WorldWideScience

Sample records for sparse image reconstruction

  1. Sparse Image Reconstruction in Computed Tomography

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Sauer

    In recent years, increased focus on the potentially harmful effects of x-ray computed tomography (CT) scans, such as radiation-induced cancer, has motivated research on new low-dose imaging techniques. Sparse image reconstruction methods, as studied for instance in the field of compressed sensing...... applications. This thesis takes a systematic approach toward establishing quantitative understanding of conditions for sparse reconstruction to work well in CT. A general framework for analyzing sparse reconstruction methods in CT is introduced and two sets of computational tools are proposed: 1...... contributions to a general set of computational characterization tools. Thus, the thesis contributions help advance sparse reconstruction methods toward routine use in...

  2. Sparse BLIP: BLind Iterative Parallel imaging reconstruction using compressed sensing.

    Science.gov (United States)

    She, Huajun; Chen, Rong-Rong; Liang, Dong; DiBella, Edward V R; Ying, Leslie

    2014-02-01

    To develop a sensitivity-based parallel imaging reconstruction method to reconstruct iteratively both the coil sensitivities and MR image simultaneously based on their prior information. Parallel magnetic resonance imaging reconstruction problem can be formulated as a multichannel sampling problem where solutions are sought analytically. However, the channel functions given by the coil sensitivities in parallel imaging are not known exactly and the estimation error usually leads to artifacts. In this study, we propose a new reconstruction algorithm, termed Sparse BLind Iterative Parallel, for blind iterative parallel imaging reconstruction using compressed sensing. The proposed algorithm reconstructs both the sensitivity functions and the image simultaneously from undersampled data. It enforces the sparseness constraint in the image as done in compressed sensing, but is different from compressed sensing in that the sensing matrix is unknown and additional constraint is enforced on the sensitivities as well. Both phantom and in vivo imaging experiments were carried out with retrospective undersampling to evaluate the performance of the proposed method. Experiments show improvement in Sparse BLind Iterative Parallel reconstruction when compared with Sparse SENSE, JSENSE, IRGN-TV, and L1-SPIRiT reconstructions with the same number of measurements. The proposed Sparse BLind Iterative Parallel algorithm reduces the reconstruction errors when compared to the state-of-the-art parallel imaging methods. Copyright © 2013 Wiley Periodicals, Inc.

  3. Real-time SPARSE-SENSE cardiac cine MR imaging: optimization of image reconstruction and sequence validation.

    Science.gov (United States)

    Goebel, Juliane; Nensa, Felix; Bomas, Bettina; Schemuth, Haemi P; Maderwald, Stefan; Gratz, Marcel; Quick, Harald H; Schlosser, Thomas; Nassenstein, Kai

    2016-12-01

    Improved real-time cardiac magnetic resonance (CMR) sequences have currently been introduced, but so far only limited practical experience exists. This study aimed at image reconstruction optimization and clinical validation of a new highly accelerated real-time cine SPARSE-SENSE sequence. Left ventricular (LV) short-axis stacks of a real-time free-breathing SPARSE-SENSE sequence with high spatiotemporal resolution and of a standard segmented cine SSFP sequence were acquired at 1.5 T in 11 volunteers and 15 patients. To determine the optimal iterations, all volunteers' SPARSE-SENSE images were reconstructed using 10-200 iterations, and contrast ratios, image entropies, and reconstruction times were assessed. Subsequently, the patients' SPARSE-SENSE images were reconstructed with the clinically optimal iterations. LV volumetric values were evaluated and compared between both sequences. Sufficient image quality and acceptable reconstruction times were achieved when using 80 iterations. Bland-Altman plots and Passing-Bablok regression showed good agreement for all volumetric parameters. 80 iterations are recommended for iterative SPARSE-SENSE image reconstruction in clinical routine. Real-time cine SPARSE-SENSE yielded comparable volumetric results as the current standard SSFP sequence. Due to its intrinsic low image acquisition times, real-time cine SPARSE-SENSE imaging with iterative image reconstruction seems to be an attractive alternative for LV function analysis. • A highly accelerated real-time CMR sequence using SPARSE-SENSE was evaluated. • SPARSE-SENSE allows free breathing in real-time cardiac cine imaging. • For clinically optimal SPARSE-SENSE image reconstruction, 80 iterations are recommended. • Real-time SPARSE-SENSE imaging yielded comparable volumetric results as the reference SSFP sequence. • The fast SPARSE-SENSE sequence is an attractive alternative to standard SSFP sequences.

  4. Hierarchical Bayesian sparse image reconstruction with application to MRFM.

    Science.gov (United States)

    Dobigeon, Nicolas; Hero, Alfred O; Tourneret, Jean-Yves

    2009-09-01

    This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical Bayesian model. To overcome the complexity of the posterior distribution, a Gibbs sampling strategy is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g., by maximizing the estimated posterior distribution. In our fully Bayesian approach, the posteriors of all the parameters are available. Thus, our algorithm provides more information than other previously proposed sparse reconstruction methods that only give a point estimate. The performance of the proposed hierarchical Bayesian sparse reconstruction method is illustrated on synthetic data and real data collected from a tobacco virus sample using a prototype MRFM instrument.

  5. A modified sparse reconstruction method for three-dimensional synthetic aperture radar image

    Science.gov (United States)

    Zhang, Ziqiang; Ji, Kefeng; Song, Haibo; Zou, Huanxin

    2018-03-01

    There is an increasing interest in three-dimensional Synthetic Aperture Radar (3-D SAR) imaging from observed sparse scattering data. However, the existing 3-D sparse imaging method requires large computing times and storage capacity. In this paper, we propose a modified method for the sparse 3-D SAR imaging. The method processes the collection of noisy SAR measurements, usually collected over nonlinear flight paths, and outputs 3-D SAR imagery. Firstly, the 3-D sparse reconstruction problem is transformed into a series of 2-D slices reconstruction problem by range compression. Then the slices are reconstructed by the modified SL0 (smoothed l0 norm) reconstruction algorithm. The improved algorithm uses hyperbolic tangent function instead of the Gaussian function to approximate the l0 norm and uses the Newton direction instead of the steepest descent direction, which can speed up the convergence rate of the SL0 algorithm. Finally, numerical simulation results are given to demonstrate the effectiveness of the proposed algorithm. It is shown that our method, compared with existing 3-D sparse imaging method, performs better in reconstruction quality and the reconstruction time.

  6. Demosaicing and Superresolution for Color Filter Array via Residual Image Reconstruction and Sparse Representation

    OpenAIRE

    Sun, Guangling

    2012-01-01

    A framework of demosaicing and superresolution for color filter array (CFA) via residual image reconstruction and sparse representation is presented.Given the intermediate image produced by certain demosaicing and interpolation technique, a residual image between the final reconstruction image and the intermediate image is reconstructed using sparse representation.The final reconstruction image has richer edges and details than that of the intermediate image. Specifically, a generic dictionar...

  7. MO-FG-204-08: Optimization-Based Image Reconstruction From Unevenly Distributed Sparse Projection Views

    International Nuclear Information System (INIS)

    Xie, Huiqiao; Yang, Yi; Tang, Xiangyang; Niu, Tianye; Ren, Yi

    2015-01-01

    Purpose: Optimization-based reconstruction has been proposed and investigated for reconstructing CT images from sparse views, as such the radiation dose can be substantially reduced while maintaining acceptable image quality. The investigation has so far focused on reconstruction from evenly distributed sparse views. Recognizing the clinical situations wherein only unevenly sparse views are available, e.g., image guided radiation therapy, CT perfusion and multi-cycle cardiovascular imaging, we investigate the performance of optimization-based image reconstruction from unevenly sparse projection views in this work. Methods: The investigation is carried out using the FORBILD and an anthropomorphic head phantoms. In the study, 82 views, which are evenly sorted out from a full (360°) axial CT scan consisting of 984 views, form sub-scan I. Another 82 views are sorted out in a similar manner to form sub-scan II. As such, a CT scan with sparse (164) views at 1:6 ratio are formed. By shifting the two sub-scans relatively in view angulation, a CT scan with unevenly distributed sparse (164) views at 1:6 ratio are formed. An optimization-based method is implemented to reconstruct images from the unevenly distributed views. By taking the FBP reconstruction from the full scan (984 views) as the reference, the root mean square (RMS) between the reference and the optimization-based reconstruction is used to evaluate the performance quantitatively. Results: In visual inspection, the optimization-based method outperforms the FBP substantially in the reconstruction from unevenly distributed, which are quantitatively verified by the RMS gauged globally and in ROIs in both the FORBILD and anthropomorphic head phantoms. The RMS increases with increasing severity in the uneven angular distribution, especially in the case of anthropomorphic head phantom. Conclusion: The optimization-based image reconstruction can save radiation dose up to 12-fold while providing acceptable image quality

  8. Designing sparse sensing matrix for compressive sensing to reconstruct high resolution medical images

    Directory of Open Access Journals (Sweden)

    Vibha Tiwari

    2015-12-01

    Full Text Available Compressive sensing theory enables faithful reconstruction of signals, sparse in domain $ \\Psi $, at sampling rate lesser than Nyquist criterion, while using sampling or sensing matrix $ \\Phi $ which satisfies restricted isometric property. The role played by sensing matrix $ \\Phi $ and sparsity matrix $ \\Psi $ is vital in faithful reconstruction. If the sensing matrix is dense then it takes large storage space and leads to high computational cost. In this paper, effort is made to design sparse sensing matrix with least incurred computational cost while maintaining quality of reconstructed image. The design approach followed is based on sparse block circulant matrix (SBCM with few modifications. The other used sparse sensing matrix consists of 15 ones in each column. The medical images used are acquired from US, MRI and CT modalities. The image quality measurement parameters are used to compare the performance of reconstructed medical images using various sensing matrices. It is observed that, since Gram matrix of dictionary matrix ($ \\Phi \\Psi \\mathrm{} $ is closed to identity matrix in case of proposed modified SBCM, therefore, it helps to reconstruct the medical images of very good quality.

  9. Task-based data-acquisition optimization for sparse image reconstruction systems

    Science.gov (United States)

    Chen, Yujia; Lou, Yang; Kupinski, Matthew A.; Anastasio, Mark A.

    2017-03-01

    Conventional wisdom dictates that imaging hardware should be optimized by use of an ideal observer (IO) that exploits full statistical knowledge of the class of objects to be imaged, without consideration of the reconstruction method to be employed. However, accurate and tractable models of the complete object statistics are often difficult to determine in practice. Moreover, in imaging systems that employ compressive sensing concepts, imaging hardware and (sparse) image reconstruction are innately coupled technologies. We have previously proposed a sparsity-driven ideal observer (SDIO) that can be employed to optimize hardware by use of a stochastic object model that describes object sparsity. The SDIO and sparse reconstruction method can therefore be "matched" in the sense that they both utilize the same statistical information regarding the class of objects to be imaged. To efficiently compute SDIO performance, the posterior distribution is estimated by use of computational tools developed recently for variational Bayesian inference. Subsequently, the SDIO test statistic can be computed semi-analytically. The advantages of employing the SDIO instead of a Hotelling observer are systematically demonstrated in case studies in which magnetic resonance imaging (MRI) data acquisition schemes are optimized for signal detection tasks.

  10. Robust sparse image reconstruction of radio interferometric observations with PURIFY

    Science.gov (United States)

    Pratley, Luke; McEwen, Jason D.; d'Avezac, Mayeul; Carrillo, Rafael E.; Onose, Alexandru; Wiaux, Yves

    2018-01-01

    Next-generation radio interferometers, such as the Square Kilometre Array, will revolutionize our understanding of the Universe through their unprecedented sensitivity and resolution. However, to realize these goals significant challenges in image and data processing need to be overcome. The standard methods in radio interferometry for reconstructing images, such as CLEAN, have served the community well over the last few decades and have survived largely because they are pragmatic. However, they produce reconstructed interferometric images that are limited in quality and scalability for big data. In this work, we apply and evaluate alternative interferometric reconstruction methods that make use of state-of-the-art sparse image reconstruction algorithms motivated by compressive sensing, which have been implemented in the PURIFY software package. In particular, we implement and apply the proximal alternating direction method of multipliers algorithm presented in a recent article. First, we assess the impact of the interpolation kernel used to perform gridding and degridding on sparse image reconstruction. We find that the Kaiser-Bessel interpolation kernel performs as well as prolate spheroidal wave functions while providing a computational saving and an analytic form. Secondly, we apply PURIFY to real interferometric observations from the Very Large Array and the Australia Telescope Compact Array and find that images recovered by PURIFY are of higher quality than those recovered by CLEAN. Thirdly, we discuss how PURIFY reconstructions exhibit additional advantages over those recovered by CLEAN. The latest version of PURIFY, with developments presented in this work, is made publicly available.

  11. NUFFT-Based Iterative Image Reconstruction via Alternating Direction Total Variation Minimization for Sparse-View CT

    Directory of Open Access Journals (Sweden)

    Bin Yan

    2015-01-01

    Full Text Available Sparse-view imaging is a promising scanning method which can reduce the radiation dose in X-ray computed tomography (CT. Reconstruction algorithm for sparse-view imaging system is of significant importance. The adoption of the spatial iterative algorithm for CT image reconstruction has a low operation efficiency and high computation requirement. A novel Fourier-based iterative reconstruction technique that utilizes nonuniform fast Fourier transform is presented in this study along with the advanced total variation (TV regularization for sparse-view CT. Combined with the alternating direction method, the proposed approach shows excellent efficiency and rapid convergence property. Numerical simulations and real data experiments are performed on a parallel beam CT. Experimental results validate that the proposed method has higher computational efficiency and better reconstruction quality than the conventional algorithms, such as simultaneous algebraic reconstruction technique using TV method and the alternating direction total variation minimization approach, with the same time duration. The proposed method appears to have extensive applications in X-ray CT imaging.

  12. Split-Bregman-based sparse-view CT reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Vandeghinste, Bert; Vandenberghe, Stefaan [Ghent Univ. (Belgium). Medical Image and Signal Processing (MEDISIP); Goossens, Bart; Pizurica, Aleksandra; Philips, Wilfried [Ghent Univ. (Belgium). Image Processing and Interpretation Research Group (IPI); Beenhouwer, Jan de [Ghent Univ. (Belgium). Medical Image and Signal Processing (MEDISIP); Antwerp Univ., Wilrijk (Belgium). The Vision Lab; Staelens, Steven [Ghent Univ. (Belgium). Medical Image and Signal Processing (MEDISIP); Antwerp Univ., Edegem (Belgium). Molecular Imaging Centre Antwerp

    2011-07-01

    Total variation minimization has been extensively researched for image denoising and sparse view reconstruction. These methods show superior denoising performance for simple images with little texture, but result in texture information loss when applied to more complex images. It could thus be beneficial to use other regularizers within medical imaging. We propose a general regularization method, based on a split-Bregman approach. We show results for this framework combined with a total variation denoising operator, in comparison to ASD-POCS. We show that sparse-view reconstruction and noise regularization is possible. This general method will allow us to investigate other regularizers in the context of regularized CT reconstruction, and decrease the acquisition times in {mu}CT. (orig.)

  13. Sparse/Low Rank Constrained Reconstruction for Dynamic PET Imaging.

    Directory of Open Access Journals (Sweden)

    Xingjian Yu

    Full Text Available In dynamic Positron Emission Tomography (PET, an estimate of the radio activity concentration is obtained from a series of frames of sinogram data taken at ranging in duration from 10 seconds to minutes under some criteria. So far, all the well-known reconstruction algorithms require known data statistical properties. It limits the speed of data acquisition, besides, it is unable to afford the separated information about the structure and the variation of shape and rate of metabolism which play a major role in improving the visualization of contrast for some requirement of the diagnosing in application. This paper presents a novel low rank-based activity map reconstruction scheme from emission sinograms of dynamic PET, termed as SLCR representing Sparse/Low Rank Constrained Reconstruction for Dynamic PET Imaging. In this method, the stationary background is formulated as a low rank component while variations between successive frames are abstracted to the sparse. The resulting nuclear norm and l1 norm related minimization problem can also be efficiently solved by many recently developed numerical methods. In this paper, the linearized alternating direction method is applied. The effectiveness of the proposed scheme is illustrated on three data sets.

  14. Demonstration of Sparse Signal Reconstruction for Radar Imaging of Ice Sheets

    Science.gov (United States)

    Heister, Anton; Scheiber, Rolf

    2017-04-01

    Conventional processing of ice-sounder data produces 2-D images of the ice sheet and bed, where the two dimensions are along-track and depth, while the across-track direction is fixed to nadir. The 2-D images contain information about the topography and radar reflectivity of the ice sheet's surface, bed, and internal layers in the along-track direction. Having multiple antenna phase centers in the across-track direction enables the production of 3-D images of the ice sheet and bed. Compared to conventional 2-D images, these contain additional information about the surface and bed topography, and orientation of the internal layers over a swath in the across-track direction. We apply a 3-D SAR tomographic ice-sounding method based on sparse signal reconstruction [1] to the data collected by Center for Remote Sensing of Ice Sheets (CReSIS) in 2008 in Greenland [2] using their multichannel coherent radar depth sounder (MCoRDS). The MCoRDS data have 16 effective phase centers which allows us to better understand the performance of the method. Lastly we offer sparsity improvement by including wavelet dictionaries into the reconstruction.The results show improved scene feature resolvability in across-track direction compared to MVDR beamformer. References: [1] A. Heister, R. Scheiber, "First Analysis of Sparse Signal Reconstruction for Radar Imaging of Ice Sheets". In: Proceedings of EUSAR, pp. 788-791, June 2016. [2] X. Wu, K. C. Jezek, E. Rodriguez, S. Gogineni, F. Rodriguez-Morales, and A. Freeman, "Ice sheet bed mapping with airborne SAR tomography". IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 10 Part 1, pp. 3791-3802, 2011.

  15. A fast sparse reconstruction algorithm for electrical tomography

    International Nuclear Information System (INIS)

    Zhao, Jia; Xu, Yanbin; Tan, Chao; Dong, Feng

    2014-01-01

    Electrical tomography (ET) has been widely investigated due to its advantages of being non-radiative, low-cost and high-speed. However, the image reconstruction of ET is a nonlinear and ill-posed inverse problem and the imaging results are easily affected by measurement noise. A sparse reconstruction algorithm based on L 1 regularization is robust to noise and consequently provides a high quality of reconstructed images. In this paper, a sparse reconstruction by separable approximation algorithm (SpaRSA) is extended to solve the ET inverse problem. The algorithm is competitive with the fastest state-of-the-art algorithms in solving the standard L 2 −L 1 problem. However, it is computationally expensive when the dimension of the matrix is large. To further improve the calculation speed of solving inverse problems, a projection method based on the Krylov subspace is employed and combined with the SpaRSA algorithm. The proposed algorithm is tested with image reconstruction of electrical resistance tomography (ERT). Both simulation and experimental results demonstrate that the proposed method can reduce the computational time and improve the noise robustness for the image reconstruction. (paper)

  16. Sparse dictionary for synthetic transmit aperture medical ultrasound imaging.

    Science.gov (United States)

    Wang, Ping; Jiang, Jin-Yang; Li, Na; Luo, Han-Wu; Li, Fang; Cui, Shi-Gang

    2017-07-01

    It is possible to recover a signal below the Nyquist sampling limit using a compressive sensing technique in ultrasound imaging. However, the reconstruction enabled by common sparse transform approaches does not achieve satisfactory results. Considering the ultrasound echo signal's features of attenuation, repetition, and superposition, a sparse dictionary with the emission pulse signal is proposed. Sparse coefficients in the proposed dictionary have high sparsity. Images reconstructed with this dictionary were compared with those obtained with the three other common transforms, namely, discrete Fourier transform, discrete cosine transform, and discrete wavelet transform. The performance of the proposed dictionary was analyzed via a simulation and experimental data. The mean absolute error (MAE) was used to quantify the quality of the reconstructions. Experimental results indicate that the MAE associated with the proposed dictionary was always the smallest, the reconstruction time required was the shortest, and the lateral resolution and contrast of the reconstructed images were also the closest to the original images. The proposed sparse dictionary performed better than the other three sparse transforms. With the same sampling rate, the proposed dictionary achieved excellent reconstruction quality.

  17. High resolution depth reconstruction from monocular images and sparse point clouds using deep convolutional neural network

    Science.gov (United States)

    Dimitrievski, Martin; Goossens, Bart; Veelaert, Peter; Philips, Wilfried

    2017-09-01

    Understanding the 3D structure of the environment is advantageous for many tasks in the field of robotics and autonomous vehicles. From the robot's point of view, 3D perception is often formulated as a depth image reconstruction problem. In the literature, dense depth images are often recovered deterministically from stereo image disparities. Other systems use an expensive LiDAR sensor to produce accurate, but semi-sparse depth images. With the advent of deep learning there have also been attempts to estimate depth by only using monocular images. In this paper we combine the best of the two worlds, focusing on a combination of monocular images and low cost LiDAR point clouds. We explore the idea that very sparse depth information accurately captures the global scene structure while variations in image patches can be used to reconstruct local depth to a high resolution. The main contribution of this paper is a supervised learning depth reconstruction system based on a deep convolutional neural network. The network is trained on RGB image patches reinforced with sparse depth information and the output is a depth estimate for each pixel. Using image and point cloud data from the KITTI vision dataset we are able to learn a correspondence between local RGB information and local depth, while at the same time preserving the global scene structure. Our results are evaluated on sequences from the KITTI dataset and our own recordings using a low cost camera and LiDAR setup.

  18. Quantitative Assessment of Variational Surface Reconstruction from Sparse Point Clouds in Freehand 3D Ultrasound Imaging during Image-Guided Tumor Ablation

    Directory of Open Access Journals (Sweden)

    Shuangcheng Deng

    2016-04-01

    Full Text Available Surface reconstruction for freehand 3D ultrasound is used to provide 3D visualization of a VOI (volume of interest during image-guided tumor ablation surgery. This is a challenge because the recorded 2D B-scans are not only sparse but also non-parallel. To solve this issue, we established a framework to reconstruct the surface of freehand 3D ultrasound imaging in 2011. The key technique for surface reconstruction in that framework is based on variational interpolation presented by Greg Turk for shape transformation and is named Variational Surface Reconstruction (VSR. The main goal of this paper is to evaluate the quality of surface reconstructions, especially when the input data are extremely sparse point clouds from freehand 3D ultrasound imaging, using four methods: Ball Pivoting, Power Crust, Poisson, and VSR. Four experiments are conducted, and quantitative metrics, such as the Hausdorff distance, are introduced for quantitative assessment. The experiment results show that the performance of the proposed VSR method is the best of the four methods at reconstructing surface from sparse data. The VSR method can produce a close approximation to the original surface from as few as two contours, whereas the other three methods fail to do so. The experiment results also illustrate that the reproducibility of the VSR method is the best of the four methods.

  19. Multi-linear sparse reconstruction for SAR imaging based on higher-order SVD

    Science.gov (United States)

    Gao, Yu-Fei; Gui, Guan; Cong, Xun-Chao; Yang, Yue; Zou, Yan-Bin; Wan, Qun

    2017-12-01

    This paper focuses on the spotlight synthetic aperture radar (SAR) imaging for point scattering targets based on tensor modeling. In a real-world scenario, scatterers usually distribute in the block sparse pattern. Such a distribution feature has been scarcely utilized by the previous studies of SAR imaging. Our work takes advantage of this structure property of the target scene, constructing a multi-linear sparse reconstruction algorithm for SAR imaging. The multi-linear block sparsity is introduced into higher-order singular value decomposition (SVD) with a dictionary constructing procedure by this research. The simulation experiments for ideal point targets show the robustness of the proposed algorithm to the noise and sidelobe disturbance which always influence the imaging quality of the conventional methods. The computational resources requirement is further investigated in this paper. As a consequence of the algorithm complexity analysis, the present method possesses the superiority on resource consumption compared with the classic matching pursuit method. The imaging implementations for practical measured data also demonstrate the effectiveness of the algorithm developed in this paper.

  20. Low-count PET image restoration using sparse representation

    Science.gov (United States)

    Li, Tao; Jiang, Changhui; Gao, Juan; Yang, Yongfeng; Liang, Dong; Liu, Xin; Zheng, Hairong; Hu, Zhanli

    2018-04-01

    In the field of positron emission tomography (PET), reconstructed images are often blurry and contain noise. These problems are primarily caused by the low resolution of projection data. Solving this problem by improving hardware is an expensive solution, and therefore, we attempted to develop a solution based on optimizing several related algorithms in both the reconstruction and image post-processing domains. As sparse technology is widely used, sparse prediction is increasingly applied to solve this problem. In this paper, we propose a new sparse method to process low-resolution PET images. Two dictionaries (D1 for low-resolution PET images and D2 for high-resolution PET images) are learned from a group real PET image data sets. Among these two dictionaries, D1 is used to obtain a sparse representation for each patch of the input PET image. Then, a high-resolution PET image is generated from this sparse representation using D2. Experimental results indicate that the proposed method exhibits a stable and superior ability to enhance image resolution and recover image details. Quantitatively, this method achieves better performance than traditional methods. This proposed strategy is a new and efficient approach for improving the quality of PET images.

