method, a research group in the Hokuriku University has proposed an expanded spatial autocorrelation (ESAC) method. Using the concept of the ESAC method as its base, a method was realized to improve phase velocity estimation by making a simulation on an array shifted to the radius direction. As a result of the discussion, it was found that the proposed improvement method can be applied to places where waves come from a number of directions, such as urban areas. If the improvement method can be applied, the spatial autocorrelation function needs not be even in the circumferential direction. In other words, the SAC method can be applied to arbitrary arrays. 1 ref., 7 figs.

  13. The Neural Correlates of Spatial and Object Working Memory in Elderly and Parkinson’s Disease Subjects

    Directory of Open Access Journals (Sweden)

    Silvia P. Caminiti

    2015-01-01

    Full Text Available This fMRI study deals with the neural correlates of spatial and objects working memory (SWM and OWM in elderly subjects (ESs and idiopathic Parkinson’s disease (IPD. Normal aging and IPD can be associated with a WM decline. In IPD population, some studies reported similar SWM and OWM deficits; others reported a greater SWM than OWM impairment. In the present fMRI research, we investigated whether compensated IPD patients and elderly subjects with comparable performance during the execution of SWM and OWM tasks would present differences in WM-related brain activations. We found that the two groups recruited a prevalent left frontoparietal network when performing the SWM task and a bilateral network during OWM task execution. More specifically, the ESs showed bilateral frontal and subcortical activations in SWM, at difference with the IPD patients who showed a strict left lateralized network, consistent with frontostriatal degeneration in IPD. The overall brain activation in the IPD group was more extended as number of voxels with respect to ESs, suggesting underlying compensatory mechanisms. In conclusion, notwithstanding comparable WM performance, the two groups showed consistencies and differences in the WM activated networks. The latter underline the compensatory processes of normal typical and pathological aging.

  14. Adaption of the temporal correlation coefficient calculation for temporal networks (applied to a real-world pig trade network).

    Science.gov (United States)

    Büttner, Kathrin; Salau, Jennifer; Krieter, Joachim

    2016-01-01

    The average topological overlap of two graphs of two consecutive time steps measures the amount of changes in the edge configuration between the two snapshots. This value has to be zero if the edge configuration changes completely and one if the two consecutive graphs are identical. Current methods depend on the number of nodes in the network or on the maximal number of connected nodes in the consecutive time steps. In the first case, this methodology breaks down if there are nodes with no edges. In the second case, it fails if the maximal number of active nodes is larger than the maximal number of connected nodes. In the following, an adaption of the calculation of the temporal correlation coefficient and of the topological overlap of the graph between two consecutive time steps is presented, which shows the expected behaviour mentioned above. The newly proposed adaption uses the maximal number of active nodes, i.e. the number of nodes with at least one edge, for the calculation of the topological overlap. The three methods were compared with the help of vivid example networks to reveal the differences between the proposed notations. Furthermore, these three calculation methods were applied to a real-world network of animal movements in order to detect influences of the network structure on the outcome of the different methods.

  15. Correlation analysis of the urban heat island effect and the spatial and temporal distribution of atmospheric particulates using TM images in Beijing

    International Nuclear Information System (INIS)

    Xu, L.Y.; Xie, X.D.; Li, S.

    2013-01-01

    This study combines the methods of observation statistics and remote sensing retrieval, using remote sensing information including the urban heat island (UHI) intensity index, the normalized difference vegetation index (NDVI), the normalized difference water index (NDWI), and the difference vegetation index (DVI) to analyze the correlation between the urban heat island effect and the spatial and temporal concentration distributions of atmospheric particulates in Beijing. The analysis establishes (1) a direct correlation between UHI and DVI; (2) an indirect correlation among UHI, NDWI and DVI; and (3) an indirect correlation among UHI, NDVI, and DVI. The results proved the existence of three correlation types with regional and seasonal effects and revealed an interesting correlation between UHI and DVI, that is, if UHI is below 0.1, then DVI increases with the increase in UHI, and vice versa. Also, DVI changes more with UHI in the two middle zones of Beijing. -- Highlights: •We analyze the correlation from the spatial and temporal views. •We present correlation analyses among UHI, NDWI, NDVI, and DVI from three perspectives. •Three correlations are proven to exist with regional and seasonal effects. •If UHI is below 0.1, then DVI increases with the increase in UHI, and vice versa. •The DVI changes more with UHI in the two middle zones of Beijing. -- Generally, if UHI is below 0.1 in the weak heat island or green island range, then DVI increases with the increase in UHI, and vice versa

  16. Engineered, Spatially Varying Isothermal Holds: Enabling Combinatorial Studies of Temperature Effects, as Applied to Metastable Titanium Alloy β-21S

    International Nuclear Information System (INIS)

    Martin, Brian; Colorado School of Mines, Golden, CO; Samimi, Peyman; Colorado School of Mines, Golden, CO; Collins, Peter

    2017-01-01

    A novel method to systematically vary temperature and thus study the resulting microstructure of a material is presented. This new method has the potential to be used in a combinatorial fashion, allowing the rapid study of thermal holds on microstructures to be conducted. This is demonstrated on a beta titanium alloy, where the thermal history has a strong effect on microstructure. It is informed by simulation and executed using the resistive heating capabilities of a Gleeble 3800 thermomechanical simulator. Spatially varying isothermal holds of 4 h were affected, where the temperature range of the multiple isothermal holds varied by ~175 °C.

  17. A spatial model with pulsed releases to compare strategies for the sterile insect technique applied to the mosquito Aedes aegypti.

    Science.gov (United States)

    Oléron Evans, Thomas P; Bishop, Steven R

    2014-08-01

    We present a simple mathematical model to replicate the key features of the sterile insect technique (SIT) for controlling pest species, with particular reference to the mosquito Aedes aegypti, the main vector of dengue fever. The model differs from the majority of those studied previously in that it is simultaneously spatially explicit and involves pulsed, rather than continuous, sterile insect releases. The spatially uniform equilibria of the model are identified and analysed. Simulations are performed to analyse the impact of varying the number of release sites, the interval between pulsed releases and the overall volume of sterile insect releases on the effectiveness of SIT programmes. Results show that, given a fixed volume of available sterile insects, increasing the number of release sites and the frequency of releases increases the effectiveness of SIT programmes. It is also observed that programmes may become completely ineffective if the interval between pulsed releases is greater that a certain threshold value and that, beyond a certain point, increasing the overall volume of sterile insects released does not improve the effectiveness of SIT. It is also noted that insect dispersal drives a rapid recolonisation of areas in which the species has been eradicated and we argue that understanding the density dependent mortality of released insects is necessary to develop efficient, cost-effective SIT programmes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Applying geo-spatial analysis in community needs assessment: Implications for planning and prioritizing based on data.

    Science.gov (United States)

    Baig, Kamran; Shaw-Ridley, Mary; Munoz, Oscar J

    2016-10-01

    Colonias are sub standardized and unincorporated areas located along the US-Mexico border, with severely lacking infrastructure. Residents have poor health and limited availability, accessibility and/or utilization of healthcare services in the region. Using 2006-2007 community needs assessment (CNA) surveys collected by the Center for Housing and Urban Development of Texas A&M University, 410 randomly selected surveys from Hidalgo County, Texas were analyzed. Descriptive and spatial analyses were performed and Odds ratio (OR) was calculated. Out of 410 surveys, 333 were geo-coded to identify areas most in need of dental and vision care. Two hospitals existed within 5 miles radius of the mean centers for the two areas. Distance to health care facility was not statistically predictive of the need of dental care OR=0.96 (95% CI=0.855-1.078, p value=0.492) and vision care OR=1.083 (95% CI=0.968-1.212, p value=0.164). Integrating spatial analysis and CNA enhances planning to improve service accessibility and utilization in underserved areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Spatial Hotspot Analysis of Acute Myocardial Infarction Events in an Urban Population: A Correlation Study of Health Problems and Industrial Installation.

    Science.gov (United States)

    Namayande, Motahareh Sadat; Nejadkoorki, Farhad; Namayande, Seyedeh Mahdieh; Dehghan, Hamidreza

    2016-01-01

    The current study's objectives were to find any possible spatial patterns and hotspot of cardiovascular events and to perform a correlation study to find any possible relevance between cardiovascular disease (CVE) and location of industrial installation said above. We used the Acute Myocardial Infarction (AMI) hospital admission record in three main hospitals in Yazd, Yazd Province, Iran during 2013, because of CVDs and searched for possible correlation between industries as point-source pollutants and non-random distribution of AMI events. MI incidence rate in Yazd was obtained 531 per 100,000 person-year among men, 458 per 100,000 person-year among women and 783/100,000 person-yr totally. We applied a GIS Hotspot analysis to determine feasible clusters and two sets of clusters were observed. Mean age of 56 AMI events occurred in the cluster cells was calculated as 62.21±14.75 yr. Age and sex as main confounders of AMI were evaluated in the cluster areas in comparison to other areas. We observed no significant difference regarding sex (59% in cluster cells versus 55% in total for men) and age (62.21±14.7 in cluster cells versus 63.28±13.98 in total for men). We found proximity of AMI events cluster to industries installations, and a steel industry, specifically. There could be an association between road-related pollutants and the observed sets of cluster due to the proximity exist between rather crowded highways nearby the events cluster.

  20. Electrophysiological and psychophysical correlates of spatial summation to noxious heat: the possible role of A-delta fibers.

    Science.gov (United States)

    Granovsky, Y; Raz, N; Defrin, R

    2017-02-01

    Although spatial summation of pain (SSP) is central to the processing of pain intensity and quality, its mechanism is not fully understood. We previously found greater heat SSP in hairy than in glabrous skin, suggesting that perhaps A-mechano-heat II (AMH-II) nociceptors are the dominant subserving system. In order to further explore the role of A-delta fibers in heat-induced SSP, we analyzed the electrophysiological correlates of SSP under conditions that minimize the influence of skin thicknesses. Among 17 subjects, fast rate of rise (70 °C/sec) heat stimuli that induced a pre-fixed, similar, SSP magnitude for hairy and glabrous skin were repeatedly administered using large and small probes, during which time the contact heat-evoked potentials (CHEPs) and pain ratings were recorded. Both N2 and P2 amplitudes were larger in hairy than in glabrous skin, but a differential effect of SSP was found on the CHEPs. Despite similar psychophysical SSP in hairy and glabrous skin, the electrophysiological SSP reflected in N2 but not P2 amplitude was larger in hairy skin. Nevertheless, regardless of skin type, SSP was manifested by an increase in P2 amplitudes. Considering the uniform psychophysical SSP for the two skin types, the fast stimulation rate and lower activity of AMH-II in glabrous skin, a greater electrophysiological SSP in hairy than in glabrous skin may suggest that SSP is mainly subserved by AMH nociceptors. The overall SSP effect, manifested in greater P2 amplitude, may reflect specific brain responses aimed to prepare the individual to an increased potential tissue damage.

  1. Wiener spectral effects of spatial correlation between the sites of characteristic x-ray emission and reabsorption in radiographic screen-film systems

    Energy Technology Data Exchange (ETDEWEB)

    Metz, C E; Vyborny, C J [Chicago Univ., IL (USA). Dept. of Radiology

    1983-05-01

    When characteristic x-rays are generated and reabsorbed in the phosphor of a radiographic screen-film system, the positions at which light is emitted from the initial and secondary interactions are correlated. A simple statistical model is developed to account for the effect of this correlation on the Wiener spectrum of quantum mottle. Unlike previous models, which ignore spatial correlation, the new model predicts that not only noise magnitude but also noise texture is changed as the incident x-ray energy exceeds the phosphor K-edge.

  2. Marine Spatial Planning Applied to the High Seas - Process and Results of an Exercise Focused on the Sargasso Sea

    Science.gov (United States)

    Siuda, A. N.; Smythe, T. C.

    2016-12-01

    The Sargasso Sea, at the center of the North Atlantic gyre, is recognized by the United Nations Convention on Biological Diversity as a globally unique ecosystem threatened by anthropogenic activity. In its stewardship capacity, the Sargasso Sea Commission works within the current system of international organizations and treaties to secure protection for particular species or areas. Without a single governing authority to implement and enforce protective measures across the region, a coordinated management plan for the region is lacking. A research team comprised of 20 advanced undergraduate scientists participating in the spring 2015 SEA Semester: Marine Biodiversity and Conservation program of Sea Education Association (Woods Hole, MA) engaged in a groundbreaking simulated high seas marine spatial planning process resulting in A Marine Management Proposal for the Sargasso Sea. Based on natural and social science research, the interdisciplinary Proposal outlines goals, objectives and realistic strategies that encompass ecological, economic, human use, and future use considerations. Notably, the Proposal is the product of a classroom-based simulation intended to improve emerging scientists' understanding of how research is integrated into the policy process and how organizations work across disciplinary boundaries to address complex ocean management problems. Student researchers identified several discrete management areas and associated policy recommendations for those areas, as well as strategies for coordinated management across the entire Sargasso Sea region. The latter include establishment of a United Nations Regional Ocean Management Organization as well as provisions for monitoring and managing high seas traffic. To make progress toward these strategies, significant attention to the importance of high seas regions for global-scale conservation will be necessary.

  3. Correlation or Limits of Agreement? Applying the Bland-Altman Approach to the Comparison of Cognitive Screening Instruments.

    Science.gov (United States)

    Larner, A J

    2016-01-01

    Calculation of correlation coefficients is often undertaken as a way of comparing different cognitive screening instruments (CSIs). However, test scores may correlate but not agree, and high correlation may mask lack of agreement between scores. The aim of this study was to use the methodology of Bland and Altman to calculate limits of agreement between the scores of selected CSIs and contrast the findings with Pearson's product moment correlation coefficients between the test scores of the same instruments. Datasets from three pragmatic diagnostic accuracy studies which examined the Mini-Mental State Examination (MMSE) vs. the Montreal Cognitive Assessment (MoCA), the MMSE vs. the Mini-Addenbrooke's Cognitive Examination (M-ACE), and the M-ACE vs. the MoCA were analysed to calculate correlation coefficients and limits of agreement between test scores. Although test scores were highly correlated (all >0.8), calculated limits of agreement were broad (all >10 points), and in one case, MMSE vs. M-ACE, was >15 points. Correlation is not agreement. Highly correlated test scores may conceal broad limits of agreement, consistent with the different emphases of different tests with respect to the cognitive domains examined. Routine incorporation of limits of agreement into diagnostic accuracy studies which compare different tests merits consideration, to enable clinicians to judge whether or not their agreement is close. © 2016 S. Karger AG, Basel.

  4. On the spatial and temporal resolution of land cover products for applied use in wind resource mapping

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Badger, Merete; Dellwik, Ebba

    as input for modelling the wind conditions over a Danish near-coastal region. The flow model results were compared to alternative use of USGS land cover. Significant variations in the wind speed were found between the two atmospheric flow model results. Furthermore the wind speed from the flow model...... was compared to meteorological observations taken in a tall mast and from ground based remote-sensing wind profiling lidars. It is shown that simulations using CORINE provide better wind flow results close to the surface as compared to those using USGS on the investigated site. The next step towards...... improvement of flow model inputs is to investigate in further detail applied use of satellite maps in forested areas. 75% of new land-based wind farms are planned in or near forests in Europe. In forested areas the near surface atmospheric flow is more challenging to calculate than in regions with low...

  5. Study of optoelectronic properties of thin film solar cell materials Cu2ZnSn(S,Se)4 using multiple correlative spatially-resolved spectroscopy techniques

    Science.gov (United States)

    Chen, Qiong

    Containing only earth abundant and environmental friendly elements, quaternary compounds Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe 4 (CZTSe) are considered as promising absorber materials for thin film solar cells. The best record efficiency for this type of thin film solar cell is now 12.6%. As a promising photovoltaic (PV) material, the electrical and optical properties of CZTS(Se) have not been well studied. In this work, an effort has been made to understand the optoelectronic and structural properties, in particular the spatial variations, of CZTS(Se) materials and devices by correlating multiple spatially resolved characterization techniques with sub-micron resolution. Micro-Raman (micro-Raman) spectroscopy was used to analyze the chemistry compositions in CZTS(Se) film; Micro-Photoluminescence (micro-PL) was used to determine the band gap and possible defects. Micro-Laser-Beam-Induced-Current (micro-LBIC) was used to examine the photo-response of CZTS(Se) solar cell in different illumination conditions. Micro-reflectance was used to estimate the reflectance loss. And Micro-I-V measurement was used to compare important electrical parameters from CZTS(Se) solar cells with different device structure or absorber compositions. Scanning electron microscopy and atomic force microscopy were used to characterize the surface morphology. Successfully integrating and correlating these techniques was first demonstrated during the course of this work in our laboratory, and this level of integration and correlation has been rare in the field of PV research. This effort is significant not only for this particular project and also for a wide range of research topics. Applying this approach, in conjunction with high-temperature and high-excitation-power optical spectroscopy, we have been able to reveal the microscopic scale variations among samples and devices that appeared to be very similar from macroscopic material and device characterizations, and thus serve as a very powerful tool

  6. Auxiliary variables for the mapping of the drainage network: spatial correlation between relieve units, lithotypes and springs in Benevente River basin-ES

    Directory of Open Access Journals (Sweden)

    Tony Vinicius Moreira Sampaio

    2014-12-01

    Full Text Available Process of the drainage network mapping present methodological limitations re- sulting in inaccurate maps, restricting their use in environmental studies. Such problems demand the realization of long field surveys to verify the error and the search for auxiliary variables to optimize this works and turn possible the analysis of map accuracy. This research aims at the measurement of the correlation be- tween springs, lithotypes and relieve units, characterized by Roughness Concentration Index (RCI in River Basin Benevente-ES, focusing on the operations of map algebra and the use of spatial statistical techniques. These procedures have identified classes of RCI and lithotypes that present the highest and the lowest correlation with the spatial distribution of springs, indicating its potential use as auxiliary variables to verify the map accuracy.

  7. Photon propagation in heterogeneous optical media with spatial correlations: enhanced mean-free-paths and wider-than-exponential free-path distributions

    International Nuclear Information System (INIS)

    Davis, A.B.; Marshak, Alexander

    2004-01-01

    Beer's law of exponential decay in direct transmission is well-known but its break-down in spatially variable optical media has been discussed only sporadically in the literature. We document here this break-down in three-dimensional (3D) media with complete generality and explore its ramifications for photon propagation. We show that effective transmission laws and their associated free-path distributions (FPDs) are in fact never exactly exponential in variable media of any kind. Moreover, if spatial correlations in the extinction field extend at least to the scale of the mean-free-path (MFP), FPDs are necessarily wider-than-exponential in the sense that all higher-order moments of the relevant mean-field FPDs exceed those of the exponential FPD, even if it is tuned to yield the proper MFP. The MFP itself is always larger than the inverse of average extinction in a variable medium. In a vast and important class of spatially-correlated random media, the MFP is indeed the average of the inverse of extinction. We translate these theoretical findings into a practical method for deciding a priori when 3D effects become important. Finally, we discuss an obvious but limited analogy between our analysis of spatial variability and the well-known effects of strong spectral variability in gaseous media when observed or modeled at moderate resolution

  8. An environmental index of noise and light pollution at EU by spatial correlation of quiet and unlit areas.

    Science.gov (United States)

    Votsi, Nefta-Eleftheria P; Kallimanis, Athanasios S; Pantis, Ioannis D

    2017-02-01

    Quietness exists in places without human induced noise sources and could offer multiple benefits to citizens. Unlit areas are sites free of human intense interference at night time. The aim of this research is to develop an integrated environmental index of noise and light pollution. In order to achieve this goal the spatial pattern of quietness and darkness of Europe was identified, as well as their overlap. The environmental index revealed that the spatial patterns of Quiet and Unlit Areas differ to a great extent highlighting the importance of preserving quietness as well as darkness in EU. The spatial overlap of these two environmental characteristics covers 32.06% of EU surface area, which could be considered a feasible threshold for protection. This diurnal and nocturnal metric of environmental quality accompanied with all direct and indirect benefits to human well-being could indicate a target for environmental protection in the EU policy and practices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Application of the Spatial Auto-Correlation Method for Shear-Wave Velocity Studies Using Ambient Noise

    Science.gov (United States)

    Asten, M. W.; Hayashi, K.

    2018-05-01

    Ambient seismic noise or microtremor observations used in spatial auto-correlation (SPAC) array methods consist of a wide frequency range of surface waves from the frequency of about 0.1 Hz to several tens of Hz. The wavelengths (and hence depth sensitivity of such surface waves) allow determination of the site S-wave velocity model from a depth of 1 or 2 m down to a maximum of several kilometres; it is a passive seismic method using only ambient noise as the energy source. Application usually uses a 2D seismic array with a small number of seismometers (generally between 2 and 15) to estimate the phase velocity dispersion curve and hence the S-wave velocity depth profile for the site. A large number of methods have been proposed and used to estimate the dispersion curve; SPAC is the one of the oldest and the most commonly used methods due to its versatility and minimal instrumentation requirements. We show that direct fitting of observed and model SPAC spectra generally gives a superior bandwidth of useable data than does the more common approach of inversion after the intermediate step of constructing an observed dispersion curve. Current case histories demonstrate the method with a range of array types including two-station arrays, L-shaped multi-station arrays, triangular and circular arrays. Array sizes from a few metres to several-km in diameter have been successfully deployed in sites ranging from downtown urban settings to rural and remote desert sites. A fundamental requirement of the method is the ability to average wave propagation over a range of azimuths; this can be achieved with either or both of the wave sources being widely distributed in azimuth, and the use of a 2D array sampling the wave field over a range of azimuths. Several variants of the method extend its applicability to under-sampled data from sparse arrays, the complexity of multiple-mode propagation of energy, and the problem of precise estimation where array geometry departs from an

  10. The intraclass correlation coefficient applied for evaluation of data correction, labeling methods and rectal biopsy sampling in DNA microarray experiments

    NARCIS (Netherlands)

    Pellis, E.P.M.; Franssen-Hal, van N.L.W.; Burema, J.; Keijer, J.

    2003-01-01

    We show that the intraclass correlation coefficient (ICC) can be used as a relatively simple statistical measure to assess methodological and biological variation in DNA microarray analysis. The ICC is a measure that determines the reproducibility of a variable, which can easily be calculated from

  11. MOnthly TEmperature DAtabase of Spain 1951-2010: MOTEDAS (2): The Correlation Decay Distance (CDD) and the spatial variability of maximum and minimum monthly temperature in Spain during (1981-2010).

    Science.gov (United States)

    Cortesi, Nicola; Peña-Angulo, Dhais; Simolo, Claudia; Stepanek, Peter; Brunetti, Michele; Gonzalez-Hidalgo, José Carlos

    2014-05-01

    One of the key point in the develop of the MOTEDAS dataset (see Poster 1 MOTEDAS) in the framework of the HIDROCAES Project (Impactos Hidrológicos del Calentamiento Global en España, Spanish Ministery of Research CGL2011-27574-C02-01) is the reference series for which no generalized metadata exist. In this poster we present an analysis of spatial variability of monthly minimum and maximum temperatures in the conterminous land of Spain (Iberian Peninsula, IP), by using the Correlation Decay Distance function (CDD), with the aim of evaluating, at sub-regional level, the optimal threshold distance between neighbouring stations for producing the set of reference series used in the quality control (see MOTEDAS Poster 1) and the reconstruction (see MOREDAS Poster 3). The CDD analysis for Tmax and Tmin was performed calculating a correlation matrix at monthly scale between 1981-2010 among monthly mean values of maximum (Tmax) and minimum (Tmin) temperature series (with at least 90% of data), free of anomalous data and homogenized (see MOTEDAS Poster 1), obtained from AEMEt archives (National Spanish Meteorological Agency). Monthly anomalies (difference between data and mean 1981-2010) were used to prevent the dominant effect of annual cycle in the CDD annual estimation. For each station, and time scale, the common variance r2 (using the square of Pearson's correlation coefficient) was calculated between all neighbouring temperature series and the relation between r2 and distance was modelled according to the following equation (1): Log (r2ij) = b*°dij (1) being Log(rij2) the common variance between target (i) and neighbouring series (j), dij the distance between them and b the slope of the ordinary least-squares linear regression model applied taking into account only the surrounding stations within a starting radius of 50 km and with a minimum of 5 stations required. Finally, monthly, seasonal and annual CDD values were interpolated using the Ordinary Kriging with a

  12. Time-dependent reduced density matrix functional theory applied to laser-driven, correlated two-electron dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Brics, Martins; Kapoor, Varun; Bauer, Dieter [Institut fuer Physik, Universitaet Rostock, 18051 Rostock (Germany)

    2013-07-01

    Time-dependent density functional theory (TDDFT) with known and practicable exchange-correlation potentials does not capture highly correlated electron dynamics such as single-photon double ionization, autoionization, or nonsequential ionization. Time-dependent reduced density matrix functional theory (TDRDMFT) may remedy these problems. The key ingredients in TDRDMFT are the natural orbitals (NOs), i.e., the eigenfunctions of the one-body reduced density matrix (1-RDM), and the occupation numbers (OCs), i.e., the respective eigenvalues. The two-body reduced density matrix (2-RDM) is then expanded in NOs, and equations of motion for the NOs can be derived. If the expansion coefficients of the 2-RDM were known exactly, the problem at hand would be solved. In practice, approximations have to be made. We study the prospects of TDRDMFT following a top-down approach. We solve the exact two-electron time-dependent Schroedinger equation for a model Helium atom in intense laser fields in order to study highly correlated phenomena such as the population of autoionizing states or single-photon double ionization. From the exact wave function we calculate the exact NOs, OCs, the exact expansion coefficients of the 2-RDM, and the exact potentials in the equations of motion. In that way we can identify how many NOs and which level of approximations are necessary to capture such phenomena.

  13. On the Ergodic Secret-Key Agreement over Spatially Correlated Multiple-Antenna Channels with Public Discussion

    KAUST Repository

    Zorgui, Marwen

    2015-09-28

    We consider secret-key agreement with public discussion over multiple-input multiple-output (MIMO) Rayleigh fast-fading channels under correlated environment. We assume that transmit, legitimate receiver and eavesdropper antennas are correlated. The legitimate receiver and the eavesdropper are assumed to have perfect channel knowledge while the transmitter has only knowledge of the correlation matrices. First, we derive the expression of the secret-key capacity under the considered setup. We prove that the optimal transmit strategy achieving the secret-key capacity consists in transmitting independent Gaussian signals along the eingenvectors of the transmit correlation matrix. The powers allocated to each channel mode are determined as the solution to a numerical optimization problem. A necessary and sufficient condition for beamforming (i.e., transmitting along the strongest channel mode) to be capacity-achieving is derived. Moreover, we analyze the impact of correlation matrices on the system performance. Finally, we study the system’s performance in the two extreme power regimes. In the high-power regime, we provide closed-form expressions of the gain/loss due to correlation. In the low signal-to-noise ratio (SNR) regime, we investigate the energy efficiency of the system by determining the minimum energy required for sharing a secret-key bit and the wideband slope while highlighting the impact of correlation matrices.

  14. A Generalized Spatial Correlation Model for 3D MIMO Channels based on the Fourier Coefficients of Power Spectrums

    KAUST Repository

    Nadeem, Qurrat-Ul-Ain; Kammoun, Abla; Debbah, Merouane; Alouini, Mohamed-Slim

    2015-01-01

    Previous studies have confirmed the adverse impact of fading correlation on the mutual information (MI) of two-dimensional (2D) multiple-input multiple-output (MIMO) systems. More recently, the trend is to enhance the system performance

  15. On the Ergodic Secret-Key Agreement over Spatially Correlated Multiple-Antenna Channels with Public Discussion

    KAUST Repository

    Zorgui, Marwen; Rezki, Zouheir; Alomair, Basel; Jorswieck, Eduard; Alouini, Mohamed-Slim

    2015-01-01

    numerical optimization problem. A necessary and sufficient condition for beamforming (i.e., transmitting along the strongest channel mode) to be capacity-achieving is derived. Moreover, we analyze the impact of correlation matrices on the system performance

  16. Secret-key agreement over spatially correlated fast-fading multiple-antenna channels with public discussion

    KAUST Repository

    Zorgui, Marwen; Rezki, Zouheir; Alomair, Basel; Alouini, Mohamed-Slim

    2015-01-01

    numerical optimization problem that we derive. A necessary and sufficient condition for beamforming (i.e., transmitting along the strongest channel mode) to be capacity-achieving is derived. Finally, we analyze the impact of correlation matrices

  17. Using 3D spatial correlations to improve the noise robustness of multi component analysis of 3D multi echo quantitative T2 relaxometry data.

    Science.gov (United States)

    Kumar, Dushyant; Hariharan, Hari; Faizy, Tobias D; Borchert, Patrick; Siemonsen, Susanne; Fiehler, Jens; Reddy, Ravinder; Sedlacik, Jan

    2018-05-12

    We present a computationally feasible and iterative multi-voxel spatially regularized algorithm for myelin water fraction (MWF) reconstruction. This method utilizes 3D spatial correlations present in anatomical/pathological tissues and underlying B1 + -inhomogeneity or flip angle inhomogeneity to enhance the noise robustness of the reconstruction while intrinsically accounting for stimulated echo contributions using T2-distribution data alone. Simulated data and in vivo data acquired using 3D non-selective multi-echo spin echo (3DNS-MESE) were used to compare the reconstruction quality of the proposed approach against those of the popular algorithm (the method by Prasloski et al.) and our previously proposed 2D multi-slice spatial regularization spatial regularization approach. We also investigated whether the inter-sequence correlations and agreements improved as a result of the proposed approach. MWF-quantifications from two sequences, 3DNS-MESE vs 3DNS-gradient and spin echo (3DNS-GRASE), were compared for both reconstruction approaches to assess correlations and agreements between inter-sequence MWF-value pairs. MWF values from whole-brain data of six volunteers and two multiple sclerosis patients are being reported as well. In comparison with competing approaches such as Prasloski's method or our previously proposed 2D multi-slice spatial regularization method, the proposed method showed better agreements with simulated truths using regression analyses and Bland-Altman analyses. For 3DNS-MESE data, MWF-maps reconstructed using the proposed algorithm provided better depictions of white matter structures in subcortical areas adjoining gray matter which agreed more closely with corresponding contrasts on T2-weighted images than MWF-maps reconstructed with the method by Prasloski et al. We also achieved a higher level of correlations and agreements between inter-sequence (3DNS-MESE vs 3DNS-GRASE) MWF-value pairs. The proposed algorithm provides more noise

  18. Correlation of propagation characteristics of solar cosmic rays detected onboard the spatially separated space probes Mars-7 and Prognoz-3

    International Nuclear Information System (INIS)

    Gombosi, T.; Somogyi, A.J.; Kolesov, G.Ya.; Kurt, V.G.; Kuzhevskii, B.M.; Logachev, Yu.I.; Savenko, I.A.

    1977-01-01

    Solar flare generated particle fluxes during the period 3-5 November, 1973 are analysed using the data of the Mars 7 and Prognoz-3 spacecrafts. The intensity profiles registrated onboard these satellites were quite similar, although the space probes were spatially separated by 0.3 AU. The general characteristics of the event can well be understood in terms of the effect of a corotating streat-stream interaction region on the general behaviour of energetic charged particles. (author)

  19. Secret-key agreement over spatially correlated fast-fading multiple-antenna channels with public discussion

    KAUST Repository

    Zorgui, Marwen

    2015-06-14

    We consider secret-key agreement with public discussion over multiple-input multiple-output (MIMO) Rayleigh fast-fading channels under correlated environment. We assume that transmit, legitimate receiver and eavesdropper antennas are correlated. The legitimate receiver and the eavesdropper are assumed to have perfect channel knowledge while the transmitter has only knowledge of the correlation matrices. First, we derive the expression of the secret-key capacity under the considered setup. Then, we prove that the optimal transmit strategy achieving the secret-key capacity consists in transmitting independent Gaussian signals along the eingenvectors of the transmit correlation matrix. The powers allocated to each channel mode are determined as the solution to a numerical optimization problem that we derive. A necessary and sufficient condition for beamforming (i.e., transmitting along the strongest channel mode) to be capacity-achieving is derived. Finally, we analyze the impact of correlation matrices on the system performance and provide closed-form expressions of the gain/loss due to correlation in the high power regime.

  20. Correlation theory applied to the static and dynamic properties of EuO and EuS

    International Nuclear Information System (INIS)

    Lindgard, P.A.

    1981-10-01

    The paramagnetic scattering was recently measured for EuO. It was found that spin-wave-like excitations develop for wave vectors approaching the zone boundary. The spectrum was found to be well described by damped harmonic oscillators (also called the two-pole-approximation). This approximation was used previously in the correlation theory primarily to calculate static properties. Selfconsistent dynamic and static calculations have been performed for EuO, which is an ideal Heisenberg magnet with significant second nearest neighbor interaction (J 2 = J/sub 1/5). The two-pole approximation describes accurately the correlation range, the static susceptibility and the qualitative behavior of the dynamic properties (i.e., the wave vector at which peaks appear in the spectrum as a function of temperature). However, in order to also obtain the correct frequency scale it is necessary to use a cut-off of the spectrum at high frequencies, which cannot be seen experimentally, but which significantly influences the frequency moments. It was found that the finite J 2 has significant importance for a comparison between theory and experiment. It is concluded that the calculation for a simple cubic n.n. magnet by Hubbard does not describe the EuO data accurately, neither with respect to lineshape nor frequency scale. Significant differences are to be expected between EuO and EuS having opposite sign for J 2

  1. Quantitative HRMAS proton total correlation spectroscopy applied to cultured melanoma cells treated by chloroethyl nitrosourea: demonstration of phospholipid metabolism alterations.

    Science.gov (United States)

    Morvan, Daniel; Demidem, Aicha; Papon, Janine; Madelmont, Jean Claude

    2003-02-01

    Recent NMR spectroscopy developments, such as high-resolution magic angle spinning (HRMAS) probes and correlation-enhanced 2D sequences, now allow improved investigations of phospholipid (Plp) metabolism. Using these modalities we previously demonstrated that a mouse-bearing melanoma tumor responded to chloroethyl nitrosourea (CENU) treatment in vivo by altering its Plp metabolism. The aims of the present study were to investigate whether HRMAS proton total correlation spectroscopy (TOCSY) could be used as a quantitative technique to probe Plp metabolism, and to determine the Plp metabolism response of cultured B16 melanoma cells to CENU treatment in vitro. The exploited TOCSY signals of Plp derivatives arose from scalar coupling among the protons of neighbor methylene groups within base headgroups (choline and ethanolamine). For strongly expressed Plp derivatives, TOCSY signals were compared to saturation recovery signals and demonstrated a linear relationship. HRMAS proton TOCSY was thus used to provide concentrations of Plp derivatives during long-term follow-up of CENU-treated cell cultures. Strong Plp metabolism alteration was observed in treated cultured cells in vitro involving a down-regulation of phosphocholine, and a dramatic and irreversible increase of phosphoethanolamine. These findings are discussed in relation to previous in vivo data, and to Plp metabolism enzymatic involvement. Copyright 2003 Wiley-Liss, Inc.

  2. Latent spatial models and sampling design for landscape genetics

    Science.gov (United States)

    Hanks, Ephraim M.; Hooten, Mevin B.; Knick, Steven T.; Oyler-McCance, Sara J.; Fike, Jennifer A.; Cross, Todd B.; Schwartz, Michael K.

    2016-01-01

    We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial random effect to allow for spatial correlation between genetic observations. We illustrate how modern dimension reduction approaches to spatial statistics can allow for efficient computation in landscape genetic statistical models covering large spatial domains. We apply our approach to propose a retrospective spatial sampling design for greater sage-grouse (Centrocercus urophasianus) population genetics in the western United States.

  3. Correlation Theory Applied to the Static and Dynamic Properties of EuO and EuS

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1982-01-01

    was used previously in the correlation theory2) primarily to calculate static properties. Self‐consistent dynamic and static calculations have here been performed for EuO, which is an ideal Heisenberg magnet with significant second‐nearest‐neighbor interaction (J2 = J1/5). The two‐pole approximation...... a cutoff of the spectrum at high frequencies, which cannot be seen experimentally, but which significantly influences the frequency moments. It was found that the finite J2 has significant importance for a comparison between theory and experiment. It is concluded that the calculation for a simple cubic n.......n. magnet by Hubbard3) does not describe the EuO data accurately, neither with respect to line shape nor frequency scale. Significant differences are to be expected between EuO and EuS having opposite sign for J2....

  4. A study on the spatial characteristics and correlation of migrant workers' urban integration and well-being: A case study of Xi’an (China)

    Science.gov (United States)

    Wang, D. H.; Yang, X. J.; Hao, F. J.

    2017-07-01

    This paper used SPSS and ARCGIS to measure the urban integration degree and well-being index, spatial features, and their correlation. This results show: (1) The space differentiation of migrant workers’ urban integration degree in Xi’an distinct: The northern great site protection zone area is low, eastern military area is peak and the western electronic district and southwest high-tech zone are second peak areas. (2) Migrant workers’ well-being index has differentiation spatial distribution: eastern military area is significantly higher than other regions, northern economic zone shows low-lying shape, southern cultural and educational area is higher than northern economic development zone, and central business district is higher than the surrounding. (3) As the result of correlation analysis in SPSS 19.0, it is shown that there is certain positive correlation between urban integration degree and well-being index of migrant workers in main urban districts of Xi’an. Economic integration and social integration have positive prediction to well-being.

  5. Evaluating the effect of sampling and spatial correlation on ground-water travel time uncertainty coupling geostatistical, stochastic, and first order, second moment methods

    International Nuclear Information System (INIS)

    Andrews, R.W.; LaVenue, A.M.; McNeish, J.A.

    1989-01-01

    Ground-water travel time predictions at potential high-level waste repositories are subject to a degree of uncertainty due to the scale of averaging incorporated in conceptual models of the ground-water flow regime as well as the lack of data on the spatial variability of the hydrogeologic parameters. The present study describes the effect of limited observations of a spatially correlated permeability field on the predicted ground-water travel time uncertainty. Varying permeability correlation lengths have been used to investigate the importance of this geostatistical property on the tails of the travel time distribution. This study uses both geostatistical and differential analysis techniques. Following the generation of a spatially correlated permeability field which is considered reality, semivariogram analyses are performed upon small random subsets of the generated field to determine the geostatistical properties of the field represented by the observations. Kriging is then employed to generate a kriged permeability field and the corresponding standard deviation of the estimated field conditioned by the limited observations. Using both the real and kriged fields, the ground-water flow regime is simulated and ground-water travel paths and travel times are determined for various starting points. These results are used to define the ground-water travel time uncertainty due to path variability. The variance of the ground-water travel time along particular paths due to the variance of the permeability field estimated using kriging is then calculated using the first order, second moment method. The uncertainties in predicted travel time due to path and parameter uncertainties are then combined into a single distribution

  6. Secret-key agreement over spatially correlated multiple-antenna channels in the low-SNR regime

    KAUST Repository

    Zorgui, Marwen; Rezki, Zouheir; Alomair, Basel; Jorswieck, Eduard A.; Alouini, Mohamed-Slim

    2015-01-01

    We consider secret-key agreement with public discussion over Rayleigh fast-fading channels with transmit, receive and eavesdropper correlation. The legitimate receiver along with the eavesdropper are assumed to have perfect channel knowledge while the transmitter has only knowledge of the correlation matrices. We analyze the secret-key capacity in the low signal-to-noise ratio (SNR) regime. We derive closed-form expressions for the first and the second derivatives of the secret-key capacity with respect to SNR at SNR= 0, for arbitrary correlation matrices and number of transmit, receive and eavesdropper antennas. Moreover, we identify optimal transmission strategies achieving these derivatives. For instance, we prove that achieving the first and the second derivatives requires a uniform power distribution between the eigenvectors spanning the maximal-eigenvalue eigenspace of the transmit correlation matrix. We also compare the optimal transmission scheme to a simple uniform power allocation. Finally, we express the minimum energy required for sharing a secret-key bit as well as the wideband slope in terms of the system parameters.

  7. Secret-key agreement over spatially correlated multiple-antenna channels in the low-SNR regime

    KAUST Repository

    Zorgui, Marwen

    2015-09-28

    We consider secret-key agreement with public discussion over Rayleigh fast-fading channels with transmit, receive and eavesdropper correlation. The legitimate receiver along with the eavesdropper are assumed to have perfect channel knowledge while the transmitter has only knowledge of the correlation matrices. We analyze the secret-key capacity in the low signal-to-noise ratio (SNR) regime. We derive closed-form expressions for the first and the second derivatives of the secret-key capacity with respect to SNR at SNR= 0, for arbitrary correlation matrices and number of transmit, receive and eavesdropper antennas. Moreover, we identify optimal transmission strategies achieving these derivatives. For instance, we prove that achieving the first and the second derivatives requires a uniform power distribution between the eigenvectors spanning the maximal-eigenvalue eigenspace of the transmit correlation matrix. We also compare the optimal transmission scheme to a simple uniform power allocation. Finally, we express the minimum energy required for sharing a secret-key bit as well as the wideband slope in terms of the system parameters.

  8. Spatial clustering and halo occupation distribution modelling of local AGN via cross-correlation measurements with 2MASS galaxies

    Science.gov (United States)

    Krumpe, Mirko; Miyaji, Takamitsu; Coil, Alison L.; Aceves, Hector

    2018-02-01

    We present the clustering properties and halo occupation distribution (HOD) modelling of very low redshift, hard X-ray-detected active galactic nuclei (AGN) using cross-correlation function measurements with Two-Micron All Sky Survey galaxies. Spanning a redshift range of 0.007 2MASS galaxies.

  9. Quantifying the correlation between spatially defined oxygen gradients and cell fate in an engineered three-dimensional culture model.

    Science.gov (United States)

    Ardakani, Amir G; Cheema, Umber; Brown, Robert A; Shipley, Rebecca J

    2014-09-06

    A challenge in three-dimensional tissue culture remains the lack of quantitative information linking nutrient delivery and cellular distribution. Both in vivo and in vitro, oxygen is delivered by diffusion from its source (blood vessel or the construct margins). The oxygen level at a defined distance from its source depends critically on the balance of diffusion and cellular metabolism. Cells may respond to this oxygen environment through proliferation, death and chemotaxis, resulting in spatially resolved gradients in cellular density. This study extracts novel spatially resolved and simultaneous data on tissue oxygenation, cellular proliferation, viability and chemotaxis in three-dimensional spiralled, cellular collagen constructs. Oxygen concentration gradients drove preferential cellular proliferation rates and viability in the higher oxygen zones and induced chemotaxis along the spiral of the collagen construct; an oxygen gradient of 1.03 mmHg mm(-1) in the spiral direction induced a mean migratory speed of 1015 μm day(-1). Although this movement was modest, it was effective in balancing the system to a stable cell density distribution, and provided insights into the natural cell mechanism for adapting cell number and activity to a prevailing oxygen regime.

  10. Two-dimensional correlation infrared spectroscopy applied to analyzing and identifying the extracts of Baeckea frutescens medicinal materials.

    Science.gov (United States)

    Adib, Adiana Mohamed; Jamaludin, Fadzureena; Kiong, Ling Sui; Hashim, Nuziah; Abdullah, Zunoliza

    2014-08-05

    Baeckea frutescens or locally known as Cucur atap is used as antibacterial, antidysentery, antipyretic and diuretic agent. In Malaysia and Indonesia, they are used as an ingredient of the traditional medicine given to mothers during confinement. A three-steps infra-red (IR) macro-fingerprinting method combining conventional IR spectra, and the secondary derivative spectra with two dimensional infrared correlation spectroscopy (2D-IR) have been proved to be effective methods to examine a complicated mixture such as herbal medicines. This study investigated the feasibility of employing multi-steps IR spectroscopy in order to study the main constituents of B. frutescens and its different extracts (extracted by chloroform, ethyl acetate, methanol and aqueous in turn). The findings indicated that FT-IR and 2D-IR can provide many holistic variation rules of chemical constituents. The structural information of the samples indicated that B. frutescens and its extracts contain a large amount of flavonoids, since some characteristic absorption peaks of flavonoids, such as ∼1600cm(-1), ∼1500cm(-1), ∼1450cm(-1), and ∼1270cm(-1) can be observed. The macroscopical fingerprint characters of FT-IR and 2D-IR spectra can not only provide the information of main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. In conclusion, the multi-steps IR macro-fingerprint method is rapid, effective, visual and accurate for pharmaceutical research. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. A High-Resolution Study of Hippocampal and Medial Temporal Lobe Correlates of Spatial Context and Prospective Overlapping Route Memory

    Science.gov (United States)

    Brown, Thackery I.; Hasselmo, Michael E.; Stern, Chantal E.

    2015-01-01

    When navigating our world we often first plan or retrieve an ideal route to our goal, avoiding alternative paths that lead to other destinations. The medial temporal lobe (MTL) has been implicated in processing contextual information, sequence memory, and uniquely retrieving routes that overlap or “cross paths.” However, the identity of subregions of the hippocampus and neighboring cortex that support these functions in humans remains unclear. The present study used high-resolution functional magnetic resonance imaging (hr-fMRI) in humans to test whether the CA3/DG hippocampal subfield and para-hippocampal cortex are important for processing spatial context and route retrieval, and whether the CA1 subfield facilitates prospective planning of mazes that must be distinguished from alternative overlapping routes. During hr-fMRI scanning, participants navigated virtual mazes that were well-learned from prior training while also learning new mazes. Some routes learned during scanning shared hallways with those learned during pre-scan training, requiring participants to select between alternative paths. Critically, each maze began with a distinct spatial contextual Cue period. Our analysis targeted activity from the Cue period, during which participants identified the current navigational episode, facilitating retrieval of upcoming route components and distinguishing mazes that overlap. Results demonstrated that multiple MTL regions were predominantly active for the contextual Cue period of the task, with specific regions of CA3/DG, parahippocampal cortex, and perirhinal cortex being consistently recruited across trials for Cue periods of both novel and familiar mazes. During early trials of the task, both CA3/DG and CA1 were more active for overlapping than non-overlapping Cue periods. Trial-by-trial Cue period responses in CA1 tracked subsequent overlapping maze performance across runs. Together, our findings provide novel insight into the contributions of MTL

  12. On the performance of dual-hop systems with multiple antennas: Effects of spatial correlation, keyhole, and co-channel interference

    KAUST Repository

    Yang, Liang

    2012-12-01

    In this paper, taking into account realistic propagation conditions, namely, spatial correlation, keyhole channels, and unequal-power co-channel interference, we investigate the performance of a wireless relay network where all the nodes are equipped with multiple antennas. Considering channel state information assisted amplify-and-forward protocol, we present analytical expressions for the symbol error rate (SER) and outage probability. More specifically, we first derive the SER expressions of a relay system with orthogonal space-time block coding (OSTBC) over correlated/keyhole fading channels. We also analyze the outage probability of interference corrupted relay systems with maximal ratio combing (MRC) at the receiver as well as multiple-input multiple-output MRC (MIMO MRC). Numerical results are given to illustrate and verify the analytical results. © 2012 IEEE.

  13. On the performance of dual-hop systems with multiple antennas: Effects of spatial correlation, keyhole, and co-channel interference

    KAUST Repository

    Yang, Liang; Alouini, Mohamed-Slim; Qaraqe, Khalid A.; Liu, Weiping

    2012-01-01

    In this paper, taking into account realistic propagation conditions, namely, spatial correlation, keyhole channels, and unequal-power co-channel interference, we investigate the performance of a wireless relay network where all the nodes are equipped with multiple antennas. Considering channel state information assisted amplify-and-forward protocol, we present analytical expressions for the symbol error rate (SER) and outage probability. More specifically, we first derive the SER expressions of a relay system with orthogonal space-time block coding (OSTBC) over correlated/keyhole fading channels. We also analyze the outage probability of interference corrupted relay systems with maximal ratio combing (MRC) at the receiver as well as multiple-input multiple-output MRC (MIMO MRC). Numerical results are given to illustrate and verify the analytical results. © 2012 IEEE.

  14. Effect of resource spatial correlation and hunter-fisher-gatherer mobility on social cooperation in Tierra del Fuego.

    Directory of Open Access Journals (Sweden)

    José Ignacio Santos

    Full Text Available This article presents an agent-based model designed to explore the development of cooperation in hunter-fisher-gatherer societies that face a dilemma of sharing an unpredictable resource that is randomly distributed in space. The model is a stylised abstraction of the Yamana society, which inhabited the channels and islands of the southernmost part of Tierra del Fuego (Argentina-Chile. According to ethnographic sources, the Yamana developed cooperative behaviour supported by an indirect reciprocity mechanism: whenever someone found an extraordinary confluence of resources, such as a beached whale, they would use smoke signals to announce their find, bringing people together to share food and exchange different types of social capital. The model provides insight on how the spatial concentration of beachings and agents' movements in the space can influence cooperation. We conclude that the emergence of informal and dynamic communities that operate as a vigilance network preserves cooperation and makes defection very costly.

  15. Correlated continuous time random walks: combining scale-invariance with long-range memory for spatial and temporal dynamics

    International Nuclear Information System (INIS)

    Schulz, Johannes H P; Chechkin, Aleksei V; Metzler, Ralf

    2013-01-01

    Standard continuous time random walk (CTRW) models are renewal processes in the sense that at each jump a new, independent pair of jump length and waiting time are chosen. Globally, anomalous diffusion emerges through scale-free forms of the jump length and/or waiting time distributions by virtue of the generalized central limit theorem. Here we present a modified version of recently proposed correlated CTRW processes, where we incorporate a power-law correlated noise on the level of both jump length and waiting time dynamics. We obtain a very general stochastic model, that encompasses key features of several paradigmatic models of anomalous diffusion: discontinuous, scale-free displacements as in Lévy flights, scale-free waiting times as in subdiffusive CTRWs, and the long-range temporal correlations of fractional Brownian motion (FBM). We derive the exact solutions for the single-time probability density functions and extract the scaling behaviours. Interestingly, we find that different combinations of the model parameters lead to indistinguishable shapes of the emerging probability density functions and identical scaling laws. Our model will be useful for describing recent experimental single particle tracking data that feature a combination of CTRW and FBM properties. (paper)

  16. Collaborative Approaches to Increase the Utility of Spatial Data for the Wildfire Management Community Through NASA's Applied Remote Sensing Training Program

    Science.gov (United States)

    McCullum, A. J. K.; Schmidt, C.; Blevins, B.; Weber, K.; Schnase, J. L.; Carroll, M.; Prados, A. I.