  1. Sparse Representations of Hyperspectral Images

    KAUST Repository

    Swanson, Robin J.

    2015-11-23

    Hyperspectral image data has long been an important tool for many areas of sci- ence. The addition of spectral data yields significant improvements in areas such as object and image classification, chemical and mineral composition detection, and astronomy. Traditional capture methods for hyperspectral data often require each wavelength to be captured individually, or by sacrificing spatial resolution. Recently there have been significant improvements in snapshot hyperspectral captures using, in particular, compressed sensing methods. As we move to a compressed sensing image formation model the need for strong image priors to shape our reconstruction, as well as sparse basis become more important. Here we compare several several methods for representing hyperspectral images including learned three dimensional dictionaries, sparse convolutional coding, and decomposable nonlocal tensor dictionaries. Addi- tionally, we further explore their parameter space to identify which parameters provide the most faithful and sparse representations.

  2. Sparse Representations of Hyperspectral Images

    KAUST Repository

    Swanson, Robin J.

    2015-01-01

    Hyperspectral image data has long been an important tool for many areas of sci- ence. The addition of spectral data yields significant improvements in areas such as object and image classification, chemical and mineral composition detection, and astronomy. Traditional capture methods for hyperspectral data often require each wavelength to be captured individually, or by sacrificing spatial resolution. Recently there have been significant improvements in snapshot hyperspectral captures using, in particular, compressed sensing methods. As we move to a compressed sensing image formation model the need for strong image priors to shape our reconstruction, as well as sparse basis become more important. Here we compare several several methods for representing hyperspectral images including learned three dimensional dictionaries, sparse convolutional coding, and decomposable nonlocal tensor dictionaries. Addi- tionally, we further explore their parameter space to identify which parameters provide the most faithful and sparse representations.

  3. TH-E-17A-02: High-Pitch and Sparse-View Helical 4D CT Via Iterative Image Reconstruction Method Based On Tensor Framelet

    International Nuclear Information System (INIS)

    Guo, M; Nam, H; Li, R; Xing, L; Gao, H

    2014-01-01

    Purpose: 4D CT is routinely performed during radiation therapy treatment planning of thoracic and abdominal cancers. Compared with the cine mode, the helical mode is advantageous in temporal resolution. However, a low pitch (∼0.1) for 4D CT imaging is often required instead of the standard pitch (∼1) for static imaging, since standard image reconstruction based on analytic method requires the low-pitch scanning in order to satisfy the data sufficient condition when reconstructing each temporal frame individually. In comparison, the flexible iterative method enables the reconstruction of all temporal frames simultaneously, so that the image similarity among frames can be utilized to possibly perform high-pitch and sparse-view helical 4D CT imaging. The purpose of this work is to investigate such an exciting possibility for faster imaging with lower dose. Methods: A key for highpitch and sparse-view helical 4D CT imaging is the simultaneous reconstruction of all temporal frames using the prior that temporal frames are continuous along the temporal direction. In this work, such a prior is regularized through the sparsity transform based on spatiotemporal tensor framelet (TF) as a multilevel and high-order extension of total variation transform. Moreover, GPU-based fast parallel computing of X-ray transform and its adjoint together with split Bregman method is utilized for solving the 4D image reconstruction problem efficiently and accurately. Results: The simulation studies based on 4D NCAT phantoms were performed with various pitches (i.e., 0.1, 0.2, 0.5, and 1) and sparse views (i.e., 400 views per rotation instead of standard >2000 views per rotation), using 3D iterative individual reconstruction method based on 3D TF and 4D iterative simultaneous reconstruction method based on 4D TF respectively. Conclusion: The proposed TF-based simultaneous 4D image reconstruction method enables high-pitch and sparse-view helical 4D CT with lower dose and faster speed

  4. Superiorized algorithm for reconstruction of CT images from sparse-view and limited-angle polyenergetic data

    Science.gov (United States)

    Humphries, T.; Winn, J.; Faridani, A.

    2017-08-01

    Recent work in CT image reconstruction has seen increasing interest in the use of total variation (TV) and related penalties to regularize problems involving reconstruction from undersampled or incomplete data. Superiorization is a recently proposed heuristic which provides an automatic procedure to ‘superiorize’ an iterative image reconstruction algorithm with respect to a chosen objective function, such as TV. Under certain conditions, the superiorized algorithm is guaranteed to find a solution that is as satisfactory as any found by the original algorithm with respect to satisfying the constraints of the problem; this solution is also expected to be superior with respect to the chosen objective. Most work on superiorization has used reconstruction algorithms which assume a linear measurement model, which in the case of CT corresponds to data generated from a monoenergetic x-ray beam. Many CT systems generate x-rays from a polyenergetic spectrum, however, in which the measured data represent an integral of object attenuation over all energies in the spectrum. This inconsistency with the linear model produces the well-known beam hardening artifacts, which impair analysis of CT images. In this work we superiorize an iterative algorithm for reconstruction from polyenergetic data, using both TV and an anisotropic TV (ATV) penalty. We apply the superiorized algorithm in numerical phantom experiments modeling both sparse-view and limited-angle scenarios. In our experiments, the superiorized algorithm successfully finds solutions which are as constraints-compatible as those found by the original algorithm, with significantly reduced TV and ATV values. The superiorized algorithm thus produces images with greatly reduced sparse-view and limited angle artifacts, which are also largely free of the beam hardening artifacts that would be present if a superiorized version of a monoenergetic algorithm were used.

  5. SU-E-I-45: Reconstruction of CT Images From Sparsely-Sampled Data Using the Logarithmic Barrier Method

    International Nuclear Information System (INIS)

    Xu, H

    2014-01-01

    Purpose: To develop and investigate whether the logarithmic barrier (LB) method can result in high-quality reconstructed CT images using sparsely-sampled noisy projection data Methods: The objective function is typically formulated as the sum of the total variation (TV) and a data fidelity (DF) term with a parameter λ that governs the relative weight between them. Finding the optimized value of λ is a critical step for this approach to give satisfactory results. The proposed LB method avoid using λ by constructing the objective function as the sum of the TV and a log function whose augment is the DF term. Newton's method was used to solve the optimization problem. The algorithm was coded in MatLab2013b. Both Shepp-Logan phantom and a patient lung CT image were used for demonstration of the algorithm. Measured data were simulated by calculating the projection data using radon transform. A Poisson noise model was used to account for the simulated detector noise. The iteration stopped when the difference of the current TV and the previous one was less than 1%. Results: Shepp-Logan phantom reconstruction study shows that filtered back-projection (FBP) gives high streak artifacts for 30 and 40 projections. Although visually the streak artifacts are less pronounced for 64 and 90 projections in FBP, the 1D pixel profiles indicate that FBP gives noisier reconstructed pixel values than LB does. A lung image reconstruction is presented. It shows that use of 64 projections gives satisfactory reconstructed image quality with regard to noise suppression and sharp edge preservation. Conclusion: This study demonstrates that the logarithmic barrier method can be used to reconstruct CT images from sparsely-amped data. The number of projections around 64 gives a balance between the over-smoothing of the sharp demarcation and noise suppression. Future study may extend to CBCT reconstruction and improvement on computation speed

  6. Effects of sparse sampling schemes on image quality in low-dose CT

    International Nuclear Information System (INIS)

    Abbas, Sajid; Lee, Taewon; Cho, Seungryong; Shin, Sukyoung; Lee, Rena

    2013-01-01

    Purpose: Various scanning methods and image reconstruction algorithms are actively investigated for low-dose computed tomography (CT) that can potentially reduce a health-risk related to radiation dose. Particularly, compressive-sensing (CS) based algorithms have been successfully developed for reconstructing images from sparsely sampled data. Although these algorithms have shown promises in low-dose CT, it has not been studied how sparse sampling schemes affect image quality in CS-based image reconstruction. In this work, the authors present several sparse-sampling schemes for low-dose CT, quantitatively analyze their data property, and compare effects of the sampling schemes on the image quality.Methods: Data properties of several sampling schemes are analyzed with respect to the CS-based image reconstruction using two measures: sampling density and data incoherence. The authors present five different sparse sampling schemes, and simulated those schemes to achieve a targeted dose reduction. Dose reduction factors of about 75% and 87.5%, compared to a conventional scan, were tested. A fully sampled circular cone-beam CT data set was used as a reference, and sparse sampling has been realized numerically based on the CBCT data.Results: It is found that both sampling density and data incoherence affect the image quality in the CS-based reconstruction. Among the sampling schemes the authors investigated, the sparse-view, many-view undersampling (MVUS)-fine, and MVUS-moving cases have shown promising results. These sampling schemes produced images with similar image quality compared to the reference image and their structure similarity index values were higher than 0.92 in the mouse head scan with 75% dose reduction.Conclusions: The authors found that in CS-based image reconstructions both sampling density and data incoherence affect the image quality, and suggest that a sampling scheme should be devised and optimized by use of these indicators. With this strategic

  7. Vector sparse representation of color image using quaternion matrix analysis.

    Science.gov (United States)

    Xu, Yi; Yu, Licheng; Xu, Hongteng; Zhang, Hao; Nguyen, Truong

    2015-04-01

    Traditional sparse image models treat color image pixel as a scalar, which represents color channels separately or concatenate color channels as a monochrome image. In this paper, we propose a vector sparse representation model for color images using quaternion matrix analysis. As a new tool for color image representation, its potential applications in several image-processing tasks are presented, including color image reconstruction, denoising, inpainting, and super-resolution. The proposed model represents the color image as a quaternion matrix, where a quaternion-based dictionary learning algorithm is presented using the K-quaternion singular value decomposition (QSVD) (generalized K-means clustering for QSVD) method. It conducts the sparse basis selection in quaternion space, which uniformly transforms the channel images to an orthogonal color space. In this new color space, it is significant that the inherent color structures can be completely preserved during vector reconstruction. Moreover, the proposed sparse model is more efficient comparing with the current sparse models for image restoration tasks due to lower redundancy between the atoms of different color channels. The experimental results demonstrate that the proposed sparse image model avoids the hue bias issue successfully and shows its potential as a general and powerful tool in color image analysis and processing domain.

  8. Low-dose X-ray computed tomography image reconstruction with a combined low-mAs and sparse-view protocol.

    Science.gov (United States)

    Gao, Yang; Bian, Zhaoying; Huang, Jing; Zhang, Yunwan; Niu, Shanzhou; Feng, Qianjin; Chen, Wufan; Liang, Zhengrong; Ma, Jianhua

    2014-06-16

    To realize low-dose imaging in X-ray computed tomography (CT) examination, lowering milliampere-seconds (low-mAs) or reducing the required number of projection views (sparse-view) per rotation around the body has been widely studied as an easy and effective approach. In this study, we are focusing on low-dose CT image reconstruction from the sinograms acquired with a combined low-mAs and sparse-view protocol and propose a two-step image reconstruction strategy. Specifically, to suppress significant statistical noise in the noisy and insufficient sinograms, an adaptive sinogram restoration (ASR) method is first proposed with consideration of the statistical property of sinogram data, and then to further acquire a high-quality image, a total variation based projection onto convex sets (TV-POCS) method is adopted with a slight modification. For simplicity, the present reconstruction strategy was termed as "ASR-TV-POCS." To evaluate the present ASR-TV-POCS method, both qualitative and quantitative studies were performed on a physical phantom. Experimental results have demonstrated that the present ASR-TV-POCS method can achieve promising gains over other existing methods in terms of the noise reduction, contrast-to-noise ratio, and edge detail preservation.

  9. A new Mumford-Shah total variation minimization based model for sparse-view x-ray computed tomography image reconstruction.

    Science.gov (United States)

    Chen, Bo; Bian, Zhaoying; Zhou, Xiaohui; Chen, Wensheng; Ma, Jianhua; Liang, Zhengrong

    2018-04-12

    Total variation (TV) minimization for the sparse-view x-ray computer tomography (CT) reconstruction has been widely explored to reduce radiation dose. However, due to the piecewise constant assumption for the TV model, the reconstructed images often suffer from over-smoothness on the image edges. To mitigate this drawback of TV minimization, we present a Mumford-Shah total variation (MSTV) minimization algorithm in this paper. The presented MSTV model is derived by integrating TV minimization and Mumford-Shah segmentation. Subsequently, a penalized weighted least-squares (PWLS) scheme with MSTV is developed for the sparse-view CT reconstruction. For simplicity, the proposed algorithm is named as 'PWLS-MSTV.' To evaluate the performance of the present PWLS-MSTV algorithm, both qualitative and quantitative studies were conducted by using a digital XCAT phantom and a physical phantom. Experimental results show that the present PWLS-MSTV algorithm has noticeable gains over the existing algorithms in terms of noise reduction, contrast-to-ratio measure and edge-preservation.

  10. SU-E-I-45: Reconstruction of CT Images From Sparsely-Sampled Data Using the Logarithmic Barrier Method

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H [Department of Radiation Oncology, Dalhousie University, Halifax, NS (Canada)

    2014-06-01

    Purpose: To develop and investigate whether the logarithmic barrier (LB) method can result in high-quality reconstructed CT images using sparsely-sampled noisy projection data Methods: The objective function is typically formulated as the sum of the total variation (TV) and a data fidelity (DF) term with a parameter λ that governs the relative weight between them. Finding the optimized value of λ is a critical step for this approach to give satisfactory results. The proposed LB method avoid using λ by constructing the objective function as the sum of the TV and a log function whose augment is the DF term. Newton's method was used to solve the optimization problem. The algorithm was coded in MatLab2013b. Both Shepp-Logan phantom and a patient lung CT image were used for demonstration of the algorithm. Measured data were simulated by calculating the projection data using radon transform. A Poisson noise model was used to account for the simulated detector noise. The iteration stopped when the difference of the current TV and the previous one was less than 1%. Results: Shepp-Logan phantom reconstruction study shows that filtered back-projection (FBP) gives high streak artifacts for 30 and 40 projections. Although visually the streak artifacts are less pronounced for 64 and 90 projections in FBP, the 1D pixel profiles indicate that FBP gives noisier reconstructed pixel values than LB does. A lung image reconstruction is presented. It shows that use of 64 projections gives satisfactory reconstructed image quality with regard to noise suppression and sharp edge preservation. Conclusion: This study demonstrates that the logarithmic barrier method can be used to reconstruct CT images from sparsely-amped data. The number of projections around 64 gives a balance between the over-smoothing of the sharp demarcation and noise suppression. Future study may extend to CBCT reconstruction and improvement on computation speed.

  11. Semi-blind sparse image reconstruction with application to MRFM.

    Science.gov (United States)

    Park, Se Un; Dobigeon, Nicolas; Hero, Alfred O

    2012-09-01

    We propose a solution to the image deconvolution problem where the convolution kernel or point spread function (PSF) is assumed to be only partially known. Small perturbations generated from the model are exploited to produce a few principal components explaining the PSF uncertainty in a high-dimensional space. Unlike recent developments on blind deconvolution of natural images, we assume the image is sparse in the pixel basis, a natural sparsity arising in magnetic resonance force microscopy (MRFM). Our approach adopts a Bayesian Metropolis-within-Gibbs sampling framework. The performance of our Bayesian semi-blind algorithm for sparse images is superior to previously proposed semi-blind algorithms such as the alternating minimization algorithm and blind algorithms developed for natural images. We illustrate our myopic algorithm on real MRFM tobacco virus data.

  12. Sparse image representation for jet neutron and gamma tomography

    Energy Technology Data Exchange (ETDEWEB)

    Craciunescu, T. [EURATOM-MEdC Association, Institute for Laser, Plasma and Radiation Physics, Bucharest (Romania); Kiptily, V. [EURATOM/CCFE Association, Culham Science Centre, Abingdon (United Kingdom); Murari, A. [Consorzio RFX, Associazione EURATOM-ENEA per la Fusione, Padova (Italy); Tiseanu, I.; Zoita, V. [EURATOM-MEdC Association, Institute for Laser, Plasma and Radiation Physics, Bucharest (Romania)

    2013-10-15

    Highlights: •A new tomographic method for the reconstruction of the 2-D neutron and gamma emissivity on JET. •The method is based on the sparse representation of the reconstructed image in an over-complete dictionary. •Several techniques, based on a priori information are used to regularize this highly limited data set tomographic problem. •The proposed method provides good reconstructions in terms of shapes and resolution. -- Abstract: The JET gamma/neutron profile monitor plasma coverage of the emissive region enables tomographic reconstruction. However, due to the availability of only two projection angles and to the coarse sampling, tomography is a highly limited data set problem. A new reconstruction method, based on the sparse representation of the reconstructed image in an over-complete dictionary, has been developed and applied to JET neutron/gamma tomography. The method has been tested on JET experimental data and significant results are presented. The proposed method provides good reconstructions in terms of shapes and resolution.

  13. Learning Joint-Sparse Codes for Calibration-Free Parallel MR Imaging.

    Science.gov (United States)

    Wang, Shanshan; Tan, Sha; Gao, Yuan; Liu, Qiegen; Ying, Leslie; Xiao, Taohui; Liu, Yuanyuan; Liu, Xin; Zheng, Hairong; Liang, Dong

    2018-01-01

    The integration of compressed sensing and parallel imaging (CS-PI) has shown an increased popularity in recent years to accelerate magnetic resonance (MR) imaging. Among them, calibration-free techniques have presented encouraging performances due to its capability in robustly handling the sensitivity information. Unfortunately, existing calibration-free methods have only explored joint-sparsity with direct analysis transform projections. To further exploit joint-sparsity and improve reconstruction accuracy, this paper proposes to Learn joINt-sparse coDes for caliBration-free parallEl mR imaGing (LINDBERG) by modeling the parallel MR imaging problem as an - - minimization objective with an norm constraining data fidelity, Frobenius norm enforcing sparse representation error and the mixed norm triggering joint sparsity across multichannels. A corresponding algorithm has been developed to alternatively update the sparse representation, sensitivity encoded images and K-space data. Then, the final image is produced as the square root of sum of squares of all channel images. Experimental results on both physical phantom and in vivo data sets show that the proposed method is comparable and even superior to state-of-the-art CS-PI reconstruction approaches. Specifically, LINDBERG has presented strong capability in suppressing noise and artifacts while reconstructing MR images from highly undersampled multichannel measurements.

  14. Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction.

    Science.gov (United States)

    Liu, Yan; Ma, Jianhua; Fan, Yi; Liang, Zhengrong

    2012-12-07

    Previous studies have shown that by minimizing the total variation (TV) of the to-be-estimated image with some data and other constraints, piecewise-smooth x-ray computed tomography (CT) can be reconstructed from sparse-view projection data without introducing notable artifacts. However, due to the piecewise constant assumption for the image, a conventional TV minimization algorithm often suffers from over-smoothness on the edges of the resulting image. To mitigate this drawback, we present an adaptive-weighted TV (AwTV) minimization algorithm in this paper. The presented AwTV model is derived by considering the anisotropic edge property among neighboring image voxels, where the associated weights are expressed as an exponential function and can be adaptively adjusted by the local image-intensity gradient for the purpose of preserving the edge details. Inspired by the previously reported TV-POCS (projection onto convex sets) implementation, a similar AwTV-POCS implementation was developed to minimize the AwTV subject to data and other constraints for the purpose of sparse-view low-dose CT image reconstruction. To evaluate the presented AwTV-POCS algorithm, both qualitative and quantitative studies were performed by computer simulations and phantom experiments. The results show that the presented AwTV-POCS algorithm can yield images with several notable gains, in terms of noise-resolution tradeoff plots and full-width at half-maximum values, as compared to the corresponding conventional TV-POCS algorithm.

  15. Sparse electromagnetic imaging using nonlinear iterative shrinkage thresholding

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2015-01-01

    A sparse nonlinear electromagnetic imaging scheme is proposed for reconstructing dielectric contrast of investigation domains from measured fields. The proposed approach constructs the optimization problem by introducing the sparsity constraint to the data misfit between the scattered fields expressed as a nonlinear function of the contrast and the measured fields and solves it using the nonlinear iterative shrinkage thresholding algorithm. The thresholding is applied to the result of every nonlinear Landweber iteration to enforce the sparsity constraint. Numerical results demonstrate the accuracy and efficiency of the proposed method in reconstructing sparse dielectric profiles.

  16. Sparse electromagnetic imaging using nonlinear iterative shrinkage thresholding

    KAUST Repository

    Desmal, Abdulla

    2015-04-13

    A sparse nonlinear electromagnetic imaging scheme is proposed for reconstructing dielectric contrast of investigation domains from measured fields. The proposed approach constructs the optimization problem by introducing the sparsity constraint to the data misfit between the scattered fields expressed as a nonlinear function of the contrast and the measured fields and solves it using the nonlinear iterative shrinkage thresholding algorithm. The thresholding is applied to the result of every nonlinear Landweber iteration to enforce the sparsity constraint. Numerical results demonstrate the accuracy and efficiency of the proposed method in reconstructing sparse dielectric profiles.

  17. Microstructure Images Restoration of Metallic Materials Based upon KSVD and Smoothing Penalty Sparse Representation Approach.

    Science.gov (United States)

    Li, Qing; Liang, Steven Y

    2018-04-20

    Microstructure images of metallic materials play a significant role in industrial applications. To address image degradation problem of metallic materials, a novel image restoration technique based on K-means singular value decomposition (KSVD) and smoothing penalty sparse representation (SPSR) algorithm is proposed in this work, the microstructure images of aluminum alloy 7075 (AA7075) material are used as examples. To begin with, to reflect the detail structure characteristics of the damaged image, the KSVD dictionary is introduced to substitute the traditional sparse transform basis (TSTB) for sparse representation. Then, due to the image restoration, modeling belongs to a highly underdetermined equation, and traditional sparse reconstruction methods may cause instability and obvious artifacts in the reconstructed images, especially reconstructed image with many smooth regions and the noise level is strong, thus the SPSR (here, q = 0.5) algorithm is designed to reconstruct the damaged image. The results of simulation and two practical cases demonstrate that the proposed method has superior performance compared with some state-of-the-art methods in terms of restoration performance factors and visual quality. Meanwhile, the grain size parameters and grain boundaries of microstructure image are discussed before and after they are restored by proposed method.

  18. Median prior constrained TV algorithm for sparse view low-dose CT reconstruction.

    Science.gov (United States)

    Liu, Yi; Shangguan, Hong; Zhang, Quan; Zhu, Hongqing; Shu, Huazhong; Gui, Zhiguo

    2015-05-01

    It is known that lowering the X-ray tube current (mAs) or tube voltage (kVp) and simultaneously reducing the total number of X-ray views (sparse view) is an effective means to achieve low-dose in computed tomography (CT) scan. However, the associated image quality by the conventional filtered back-projection (FBP) usually degrades due to the excessive quantum noise. Although sparse-view CT reconstruction algorithm via total variation (TV), in the scanning protocol of reducing X-ray tube current, has been demonstrated to be able to result in significant radiation dose reduction while maintain image quality, noticeable patchy artifacts still exist in reconstructed images. In this study, to address the problem of patchy artifacts, we proposed a median prior constrained TV regularization to retain the image quality by introducing an auxiliary vector m in register with the object. Specifically, the approximate action of m is to draw, in each iteration, an object voxel toward its own local median, aiming to improve low-dose image quality with sparse-view projection measurements. Subsequently, an alternating optimization algorithm is adopted to optimize the associative objective function. We refer to the median prior constrained TV regularization as "TV_MP" for simplicity. Experimental results on digital phantoms and clinical phantom demonstrated that the proposed TV_MP with appropriate control parameters can not only ensure a higher signal to noise ratio (SNR) of the reconstructed image, but also its resolution compared with the original TV method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Single image super-resolution based on compressive sensing and improved TV minimization sparse recovery

    Science.gov (United States)

    Vishnukumar, S.; Wilscy, M.

    2017-12-01

    In this paper, we propose a single image Super-Resolution (SR) method based on Compressive Sensing (CS) and Improved Total Variation (TV) Minimization Sparse Recovery. In the CS framework, low-resolution (LR) image is treated as the compressed version of high-resolution (HR) image. Dictionary Training and Sparse Recovery are the two phases of the method. K-Singular Value Decomposition (K-SVD) method is used for dictionary training and the dictionary represents HR image patches in a sparse manner. Here, only the interpolated version of the LR image is used for training purpose and thereby the structural self similarity inherent in the LR image is exploited. In the sparse recovery phase the sparse representation coefficients with respect to the trained dictionary for LR image patches are derived using Improved TV Minimization method. HR image can be reconstructed by the linear combination of the dictionary and the sparse coefficients. The experimental results show that the proposed method gives better results quantitatively as well as qualitatively on both natural and remote sensing images. The reconstructed images have better visual quality since edges and other sharp details are preserved.