    2015-12-01

    The utility of spatial data products and tools to assess risk and effectively manage wildfires has increased, highlighting the need for communicating information about these new capabilities to decision makers, resource managers, and community leaders. NASA's Applied Remote Sensing Training (ARSET) program works directly with agencies and policy makers to develop in-person and online training courses that teach end users how to access, visualize, and apply NASA Earth Science data in their profession. The expansion of ARSET into wildfire applications began in 2015 with a webinar and subsequent in-person training hosted in collaboration with Idaho State University's (ISU) GIS Training and Research Center (TReC). These trainings featured presentations from the USDA Forest Service's Remote Sensing Training and Applications Center, the Land Processes DAAC, Northwest Nazarene University, NASA Goddard Space Flight Center, and ISU's GIS TReC. The webinar focused on providing land managers, non-governmental organizations, and international management agencies with an overview of 1) remote sensing platforms for wildfire applications, 2) products for pre- and post-fire planning and assessment, 3) the use of terrain data, 4) new techniques and technologies such as Unmanned Aircraft Systems and the Soil Moisture Active Passive Mission (SMAP), and 5) the RECOVER Decision Support System. This training highlighted online tools that engage the wildfire community through collaborative monitoring and assessment efforts. Webinar attendance included 278 participants from 178 organizations in 42 countries and 33 US states. The majority of respondents (93%) from a post-webinar survey indicated they displayed improvement in their understanding of specific remote-sensing data products appropriate for their work needs. With collaborative efforts between federal, state, and local agencies and academic institutions, increased use of NASA Earth Observations may lead to improved near real

  17. Improving correlations between MODIS aerosol optical thickness and ground-based PM 2.5 observations through 3D spatial analyses

    Science.gov (United States)

    Hutchison, Keith D.; Faruqui, Shazia J.; Smith, Solar

    The Center for Space Research (CSR) continues to focus on developing methods to improve correlations between satellite-based aerosol optical thickness (AOT) values and ground-based, air pollution observations made at continuous ambient monitoring sites (CAMS) operated by the Texas commission on environmental quality (TCEQ). Strong correlations and improved understanding of the relationships between satellite and ground observations are needed to formulate reliable real-time predictions of air quality using data accessed from the moderate resolution imaging spectroradiometer (MODIS) at the CSR direct-broadcast ground station. In this paper, improvements in these correlations are demonstrated first as a result of the evolution in the MODIS retrieval algorithms. Further improvement is then shown using procedures that compensate for differences in horizontal spatial scales between the nominal 10-km MODIS AOT products and CAMS point measurements. Finally, airborne light detection and ranging (lidar) observations, collected during the Texas Air Quality Study of 2000, are used to examine aerosol profile concentrations, which may vary greatly between aerosol classes as a result of the sources, chemical composition, and meteorological conditions that govern transport processes. Further improvement in correlations is demonstrated with this limited dataset using insights into aerosol profile information inferred from the vertical motion vectors in a trajectory-based forecast model. Analyses are ongoing to verify these procedures on a variety of aerosol classes using data collected by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (Calipso) lidar.

  18. World wide spatial capital.

    Science.gov (United States)

    Sen, Rijurekha; Quercia, Daniele

    2018-01-01

    In its most basic form, the spatial capital of a neighborhood entails that most aspects of daily life are located close at hand. Urban planning researchers have widely recognized its importance, not least because it can be transformed in other forms of capital such as economical capital (e.g., house prices, retail sales) and social capital (e.g., neighborhood cohesion). Researchers have already studied spatial capital from official city data. Their work led to important planning decisions, yet it also relied on data that is costly to create and update, and produced metrics that are difficult to compare across cities. By contrast, we propose to measure spatial capital in cheap and standardized ways around the world. Hence the name of our project "World Wide Spatial Capital". Our measures are cheap as they rely on the most basic information about a city that is currently available on the Web (i.e., which amenities are available and where). They are also standardized because they can be applied in any city in the five continents (as opposed to previous metrics that were mainly applied in USA and UK). We show that, upon these metrics, one could produce insights at the core of the urban planning discipline: which areas would benefit the most from urban interventions; how to inform planning depending on whether a city's activity is mono- or poly-centric; how different cities fare against each other; and how spatial capital correlates with other urban characteristics such as mobility patterns and road network structure.

  19. Correlation between spatial (3D) structure of pea and bean thylakoid membranes and arrangement of chlorophyll-protein complexes.

    Science.gov (United States)

    Rumak, Izabela; Mazur, Radosław; Gieczewska, Katarzyna; Kozioł-Lipińska, Joanna; Kierdaszuk, Borys; Michalski, Wojtek P; Shiell, Brian J; Venema, Jan Henk; Vredenberg, Wim J; Mostowska, Agnieszka; Garstka, Maciej

    2012-05-25

    The thylakoid system in plant chloroplasts is organized into two distinct domains: grana arranged in stacks of appressed membranes and non-appressed membranes consisting of stroma thylakoids and margins of granal stacks. It is argued that the reason for the development of appressed membranes in plants is that their photosynthetic apparatus need to cope with and survive ever-changing environmental conditions. It is not known however, why different plant species have different arrangements of grana within their chloroplasts. It is important to elucidate whether a different arrangement and distribution of appressed and non-appressed thylakoids in chloroplasts are linked with different qualitative and/or quantitative organization of chlorophyll-protein (CP) complexes in the thylakoid membranes and whether this arrangement influences the photosynthetic efficiency. Our results from TEM and in situ CLSM strongly indicate the existence of different arrangements of pea and bean thylakoid membranes. In pea, larger appressed thylakoids are regularly arranged within chloroplasts as uniformly distributed red fluorescent bodies, while irregular appressed thylakoid membranes within bean chloroplasts correspond to smaller and less distinguished fluorescent areas in CLSM images. 3D models of pea chloroplasts show a distinct spatial separation of stacked thylakoids from stromal spaces whereas spatial division of stroma and thylakoid areas in bean chloroplasts are more complex. Structural differences influenced the PSII photochemistry, however without significant changes in photosynthetic efficiency. Qualitative and quantitative analysis of chlorophyll-protein complexes as well as spectroscopic investigations indicated a similar proportion between PSI and PSII core complexes in pea and bean thylakoids, but higher abundance of LHCII antenna in pea ones. Furthermore, distinct differences in size and arrangements of LHCII-PSII and LHCI-PSI supercomplexes between species are suggested

  20. The neural correlates of visuo-spatial working memory in children with autism spectrum disorder: effects of cognitive load.

    Science.gov (United States)

    Vogan, Vanessa M; Morgan, Benjamin R; Lee, Wayne; Powell, Tamara L; Smith, Mary Lou; Taylor, Margot J

    2014-01-01

    Research on the neural bases of cognitive deficits in autism spectrum disorder (ASD) has shown that working memory (WM) difficulties are associated with abnormalities in the prefrontal cortex. However, cognitive load impacts these findings, and no studies have examined the relation between WM load and neural underpinnings in children with ASD. Thus, the current study determined the effects of cognitive load on WM, using a visuo-spatial WM capacity task in children with and without ASD with functional magnetic resonance imaging (fMRI). We used fMRI and a 1-back colour matching task (CMT) task with four levels of difficulty to compare the cortical activation patterns associated with WM in children (7-13 years old) with high functioning autism (N = 19) and matched controls (N = 17) across cognitive load. Performance on CMT was comparable between groups, with the exception of one difficulty level. Using linear trend analyses, the control group showed increasing activation as a function of difficulty level in frontal and parietal lobes, particularly between the highest difficulty levels, and decreasing activation as a function of difficulty level in the posterior cingulate and medial frontal gyri. In contrast, children with ASD showed increasing activation only in posterior brain regions and decreasing activation in the posterior cingulate and medial frontal gyri, as a function of difficulty level. Significant differences were found in the precuneus, dorsolateral prefrontal cortex and medial premotor cortex, where control children showed greater positive linear relations between cortical activity and task difficulty level, particularly at the highest difficulty levels, but children with ASD did not show these trends. Children with ASD showed differences in activation in the frontal and parietal lobes-both critical substrates for visuo-spatial WM. Our data suggest that children with ASD rely mainly on posterior brain regions associated with visual and lower level

  1. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task.

    Science.gov (United States)

    Doricchi, Fabrizio; Macci, Enrica; Silvetti, Massimo; Macaluso, Emiliano

    2010-07-01

    Voluntary orienting of visual attention is conventionally measured in tasks with predictive central cues followed by frequent valid targets at the cued location and by infrequent invalid targets at the uncued location. This implies that invalid targets entail both spatial reorienting of attention and breaching of the expected spatial congruency between cues and targets. Here, we used event-related functional magnetic resonance imaging (fMRI) to separate the neural correlates of the spatial and expectancy components of both endogenous orienting and stimulus-driven reorienting of attention. We found that during endogenous orienting with predictive cues, there was a significant deactivation of the right Temporal-Parietal Junction (TPJ). We also discovered that the lack of an equivalent deactivation with nonpredictive cues was matched to drop in attentional costs and preservation of attentional benefits. The right TPJ showed equivalent responses to invalid targets following predictive and nonpredictive cues. On the contrary, infrequent-unexpected invalid targets following predictive cues specifically activated the right Middle and Inferior Frontal Gyrus (MFG-IFG). Additional comparisons with spatially neutral trials demonstrated that, independently of cue predictiveness, valid targets activate the left TPJ, whereas invalid targets activate both the left and right TPJs. These findings show that the selective right TPJ activation that is found in the comparison between invalid and valid trials results from the reciprocal cancelling of the different activations that in the left TPJ are related to the processing of valid and invalid targets. We propose that left and right TPJs provide "matching and mismatching to attentional template" signals. These signals enable reorienting of attention and play a crucial role in the updating of the statistical contingency between cues and targets.

  2. Spatial Correlations of Anomaly Time Series of AIRS Version-6 Land Surface Skin Temperatures with the Nino-4 Index

    Science.gov (United States)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2013-01-01

    The AIRS Science Team Version-6 data set is a valuable resource for meteorological studies. Quality Controlled earth's surface skin temperatures are produced on a 45 km x 45 km spatial scale under most cloud cover conditions. The same retrieval algorithm is used for all surface types under all conditions. This study used eleven years of AIRS monthly mean surface skin temperature and cloud cover products to show that land surface skin temperatures have decreased significantly in some areas and increased significantly in other areas over the period September 2002 through August 2013. These changes occurred primarily at 1:30 PM but not at 1:30 AM. Cooling land areas contained corresponding increases in cloud cover over this time period, with the reverse being true for warming land areas. The cloud cover anomaly patterns for a given month are affected significantly by El Nino/La Nina activity, and anomalies in cloud cover are a driving force behind anomalies in land surface skin temperature.

  3. Hierarchical structure of genetic distances: Effects of matrix size, spatial distribution and correlation structure among gene frequencies

    Directory of Open Access Journals (Sweden)

    Flávia Melo Rodrigues

    1998-06-01

    Full Text Available Geographic structure of genetic distances among local populations within species, based on allozyme data, has usually been evaluated by estimating genetic distances clustered with hierarchical algorithms, such as the unweighted pair-group method by arithmetic averages (UPGMA. The distortion produced in the clustering process is estimated by the cophenetic correlation coefficient. This hierarchical approach, however, can fail to produce an accurate representation of genetic distances among populations in a low dimensional space, especially when continuous (clinal or reticulate patterns of variation exist. In the present study, we analyzed 50 genetic distance matrices from the literature, for animal taxa ranging from Platyhelminthes to Mammalia, in order to determine in which situations the UPGMA is useful to understand patterns of genetic variation among populations. The cophenetic correlation coefficients, derived from UPGMA based on three types of genetic distance coefficients, were correlated with other parameters of each matrix, including number of populations, loci, alleles, maximum geographic distance among populations, relative magnitude of the first eigenvalue of covariance matrix among alleles and logarithm of body size. Most cophenetic correlations were higher than 0.80, and the highest values appeared for Nei's and Rogers' genetic distances. The relationship between cophenetic correlation coefficients and the other parameters analyzed was defined by an "envelope space", forming triangles in which higher values of cophenetic correlations are found for higher values in the parameters, though low values do not necessarily correspond to high cophenetic correlations. We concluded that UPGMA is useful to describe genetic distances based on large distance matrices (both in terms of elevated number of populations or alleles, when dimensionality of the system is low (matrices with large first eigenvalues or when local populations are separated

  4. Field signatures of non-Fickian transport processes: transit time distributions, spatial correlations, reversibility and hydrogeophysical imaging

    Science.gov (United States)

    Le Borgne, T.; Kang, P. K.; Guihéneuf, N.; Shakas, A.; Bour, O.; Linde, N.; Dentz, M.

    2015-12-01

    Non-Fickian transport phenomena are observed in a wide range of scales across hydrological systems. They are generally manifested by a broad range of transit time distributions, as measured for instance in tracer breakthrough curves. However, similar transit time distributions may be caused by different origins, including broad velocity distributions, flow channeling or diffusive mass transfer [1,2]. The identification of these processes is critical for defining relevant transport models. How can we distinguish the different origins of non-Fickian transport in the field? In this presentation, we will review recent experimental developments to decipher the different causes of anomalous transport, based on tracer tests performed at different scales in cross borehole and push pull conditions, and time lapse hydrogeophysical imaging of tracer motion [3,4]. References:[1] de Anna-, P., T. Le Borgne, M. Dentz, A. M. Tartakovsky, D. Bolster, P. Davy (2013) Flow Intermittency, Dispersion and Correlated Continuous Time Random Walks in Porous Media, Phys. Rev. Lett., 110, 184502 [2] Le Borgne T., Dentz M., and Carrera J. (2008) Lagrangian Statistical Model for Transport in Highly Heterogeneous Velocity Fields. Phys. Rev. Lett. 101, 090601 [3] Kang, P. K., T. Le Borgne, M. Dentz, O. Bour, and R. Juanes (2015), Impact of velocity correlation and distribution on transport in fractured media : Field evidence and theoretical model, Water Resour. Res., 51, 940-959 [4] Dorn C., Linde N., Le Borgne T., O. Bour and L. Baron (2011) Single-hole GPR reflection imaging of solute transport in a granitic aquifer Geophys. Res. Lett. Vol.38, L08401

  5. Applying standardized uptake values in gallium-67-citrate single-photon emission computed tomography/computed tomography studies and their correlation with blood test results in representative organs.

    Science.gov (United States)

    Toriihara, Akira; Daisaki, Hiromitsu; Yamaguchi, Akihiro; Yoshida, Katsuya; Isogai, Jun; Tateishi, Ukihide

    2018-05-21

    Recently, semiquantitative analysis using standardized uptake value (SUV) has been introduced in bone single-photon emission computed tomography/computed tomography (SPECT/CT). Our purposes were to apply SUV-based semiquantitative analytic method for gallium-67 (Ga)-citrate SPECT/CT and to evaluate correlation between SUV of physiological uptake and blood test results in representative organs. The accuracy of semiquantitative method was validated using an National Electrical Manufacturers Association body phantom study (radioactivity ratio of sphere : background=4 : 1). Thereafter, 59 patients (34 male and 25 female; mean age, 66.9 years) who had undergone Ga-citrate SPECT/CT were retrospectively enrolled in the study. A mean SUV of physiological uptake was calculated for the following organs: the lungs, right atrium, liver, kidneys, spleen, gluteal muscles, and bone marrow. The correlation between physiological uptakes and blood test results was evaluated using Pearson's correlation coefficient. The phantom study revealed only 1% error between theoretical and actual SUVs in the background, suggesting the sufficient accuracy of scatter and attenuation corrections. However, a partial volume effect could not be overlooked, particularly in small spheres with a diameter of less than 28 mm. The highest mean SUV was observed in the liver (range: 0.44-4.64), followed by bone marrow (range: 0.33-3.60), spleen (range: 0.52-2.12), and kidneys (range: 0.42-1.45). There was no significant correlation between hepatic uptake and liver function, renal uptake and renal function, or bone marrow uptake and blood cell count (P>0.05). The physiological uptake in Ga-citrate SPECT/CT can be represented as SUVs, which are not significantly correlated with corresponding blood test results.

  6. THE DRAINAGE EFFICIENCY INDEX (DEI) AS AN MORPHOLOGIAL INDICATOR OF LANDSLIDE SPATIAL OCCURRENCE IN MOUNTAINOUS CATCHMENTS. A case of study applied in the mountainous region of Brazilian Southeastern.

    Science.gov (United States)

    Henrique Muniz Lima, Pedro; Luiza Coelho Netto, Ana; do Couto Fernandes, Manoel

    2016-04-01

    Morphometric parameters, acquired notoriety mainly after the Drainage Density proposition (Horton 1932, 1945) and after they were applied by geomorphologists on the perspective to understand landscape functionalities, quantifying their characteristics through parameters and indexes. After the drainage density, many other parameters which describe the basin characteristics, behavior and dynamics have been proposed. Among them, for example, the DEI was proposed by Coelho Netto and contributors during the 80's, while they were seek to understand the hydrological and erosive dynamics on Bananal river basin (Brazilian Southeastern). Through this investigations the DEI was created, revealing the importance of parameters as hollow and drainage density, conjugated to the topographic gradient (Meis et al. 1982) who prosecute controls on the water flow efficiency along the hollows in order to activate the regressive erosion of the main channel. Later on this index was applied on the basin scale in several works developed in mountainous regions, showing a remarkable correlation with the occurrence of landslides such as showed by Coelho Netto et al. (2007); that posteriorly use this index as one of the components of the landslide susceptibility map for the Tijuca Massif, located in Rio de Janeiro Municipality. This work aims to establish patterns of the DEI index values (applied to mountainous low order basins) and the relationship on the occurrence of Debriflows or shallow translational slides. For this, the DEI index was applied on 4 different study areas located on the Southeastern mountainous region of Brazil to address deeply the connection between the index and the occurrence of landslides of different types applied for first and second order basins. The major study area is the Córrego Dantas Basin, situated in Nova Friburgo municipality (RJ), which is a 53 km² basin was affected by 327 landslides caused by a heavy rainfall on January 2011; Coelho Netto et al. (in

  7. Decomposition of Variance for Spatial Cox Processes.

    Science.gov (United States)

    Jalilian, Abdollah; Guan, Yongtao; Waagepetersen, Rasmus

    2013-03-01

    Spatial Cox point processes is a natural framework for quantifying the various sources of variation governing the spatial distribution of rain forest trees. We introduce a general criterion for variance decomposition for spatial Cox processes and apply it to specific Cox process models with additive or log linear random intensity functions. We moreover consider a new and flexible class of pair correlation function models given in terms of normal variance mixture covariance functions. The proposed methodology is applied to point pattern data sets of locations of tropical rain forest trees.

  8. Optical probing of long-range spatial correlation and symmetry in complex biophotonic architectures on transparent insect wings

    International Nuclear Information System (INIS)

    Kumar, Pramod; Shamoon, Danish; Singh, Dhirendra P; Singh, Kamal P; Mandal, Sudip

    2015-01-01

    We experimentally probe the structural organization of complex bio-photonic architecture on transparent insect wings by a simple, non-invasive, real-time optical technique. A stable and reproducible far-field diffraction pattern in transmission was observed using collimated cw and broadband fs laser pulses. A quantitative analysis of the observed diffraction pattern unveiled long-range quasi-periodic order in the arrangement of the microstructures over mm scale. These observations agree well with the Fourier analysis of SEM images of the wing taken at various length scales. We propose a simple quantitative model based on optical diffraction by an array of non overlapping microstructures with minimal disorder which supports our experimental observations. We observed a rotation of the original diffraction profile by scanning the laser beam across the wing sample which gives direct signature of organizational symmetry in microstructure arrangements at various length scales. In addition, we report the first optical detection of reorganization in the photonic architecture on the Drosophila wings by various genetic mutations. These results have potential for the design and development of diffractive optical components for applied photonics and may open up new opportunities in biomimetic device research. (letter)

  9. [Correlation between feeding index and growth development of 6-36 month-old infants in two counties of western China by applying multiple correspondence analysis].

    Science.gov (United States)

    Chen, Hong-da; Hao, Bo; Kang, Xiao-ping; Zhao, Geng-li; Zhou, Min

    2012-06-18

    To explore the correlation between feeding index and growth development status of infants from two counties of western China by applying the method of multiple correspondence analysis. Two sample counties were randomly selected from the ones that satisfied the research conditions in Shaanxi province and Chongqing in western China. In the study, 472 premature/low birth weight infants (PLBW) and 461 normal term infants (NT) of 6-36 months from the two counties were investigated from September 2010 to November 2010. The SPSS 19.0 software was applied to analyze the data using general statistical analysis and multiple correspondence analysis. In the two counties of western China, the proportion of infants with feeding index at the medium level was the highest, which was between 50% and 60%. In the PLBW group and the NT group, the proportion of low level of feeding index among 6-9 month-old infants was the highest, and the proportion was 33.3% for the PLBW group and 29.4% for the NT group. For both the PLBW group and the NT group, the distribution of feeding index among the different age groups showed significant difference (Pgrowth development of the PLBW lay behind that of the NT. We could see a catching-up trend of the PLBW with medium or good level of feeding index, but their growth development index was still at a lower level than that of the NT with the same level of feeding condition. Through multiple correspondence analyses, the outcomes of PLBW corresponded and strongly correlated with low level of feeding index, low level of growth development index, mother's low education degree and low annual family income. And the outcomes of NT corresponded and strongly correlated with medium/good level of feeding index, medium level of growth development status, mother's medium/high education degree and medium/high level of annual family income. There are good correspondence correlations at different hierarchical levels of the infants' group, feeding index, growth

  10. Reporting Recommended Patch Density from Vehicle Panel Vibration Convergence Studies using both DAF and TBL Fits of the Spatial Correlation Function

    Science.gov (United States)

    Smith, Andrew M.; Davis, Robert Ben; LaVerde, Bruce T.; Jones, Douglas C.; Band, Jonathon L.

    2012-01-01

    Using the patch method to represent the continuous spatial correlation function of a phased pressure field over a structural surface is an approximation. The approximation approaches the continuous function as patches become smaller. Plotting comparisons of the approximation vs the continuous function may provide insight revealing: (1) For what patch size/density should the approximation be very good? (2) What the approximation looks like when it begins to break down? (3) What the approximation looks like when the patch size is grossly too large. Following these observations with a convergence study using one FEM may allow us to see the importance of patch density. We may develop insights that help us to predict sufficient patch density to provide adequate convergence for the intended purpose frequency range of interest

  11. Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols

    Directory of Open Access Journals (Sweden)

    L. Xing

    2013-04-01

    Full Text Available We calculated the organic matter to organic carbon mass ratios (OM/OC mass ratios in PM2.5 collected from 14 Chinese cities during summer and winter of 2003 and analyzed the causes for their seasonal and spatial variability. The OM/OC mass ratios were calculated two ways. Using a mass balance method, the calculated OM/OC mass ratios averaged 1.92 ± 0.39 year-round, with no significant seasonal or spatial variation. The second calculation was based on chemical species analyses of the organic compounds extracted from the PM2.5 samples using dichloromethane/methanol and water. The calculated OM/OC mass ratio in summer was relatively high (1.75 ± 0.13 and spatially-invariant due to vigorous photochemistry and secondary organic aerosol (OA production throughout the country. The calculated OM/OC mass ratio in winter (1.59 ± 0.18 was significantly lower than that in summer, with lower values in northern cities (1.51 ± 0.07 than in southern cities (1.65 ± 0.15. This likely reflects the wider usage of coal for heating purposes in northern China in winter, in contrast to the larger contributions from biofuel and biomass burning in southern China in winter. On average, organic matter constituted 36% and 34% of Chinese urban PM2.5 mass in summer and winter, respectively. We report, for the first time, a high regional correlation between Zn and oxalic acid in Chinese urban aerosols in summer. This is consistent with the formation of stable Zn oxalate complex in the aerosol phase previously proposed by Furukawa and Takahashi (2011. We found that many other dicarboxylic acids were also highly correlated with Zn in the summer Chinese urban aerosol samples, suggesting that they may also form stable organic complexes with Zn. Such formation may have profound implications for the atmospheric abundance and hygroscopic properties of aerosol dicarboxylic acids.

  12. Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols

    Science.gov (United States)

    Xing, L.; Fu, T.-M.; Cao, J. J.; Lee, S. C.; Wang, G. H.; Ho, K. F.; Cheng, M.-C.; You, C.-F.; Wang, T. J.

    2013-04-01

    We calculated the organic matter to organic carbon mass ratios (OM/OC mass ratios) in PM2.5 collected from 14 Chinese cities during summer and winter of 2003 and analyzed the causes for their seasonal and spatial variability. The OM/OC mass ratios were calculated two ways. Using a mass balance method, the calculated OM/OC mass ratios averaged 1.92 ± 0.39 year-round, with no significant seasonal or spatial variation. The second calculation was based on chemical species analyses of the organic compounds extracted from the PM2.5 samples using dichloromethane/methanol and water. The calculated OM/OC mass ratio in summer was relatively high (1.75 ± 0.13) and spatially-invariant due to vigorous photochemistry and secondary organic aerosol (OA) production throughout the country. The calculated OM/OC mass ratio in winter (1.59 ± 0.18) was significantly lower than that in summer, with lower values in northern cities (1.51 ± 0.07) than in southern cities (1.65 ± 0.15). This likely reflects the wider usage of coal for heating purposes in northern China in winter, in contrast to the larger contributions from biofuel and biomass burning in southern China in winter. On average, organic matter constituted 36% and 34% of Chinese urban PM2.5 mass in summer and winter, respectively. We report, for the first time, a high regional correlation between Zn and oxalic acid in Chinese urban aerosols in summer. This is consistent with the formation of stable Zn oxalate complex in the aerosol phase previously proposed by Furukawa and Takahashi (2011). We found that many other dicarboxylic acids were also highly correlated with Zn in the summer Chinese urban aerosol samples, suggesting that they may also form stable organic complexes with Zn. Such formation may have profound implications for the atmospheric abundance and hygroscopic properties of aerosol dicarboxylic acids.

  13. Student Perceptions of Sectional CT/MRI Use in Teaching Veterinary Anatomy and the Correlation with Visual Spatial Ability: A Student Survey and Mental Rotations Test.