  20. Blind compressed sensing image reconstruction based on alternating direction method

    Science.gov (United States)

    Liu, Qinan; Guo, Shuxu

    2018-04-01

    In order to solve the problem of how to reconstruct the original image under the condition of unknown sparse basis, this paper proposes an image reconstruction method based on blind compressed sensing model. In this model, the image signal is regarded as the product of a sparse coefficient matrix and a dictionary matrix. Based on the existing blind compressed sensing theory, the optimal solution is solved by the alternative minimization method. The proposed method solves the problem that the sparse basis in compressed sensing is difficult to represent, which restrains the noise and improves the quality of reconstructed image. This method ensures that the blind compressed sensing theory has a unique solution and can recover the reconstructed original image signal from a complex environment with a stronger self-adaptability. The experimental results show that the image reconstruction algorithm based on blind compressed sensing proposed in this paper can recover high quality image signals under the condition of under-sampling.

  1. Superresolving Black Hole Images with Full-Closure Sparse Modeling

    Science.gov (United States)

    Crowley, Chelsea; Akiyama, Kazunori; Fish, Vincent

    2018-01-01

    It is believed that almost all galaxies have black holes at their centers. Imaging a black hole is a primary objective to answer scientific questions relating to relativistic accretion and jet formation. The Event Horizon Telescope (EHT) is set to capture images of two nearby black holes, Sagittarius A* at the center of the Milky Way galaxy roughly 26,000 light years away and the other M87 which is in Virgo A, a large elliptical galaxy that is 50 million light years away. Sparse imaging techniques have shown great promise for reconstructing high-fidelity superresolved images of black holes from simulated data. Previous work has included the effects of atmospheric phase errors and thermal noise, but not systematic amplitude errors that arise due to miscalibration. We explore a full-closure imaging technique with sparse modeling that uses closure amplitudes and closure phases to improve the imaging process. This new technique can successfully handle data with systematic amplitude errors. Applying our technique to synthetic EHT data of M87, we find that full-closure sparse modeling can reconstruct images better than traditional methods and recover key structural information on the source, such as the shape and size of the predicted photon ring. These results suggest that our new approach will provide superior imaging performance for data from the EHT and other interferometric arrays.

  2. Joint-2D-SL0 Algorithm for Joint Sparse Matrix Reconstruction

    Directory of Open Access Journals (Sweden)

    Dong Zhang

    2017-01-01

    Full Text Available Sparse matrix reconstruction has a wide application such as DOA estimation and STAP. However, its performance is usually restricted by the grid mismatch problem. In this paper, we revise the sparse matrix reconstruction model and propose the joint sparse matrix reconstruction model based on one-order Taylor expansion. And it can overcome the grid mismatch problem. Then, we put forward the Joint-2D-SL0 algorithm which can solve the joint sparse matrix reconstruction problem efficiently. Compared with the Kronecker compressive sensing method, our proposed method has a higher computational efficiency and acceptable reconstruction accuracy. Finally, simulation results validate the superiority of the proposed method.

  3. Novel Fourier-based iterative reconstruction for sparse fan projection using alternating direction total variation minimization

    International Nuclear Information System (INIS)

    Jin Zhao; Zhang Han-Ming; Yan Bin; Li Lei; Wang Lin-Yuan; Cai Ai-Long

    2016-01-01

    Sparse-view x-ray computed tomography (CT) imaging is an interesting topic in CT field and can efficiently decrease radiation dose. Compared with spatial reconstruction, a Fourier-based algorithm has advantages in reconstruction speed and memory usage. A novel Fourier-based iterative reconstruction technique that utilizes non-uniform fast Fourier transform (NUFFT) is presented in this work along with advanced total variation (TV) regularization for a fan sparse-view CT. The proposition of a selective matrix contributes to improve reconstruction quality. The new method employs the NUFFT and its adjoin to iterate back and forth between the Fourier and image space. The performance of the proposed algorithm is demonstrated through a series of digital simulations and experimental phantom studies. Results of the proposed algorithm are compared with those of existing TV-regularized techniques based on compressed sensing method, as well as basic algebraic reconstruction technique. Compared with the existing TV-regularized techniques, the proposed Fourier-based technique significantly improves convergence rate and reduces memory allocation, respectively. (paper)

  4. Structure-based bayesian sparse reconstruction

    KAUST Repository

    Quadeer, Ahmed Abdul; Al-Naffouri, Tareq Y.

    2012-01-01

    Sparse signal reconstruction algorithms have attracted research attention due to their wide applications in various fields. In this paper, we present a simple Bayesian approach that utilizes the sparsity constraint and a priori statistical

  5. l1- and l2-Norm Joint Regularization Based Sparse Signal Reconstruction Scheme

    Directory of Open Access Journals (Sweden)

    Chanzi Liu

    2016-01-01

    Full Text Available Many problems in signal processing and statistical inference involve finding sparse solution to some underdetermined linear system of equations. This is also the application condition of compressive sensing (CS which can find the sparse solution from the measurements far less than the original signal. In this paper, we propose l1- and l2-norm joint regularization based reconstruction framework to approach the original l0-norm based sparseness-inducing constrained sparse signal reconstruction problem. Firstly, it is shown that, by employing the simple conjugate gradient algorithm, the new formulation provides an effective framework to deduce the solution as the original sparse signal reconstruction problem with l0-norm regularization item. Secondly, the upper reconstruction error limit is presented for the proposed sparse signal reconstruction framework, and it is unveiled that a smaller reconstruction error than l1-norm relaxation approaches can be realized by using the proposed scheme in most cases. Finally, simulation results are presented to validate the proposed sparse signal reconstruction approach.

  6. Nonlocal low-rank and sparse matrix decomposition for spectral CT reconstruction

    Science.gov (United States)

    Niu, Shanzhou; Yu, Gaohang; Ma, Jianhua; Wang, Jing

    2018-02-01

    Spectral computed tomography (CT) has been a promising technique in research and clinics because of its ability to produce improved energy resolution images with narrow energy bins. However, the narrow energy bin image is often affected by serious quantum noise because of the limited number of photons used in the corresponding energy bin. To address this problem, we present an iterative reconstruction method for spectral CT using nonlocal low-rank and sparse matrix decomposition (NLSMD), which exploits the self-similarity of patches that are collected in multi-energy images. Specifically, each set of patches can be decomposed into a low-rank component and a sparse component, and the low-rank component represents the stationary background over different energy bins, while the sparse component represents the rest of the different spectral features in individual energy bins. Subsequently, an effective alternating optimization algorithm was developed to minimize the associated objective function. To validate and evaluate the NLSMD method, qualitative and quantitative studies were conducted by using simulated and real spectral CT data. Experimental results show that the NLSMD method improves spectral CT images in terms of noise reduction, artifact suppression and resolution preservation.

  7. Magnetic Resonance Super-resolution Imaging Measurement with Dictionary-optimized Sparse Learning

    Directory of Open Access Journals (Sweden)

    Li Jun-Bao

    2017-06-01

    Full Text Available Magnetic Resonance Super-resolution Imaging Measurement (MRIM is an effective way of measuring materials. MRIM has wide applications in physics, chemistry, biology, geology, medical and material science, especially in medical diagnosis. It is feasible to improve the resolution of MR imaging through increasing radiation intensity, but the high radiation intensity and the longtime of magnetic field harm the human body. Thus, in the practical applications the resolution of hardware imaging reaches the limitation of resolution. Software-based super-resolution technology is effective to improve the resolution of image. This work proposes a framework of dictionary-optimized sparse learning based MR super-resolution method. The framework is to solve the problem of sample selection for dictionary learning of sparse reconstruction. The textural complexity-based image quality representation is proposed to choose the optimal samples for dictionary learning. Comprehensive experiments show that the dictionary-optimized sparse learning improves the performance of sparse representation.

  8. Sparsity-promoting orthogonal dictionary updating for image reconstruction from highly undersampled magnetic resonance data

    International Nuclear Information System (INIS)

    Huang, Jinhong; Guo, Li; Feng, Qianjin; Chen, Wufan; Feng, Yanqiu

    2015-01-01

    Image reconstruction from undersampled k-space data accelerates magnetic resonance imaging (MRI) by exploiting image sparseness in certain transform domains. Employing image patch representation over a learned dictionary has the advantage of being adaptive to local image structures and thus can better sparsify images than using fixed transforms (e.g. wavelets and total variations). Dictionary learning methods have recently been introduced to MRI reconstruction, and these methods demonstrate significantly reduced reconstruction errors compared to sparse MRI reconstruction using fixed transforms. However, the synthesis sparse coding problem in dictionary learning is NP-hard and computationally expensive. In this paper, we present a novel sparsity-promoting orthogonal dictionary updating method for efficient image reconstruction from highly undersampled MRI data. The orthogonality imposed on the learned dictionary enables the minimization problem in the reconstruction to be solved by an efficient optimization algorithm which alternately updates representation coefficients, orthogonal dictionary, and missing k-space data. Moreover, both sparsity level and sparse representation contribution using updated dictionaries gradually increase during iterations to recover more details, assuming the progressively improved quality of the dictionary. Simulation and real data experimental results both demonstrate that the proposed method is approximately 10 to 100 times faster than the K-SVD-based dictionary learning MRI method and simultaneously improves reconstruction accuracy. (paper)

  9. Sparsity-promoting orthogonal dictionary updating for image reconstruction from highly undersampled magnetic resonance data.

    Science.gov (United States)

    Huang, Jinhong; Guo, Li; Feng, Qianjin; Chen, Wufan; Feng, Yanqiu

    2015-07-21

    Image reconstruction from undersampled k-space data accelerates magnetic resonance imaging (MRI) by exploiting image sparseness in certain transform domains. Employing image patch representation over a learned dictionary has the advantage of being adaptive to local image structures and thus can better sparsify images than using fixed transforms (e.g. wavelets and total variations). Dictionary learning methods have recently been introduced to MRI reconstruction, and these methods demonstrate significantly reduced reconstruction errors compared to sparse MRI reconstruction using fixed transforms. However, the synthesis sparse coding problem in dictionary learning is NP-hard and computationally expensive. In this paper, we present a novel sparsity-promoting orthogonal dictionary updating method for efficient image reconstruction from highly undersampled MRI data. The orthogonality imposed on the learned dictionary enables the minimization problem in the reconstruction to be solved by an efficient optimization algorithm which alternately updates representation coefficients, orthogonal dictionary, and missing k-space data. Moreover, both sparsity level and sparse representation contribution using updated dictionaries gradually increase during iterations to recover more details, assuming the progressively improved quality of the dictionary. Simulation and real data experimental results both demonstrate that the proposed method is approximately 10 to 100 times faster than the K-SVD-based dictionary learning MRI method and simultaneously improves reconstruction accuracy.

  10. Joint Group Sparse PCA for Compressed Hyperspectral Imaging.

    Science.gov (United States)

    Khan, Zohaib; Shafait, Faisal; Mian, Ajmal

    2015-12-01

    A sparse principal component analysis (PCA) seeks a sparse linear combination of input features (variables), so that the derived features still explain most of the variations in the data. A group sparse PCA introduces structural constraints on the features in seeking such a linear combination. Collectively, the derived principal components may still require measuring all the input features. We present a joint group sparse PCA (JGSPCA) algorithm, which forces the basic coefficients corresponding to a group of features to be jointly sparse. Joint sparsity ensures that the complete basis involves only a sparse set of input features, whereas the group sparsity ensures that the structural integrity of the features is maximally preserved. We evaluate the JGSPCA algorithm on the problems of compressed hyperspectral imaging and face recognition. Compressed sensing results show that the proposed method consistently outperforms sparse PCA and group sparse PCA in reconstructing the hyperspectral scenes of natural and man-made objects. The efficacy of the proposed compressed sensing method is further demonstrated in band selection for face recognition.

  11. Balanced sparse model for tight frames in compressed sensing magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Yunsong Liu

    Full Text Available Compressed sensing has shown to be promising to accelerate magnetic resonance imaging. In this new technology, magnetic resonance images are usually reconstructed by enforcing its sparsity in sparse image reconstruction models, including both synthesis and analysis models. The synthesis model assumes that an image is a sparse combination of atom signals while the analysis model assumes that an image is sparse after the application of an analysis operator. Balanced model is a new sparse model that bridges analysis and synthesis models by introducing a penalty term on the distance of frame coefficients to the range of the analysis operator. In this paper, we study the performance of the balanced model in tight frame based compressed sensing magnetic resonance imaging and propose a new efficient numerical algorithm to solve the optimization problem. By tuning the balancing parameter, the new model achieves solutions of three models. It is found that the balanced model has a comparable performance with the analysis model. Besides, both of them achieve better results than the synthesis model no matter what value the balancing parameter is. Experiment shows that our proposed numerical algorithm constrained split augmented Lagrangian shrinkage algorithm for balanced model (C-SALSA-B converges faster than previously proposed algorithms accelerated proximal algorithm (APG and alternating directional method of multipliers for balanced model (ADMM-B.

  12. Structure-based bayesian sparse reconstruction

    KAUST Repository

    Quadeer, Ahmed Abdul

    2012-12-01

    Sparse signal reconstruction algorithms have attracted research attention due to their wide applications in various fields. In this paper, we present a simple Bayesian approach that utilizes the sparsity constraint and a priori statistical information (Gaussian or otherwise) to obtain near optimal estimates. In addition, we make use of the rich structure of the sensing matrix encountered in many signal processing applications to develop a fast sparse recovery algorithm. The computational complexity of the proposed algorithm is very low compared with the widely used convex relaxation methods as well as greedy matching pursuit techniques, especially at high sparsity. © 1991-2012 IEEE.

  13. A tensor-based dictionary learning approach to tomographic image reconstruction

    DEFF Research Database (Denmark)

    Soltani, Sara; Kilmer, Misha E.; Hansen, Per Christian

    2016-01-01

    We consider tomographic reconstruction using priors in the form of a dictionary learned from training images. The reconstruction has two stages: first we construct a tensor dictionary prior from our training data, and then we pose the reconstruction problem in terms of recovering the expansion...... coefficients in that dictionary. Our approach differs from past approaches in that (a) we use a third-order tensor representation for our images and (b) we recast the reconstruction problem using the tensor formulation. The dictionary learning problem is presented as a non-negative tensor factorization problem...... with sparsity constraints. The reconstruction problem is formulated in a convex optimization framework by looking for a solution with a sparse representation in the tensor dictionary. Numerical results show that our tensor formulation leads to very sparse representations of both the training images...

  14. Dense range images from sparse point clouds using multi-scale processing

    NARCIS (Netherlands)

    Do, Q.L.; Ma, L.; With, de P.H.N.

    2013-01-01

    Multi-modal data processing based on visual and depth/range images has become relevant in computer vision for 3D reconstruction applications such as city modeling, robot navigation etc. In this paper, we generate highaccuracy dense range images from sparse point clouds to facilitate such

  15. Evaluation of image collection requirements for 3D reconstruction using phototourism techniques on sparse overhead data

    Science.gov (United States)

    Ontiveros, Erin; Salvaggio, Carl; Nilosek, David; Raqueño, Nina; Faulring, Jason

    2012-06-01

    Phototourism is a burgeoning field that uses collections of ground-based photographs to construct a three-dimensional model of a tourist site, using computer vision techniques. These techniques capitalize on the extensive overlap generated by the various visitor-acquired images from which a three-dimensional point cloud can be generated. From there, a facetized version of the structure can be created. Remotely sensed data tends to focus on nadir or near nadir imagery while trying to minimize overlap in order to achieve the greatest ground coverage possible during a data collection. A workflow is being developed at Digital Imaging and Remote Sensing (DIRS) Group at the Rochester Institute of Technology (RIT) that utilizes these phototourism techniques, which typically use dense coverage of a small object or region, and applies them to remotely sensed imagery, which involves sparse data coverage of a large area. In addition to this, RIT has planned and executed a high-overlap image collection, using the RIT WASP system, to study the requirements needed for such three-dimensional reconstruction efforts. While the collection was extensive, the intention was to find the minimum number of images and frame overlap needed to generate quality point clouds. This paper will discuss the image data collection effort and what it means to generate and evaluate a quality point cloud for reconstruction purposes.

  16. Sparse coded image super-resolution using K-SVD trained dictionary based on regularized orthogonal matching pursuit.

    Science.gov (United States)

    Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook

    2015-01-01

    Image super-resolution (SR) plays a vital role in medical imaging that allows a more efficient and effective diagnosis process. Usually, diagnosing is difficult and inaccurate from low-resolution (LR) and noisy images. Resolution enhancement through conventional interpolation methods strongly affects the precision of consequent processing steps, such as segmentation and registration. Therefore, we propose an efficient sparse coded image SR reconstruction technique using a trained dictionary. We apply a simple and efficient regularized version of orthogonal matching pursuit (ROMP) to seek the coefficients of sparse representation. ROMP has the transparency and greediness of OMP and the robustness of the L1-minization that enhance the dictionary learning process to capture feature descriptors such as oriented edges and contours from complex images like brain MRIs. The sparse coding part of the K-SVD dictionary training procedure is modified by substituting OMP with ROMP. The dictionary update stage allows simultaneously updating an arbitrary number of atoms and vectors of sparse coefficients. In SR reconstruction, ROMP is used to determine the vector of sparse coefficients for the underlying patch. The recovered representations are then applied to the trained dictionary, and finally, an optimization leads to high-resolution output of high-quality. Experimental results demonstrate that the super-resolution reconstruction quality of the proposed scheme is comparatively better than other state-of-the-art schemes.

  17. SD-SEM: sparse-dense correspondence for 3D reconstruction of microscopic samples.

    Science.gov (United States)

    Baghaie, Ahmadreza; Tafti, Ahmad P; Owen, Heather A; D'Souza, Roshan M; Yu, Zeyun

    2017-06-01

    Scanning electron microscopy (SEM) imaging has been a principal component of many studies in biomedical, mechanical, and materials sciences since its emergence. Despite the high resolution of captured images, they remain two-dimensional (2D). In this work, a novel framework using sparse-dense correspondence is introduced and investigated for 3D reconstruction of stereo SEM images. SEM micrographs from microscopic samples are captured by tilting the specimen stage by a known angle. The pair of SEM micrographs is then rectified using sparse scale invariant feature transform (SIFT) features/descriptors and a contrario RANSAC for matching outlier removal to ensure a gross horizontal displacement between corresponding points. This is followed by dense correspondence estimation using dense SIFT descriptors and employing a factor graph representation of the energy minimization functional and loopy belief propagation (LBP) as means of optimization. Given the pixel-by-pixel correspondence and the tilt angle of the specimen stage during the acquisition of micrographs, depth can be recovered. Extensive tests reveal the strength of the proposed method for high-quality reconstruction of microscopic samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Ultra-low dose CT attenuation correction for PET/CT: analysis of sparse view data acquisition and reconstruction algorithms

    Science.gov (United States)

    Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M.; Asma, Evren; Kinahan, Paul E.; De Man, Bruno

    2015-01-01

    For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition. Methods We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 seconds. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.04375 mAs, were investigated. Both the analytical FDK algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality. Results With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels

  19. Image super-resolution reconstruction based on regularization technique and guided filter

    Science.gov (United States)

    Huang, De-tian; Huang, Wei-qin; Gu, Pei-ting; Liu, Pei-zhong; Luo, Yan-min

    2017-06-01

    In order to improve the accuracy of sparse representation coefficients and the quality of reconstructed images, an improved image super-resolution algorithm based on sparse representation is presented. In the sparse coding stage, the autoregressive (AR) regularization and the non-local (NL) similarity regularization are introduced to improve the sparse coding objective function. A group of AR models which describe the image local structures are pre-learned from the training samples, and one or several suitable AR models can be adaptively selected for each image patch to regularize the solution space. Then, the image non-local redundancy is obtained by the NL similarity regularization to preserve edges. In the process of computing the sparse representation coefficients, the feature-sign search algorithm is utilized instead of the conventional orthogonal matching pursuit algorithm to improve the accuracy of the sparse coefficients. To restore image details further, a global error compensation model based on weighted guided filter is proposed to realize error compensation for the reconstructed images. Experimental results demonstrate that compared with Bicubic, L1SR, SISR, GR, ANR, NE + LS, NE + NNLS, NE + LLE and A + (16 atoms) methods, the proposed approach has remarkable improvement in peak signal-to-noise ratio, structural similarity and subjective visual perception.

  20. MO-DE-207A-11: Sparse-View CT Reconstruction Via a Novel Non-Local Means Method

    International Nuclear Information System (INIS)

    Chen, Z; Qi, H; Wu, S; Xu, Y; Zhou, L

    2016-01-01

    Purpose: Sparse-view computed tomography (CT) reconstruction is an effective strategy to reduce the radiation dose delivered to patients. Due to its insufficiency of measurements, traditional non-local means (NLM) based reconstruction methods often lead to over-smoothness in image edges. To address this problem, an adaptive NLM reconstruction method based on rotational invariance (RIANLM) is proposed. Methods: The method consists of four steps: 1) Initializing parameters; 2) Algebraic reconstruction technique (ART) reconstruction using raw projection data; 3) Positivity constraint of the image reconstructed by ART; 4) Update reconstructed image by using RIANLM filtering. In RIANLM, a novel similarity metric that is rotational invariance is proposed and used to calculate the distance between two patches. In this way, any patch with similar structure but different orientation to the reference patch would win a relatively large weight to avoid over-smoothed image. Moreover, the parameter h in RIANLM which controls the decay of the weights is adaptive to avoid over-smoothness, while it in NLM is not adaptive during the whole reconstruction process. The proposed method is named as ART-RIANLM and validated on Shepp-Logan phantom and clinical projection data. Results: In our experiments, the searching neighborhood size is set to 15 by 15 and the similarity window is set to 3 by 3. For the simulated case with a resolution of 256 by 256 Shepp-Logan phantom, the ART-RIANLM produces higher SNR (35.38dB<24.00dB) and lower MAE (0.0006<0.0023) reconstructed image than ART-NLM. The visual inspection demonstrated that the proposed method could suppress artifacts or noises more effectively and preserve image edges better. Similar results were found for clinical data case. Conclusion: A novel ART-RIANLM method for sparse-view CT reconstruction is presented with superior image. Compared to the conventional ART-NLM method, the SNR and MAE from ART-RIANLM increases 47% and decreases 74

  1. Example-Based Image Colorization Using Locality Consistent Sparse Representation.

    Science.gov (United States)

    Bo Li; Fuchen Zhao; Zhuo Su; Xiangguo Liang; Yu-Kun Lai; Rosin, Paul L

    2017-11-01

    Image colorization aims to produce a natural looking color image from a given gray-scale image, which remains a challenging problem. In this paper, we propose a novel example-based image colorization method exploiting a new locality consistent sparse representation. Given a single reference color image, our method automatically colorizes the target gray-scale image by sparse pursuit. For efficiency and robustness, our method operates at the superpixel level. We extract low-level intensity features, mid-level texture features, and high-level semantic features for each superpixel, which are then concatenated to form its descriptor. The collection of feature vectors for all the superpixels from the reference image composes the dictionary. We formulate colorization of target superpixels as a dictionary-based sparse reconstruction problem. Inspired by the observation that superpixels with similar spatial location and/or feature representation are likely to match spatially close regions from the reference image, we further introduce a locality promoting regularization term into the energy formulation, which substantially improves the matching consistency and subsequent colorization results. Target superpixels are colorized based on the chrominance information from the dominant reference superpixels. Finally, to further improve coherence while preserving sharpness, we develop a new edge-preserving filter for chrominance channels with the guidance from the target gray-scale image. To the best of our knowledge, this is the first work on sparse pursuit image colorization from single reference images. Experimental results demonstrate that our colorization method outperforms the state-of-the-art methods, both visually and quantitatively using a user study.