    Science.gov (United States)

    Delisser, Peter J; Carwardine, Darren

    2017-11-29

    Diagnostic imaging technology is becoming more advanced and widely available to veterinary patients with the growing popularity of veterinary-specific computed tomography (CT) and magnetic resonance imaging (MRI). Veterinary students must, therefore, be familiar with these technologies and understand the importance of sound anatomic knowledge for interpretation of the resultant images. Anatomy teaching relies heavily on visual perception of structures and their function. In addition, visual spatial ability (VSA) positively correlates with anatomy test scores. We sought to assess the impact of including more diagnostic imaging, particularly CT/MRI, in the teaching of veterinary anatomy on the students' perceived level of usefulness and ease of understanding content. Finally, we investigated survey answers' relationship to the students' inherent baseline VSA, measured by a standard Mental Rotations Test. Students viewed diagnostic imaging as a useful inclusion that provided clear links to clinical relevance, thus improving the students' perceived benefits in its use. Use of CT and MRI images was not viewed as more beneficial, more relevant, or more useful than the use of radiographs. Furthermore, students felt that the usefulness of CT/MRI inclusion was mitigated by the lack of prior formal instruction on the basics of CT/MRI image generation and interpretation. To be of significantly greater use, addition of learning resources labeling relevant anatomy in tomographical images would improve utility of this novel teaching resource. The present study failed to find any correlation between student perceptions of diagnostic imaging in anatomy teaching and their VSA.

  14. [Apply fourier transform infrared spectra coupled with two-dimensional correlation analysis to study the evolution of humic acids during composting].

    Science.gov (United States)

    Bu, Gui-jun; Yu, Jing; Di, Hui-hui; Luo, Shi-jia; Zhou, Da-zhai; Xiao, Qiang

    2015-02-01

    The composition and structure of humic acids formed during composting play an important influence on the quality and mature of compost. In order to explore the composition and evolution mechanism, municipal solid wastes were collected to compost and humic and fulvic acids were obtained from these composted municipal solid wastes. Furthermore, fourier transform infrared spectra and two-dimensional correlation analysis were applied to study the composition and transformation of humic and fulvic acids during composting. The results from fourier transform infrared spectra showed that, the composition of humic acids was complex, and several absorbance peaks were observed at 2917-2924, 2844-2852, 2549, 1662, 1622, 1566, 1454, 1398, 1351, 990-1063, 839 and 711 cm(-1). Compared to humic acids, the composition of fulvci acids was simple, and only three peaks were detected at 1725, 1637 and 990 cm(-1). The appearance of these peaks showed that both humic and fulvic acids comprised the benzene originated from lignin and the polysaccharide. In addition, humic acids comprised a large number of aliphatic and protein which were hardly detected in fulvic acids. Aliphatic, polysaccharide, protein and lignin all were degraded during composting, however, the order of degradation was different between humic and fulvci acids. The result from two-dimensional correlation analysis showed that, organic compounds in humic acids were degraded in the following sequence: aliphatic> protein> polysaccharide and lignin, while that in fulvic acids was as following: protein> polysaccharide and aliphatic. A large number of carboxyl, alcohols and ethers were formed during the degradation process, and the carboxyl was transformed into carbonates. It can be concluded that, fourier transform infrared spectra coupled with two-dimensional correlation analysis not only can analyze the function group composition of humic substances, but also can characterize effectively the degradation sequence of these

  15. Intra-lesional spatial correlation of static and dynamic FET-PET parameters with MRI-based cerebral blood volume in patients with untreated glioma

    Energy Technology Data Exchange (ETDEWEB)

    Goettler, Jens; Preibisch, Christine [TU Muenchen, Department of Neuroradiology, Klinikum rechts der Isar, Munich (Germany); TU Muenchen, TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Munich (Germany); Lukas, Mathias; Mustafa, Mona; Schwaiger, Markus; Pyka, Thomas [TU Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Kluge, Anne; Kaczmarz, Stephan; Zimmer, Claus [TU Muenchen, Department of Neuroradiology, Klinikum rechts der Isar, Munich (Germany); Gempt, Jens; Ringel, Florian; Meyer, Bernhard [TU Muenchen, Department of Neurosurgery, Klinikum rechts der Isar, Munich (Germany); Foerster, Stefan [TU Muenchen, TUM Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Munich (Germany); TU Muenchen, Department of Nuclear Medicine, Klinikum rechts der Isar, Munich (Germany); Klinikum Bayreuth, Department of Nuclear Medicine, Bayreuth (Germany)

    2017-03-15

    {sup 18}F-fluorethyltyrosine-(FET)-PET and MRI-based relative cerebral blood volume (rCBV) have both been used to characterize gliomas. Recently, inter-individual correlations between peak static FET-uptake and rCBV have been reported. Herein, we assess the local intra-lesional relation between FET-PET parameters and rCBV. Thirty untreated glioma patients (27 high-grade) underwent simultaneous PET/MRI on a 3 T hybrid scanner obtaining structural and dynamic susceptibility contrast sequences. Static FET-uptake and dynamic FET-slope were correlated with rCBV within tumour hotspots across patients and intra-lesionally using a mixed-effects model to account for inter-individual variation. Furthermore, maximal congruency of tumour volumes defined by FET-uptake and rCBV was determined. While the inter-individual relationship between peak static FET-uptake and rCBV could be confirmed, our intra-lesional, voxel-wise analysis revealed significant positive correlations (median r = 0.374, p < 0.0001). Similarly, significant inter- and intra-individual correlations were observed between FET-slope and rCBV. However, rCBV explained only 12% of the static and 5% of the dynamic FET-PET variance and maximal overlap of respective tumour volumes was 37% on average. Our results show that the relation between peak values of MR-based rCBV and static FET-uptake can also be observed intra-individually on a voxel basis and also applies to a dynamic FET parameter, possibly determining hotspots of higher biological malignancy. However, just a small part of the FET-PET signal variance is explained by rCBV and tumour volumes determined by the two modalities showed only moderate overlap. These findings indicate that FET-PET and MR-based rCBV provide both congruent and complimentary information on glioma biology. (orig.)

  16. Applying spatial analysis tools in public health: an example using SaTScan to detect geographic targets for colorectal cancer screening interventions.

    Science.gov (United States)

    Sherman, Recinda L; Henry, Kevin A; Tannenbaum, Stacey L; Feaster, Daniel J; Kobetz, Erin; Lee, David J

    2014-03-20

    Epidemiologists are gradually incorporating spatial analysis into health-related research as geocoded cases of disease become widely available and health-focused geospatial computer applications are developed. One health-focused application of spatial analysis is cluster detection. Using cluster detection to identify geographic areas with high-risk populations and then screening those populations for disease can improve cancer control. SaTScan is a free cluster-detection software application used by epidemiologists around the world to describe spatial clusters of infectious and chronic disease, as well as disease vectors and risk factors. The objectives of this article are to describe how spatial analysis can be used in cancer control to detect geographic areas in need of colorectal cancer screening intervention, identify issues commonly encountered by SaTScan users, detail how to select the appropriate methods for using SaTScan, and explain how method selection can affect results. As an example, we used various methods to detect areas in Florida where the population is at high risk for late-stage diagnosis of colorectal cancer. We found that much of our analysis was underpowered and that no single method detected all clusters of statistical or public health significance. However, all methods detected 1 area as high risk; this area is potentially a priority area for a screening intervention. Cluster detection can be incorporated into routine public health operations, but the challenge is to identify areas in which the burden of disease can be alleviated through public health intervention. Reliance on SaTScan's default settings does not always produce pertinent results.

  17. World wide spatial capital.

    Directory of Open Access Journals (Sweden)

    Rijurekha Sen

    Full Text Available In its most basic form, the spatial capital of a neighborhood entails that most aspects of daily life are located close at hand. Urban planning researchers have widely recognized its importance, not least because it can be transformed in other forms of capital such as economical capital (e.g., house prices, retail sales and social capital (e.g., neighborhood cohesion. Researchers have already studied spatial capital from official city data. Their work led to important planning decisions, yet it also relied on data that is costly to create and update, and produced metrics that are difficult to compare across cities. By contrast, we propose to measure spatial capital in cheap and standardized ways around the world. Hence the name of our project "World Wide Spatial Capital". Our measures are cheap as they rely on the most basic information about a city that is currently available on the Web (i.e., which amenities are available and where. They are also standardized because they can be applied in any city in the five continents (as opposed to previous metrics that were mainly applied in USA and UK. We show that, upon these metrics, one could produce insights at the core of the urban planning discipline: which areas would benefit the most from urban interventions; how to inform planning depending on whether a city's activity is mono- or poly-centric; how different cities fare against each other; and how spatial capital correlates with other urban characteristics such as mobility patterns and road network structure.

  18. In situ influence of coal ash dump on the quality of neighboring surface and ground waters by applying correlation statistic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jasna M. Djinovic; Aleksandar R. Popovic [University of Belgrade, Belgrade (Serbia and Montenegro). Center of Chemistry, Institute of Chemistry, Technology and Metallurgy

    2007-01-15

    The aim of this study was to establish the real in situ influence of coal ash and slag transport and storage on the quality of neighboring surface and ground waters by applying correlation statistic analysis. It was found that the waste waters from the coal ash dump do not have any influence on the quality of the Danube river water. The Danube and the waste waters, however, influence the quality of the ground waters of the Petka spring. Changes in the concentrations of elements in the Danube or in the waste waters can have immediate or delayed impact on the quality of the spring waters. The immediate impact has calcium, magnesium, zinc, copper, vanadium, cobalt from Danube; magnesium, vanadium from overflow and drainage waters; copper from drainage water. And the delayed impact has calcium, magnesium, vanadium and silicon from the Danube waters, cobalt from drainage waters, chromium and silicon from overflow waters and magnesium and vanadium from both overflow and drainage waters. 20 refs., 2 figs., 4 tabs.

  19. Modern Spatial Rainfall Rate is well Correlated with Coretop δ2Hdinosterol in the South Pacific Convergence Zone: A Tool for Quantitative Reconstructions of Rainfall Rate

    Science.gov (United States)

    Sear, D. A.; Maloney, A. E.; Nelson, D. B.; Sachs, J. P.; Hassall, J. D.; Langdon, P. G.; Prebble, M.; Richey, J. N.; Schabetsberger, R.; Sichrowsky, U.; Hope, G.

    2015-12-01

    The South Pacific Convergence Zone (SPCZ) is the Southern Hemisphere's most prominent precipitation feature extending southeastward 3000 km from Papua New Guinea to French Polynesia. Determining how the SPCZ responded to climate variations before the instrumental record requires the use of indirect indicators of rainfall. The link between the hydrogen isotopic composition of fluxes of water though the hydrologic cycle, lake water, and molecular fossil 2H/1H ratios make hydrogen isotopes a promising tool for improving our understanding of this important climate feature. An analysis of coretop sediment from freshwater lakes in the SPCZ region indicates that there is a strong spatial relationship between δ2Hdinosterol and mean annual precipitation rate. The objectives of this research are to use 2H/1H ratios of the biomarker dinosterol to develop an empirical relationship between δ2Hdinosterol and modern environmental rainfall rates so that we may quantitatively reconstruct several aspects of the SPCZ's hydrological system during the late Holocene. The analysis includes lake sediment coretops from the Solomon Islands, Wallis Island, Vanuatu, Tahiti, Samoa, New Caledonia, and the Cook Islands. These islands span range of average modern precipitation rates from 3 to 7 mm/day and the coretop sediment δ2Hdinosterol values range from -240‰ to -320‰. Applying this regional coretop calibration to dated sediment cores reveals that the mean annual position and/or intensity of the SPCZ has not been static during the past 2000 years.

  20. Modern Spatial Rainfall Rate is well Correlated with Coretop δ2Hdinosterol in the South Pacific Convergence Zone: a Tool for Quantitative Reconstructions

    Science.gov (United States)

    Maloney, A. E.; Nelson, D. B.; Sachs, J. P.; Hassall, J. D.; Sear, D. A.; Langdon, P. G.; Prebble, M.; Richey, J. N.; Schabetsberger, R.; Sichrowsky, U.; Hope, G.

    2016-02-01

    The South Pacific Convergence Zone (SPCZ) is the Southern Hemisphere's most prominent precipitation feature extending southeastward 3000 km from Papua New Guinea to French Polynesia. Determining how the SPCZ responded to climate variations before the instrumental record requires the use of indirect indicators of rainfall. The link between the hydrogen isotopic composition of water fluxes though the hydrologic cycle, lake water, and molecular fossil 2H/1H ratios make hydrogen isotopes a promising tool for improving our understanding of this important climate feature. An analysis of coretop sediment from freshwater lakes in the SPCZ region indicates that there is a strong spatial relationship between δ2Hdinosterol and mean annual precipitation rate. The objectives of this research are to use 2H/1H ratios of the biomarker dinosterol to develop an empirical relationship between δ2Hdinosterol and modern environmental rainfall rates so that we may quantitatively reconstruct several aspects of the SPCZ's hydrological system during the late Holocene. The analysis includes lake sediment coretops from the Solomon Islands, Wallis Island, Vanuatu, Tahiti, Samoa, New Caledonia, and the Cook Islands. These islands span range of average modern precipitation rates from 3 to 7 mm/day and the coretop sediment δ2Hdinosterol values range from -240‰ to -320‰. Applying this regional coretop calibration to dated sediment cores reveals that the mean annual position and/or intensity of the SPCZ has not been static during the past 2000 years.

  1. Intra-lesional spatial correlation of static and dynamic FET-PET parameters with MRI-based cerebral blood volume in patients with untreated glioma.

    Science.gov (United States)

    Göttler, Jens; Lukas, Mathias; Kluge, Anne; Kaczmarz, Stephan; Gempt, Jens; Ringel, Florian; Mustafa, Mona; Meyer, Bernhard; Zimmer, Claus; Schwaiger, Markus; Förster, Stefan; Preibisch, Christine; Pyka, Thomas

    2017-03-01

    18 F-fluorethyltyrosine-(FET)-PET and MRI-based relative cerebral blood volume (rCBV) have both been used to characterize gliomas. Recently, inter-individual correlations between peak static FET-uptake and rCBV have been reported. Herein, we assess the local intra-lesional relation between FET-PET parameters and rCBV. Thirty untreated glioma patients (27 high-grade) underwent simultaneous PET/MRI on a 3 T hybrid scanner obtaining structural and dynamic susceptibility contrast sequences. Static FET-uptake and dynamic FET-slope were correlated with rCBV within tumour hotspots across patients and intra-lesionally using a mixed-effects model to account for inter-individual variation. Furthermore, maximal congruency of tumour volumes defined by FET-uptake and rCBV was determined. While the inter-individual relationship between peak static FET-uptake and rCBV could be confirmed, our intra-lesional, voxel-wise analysis revealed significant positive correlations (median r = 0.374, p dynamic FET-PET variance and maximal overlap of respective tumour volumes was 37% on average. Our results show that the relation between peak values of MR-based rCBV and static FET-uptake can also be observed intra-individually on a voxel basis and also applies to a dynamic FET parameter, possibly determining hotspots of higher biological malignancy. However, just a small part of the FET-PET signal variance is explained by rCBV and tumour volumes determined by the two modalities showed only moderate overlap. These findings indicate that FET-PET and MR-based rCBV provide both congruent and complimentary information on glioma biology.

  2. The Spatial Relationship between Apparent Diffusion Coefficient and Standardized Uptake Value of 18F-Fluorodeoxyglucose Has a Crucial Influence on the Numeric Correlation of Both Parameters in PET/MRI of Lung Tumors.

    Science.gov (United States)

    Sauter, Alexander W; Stieltjes, Bram; Weikert, Thomas; Gatidis, Sergios; Wiese, Mark; Klarhöfer, Markus; Wild, Damian; Lardinois, Didier; Bremerich, Jens; Sommer, Gregor

    2017-01-01

    The minimum apparent diffusion coefficient (ADC min ) derived from diffusion-weighted MRI (DW-MRI) and the maximum standardized uptake value (SUV max ) of FDG-PET are markers of aggressiveness in lung cancer. The numeric correlation of the two parameters has been extensively studied, but their spatial interplay is not well understood. After FDG-PET and DW-MRI coregistration, values and location of ADC min - and SUV max -voxels were analyzed. The upper limit of the 95% confidence interval for registration accuracy of sequential PET/MRI was 12 mm, and the mean distance ( D ) between ADC min - and SUV max -voxels was 14.0 mm (average of two readers). Spatial mismatch ( D > 12 mm) between ADC min and SUV max was found in 9/25 patients. A considerable number of mismatch cases (65%) was also seen in a control group that underwent simultaneous PET/MRI. In the entire patient cohort, no statistically significant correlation between SUV max and ADC min was seen, while a moderate negative linear relationship ( r = -0.5) between SUV max and ADC min was observed in tumors with a spatial match ( D ≤ 12 mm). In conclusion, spatial mismatch between ADC min and SUV max is found in a considerable percentage of patients. The spatial connection of the two parameters SUV max and ADC min has a crucial influence on their numeric correlation.

  3. Applying spatial analysis techniques to assess the suitability of multipurpose uses of spring water in the Jiaosi Hot Spring Region, Taiwan

    Science.gov (United States)

    Jang, Cheng-Shin

    2016-04-01

    The Jiaosi Hot Spring Region is located in northeastern Taiwan and is rich in geothermal springs. The geothermal development of the Jiaosi Hot Spring Region dates back to the 18th century and currently, the spring water is processed for various uses, including irrigation, aquaculture, swimming, bathing, foot spas, and recreational tourism. Because of the proximity of the Jiaosi Hot Spring Region to the metropolitan area of Taipei City, the hot spring resources in this region attract millions of tourists annually. Recently, the Taiwan government is paying more attention to surveying the spring water temperatures in the Jiaosi Hot Spring Region because of the severe spring water overexploitation, causing a significant decline in spring water temperatures. Furthermore, the temperature of spring water is a reliable indicator for exploring the occurrence and evolution of springs and strongly affects hydrochemical reactions, components, and magnitudes. The multipurpose uses of spring water can be dictated by the temperature of the water. Therefore, accurately estimating the temperature distribution of the spring water is critical in the Jiaosi Hot Spring Region to facilitate the sustainable development and management of the multipurpose uses of the hot spring resources. To evaluate the suitability of spring water for these various uses, this study spatially characterized the spring water temperatures of the Jiaosi Hot Spring Region by using ordinary kriging (OK), sequential Gaussian simulation (SGS), and geographical information system (GIS). First, variogram analyses were used to determine the spatial variability of spring water temperatures. Next, OK and SGS were adopted to model the spatial distributions and uncertainty of the spring water temperatures. Finally, the land use (i.e., agriculture, dwelling, public land, and recreation) was determined and combined with the estimated distributions of the spring water temperatures using GIS. A suitable development strategy

  4. A family of spatial interaction models incorporating information flows and choice set constraints applied to U.S. interstate labor flows.

    Science.gov (United States)

    Smith, T R; Slater, P B

    1981-01-01

    "A new family of migration models belonging to the elimination by aspects family is examined, with the spatial interaction model shown to be a special case. The models have simple forms; they incorporate information flow processes and choice set constraints; they are free of problems raised by the Luce Choice Axiom; and are capable of generating intransitive flows. Preliminary calibrations using the Continuous Work History Sample [time] series data indicate that the model fits the migration data well, while providing estimates of interstate job message flows. The preliminary calculations also indicate that care is needed in assuming that destination [attraction] are independent of origins." excerpt

  5. Spatially Correlated, Single Nanomaterial-Level Structural and Optical Profiling of Cu-Doped ZnO Nanorods Synthesized via Multifunctional Silicides

    Directory of Open Access Journals (Sweden)

    Johnson Truong

    2018-04-01

    Full Text Available We demonstrate a straightforward and effective method to synthesize vertically oriented, Cu-doped ZnO nanorods (NRs using a novel multipurpose platform of copper silicide nanoblocks (Cu3Si NBs preformed laterally in well-defined directions on Si. The use of the surface-organized Cu3Si NBs for ZnO NR growth successfully results in densely assembled Cu-doped ZnO NRs on each NB platform, whose overall structures resemble thick bristles on a brush head. We show that Cu3Si NBs can uniquely serve as a catalyst for ZnO NRs, a local dopant source of Cu, and a prepatterned guide to aid the local assembly of the NRs on the growth substrate. We also ascertain the crystalline structures, optical properties, and spectroscopic signatures of the Cu-doped ZnO NRs produced on the NBs, both at each module of NRs/NB and at their ensemble level. Subsequently, we determine their augmented properties relative to the pristine form of undoped ZnO NRs and the source material of Cu3Si NBs. We provide spatially correlated structural and optical data for individual modules of Cu-doped ZnO NRs assembled on a Cu3Si NB by resolving them along the different positions on the NB. Ensemble-averaged versus individual behaviors of Cu-doped ZnO NRs on Cu3Si NBs are then compared. We further discuss the potential impact of such ZnO-derived NRs on their relatively unexplored biological and biomedical applications. Our efforts will be particularly useful when exploiting each integrated module of self-aligned, Cu-doped ZnO NRs on a NB as a discretely addressable, active element in solid-state sensors and miniaturized luminescent bioprobes.

  6. Anthropometric geography applied to the analysis of socioeconomic disparities: cohort trends and spatial patterns of height and robustness in 20th-century Spain.

    Science.gov (United States)

    Camara, Antonio D; Roman, Joan Garcia

    2015-11-01

    Anthropometrics have been widely used to study the influence of environmental factors on health and nutritional status. In contrast, anthropometric geography has not often been employed to approximate the dynamics of spatial disparities associated with socioeconomic and demographic changes. Spain exhibited intense disparity and change during the middle decades of the 20 th century, with the result that the life courses of the corresponding cohorts were associated with diverse environmental conditions. This was also true of the Spanish territories. This paper presents insights concerning the relationship between socioeconomic changes and living conditions by combining the analysis of cohort trends and the anthropometric cartography of height and physical build. This analysis is conducted for Spanish male cohorts born 1934-1973 that were recorded in the Spanish military statistics. This information is interpreted in light of region-level data on GDP and infant mortality. Our results show an anthropometric convergence across regions that, nevertheless, did not substantially modify the spatial patterns of robustness, featuring primarily robust northeastern regions and weak Central-Southern regions. These patterns persisted until the 1990s (cohorts born during the 1970s). For the most part, anthropometric disparities were associated with socioeconomic disparities, although the former lessened over time to a greater extent than the latter. Interestingly, the various anthropometric indicators utilized here do not point to the same conclusions. Some discrepancies between height and robustness patterns have been found that moderate the statements from the analysis of cohort height alone regarding the level and evolution of living conditions across Spanish regions.

  7. Nitrification in trickling filters applied to the post-treatment of effluents from UASB reactor: correlation between ammonia removal and the relative abundance of nitrifying bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Missagia, B. S.; Almeida, P. G. S. de; Silva, S. Q.; Chernicharo, C. A. L.

    2009-07-01

    The number and physiological activity of nitrifying bacteria in wastewater treatment reactors are considered the ratelimiting parameters for the bioconversion of nitrogen in sewage. Since the presence of ammonia and nitrite oxidizers can be correlated with their activity. In situ probe counts can be correlated with the nitrification rates in order to compare the efficiency of different media types. (Author)

  8. Nitrification in trickling filters applied to the post-treatment of effluents from UASB reactor: correlation between ammonia removal and the relative abundance of nitrifying bacteria

    International Nuclear Information System (INIS)

    Missagia, B. S.; Almeida, P. G. S. de; Silva, S. Q.; Chernicharo, C. A. L.

    2009-01-01

    The number and physiological activity of nitrifying bacteria in wastewater treatment reactors are considered the ratelimiting parameters for the bioconversion of nitrogen in sewage. Since the presence of ammonia and nitrite oxidizers can be correlated with their activity. In situ probe counts can be correlated with the nitrification rates in order to compare the efficiency of different media types. (Author)

  9. Correlated Raman micro-spectroscopy and scanning electron microscopy analyses of flame retardants in environmental samples: a micro-analytical tool for probing chemical composition, origin and spatial distribution.

    Science.gov (United States)

    Ghosal, Sutapa; Wagner, Jeff

    2013-07-07

    We present correlated application of two micro-analytical techniques: scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and Raman micro-spectroscopy (RMS) for the non-invasive characterization and molecular identification of flame retardants (FRs) in environmental dusts and consumer products. The SEM/EDS-RMS technique offers correlated, morphological, molecular, spatial distribution and semi-quantitative elemental concentration information at the individual particle level with micrometer spatial resolution and minimal sample preparation. The presented methodology uses SEM/EDS analyses for rapid detection of particles containing FR specific elements as potential indicators of FR presence in a sample followed by correlated RMS analyses of the same particles for characterization of the FR sub-regions and surrounding matrices. The spatially resolved characterization enabled by this approach provides insights into the distributional heterogeneity as well as potential transfer and exposure mechanisms for FRs in the environment that is typically not available through traditional FR analysis. We have used this methodology to reveal a heterogeneous distribution of highly concentrated deca-BDE particles in environmental dust, sometimes in association with identifiable consumer materials. The observed coexistence of deca-BDE with consumer material in dust is strongly indicative of its release into the environment via weathering/abrasion of consumer products. Ingestion of such enriched FR particles in dust represents a potential for instantaneous exposure to high FR concentrations. Therefore, correlated SEM/RMS analysis offers a novel investigative tool for addressing an area of important environmental concern.

  10. Correlation between air pollution and weather data in urban areas: Assessment of the city of Rome (Italy) as spatially and temporally independent regarding pollutants

    Science.gov (United States)

    Battista, Gabriele; de Lieto Vollaro, Roberto

    2017-09-01

    . In particular, the attention was focused on statistic and cross statistic techniques in time and space. The results led to describe Rome as spatially and temporally independence regarding pollutant. Even weather changes were studied in relation with pollution. In particular, cross-correlation analysis were done with air temperature, solar radiation, wind direction and velocity, highlighting a strong coupling for the most of cases except for particular matter.