  2. Intensity-based bayesian framework for image reconstruction from sparse projection data

    International Nuclear Information System (INIS)

    Rashed, E.A.; Kudo, Hiroyuki

    2009-01-01

    This paper presents a Bayesian framework for iterative image reconstruction from projection data measured over a limited number of views. The classical Nyquist sampling rule yields the minimum number of projection views required for accurate reconstruction. However, challenges exist in many medical and industrial imaging applications in which the projection data is undersampled. Classical analytical reconstruction methods such as filtered backprojection (FBP) are not a good choice for use in such cases because the data undersampling in the angular range introduces aliasing and streak artifacts that degrade lesion detectability. In this paper, we propose a Bayesian framework for maximum likelihood-expectation maximization (ML-EM)-based iterative reconstruction methods that incorporates a priori knowledge obtained from expected intensity information. The proposed framework is based on the fact that, in tomographic imaging, it is often possible to expect a set of intensity values of the reconstructed object with relatively high accuracy. The image reconstruction cost function is modified to include the l 1 norm distance to the a priori known information. The proposed method has the potential to regularize the solution to reduce artifacts without missing lesions that cannot be expected from the a priori information. Numerical studies showed a significant improvement in image quality and lesion detectability under the condition of highly undersampled projection data. (author)

  3. A 3D freehand ultrasound system for multi-view reconstructions from sparse 2D scanning planes.

    Science.gov (United States)

    Yu, Honggang; Pattichis, Marios S; Agurto, Carla; Beth Goens, M

    2011-01-20

    A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes.For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better agreement with clinical

  4. Droplet Image Super Resolution Based on Sparse Representation and Kernel Regression

    Science.gov (United States)

    Zou, Zhenzhen; Luo, Xinghong; Yu, Qiang

    2018-05-01

    Microgravity and containerless conditions, which are produced via electrostatic levitation combined with a drop tube, are important when studying the intrinsic properties of new metastable materials. Generally, temperature and image sensors can be used to measure the changes of sample temperature, morphology and volume. Then, the specific heat, surface tension, viscosity changes and sample density can be obtained. Considering that the falling speed of the material sample droplet is approximately 31.3 m/s when it reaches the bottom of a 50-meter-high drop tube, a high-speed camera with a collection rate of up to 106 frames/s is required to image the falling droplet. However, at the high-speed mode, very few pixels, approximately 48-120, will be obtained in each exposure time, which results in low image quality. Super-resolution image reconstruction is an algorithm that provides finer details than the sampling grid of a given imaging device by increasing the number of pixels per unit area in the image. In this work, we demonstrate the application of single image-resolution reconstruction in the microgravity and electrostatic levitation for the first time. Here, using the image super-resolution method based on sparse representation, a low-resolution droplet image can be reconstructed. Employed Yang's related dictionary model, high- and low-resolution image patches were combined with dictionary training, and high- and low-resolution-related dictionaries were obtained. The online double-sparse dictionary training algorithm was used in the study of related dictionaries and overcome the shortcomings of the traditional training algorithm with small image patch. During the stage of image reconstruction, the algorithm of kernel regression is added, which effectively overcomes the shortcomings of the Yang image's edge blurs.

  5. Reducing computational costs in large scale 3D EIT by using a sparse Jacobian matrix with block-wise CGLS reconstruction

    International Nuclear Information System (INIS)

    Yang, C L; Wei, H Y; Soleimani, M; Adler, A

    2013-01-01

    Electrical impedance tomography (EIT) is a fast and cost-effective technique to provide a tomographic conductivity image of a subject from boundary current–voltage data. This paper proposes a time and memory efficient method for solving a large scale 3D EIT inverse problem using a parallel conjugate gradient (CG) algorithm. The 3D EIT system with a large number of measurement data can produce a large size of Jacobian matrix; this could cause difficulties in computer storage and the inversion process. One of challenges in 3D EIT is to decrease the reconstruction time and memory usage, at the same time retaining the image quality. Firstly, a sparse matrix reduction technique is proposed using thresholding to set very small values of the Jacobian matrix to zero. By adjusting the Jacobian matrix into a sparse format, the element with zeros would be eliminated, which results in a saving of memory requirement. Secondly, a block-wise CG method for parallel reconstruction has been developed. The proposed method has been tested using simulated data as well as experimental test samples. Sparse Jacobian with a block-wise CG enables the large scale EIT problem to be solved efficiently. Image quality measures are presented to quantify the effect of sparse matrix reduction in reconstruction results. (paper)

  6. Reducing computational costs in large scale 3D EIT by using a sparse Jacobian matrix with block-wise CGLS reconstruction.

    Science.gov (United States)

    Yang, C L; Wei, H Y; Adler, A; Soleimani, M

    2013-06-01

    Electrical impedance tomography (EIT) is a fast and cost-effective technique to provide a tomographic conductivity image of a subject from boundary current-voltage data. This paper proposes a time and memory efficient method for solving a large scale 3D EIT inverse problem using a parallel conjugate gradient (CG) algorithm. The 3D EIT system with a large number of measurement data can produce a large size of Jacobian matrix; this could cause difficulties in computer storage and the inversion process. One of challenges in 3D EIT is to decrease the reconstruction time and memory usage, at the same time retaining the image quality. Firstly, a sparse matrix reduction technique is proposed using thresholding to set very small values of the Jacobian matrix to zero. By adjusting the Jacobian matrix into a sparse format, the element with zeros would be eliminated, which results in a saving of memory requirement. Secondly, a block-wise CG method for parallel reconstruction has been developed. The proposed method has been tested using simulated data as well as experimental test samples. Sparse Jacobian with a block-wise CG enables the large scale EIT problem to be solved efficiently. Image quality measures are presented to quantify the effect of sparse matrix reduction in reconstruction results.

  7. Non-Local Sparse Image Inpainting for Document Bleed-Through Removal

    Directory of Open Access Journals (Sweden)

    Muhammad Hanif

    2018-05-01

    Full Text Available Bleed-through is a frequent, pervasive degradation in ancient manuscripts, which is caused by ink seeped from the opposite side of the sheet. Bleed-through, appearing as an extra interfering text, hinders document readability and makes it difficult to decipher the information contents. Digital image restoration techniques have been successfully employed to remove or significantly reduce this distortion. This paper proposes a two-step restoration method for documents affected by bleed-through, exploiting information from the recto and verso images. First, the bleed-through pixels are identified, based on a non-stationary, linear model of the two texts overlapped in the recto-verso pair. In the second step, a dictionary learning-based sparse image inpainting technique, with non-local patch grouping, is used to reconstruct the bleed-through-contaminated image information. An overcomplete sparse dictionary is learned from the bleed-through-free image patches, which is then used to estimate a befitting fill-in for the identified bleed-through pixels. The non-local patch similarity is employed in the sparse reconstruction of each patch, to enforce the local similarity. Thanks to the intrinsic image sparsity and non-local patch similarity, the natural texture of the background is well reproduced in the bleed-through areas, and even a possible overestimation of the bleed through pixels is effectively corrected, so that the original appearance of the document is preserved. We evaluate the performance of the proposed method on the images of a popular database of ancient documents, and the results validate the performance of the proposed method compared to the state of the art.

  8. High-SNR spectrum measurement based on Hadamard encoding and sparse reconstruction

    Science.gov (United States)

    Wang, Zhaoxin; Yue, Jiang; Han, Jing; Li, Long; Jin, Yong; Gao, Yuan; Li, Baoming

    2017-12-01

    The denoising capabilities of the H-matrix and cyclic S-matrix based on the sparse reconstruction, employed in the Pixel of Focal Plane Coded Visible Spectrometer for spectrum measurement are investigated, where the spectrum is sparse in a known basis. In the measurement process, the digital micromirror device plays an important role, which implements the Hadamard coding. In contrast with Hadamard transform spectrometry, based on the shift invariability, this spectrometer may have the advantage of a high efficiency. Simulations and experiments show that the nonlinear solution with a sparse reconstruction has a better signal-to-noise ratio than the linear solution and the H-matrix outperforms the cyclic S-matrix whether the reconstruction method is nonlinear or linear.

  9. Reconstruction Algorithms in Undersampled AFM Imaging

    DEFF Research Database (Denmark)

    Arildsen, Thomas; Oxvig, Christian Schou; Pedersen, Patrick Steffen

    2016-01-01

    This paper provides a study of spatial undersampling in atomic force microscopy (AFM) imaging followed by different image reconstruction techniques based on sparse approximation as well as interpolation. The main reasons for using undersampling is that it reduces the path length and thereby...... the scanning time as well as the amount of interaction between the AFM probe and the specimen. It can easily be applied on conventional AFM hardware. Due to undersampling, it is then necessary to further process the acquired image in order to reconstruct an approximation of the image. Based on real AFM cell...... images, our simulations reveal that using a simple raster scanning pattern in combination with conventional image interpolation performs very well. Moreover, this combination enables a reduction by a factor 10 of the scanning time while retaining an average reconstruction quality around 36 dB PSNR...

  10. Isotropic 3D cardiac cine MRI allows efficient sparse segmentation strategies based on 3D surface reconstruction.

    Science.gov (United States)

    Odille, Freddy; Bustin, Aurélien; Liu, Shufang; Chen, Bailiang; Vuissoz, Pierre-André; Felblinger, Jacques; Bonnemains, Laurent

    2018-05-01

    Segmentation of cardiac cine MRI data is routinely used for the volumetric analysis of cardiac function. Conventionally, 2D contours are drawn on short-axis (SAX) image stacks with relatively thick slices (typically 8 mm). Here, an acquisition/reconstruction strategy is used for obtaining isotropic 3D cine datasets; reformatted slices are then used to optimize the manual segmentation workflow. Isotropic 3D cine datasets were obtained from multiple 2D cine stacks (acquired during free-breathing in SAX and long-axis (LAX) orientations) using nonrigid motion correction (cine-GRICS method) and super-resolution. Several manual segmentation strategies were then compared, including conventional SAX segmentation, LAX segmentation in three views only, and combinations of SAX and LAX slices. An implicit B-spline surface reconstruction algorithm is proposed to reconstruct the left ventricular cavity surface from the sparse set of 2D contours. All tested sparse segmentation strategies were in good agreement, with Dice scores above 0.9 despite using fewer slices (3-6 sparse slices instead of 8-10 contiguous SAX slices). When compared to independent phase-contrast flow measurements, stroke volumes computed from four or six sparse slices had slightly higher precision than conventional SAX segmentation (error standard deviation of 5.4 mL against 6.1 mL) at the cost of slightly lower accuracy (bias of -1.2 mL against 0.2 mL). Functional parameters also showed a trend to improved precision, including end-diastolic volumes, end-systolic volumes, and ejection fractions). The postprocessing workflow of 3D isotropic cardiac imaging strategies can be optimized using sparse segmentation and 3D surface reconstruction. Magn Reson Med 79:2665-2675, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Noniterative MAP reconstruction using sparse matrix representations.

    Science.gov (United States)

    Cao, Guangzhi; Bouman, Charles A; Webb, Kevin J

    2009-09-01

    We present a method for noniterative maximum a posteriori (MAP) tomographic reconstruction which is based on the use of sparse matrix representations. Our approach is to precompute and store the inverse matrix required for MAP reconstruction. This approach has generally not been used in the past because the inverse matrix is typically large and fully populated (i.e., not sparse). In order to overcome this problem, we introduce two new ideas. The first idea is a novel theory for the lossy source coding of matrix transformations which we refer to as matrix source coding. This theory is based on a distortion metric that reflects the distortions produced in the final matrix-vector product, rather than the distortions in the coded matrix itself. The resulting algorithms are shown to require orthonormal transformations of both the measurement data and the matrix rows and columns before quantization and coding. The second idea is a method for efficiently storing and computing the required orthonormal transformations, which we call a sparse-matrix transform (SMT). The SMT is a generalization of the classical FFT in that it uses butterflies to compute an orthonormal transform; but unlike an FFT, the SMT uses the butterflies in an irregular pattern, and is numerically designed to best approximate the desired transforms. We demonstrate the potential of the noniterative MAP reconstruction with examples from optical tomography. The method requires offline computation to encode the inverse transform. However, once these offline computations are completed, the noniterative MAP algorithm is shown to reduce both storage and computation by well over two orders of magnitude, as compared to a linear iterative reconstruction methods.

  12. SIRFING: Sparse Image Reconstruction For INterferometry using GPUs

    Science.gov (United States)

    Cranmer, Miles; Garsden, Hugh; Mitchell, Daniel A.; Greenhill, Lincoln

    2018-01-01

    We present a deconvolution code for radio interferometric imaging based on the compressed sensing algorithms in Garsden et al. (2015). Being computationally intensive, compressed sensing is ripe for parallelization over GPUs. Our compressed sensing implementation generates images using wavelets, and we have ported the underlying wavelet library to CUDA, targeting the spline filter reconstruction part of the algorithm. The speedup achieved is almost an order of magnitude. The code is modular but is also being integrated into the calibration and imaging pipeline in use by the LEDA project at the Long Wavelength Array (LWA) as well as by the Murchinson Widefield Array (MWA).

  13. Supervised Convolutional Sparse Coding

    KAUST Repository

    Affara, Lama Ahmed

    2018-04-08

    Convolutional Sparse Coding (CSC) is a well-established image representation model especially suited for image restoration tasks. In this work, we extend the applicability of this model by proposing a supervised approach to convolutional sparse coding, which aims at learning discriminative dictionaries instead of purely reconstructive ones. We incorporate a supervised regularization term into the traditional unsupervised CSC objective to encourage the final dictionary elements to be discriminative. Experimental results show that using supervised convolutional learning results in two key advantages. First, we learn more semantically relevant filters in the dictionary and second, we achieve improved image reconstruction on unseen data.

  14. Joint reconstruction of dynamic PET activity and kinetic parametric images using total variation constrained dictionary sparse coding

    Science.gov (United States)

    Yu, Haiqing; Chen, Shuhang; Chen, Yunmei; Liu, Huafeng

    2017-05-01

    Dynamic positron emission tomography (PET) is capable of providing both spatial and temporal information of radio tracers in vivo. In this paper, we present a novel joint estimation framework to reconstruct temporal sequences of dynamic PET images and the coefficients characterizing the system impulse response function, from which the associated parametric images of the system macro parameters for tracer kinetics can be estimated. The proposed algorithm, which combines statistical data measurement and tracer kinetic models, integrates a dictionary sparse coding (DSC) into a total variational minimization based algorithm for simultaneous reconstruction of the activity distribution and parametric map from measured emission sinograms. DSC, based on the compartmental theory, provides biologically meaningful regularization, and total variation regularization is incorporated to provide edge-preserving guidance. We rely on techniques from minimization algorithms (the alternating direction method of multipliers) to first generate the estimated activity distributions with sub-optimal kinetic parameter estimates, and then recover the parametric maps given these activity estimates. These coupled iterative steps are repeated as necessary until convergence. Experiments with synthetic, Monte Carlo generated data, and real patient data have been conducted, and the results are very promising.

  15. Homotopic non-local regularized reconstruction from sparse positron emission tomography measurements

    International Nuclear Information System (INIS)

    Wong, Alexander; Liu, Chenyi; Wang, Xiao Yu; Fieguth, Paul; Bie, Hongxia

    2015-01-01

    Positron emission tomography scanners collect measurements of a patient’s in vivo radiotracer distribution. The system detects pairs of gamma rays emitted indirectly by a positron-emitting radionuclide (tracer), which is introduced into the body on a biologically active molecule, and the tomograms must be reconstructed from projections. The reconstruction of tomograms from the acquired PET data is an inverse problem that requires regularization. The use of tightly packed discrete detector rings, although improves signal-to-noise ratio, are often associated with high costs of positron emission tomography systems. Thus a sparse reconstruction, which would be capable of overcoming the noise effect while allowing for a reduced number of detectors, would have a great deal to offer. In this study, we introduce and investigate the potential of a homotopic non-local regularization reconstruction framework for effectively reconstructing positron emission tomograms from such sparse measurements. Results obtained using the proposed approach are compared with traditional filtered back-projection as well as expectation maximization reconstruction with total variation regularization. A new reconstruction method was developed for the purpose of improving the quality of positron emission tomography reconstruction from sparse measurements. We illustrate that promising reconstruction performance can be achieved for the proposed approach even at low sampling fractions, which allows for the use of significantly fewer detectors and have the potential to reduce scanner costs

  16. 3D reconstruction based on light field images

    Science.gov (United States)

    Zhu, Dong; Wu, Chunhong; Liu, Yunluo; Fu, Dongmei

    2018-04-01

    This paper proposed a method of reconstructing three-dimensional (3D) scene from two light field images capture by Lytro illium. The work was carried out by first extracting the sub-aperture images from light field images and using the scale-invariant feature transform (SIFT) for feature registration on the selected sub-aperture images. Structure from motion (SFM) algorithm is further used on the registration completed sub-aperture images to reconstruct the three-dimensional scene. 3D sparse point cloud was obtained in the end. The method shows that the 3D reconstruction can be implemented by only two light field camera captures, rather than at least a dozen times captures by traditional cameras. This can effectively solve the time-consuming, laborious issues for 3D reconstruction based on traditional digital cameras, to achieve a more rapid, convenient and accurate reconstruction.

  17. Fully three-dimensional image reconstruction in radiology and nuclear medicine. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The proceedings of the meeting on ''fully three-dimensional image reconstruction in radiology and nuclear medicine'' covers contributions on the following topics: CT imaging, PET imaging, fidelity; iterative and few-view CT, CT-analytical; PET/SPECT Compton analytical; doses - spectral methods; phase contrast; compressed sensing- sparse reconstruction; special issues; motion - cardiac.

  18. Noise reduction by sparse representation in learned dictionaries for application to blind tip reconstruction problem

    International Nuclear Information System (INIS)

    Jóźwiak, Grzegorz

    2017-01-01

    Scanning probe microscopy (SPM) is a well known tool used for the investigation of phenomena in objects in the nanometer size range. However, quantitative results are limited by the size and the shape of the nanoprobe used in experiments. Blind tip reconstruction (BTR) is a very popular method used to reconstruct the upper boundary on the shape of the probe. This method is known to be very sensitive to all kinds of interference in the atomic force microscopy (AFM) image. Due to mathematical morphology calculus, the interference makes the BTR results biased rather than randomly disrupted. For this reason, the careful choice of methods used for image enhancement and denoising, as well as the shape of a calibration sample are very important. In the paper, the results of thorough investigations on the shape of a calibration standard are shown. A novel shape is proposed and a tool for the simulation of AFM images of this calibration standard was designed. It was shown that careful choice of the initial tip allows us to use images of hole structures to blindly reconstruct the shape of a probe. The simulator was used to test the impact of modern filtration algorithms on the BTR process. These techniques are based on sparse approximation with function dictionaries learned on the basis of an image itself. Various learning algorithms and parameters were tested to determine the optimal combination for sparse representation. It was observed that the strong reduction of noise does not guarantee strong reduction in reconstruction errors. It seems that further improvements will be possible by the combination of BTR and a noise reduction procedure. (paper)

  19. Sparse Image Reconstruction on the Sphere: Analysis and Synthesis.

    Science.gov (United States)

    Wallis, Christopher G R; Wiaux, Yves; McEwen, Jason D

    2017-11-01

    We develop techniques to solve ill-posed inverse problems on the sphere by sparse regularization, exploiting sparsity in both axisymmetric and directional scale-discretized wavelet space. Denoising, inpainting, and deconvolution problems and combinations thereof, are considered as examples. Inverse problems are solved in both the analysis and synthesis settings, with a number of different sampling schemes. The most effective approach is that with the most restricted solution-space, which depends on the interplay between the adopted sampling scheme, the selection of the analysis/synthesis problem, and any weighting of the l 1 norm appearing in the regularization problem. More efficient sampling schemes on the sphere improve reconstruction fidelity by restricting the solution-space and also by improving sparsity in wavelet space. We apply the technique to denoise Planck 353-GHz observations, improving the ability to extract the structure of Galactic dust emission, which is important for studying Galactic magnetism.

  20. Photoacoustic image reconstruction via deep learning

    Science.gov (United States)

    Antholzer, Stephan; Haltmeier, Markus; Nuster, Robert; Schwab, Johannes

    2018-02-01

    Applying standard algorithms to sparse data problems in photoacoustic tomography (PAT) yields low-quality images containing severe under-sampling artifacts. To some extent, these artifacts can be reduced by iterative image reconstruction algorithms which allow to include prior knowledge such as smoothness, total variation (TV) or sparsity constraints. These algorithms tend to be time consuming as the forward and adjoint problems have to be solved repeatedly. Further, iterative algorithms have additional drawbacks. For example, the reconstruction quality strongly depends on a-priori model assumptions about the objects to be recovered, which are often not strictly satisfied in practical applications. To overcome these issues, in this paper, we develop direct and efficient reconstruction algorithms based on deep learning. As opposed to iterative algorithms, we apply a convolutional neural network, whose parameters are trained before the reconstruction process based on a set of training data. For actual image reconstruction, a single evaluation of the trained network yields the desired result. Our presented numerical results (using two different network architectures) demonstrate that the proposed deep learning approach reconstructs images with a quality comparable to state of the art iterative reconstruction methods.

  1. The Nonlocal Sparse Reconstruction Algorithm by Similarity Measurement with Shearlet Feature Vector

    Directory of Open Access Journals (Sweden)

    Wu Qidi

    2014-01-01

    Full Text Available Due to the limited accuracy of conventional methods with image restoration, the paper supplied a nonlocal sparsity reconstruction algorithm with similarity measurement. To improve the performance of restoration results, we proposed two schemes to dictionary learning and sparse coding, respectively. In the part of the dictionary learning, we measured the similarity between patches from degraded image by constructing the Shearlet feature vector. Besides, we classified the patches into different classes with similarity and trained the cluster dictionary for each class, by cascading which we could gain the universal dictionary. In the part of sparse coding, we proposed a novel optimal objective function with the coding residual item, which can suppress the residual between the estimate coding and true sparse coding. Additionally, we show the derivation of self-adaptive regularization parameter in optimization under the Bayesian framework, which can make the performance better. It can be indicated from the experimental results that by taking full advantage of similar local geometric structure feature existing in the nonlocal patches and the coding residual suppression, the proposed method shows advantage both on visual perception and PSNR compared to the conventional methods.

  2. Segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling

    OpenAIRE

    Tong, Tong; Wolz, Robin; Coupe, Pierrick; Hajnal, Joseph V.; Rueckert, Daniel

    2013-01-01

    International audience; We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the proposed method, dictionaries and classifiers are learned simultaneously from a set of brain atlases, which can then be used for the reconstruction and segmentation of an unseen target image. The proposed segmentation strategy is based on image reconstruction, which is in contrast to most existing atlas-based labe...

  3. Few-view image reconstruction with dual dictionaries

    International Nuclear Information System (INIS)

    Lu Yang; Zhao Jun; Wang Ge

    2012-01-01

    In this paper, we formulate the problem of computed tomography (CT) under sparsity and few-view constraints, and propose a novel algorithm for image reconstruction from few-view data utilizing the simultaneous algebraic reconstruction technique (SART) coupled with dictionary learning, sparse representation and total variation (TV) minimization on two interconnected levels. The main feature of our algorithm is the use of two dictionaries: a transitional dictionary for atom matching and a global dictionary for image updating. The atoms in the global and transitional dictionaries represent the image patches from high-quality and low-quality CT images, respectively. Experiments with simulated and real projections were performed to evaluate and validate the proposed algorithm. The results reconstructed using the proposed approach are significantly better than those using either SART or SART–TV. (paper)

  4. A Spectral Reconstruction Algorithm of Miniature Spectrometer Based on Sparse Optimization and Dictionary Learning.

    Science.gov (United States)

    Zhang, Shang; Dong, Yuhan; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin

    2018-02-22

    The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer.

  5. A Unifying model of perfusion and motion applied to reconstruction of sparsely sampled free-breathing myocardial perfusion MRI

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Ólafsdóttir, Hildur; Larsen, Rasmus

    2010-01-01

    The clinical potential of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is currently limited by respiratory induced motion of the heart. This paper presents a unifying model of perfusion and motion in which respiratory motion becomes an integral part of myocardial perfusion...... quantification. Hence, the need for tedious manual motion correction prior to perfusion quantification is avoided. In addition, we demonstrate that the proposed framework facilitates the process of reconstructing DCEMRI from sparsely sampled data in the presence of respiratory motion. The paper focuses primarily...... on the underlying theory of the proposed framework, but shows in vivo results of respiratory motion correction and simulation results of reconstructing sparsely sampled data....

  6. Sparse Reconstruction Schemes for Nonlinear Electromagnetic Imaging

    KAUST Repository

    Desmal, Abdulla

    2016-03-01

    synthetically generated or actually measured scattered fields, show that the images recovered by these sparsity-regularized methods are sharper and more accurate than those produced by existing methods. The methods developed in this work have potential application areas ranging from oil/gas reservoir engineering to biological imaging where sparse domains naturally exist.

  7. Sparse Nonlinear Electromagnetic Imaging Accelerated With Projected Steepest Descent Algorithm

    KAUST Repository

    Desmal, Abdulla

    2017-04-03

    An efficient electromagnetic inversion scheme for imaging sparse 3-D domains is proposed. The scheme achieves its efficiency and accuracy by integrating two concepts. First, the nonlinear optimization problem is constrained using L₀ or L₁-norm of the solution as the penalty term to alleviate the ill-posedness of the inverse problem. The resulting Tikhonov minimization problem is solved using nonlinear Landweber iterations (NLW). Second, the efficiency of the NLW is significantly increased using a steepest descent algorithm. The algorithm uses a projection operator to enforce the sparsity constraint by thresholding the solution at every iteration. Thresholding level and iteration step are selected carefully to increase the efficiency without sacrificing the convergence of the algorithm. Numerical results demonstrate the efficiency and accuracy of the proposed imaging scheme in reconstructing sparse 3-D dielectric profiles.