  11. Assessing the Influence of Seasonal and Spatial Variations on the Estimation of Secondary Organic Carbon in Urban Particulate Matter by Applying the EC-Tracer Method

    Directory of Open Access Journals (Sweden)

    Sandra Wagener

    2014-04-01

    Full Text Available The elemental carbon (EC-tracer method was applied to PM10 and PM1 data of three sampling sites in the City of Berlin from February to October 2010. The sites were characterized by differing exposure to traffic and vegetation. The aim was to determine the secondary organic carbon (SOC concentration and to describe the parameters influencing the application of the EC-tracer method. The evaluation was based on comparisons with results obtained from positive matrix factorization (PMF applied to the same samples. To obtain site- and seasonal representative primary OC/EC-ratios ([OC/EC]p, the EC-tracer method was performed separately for each station, and additionally discrete for samples with high and low contribution of biomass burning. Estimated SOC-concentrations for all stations were between 11% and 33% of total OC. SOC-concentrations obtained with PMF exceeded EC-tracer results more than 100% at the park in the period with low biomass burning emissions in PM10. The deviations were besides others attributed to the high ratio of biogenic to combustion emissions and to direct exposure to vegetation. The occurrences of biomass burning emissions in contrast lead to increased SOC-concentrations compared to PMF in PM10. The obtained results distinguish that the EC-tracer-method provides well comparable results with PMF if sites are strongly influenced by one characteristic primary combustion source, but was found to be adversely influenced by direct and relatively high biogenic emissions.

  12. 3D Spatial and Spectral Fusion of Terrestrial Hyperspectral Imagery and Lidar for Hyperspectral Image Shadow Restoration Applied to a Geologic Outcrop

    Science.gov (United States)

    Hartzell, P. J.; Glennie, C. L.; Hauser, D. L.; Okyay, U.; Khan, S.; Finnegan, D. C.

    2016-12-01

    Recent advances in remote sensing technology have expanded the acquisition and fusion of active lidar and passive hyperspectral imagery (HSI) from an exclusively airborne technique to terrestrial modalities. This enables high resolution 3D spatial and spectral quantification of vertical geologic structures for applications such as virtual 3D rock outcrop models for hydrocarbon reservoir analog analysis and mineral quantification in open pit mining environments. In contrast to airborne observation geometry, the vertical surfaces observed by horizontal-viewing terrestrial HSI sensors are prone to extensive topography-induced solar shadowing, which leads to reduced pixel classification accuracy or outright removal of shadowed pixels from analysis tasks. Using a precisely calibrated and registered offset cylindrical linear array camera model, we demonstrate the use of 3D lidar data for sub-pixel HSI shadow detection and the restoration of the shadowed pixel spectra via empirical methods that utilize illuminated and shadowed pixels of similar material composition. We further introduce a new HSI shadow restoration technique that leverages collocated backscattered lidar intensity, which is resistant to solar conditions, obtained by projecting the 3D lidar points through the HSI camera model into HSI pixel space. Using ratios derived from the overlapping lidar laser and HSI wavelengths, restored shadow pixel spectra are approximated using a simple scale factor. Simulations of multiple lidar wavelengths, i.e., multi-spectral lidar, indicate the potential for robust HSI spectral restoration that is independent of the complexity and costs associated with rigorous radiometric transfer models, which have yet to be developed for horizontal-viewing terrestrial HSI sensors. The spectral restoration performance is quantified through HSI pixel classification consistency between full sun and partial sun exposures of a single geologic outcrop.

  13. Correlation between lumbar lordosis and the treatment of chronic low back pain with pulsed radiofrequency applied to the L2 dorsal root ganglion

    Directory of Open Access Journals (Sweden)

    Hsien-Ta Hsu

    2017-01-01

    Conclusion: PRF applied to the L2 DRG is an alternative procedure for treating patients with chronic low back pain, regardless of which type of LL the patients have. Chronic low back pain, including discogenic pain and facet joint pain, may be treated by PRF applied to the L2 DRG.

  14. DOCLASP - Docking ligands to target proteins using spatial and electrostatic congruence extracted from a known holoenzyme and applying simple geometrical transformations.

    Science.gov (United States)

    Chakraborty, Sandeep

    2014-01-01

    The ability to accurately and effectively predict the interaction between proteins and small drug-like compounds has long intrigued researchers for pedagogic, humanitarian and economic reasons. Protein docking methods (AutoDock, GOLD, DOCK, FlexX and Glide to name a few) rank a large number of possible conformations of protein-ligand complexes using fast algorithms. Previously, it has been shown that structural congruence leading to the same enzymatic function necessitates the congruence of electrostatic properties (CLASP). The current work presents a methodology for docking a ligand into a target protein, provided that there is at least one known holoenzyme with ligand bound - DOCLASP (Docking using CLASP). The contact points of the ligand in the holoenzyme defines a motif, which is used to query the target enzyme using CLASP. If there are significant matches, the holoenzyme and the target protein are superimposed based on congruent atoms. The same linear and rotational transformations are also applied to the ligand, thus creating a unified coordinate framework having the holoenzyme, the ligand and the target enzyme. In the current work, the dipeptidyl peptidase-IV inhibitor vildagliptin was docked to the PI-PLC structure complexed with myo-inositol using DOCLASP. Also, corroboration of the docking of phenylthiourea to the modelled structure of polyphenol oxidase (JrPPO1) from walnut is provided based on the subsequently solved structure of JrPPO1 (PDBid:5CE9). Analysis of the binding of the antitrypanosomial drug suramin to nine non-homologous proteins in the PDB database shows a diverse set of binding motifs, and multiple binding sites in the phospholipase A2-likeproteins from the Bothrops genus of pitvipers. The conformational changes in the suramin molecule on binding highlights the challenges in docking flexible ligands into an already 'plastic' binding site. Thus, DOCLASP presents a method for 'soft docking' ligands to proteins with low computational

  15. Spatial preference heterogeneity in forest recreation

    DEFF Research Database (Denmark)

    Abildtrup, Jens; Garcia, Serge; Olsen, Søren Bøye

    2013-01-01

    In this study, we analyze the preferences for recreational use of forests in Lorraine (Northeastern France), applying stated preference data. Our approach allows us to estimate individual-specific preferences for recreational use of different forest types. These estimates are used in a second stage...... in the estimation of welfare economic values for parking and picnic facilities in the analyzed model. The results underline the importance of considering spatial heterogeneity of preferences carrying out economic valuation of spatial-delineated environmental goods and that the spatial variation in willingness...... of the analysis where we test whether preferences depend on access to recreation sites. We find that there is significant preference heterogeneity with respect to most forest attributes. The spatial analysis shows that preferences for forests with parking and picnic facilities are correlated with having access...

  16. Dynamical correlation functions of the S=1/2 nearest-neighbor and Haldane-Shastry Heisenberg antiferromagnetic chains in zero and applied fields

    DEFF Research Database (Denmark)

    Lefmann, K.; Rischel, C.

    1996-01-01

    We present a numerical diagonalization study of two one-dimensional S=1/2 antiferromagnetic Heisenberg chains, having nearest-neighbor and Haldane-Shastry (1/r(2)) interactions, respectively. We have obtained the T=0 dynamical correlation function, S-alpha alpha(q,omega), for chains of length N=8......-28. We have studied S-zz(q,omega) for the Heisenberg chain in zero field, and from finite-size scaling we have obtained a limiting behavior that for large omega deviates from the conjecture proposed earlier by Muller ct al. For both chains we describe the behavior of S-zz(q,omega) and S...

  17. Applied social geography

    OpenAIRE

    Hilpert, Markus

    2002-01-01

    Applied social geography : management of spatial planning in reflective discourse ; research perspectives towards a ‚Theory of Practice‘. - In: Geografija in njene aplikativne moˆznosti = Prospects of applied geography. - Ljubljana : Oddelek za Geografijo, Filozofska Fakulteta, 2002. S. 29-39. - (Dela / Oddelek za geografijo Filozofske fakultete v Ljubljani ; 18)

  18. Correlation between chemical, crystallographic and spectroscopic parameters in graphite thermometry applied to a contact aureole of La Soledad monzogranite (Venezuelan Andes

    Directory of Open Access Journals (Sweden)

    K. Reategui

    2017-11-01

    Full Text Available Graphite samples from a metamorphic contact aureole between phyllites of the Cerro Azul Association (Palaeozoic and La Soledad Monzogranite, in the Venezuelan Andes, were studied by chemical (% inorganic carbon and isotopic distribution, crystallographic (DRX and spectroscopic (Raman techniques in order to assess changes in the graphite in the vicinity of the contact, the correlation between the different parameters, and the determination of the higher temperature reached by the host rock during igneous intrusion. The δ13C reached less negative values near the monzogranite, caused by devolatilization; the graphite present just in contact with the pluton experienced retrograde recrystallization, which causes a shift towards more negative values. The calculated degree of graphitization intervals (GD = 53–80 corresponds to a well-structured mineral with ordered packaging. The peak metamorphic temperature at the contact was calculated from crystallographic (XRD and spectroscopic (Raman parameters with great agreement in both techniques, registering the 528 ± 16 and 526 ± 20 ºC respectively. The metapelitic rocks reached the Cordierite Zone (cordierite + biotite + muscovite in the contact aureole where the graphite is well ordered and in hexagonal microtexture. Factors such as fluid activity and the subsequent retrograde recrystallization have an effect on isotopic redistributions after the intrusive event, as well as on the crystallinity change rate with the temperature, avoiding a clear correlation between the isotopic variations of 13C in graphite and the temperature.

  19. Mechanical equilibrium of forces and moments applied on orthodontic brackets of a dental arch: Correlation with literature data on two and three adjacent teeth.

    Science.gov (United States)

    Wagner, Delphine; Bolender, Yves; Rémond, Yves; George, Daniel

    2017-01-01

    Although orthodontics have greatly improved over the years, understanding of its associated biomechanics remains incomplete and is mainly based on two dimensional (2D) mechanical equilibrium and long-time clinical experience. Little experimental information exists in three dimensions (3D) about the forces and moments developed on orthodontic brackets over more than two or three adjacent teeth. We define here a simplified methodology to quantify 3D forces and moments applied on orthodontic brackets fixed on a dental arch and validate our methodology using existing results from the literature by means of simplified hypotheses.

  20. Development of Xi'an-CI package – applying the hole–particle symmetry in multi-reference electronic correlation calculations

    Science.gov (United States)

    Suo, Bingbing; Lei, Yibo; Han, Huixian; Wang, Yubin

    2018-04-01

    This mini-review introduces our works on the Xi'an-CI (configuration interaction) package using graphical unitary group approach (GUGA). Taking advantage of the hole-particle symmetry in GUGA, the Galfand states used to span the CI space are classified into CI subspaces according to the number of holes and particles, and the coupling coefficients used to calculate Hamiltonian matrix elements could be factorised into the segment factors in the hole, active and external spaces. An efficient multi-reference CI with single and double excitations (MRCISD) algorithm is thus developed that reduces the storage requirement and increases the number of correlated electrons significantly. The hole-particle symmetry also gives rise to a doubly contracted MRCISD approach. Moreover, the internally contracted Gelfand states are defined within the CI subspace arising from the hole-particle symmetry, which makes the implementation of internally contracted MRCISD in the framework of GUGA possible. In addition to MRCISD, the development of multi-reference second-order perturbation theory (MRPT2) also benefits from the hole-particle symmetry. A configuration-based MRPT2 algorithm is proposed and extended to the multi-state n-electron valence-state second-order perturbation theory.

  1. Identifying Pollutants in the Siret River Basin by Applying New Assessment Tools on Monitoring Data: the Correlation of Land Use and Physicochemical Parameter of Water Quality Analysis

    Directory of Open Access Journals (Sweden)

    Mănescu Andreea

    2014-10-01

    Full Text Available The Siret River are used as raw water source for different municipal water supply systems, yet the Siret River are used as receiving bodies by some inhabitants and industry. In the study the quality of the Siret River water was determinate using a Water Quality Index (WQI. Results are presented from a field study performed on the Bistrita, Moldova, Suceava, Siret, Şomuzu Mare, Trotuş and Tributary River in the study area Siret Basin Romania. The main objective of this study was to determine is to find correlations land use to indicators physical-chemical of water quality, to investigate pollution source is more responsible for river water quality. This is of interest not only research context, but also for supporting and facilitating the application analysis postullend in the Water Framework Directive (WFD (2000/60/CE for the establishment of programmers of measures. For this purpose a slightly impact pollution source municipal wastewater treatment, land uses, urban, forest, agriculture and mining was selected and intensively monitored during six years January 2006 - December 2011, sampling was determined to meet the WFD standards for confidence in twenty two different control section of the Siret Basin. The main measures to reduce emissions to the Siret River were calcium, ammonium, sulfate, residue fixed (RF, sodium, chloride, free detergent and municipal wastewater treatment, concentrated on point emission. The main contributor to diffuse this parameters increased when more percentage of land was dedicated to industry and urban and less to forest and mining.

  2. The effect of applied control strategy on the current-voltage correlation of a solid oxide fuel cell stack during dynamic operation

    Science.gov (United States)

    Szmyd, Janusz S.; Komatsu, Yosuke; Brus, Grzegorz; Ghigliazza, Francesco; Kimijima, Shinji; Ściążko, Anna

    2014-09-01

    This paper discusses the transient characteristics of the planar type SOFC cell stack, of which the standard output is 300 W. The transient response of the voltage to the manipulation of an electric current was investigated. The effects of the response and of the operating condition determined by the operating temperature of the stack were studied by mapping a current-voltage (I-V) correlation. The current-based fuel control (CBFC) was adopted for keeping the fuel utilization factor at constant while the value of the electric current was ramped at the constant rate. The present experimental study shows that the transient characteristics of the cell voltage are determined by primarily the operating temperature caused by the manipulation of the current. Particularly, the slope of the I-V curve and the overshoot found on the voltage was remarkably influenced by the operating temperature. The different values of the fuel utilization factor influence the height of the settled voltages. The CBFC has significance in determining the slope of the I-V characteristic, but the different values ofthe fuel utilization factor does not affect the slope as the operating temperature does. The CBFC essentially does not alter the amplitude of the overshoot on the voltage response, since this is dominated by the operating temperature and its change is caused by manipulating the current.

  3. The effect of applied control strategy on the current-voltage correlation of a solid oxide fuel cell stack during dynamic operation

    Directory of Open Access Journals (Sweden)

    Szmyd Janusz S.

    2014-09-01

    Full Text Available This paper discusses the transient characteristics of the planar type SOFC cell stack, of which the standard output is 300 W. The transient response of the voltage to the manipulation of an electric current was investigated. The effects of the response and of the operating condition determined by the operating temperature of the stack were studied by mapping a current-voltage (I-V correlation. The current-based fuel control (CBFC was adopted for keeping the fuel utilization factor at constant while the value of the electric current was ramped at the constant rate. The present experimental study shows that the transient characteristics of the cell voltage are determined by primarily the operating temperature caused by the manipulation of the current. Particularly, the slope of the I-V curve and the overshoot found on the voltage was remarkably influenced by the operating temperature. The different values of the fuel utilization factor influence the height of the settled voltages. The CBFC has significance in determining the slope of the I-V characteristic, but the different values ofthe fuel utilization factor does not affect the slope as the operating temperature does. The CBFC essentially does not alter the amplitude of the overshoot on the voltage response, since this is dominated by the operating temperature and its change is caused by manipulating the current.

  4. The tempo-spatial variations of phytoplankton diversities and their correlation with trophic state levels in a large eutrophic Chinese lake

    DEFF Research Database (Denmark)

    Yang, Bin; Jiang, Yu-Jiao; He, Wei

    2016-01-01

    status of the lake. The present study indicated that the Margalef index of all samples was as low as 0.799 ± 0.543 in summer (August 2011) and as high as 1.467 ± 0.653 in winter (February 2012). The Margalef index of the river samples had a high mean value and substantial variation compared with the lake...... occurred in the eastern lake, especially in the middle of the lake, in autumn and winter. The total trophic state index (TSI) in all samples exhibited a significant negative correlation with the Margalef (r = −0.726) and Peilou (r = −0.530) indices but a significant positive correlation with the Shannon...

  5. Spatial attention and reading ability: ERP correlates of flanker and cue-size effects in good and poor adult phonological decoders.

    Science.gov (United States)

    Matthews, Allison Jane; Martin, Frances Heritage

    2015-12-01

    To investigate facilitatory and inhibitory processes during selective attention among adults with good (n=17) and poor (n=14) phonological decoding skills, a go/nogo flanker task was completed while EEG was recorded. Participants responded to a middle target letter flanked by compatible or incompatible flankers. The target was surrounded by a small or large circular cue which was presented simultaneously or 500ms prior. Poor decoders showed a greater RT cost for incompatible stimuli preceded by large cues and less RT benefit for compatible stimuli. Poor decoders also showed reduced modulation of ERPs by cue-size at left hemisphere posterior sites (N1) and by flanker compatibility at right hemisphere posterior sites (N1) and frontal sites (N2), consistent with processing differences in fronto-parietal attention networks. These findings have potential implications for understanding the relationship between spatial attention and phonological decoding in dyslexia. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Mono-static GPR without transmitting anything for pavement damage inspection: interferometry by auto-correlation applied to mobile phone signals

    Science.gov (United States)

    Feld, R.; Slob, E. C.; Thorbecke, J.

    2015-12-01

    Creating virtual sources at locations where physical receivers have measured a response is known as seismic interferometry. A much appreciated benefit of interferometry is its independence of the actual source locations. The use of ambient noise as actual source is therefore not uncommon in this field. Ambient noise can be commercial noise, like for example mobile phone signals. For GPR this can be useful in cases where it is not possible to place a source, for instance when it is prohibited by laws and regulations. A mono-static GPR antenna can measure ambient noise. Interferometry by auto-correlation (AC) places a virtual source on this antenna's position, without actually transmitting anything. This can be used for pavement damage inspection. Earlier work showed very promising results with 2D numerical models of damaged pavement. 1D and 2D heterogeneities were compared, both modelled in a 2D pavement world. In a 1D heterogeneous model energy leaks away to the sides, whereas in a 2D heterogeneous model rays can reflect and therefore still add to the signal reconstruction (see illustration). In the first case the amount of stationary points is strictly limited, while in the other case the amount of stationary points is very large. We extend these models to a 3D world and optimise an experimental configuration. The illustration originates from the journal article under submission 'Non-destructive pavement damage inspection by mono-static GPR without transmitting anything' by R. Feld, E.C. Slob, and J.W. Thorbecke. (a) 2D heterogeneous pavement model with three irregular-shaped misalignments between the base and subbase layer (marked by arrows). Mono-antenna B-scan positions are shown schematically. (b) Ideal output: a real source at the receiver's position. The difference w.r.t. the trace found in the middle is shown. (c) AC output: a virtual source at the receiver's position. There is a clear overlap with the ideal output.

  7. Comparing Spatial Predictions

    KAUST Repository

    Hering, Amanda S.

    2011-11-01

    Under a general loss function, we develop a hypothesis test to determine whether a significant difference in the spatial predictions produced by two competing models exists on average across the entire spatial domain of interest. The null hypothesis is that of no difference, and a spatial loss differential is created based on the observed data, the two sets of predictions, and the loss function chosen by the researcher. The test assumes only isotropy and short-range spatial dependence of the loss differential but does allow it to be non-Gaussian, non-zero-mean, and spatially correlated. Constant and nonconstant spatial trends in the loss differential are treated in two separate cases. Monte Carlo simulations illustrate the size and power properties of this test, and an example based on daily average wind speeds in Oklahoma is used for illustration. Supplemental results are available online. © 2011 American Statistical Association and the American Society for Qualitys.

  8. Evaluation of pancreatic exocrine insufficiency by cine-dynamic MRCP using spatially selective inversion-recovery (IR) pulse: Correlation with severity of chronic pancreatitis based on morphological changes of pancreatic duct.

    Science.gov (United States)

    Yasokawa, Kazuya; Ito, Katsuyoshi; Kanki, Akihiko; Yamamoto, Akira; Torigoe, Teruyuki; Sato, Tomohiro; Tamada, Tsutomu

    2018-05-01

    To evaluate the correlation between the pancreatic exocrine insufficiency estimated by cine-dynamic MRCP using spatially selective IR pulse and the severity stages (modified Cambridge classification) based on morphological changes of the pancreatic duct in patients with suspected chronic pancreatitis. Thirty-nine patients with suspected chronic pancreatitis underwent cine-dynamic MRCP with a spatially selective IR pulse. The secretion grading score (5-point scale) based on the moving distance of pancreatic juice inflow on cine-dynamic MRCP was assessed, and compared with the stage of the severity of chronic pancreatitis based on morphological changes of pancreatic duct. The stage of the severity of chronic pancreatitis based on morphological changes had significant negative correlations with the secretion grade (r=-0.698, P0.70 in 2 (33%) of 6 patients showing normal pancreatic exocrine function. It should be noted that the degree of morphological changes of pancreatic duct does not necessarily reflect the severity of pancreatic exocrine insufficiency at cine-dynamic MRCP in stage 2-3 chronic pancreatitis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Seasonal and spatial variability of the organic matter-to-organic carbon mass ratios in Chinese urban organic aerosols and a first report of high correlations between aerosol oxalic acid and zinc

    Science.gov (United States)

    Xing, L.; Fu, T.-M.; Cao, J. J.; Lee, S. C.; Wang, G. H.; Ho, K. F.; Cheng, M.-C.; You, C.-F.; Wang, T. J.

    2013-01-01

    We calculated the organic matter to organic carbon mass ratios (OM/OC mass ratios) in PM2.5 collected from 14 Chinese cities during summer and winter of 2003 and analyzed the causes for their seasonal and spatial variability. The OM/OC mass ratios were calculated two ways. Using a mass balance method, the calculated OM/OC mass ratios averaged 1.92 ± 0.39 yr-round, with no significant seasonal or spatial variation. The second calculation was based on chemical species analyses of the organic compounds extracted from the PM2.5 samples using dichloromethane/methanol and water. The calculated OM/OC mass ratio in summer was relatively high (1.75 ± 0.13) and spatially-invariant, due to vigorous photochemistry and secondary OA production throughout the country. The calculated OM/OC mass ratio in winter (1.59 ± 0.18) was significantly lower than that in summer, with lower values in northern cities (1.51 ± 0.07) than in southern cities (1.65 ± 0.15). This likely reflects the wider usage of coal for heating purposes in northern China in winter, in contrast to the larger contributions from biofuel and biomass burning in southern China in winter. On average, organic matters constituted 36% and 34% of Chinese urban PM2.5 mass in summer and winter, respectively. We reported, for the first time, high correlations between Zn and oxalic acid in Chinese urban aerosols in summer. This is consistent with the formation of stable Zn oxalate complex in the aerosol phase previously proposed by Furukawa and Takahashi (2011). We found that many other dicarboxylic acids were also highly correlated with Zn in the summer Chinese urban aerosol samples, suggesting that they may also form stable organic complexes with Zn. Such formation may have profound implications for the atmospheric abundance and hygroscopic property of aerosol dicarboxylic acids.

  10. Correlation characteristics of optical coherence tomography images of turbid media with statistically inhomogeneous optical parameters

    International Nuclear Information System (INIS)

    Dolin, Lev S.; Sergeeva, Ekaterina A.; Turchin, Ilya V.

    2012-01-01

    Noisy structure of optical coherence tomography (OCT) images of turbid medium contains information about spatial variations of its optical parameters. We propose analytical model of statistical characteristics of OCT signal fluctuations from turbid medium with spatially inhomogeneous coefficients of absorption and backscattering. Analytically predicted correlation characteristics of OCT signal from spatially inhomogeneous medium are in good agreement with the results of correlation analysis of OCT images of different biological tissues. The proposed model can be efficiently applied for quantitative evaluation of statistical properties of absorption and backscattering fluctuations basing on correlation characteristics of OCT images.

  11. Spatial correlation between the predictor variables and the weighting values calculated during the mapping of the environmental factors of mass movements in the Beni Idder region (northern Rif

    Directory of Open Access Journals (Sweden)

    Ait Brahim L.

    2018-01-01

    Full Text Available The Tleta of Beni Ider region located in the SW of Tetouan (Rif Septentrional knows many mass instabilities. The diagnostic via the inventory, the mapping and the characterization of mass movements was made by using satellite imagery, aerial photography and field data coupled with existing documents (geological, geomorphological,…. The understanding of both their spatial distribution and the mechanism generating them, is very complex because of the existence of an important number of natural factors (geological, geomorphological, hydrological in a relative mountainous landscape with deep valleys, steep slopes and significant elevation changes. Thus, a multidisciplinary approach was adopted to elaborate the landslide susceptibility map of the region taking into account interactions and causal relationships between the various natural parameters that tend to accentuate and aggravate the setting of landslides. The multidisciplinary database allowed us to evaluate the susceptibility thanks to a bivariate probabiliste model (Weight of Evidence. The obtained landslide susceptibility map is a major contribution to the development of urban development plans in the region.

  12. Colorectal carcinoma: Ex vivo evaluation using 3-T high-spatial-resolution quantitative T2 mapping and its correlation with histopathologic findings.

    Science.gov (United States)

    Yamada, Ichiro; Yoshino, Norio; Hikishima, Keigo; Miyasaka, Naoyuki; Yamauchi, Shinichi; Uetake, Hiroyuki; Yasuno, Masamichi; Saida, Yukihisa; Tateishi, Ukihide; Kobayashi, Daisuke; Eishi, Yoshinobu

    2017-05-01

    In this study, we aimed to evaluate the feasibility of determining the mural invasion depths of colorectal carcinomas using high-spatial-resolution (HSR) quantitative T2 mapping on a 3-T magnetic resonance (MR) scanner. Twenty colorectal specimens containing adenocarcinomas were imaged on a 3-T MR system equipped with a 4-channel phased-array surface coil. HSR quantitative T2 maps were acquired using a spin-echo sequence with a repetition time/echo time of 7650/22.6-361.6ms (16 echoes), 87×43.5-mm field of view, 2-mm section thickness, 448×224 matrix, and average of 1. HSR fast-spin-echo T2-weighted images were also acquired. Differences between the T2 values (ms) of the tumor tissue, colorectal wall layers, and fibrosis were measured, and the MR images and histopathologic findings were compared. In all specimens (20/20, 100%), the HSR quantitative T2 maps clearly depicted an 8-layer normal colorectal wall in which the T2 values of each layer differed from those of the adjacent layer(s) (PT2 maps and histopathologic data yielded the same findings regarding the tumor invasion depth. Our results indicate that 3-T HSR quantitative T2 mapping is useful for distinguishing colorectal wall layers and differentiating tumor and fibrotic tissues. Accordingly, this technique could be used to determine mural invasion by colorectal carcinomas with a high level of accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Superadditive correlation

    International Nuclear Information System (INIS)

    Giraud, B.G.; Heumann, J.M.; Lapedes, A.S.