  8. Superresolution radar imaging based on fast inverse-free sparse Bayesian learning for multiple measurement vectors

    Science.gov (United States)

    He, Xingyu; Tong, Ningning; Hu, Xiaowei

    2018-01-01

    Compressive sensing has been successfully applied to inverse synthetic aperture radar (ISAR) imaging of moving targets. By exploiting the block sparse structure of the target image, sparse solution for multiple measurement vectors (MMV) can be applied in ISAR imaging and a substantial performance improvement can be achieved. As an effective sparse recovery method, sparse Bayesian learning (SBL) for MMV involves a matrix inverse at each iteration. Its associated computational complexity grows significantly with the problem size. To address this problem, we develop a fast inverse-free (IF) SBL method for MMV. A relaxed evidence lower bound (ELBO), which is computationally more amiable than the traditional ELBO used by SBL, is obtained by invoking fundamental property for smooth functions. A variational expectation-maximization scheme is then employed to maximize the relaxed ELBO, and a computationally efficient IF-MSBL algorithm is proposed. Numerical results based on simulated and real data show that the proposed method can reconstruct row sparse signal accurately and obtain clear superresolution ISAR images. Moreover, the running time and computational complexity are reduced to a great extent compared with traditional SBL methods.

  9. A novel algorithm of super-resolution image reconstruction based on multi-class dictionaries for natural scene

    Science.gov (United States)

    Wu, Wei; Zhao, Dewei; Zhang, Huan

    2015-12-01

    Super-resolution image reconstruction is an effective method to improve the image quality. It has important research significance in the field of image processing. However, the choice of the dictionary directly affects the efficiency of image reconstruction. A sparse representation theory is introduced into the problem of the nearest neighbor selection. Based on the sparse representation of super-resolution image reconstruction method, a super-resolution image reconstruction algorithm based on multi-class dictionary is analyzed. This method avoids the redundancy problem of only training a hyper complete dictionary, and makes the sub-dictionary more representatives, and then replaces the traditional Euclidean distance computing method to improve the quality of the whole image reconstruction. In addition, the ill-posed problem is introduced into non-local self-similarity regularization. Experimental results show that the algorithm is much better results than state-of-the-art algorithm in terms of both PSNR and visual perception.

  10. Image reconstruction by domain-transform manifold learning

    Science.gov (United States)

    Zhu, Bo; Liu, Jeremiah Z.; Cauley, Stephen F.; Rosen, Bruce R.; Rosen, Matthew S.

    2018-03-01

    Image reconstruction is essential for imaging applications across the physical and life sciences, including optical and radar systems, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, ultrasound imaging and radio astronomy. During image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the exact inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain, the composition of which depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. Here we present a unified framework for image reconstruction—automated transform by manifold approximation (AUTOMAP)—which recasts image reconstruction as a data-driven supervised learning task that allows a mapping between the sensor and the image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for various magnetic resonance imaging acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate that manifold learning during training results in sparse representations of domain transforms along low-dimensional data manifolds, and observe superior immunity to noise and a reduction in reconstruction artefacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate that AUTOMAP and other learned reconstruction approaches will accelerate the development

  11. Sparse representation and dictionary learning penalized image reconstruction for positron emission tomography

    International Nuclear Information System (INIS)

    Chen, Shuhang; Liu, Huafeng; Shi, Pengcheng; Chen, Yunmei

    2015-01-01

    Accurate and robust reconstruction of the radioactivity concentration is of great importance in positron emission tomography (PET) imaging. Given the Poisson nature of photo-counting measurements, we present a reconstruction framework that integrates sparsity penalty on a dictionary into a maximum likelihood estimator. Patch-sparsity on a dictionary provides the regularization for our effort, and iterative procedures are used to solve the maximum likelihood function formulated on Poisson statistics. Specifically, in our formulation, a dictionary could be trained on CT images, to provide intrinsic anatomical structures for the reconstructed images, or adaptively learned from the noisy measurements of PET. Accuracy of the strategy with very promising application results from Monte-Carlo simulations, and real data are demonstrated. (paper)

  12. A Spectral Reconstruction Algorithm of Miniature Spectrometer Based on Sparse Optimization and Dictionary Learning

    Science.gov (United States)

    Zhang, Shang; Fu, Hongyan; Huang, Shao-Lun; Zhang, Lin

    2018-01-01

    The miniaturization of spectrometer can broaden the application area of spectrometry, which has huge academic and industrial value. Among various miniaturization approaches, filter-based miniaturization is a promising implementation by utilizing broadband filters with distinct transmission functions. Mathematically, filter-based spectral reconstruction can be modeled as solving a system of linear equations. In this paper, we propose an algorithm of spectral reconstruction based on sparse optimization and dictionary learning. To verify the feasibility of the reconstruction algorithm, we design and implement a simple prototype of a filter-based miniature spectrometer. The experimental results demonstrate that sparse optimization is well applicable to spectral reconstruction whether the spectra are directly sparse or not. As for the non-directly sparse spectra, their sparsity can be enhanced by dictionary learning. In conclusion, the proposed approach has a bright application prospect in fabricating a practical miniature spectrometer. PMID:29470406

  13. Adaptive tight frame based medical image reconstruction: a proof-of-concept study for computed tomography

    International Nuclear Information System (INIS)

    Zhou, Weifeng; Cai, Jian-Feng; Gao, Hao

    2013-01-01

    A popular approach for medical image reconstruction has been through the sparsity regularization, assuming the targeted image can be well approximated by sparse coefficients under some properly designed system. The wavelet tight frame is such a widely used system due to its capability for sparsely approximating piecewise-smooth functions, such as medical images. However, using a fixed system may not always be optimal for reconstructing a variety of diversified images. Recently, the method based on the adaptive over-complete dictionary that is specific to structures of the targeted images has demonstrated its superiority for image processing. This work is to develop the adaptive wavelet tight frame method image reconstruction. The proposed scheme first constructs the adaptive wavelet tight frame that is task specific, and then reconstructs the image of interest by solving an l 1 -regularized minimization problem using the constructed adaptive tight frame system. The proof-of-concept study is performed for computed tomography (CT), and the simulation results suggest that the adaptive tight frame method improves the reconstructed CT image quality from the traditional tight frame method. (paper)

  14. Sparse regularization for EIT reconstruction incorporating structural information derived from medical imaging.

    Science.gov (United States)

    Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Mueller-Lisse, Ullrich; Moeller, Knut

    2016-06-01

    Electrical impedance tomography (EIT) reconstructs the conductivity distribution of a domain using electrical data on its boundary. This is an ill-posed inverse problem usually solved on a finite element mesh. For this article, a special regularization method incorporating structural information of the targeted domain is proposed and evaluated. Structural information was obtained either from computed tomography images or from preliminary EIT reconstructions by a modified k-means clustering. The proposed regularization method integrates this structural information into the reconstruction as a soft constraint preferring sparsity in group level. A first evaluation with Monte Carlo simulations indicated that the proposed solver is more robust to noise and the resulting images show fewer artifacts. This finding is supported by real data analysis. The structure based regularization has the potential to balance structural a priori information with data driven reconstruction. It is robust to noise, reduces artifacts and produces images that reflect anatomy and are thus easier to interpret for physicians.

  15. Sparse representation based image interpolation with nonlocal autoregressive modeling.

    Science.gov (United States)

    Dong, Weisheng; Zhang, Lei; Lukac, Rastislav; Shi, Guangming

    2013-04-01

    Sparse representation is proven to be a promising approach to image super-resolution, where the low-resolution (LR) image is usually modeled as the down-sampled version of its high-resolution (HR) counterpart after blurring. When the blurring kernel is the Dirac delta function, i.e., the LR image is directly down-sampled from its HR counterpart without blurring, the super-resolution problem becomes an image interpolation problem. In such cases, however, the conventional sparse representation models (SRM) become less effective, because the data fidelity term fails to constrain the image local structures. In natural images, fortunately, many nonlocal similar patches to a given patch could provide nonlocal constraint to the local structure. In this paper, we incorporate the image nonlocal self-similarity into SRM for image interpolation. More specifically, a nonlocal autoregressive model (NARM) is proposed and taken as the data fidelity term in SRM. We show that the NARM-induced sampling matrix is less coherent with the representation dictionary, and consequently makes SRM more effective for image interpolation. Our extensive experimental results demonstrate that the proposed NARM-based image interpolation method can effectively reconstruct the edge structures and suppress the jaggy/ringing artifacts, achieving the best image interpolation results so far in terms of PSNR as well as perceptual quality metrics such as SSIM and FSIM.

  16. Towards the low-dose characterization of beam sensitive nanostructures via implementation of sparse image acquisition in scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    Hwang, Sunghwan; Han, Chang Wan; Ortalan, Volkan; Venkatakrishnan, Singanallur V; Bouman, Charles A

    2017-01-01

    Scanning transmission electron microscopy (STEM) has been successfully utilized to investigate atomic structure and chemistry of materials with atomic resolution. However, STEM’s focused electron probe with a high current density causes the electron beam damages including radiolysis and knock-on damage when the focused probe is exposed onto the electron-beam sensitive materials. Therefore, it is highly desirable to decrease the electron dose used in STEM for the investigation of biological/organic molecules, soft materials and nanomaterials in general. With the recent emergence of novel sparse signal processing theories, such as compressive sensing and model-based iterative reconstruction, possibilities of operating STEM under a sparse acquisition scheme to reduce the electron dose have been opened up. In this paper, we report our recent approach to implement a sparse acquisition in STEM mode executed by a random sparse-scan and a signal processing algorithm called model-based iterative reconstruction (MBIR). In this method, a small portion, such as 5% of randomly chosen unit sampling areas (i.e. electron probe positions), which corresponds to pixels of a STEM image, within the region of interest (ROI) of the specimen are scanned with an electron probe to obtain a sparse image. Sparse images are then reconstructed using the MBIR inpainting algorithm to produce an image of the specimen at the original resolution that is consistent with an image obtained using conventional scanning methods. Experimental results for down to 5% sampling show consistency with the full STEM image acquired by the conventional scanning method. Although, practical limitations of the conventional STEM instruments, such as internal delays of the STEM control electronics and the continuous electron gun emission, currently hinder to achieve the full potential of the sparse acquisition STEM in realizing the low dose imaging condition required for the investigation of beam-sensitive materials

  17. Sparse deconvolution for the large-scale ill-posed inverse problem of impact force reconstruction

    Science.gov (United States)

    Qiao, Baijie; Zhang, Xingwu; Gao, Jiawei; Liu, Ruonan; Chen, Xuefeng

    2017-01-01

    Most previous regularization methods for solving the inverse problem of force reconstruction are to minimize the l2-norm of the desired force. However, these traditional regularization methods such as Tikhonov regularization and truncated singular value decomposition, commonly fail to solve the large-scale ill-posed inverse problem in moderate computational cost. In this paper, taking into account the sparse characteristic of impact force, the idea of sparse deconvolution is first introduced to the field of impact force reconstruction and a general sparse deconvolution model of impact force is constructed. Second, a novel impact force reconstruction method based on the primal-dual interior point method (PDIPM) is proposed to solve such a large-scale sparse deconvolution model, where minimizing the l2-norm is replaced by minimizing the l1-norm. Meanwhile, the preconditioned conjugate gradient algorithm is used to compute the search direction of PDIPM with high computational efficiency. Finally, two experiments including the small-scale or medium-scale single impact force reconstruction and the relatively large-scale consecutive impact force reconstruction are conducted on a composite wind turbine blade and a shell structure to illustrate the advantage of PDIPM. Compared with Tikhonov regularization, PDIPM is more efficient, accurate and robust whether in the single impact force reconstruction or in the consecutive impact force reconstruction.

  18. Image fusion using sparse overcomplete feature dictionaries

    Science.gov (United States)

    Brumby, Steven P.; Bettencourt, Luis; Kenyon, Garrett T.; Chartrand, Rick; Wohlberg, Brendt

    2015-10-06

    Approaches for deciding what individuals in a population of visual system "neurons" are looking for using sparse overcomplete feature dictionaries are provided. A sparse overcomplete feature dictionary may be learned for an image dataset and a local sparse representation of the image dataset may be built using the learned feature dictionary. A local maximum pooling operation may be applied on the local sparse representation to produce a translation-tolerant representation of the image dataset. An object may then be classified and/or clustered within the translation-tolerant representation of the image dataset using a supervised classification algorithm and/or an unsupervised clustering algorithm.

  19. Atmospheric inverse modeling via sparse reconstruction

    Science.gov (United States)

    Hase, Nils; Miller, Scot M.; Maaß, Peter; Notholt, Justus; Palm, Mathias; Warneke, Thorsten

    2017-10-01

    Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4) emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.

  20. SPARSE ELECTROMAGNETIC IMAGING USING NONLINEAR LANDWEBER ITERATIONS

    KAUST Repository

    Desmal, Abdulla

    2015-07-29

    A scheme for efficiently solving the nonlinear electromagnetic inverse scattering problem on sparse investigation domains is described. The proposed scheme reconstructs the (complex) dielectric permittivity of an investigation domain from fields measured away from the domain itself. Least-squares data misfit between the computed scattered fields, which are expressed as a nonlinear function of the permittivity, and the measured fields is constrained by the L0/L1-norm of the solution. The resulting minimization problem is solved using nonlinear Landweber iterations, where at each iteration a thresholding function is applied to enforce the sparseness-promoting L0/L1-norm constraint. The thresholded nonlinear Landweber iterations are applied to several two-dimensional problems, where the ``measured\\'\\' fields are synthetically generated or obtained from actual experiments. These numerical experiments demonstrate the accuracy, efficiency, and applicability of the proposed scheme in reconstructing sparse profiles with high permittivity values.

  1. Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding.

    Science.gov (United States)

    Benkert, Thomas; Tian, Ye; Huang, Chenchan; DiBella, Edward V R; Chandarana, Hersh; Feng, Li

    2018-07-01

    Golden-angle radial sparse parallel (GRASP) MRI reconstruction requires gridding and regridding to transform data between radial and Cartesian k-space. These operations are repeatedly performed in each iteration, which makes the reconstruction computationally demanding. This work aimed to accelerate GRASP reconstruction using self-calibrating GRAPPA operator gridding (GROG) and to validate its performance in clinical imaging. GROG is an alternative gridding approach based on parallel imaging, in which k-space data acquired on a non-Cartesian grid are shifted onto a Cartesian k-space grid using information from multicoil arrays. For iterative non-Cartesian image reconstruction, GROG is performed only once as a preprocessing step. Therefore, the subsequent iterative reconstruction can be performed directly in Cartesian space, which significantly reduces computational burden. Here, a framework combining GROG with GRASP (GROG-GRASP) is first optimized and then compared with standard GRASP reconstruction in 22 prostate patients. GROG-GRASP achieved approximately 4.2-fold reduction in reconstruction time compared with GRASP (∼333 min versus ∼78 min) while maintaining image quality (structural similarity index ≈ 0.97 and root mean square error ≈ 0.007). Visual image quality assessment by two experienced radiologists did not show significant differences between the two reconstruction schemes. With a graphics processing unit implementation, image reconstruction time can be further reduced to approximately 14 min. The GRASP reconstruction can be substantially accelerated using GROG. This framework is promising toward broader clinical application of GRASP and other iterative non-Cartesian reconstruction methods. Magn Reson Med 80:286-293, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Image understanding using sparse representations

    CERN Document Server

    Thiagarajan, Jayaraman J; Turaga, Pavan; Spanias, Andreas

    2014-01-01

    Image understanding has been playing an increasingly crucial role in several inverse problems and computer vision. Sparse models form an important component in image understanding, since they emulate the activity of neural receptors in the primary visual cortex of the human brain. Sparse methods have been utilized in several learning problems because of their ability to provide parsimonious, interpretable, and efficient models. Exploiting the sparsity of natural signals has led to advances in several application areas including image compression, denoising, inpainting, compressed sensing, blin

  3. SAR and Infrared Image Fusion in Complex Contourlet Domain Based on Joint Sparse Representation

    Directory of Open Access Journals (Sweden)

    Wu Yiquan

    2017-08-01

    Full Text Available To investigate the problems of the large grayscale difference between infrared and Synthetic Aperture Radar (SAR images and their fusion image not being fit for human visual perception, we propose a fusion method for SAR and infrared images in the complex contourlet domain based on joint sparse representation. First, we perform complex contourlet decomposition of the infrared and SAR images. Then, we employ the KSingular Value Decomposition (K-SVD method to obtain an over-complete dictionary of the low-frequency components of the two source images. Using a joint sparse representation model, we then generate a joint dictionary. We obtain the sparse representation coefficients of the low-frequency components of the source images in the joint dictionary by the Orthogonal Matching Pursuit (OMP method and select them using the selection maximization strategy. We then reconstruct these components to obtain the fused low-frequency components and fuse the high-frequency components using two criteria——the coefficient of visual sensitivity and the degree of energy matching. Finally, we obtain the fusion image by the inverse complex contourlet transform. Compared with the three classical fusion methods and recently presented fusion methods, e.g., that based on the Non-Subsampled Contourlet Transform (NSCT and another based on sparse representation, the method we propose in this paper can effectively highlight the salient features of the two source images and inherit their information to the greatest extent.

  4. Compressed Sensing, Pseudodictionary-Based, Superresolution Reconstruction

    Directory of Open Access Journals (Sweden)

    Chun-mei Li

    2016-01-01

    Full Text Available The spatial resolution of digital images is the critical factor that affects photogrammetry precision. Single-frame, superresolution, image reconstruction is a typical underdetermined, inverse problem. To solve this type of problem, a compressive, sensing, pseudodictionary-based, superresolution reconstruction method is proposed in this study. The proposed method achieves pseudodictionary learning with an available low-resolution image and uses the K-SVD algorithm, which is based on the sparse characteristics of the digital image. Then, the sparse representation coefficient of the low-resolution image is obtained by solving the norm of l0 minimization problem, and the sparse coefficient and high-resolution pseudodictionary are used to reconstruct image tiles with high resolution. Finally, single-frame-image superresolution reconstruction is achieved. The proposed method is applied to photogrammetric images, and the experimental results indicate that the proposed method effectively increase image resolution, increase image information content, and achieve superresolution reconstruction. The reconstructed results are better than those obtained from traditional interpolation methods in aspect of visual effects and quantitative indicators.

  5. Real-time cardiac magnetic resonance cine imaging with sparse sampling and iterative reconstruction for left-ventricular measures: Comparison with gold-standard segmented steady-state free precession.

    Science.gov (United States)

    Camargo, Gabriel C; Erthal, Fernanda; Sabioni, Leticia; Penna, Filipe; Strecker, Ralph; Schmidt, Michaela; Zenge, Michael O; Lima, Ronaldo de S L; Gottlieb, Ilan

    2017-05-01

    Segmented cine imaging with a steady-state free-precession sequence (Cine-SSFP) is currently the gold standard technique for measuring ventricular volumes and mass, but due to multi breath-hold (BH) requirements, it is prone to misalignment of consecutive slices, time consuming and dependent on respiratory capacity. Real-time cine avoids those limitations, but poor spatial and temporal resolution of conventional sequences has prevented its routine application. We sought to examine the accuracy and feasibility of a newly developed real-time sequence with aggressive under-sampling of k-space using sparse sampling and iterative reconstruction (Cine-RT). Stacks of short-axis cines were acquired covering both ventricles in a 1.5T system using gold standard Cine-SSFP and Cine-RT. Acquisition parameters for Cine-SSFP were: acquisition matrix of 224×196, temporal resolution of 39ms, retrospective gating, with an average of 8 heartbeats per slice and 1-2 slices/BH. For Cine-RT: acquisition matrix of 224×196, sparse sampling net acceleration factor of 11.3, temporal resolution of 41ms, prospective gating, real-time acquisition of 1 heart-beat/slice and all slices in one BH. LV contours were drawn at end diastole and systole to derive LV volumes and mass. Forty-one consecutive patients (15 male; 41±17years) in sinus rhythm were successfully included. All images from Cine-SSFP and Cine-RT were considered to have excellent quality. Cine-RT-derived LV volumes and mass were slightly underestimated but strongly correlated with gold standard Cine-SSFP. Inter- and intra-observer analysis presented similar results between both sequences. Cine-RT featuring sparse sampling and iterative reconstruction can achieve spatial and temporal resolution equivalent to Cine-SSFP, providing excellent image quality, with similar precision measurements and highly correlated and only slightly underestimated volume and mass values. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Performance bounds for sparse signal reconstruction with multiple side information [arXiv

    DEFF Research Database (Denmark)

    Luong, Huynh Van; Seiler, Jurgen; Kaup, Andre

    2016-01-01

    In the context of compressive sensing (CS), this paper considers the problem of reconstructing sparse signals with the aid of other given correlated sources as multiple side information (SI). To address this problem, we propose a reconstruction algorithm with multiple SI (RAMSI) that solves...

  7. Neural Network for Sparse Reconstruction

    Directory of Open Access Journals (Sweden)

    Qingfa Li

    2014-01-01

    Full Text Available We construct a neural network based on smoothing approximation techniques and projected gradient method to solve a kind of sparse reconstruction problems. Neural network can be implemented by circuits and can be seen as an important method for solving optimization problems, especially large scale problems. Smoothing approximation is an efficient technique for solving nonsmooth optimization problems. We combine these two techniques to overcome the difficulties of the choices of the step size in discrete algorithms and the item in the set-valued map of differential inclusion. In theory, the proposed network can converge to the optimal solution set of the given problem. Furthermore, some numerical experiments show the effectiveness of the proposed network in this paper.

  8. Reconstruction of sparse-view X-ray computed tomography using adaptive iterative algorithms.

    Science.gov (United States)

    Liu, Li; Lin, Weikai; Jin, Mingwu

    2015-01-01

    In this paper, we propose two reconstruction algorithms for sparse-view X-ray computed tomography (CT). Treating the reconstruction problems as data fidelity constrained total variation (TV) minimization, both algorithms adapt the alternate two-stage strategy: projection onto convex sets (POCS) for data fidelity and non-negativity constraints and steepest descent for TV minimization. The novelty of this work is to determine iterative parameters automatically from data, thus avoiding tedious manual parameter tuning. In TV minimization, the step sizes of steepest descent are adaptively adjusted according to the difference from POCS update in either the projection domain or the image domain, while the step size of algebraic reconstruction technique (ART) in POCS is determined based on the data noise level. In addition, projection errors are used to compare with the error bound to decide whether to perform ART so as to reduce computational costs. The performance of the proposed methods is studied and evaluated using both simulated and physical phantom data. Our methods with automatic parameter tuning achieve similar, if not better, reconstruction performance compared to a representative two-stage algorithm. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Sparse Reconstruction for Temperature Distribution Using DTS Fiber Optic Sensors with Applications in Electrical Generator Stator Monitoring

    Science.gov (United States)

    Bazzo, João Paulo; Pipa, Daniel Rodrigues; da Silva, Erlon Vagner; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2016-01-01

    This paper presents an image reconstruction method to monitor the temperature distribution of electric generator stators. The main objective is to identify insulation failures that may arise as hotspots in the structure. The method is based on temperature readings of fiber optic distributed sensors (DTS) and a sparse reconstruction algorithm. Thermal images of the structure are formed by appropriately combining atoms of a dictionary of hotspots, which was constructed by finite element simulation with a multi-physical model. Due to difficulties for reproducing insulation faults in real stator structure, experimental tests were performed using a prototype similar to the real structure. The results demonstrate the ability of the proposed method to reconstruct images of hotspots with dimensions down to 15 cm, representing a resolution gain of up to six times when compared to the DTS spatial resolution. In addition, satisfactory results were also obtained to detect hotspots with only 5 cm. The application of the proposed algorithm for thermal imaging of generator stators can contribute to the identification of insulation faults in early stages, thereby avoiding catastrophic damage to the structure. PMID:27618040

  10. Block matching sparsity regularization-based image reconstruction for incomplete projection data in computed tomography

    Science.gov (United States)

    Cai, Ailong; Li, Lei; Zheng, Zhizhong; Zhang, Hanming; Wang, Linyuan; Hu, Guoen; Yan, Bin

    2018-02-01

    In medical imaging many conventional regularization methods, such as total variation or total generalized variation, impose strong prior assumptions which can only account for very limited classes of images. A more reasonable sparse representation frame for images is still badly needed. Visually understandable images contain meaningful patterns, and combinations or collections of these patterns can be utilized to form some sparse and redundant representations which promise to facilitate image reconstructions. In this work, we propose and study block matching sparsity regularization (BMSR) and devise an optimization program using BMSR for computed tomography (CT) image reconstruction for an incomplete projection set. The program is built as a constrained optimization, minimizing the L1-norm of the coefficients of the image in the transformed domain subject to data observation and positivity of the image itself. To solve the program efficiently, a practical method based on the proximal point algorithm is developed and analyzed. In order to accelerate the convergence rate, a practical strategy for tuning the BMSR parameter is proposed and applied. The experimental results for various settings, including real CT scanning, have verified the proposed reconstruction method showing promising capabilities over conventional regularization.

  11. Blind spectrum reconstruction algorithm with L0-sparse representation

    International Nuclear Information System (INIS)

    Liu, Hai; Zhang, Zhaoli; Liu, Sanyan; Shu, Jiangbo; Liu, Tingting; Zhang, Tianxu

    2015-01-01

    Raman spectrum often suffers from band overlap and Poisson noise. This paper presents a new blind Poissonian Raman spectrum reconstruction method, which incorporates the L 0 -sparse prior together with the total variation constraint into the maximum a posteriori framework. Furthermore, the greedy analysis pursuit algorithm is adopted to solve the L 0 -based minimization problem. Simulated and real spectrum experimental results show that the proposed method can effectively preserve spectral structure and suppress noise. The reconstructed Raman spectra are easily used for interpreting unknown chemical mixtures. (paper)

  12. Sparse reconstruction by means of the standard Tikhonov regularization

    International Nuclear Information System (INIS)

    Lu Shuai; Pereverzev, Sergei V

    2008-01-01

    It is a common belief that Tikhonov scheme with || · ||L 2 -penalty fails in sparse reconstruction. We are going to show, however, that this standard regularization can help if the stability measured in L 1 -norm will be properly taken into account in the choice of the regularization parameter. The crucial point is that now a stability bound may depend on the bases with respect to which the solution of the problem is assumed to be sparse. We discuss how such a stability can be estimated numerically and present the results of computational experiments giving the evidence of the reliability of our approach.

  13. Confidence of model based shape reconstruction from sparse data

    DEFF Research Database (Denmark)

    Baka, N.; de Bruijne, Marleen; Reiber, J. H. C.

    2010-01-01

    Statistical shape models (SSM) are commonly applied for plausible interpolation of missing data in medical imaging. However, when fitting a shape model to sparse information, many solutions may fit the available data. In this paper we derive a constrained SSM to fit noisy sparse input landmarks...

  14. Methods of X-ray CT image reconstruction from few projections

    International Nuclear Information System (INIS)

    Wang, H.

    2011-01-01

    To improve the safety (low dose) and the productivity (fast acquisition) of a X-ray CT system, we want to reconstruct a high quality image from a small number of projections. The classical reconstruction algorithms generally fail since the reconstruction procedure is unstable and suffers from artifacts. A new approach based on the recently developed 'Compressed Sensing' (CS) theory assumes that the unknown image is in some sense 'sparse' or 'compressible', and the reconstruction is formulated through a non linear optimization problem (TV/l1 minimization) by enhancing the sparsity. Using the pixel (or voxel in 3D) as basis, to apply the CS framework in CT one usually needs a 'sparsifying' transform, and combines it with the 'X-ray projector' which applies on the pixel image. In this thesis, we have adapted a 'CT-friendly' radial basis of Gaussian family called 'blob' to the CS-CT framework. The blob has better space-frequency localization properties than the pixel, and many operations, such as the X-ray transform, can be evaluated analytically and are highly parallelizable (on GPU platform). Compared to the classical Kaisser-Bessel blob, the new basis has a multi-scale structure: an image is the sum of dilated and translated radial Mexican hat functions. The typical medical objects are compressible under this basis, so the sparse representation system used in the ordinary CS algorithms is no more needed. 2D simulations show that the existing TV and l1 algorithms are more efficient and the reconstructions have better visual quality than the equivalent approach based on the pixel or wavelet basis. The new approach has also been validated on 2D experimental data, where we have observed that in general the number of projections can be reduced to about 50%, without compromising the image quality. (author) [fr

  15. High Order Tensor Formulation for Convolutional Sparse Coding

    KAUST Repository

    Bibi, Adel Aamer; Ghanem, Bernard

    2017-01-01

    Convolutional sparse coding (CSC) has gained attention for its successful role as a reconstruction and a classification tool in the computer vision and machine learning community. Current CSC methods can only reconstruct singlefeature 2D images

  16. Superresolution Interferometric Imaging with Sparse Modeling Using Total Squared Variation: Application to Imaging the Black Hole Shadow

    Science.gov (United States)

    Kuramochi, Kazuki; Akiyama, Kazunori; Ikeda, Shiro; Tazaki, Fumie; Fish, Vincent L.; Pu, Hung-Yi; Asada, Keiichi; Honma, Mareki

    2018-05-01

    We propose a new imaging technique for interferometry using sparse modeling, utilizing two regularization terms: the ℓ 1-norm and a new function named total squared variation (TSV) of the brightness distribution. First, we demonstrate that our technique may achieve a superresolution of ∼30% compared with the traditional CLEAN beam size using synthetic observations of two point sources. Second, we present simulated observations of three physically motivated static models of Sgr A* with the Event Horizon Telescope (EHT) to show the performance of proposed techniques in greater detail. Remarkably, in both the image and gradient domains, the optimal beam size minimizing root-mean-squared errors is ≲10% of the traditional CLEAN beam size for ℓ 1+TSV regularization, and non-convolved reconstructed images have smaller errors than beam-convolved reconstructed images. This indicates that TSV is well matched to the expected physical properties of the astronomical images and the traditional post-processing technique of Gaussian convolution in interferometric imaging may not be required. We also propose a feature-extraction method to detect circular features from the image of a black hole shadow and use it to evaluate the performance of the image reconstruction. With this method and reconstructed images, the EHT can constrain the radius of the black hole shadow with an accuracy of ∼10%–20% in present simulations for Sgr A*, suggesting that the EHT would be able to provide useful independent measurements of the mass of the supermassive black holes in Sgr A* and also another primary target, M87.

  17. Sparse Reconstruction for Temperature Distribution Using DTS Fiber Optic Sensors with Applications in Electrical Generator Stator Monitoring

    Directory of Open Access Journals (Sweden)

    João Paulo Bazzo

    2016-09-01

    Full Text Available This paper presents an image reconstruction method to monitor the temperature distribution of electric generator stators. The main objective is to identify insulation failures that may arise as hotspots in the structure. The method is based on temperature readings of fiber optic distributed sensors (DTS and a sparse reconstruction algorithm. Thermal images of the structure are formed by appropriately combining atoms of a dictionary of hotspots, which was constructed by finite element simulation with a multi-physical model. Due to difficulties for reproducing insulation faults in real stator structure, experimental tests were performed using a prototype similar to the real structure. The results demonstrate the ability of the proposed method to reconstruct images of hotspots with dimensions down to 15 cm, representing a resolution gain of up to six times when compared to the DTS spatial resolution. In addition, satisfactory results were also obtained to detect hotspots with only 5 cm. The application of the proposed algorithm for thermal imaging of generator stators can contribute to the identification of insulation faults in early stages, thereby avoiding catastrophic damage to the structure.

  18. X-ray computed tomography using curvelet sparse regularization.

    Science.gov (United States)

    Wieczorek, Matthias; Frikel, Jürgen; Vogel, Jakob; Eggl, Elena; Kopp, Felix; Noël, Peter B; Pfeiffer, Franz; Demaret, Laurent; Lasser, Tobias

    2015-04-01

    Reconstruction of x-ray computed tomography (CT) data remains a mathematically challenging problem in medical imaging. Complementing the standard analytical reconstruction methods, sparse regularization is growing in importance, as it allows inclusion of prior knowledge. The paper presents a method for sparse regularization based on the curvelet frame for the application to iterative reconstruction in x-ray computed tomography. In this work, the authors present an iterative reconstruction approach based on the alternating direction method of multipliers using curvelet sparse regularization. Evaluation of the method is performed on a specifically crafted numerical phantom dataset to highlight the method's strengths. Additional evaluation is performed on two real datasets from commercial scanners with different noise characteristics, a clinical bone sample acquired in a micro-CT and a human abdomen scanned in a diagnostic CT. The results clearly illustrate that curvelet sparse regularization has characteristic strengths. In particular, it improves the restoration and resolution of highly directional, high contrast features with smooth contrast variations. The authors also compare this approach to the popular technique of total variation and to traditional filtered backprojection. The authors conclude that curvelet sparse regularization is able to improve reconstruction quality by reducing noise while preserving highly directional features.

  19. Structural Sparse Tracking

    KAUST Repository

    Zhang, Tianzhu

    2015-06-01

    Sparse representation has been applied to visual tracking by finding the best target candidate with minimal reconstruction error by use of target templates. However, most sparse representation based trackers only consider holistic or local representations and do not make full use of the intrinsic structure among and inside target candidates, thereby making the representation less effective when similar objects appear or under occlusion. In this paper, we propose a novel Structural Sparse Tracking (SST) algorithm, which not only exploits the intrinsic relationship among target candidates and their local patches to learn their sparse representations jointly, but also preserves the spatial layout structure among the local patches inside each target candidate. We show that our SST algorithm accommodates most existing sparse trackers with the respective merits. Both qualitative and quantitative evaluations on challenging benchmark image sequences demonstrate that the proposed SST algorithm performs favorably against several state-of-the-art methods.

  20. Aspect-Aided Dynamic Non-Negative Sparse Representation-Based Microwave Image Classification

    Directory of Open Access Journals (Sweden)

    Xinzheng Zhang

    2016-09-01

    Full Text Available Classification of target microwave images is an important application in much areas such as security, surveillance, etc. With respect to the task of microwave image classification, a recognition algorithm based on aspect-aided dynamic non-negative least square (ADNNLS sparse representation is proposed. Firstly, an aspect sector is determined, the center of which is the estimated aspect angle of the testing sample. The training samples in the aspect sector are divided into active atoms and inactive atoms by smooth self-representative learning. Secondly, for each testing sample, the corresponding active atoms are selected dynamically, thereby establishing dynamic dictionary. Thirdly, the testing sample is represented with ℓ 1 -regularized non-negative sparse representation under the corresponding dynamic dictionary. Finally, the class label of the testing sample is identified by use of the minimum reconstruction error. Verification of the proposed algorithm was conducted using the Moving and Stationary Target Acquisition and Recognition (MSTAR database which was acquired by synthetic aperture radar. Experiment results validated that the proposed approach was able to capture the local aspect characteristics of microwave images effectively, thereby improving the classification performance.

  1. Sparse Representation Based Binary Hypothesis Model for Hyperspectral Image Classification

    Directory of Open Access Journals (Sweden)

    Yidong Tang

    2016-01-01

    Full Text Available The sparse representation based classifier (SRC and its kernel version (KSRC have been employed for hyperspectral image (HSI classification. However, the state-of-the-art SRC often aims at extended surface objects with linear mixture in smooth scene and assumes that the number of classes is given. Considering the small target with complex background, a sparse representation based binary hypothesis (SRBBH model is established in this paper. In this model, a query pixel is represented in two ways, which are, respectively, by background dictionary and by union dictionary. The background dictionary is composed of samples selected from the local dual concentric window centered at the query pixel. Thus, for each pixel the classification issue becomes an adaptive multiclass classification problem, where only the number of desired classes is required. Furthermore, the kernel method is employed to improve the interclass separability. In kernel space, the coding vector is obtained by using kernel-based orthogonal matching pursuit (KOMP algorithm. Then the query pixel can be labeled by the characteristics of the coding vectors. Instead of directly using the reconstruction residuals, the different impacts the background dictionary and union dictionary have on reconstruction are used for validation and classification. It enhances the discrimination and hence improves the performance.

  2. Sparse signal reconstruction from polychromatic X-ray CT measurements via mass attenuation discretization

    International Nuclear Information System (INIS)

    Gu, Renliang; Dogandžić, Aleksandar

    2014-01-01

    We propose a method for reconstructing sparse images from polychromatic x-ray computed tomography (ct) measurements via mass attenuation coefficient discretization. The material of the inspected object and the incident spectrum are assumed to be unknown. We rewrite the Lambert-Beer’s law in terms of integral expressions of mass attenuation and discretize the resulting integrals. We then present a penalized constrained least-squares optimization approach for reconstructing the underlying object from log-domain measurements, where an active set approach is employed to estimate incident energy density parameters and the nonnegativity and sparsity of the image density map are imposed using negative-energy and smooth ℓ 1 -norm penalty terms. We propose a two-step scheme for refining the mass attenuation discretization grid by using higher sampling rate over the range with higher photon energy, and eliminating the discretization points that have little effect on accuracy of the forward projection model. This refinement allows us to successfully handle the characteristic lines (Dirac impulses) in the incident energy density spectrum. We compare the proposed method with the standard filtered backprojection, which ignores the polychromatic nature of the measurements and sparsity of the image density map. Numerical simulations using both realistic simulated and real x-ray ct data are presented

  3. The w-effect in interferometric imaging: from a fast sparse measurement operator to superresolution

    Science.gov (United States)

    Dabbech, A.; Wolz, L.; Pratley, L.; McEwen, J. D.; Wiaux, Y.

    2017-11-01

    Modern radio telescopes, such as the Square Kilometre Array, will probe the radio sky over large fields of view, which results in large w-modulations of the sky image. This effect complicates the relationship between the measured visibilities and the image under scrutiny. In algorithmic terms, it gives rise to massive memory and computational time requirements. Yet, it can be a blessing in terms of reconstruction quality of the sky image. In recent years, several works have shown that large w-modulations promote the spread spectrum effect. Within the compressive sensing framework, this effect increases the incoherence between the sensing basis and the sparsity basis of the signal to be recovered, leading to better estimation of the sky image. In this article, we revisit the w-projection approach using convex optimization in realistic settings, where the measurement operator couples the w-terms in Fourier and the de-gridding kernels. We provide sparse, thus fast, models of the Fourier part of the measurement operator through adaptive sparsification procedures. Consequently, memory requirements and computational cost are significantly alleviated at the expense of introducing errors on the radio interferometric data model. We present a first investigation of the impact of the sparse variants of the measurement operator on the image reconstruction quality. We finally analyse the interesting superresolution potential associated with the spread spectrum effect of the w-modulation, and showcase it through simulations. Our c++ code is available online on GitHub.

  4. Sparse representations and compressive sensing for imaging and vision

    CERN Document Server

    Patel, Vishal M

    2013-01-01

    Compressed sensing or compressive sensing is a new concept in signal processing where one measures a small number of non-adaptive linear combinations of the signal.  These measurements are usually much smaller than the number of samples that define the signal.  From these small numbers of measurements, the signal is then reconstructed by non-linear procedure.  Compressed sensing has recently emerged as a powerful tool for efficiently processing data in non-traditional ways.  In this book, we highlight some of the key mathematical insights underlying sparse representation and compressed sensing and illustrate the role of these theories in classical vision, imaging and biometrics problems.

  5. Bound on the estimation grid size for sparse reconstruction in direction of arrival estimation

    NARCIS (Netherlands)

    Coutiño Minguez, M.A.; Pribic, R; Leus, G.J.T.

    2016-01-01

    A bound for sparse reconstruction involving both the signal-to-noise ratio (SNR) and the estimation grid size is presented. The bound is illustrated for the case of a uniform linear array (ULA). By reducing the number of possible sparse vectors present in the feasible set of a constrained ℓ1-norm

  6. Image fusion via nonlocal sparse K-SVD dictionary learning.

    Science.gov (United States)

    Li, Ying; Li, Fangyi; Bai, Bendu; Shen, Qiang

    2016-03-01

    Image fusion aims to merge two or more images captured via various sensors of the same scene to construct a more informative image by integrating their details. Generally, such integration is achieved through the manipulation of the representations of the images concerned. Sparse representation plays an important role in the effective description of images, offering a great potential in a variety of image processing tasks, including image fusion. Supported by sparse representation, in this paper, an approach for image fusion by the use of a novel dictionary learning scheme is proposed. The nonlocal self-similarity property of the images is exploited, not only at the stage of learning the underlying description dictionary but during the process of image fusion. In particular, the property of nonlocal self-similarity is combined with the traditional sparse dictionary. This results in an improved learned dictionary, hereafter referred to as the nonlocal sparse K-SVD dictionary (where K-SVD stands for the K times singular value decomposition that is commonly used in the literature), and abbreviated to NL_SK_SVD. The performance of the NL_SK_SVD dictionary is applied for image fusion using simultaneous orthogonal matching pursuit. The proposed approach is evaluated with different types of images, and compared with a number of alternative image fusion techniques. The resultant superior fused images using the present approach demonstrates the efficacy of the NL_SK_SVD dictionary in sparse image representation.

  7. Block Compressed Sensing of Images Using Adaptive Granular Reconstruction

    Directory of Open Access Journals (Sweden)

    Ran Li

    2016-01-01

    Full Text Available In the framework of block Compressed Sensing (CS, the reconstruction algorithm based on the Smoothed Projected Landweber (SPL iteration can achieve the better rate-distortion performance with a low computational complexity, especially for using the Principle Components Analysis (PCA to perform the adaptive hard-thresholding shrinkage. However, during learning the PCA matrix, it affects the reconstruction performance of Landweber iteration to neglect the stationary local structural characteristic of image. To solve the above problem, this paper firstly uses the Granular Computing (GrC to decompose an image into several granules depending on the structural features of patches. Then, we perform the PCA to learn the sparse representation basis corresponding to each granule. Finally, the hard-thresholding shrinkage is employed to remove the noises in patches. The patches in granule have the stationary local structural characteristic, so that our method can effectively improve the performance of hard-thresholding shrinkage. Experimental results indicate that the reconstructed image by the proposed algorithm has better objective quality when compared with several traditional ones. The edge and texture details in the reconstructed image are better preserved, which guarantees the better visual quality. Besides, our method has still a low computational complexity of reconstruction.

  8. Robust Fringe Projection Profilometry via Sparse Representation.

    Science.gov (United States)

    Budianto; Lun, Daniel P K

    2016-04-01

    In this paper, a robust fringe projection profilometry (FPP) algorithm using the sparse dictionary learning and sparse coding techniques is proposed. When reconstructing the 3D model of objects, traditional FPP systems often fail to perform if the captured fringe images have a complex scene, such as having multiple and occluded objects. It introduces great difficulty to the phase unwrapping process of an FPP system that can result in serious distortion in the final reconstructed 3D model. For the proposed algorithm, it encodes the period order information, which is essential to phase unwrapping, into some texture patterns and embeds them to the projected fringe patterns. When the encoded fringe image is captured, a modified morphological component analysis and a sparse classification procedure are performed to decode and identify the embedded period order information. It is then used to assist the phase unwrapping process to deal with the different artifacts in the fringe images. Experimental results show that the proposed algorithm can significantly improve the robustness of an FPP system. It performs equally well no matter the fringe images have a simple or complex scene, or are affected due to the ambient lighting of the working environment.

  9. Efficient fully 3D list-mode TOF PET image reconstruction using a factorized system matrix with an image domain resolution model

    International Nuclear Information System (INIS)

    Zhou, Jian; Qi, Jinyi

    2014-01-01

    A factorized system matrix utilizing an image domain resolution model is attractive in fully 3D time-of-flight PET image reconstruction using list-mode data. In this paper, we study a factored model based on sparse matrix factorization that is comprised primarily of a simplified geometrical projection matrix and an image blurring matrix. Beside the commonly-used Siddon’s ray-tracer, we propose another more simplified geometrical projector based on the Bresenham’s ray-tracer which further reduces the computational cost. We discuss in general how to obtain an image blurring matrix associated with a geometrical projector, and provide theoretical analysis that can be used to inspect the efficiency in model factorization. In simulation studies, we investigate the performance of the proposed sparse factorization model in terms of spatial resolution, noise properties and computational cost. The quantitative results reveal that the factorization model can be as efficient as a non-factored model, while its computational cost can be much lower. In addition we conduct Monte Carlo simulations to identify the conditions under which the image resolution model can become more efficient in terms of image contrast recovery. We verify our observations using the provided theoretical analysis. The result offers a general guide to achieve the optimal reconstruction performance based on a sparse factorization model with an image domain resolution model. (paper)

  10. Manifold regularization for sparse unmixing of hyperspectral images.

    Science.gov (United States)

    Liu, Junmin; Zhang, Chunxia; Zhang, Jiangshe; Li, Huirong; Gao, Yuelin

    2016-01-01

    Recently, sparse unmixing has been successfully applied to spectral mixture analysis of remotely sensed hyperspectral images. Based on the assumption that the observed image signatures can be expressed in the form of linear combinations of a number of pure spectral signatures known in advance, unmixing of each mixed pixel in the scene is to find an optimal subset of signatures in a very large spectral library, which is cast into the framework of sparse regression. However, traditional sparse regression models, such as collaborative sparse regression , ignore the intrinsic geometric structure in the hyperspectral data. In this paper, we propose a novel model, called manifold regularized collaborative sparse regression , by introducing a manifold regularization to the collaborative sparse regression model. The manifold regularization utilizes a graph Laplacian to incorporate the locally geometrical structure of the hyperspectral data. An algorithm based on alternating direction method of multipliers has been developed for the manifold regularized collaborative sparse regression model. Experimental results on both the simulated and real hyperspectral data sets have demonstrated the effectiveness of our proposed model.

  11. Parametric Human Body Reconstruction Based on Sparse Key Points.

    Science.gov (United States)

    Cheng, Ke-Li; Tong, Ruo-Feng; Tang, Min; Qian, Jing-Ye; Sarkis, Michel

    2016-11-01

    We propose an automatic parametric human body reconstruction algorithm which can efficiently construct a model using a single Kinect sensor. A user needs to stand still in front of the sensor for a couple of seconds to measure the range data. The user's body shape and pose will then be automatically constructed in several seconds. Traditional methods optimize dense correspondences between range data and meshes. In contrast, our proposed scheme relies on sparse key points for the reconstruction. It employs regression to find the corresponding key points between the scanned range data and some annotated training data. We design two kinds of feature descriptors as well as corresponding regression stages to make the regression robust and accurate. Our scheme follows with dense refinement where a pre-factorization method is applied to improve the computational efficiency. Compared with other methods, our scheme achieves similar reconstruction accuracy but significantly reduces runtime.

  12. SparseBeads data: benchmarking sparsity-regularized computed tomography

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Sauer; Coban, Sophia B.; Lionheart, William R. B.

    2017-01-01

    -regularized reconstruction. A collection of 48 x-ray CT datasets called SparseBeads was designed for benchmarking SR reconstruction algorithms. Beadpacks comprising glass beads of five different sizes as well as mixtures were scanned in a micro-CT scanner to provide structured datasets with variable image sparsity levels...

  13. Sparse DOA estimation with polynomial rooting

    DEFF Research Database (Denmark)

    Xenaki, Angeliki; Gerstoft, Peter; Fernandez Grande, Efren

    2015-01-01

    Direction-of-arrival (DOA) estimation involves the localization of a few sources from a limited number of observations on an array of sensors. Thus, DOA estimation can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve highresol......Direction-of-arrival (DOA) estimation involves the localization of a few sources from a limited number of observations on an array of sensors. Thus, DOA estimation can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve...... highresolution imaging. Utilizing the dual optimal variables of the CS optimization problem, it is shown with Monte Carlo simulations that the DOAs are accurately reconstructed through polynomial rooting (Root-CS). Polynomial rooting is known to improve the resolution in several other DOA estimation methods...

  14. Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging

    KAUST Repository

    Desmal, Abdulla

    2014-05-04

    Newton-type algorithms have been extensively studied in nonlinear microwave imaging due to their quadratic convergence rate and ability to recover images with high contrast values. In the past, Newton methods have been implemented in conjunction with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm is formulated and implemented in conjunction with a linear sparse optimization scheme. A novel preconditioning technique is proposed to increase the convergence rate of the optimization problem. Numerical results demonstrate that the proposed framework produces sharper and more accurate images when applied in sparse/sparsified domains.

  15. Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging

    KAUST Repository

    Desmal, Abdulla

    2014-01-06

    Newton-type algorithms have been extensively studied in nonlinear microwave imaging due to their quadratic convergence rate and ability to recover images with high contrast values. In the past, Newton methods have been implemented in conjunction with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm is formulated and implemented in conjunction with a linear sparse optimization scheme. A novel preconditioning technique is proposed to increase the convergence rate of the optimization problem. Numerical results demonstrate that the proposed framework produces sharper and more accurate images when applied in sparse/sparsified domains.