    1999-01-01

    The fact that correlation does not imply causation is well known. Correlation between variables at two sites does not imply that the two sites directly interact, because, e.g., correlation between distant sites may be induced by chaining of correlation between a set of intervening, directly interacting sites. Such 'noncausal correlation' is well understood in statistical physics: an example is long-range order in spin systems, where spins which have only short-range direct interactions, e.g., the Ising model, display correlation at a distance. It is less well recognized that such long-range 'noncausal' correlations can in fact be stronger than the magnitude of any causal correlation induced by direct interactions. We call this phenomenon superadditive correlation (SAC). We demonstrate this counterintuitive phenomenon by explicit examples in (i) a model spin system and (ii) a model continuous variable system, where both models are such that two variables have multiple intervening pathways of indirect interaction. We apply the technique known as decimation to explain SAC as an additive, constructive interference phenomenon between the multiple pathways of indirect interaction. We also explain the effect using a definition of the collective mode describing the intervening spin variables. Finally, we show that the SAC effect is mirrored in information theory, and is true for mutual information measures in addition to correlation measures. Generic complex systems typically exhibit multiple pathways of indirect interaction, making SAC a potentially widespread phenomenon. This affects, e.g., attempts to deduce interactions by examination of correlations, as well as, e.g., hierarchical approximation methods for multivariate probability distributions, which introduce parameters based on successive orders of correlation. copyright 1999 The American Physical Society

  14. Spatial correlation analysis of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in sediments between Taihu Lake and its tributary rivers.

    Science.gov (United States)

    Zhao, Zhonghua; Jiang, Yu; Li, Qianyu; Cai, Yongjiu; Yin, Hongbin; Zhang, Lu; Zhang, Jin

    2017-08-01

    The residues of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in surface sediments from Taihu Lake basin (THB) and Taihu Lake body (THL) were investigated. Higher concentrations of both PAHs and OCPs were observed for THB than THL. The concentrations of PAHs ranged from 12.1 to 2281.1ngg -1 dw for THB and from 11.4 to 209.9ngg -1 dw for THL, while OCPs ranged from 16.3 to 96.9ngg -1 dw and from 16.8 to 61.9ngg -1 dw for THB and THL, respectively. Spatial distribution of PAHs and OCPs showed a high correspondence with the land use of THB and surrounding anthropogenic activity. Additionally, the Kriging interpolation plots demonstrated that the major upper reaches were more polluted than the lower reaches, indicating the transport of pollutants with the water flow direction. The organic matter contents were responsible for OCP distribution other than PAHs due to the biodegradation capacity difference of chemicals. Similar compositions of pollutants were observed with 3- and 4-ringed PAHs accounting for a total of 78.3% for THB and 85.8% for THL, respectively. HCHs and DDTs were predominant OCPs, which contributed to 31.8% and 21.7% for THB, and 33.6% and 21.9% for THL, respectively. The isomeric and parent substance/metabolite ratios implied fresh inputs of DDTs and chlordanes, while HCHs and endosulfans were mainly from old usage. PAH source identification performed by diagnostic ratios demonstrated the mixed sources of petrogenic and pyrogenic ones dominated by grass, wood and coal combustion. Furthermore, the hazard quotient (HQ) based on the consensus-based sediment quality guidelines (SQGs) was used to evaluate the ecological risks of sediments. Although no frequently adverse effects were observed, potential ecological risks induced by Ant, BaA, γ-HCH, dieldrin, p,p'-DDT and chlordanes should also be paid attention to considering the continuous inputs of such pollutants. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. An Evaluation of the Correlation between the Free Moments Applied on the Lower Extremity and the Knee Extensor Mechanism Force in Pronated Foot Subjects during the Stance Phase of Gait

    Directory of Open Access Journals (Sweden)

    Farzaneh Yazdani

    2016-12-01

    Full Text Available Background: Due to the rotatory nature of the excessive subtalar pronation and the possible impairment of the tibial rotation-knee flexion mechanism, changes of the free moment (FM and changes of the extensor mechanism force are expected in hyper-pronated foot subjects. The purpose of this study was to evaluate the correlation between the FM applied on the lower extremity and the knee extensor mechanism force in subjects with flexible pronated feet. Methods: Fifteen asymptomatic female subjects (21.32±1.66 y, 56.30±6.08 kg, 159±6.3 cm participated in the study. Excessive subtalar pronation was determined by measuring the resting calcaneal stance position (RCSP in the frontal plane during weight bearing. A neutrally aligned foot was defined as having an RCSP between 2° of inversion and 2° of eversion. On the other hand, a flat foot had an RCSP of more than or equal to 4° of eversion. Both kinetic and kinematic data were collected using a six-camera motion analysis system and a single force plate. Three successful barefoot walking trials were recorded at selfselected speeds. The extensor mechanism force and the adductory component of the free moment (ADD FM were calculated. The correlation between the ADD FM and the knee extensor mechanism force was examined using the Pearson correlation test. Results: The Pearson correlation analysis showed a high positive correlation between the ADD FM and the extensor mechanism force (r=0.917, P<0.001. Conclusion: Excessive subtalar pronation, along with a possible impairment of the tibial rotation-knee flexion mechanism, may affect the extensor mechanism force at the knee joint. From a clinical perspective, the possible biomechanical linkage between the knee and the foot complex in the physical examination and treatment of patients should be considered.

  16. Generation of future potential scenarios in an Alpine Catchment by applying bias-correction techniques, delta-change approaches and stochastic Weather Generators at different spatial scale. Analysis of their influence on basic and drought statistics.

    Science.gov (United States)

    Collados-Lara, Antonio-Juan; Pulido-Velazquez, David; Pardo-Iguzquiza, Eulogio

    2017-04-01

    Assessing impacts of potential future climate change scenarios in precipitation and temperature is essential to design adaptive strategies in water resources systems. The objective of this work is to analyze the possibilities of different statistical downscaling methods to generate future potential scenarios in an Alpine Catchment from historical data and the available climate models simulations performed in the frame of the CORDEX EU project. The initial information employed to define these downscaling approaches are the historical climatic data (taken from the Spain02 project for the period 1971-2000 with a spatial resolution of 12.5 Km) and the future series provided by climatic models in the horizon period 2071-2100 . We have used information coming from nine climate model simulations (obtained from five different Regional climate models (RCM) nested to four different Global Climate Models (GCM)) from the European CORDEX project. In our application we have focused on the Representative Concentration Pathways (RCP) 8.5 emissions scenario, which is the most unfavorable scenario considered in the fifth Assessment Report (AR5) by the Intergovernmental Panel on Climate Change (IPCC). For each RCM we have generated future climate series for the period 2071-2100 by applying two different approaches, bias correction and delta change, and five different transformation techniques (first moment correction, first and second moment correction, regression functions, quantile mapping using distribution derived transformation and quantile mapping using empirical quantiles) for both of them. Ensembles of the obtained series were proposed to obtain more representative potential future climate scenarios to be employed to study potential impacts. In this work we propose a non-equifeaseble combination of the future series giving more weight to those coming from models (delta change approaches) or combination of models and techniques that provides better approximation to the basic

  17. Covert spatial attention in search for the location of a color-afterimage patch speeds up its decay from awareness: introducing a method useful for the study of neural correlates of visual awareness.

    Science.gov (United States)

    Bachmann, Talis; Murd, Carolina

    2010-06-01

    Previous research has reported that attention to color afterimages speeds up their decay. However, the inducing stimuli in these studies have been overlapping, thereby implying that they involved overlapping receptive fields of the responsible neurons. As a result it is difficult to interpret the effect of focusing attention on a phenomenally projected target-afterimage. Here, we present a method free from these shortcomings. In searching for a target-afterimage patch among spatially separate alternatives the target fades from awareness before its competitors. This offers a good means to study neural correlates of visual awareness unconfounded with attention and enabling a temporally extended pure phenomenal experience free from simultaneous inflow of sensory transients. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Photon correlation holography.

    Science.gov (United States)

    Naik, Dinesh N; Singh, Rakesh Kumar; Ezawa, Takahiro; Miyamoto, Yoko; Takeda, Mitsuo

    2011-01-17

    Unconventional holography called photon correlation holography is proposed and experimentally demonstrated. Using photon correlation, i.e. intensity correlation or fourth order correlation of optical field, a 3-D image of the object recorded in a hologram is reconstructed stochastically with illumination through a random phase screen. Two different schemes for realizing photon correlation holography are examined by numerical simulations, and the experiment was performed for one of the reconstruction schemes suitable for the experimental proof of the principle. The technique of photon correlation holography provides a new insight into how the information is embedded in the spatial as well as temporal correlation of photons in the stochastic pseudo thermal light.

  19. The SPAtial EFficiency metric (SPAEF): multiple-component evaluation of spatial patterns for optimization of hydrological models

    Science.gov (United States)

    Koch, Julian; Cüneyd Demirel, Mehmet; Stisen, Simon

    2018-05-01

    The process of model evaluation is not only an integral part of model development and calibration but also of paramount importance when communicating modelling results to the scientific community and stakeholders. The modelling community has a large and well-tested toolbox of metrics to evaluate temporal model performance. In contrast, spatial performance evaluation does not correspond to the grand availability of spatial observations readily available and to the sophisticate model codes simulating the spatial variability of complex hydrological processes. This study makes a contribution towards advancing spatial-pattern-oriented model calibration by rigorously testing a multiple-component performance metric. The promoted SPAtial EFficiency (SPAEF) metric reflects three equally weighted components: correlation, coefficient of variation and histogram overlap. This multiple-component approach is found to be advantageous in order to achieve the complex task of comparing spatial patterns. SPAEF, its three components individually and two alternative spatial performance metrics, i.e. connectivity analysis and fractions skill score, are applied in a spatial-pattern-oriented model calibration of a catchment model in Denmark. Results suggest the importance of multiple-component metrics because stand-alone metrics tend to fail to provide holistic pattern information. The three SPAEF components are found to be independent, which allows them to complement each other in a meaningful way. In order to optimally exploit spatial observations made available by remote sensing platforms, this study suggests applying bias insensitive metrics which further allow for a comparison of variables which are related but may differ in unit. This study applies SPAEF in the hydrological context using the mesoscale Hydrologic Model (mHM; version 5.8), but we see great potential across disciplines related to spatially distributed earth system modelling.

  20. Applied physics

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The Physics Division research program that is dedicated primarily to applied research goals involves the interaction of energetic particles with solids. This applied research is carried out in conjunction with the basic research studies from which it evolved

  1. Fiber transport of spatially entangled photons

    Science.gov (United States)

    Löffler, W.; Eliel, E. R.; Woerdman, J. P.; Euser, T. G.; Scharrer, M.; Russell, P.

    2012-03-01

    High-dimensional entangled photons pairs are interesting for quantum information and cryptography: Compared to the well-known 2D polarization case, the stronger non-local quantum correlations could improve noise resistance or security, and the larger amount of information per photon increases the available bandwidth. One implementation is to use entanglement in the spatial degree of freedom of twin photons created by spontaneous parametric down-conversion, which is equivalent to orbital angular momentum entanglement, this has been proven to be an excellent model system. The use of optical fiber technology for distribution of such photons has only very recently been practically demonstrated and is of fundamental and applied interest. It poses a big challenge compared to the established time and frequency domain methods: For spatially entangled photons, fiber transport requires the use of multimode fibers, and mode coupling and intermodal dispersion therein must be minimized not to destroy the spatial quantum correlations. We demonstrate that these shortcomings of conventional multimode fibers can be overcome by using a hollow-core photonic crystal fiber, which follows the paradigm to mimic free-space transport as good as possible, and are able to confirm entanglement of the fiber-transported photons. Fiber transport of spatially entangled photons is largely unexplored yet, therefore we discuss the main complications, the interplay of intermodal dispersion and mode mixing, the influence of external stress and core deformations, and consider the pros and cons of various fiber types.

  2. Accounting for Non-Gaussian Sources of Spatial Correlation in Parametric Functional Magnetic Resonance Imaging Paradigms II: A Method to Obtain First-Level Analysis Residuals with Uniform and Gaussian Spatial Autocorrelation Function and Independent and Identically Distributed Time-Series.

    Science.gov (United States)

    Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Lacey, Simon; Sathian, K

    2018-02-01

    In a recent study Eklund et al. have shown that cluster-wise family-wise error (FWE) rate-corrected inferences made in parametric statistical method-based functional magnetic resonance imaging (fMRI) studies over the past couple of decades may have been invalid, particularly for cluster defining thresholds less stringent than p functions (sACFs) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggest otherwise. Hence, the residuals from general linear model (GLM)-based fMRI activation estimates in these studies may not have possessed a homogenously Gaussian sACF. Here we propose a method based on the assumption that heterogeneity and non-Gaussianity of the sACF of the first-level GLM analysis residuals, as well as temporal autocorrelations in the first-level voxel residual time-series, are caused by unmodeled MRI signal from neuronal and physiological processes as well as motion and other artifacts, which can be approximated by appropriate decompositions of the first-level residuals with principal component analysis (PCA), and removed. We show that application of this method yields GLM residuals with significantly reduced spatial correlation, nearly Gaussian sACF and uniform spatial smoothness across the brain, thereby allowing valid cluster-based FWE-corrected inferences based on assumption of Gaussian spatial noise. We further show that application of this method renders the voxel time-series of first-level GLM residuals independent, and identically distributed across time (which is a necessary condition for appropriate voxel-level GLM inference), without having to fit ad hoc stochastic colored noise models. Furthermore, the detection power of individual subject brain activation analysis is enhanced. This method will be especially useful for case studies, which rely on first-level GLM analysis inferences.

  3. Spatial dependence of pair correlations (nuclear scissors)

    International Nuclear Information System (INIS)

    Bal'butsev, E.B.; Malov, L.A.

    2009-01-01

    The solution of time-dependent Hartree-Fock-Bogolyubov equations by the Wigner function moments method leads to the appearance of low-lying modes whose description requires accurate knowledge of the anomalous density matrix. It is shown that calculations with the Woods-Saxon potential satisfy this requirement

  4. Spatial Operations

    Directory of Open Access Journals (Sweden)

    Anda VELICANU

    2010-09-01

    Full Text Available This paper contains a brief description of the most important operations that can be performed on spatial data such as spatial queries, create, update, insert, delete operations, conversions, operations on the map or analysis on grid cells. Each operation has a graphical example and some of them have code examples in Oracle and PostgreSQL.

  5. Spatializing Time

    DEFF Research Database (Denmark)

    Thomsen, Bodil Marie Stavning

    2011-01-01

    The article analyses some of artist Søren Lose's photographic installations in which time, history and narration is reflected in the creation of allegoric, spatial relations.......The article analyses some of artist Søren Lose's photographic installations in which time, history and narration is reflected in the creation of allegoric, spatial relations....

  6. Spatial Computation

    Science.gov (United States)

    2003-12-01

    Computation and today’s microprocessors with the approach to operating system architecture, and the controversy between microkernels and monolithic kernels...Both Spatial Computation and microkernels break away a relatively monolithic architecture into in- dividual lightweight pieces, well specialized...for their particular functionality. Spatial Computation removes global signals and control, in the same way microkernels remove the global address

  7. Applied Electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, H; Marinova, I; Cingoski, V [eds.

    2002-07-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics.

  8. Applied Electromagnetics

    International Nuclear Information System (INIS)

    Yamashita, H.; Marinova, I.; Cingoski, V.

    2002-01-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics

  9. Particulate morphology mathematics applied to particle assemblies

    CERN Document Server

    Gotoh, Keishi

    2012-01-01

    Encompassing over fifty years of research, Professor Gotoh addresses the correlation function of spatial structures and the statistical geometry of random particle assemblies. In this book morphological study is formed into random particle assemblies to which various mathematics are applied such as correlation function, radial distribution function and statistical geometry. This leads to the general comparison between the thermodynamic state such as gases and liquids and the random particle assemblies. Although structures of molecular configurations change at every moment due to thermal vibration, liquids can be regarded as random packing of particles. Similarly, gaseous states correspond to particle dispersion. If physical and chemical properties are taken away from the subject, the remainder is the structure itself. Hence, the structural study is ubiquitous and of fundamental importance. This book will prove useful to chemical engineers working on powder technology as well as mathematicians interested in le...

  10. Propagating wave correlations in complex systems

    International Nuclear Information System (INIS)

    Creagh, Stephen C; Gradoni, Gabriele; Hartmann, Timo; Tanner, Gregor

    2017-01-01

    We describe a novel approach for computing wave correlation functions inside finite spatial domains driven by complex and statistical sources. By exploiting semiclassical approximations, we provide explicit algorithms to calculate the local mean of these correlation functions in terms of the underlying classical dynamics. By defining appropriate ensemble averages, we show that fluctuations about the mean can be characterised in terms of classical correlations. We give in particular an explicit expression relating fluctuations of diagonal contributions to those of the full wave correlation function. The methods have a wide range of applications both in quantum mechanics and for classical wave problems such as in vibro-acoustics and electromagnetism. We apply the methods here to simple quantum systems, so-called quantum maps, which model the behaviour of generic problems on Poincaré sections. Although low-dimensional, these models exhibit a chaotic classical limit and share common characteristics with wave propagation in complex structures. (paper)

  11. Correlated ion stopping in plasmas

    International Nuclear Information System (INIS)

    Zwicknagel, G.; Deutsch, C.

    1997-01-01

    The basic features of correlated ion stopping in plasmas are demonstrated by employing two opposite extremes of cluster structures, a statistical model with a spatial ion distribution of Gaussian shape and the highly regular configuration of N-ion chains and cubic boxes. In the case of the ion chains the resonant character of correlated stopping due to the interference of the excited wake fields is discussed in detail. The general behavior of correlation effects is summarized and its dependence on the ratio of cluster size and interion spacing to the screening length in the plasma, as well as the ratio of the cluster velocity to the mean electron velocity in the target, is stressed out. The validity and applicability of the dielectric response formalism used for describing correlated stopping is critically reviewed. A scheme is presented to extend the linear formalism to weak nonlinear situations that occur, in particular, for small highly charged clusters at moderate or low velocities. For the Gaussian cluster a fit formula is given, which allows a fast and accurate calculation of the enhancement of stopping due to correlation effects and applies for all degrees of degeneracy of the electrons and arbitrary cluster velocities. copyright 1997 The American Physical Society

  12. Linear and spatial correlation of the yield components and soybean yieldCorrelação linear e espacial dos componentes de produção e produtividade da soja

    Directory of Open Access Journals (Sweden)

    Morel de Passos e Carvalho

    2012-05-01

    Full Text Available The soybean is the crop most cultivated in Brazil, with great socioeconomic importance. In the agriculture year 2008/09 in Selvíria County, Mato Grosso do Sul State, in the Brazilian Savannah, was analyzed the production components and the soybean yield cultivated in a Typic Acrustox on no-tillage. The main purpose objective was select among the production components number of pods per plant, number of grains per pod, number of grains per plant, mass of a thousand grains, mass of grains per plant and population of plants, which of the best linear and spatial correlation aiming explain the soybean yield variability. The irregular geostatistical grid was installed to collect of data, with 120 sampling points, in an area of 8.34 ha. The values of spatial dependence range to be utilized should be among 38.1 and 114.7 meters. The model of the adjusted semivariograma was predominantly the spherical. Of the lineal and spatial point of view, the number of pods per plant and the mass of grains per plant they were correlated in a direct way with the soybean yield, demonstrating be the best components to esteem her. A soja é a cultura de grãos mais cultivada no Brasil, com enorme importância socioeconômica. No ano agrícola de 2008/09, no município de Selvíria (MS, no Cerrado Brasileiro, foram analisados os componentes de produção e a produtividade da soja cultivada em Latossolo Vermelho distroférrico em sistema plantio direto. O objetivo foi selecionar entre os componentes de produção número de vagens por planta, número de grãos por vagem, número de grãos por planta, massa de mil grãos, massa de grãos por planta e população de plantas, aquele com a melhor correlação, linear e espacial, visando explicar a variabilidade da produtividade da soja. Foi instalada a malha geoestatística irregular, para a coleta de dados, com 120 pontos amostrais, numa área de 8,34 ha. Os valores dos alcances da dependência espacial a serem empregados

  13. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  14. Spatially heterogeneous ages in glassy dynamics

    International Nuclear Information System (INIS)

    Castillo, Horacio E.; Chamon, Claudio Chamon; Cugliandolo, Leticia F.; Iguain, Jose Luis; Kennett, Malcolm P.

    2003-09-01

    We construct a framework for the study of fluctuations in the nonequilibrium relaxation of glassy systems with and without quenched disorder. We study two types of two-time local correlators with the aim of characterizing the heterogeneous evolution in these systems: in one case we average the local correlators over histories of the thermal noise, in the other case we simply coarse-grain the local correlators obtained for a given noise realization. We explain why the noise-averaged correlators describe the fingerprint of quenched disorder when it exists, while the coarse-grained correlators are linked to noise-induced mesoscopic fluctuations. We predict constraints on the distribution of the fluctuations of the coarse-grained quantities. In particular, we show that locally defined correlations and responses are connected by a generalized local out-of-equilibrium fluctuation-dissipation relation. We argue that large size heterogeneities in the age of the system survive in the long-time limit. A symmetry of the underlying theory, namely invariance under reparametrizations of the time coordinates, underlies these results. We establish a connection between the probabilities of spatial distributions of local coarse-grained quantities and the theory of dynamic random manifolds. We define, and discuss the behavior of, a two-time dependent correlation length from the spatial decay of the fluctuations in the two-time local functions. We characterize the fluctuations in the system in terms of their fractal properties. For concreteness, we present numerical tests performed on disordered spin models in finite and infinite dimensions. Finally, we explain how these ideas can be applied to the analysis of the dynamics of other glassy systems that can be either spin models without disorder or atomic and molecular glassy systems. (author)

  15. Spatial Theography

    OpenAIRE

    van Noppen, Jean Pierre

    1995-01-01

    Descriptive theology («theography») frequently resorts to metaphorical modes of meaning. Among these metaphors, the spatial language of localization and orientation plays an important role to delineate tentative insights into the relationship between the human and the divine. These spatial metaphors are presumably based on the universal human experience of interaction between the body and its environment. It is dangerous, however, to postulate universal agreement on meanings associated with s...

  16. Clustering Coefficients for Correlation Networks.

    Science.gov (United States)

    Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu

    2018-01-01

    Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other) measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node) are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients were strongly

  17. Clustering Coefficients for Correlation Networks

    Directory of Open Access Journals (Sweden)

    Naoki Masuda

    2018-03-01

    Full Text Available Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients

  18. Clustering Coefficients for Correlation Networks

    Science.gov (United States)

    Masuda, Naoki; Sakaki, Michiko; Ezaki, Takahiro; Watanabe, Takamitsu

    2018-01-01

    Graph theory is a useful tool for deciphering structural and functional networks of the brain on various spatial and temporal scales. The clustering coefficient quantifies the abundance of connected triangles in a network and is a major descriptive statistics of networks. For example, it finds an application in the assessment of small-worldness of brain networks, which is affected by attentional and cognitive conditions, age, psychiatric disorders and so forth. However, it remains unclear how the clustering coefficient should be measured in a correlation-based network, which is among major representations of brain networks. In the present article, we propose clustering coefficients tailored to correlation matrices. The key idea is to use three-way partial correlation or partial mutual information to measure the strength of the association between the two neighboring nodes of a focal node relative to the amount of pseudo-correlation expected from indirect paths between the nodes. Our method avoids the difficulties of previous applications of clustering coefficient (and other) measures in defining correlational networks, i.e., thresholding on the correlation value, discarding of negative correlation values, the pseudo-correlation problem and full partial correlation matrices whose estimation is computationally difficult. For proof of concept, we apply the proposed clustering coefficient measures to functional magnetic resonance imaging data obtained from healthy participants of various ages and compare them with conventional clustering coefficients. We show that the clustering coefficients decline with the age. The proposed clustering coefficients are more strongly correlated with age than the conventional ones are. We also show that the local variants of the proposed clustering coefficients (i.e., abundance of triangles around a focal node) are useful in characterizing individual nodes. In contrast, the conventional local clustering coefficients were strongly

  19. Assessing and updating the reliability of concrete bridges subjected to spatial deterioration - principles and software implementation

    DEFF Research Database (Denmark)

    Schneider, Ronald; Fischer, Johannes; Bügler, Maximilian

    2015-01-01

    to implement the method presented here. The software prototype is applied to a typical highway bridge and the influence of inspection information on the system deterioration state and the structural reliability is quantified taking into account the spatial correlation of the corrosion process. This work...

  20. Applied mathematics

    CERN Document Server

    Logan, J David

    2013-01-01

    Praise for the Third Edition"Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference." -MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and nat

  1. Applied Enzymology.

    Science.gov (United States)

    Manoharan, Asha; Dreisbach, Joseph H.

    1988-01-01

    Describes some examples of chemical and industrial applications of enzymes. Includes a background, a discussion of structure and reactivity, enzymes as therapeutic agents, enzyme replacement, enzymes used in diagnosis, industrial applications of enzymes, and immobilizing enzymes. Concludes that applied enzymology is an important factor in…

  2. Spatiality of environmental law

    DEFF Research Database (Denmark)

    Baaner, Lasse; Hvingel, Line

    2015-01-01

    , examines legal regulation as spatial information. It aims to deepen the understanding of spatiality as a core element of environmental law, and to connect it to the basic concept of representation used in giscience. It concludes that the future path for e-Government demands a shift in legal paradigm, from...... maps showing representations of applied legal norms, to maps build on datasets that have legal authority. That will integrate legal and geographic information systems, and improve the legal accountability of decision support systems used in e-Government services based on spatio-legal data....

  3. Spatial Keyword Query Processing

    DEFF Research Database (Denmark)

    Chen, Lisi; Jensen, Christian S.; Wu, Dingming

    2013-01-01

    Geo-textual indices play an important role in spatial keyword query- ing. The existing geo-textual indices have not been compared sys- tematically under the same experimental framework. This makes it difficult to determine which indexing technique best supports specific functionality. We provide...... an all-around survey of 12 state- of-the-art geo-textual indices. We propose a benchmark that en- ables the comparison of the spatial keyword query performance. We also report on the findings obtained when applying the bench- mark to the indices, thus uncovering new insights that may guide index...

  4. Bayesian spatial modeling applied to environmental monitoring due to the use of different drilling fluids in the maritime exploration activity; Modelagem espacial Bayesiana aplicada ao monitoramento ambiental decorrente do uso de diferentes fluidos de perfuracao na atividade exploratoria maritima

    Energy Technology Data Exchange (ETDEWEB)

    Pulgati, Fernando H. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Modelagem de Bacias (LAB2M); Zouain, Ricardo N.A. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Geociencias. Centro de Estudos de Geologia Costeira e Oceanica; Fachel, Jandyra M.G. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Matematica; Landau, Luiz [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Metodos Computacionais em Engenharia (LAMCE)

    2004-07-01

    Controlling and monitoring environmental researches have accompanied the development of offshore exploration drill activities aimed at finding oil and gas reserves, as there has been an increase in the environmental demands and restrictions. Three stages of the drilling process were isolated and the effects of different fluids were measured using Bayesian spatial models. The probable impact of the use of non-aqueous fluid (NAF) was measured through changes observed in sea sediments in three different occasions: previous to the activity, one (1) month after the end of the activity, and one (1) year after the end of the activity. BACI (Before-After Control Impact) design, which allows the control of temporal and spatial variation components, was chosen. (author)

  5. A spatial epidemiological analysis of self-rated mental health in the slums of Dhaka

    Directory of Open Access Journals (Sweden)

    Müller Daniel

    2011-05-01

    Full Text Available Abstract Background The deprived physical environments present in slums are well-known to have adverse health effects on their residents. However, little is known about the health effects of the social environments in slums. Moreover, neighbourhood quantitative spatial analyses of the mental health status of slum residents are still rare. The aim of this paper is to study self-rated mental health data in several slums of Dhaka, Bangladesh, by accounting for neighbourhood social and physical associations using spatial statistics. We hypothesised that mental health would show a significant spatial pattern in different population groups, and that the spatial patterns would relate to spatially-correlated health-determining factors (HDF. Methods We applied a spatial epidemiological approach, including non-spatial ANOVA/ANCOVA, as well as global and local univariate and bivariate Moran's I statistics. The WHO-5 Well-being Index was used as a measure of self-rated mental health. Results We found that poor mental health (WHO-5 scores Conclusions Spatial patterns of mental health were detected and could be partly explained by spatially correlated HDF. We thereby showed that the socio-physical neighbourhood was significantly associated with health status, i.e., mental health at one location was spatially dependent on the mental health and HDF prevalent at neighbouring locations. Furthermore, the spatial patterns point to severe health disparities both within and between the slums. In addition to examining health outcomes, the methodology used here is also applicable to residuals of regression models, such as helping to avoid violating the assumption of data independence that underlies many statistical approaches. We assume that similar spatial structures can be found in other studies focussing on neighbourhood effects on health, and therefore argue for a more widespread incorporation of spatial statistics in epidemiological studies.

  6. Applied dynamics

    CERN Document Server

    Schiehlen, Werner

    2014-01-01

    Applied Dynamics is an important branch of engineering mechanics widely applied to mechanical and automotive engineering, aerospace and biomechanics as well as control engineering and mechatronics. The computational methods presented are based on common fundamentals. For this purpose analytical mechanics turns out to be very useful where D’Alembert’s principle in the Lagrangian formulation proves to be most efficient. The method of multibody systems, finite element systems and continuous systems are treated consistently. Thus, students get a much better understanding of dynamical phenomena, and engineers in design and development departments using computer codes may check the results more easily by choosing models of different complexity for vibration and stress analysis.

  7. Applied optics

    International Nuclear Information System (INIS)

    Orszag, A.; Antonetti, A.

    1988-01-01

    The 1988 progress report, of the Applied Optics laboratory, of the (Polytechnic School, France), is presented. The optical fiber activities are focused on the development of an optical gyrometer, containing a resonance cavity. The following domains are included, in the research program: the infrared laser physics, the laser sources, the semiconductor physics, the multiple-photon ionization and the nonlinear optics. Investigations on the biomedical, the biological and biophysical domains are carried out. The published papers and the congress communications are listed [fr

  8. Spatial networks

    Science.gov (United States)

    Barthélemy, Marc

    2011-02-01

    Complex systems are very often organized under the form of networks where nodes and edges are embedded in space. Transportation and mobility networks, Internet, mobile phone networks, power grids, social and contact networks, and neural networks, are all examples where space is relevant and where topology alone does not contain all the information. Characterizing and understanding the structure and the evolution of spatial networks is thus crucial for many different fields, ranging from urbanism to epidemiology. An important consequence of space on networks is that there is a cost associated with the length of edges which in turn has dramatic effects on the topological structure of these networks. We will thoroughly explain the current state of our understanding of how the spatial constraints affect the structure and properties of these networks. We will review the most recent empirical observations and the most important models of spatial networks. We will also discuss various processes which take place on these spatial networks, such as phase transitions, random walks, synchronization, navigation, resilience, and disease spread.

  9. Spatial interpolation

    NARCIS (Netherlands)

    Stein, A.

    1991-01-01

    The theory and practical application of techniques of statistical interpolation are studied in this thesis, and new developments in multivariate spatial interpolation and the design of sampling plans are discussed. Several applications to studies in soil science are

  10. Nonparametric Bayesian models for a spatial covariance.

    Science.gov (United States)

    Reich, Brian J; Fuentes, Montserrat

    2012-01-01

    A crucial step in the analysis of spatial data is to estimate the spatial correlation function that determines the relationship between a spatial process at two locations. The standard approach to selecting the appropriate correlation function is to use prior knowledge or exploratory analysis, such as a variogram analysis, to select the correct parametric correlation function. Rather that selecting a particular parametric correlation function, we treat the covariance function as an unknown function to be estimated from the data. We propose a flexible prior for the correlation function to provide robustness to the choice of correlation function. We specify the prior for the correlation function using spectral methods and the Dirichlet process prior, which is a common prior for an unknown distribution function. Our model does not require Gaussian data or spatial locations on a regular grid. The approach is demonstrated using a simulation study as well as an analysis of California air pollution data.

  11. Detecting the Land-Cover Changes Induced by Large-Physical Disturbances Using Landscape Metrics, Spatial Sampling, Simulation and Spatial Analysis

    Directory of Open Access Journals (Sweden)

    Hone-Jay Chu

    2009-08-01

    Full Text Available The objectives of the study are to integrate the conditional Latin Hypercube Sampling (cLHS, sequential Gaussian simulation (SGS and spatial analysis in remotely sensed images, to monitor the effects of large chronological disturbances on spatial characteristics of landscape changes including spatial heterogeneity and variability. The multiple NDVI images demonstrate that spatial patterns of disturbed landscapes were successfully delineated by spatial analysis such as variogram, Moran’I and landscape metrics in the study area. The hybrid method delineates the spatial patterns and spatial variability of landscapes caused by these large disturbances. The cLHS approach is applied to select samples from Normalized Difference Vegetation Index (NDVI images from SPOT HRV images in the Chenyulan watershed of Taiwan, and then SGS with sufficient samples is used to generate maps of NDVI images. In final, the NDVI simulated maps are verified using indexes such as the correlation coefficient and mean absolute error (MAE. Therefore, the statistics and spatial structures of multiple NDVI images present a very robust behavior, which advocates the use of the index for the quantification of the landscape spatial patterns and land cover change. In addition, the results transferred by Open Geospatial techniques can be accessed from web-based and end-user applications of the watershed management.

  12. Physically-based modeling of topographic effects on spatial evapotranspiration and soil moisture patterns through radiation and wind

    Directory of Open Access Journals (Sweden)

    M. Liu

    2012-02-01

    Full Text Available In this paper, simulations with the Soil Water Atmosphere Plant (SWAP model are performed to quantify the spatial variability of both potential and actual evapotranspiration (ET, and soil moisture content (SMC caused by topography-induced spatial wind and radiation differences. To obtain the spatially distributed ET/SMC patterns, the field scale SWAP model is applied in a distributed way for both pointwise and catchment wide simulations. An adapted radiation model from r.sun and the physically-based meso-scale wind model METRAS PC are applied to obtain the spatial radiation and wind patterns respectively, which show significant spatial variation and correlation with aspect and elevation respectively. Such topographic dependences and spatial variations further propagate to ET/SMC. A strong spatial, seasonal-dependent, scale-relevant intra-catchment variability in daily/annual ET and less variability in SMC can be observed from the numerical experiments. The study concludes that topography has a significant effect on ET/SMC in the humid region where ET is a energy limited rather than water availability limited process. It affects the spatial runoff generation through spatial radiation and wind, therefore should be applied to inform hydrological model development. In addition, the methodology used in the study can serve as a general method for physically-based ET estimation for data sparse regions.

  13. Spatial-Temporal Clustering of Tornadoes

    Science.gov (United States)

    Malamud, Bruce D.; Turcotte, Donald L.; Brooks, Harold E.

    2017-04-01

    The standard measure of the intensity of a tornado is the Enhanced Fujita scale, which is based qualitatively on the damage caused by a tornado. An alternative measure of tornado intensity is the tornado path length, L. Here we examine the spatial-temporal clustering of severe tornadoes, which we define as having path lengths L ≥ 10 km. Of particular concern are tornado outbreaks, when a large number of severe tornadoes occur in a day in a restricted region. We apply a spatial-temporal clustering analysis developed for earthquakes. We take all pairs of severe tornadoes in observed and modelled outbreaks, and for each pair plot the spatial lag (distance between touchdown points) against the temporal lag (time between touchdown points). We apply our spatial-temporal lag methodology to the intense tornado outbreaks in the central United States on 26 and 27 April 2011, which resulted in over 300 fatalities and produced 109 severe (L ≥ 10 km) tornadoes. The patterns of spatial-temporal lag correlations that we obtain for the 2 days are strikingly different. On 26 April 2011, there were 45 severe tornadoes and our clustering analysis is dominated by a complex sequence of linear features. We associate the linear patterns with the tornadoes generated in either a single cell thunderstorm or a closely spaced cluster of single cell thunderstorms moving at a near-constant velocity. Our study of a derecho tornado outbreak of six severe tornadoes on 4 April 2011 along with modelled outbreak scenarios confirms this association. On 27 April 2011, there were 64 severe tornadoes and our clustering analysis is predominantly random with virtually no embedded linear patterns. We associate this pattern with a large number of interacting supercell thunderstorms generating tornadoes randomly in space and time. In order to better understand these associations, we also applied our approach to the Great Plains tornado outbreak of 3 May 1999. Careful studies by others have associated

  14. Applied geodesy

    International Nuclear Information System (INIS)

    Turner, S.

    1987-01-01

    This volume is based on the proceedings of the CERN Accelerator School's course on Applied Geodesy for Particle Accelerators held in April 1986. The purpose was to record and disseminate the knowledge gained in recent years on the geodesy of accelerators and other large systems. The latest methods for positioning equipment to sub-millimetric accuracy in deep underground tunnels several tens of kilometers long are described, as well as such sophisticated techniques as the Navstar Global Positioning System and the Terrameter. Automation of better known instruments such as the gyroscope and Distinvar is also treated along with the highly evolved treatment of components in a modern accelerator. Use of the methods described can be of great benefit in many areas of research and industrial geodesy such as surveying, nautical and aeronautical engineering, astronomical radio-interferometry, metrology of large components, deformation studies, etc

  15. Applied mathematics

    International Nuclear Information System (INIS)

    Nedelec, J.C.

    1988-01-01

    The 1988 progress report of the Applied Mathematics center (Polytechnic School, France), is presented. The research fields of the Center are the scientific calculus, the probabilities and statistics and the video image synthesis. The research topics developed are: the analysis of numerical methods, the mathematical analysis of the physics and mechanics fundamental models, the numerical solution of complex models related to the industrial problems, the stochastic calculus and the brownian movement, the stochastic partial differential equations, the identification of the adaptive filtering parameters, the discrete element systems, statistics, the stochastic control and the development, the image synthesis techniques for education and research programs. The published papers, the congress communications and the thesis are listed [fr

  16. Geo-spatial Cognition on Human's Social Activity Space Based on Multi-scale Grids

    Directory of Open Access Journals (Sweden)

    ZHAI Weixin

    2016-12-01

    Full Text Available Widely applied location aware devices, including mobile phones and GPS receivers, have provided great convenience for collecting large volume individuals' geographical information. The researches on the human's society behavior space has attracts an increasingly number of researchers. In our research, based on location-based Flickr data From 2004 to May, 2014 in China, we choose five levels of spatial grids to form the multi-scale frame for investigate the correlation between the scale and the geo-spatial cognition on human's social activity space. The HT-index is selected as the fractal inspired by Alexander to estimate the maturity of the society activity on different scales. The results indicate that that the scale characteristics are related to the spatial cognition to a certain extent. It is favorable to use the spatial grid as a tool to control scales for geo-spatial cognition on human's social activity space.

  17. Correlative Stochastic Optical Reconstruction Microscopy and Electron Microscopy

    Science.gov (United States)

    Kim, Doory; Deerinck, Thomas J.; Sigal, Yaron M.; Babcock, Hazen P.; Ellisman, Mark H.; Zhuang, Xiaowei

    2015-01-01

    Correlative fluorescence light microscopy and electron microscopy allows the imaging of spatial distributions of specific biomolecules in the context of cellular ultrastructure. Recent development of super-resolution fluorescence microscopy allows the location of molecules to be determined with nanometer-scale spatial resolution. However, correlative super-resolution fluorescence microscopy and electron microscopy (EM) still remains challenging because the optimal specimen preparation and imaging conditions for super-resolution fluorescence microscopy and EM are often not compatible. Here, we have developed several experiment protocols for correlative stochastic optical reconstruction microscopy (STORM) and EM methods, both for un-embedded samples by applying EM-specific sample preparations after STORM imaging and for embedded and sectioned samples by optimizing the fluorescence under EM fixation, staining and embedding conditions. We demonstrated these methods using a variety of cellular targets. PMID:25874453

  18. Spatial distribution

    DEFF Research Database (Denmark)

    Borregaard, Michael Krabbe; Hendrichsen, Ditte Katrine; Nachman, Gøsta Støger

    2008-01-01

    , depending on the nature of intraspecific interactions between them: while the individuals of some species repel each other and partition the available area, others form groups of varying size, determined by the fitness of each group member. The spatial distribution pattern of individuals again strongly......Living organisms are distributed over the entire surface of the planet. The distribution of the individuals of each species is not random; on the contrary, they are strongly dependent on the biology and ecology of the species, and vary over different spatial scale. The structure of whole...... populations reflects the location and fragmentation pattern of the habitat types preferred by the species, and the complex dynamics of migration, colonization, and population growth taking place over the landscape. Within these, individuals are distributed among each other in regular or clumped patterns...

  19. Spatial Culture

    DEFF Research Database (Denmark)

    Reeh, Henrik

    2012-01-01

    Spatial Culture – A Humanities Perspective Abstract of introductory essay by Henrik Reeh Secured by alliances between socio-political development and cultural practices, a new field of humanistic studies in spatial culture has developed since the 1990s. To focus on links between urban culture...... and modern society is, however, an intellectual practice which has a much longer history. Already in the 1980s, the debate on the modern and the postmodern cited Paris and Los Angeles as spatio-cultural illustrations of these major philosophical concepts. Earlier, in the history of critical studies, the work...... Foucault considered a constitutive feature of 20th-century thinking and one that continues to occupy intellectual and cultural debates in the third millennium. A conceptual framework is, nevertheless, necessary, if the humanities are to adequa-tely address city and space – themes that have long been...

  20. Decomposition of variance for spatial Cox processes

    DEFF Research Database (Denmark)

    Jalilian, Abdollah; Guan, Yongtao; Waagepetersen, Rasmus

    Spatial Cox point processes is a natural framework for quantifying the various sources of variation governing the spatial distribution of rain forest trees. We introduce a general criterion for variance decomposition for spatial Cox processes and apply it to specific Cox process models...

  1. Decomposition of variance for spatial Cox processes

    DEFF Research Database (Denmark)

    Jalilian, Abdollah; Guan, Yongtao; Waagepetersen, Rasmus

    2013-01-01

    Spatial Cox point processes is a natural framework for quantifying the various sources of variation governing the spatial distribution of rain forest trees. We introduce a general criterion for variance decomposition for spatial Cox processes and apply it to specific Cox process models...

  2. Decomposition of variance for spatial Cox processes

    DEFF Research Database (Denmark)

    Jalilian, Abdollah; Guan, Yongtao; Waagepetersen, Rasmus

    Spatial Cox point processes is a natural framework for quantifying the various sources of variation governing the spatial distribution of rain forest trees. We introducea general criterion for variance decomposition for spatial Cox processes and apply it to specific Cox process models with additive...

  3. Applying radiation

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.; Jung, R.G.; Applebaum, D.C.; Fairand, B.P.; Gallagher, W.J.; Uecker, R.L.; Muckerheide, M.C.

    1979-01-01

    The invention discloses a method and apparatus for applying radiation by producing X-rays of a selected spectrum and intensity and directing them to a desired location. Radiant energy is directed from a laser onto a target to produce such X-rays at the target, which is so positioned adjacent to the desired location as to emit the X-rays toward the desired location; or such X-rays are produced in a region away from the desired location, and are channeled to the desired location. The radiant energy directing means may be shaped (as with bends; adjustable, if desired) to circumvent any obstruction between the laser and the target. Similarly, the X-ray channeling means may be shaped (as with fixed or adjustable bends) to circumvent any obstruction between the region where the X-rays are produced and the desired location. For producing a radiograph in a living organism the X-rays are provided in a short pulse to avoid any blurring of the radiograph from movement of or in the organism. For altering tissue in a living organism the selected spectrum and intensity are such as to affect substantially the tissue in a preselected volume without injuring nearby tissue. Typically, the selected spectrum comprises the range of about 0.1 to 100 keV, and the intensity is selected to provide about 100 to 1000 rads at the desired location. The X-rays may be produced by stimulated emission thereof, typically in a single direction

  4. IMPROVING CORRELATION FUNCTION FITTING WITH RIDGE REGRESSION: APPLICATION TO CROSS-CORRELATION RECONSTRUCTION

    International Nuclear Information System (INIS)

    Matthews, Daniel J.; Newman, Jeffrey A.

    2012-01-01

    Cross-correlation techniques provide a promising avenue for calibrating photometric redshifts and determining redshift distributions using spectroscopy which is systematically incomplete (e.g., current deep spectroscopic surveys fail to obtain secure redshifts for 30%-50% or more of the galaxies targeted). In this paper, we improve on the redshift distribution reconstruction methods from our previous work by incorporating full covariance information into our correlation function fits. Correlation function measurements are strongly covariant between angular or spatial bins, and accounting for this in fitting can yield substantial reduction in errors. However, frequently the covariance matrices used in these calculations are determined from a relatively small set (dozens rather than hundreds) of subsamples or mock catalogs, resulting in noisy covariance matrices whose inversion is ill-conditioned and numerically unstable. We present here a method of conditioning the covariance matrix known as ridge regression which results in a more well behaved inversion than other techniques common in large-scale structure studies. We demonstrate that ridge regression significantly improves the determination of correlation function parameters. We then apply these improved techniques to the problem of reconstructing redshift distributions. By incorporating full covariance information, applying ridge regression, and changing the weighting of fields in obtaining average correlation functions, we obtain reductions in the mean redshift distribution reconstruction error of as much as ∼40% compared to previous methods. We provide a description of POWERFIT, an IDL code for performing power-law fits to correlation functions with ridge regression conditioning that we are making publicly available.

  5. Applying Metrological Techniques to Satellite Fundamental Climate Data Records

    Science.gov (United States)

    Woolliams, Emma R.; Mittaz, Jonathan PD; Merchant, Christopher J.; Hunt, Samuel E.; Harris, Peter M.

    2018-02-01

    Quantifying long-term environmental variability, including climatic trends, requires decadal-scale time series of observations. The reliability of such trend analysis depends on the long-term stability of the data record, and understanding the sources of uncertainty in historic, current and future sensors. We give a brief overview on how metrological techniques can be applied to historical satellite data sets. In particular we discuss the implications of error correlation at different spatial and temporal scales and the forms of such correlation and consider how uncertainty is propagated with partial correlation. We give a form of the Law of Propagation of Uncertainties that considers the propagation of uncertainties associated with common errors to give the covariance associated with Earth observations in different spectral channels.

  6. Functional inverted Wishart for Bayesian multivariate spatial modeling with application to regional climatology model data.

    Science.gov (United States)

    Duan, L L; Szczesniak, R D; Wang, X

    2017-11-01

    Modern environmental and climatological studies produce multiple outcomes at high spatial resolutions. Multivariate spatial modeling is an established means to quantify cross-correlation among outcomes. However, existing models typically suffer from poor computational efficiency and lack the flexibility to simultaneously estimate auto- and cross-covariance structures. In this article, we undertake a novel construction of covariance by utilizing spectral convolution and by imposing an inverted Wishart prior on the cross-correlation structure. The cross-correlation structure with this functional inverted Wishart prior flexibly accommodates not only positive but also weak or negative associations among outcomes while preserving spatial resolution. Furthermore, the proposed model is computationally efficient and produces easily interpretable results, including the individual autocovariances and full cross-correlation matrices, as well as a partial cross-correlation matrix reflecting the outcome correlation after excluding the effects caused by spatial convolution. The model is examined using simulated data sets under different scenarios. It is also applied to the data from the North American Regional Climate Change Assessment Program, examining long-term associations between surface outcomes for air temperature, pressure, humidity, and radiation, on the land area of the North American West Coast. Results and predictive performance are compared with findings from approaches using convolution only or coregionalization.

  7. Functional inverted Wishart for Bayesian multivariate spatial modeling with application to regional climatology model data

    Science.gov (United States)

    Duan, L. L.; Szczesniak, R. D.; Wang, X.

    2018-01-01

    Modern environmental and climatological studies produce multiple outcomes at high spatial resolutions. Multivariate spatial modeling is an established means to quantify cross-correlation among outcomes. However, existing models typically suffer from poor computational efficiency and lack the flexibility to simultaneously estimate auto- and cross-covariance structures. In this article, we undertake a novel construction of covariance by utilizing spectral convolution and by imposing an inverted Wishart prior on the cross-correlation structure. The cross-correlation structure with this functional inverted Wishart prior flexibly accommodates not only positive but also weak or negative associations among outcomes while preserving spatial resolution. Furthermore, the proposed model is computationally efficient and produces easily interpretable results, including the individual autocovariances and full cross-correlation matrices, as well as a partial cross-correlation matrix reflecting the outcome correlation after excluding the effects caused by spatial convolution. The model is examined using simulated data sets under different scenarios. It is also applied to the data from the North American Regional Climate Change Assessment Program, examining long-term associations between surface outcomes for air temperature, pressure, humidity, and radiation, on the land area of the North American West Coast. Results and predictive performance are compared with findings from approaches using convolution only or coregionalization. PMID:29576735

  8. Quantum perfect correlations

    International Nuclear Information System (INIS)

    Ozawa, Masanao

    2006-01-01

    The notion of perfect correlations between arbitrary observables, or more generally arbitrary POVMs, is introduced in the standard formulation of quantum mechanics, and characterized by several well-established statistical conditions. The transitivity of perfect correlations is proved to generally hold, and applied to a simple articulation for the failure of Hardy's nonlocality proof for maximally entangled states. The notion of perfect correlations between observables and POVMs is used for defining the notion of a precise measurement of a given observable in a given state. A longstanding misconception on the correlation made by the measuring interaction is resolved in the light of the new theory of quantum perfect correlations

  9. Emerging Correlation Optics

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Gbur, Gregory J.; Polyanskii, Peter

    2012-01-01

    This feature issue of Applied Optics contains a series of selected papers reflecting the state-of-the-art of correlation optics and showing synergetics between the theoretical background and experimental techniques.......This feature issue of Applied Optics contains a series of selected papers reflecting the state-of-the-art of correlation optics and showing synergetics between the theoretical background and experimental techniques....

  10. Correlates of individual, and age-related, differences in short-term learning.

    Science.gov (United States)

    Zhang, Zhiyong; Davis, Hasker P; Salthouse, Timothy A; Tucker-Drob, Elliot M

    2007-07-01

    Latent growth models were applied to data on multitrial verbal and spatial learning tasks from two independent studies. Although significant individual differences in both initial level of performance and subsequent learning were found in both tasks, age differences were found only in mean initial level, and not in mean learning. In neither task was fluid or crystallized intelligence associated with learning. Although there were moderate correlations among the level parameters across the verbal and spatial tasks, the learning parameters were not significantly correlated with one another across task modalities. These results are inconsistent with the existence of a general (e.g., material-independent) learning ability.