  16. Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2014-01-01

    Newton-type algorithms have been extensively studied in nonlinear microwave imaging due to their quadratic convergence rate and ability to recover images with high contrast values. In the past, Newton methods have been implemented in conjunction with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm is formulated and implemented in conjunction with a linear sparse optimization scheme. A novel preconditioning technique is proposed to increase the convergence rate of the optimization problem. Numerical results demonstrate that the proposed framework produces sharper and more accurate images when applied in sparse/sparsified domains.

  17. Speckle suppression via sparse representation for wide-field imaging through turbid media.

    Science.gov (United States)

    Jang, Hwanchol; Yoon, Changhyeong; Chung, Euiheon; Choi, Wonshik; Lee, Heung-No

    2014-06-30

    Speckle suppression is one of the most important tasks in the image transmission through turbid media. Insufficient speckle suppression requires an additional procedure such as temporal ensemble averaging over multiple exposures. In this paper, we consider the image recovery process based on the so-called transmission matrix (TM) of turbid media for the image transmission through the media. We show that the speckle left unremoved in the TM-based image recovery can be suppressed effectively via sparse representation (SR). SR is a relatively new signal reconstruction framework which works well even for ill-conditioned problems. This is the first study to show the benefit of using the SR as compared to the phase conjugation (PC) a de facto standard method to date for TM-based imaging through turbid media including a live cell through tissue slice.

  18. Dictionary-based image reconstruction for superresolution in integrated circuit imaging.

    Science.gov (United States)

    Cilingiroglu, T Berkin; Uyar, Aydan; Tuysuzoglu, Ahmet; Karl, W Clem; Konrad, Janusz; Goldberg, Bennett B; Ünlü, M Selim

    2015-06-01

    Resolution improvement through signal processing techniques for integrated circuit imaging is becoming more crucial as the rapid decrease in integrated circuit dimensions continues. Although there is a significant effort to push the limits of optical resolution for backside fault analysis through the use of solid immersion lenses, higher order laser beams, and beam apodization, signal processing techniques are required for additional improvement. In this work, we propose a sparse image reconstruction framework which couples overcomplete dictionary-based representation with a physics-based forward model to improve resolution and localization accuracy in high numerical aperture confocal microscopy systems for backside optical integrated circuit analysis. The effectiveness of the framework is demonstrated on experimental data.

  19. Face Image Retrieval of Efficient Sparse Code words and Multiple Attribute in Binning Image

    Directory of Open Access Journals (Sweden)

    Suchitra S

    2017-08-01

    Full Text Available ABSTRACT In photography, face recognition and face retrieval play an important role in many applications such as security, criminology and image forensics. Advancements in face recognition make easier for identity matching of an individual with attributes. Latest development in computer vision technologies enables us to extract facial attributes from the input image and provide similar image results. In this paper, we propose a novel LOP and sparse codewords method to provide similar matching results with respect to input query image. To improve accuracy in image results with input image and dynamic facial attributes, Local octal pattern algorithm [LOP] and Sparse codeword applied in offline and online. The offline and online procedures in face image binning techniques apply with sparse code. Experimental results with Pubfig dataset shows that the proposed LOP along with sparse codewords able to provide matching results with increased accuracy of 90%.

  20. Reconstruction of magnetic resonance imaging by three-dimensional dual-dictionary learning.

    Science.gov (United States)

    Song, Ying; Zhu, Zhen; Lu, Yang; Liu, Qiegen; Zhao, Jun

    2014-03-01

    To improve the magnetic resonance imaging (MRI) data acquisition speed while maintaining the reconstruction quality, a novel method is proposed for multislice MRI reconstruction from undersampled k-space data based on compressed-sensing theory using dictionary learning. There are two aspects to improve the reconstruction quality. One is that spatial correlation among slices is used by extending the atoms in dictionary learning from patches to blocks. The other is that the dictionary-learning scheme is used at two resolution levels; i.e., a low-resolution dictionary is used for sparse coding and a high-resolution dictionary is used for image updating. Numerical experiments are carried out on in vivo 3D MR images of brains and abdomens with a variety of undersampling schemes and ratios. The proposed method (dual-DLMRI) achieves better reconstruction quality than conventional reconstruction methods, with the peak signal-to-noise ratio being 7 dB higher. The advantages of the dual dictionaries are obvious compared with the single dictionary. Parameter variations ranging from 50% to 200% only bias the image quality within 15% in terms of the peak signal-to-noise ratio. Dual-DLMRI effectively uses the a priori information in the dual-dictionary scheme and provides dramatically improved reconstruction quality. Copyright © 2013 Wiley Periodicals, Inc.

  1. High Order Tensor Formulation for Convolutional Sparse Coding

    KAUST Repository

    Bibi, Adel Aamer

    2017-12-25

    Convolutional sparse coding (CSC) has gained attention for its successful role as a reconstruction and a classification tool in the computer vision and machine learning community. Current CSC methods can only reconstruct singlefeature 2D images independently. However, learning multidimensional dictionaries and sparse codes for the reconstruction of multi-dimensional data is very important, as it examines correlations among all the data jointly. This provides more capacity for the learned dictionaries to better reconstruct data. In this paper, we propose a generic and novel formulation for the CSC problem that can handle an arbitrary order tensor of data. Backed with experimental results, our proposed formulation can not only tackle applications that are not possible with standard CSC solvers, including colored video reconstruction (5D- tensors), but it also performs favorably in reconstruction with much fewer parameters as compared to naive extensions of standard CSC to multiple features/channels.

  2. A comparison of reconstruction methods for undersampled atomic force microscopy images

    International Nuclear Information System (INIS)

    Luo, Yufan; Andersson, Sean B

    2015-01-01

    Non-raster scanning and undersampling of atomic force microscopy (AFM) images is a technique for improving imaging rate and reducing the amount of tip–sample interaction needed to produce an image. Generation of the final image can be done using a variety of image processing techniques based on interpolation or optimization. The choice of reconstruction method has a large impact on the quality of the recovered image and the proper choice depends on the sample under study. In this work we compare interpolation through the use of inpainting algorithms with reconstruction based on optimization through the use of the basis pursuit algorithm commonly used for signal recovery in compressive sensing. Using four different sampling patterns found in non-raster AFM, namely row subsampling, spiral scanning, Lissajous scanning, and random scanning, we subsample data from existing images and compare reconstruction performance against the original image. The results illustrate that inpainting generally produces superior results when the image contains primarily low frequency content while basis pursuit is better when the images have mixed, but sparse, frequency content. Using support vector machines, we then classify images based on their frequency content and sparsity and, from this classification, develop a fast decision strategy to select a reconstruction algorithm to be used on subsampled data. The performance of the classification and decision test are demonstrated on test AFM images. (paper)

  3. Sparse spectral deconvolution algorithm for noncartesian MR spectroscopic imaging.

    Science.gov (United States)

    Bhave, Sampada; Eslami, Ramin; Jacob, Mathews

    2014-02-01

    To minimize line shape distortions and spectral leakage artifacts in MR spectroscopic imaging (MRSI). A spatially and spectrally regularized non-Cartesian MRSI algorithm that uses the line shape distortion priors, estimated from water reference data, to deconvolve the spectra is introduced. Sparse spectral regularization is used to minimize noise amplification associated with deconvolution. A spiral MRSI sequence that heavily oversamples the central k-space regions is used to acquire the MRSI data. The spatial regularization term uses the spatial supports of brain and extracranial fat regions to recover the metabolite spectra and nuisance signals at two different resolutions. Specifically, the nuisance signals are recovered at the maximum resolution to minimize spectral leakage, while the point spread functions of metabolites are controlled to obtain acceptable signal-to-noise ratio. The comparisons of the algorithm against Tikhonov regularized reconstructions demonstrates considerably reduced line-shape distortions and improved metabolite maps. The proposed sparsity constrained spectral deconvolution scheme is effective in minimizing the line-shape distortions. The dual resolution reconstruction scheme is capable of minimizing spectral leakage artifacts. Copyright © 2013 Wiley Periodicals, Inc.

  4. Accelerated gradient methods for total-variation-based CT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Jakob H.; Hansen, Per Christian [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Informatics and Mathematical Modeling; Jensen, Tobias L.; Jensen, Soeren H. [Aalborg Univ. (Denmark). Dept. of Electronic Systems; Sidky, Emil Y.; Pan, Xiaochuan [Chicago Univ., Chicago, IL (United States). Dept. of Radiology

    2011-07-01

    Total-variation (TV)-based CT image reconstruction has shown experimentally to be capable of producing accurate reconstructions from sparse-view data. In particular TV-based reconstruction is well suited for images with piecewise nearly constant regions. Computationally, however, TV-based reconstruction is demanding, especially for 3D imaging, and the reconstruction from clinical data sets is far from being close to real-time. This is undesirable from a clinical perspective, and thus there is an incentive to accelerate the solution of the underlying optimization problem. The TV reconstruction can in principle be found by any optimization method, but in practice the large scale of the systems arising in CT image reconstruction preclude the use of memory-intensive methods such as Newton's method. The simple gradient method has much lower memory requirements, but exhibits prohibitively slow convergence. In the present work we address the question of how to reduce the number of gradient method iterations needed to achieve a high-accuracy TV reconstruction. We consider the use of two accelerated gradient-based methods, GPBB and UPN, to solve the 3D-TV minimization problem in CT image reconstruction. The former incorporates several heuristics from the optimization literature such as Barzilai-Borwein (BB) step size selection and nonmonotone line search. The latter uses a cleverly chosen sequence of auxiliary points to achieve a better convergence rate. The methods are memory efficient and equipped with a stopping criterion to ensure that the TV reconstruction has indeed been found. An implementation of the methods (in C with interface to Matlab) is available for download from http://www2.imm.dtu.dk/~pch/TVReg/. We compare the proposed methods with the standard gradient method, applied to a 3D test problem with synthetic few-view data. We find experimentally that for realistic parameters the proposed methods significantly outperform the standard gradient method. (orig.)

  5. Wavefront reconstruction in digital off-axis holography via sparse coding of amplitude and absolute phase.

    Science.gov (United States)

    Katkovnik, V; Shevkunov, I A; Petrov, N V; Egiazarian, K

    2015-05-15

    This work presents the new method for wavefront reconstruction from a digital hologram recorded in off-axis configuration. The main feature of the proposed algorithm is a good ability for noise filtration due to the original formulation of the problem taking into account the presence of noise in the recorded intensity distribution and the sparse phase and amplitude reconstruction approach with the data-adaptive block-matching 3D technique. Basically, the sparsity assumes that low dimensional models can be used for phase and amplitude approximations. This low dimensionality enables strong suppression of noisy components and accurate revealing of the main features of the signals of interest. The principal point is that dictionaries of these sparse models are not known in advance and reconstructed from given noisy observations in a multiobjective optimization procedure. We show experimental results demonstrating the effectiveness of our approach.

  6. Point-source reconstruction with a sparse light-sensor array for optical TPC readout

    International Nuclear Information System (INIS)

    Rutter, G; Richards, M; Bennieston, A J; Ramachers, Y A

    2011-01-01

    A reconstruction technique for sparse array optical signal readout is introduced and applied to the generic challenge of large-area readout of a large number of point light sources. This challenge finds a prominent example in future, large volume neutrino detector studies based on liquid argon. It is concluded that the sparse array option may be ruled out for reasons of required number of channels when compared to a benchmark derived from charge readout on wire-planes. Smaller-scale detectors, however, could benefit from this technology.

  7. Simulation and experimental studies of three-dimensional (3D) image reconstruction from insufficient sampling data based on compressed-sensing theory for potential applications to dental cone-beam CT

    International Nuclear Information System (INIS)

    Je, U.K.; Lee, M.S.; Cho, H.S.; Hong, D.K.; Park, Y.O.; Park, C.K.; Cho, H.M.; Choi, S.I.; Woo, T.H.

    2015-01-01

    In practical applications of three-dimensional (3D) tomographic imaging, there are often challenges for image reconstruction from insufficient sampling data. In computed tomography (CT), for example, image reconstruction from sparse views and/or limited-angle (<360°) views would enable fast scanning with reduced imaging doses to the patient. In this study, we investigated and implemented a reconstruction algorithm based on the compressed-sensing (CS) theory, which exploits the sparseness of the gradient image with substantially high accuracy, for potential applications to low-dose, high-accurate dental cone-beam CT (CBCT). We performed systematic simulation works to investigate the image characteristics and also performed experimental works by applying the algorithm to a commercially-available dental CBCT system to demonstrate its effectiveness for image reconstruction in insufficient sampling problems. We successfully reconstructed CBCT images of superior accuracy from insufficient sampling data and evaluated the reconstruction quality quantitatively. Both simulation and experimental demonstrations of the CS-based reconstruction from insufficient data indicate that the CS-based algorithm can be applied directly to current dental CBCT systems for reducing the imaging doses and further improving the image quality

  8. A Novel Design of Sparse Prototype Filter for Nearly Perfect Reconstruction Cosine-Modulated Filter Banks

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2018-05-01

    Full Text Available Cosine-modulated filter banks play a major role in digital signal processing. Sparse FIR filter banks have lower implementation complexity than full filter banks, while keeping a good performance level. This paper presents a fast design paradigm for sparse nearly perfect-reconstruction (NPR cosine-modulated filter banks. First, an approximation function is introduced to reduce the non-convex quadratically constrained optimization problem to a linearly constrained optimization problem. Then, the desired sparse linear phase FIR prototype filter is derived through the orthogonal matching pursuit (OMP performed under the weighted l 2 norm. The simulation results demonstrate that the proposed scheme is an effective paradigm to design sparse NPR cosine-modulated filter banks.

  9. Sparse Source EEG Imaging with the Variational Garrote

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Stahlhut, Carsten; Hansen, Lars Kai

    2013-01-01

    EEG imaging, the estimation of the cortical source distribution from scalp electrode measurements, poses an extremely ill-posed inverse problem. Recent work by Delorme et al. (2012) supports the hypothesis that distributed source solutions are sparse. We show that direct search for sparse solutions...

  10. Penalised Maximum Likelihood Simultaneous Longitudinal PET Image Reconstruction with Difference-Image Priors.

    Science.gov (United States)

    Ellis, Sam; Reader, Andrew J

    2018-04-26

    Many clinical contexts require the acquisition of multiple positron emission tomography (PET) scans of a single subject, for example to observe and quantify changes in functional behaviour in tumours after treatment in oncology. Typically, the datasets from each of these scans are reconstructed individually, without exploiting the similarities between them. We have recently shown that sharing information between longitudinal PET datasets by penalising voxel-wise differences during image reconstruction can improve reconstructed images by reducing background noise and increasing the contrast-to-noise ratio of high activity lesions. Here we present two additional novel longitudinal difference-image priors and evaluate their performance using 2D simulation studies and a 3D real dataset case study. We have previously proposed a simultaneous difference-image-based penalised maximum likelihood (PML) longitudinal image reconstruction method that encourages sparse difference images (DS-PML), and in this work we propose two further novel prior terms. The priors are designed to encourage longitudinal images with corresponding differences which have i) low entropy (DE-PML), and ii) high sparsity in their spatial gradients (DTV-PML). These two new priors and the originally proposed longitudinal prior were applied to 2D simulated treatment response [ 18 F]fluorodeoxyglucose (FDG) brain tumour datasets and compared to standard maximum likelihood expectation-maximisation (MLEM) reconstructions. These 2D simulation studies explored the effects of penalty strengths, tumour behaviour, and inter-scan coupling on reconstructed images. Finally, a real two-scan longitudinal data series acquired from a head and neck cancer patient was reconstructed with the proposed methods and the results compared to standard reconstruction methods. Using any of the three priors with an appropriate penalty strength produced images with noise levels equivalent to those seen when using standard

  11. Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation

    International Nuclear Information System (INIS)

    Wang, Yan; Zhou, Jiliu; Zhang, Pei; An, Le; Ma, Guangkai; Kang, Jiayin; Shi, Feng; Shen, Dinggang; Wu, Xi; Lalush, David S; Lin, Weili

    2016-01-01

    Positron emission tomography (PET) has been widely used in clinical diagnosis for diseases and disorders. To obtain high-quality PET images requires a standard-dose radionuclide (tracer) injection into the human body, which inevitably increases risk of radiation exposure. One possible solution to this problem is to predict the standard-dose PET image from its low-dose counterpart and its corresponding multimodal magnetic resonance (MR) images. Inspired by the success of patch-based sparse representation (SR) in super-resolution image reconstruction, we propose a mapping-based SR (m-SR) framework for standard-dose PET image prediction. Compared with the conventional patch-based SR, our method uses a mapping strategy to ensure that the sparse coefficients, estimated from the multimodal MR images and low-dose PET image, can be applied directly to the prediction of standard-dose PET image. As the mapping between multimodal MR images (or low-dose PET image) and standard-dose PET images can be particularly complex, one step of mapping is often insufficient. To this end, an incremental refinement framework is therefore proposed. Specifically, the predicted standard-dose PET image is further mapped to the target standard-dose PET image, and then the SR is performed again to predict a new standard-dose PET image. This procedure can be repeated for prediction refinement of the iterations. Also, a patch selection based dictionary construction method is further used to speed up the prediction process. The proposed method is validated on a human brain dataset. The experimental results show that our method can outperform benchmark methods in both qualitative and quantitative measures. (paper)

  12. Real-Space x-ray tomographic reconstruction of randomly oriented objects with sparse data frames.

    Science.gov (United States)

    Ayyer, Kartik; Philipp, Hugh T; Tate, Mark W; Elser, Veit; Gruner, Sol M

    2014-02-10

    Schemes for X-ray imaging single protein molecules using new x-ray sources, like x-ray free electron lasers (XFELs), require processing many frames of data that are obtained by taking temporally short snapshots of identical molecules, each with a random and unknown orientation. Due to the small size of the molecules and short exposure times, average signal levels of much less than 1 photon/pixel/frame are expected, much too low to be processed using standard methods. One approach to process the data is to use statistical methods developed in the EMC algorithm (Loh & Elser, Phys. Rev. E, 2009) which processes the data set as a whole. In this paper we apply this method to a real-space tomographic reconstruction using sparse frames of data (below 10(-2) photons/pixel/frame) obtained by performing x-ray transmission measurements of a low-contrast, randomly-oriented object. This extends the work by Philipp et al. (Optics Express, 2012) to three dimensions and is one step closer to the single molecule reconstruction problem.

  13. Analog system for computing sparse codes

    Science.gov (United States)

    Rozell, Christopher John; Johnson, Don Herrick; Baraniuk, Richard Gordon; Olshausen, Bruno A.; Ortman, Robert Lowell

    2010-08-24

    A parallel dynamical system for computing sparse representations of data, i.e., where the data can be fully represented in terms of a small number of non-zero code elements, and for reconstructing compressively sensed images. The system is based on the principles of thresholding and local competition that solves a family of sparse approximation problems corresponding to various sparsity metrics. The system utilizes Locally Competitive Algorithms (LCAs), nodes in a population continually compete with neighboring units using (usually one-way) lateral inhibition to calculate coefficients representing an input in an over complete dictionary.

  14. Blockwise conjugate gradient methods for image reconstruction in volumetric CT.

    Science.gov (United States)

    Qiu, W; Titley-Peloquin, D; Soleimani, M

    2012-11-01

    Cone beam computed tomography (CBCT) enables volumetric image reconstruction from 2D projection data and plays an important role in image guided radiation therapy (IGRT). Filtered back projection is still the most frequently used algorithm in applications. The algorithm discretizes the scanning process (forward projection) into a system of linear equations, which must then be solved to recover images from measured projection data. The conjugate gradients (CG) algorithm and its variants can be used to solve (possibly regularized) linear systems of equations Ax=b and linear least squares problems minx∥b-Ax∥2, especially when the matrix A is very large and sparse. Their applications can be found in a general CT context, but in tomography problems (e.g. CBCT reconstruction) they have not widely been used. Hence, CBCT reconstruction using the CG-type algorithm LSQR was implemented and studied in this paper. In CBCT reconstruction, the main computational challenge is that the matrix A usually is very large, and storing it in full requires an amount of memory well beyond the reach of commodity computers. Because of these memory capacity constraints, only a small fraction of the weighting matrix A is typically used, leading to a poor reconstruction. In this paper, to overcome this difficulty, the matrix A is partitioned and stored blockwise, and blockwise matrix-vector multiplications are implemented within LSQR. This implementation allows us to use the full weighting matrix A for CBCT reconstruction without further enhancing computer standards. Tikhonov regularization can also be implemented in this fashion, and can produce significant improvement in the reconstructed images. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Similarity regularized sparse group lasso for cup to disc ratio computation.

    Science.gov (United States)

    Cheng, Jun; Zhang, Zhuo; Tao, Dacheng; Wong, Damon Wing Kee; Liu, Jiang; Baskaran, Mani; Aung, Tin; Wong, Tien Yin

    2017-08-01

    Automatic cup to disc ratio (CDR) computation from color fundus images has shown to be promising for glaucoma detection. Over the past decade, many algorithms have been proposed. In this paper, we first review the recent work in the area and then present a novel similarity-regularized sparse group lasso method for automated CDR estimation. The proposed method reconstructs the testing disc image based on a set of reference disc images by integrating the similarity between testing and the reference disc images with the sparse group lasso constraints. The reconstruction coefficients are then used to estimate the CDR of the testing image. The proposed method has been validated using 650 images with manually annotated CDRs. Experimental results show an average CDR error of 0.0616 and a correlation coefficient of 0.7, outperforming other methods. The areas under curve in the diagnostic test reach 0.843 and 0.837 when manual and automatically segmented discs are used respectively, better than other methods as well.

  16. Image Super-Resolution Algorithm Based on an Improved Sparse Autoencoder

    Directory of Open Access Journals (Sweden)

    Detian Huang

    2018-01-01

    Full Text Available Due to the limitations of the resolution of the imaging system and the influence of scene changes and other factors, sometimes only low-resolution images can be acquired, which cannot satisfy the practical application’s requirements. To improve the quality of low-resolution images, a novel super-resolution algorithm based on an improved sparse autoencoder is proposed. Firstly, in the training set preprocessing stage, the high- and low-resolution image training sets are constructed, respectively, by using high-frequency information of the training samples as the characterization, and then the zero-phase component analysis whitening technique is utilized to decorrelate the formed joint training set to reduce its redundancy. Secondly, a constructed sparse regularization term is added to the cost function of the traditional sparse autoencoder to further strengthen the sparseness constraint on the hidden layer. Finally, in the dictionary learning stage, the improved sparse autoencoder is adopted to achieve unsupervised dictionary learning to improve the accuracy and stability of the dictionary. Experimental results validate that the proposed algorithm outperforms the existing algorithms both in terms of the subjective visual perception and the objective evaluation indices, including the peak signal-to-noise ratio and the structural similarity measure.

  17. Greedy vs. L1 convex optimization in sparse coding

    DEFF Research Database (Denmark)

    Ren, Huamin; Pan, Hong; Olsen, Søren Ingvor

    2015-01-01

    Sparse representation has been applied successfully in many image analysis applications, including abnormal event detection, in which a baseline is to learn a dictionary from the training data and detect anomalies from its sparse codes. During this procedure, sparse codes which can be achieved...... solutions. Considering the property of abnormal event detection, i.e., only normal videos are used as training data due to practical reasons, effective codes in classification application may not perform well in abnormality detection. Therefore, we compare the sparse codes and comprehensively evaluate...... their performance from various aspects to better understand their applicability, including computation time, reconstruction error, sparsity, detection...

  18. Sparse sampling and reconstruction for electron and scanning probe microscope imaging

    Science.gov (United States)

    Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.

    2015-07-28

    Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.

  19. Sparse Representation Based Multi-Instance Learning for Breast Ultrasound Image Classification

    Directory of Open Access Journals (Sweden)

    Lu Bing

    2017-01-01

    Full Text Available We propose a novel method based on sparse representation for breast ultrasound image classification under the framework of multi-instance learning (MIL. After image enhancement and segmentation, concentric circle is used to extract the global and local features for improving the accuracy in diagnosis and prediction. The classification problem of ultrasound image is converted to sparse representation based MIL problem. Each instance of a bag is represented as a sparse linear combination of all basis vectors in the dictionary, and then the bag is represented by one feature vector which is obtained via sparse representations of all instances within the bag. The sparse and MIL problem is further converted to a conventional learning problem that is solved by relevance vector machine (RVM. Results of single classifiers are combined to be used for classification. Experimental results on the breast cancer datasets demonstrate the superiority of the proposed method in terms of classification accuracy as compared with state-of-the-art MIL methods.