  11. Assessing correlations between the spatial distribution of the dose to the rectal wall and late rectal toxicity after prostate radiotherapy: an analysis of data from the MRC RT01 trial (ISRCTN 47772397)

    International Nuclear Information System (INIS)

    Buettner, Florian; Gulliford, Sarah L; Webb, Steve; Partridge, Mike; Sydes, Matthew R; Dearnaley, David P

    2009-01-01

    Many studies have been performed to assess correlations between measures derived from dose-volume histograms and late rectal toxicities for radiotherapy of prostate cancer. The purpose of this study was to quantify correlations between measures describing the shape and location of the dose distribution and different outcomes. The dose to the rectal wall was projected on a two-dimensional map. In order to characterize the dose distribution, its centre of mass, longitudinal and lateral extent, and eccentricity were calculated at different dose levels. Furthermore, the dose-surface histogram (DSH) was determined. Correlations between these measures and seven clinically relevant rectal-toxicity endpoints were quantified by maximally selected standardized Wilcoxon rank statistics. The analysis was performed using data from the RT01 prostate radiotherapy trial. For some endpoints, the shape of the dose distribution is more strongly correlated with the outcome than simple DSHs. Rectal bleeding was most strongly correlated with the lateral extent of the dose distribution. For loose stools, the strongest correlations were found for longitudinal extent; proctitis was most strongly correlated with DSH. For the other endpoints no statistically significant correlations could be found. The strengths of the correlations between the shape of the dose distribution and outcome differed considerably between the different endpoints. Due to these significant correlations, it is desirable to use shape-based tools in order to assess the quality of a dose distribution.

  12. Application of Spatial Regression Models to Income Poverty Ratios in Middle Delta Contiguous Counties in Egypt

    Directory of Open Access Journals (Sweden)

    Sohair F Higazi

    2013-02-01

    Full Text Available Regression analysis depends on several assumptions that have to be satisfied. A major assumption that is never satisfied when variables are from contiguous observations is the independence of error terms. Spatial analysis treated the violation of that assumption by two derived models that put contiguity of observations into consideration. Data used are from Egypt's 2006 latest census, for 93 counties in middle delta seven adjacent Governorates. The dependent variable used is the percent of individuals classified as poor (those who make less than 1$ daily. Predictors are some demographic indicators. Explanatory Spatial Data Analysis (ESDA is performed to examine the existence of spatial clustering and spatial autocorrelation between neighboring counties. The ESDA revealed spatial clusters and spatial correlation between locations. Three statistical models are applied to the data, the Ordinary Least Square regression model (OLS, the Spatial Error Model (SEM and the Spatial Lag Model (SLM.The Likelihood Ratio test and some information criterions are used to compare SLM and SEM to OLS. The SEM model proved to be better than the SLM model. Recommendations are drawn regarding the two spatial models used.

  13. Estimating Function Approaches for Spatial Point Processes

    Science.gov (United States)

    Deng, Chong

    Spatial point pattern data consist of locations of events that are often of interest in biological and ecological studies. Such data are commonly viewed as a realization from a stochastic process called spatial point process. To fit a parametric spatial point process model to such data, likelihood-based methods have been widely studied. However, while maximum likelihood estimation is often too computationally intensive for Cox and cluster processes, pairwise likelihood methods such as composite likelihood, Palm likelihood usually suffer from the loss of information due to the ignorance of correlation among pairs. For many types of correlated data other than spatial point processes, when likelihood-based approaches are not desirable, estimating functions have been widely used for model fitting. In this dissertation, we explore the estimating function approaches for fitting spatial point process models. These approaches, which are based on the asymptotic optimal estimating function theories, can be used to incorporate the correlation among data and yield more efficient estimators. We conducted a series of studies to demonstrate that these estmating function approaches are good alternatives to balance the trade-off between computation complexity and estimating efficiency. First, we propose a new estimating procedure that improves the efficiency of pairwise composite likelihood method in estimating clustering parameters. Our approach combines estimating functions derived from pairwise composite likeli-hood estimation and estimating functions that account for correlations among the pairwise contributions. Our method can be used to fit a variety of parametric spatial point process models and can yield more efficient estimators for the clustering parameters than pairwise composite likelihood estimation. We demonstrate its efficacy through a simulation study and an application to the longleaf pine data. Second, we further explore the quasi-likelihood approach on fitting

  14. Spatial filtring and thermocouple spatial filter

    International Nuclear Information System (INIS)

    Han Bing; Tong Yunxian

    1989-12-01

    The design and study on thermocouple spatial filter have been conducted for the flow measurement of integrated reactor coolant. The fundamental principle of spatial filtring, mathematical descriptions and analyses of thermocouple spatial filter are given

  15. Modelos matemáticos de localização aplicados à organização espacial de unidades de saúde Mathematical location models applied in the spatial organization of health units

    Directory of Open Access Journals (Sweden)

    Roberto Diéguez Galvão

    1999-08-01

    Full Text Available Modelos matemáticos de localização têm tido aplicação crescente na área de saúde em nível internacional. No Brasil, embora de uso incipiente, existe enorme potencial para a utilização desses modelos na área de saúde pública. Nesse sentido são apresentados diversos modelos de localização com aplicação em saúde pública, analisando a localização de serviços não emergenciais, de serviços de emergência e a localização de serviços hierarquicamente relacionados. Mostrou-se a aplicação de um modelo hierárquico à localização de serviços de assistência materna e perinatal no Município do Rio de Janeiro, RJ (Brasil. Nesta parte, após a apresentação de alguns dados da assistência materna e perinatal no município, foi proposto um modelo hierárquico de quatro níveis (localização de unidades ambulatoriais, maternidades, centros de neonatologia e hospitais gerais e analisado o impacto que a adoção da metodologia teria em comparação com o sistema atual.Mathematical location models have been increasingly applied in the health services at the international level. In Brazil, although incipient, there exists an enormous potential for the use of such models in the area of public health. In this paper several location models that can be applied to public health are presented initially, and the location of non-emergency services, of emergency services and of services hierarchically related are analysed. A hierarchical model is then applied to the location of maternal and perinatal assistance in the municipality of Rio de Janeiro. In this part, after presenting some related data for the municipality, a four-level hierarchical model (location of out-patient units, maternity hospitals, neonatal hospitals and general hospitals is proposed and the impact that the adoption of this methodology would have as compared with that of the present system is analysed.

  16. The Spatial Politics of Spatial Representation

    DEFF Research Database (Denmark)

    Olesen, Kristian; Richardson, Tim

    2011-01-01

    spatial planning in Denmark reveals how fuzzy spatial representations and relational spatial concepts are being used to depoliticise strategic spatial planning processes and to camouflage spatial politics. The paper concludes that, while relational geography might play an important role in building......This paper explores the interplay between the spatial politics of new governance landscapes and innovations in the use of spatial representations in planning. The central premise is that planning experiments with new relational approaches become enmeshed in spatial politics. The case of strategic...

  17. Correlation analysis of fracture arrangement in space

    Science.gov (United States)

    Marrett, Randall; Gale, Julia F. W.; Gómez, Leonel A.; Laubach, Stephen E.

    2018-03-01

    We present new techniques that overcome limitations of standard approaches to documenting spatial arrangement. The new techniques directly quantify spatial arrangement by normalizing to expected values for randomly arranged fractures. The techniques differ in terms of computational intensity, robustness of results, ability to detect anti-correlation, and use of fracture size data. Variation of spatial arrangement across a broad range of length scales facilitates distinguishing clustered and periodic arrangements-opposite forms of organization-from random arrangements. Moreover, self-organized arrangements can be distinguished from arrangements due to extrinsic organization. Traditional techniques for analysis of fracture spacing are hamstrung because they account neither for the sequence of fracture spacings nor for possible coordination between fracture size and position, attributes accounted for by our methods. All of the new techniques reveal fractal clustering in a test case of veins, or cement-filled opening-mode fractures, in Pennsylvanian Marble Falls Limestone. The observed arrangement is readily distinguishable from random and periodic arrangements. Comparison of results that account for fracture size with results that ignore fracture size demonstrates that spatial arrangement is dominated by the sequence of fracture spacings, rather than coordination of fracture size with position. Fracture size and position are not completely independent in this example, however, because large fractures are more clustered than small fractures. Both spatial and size organization of veins here probably emerged from fracture interaction during growth. The new approaches described here, along with freely available software to implement the techniques, can be applied with effect to a wide range of structures, or indeed many other phenomena such as drilling response, where spatial heterogeneity is an issue.

  18. Adaptation of a Freon-12 CHF correlation to apply for water in uniformly heated vertical tubes. Part 2: Based on CHF data for water at pressures in the range 6-20 MPa

    International Nuclear Information System (INIS)

    Green, W.J.

    1982-03-01

    An examination of more than 5000 sets of experimental data for critical heat flux (CHF) in uniformly heated vertical tubes internally cooled by high pressure water has shown that the CHF correlation proposed in Part 1 of this work is accurate for water at pressures up to approximately 17 MPa, provided that minor modifications are made to the Prandtl number index, and the saturation boiling length function. For pressures greater than 17 MPa, CHF values calculated from the correlation are increasingly lower than the experimental data, particularly at low saturation boiling length ratios ( -1 m -2 or thermal equilibrium exit qualities are less than 0.1

  19. Geometrical optics in correlated imaging systems

    International Nuclear Information System (INIS)

    Cao Dezhong; Xiong Jun; Wang Kaige

    2005-01-01

    We discuss the geometrical optics of correlated imaging for two kinds of spatial correlations corresponding, respectively, to a classical thermal light source and a quantum two-photon entangled source. Due to the different features in the second-order spatial correlation, the two sources obey different imaging equations. The quantum entangled source behaves as a mirror, whereas the classical thermal source looks like a phase-conjugate mirror in the correlated imaging

  20. Correlation measurements for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    Pazsit, I.

    1995-01-01

    A list of a few methods for plasma diagnostics via fluctuations (noise) analysis of random (both temporally and spatially) system parameters is reviewed. Analogy is drawn with certain noise analysis methods, used in the diagnostics of fission reactors. These methods have been applied also to fusion measurements to some extent. However, the treatment of fusion plasma fluctuations is dominated by an approach that allows for temporal randomness, but assumes periodicity in space. This approach suits well a large class of phenomena such as magnetic fluctuations (MHD effects), but is much less suited to treat localised effects such as turbulence and density fluctuations. This paper discusses the potentials of the former approach, i.e. ordinary noise analysis methods of non-periodic variables in fusion plasma diagnostics. A new recommendation is to use the crossed beam correlation analysis of soft X-ray signals for determining the local short-range correlations in the plasma and to perform a systematic exploration of the plasma spatial correlation structure with that and other methods. 16 refs, 7 figs

  1. Bayesian spatial modelling and the significance of agricultural land use to scrub typhus infection in Taiwan.

    Science.gov (United States)

    Wardrop, Nicola A; Kuo, Chi-Chien; Wang, Hsi-Chieh; Clements, Archie C A; Lee, Pei-Fen; Atkinson, Peter M

    2013-11-01

    Scrub typhus is transmitted by the larval stage of trombiculid mites. Environmental factors, including land cover and land use, are known to influence breeding and survival of trombiculid mites and, thus, also the spatial heterogeneity of scrub typhus risk. Here, a spatially autoregressive modelling framework was applied to scrub typhus incidence data from Taiwan, covering the period 2003 to 2011, to provide increased understanding of the spatial pattern of scrub typhus risk and the environmental and socioeconomic factors contributing to this pattern. A clear spatial pattern in scrub typhus incidence was observed within Taiwan, and incidence was found to be significantly correlated with several land cover classes, temperature, elevation, normalized difference vegetation index, rainfall, population density, average income and the proportion of the population that work in agriculture. The final multivariate regression model included statistically significant correlations between scrub typhus incidence and average income (negatively correlated), the proportion of land that contained mosaics of cropland and vegetation (positively correlated) and elevation (positively correlated). These results highlight the importance of land cover on scrub typhus incidence: mosaics of cropland and vegetation represent a transitional land cover type which can provide favourable habitats for rodents and, therefore, trombiculid mites. In Taiwan, these transitional land cover areas tend to occur in less populated and mountainous areas, following the frontier establishment and subsequent partial abandonment of agricultural cultivation, due to demographic and socioeconomic changes. Future land use policy decision-making should ensure that potential public health outcomes, such as modified risk of scrub typhus, are considered.

  2. Spatial scale separation in regional climate modelling

    Energy Technology Data Exchange (ETDEWEB)

    Feser, F.

    2005-07-01

    In this thesis the concept of scale separation is introduced as a tool for first improving regional climate model simulations and, secondly, to explicitly detect and describe the added value obtained by regional modelling. The basic idea behind this is that global and regional climate models have their best performance at different spatial scales. Therefore the regional model should not alter the global model's results at large scales. The for this purpose designed concept of nudging of large scales controls the large scales within the regional model domain and keeps them close to the global forcing model whereby the regional scales are left unchanged. For ensemble simulations nudging of large scales strongly reduces the divergence of the different simulations compared to the standard approach ensemble that occasionally shows large differences for the individual realisations. For climate hindcasts this method leads to results which are on average closer to observed states than the standard approach. Also the analysis of the regional climate model simulation can be improved by separating the results into different spatial domains. This was done by developing and applying digital filters that perform the scale separation effectively without great computational effort. The separation of the results into different spatial scales simplifies model validation and process studies. The search for 'added value' can be conducted on the spatial scales the regional climate model was designed for giving clearer results than by analysing unfiltered meteorological fields. To examine the skill of the different simulations pattern correlation coefficients were calculated between the global reanalyses, the regional climate model simulation and, as a reference, of an operational regional weather analysis. The regional climate model simulation driven with large-scale constraints achieved a high increase in similarity to the operational analyses for medium-scale 2 meter

  3. Contamination and Spatial Variation of Heavy Metals in the Soil-Rice System in Nanxun County, Southeastern China

    Science.gov (United States)

    Zhao, Keli; Fu, Weijun; Ye, Zhengqian; Zhang, Chaosheng

    2015-01-01

    There is an increasing concern about heavy metal contamination in farmland in China and worldwide. In order to reveal the spatial features of heavy metals in the soil-rice system, soil and rice samples were collected from Nanxun, Southeastern China. Compared with the guideline values, elevated concentrations of heavy metals in soils were observed, while heavy metals in rice still remained at a safe level. Heavy metals in soils and rice had moderate to strong spatial dependence (nugget/sill ratios: 13.2% to 49.9%). The spatial distribution of copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) in soils illustrated that their high concentrations were located in the southeast part. The high concentrations of cadmium (Cd) in soils were observed in the northeast part. The accumulation of all the studied metals is related to the long-term application of agrochemicals and industrial activities. Heavy metals in rice showed different spatial distribution patterns. Cross-correlograms were produced to quantitatively determine the spatial correlation between soil properties and heavy metals composition in rice. The pH and soil organic matter had significant spatial correlations with the concentration of heavy metals in rice. Most of the selected variables had clear spatial correlation ranges for heavy metals in rice, which could be further applied to divide agricultural management zones. PMID:25635917

  4. Contamination and Spatial Variation of Heavy Metals in the Soil-Rice System in Nanxun County, Southeastern China

    Directory of Open Access Journals (Sweden)

    Keli Zhao

    2015-01-01

    Full Text Available There is an increasing concern about heavy metal contamination in farmland in China and worldwide. In order to reveal the spatial features of heavy metals in the soil-rice system, soil and rice samples were collected from Nanxun, Southeastern China. Compared with the guideline values, elevated concentrations of heavy metals in soils were observed, while heavy metals in rice still remained at a safe level. Heavy metals in soils and rice had moderate to strong spatial dependence (nugget/sill ratios: 13.2% to 49.9%. The spatial distribution of copper (Cu, nickel (Ni, lead (Pb and zinc (Zn in soils illustrated that their high concentrations were located in the southeast part. The high concentrations of cadmium (Cd in soils were observed in the northeast part. The accumulation of all the studied metals is related to the long-term application of agrochemicals and industrial activities. Heavy metals in rice showed different spatial distribution patterns. Cross-correlograms were produced to quantitatively determine the spatial correlation between soil properties and heavy metals composition in rice. The pH and soil organic matter had significant spatial correlations with the concentration of heavy metals in rice. Most of the selected variables had clear spatial correlation ranges for heavy metals in rice, which could be further applied to divide agricultural management zones.

  5. Contamination and spatial variation of heavy metals in the soil-rice system in Nanxun County, Southeastern China.

    Science.gov (United States)

    Zhao, Keli; Fu, Weijun; Ye, Zhengqian; Zhang, Chaosheng

    2015-01-28

    There is an increasing concern about heavy metal contamination in farmland in China and worldwide. In order to reveal the spatial features of heavy metals in the soil-rice system, soil and rice samples were collected from Nanxun, Southeastern China. Compared with the guideline values, elevated concentrations of heavy metals in soils were observed, while heavy metals in rice still remained at a safe level. Heavy metals in soils and rice had moderate to strong spatial dependence (nugget/sill ratios: 13.2% to 49.9%). The spatial distribution of copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) in soils illustrated that their high concentrations were located in the southeast part. The high concentrations of cadmium (Cd) in soils were observed in the northeast part. The accumulation of all the studied metals is related to the long-term application of agrochemicals and industrial activities. Heavy metals in rice showed different spatial distribution patterns. Cross-correlograms were produced to quantitatively determine the spatial correlation between soil properties and heavy metals composition in rice. The pH and soil organic matter had significant spatial correlations with the concentration of heavy metals in rice. Most of the selected variables had clear spatial correlation ranges for heavy metals in rice, which could be further applied to divide agricultural management zones.

  6. Laboratory demonstration of Stellar Intensity Interferometry using a software correlator

    Science.gov (United States)

    Matthews, Nolan; Kieda, David

    2017-06-01

    In this talk I will present measurements of the spatial coherence function of laboratory thermal (black-body) sources using Hanbury-Brown and Twiss interferometry with a digital off-line correlator. Correlations in the intensity fluctuations of a thermal source, such as a star, allow retrieval of the second order coherence function which can be used to perform high resolution imaging and source geometry characterization. We also demonstrate that intensity fluctuations between orthogonal polarization states are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov telescopes to measure spatial properties of stellar sources. Some possible candidates for astronomy applications include close binary star systems, fast rotators, Cepheid variables, and potentially even exoplanet characterization.

  7. Spatial attraction in migrants' settlement patterns in the city of Catania

    Directory of Open Access Journals (Sweden)

    Angelo Mazza

    2016-07-01

    Full Text Available Background: In broad terms, and apart from ethnic discriminatory rules enforced in some places and at some times, residential segregation may be ascribed both to economic inhomogeneities in the urban space (e.g., in the cost of rents, or in occupation opportunities and to spatial attraction among individuals sharing the same group identity and culture. Objective: Traditional indices of spatial segregation do not distinguish between these two sources of clustering. Furthermore, they typically rely on census tracts, a scale that does not allow for fine-grained analysis. Also, the use of alternative zoning often leads to conflicting results. The aim of this paper is to measure spatial attraction among groups of foreign migrants in Catania (Italy using individual household data. Methods: We apply a version of Ripley's K-function specially conceived for assessing spatial attraction while adjusting for the effects of spatial inhomogeneity. To avoid the risk of confounding the two sources of clustering, spatial inhomogeneity is estimated following a case-control approach. Results: Different parts of the city exhibit different suitabilities for migrants of different nationalities, with groups mainly involved in housekeeping and caregiving being more spread than the ones specialized in peddling and retailing. A significant spatial attraction has been found for Sri Lankan, Mauritians, Senegalese, and Chinese. Conversely, the settlement patterns of Tunisians and Moroccans comply with random allocation. These results seem consistent with the hypothesis of a relevant correlation between chain migration and spatial attraction.

  8. Parameterizing the Spatial Markov Model from Breakthrough Curve Data Alone

    Science.gov (United States)

    Sherman, T.; Bolster, D.; Fakhari, A.; Miller, S.; Singha, K.

    2017-12-01

    The spatial Markov model (SMM) uses a correlated random walk and has been shown to effectively capture anomalous transport in porous media systems; in the SMM, particles' future trajectories are correlated to their current velocity. It is common practice to use a priori Lagrangian velocity statistics obtained from high resolution simulations to determine a distribution of transition probabilities (correlation) between velocity classes that govern predicted transport behavior; however, this approach is computationally cumbersome. Here, we introduce a methodology to quantify velocity correlation from Breakthrough (BTC) curve data alone; discretizing two measured BTCs into a set of arrival times and reverse engineering the rules of the SMM allows for prediction of velocity correlation, thereby enabling parameterization of the SMM in studies where Lagrangian velocity statistics are not available. The introduced methodology is applied to estimate velocity correlation from BTCs measured in high resolution simulations, thus allowing for a comparison of estimated parameters with known simulated values. Results show 1) estimated transition probabilities agree with simulated values and 2) using the SMM with estimated parameterization accurately predicts BTCs downstream. Additionally, we include uncertainty measurements by calculating lower and upper estimates of velocity correlation, which allow for prediction of a range of BTCs. The simulated BTCs fall in the range of predicted BTCs. This research proposes a novel method to parameterize the SMM from BTC data alone, thereby reducing the SMM's computational costs and widening its applicability.

  9. Spatial Analysis of the National Evaluation of Scholastic Achievement (ENLACE in Schools of the Municipality of Juarez, Chihuahua

    Directory of Open Access Journals (Sweden)

    Luis Ernesto Cervera Gómez

    2008-05-01

    Full Text Available This research was focused on analyzing the results of the first National Assessment of Academic Achievement for Scholar Centers (ENLACE; acronym in Spanish applied during the year 2006 in the Municipality of Juarez (State of Chihuahua, Mexico. In order to conduct the spatial analysis a geographical information system (GIS was used to make a georeferenced database were all variables were connected to a point representing a school. Results of the examinations expressed as deficient, elemental, good en excellent were spatially distributed over the urban area of Ciudad Juárez. Apparently there is a high spatial correlation between ENLACE’s results with the socioeconomic level of people. In this way results going from good to excellent were spatially located over the sectors more developed of the city. Poor results going from Insufficient to Elemental were spatially located at places with higher deficits of infrastructure and low socioeconomic levels.

  10. Denoising Algorithm for CFA Image Sensors Considering Inter-Channel Correlation.

    Science.gov (United States)

    Lee, Min Seok; Park, Sang Wook; Kang, Moon Gi

    2017-05-28

    In this paper, a spatio-spectral-temporal filter considering an inter-channel correlation is proposed for the denoising of a color filter array (CFA) sequence acquired by CCD/CMOS image sensors. Owing to the alternating under-sampled grid of the CFA pattern, the inter-channel correlation must be considered in the direct denoising process. The proposed filter is applied in the spatial, spectral, and temporal domain, considering the spatio-tempo-spectral correlation. First, nonlocal means (NLM) spatial filtering with patch-based difference (PBD) refinement is performed by considering both the intra-channel correlation and inter-channel correlation to overcome the spatial resolution degradation occurring with the alternating under-sampled pattern. Second, a motion-compensated temporal filter that employs inter-channel correlated motion estimation and compensation is proposed to remove the noise in the temporal domain. Then, a motion adaptive detection value controls the ratio of the spatial filter and the temporal filter. The denoised CFA sequence can thus be obtained without motion artifacts. Experimental results for both simulated and real CFA sequences are presented with visual and numerical comparisons to several state-of-the-art denoising methods combined with a demosaicing method. Experimental results confirmed that the proposed frameworks outperformed the other techniques in terms of the objective criteria and subjective visual perception in CFA sequences.

  11. Multiview Bayesian Correlated Component Analysis

    DEFF Research Database (Denmark)

    Kamronn, Simon Due; Poulsen, Andreas Trier; Hansen, Lars Kai

    2015-01-01

    are identical. Here we propose a hierarchical probabilistic model that can infer the level of universality in such multiview data, from completely unrelated representations, corresponding to canonical correlation analysis, to identical representations as in correlated component analysis. This new model, which...... we denote Bayesian correlated component analysis, evaluates favorably against three relevant algorithms in simulated data. A well-established benchmark EEG data set is used to further validate the new model and infer the variability of spatial representations across multiple subjects....

  12. Quantifying spatial heterogeneity from images

    International Nuclear Information System (INIS)

    Pomerantz, Andrew E; Song Yiqiao

    2008-01-01

    Visualization techniques are extremely useful for characterizing natural materials with complex spatial structure. Although many powerful imaging modalities exist, simple display of the images often does not convey the underlying spatial structure. Instead, quantitative image analysis can extract the most important features of the imaged object in a manner that is easier to comprehend and to compare from sample to sample. This paper describes the formulation of the heterogeneity spectrum to show the extent of spatial heterogeneity as a function of length scale for all length scales to which a particular measurement is sensitive. This technique is especially relevant for describing materials that simultaneously present spatial heterogeneity at multiple length scales. In this paper, the heterogeneity spectrum is applied for the first time to images from optical microscopy. The spectrum is measured for thin section images of complex carbonate rock cores showing heterogeneity at several length scales in the range 10-10 000 μm.

  13. Parameterizing the Spatial Markov Model From Breakthrough Curve Data Alone

    Science.gov (United States)

    Sherman, Thomas; Fakhari, Abbas; Miller, Savannah; Singha, Kamini; Bolster, Diogo

    2017-12-01

    The spatial Markov model (SMM) is an upscaled Lagrangian model that effectively captures anomalous transport across a diverse range of hydrologic systems. The distinct feature of the SMM relative to other random walk models is that successive steps are correlated. To date, with some notable exceptions, the model has primarily been applied to data from high-resolution numerical simulations and correlation effects have been measured from simulated particle trajectories. In real systems such knowledge is practically unattainable and the best one might hope for is breakthrough curves (BTCs) at successive downstream locations. We introduce a novel methodology to quantify velocity correlation from BTC data alone. By discretizing two measured BTCs into a set of arrival times and developing an inverse model, we estimate velocity correlation, thereby enabling parameterization of the SMM in studies where detailed Lagrangian velocity statistics are unavailable. The proposed methodology is applied to two synthetic numerical problems, where we measure all details and thus test the veracity of the approach by comparison of estimated parameters with known simulated values. Our results suggest th