  20. Sparse Representation Based Multi-Instance Learning for Breast Ultrasound Image Classification.

    Science.gov (United States)

    Bing, Lu; Wang, Wei

    2017-01-01

    We propose a novel method based on sparse representation for breast ultrasound image classification under the framework of multi-instance learning (MIL). After image enhancement and segmentation, concentric circle is used to extract the global and local features for improving the accuracy in diagnosis and prediction. The classification problem of ultrasound image is converted to sparse representation based MIL problem. Each instance of a bag is represented as a sparse linear combination of all basis vectors in the dictionary, and then the bag is represented by one feature vector which is obtained via sparse representations of all instances within the bag. The sparse and MIL problem is further converted to a conventional learning problem that is solved by relevance vector machine (RVM). Results of single classifiers are combined to be used for classification. Experimental results on the breast cancer datasets demonstrate the superiority of the proposed method in terms of classification accuracy as compared with state-of-the-art MIL methods.

  1. Low-Rank Sparse Coding for Image Classification

    KAUST Repository

    Zhang, Tianzhu; Ghanem, Bernard; Liu, Si; Xu, Changsheng; Ahuja, Narendra

    2013-01-01

    In this paper, we propose a low-rank sparse coding (LRSC) method that exploits local structure information among features in an image for the purpose of image-level classification. LRSC represents densely sampled SIFT descriptors, in a spatial neighborhood, collectively as low-rank, sparse linear combinations of code words. As such, it casts the feature coding problem as a low-rank matrix learning problem, which is different from previous methods that encode features independently. This LRSC has a number of attractive properties. (1) It encourages sparsity in feature codes, locality in codebook construction, and low-rankness for spatial consistency. (2) LRSC encodes local features jointly by considering their low-rank structure information, and is computationally attractive. We evaluate the LRSC by comparing its performance on a set of challenging benchmarks with that of 7 popular coding and other state-of-the-art methods. Our experiments show that by representing local features jointly, LRSC not only outperforms the state-of-the-art in classification accuracy but also improves the time complexity of methods that use a similar sparse linear representation model for feature coding.

  2. Low-Rank Sparse Coding for Image Classification

    KAUST Repository

    Zhang, Tianzhu

    2013-12-01

    In this paper, we propose a low-rank sparse coding (LRSC) method that exploits local structure information among features in an image for the purpose of image-level classification. LRSC represents densely sampled SIFT descriptors, in a spatial neighborhood, collectively as low-rank, sparse linear combinations of code words. As such, it casts the feature coding problem as a low-rank matrix learning problem, which is different from previous methods that encode features independently. This LRSC has a number of attractive properties. (1) It encourages sparsity in feature codes, locality in codebook construction, and low-rankness for spatial consistency. (2) LRSC encodes local features jointly by considering their low-rank structure information, and is computationally attractive. We evaluate the LRSC by comparing its performance on a set of challenging benchmarks with that of 7 popular coding and other state-of-the-art methods. Our experiments show that by representing local features jointly, LRSC not only outperforms the state-of-the-art in classification accuracy but also improves the time complexity of methods that use a similar sparse linear representation model for feature coding.

  3. High efficient optical remote sensing images acquisition for nano-satellite: reconstruction algorithms

    Science.gov (United States)

    Liu, Yang; Li, Feng; Xin, Lei; Fu, Jie; Huang, Puming

    2017-10-01

    Large amount of data is one of the most obvious features in satellite based remote sensing systems, which is also a burden for data processing and transmission. The theory of compressive sensing(CS) has been proposed for almost a decade, and massive experiments show that CS has favorable performance in data compression and recovery, so we apply CS theory to remote sensing images acquisition. In CS, the construction of classical sensing matrix for all sparse signals has to satisfy the Restricted Isometry Property (RIP) strictly, which limits applying CS in practical in image compression. While for remote sensing images, we know some inherent characteristics such as non-negative, smoothness and etc.. Therefore, the goal of this paper is to present a novel measurement matrix that breaks RIP. The new sensing matrix consists of two parts: the standard Nyquist sampling matrix for thumbnails and the conventional CS sampling matrix. Since most of sun-synchronous based satellites fly around the earth 90 minutes and the revisit cycle is also short, lots of previously captured remote sensing images of the same place are available in advance. This drives us to reconstruct remote sensing images through a deep learning approach with those measurements from the new framework. Therefore, we propose a novel deep convolutional neural network (CNN) architecture which takes in undersampsing measurements as input and outputs an intermediate reconstruction image. It is well known that the training procedure to the network costs long time, luckily, the training step can be done only once, which makes the approach attractive for a host of sparse recovery problems.

  4. Reconstruction of spatio-temporal temperature from sparse historical records using robust probabilistic principal component regression

    OpenAIRE

    Tipton, John; Hooten, Mevin; Goring, Simon

    2017-01-01

    Scientific records of temperature and precipitation have been kept for several hundred years, but for many areas, only a shorter record exists. To understand climate change, there is a need for rigorous statistical reconstructions of the paleoclimate using proxy data. Paleoclimate proxy data are often sparse, noisy, indirect measurements of the climate process of interest, making each proxy uniquely challenging to model statistically. We reconstruct spatially explicit temper...

  5. Recent Development of Dual-Dictionary Learning Approach in Medical Image Analysis and Reconstruction.

    Science.gov (United States)

    Wang, Bigong; Li, Liang

    2015-01-01

    As an implementation of compressive sensing (CS), dual-dictionary learning (DDL) method provides an ideal access to restore signals of two related dictionaries and sparse representation. It has been proven that this method performs well in medical image reconstruction with highly undersampled data, especially for multimodality imaging like CT-MRI hybrid reconstruction. Because of its outstanding strength, short signal acquisition time, and low radiation dose, DDL has allured a broad interest in both academic and industrial fields. Here in this review article, we summarize DDL's development history, conclude the latest advance, and also discuss its role in the future directions and potential applications in medical imaging. Meanwhile, this paper points out that DDL is still in the initial stage, and it is necessary to make further studies to improve this method, especially in dictionary training.

  6. Group-sparse representation with dictionary learning for medical image denoising and fusion.

    Science.gov (United States)

    Li, Shutao; Yin, Haitao; Fang, Leyuan

    2012-12-01

    Recently, sparse representation has attracted a lot of interest in various areas. However, the standard sparse representation does not consider the intrinsic structure, i.e., the nonzero elements occur in clusters, called group sparsity. Furthermore, there is no dictionary learning method for group sparse representation considering the geometrical structure of space spanned by atoms. In this paper, we propose a novel dictionary learning method, called Dictionary Learning with Group Sparsity and Graph Regularization (DL-GSGR). First, the geometrical structure of atoms is modeled as the graph regularization. Then, combining group sparsity and graph regularization, the DL-GSGR is presented, which is solved by alternating the group sparse coding and dictionary updating. In this way, the group coherence of learned dictionary can be enforced small enough such that any signal can be group sparse coded effectively. Finally, group sparse representation with DL-GSGR is applied to 3-D medical image denoising and image fusion. Specifically, in 3-D medical image denoising, a 3-D processing mechanism (using the similarity among nearby slices) and temporal regularization (to perverse the correlations across nearby slices) are exploited. The experimental results on 3-D image denoising and image fusion demonstrate the superiority of our proposed denoising and fusion approaches.

  7. SparseBeads data: benchmarking sparsity-regularized computed tomography

    Science.gov (United States)

    Jørgensen, Jakob S.; Coban, Sophia B.; Lionheart, William R. B.; McDonald, Samuel A.; Withers, Philip J.

    2017-12-01

    Sparsity regularization (SR) such as total variation (TV) minimization allows accurate image reconstruction in x-ray computed tomography (CT) from fewer projections than analytical methods. Exactly how few projections suffice and how this number may depend on the image remain poorly understood. Compressive sensing connects the critical number of projections to the image sparsity, but does not cover CT, however empirical results suggest a similar connection. The present work establishes for real CT data a connection between gradient sparsity and the sufficient number of projections for accurate TV-regularized reconstruction. A collection of 48 x-ray CT datasets called SparseBeads was designed for benchmarking SR reconstruction algorithms. Beadpacks comprising glass beads of five different sizes as well as mixtures were scanned in a micro-CT scanner to provide structured datasets with variable image sparsity levels, number of projections and noise levels to allow the systematic assessment of parameters affecting performance of SR reconstruction algorithms6. Using the SparseBeads data, TV-regularized reconstruction quality was assessed as a function of numbers of projections and gradient sparsity. The critical number of projections for satisfactory TV-regularized reconstruction increased almost linearly with the gradient sparsity. This establishes a quantitative guideline from which one may predict how few projections to acquire based on expected sample sparsity level as an aid in planning of dose- or time-critical experiments. The results are expected to hold for samples of similar characteristics, i.e. consisting of few, distinct phases with relatively simple structure. Such cases are plentiful in porous media, composite materials, foams, as well as non-destructive testing and metrology. For samples of other characteristics the proposed methodology may be used to investigate similar relations.

  8. Consensus Convolutional Sparse Coding

    KAUST Repository

    Choudhury, Biswarup

    2017-12-01

    Convolutional sparse coding (CSC) is a promising direction for unsupervised learning in computer vision. In contrast to recent supervised methods, CSC allows for convolutional image representations to be learned that are equally useful for high-level vision tasks and low-level image reconstruction and can be applied to a wide range of tasks without problem-specific retraining. Due to their extreme memory requirements, however, existing CSC solvers have so far been limited to low-dimensional problems and datasets using a handful of low-resolution example images at a time. In this paper, we propose a new approach to solving CSC as a consensus optimization problem, which lifts these limitations. By learning CSC features from large-scale image datasets for the first time, we achieve significant quality improvements in a number of imaging tasks. Moreover, the proposed method enables new applications in high-dimensional feature learning that has been intractable using existing CSC methods. This is demonstrated for a variety of reconstruction problems across diverse problem domains, including 3D multispectral demosaicing and 4D light field view synthesis.

  9. Consensus Convolutional Sparse Coding

    KAUST Repository

    Choudhury, Biswarup

    2017-04-11

    Convolutional sparse coding (CSC) is a promising direction for unsupervised learning in computer vision. In contrast to recent supervised methods, CSC allows for convolutional image representations to be learned that are equally useful for high-level vision tasks and low-level image reconstruction and can be applied to a wide range of tasks without problem-specific retraining. Due to their extreme memory requirements, however, existing CSC solvers have so far been limited to low-dimensional problems and datasets using a handful of low-resolution example images at a time. In this paper, we propose a new approach to solving CSC as a consensus optimization problem, which lifts these limitations. By learning CSC features from large-scale image datasets for the first time, we achieve significant quality improvements in a number of imaging tasks. Moreover, the proposed method enables new applications in high dimensional feature learning that has been intractable using existing CSC methods. This is demonstrated for a variety of reconstruction problems across diverse problem domains, including 3D multispectral demosaickingand 4D light field view synthesis.

  10. Consensus Convolutional Sparse Coding

    KAUST Repository

    Choudhury, Biswarup; Swanson, Robin; Heide, Felix; Wetzstein, Gordon; Heidrich, Wolfgang

    2017-01-01

    Convolutional sparse coding (CSC) is a promising direction for unsupervised learning in computer vision. In contrast to recent supervised methods, CSC allows for convolutional image representations to be learned that are equally useful for high-level vision tasks and low-level image reconstruction and can be applied to a wide range of tasks without problem-specific retraining. Due to their extreme memory requirements, however, existing CSC solvers have so far been limited to low-dimensional problems and datasets using a handful of low-resolution example images at a time. In this paper, we propose a new approach to solving CSC as a consensus optimization problem, which lifts these limitations. By learning CSC features from large-scale image datasets for the first time, we achieve significant quality improvements in a number of imaging tasks. Moreover, the proposed method enables new applications in high-dimensional feature learning that has been intractable using existing CSC methods. This is demonstrated for a variety of reconstruction problems across diverse problem domains, including 3D multispectral demosaicing and 4D light field view synthesis.

  11. Experimental characterization of the Green’s function in a room using sparse reconstruction principles

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Christiansen, Rasmus Ellebæk

    2017-01-01

    Measuring the Green’s function over the entire volume of a room would typically require an unfeasible number of measurements, due to requirements on spatial sampling. To alleviate the need for excessive measurements, sparse reconstruction methods can be employed, as they make it possible to recon...

  12. Obtaining sparse distributions in 2D inverse problems

    OpenAIRE

    Reci, A; Sederman, Andrew John; Gladden, Lynn Faith

    2017-01-01

    The mathematics of inverse problems has relevance across numerous estimation problems in science and engineering. L1 regularization has attracted recent attention in reconstructing the system properties in the case of sparse inverse problems; i.e., when the true property sought is not adequately described by a continuous distribution, in particular in Compressed Sensing image reconstruction. In this work, we focus on the application of L1 regularization to a class of inverse problems; relaxat...

  13. Task-based optimization of image reconstruction in breast CT

    Science.gov (United States)

    Sanchez, Adrian A.; Sidky, Emil Y.; Pan, Xiaochuan

    2014-03-01

    We demonstrate a task-based assessment of image quality in dedicated breast CT in order to optimize the number of projection views acquired. The methodology we employ is based on the Hotelling Observer (HO) and its associated metrics. We consider two tasks: the Rayleigh task of discerning between two resolvable objects and a single larger object, and the signal detection task of classifying an image as belonging to either a signalpresent or signal-absent hypothesis. HO SNR values are computed for 50, 100, 200, 500, and 1000 projection view images, with the total imaging radiation dose held constant. We use the conventional fan-beam FBP algorithm and investigate the effect of varying the width of a Hanning window used in the reconstruction, since this affects both the noise properties of the image and the under-sampling artifacts which can arise in the case of sparse-view acquisitions. Our results demonstrate that fewer projection views should be used in order to increase HO performance, which in this case constitutes an upper-bound on human observer performance. However, the impact on HO SNR of using fewer projection views, each with a higher dose, is not as significant as the impact of employing regularization in the FBP reconstruction through a Hanning filter.

  14. Spectrotemporal CT data acquisition and reconstruction at low dose

    International Nuclear Information System (INIS)

    Clark, Darin P.; Badea, Cristian T.; Lee, Chang-Lung; Kirsch, David G.

    2015-01-01

    Purpose: X-ray computed tomography (CT) is widely used, both clinically and preclinically, for fast, high-resolution anatomic imaging; however, compelling opportunities exist to expand its use in functional imaging applications. For instance, spectral information combined with nanoparticle contrast agents enables quantification of tissue perfusion levels, while temporal information details cardiac and respiratory dynamics. The authors propose and demonstrate a projection acquisition and reconstruction strategy for 5D CT (3D + dual energy + time) which recovers spectral and temporal information without substantially increasing radiation dose or sampling time relative to anatomic imaging protocols. Methods: The authors approach the 5D reconstruction problem within the framework of low-rank and sparse matrix decomposition. Unlike previous work on rank-sparsity constrained CT reconstruction, the authors establish an explicit rank-sparse signal model to describe the spectral and temporal dimensions. The spectral dimension is represented as a well-sampled time and energy averaged image plus regularly undersampled principal components describing the spectral contrast. The temporal dimension is represented as the same time and energy averaged reconstruction plus contiguous, spatially sparse, and irregularly sampled temporal contrast images. Using a nonlinear, image domain filtration approach, the authors refer to as rank-sparse kernel regression, the authors transfer image structure from the well-sampled time and energy averaged reconstruction to the spectral and temporal contrast images. This regularization strategy strictly constrains the reconstruction problem while approximately separating the temporal and spectral dimensions. Separability results in a highly compressed representation for the 5D data in which projections are shared between the temporal and spectral reconstruction subproblems, enabling substantial undersampling. The authors solved the 5D reconstruction

  15. Nonlinear spike-and-slab sparse coding for interpretable image encoding.

    Directory of Open Access Journals (Sweden)

    Jacquelyn A Shelton

    Full Text Available Sparse coding is a popular approach to model natural images but has faced two main challenges: modelling low-level image components (such as edge-like structures and their occlusions and modelling varying pixel intensities. Traditionally, images are modelled as a sparse linear superposition of dictionary elements, where the probabilistic view of this problem is that the coefficients follow a Laplace or Cauchy prior distribution. We propose a novel model that instead uses a spike-and-slab prior and nonlinear combination of components. With the prior, our model can easily represent exact zeros for e.g. the absence of an image component, such as an edge, and a distribution over non-zero pixel intensities. With the nonlinearity (the nonlinear max combination rule, the idea is to target occlusions; dictionary elements correspond to image components that can occlude each other. There are major consequences of the model assumptions made by both (nonlinear approaches, thus the main goal of this paper is to isolate and highlight differences between them. Parameter optimization is analytically and computationally intractable in our model, thus as a main contribution we design an exact Gibbs sampler for efficient inference which we can apply to higher dimensional data using latent variable preselection. Results on natural and artificial occlusion-rich data with controlled forms of sparse structure show that our model can extract a sparse set of edge-like components that closely match the generating process, which we refer to as interpretable components. Furthermore, the sparseness of the solution closely follows the ground-truth number of components/edges in the images. The linear model did not learn such edge-like components with any level of sparsity. This suggests that our model can adaptively well-approximate and characterize the meaningful generation process.

  16. Multi scales based sparse matrix spectral clustering image segmentation

    Science.gov (United States)

    Liu, Zhongmin; Chen, Zhicai; Li, Zhanming; Hu, Wenjin

    2018-04-01

    In image segmentation, spectral clustering algorithms have to adopt the appropriate scaling parameter to calculate the similarity matrix between the pixels, which may have a great impact on the clustering result. Moreover, when the number of data instance is large, computational complexity and memory use of the algorithm will greatly increase. To solve these two problems, we proposed a new spectral clustering image segmentation algorithm based on multi scales and sparse matrix. We devised a new feature extraction method at first, then extracted the features of image on different scales, at last, using the feature information to construct sparse similarity matrix which can improve the operation efficiency. Compared with traditional spectral clustering algorithm, image segmentation experimental results show our algorithm have better degree of accuracy and robustness.

  17. Sparse-view proton computed tomography using modulated proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jiseoc; Kim, Changhwan; Cho, Seungryong, E-mail: scho@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejon 305-701 (Korea, Republic of); Min, Byungjun [Department of Radiation Oncology, Kangbuk Samsung Hospital, 110–746 (Korea, Republic of); Kwak, Jungwon [Department of Radiation Oncology, Asan Medical Center, 138–736 (Korea, Republic of); Park, Seyjoon; Lee, Se Byeong [Proton Therapy Center, National Cancer Center, 410–769 (Korea, Republic of); Park, Sungyong [Proton Therapy Center, McLaren Cancer Institute, Flint, Michigan 48532 (United States)

    2015-02-15

    Purpose: Proton imaging that uses a modulated proton beam and an intensity detector allows a relatively fast image acquisition compared to the imaging approach based on a trajectory tracking detector. In addition, it requires a relatively simple implementation in a conventional proton therapy equipment. The model of geometric straight ray assumed in conventional computed tomography (CT) image reconstruction is however challenged by multiple-Coulomb scattering and energy straggling in the proton imaging. Radiation dose to the patient is another important issue that has to be taken care of for practical applications. In this work, the authors have investigated iterative image reconstructions after a deconvolution of the sparsely view-sampled data to address these issues in proton CT. Methods: Proton projection images were acquired using the modulated proton beams and the EBT2 film as an intensity detector. Four electron-density cylinders representing normal soft tissues and bone were used as imaged object and scanned at 40 views that are equally separated over 360°. Digitized film images were converted to water-equivalent thickness by use of an empirically derived conversion curve. For improving the image quality, a deconvolution-based image deblurring with an empirically acquired point spread function was employed. They have implemented iterative image reconstruction algorithms such as adaptive steepest descent-projection onto convex sets (ASD-POCS), superiorization method–projection onto convex sets (SM-POCS), superiorization method–expectation maximization (SM-EM), and expectation maximization-total variation minimization (EM-TV). Performance of the four image reconstruction algorithms was analyzed and compared quantitatively via contrast-to-noise ratio (CNR) and root-mean-square-error (RMSE). Results: Objects of higher electron density have been reconstructed more accurately than those of lower density objects. The bone, for example, has been reconstructed

  18. An Improved Information Hiding Method Based on Sparse Representation

    Directory of Open Access Journals (Sweden)

    Minghai Yao

    2015-01-01

    Full Text Available A novel biometric authentication information hiding method based on the sparse representation is proposed for enhancing the security of biometric information transmitted in the network. In order to make good use of abundant information of the cover image, the sparse representation method is adopted to exploit the correlation between the cover and biometric images. Thus, the biometric image is divided into two parts. The first part is the reconstructed image, and the other part is the residual image. The biometric authentication image cannot be restored by any one part. The residual image and sparse representation coefficients are embedded into the cover image. Then, for the sake of causing much less attention of attackers, the visual attention mechanism is employed to select embedding location and embedding sequence of secret information. Finally, the reversible watermarking algorithm based on histogram is utilized for embedding the secret information. For verifying the validity of the algorithm, the PolyU multispectral palmprint and the CASIA iris databases are used as biometric information. The experimental results show that the proposed method exhibits good security, invisibility, and high capacity.

  19. Recent Development of Dual-Dictionary Learning Approach in Medical Image Analysis and Reconstruction

    Science.gov (United States)

    Wang, Bigong; Li, Liang

    2015-01-01

    As an implementation of compressive sensing (CS), dual-dictionary learning (DDL) method provides an ideal access to restore signals of two related dictionaries and sparse representation. It has been proven that this method performs well in medical image reconstruction with highly undersampled data, especially for multimodality imaging like CT-MRI hybrid reconstruction. Because of its outstanding strength, short signal acquisition time, and low radiation dose, DDL has allured a broad interest in both academic and industrial fields. Here in this review article, we summarize DDL's development history, conclude the latest advance, and also discuss its role in the future directions and potential applications in medical imaging. Meanwhile, this paper points out that DDL is still in the initial stage, and it is necessary to make further studies to improve this method, especially in dictionary training. PMID:26089956

  20. An adaptive image sparse reconstruction method combined with nonlocal similarity and cosparsity for mixed Gaussian-Poisson noise removal

    Science.gov (United States)

    Chen, Yong-fei; Gao, Hong-xia; Wu, Zi-ling; Kang, Hui

    2018-01-01

    Compressed sensing (CS) has achieved great success in single noise removal. However, it cannot restore the images contaminated with mixed noise efficiently. This paper introduces nonlocal similarity and cosparsity inspired by compressed sensing to overcome the difficulties in mixed noise removal, in which nonlocal similarity explores the signal sparsity from similar patches, and cosparsity assumes that the signal is sparse after a possibly redundant transform. Meanwhile, an adaptive scheme is designed to keep the balance between mixed noise removal and detail preservation based on local variance. Finally, IRLSM and RACoSaMP are adopted to solve the objective function. Experimental results demonstrate that the proposed method is superior to conventional CS methods, like K-SVD and state-of-art method nonlocally centralized sparse representation (NCSR), in terms of both visual results and quantitative measures.

  1. Optimized 3D Street Scene Reconstruction from Driving Recorder Images

    Directory of Open Access Journals (Sweden)

    Yongjun Zhang

    2015-07-01

    Full Text Available The paper presents an automatic region detection based method to reconstruct street scenes from driving recorder images. The driving recorder in this paper is a dashboard camera that collects images while the motor vehicle is moving. An enormous number of moving vehicles are included in the collected data because the typical recorders are often mounted in the front of moving vehicles and face the forward direction, which can make matching points on vehicles and guardrails unreliable. Believing that utilizing these image data can reduce street scene reconstruction and updating costs because of their low price, wide use, and extensive shooting coverage, we therefore proposed a new method, which is called the Mask automatic detecting method, to improve the structure results from the motion reconstruction. Note that we define vehicle and guardrail regions as “mask” in this paper since the features on them should be masked out to avoid poor matches. After removing the feature points in our new method, the camera poses and sparse 3D points that are reconstructed with the remaining matches. Our contrast experiments with the typical pipeline of structure from motion (SfM reconstruction methods, such as Photosynth and VisualSFM, demonstrated that the Mask decreased the root-mean-square error (RMSE of the pairwise matching results, which led to more accurate recovering results from the camera-relative poses. Removing features from the Mask also increased the accuracy of point clouds by nearly 30%–40% and corrected the problems of the typical methods on repeatedly reconstructing several buildings when there was only one target building.

  2. Free-breathing Sparse Sampling Cine MR Imaging with Iterative Reconstruction for the Assessment of Left Ventricular Function and Mass at 3.0 T.

    Science.gov (United States)

    Sudarski, Sonja; Henzler, Thomas; Haubenreisser, Holger; Dösch, Christina; Zenge, Michael O; Schmidt, Michaela; Nadar, Mariappan S; Borggrefe, Martin; Schoenberg, Stefan O; Papavassiliu, Theano

    2017-01-01

    Purpose To prospectively evaluate the accuracy of left ventricle (LV) analysis with a two-dimensional real-time cine true fast imaging with steady-state precession (trueFISP) magnetic resonance (MR) imaging sequence featuring sparse data sampling with iterative reconstruction (SSIR) performed with and without breath-hold (BH) commands at 3.0 T. Materials and Methods Ten control subjects (mean age, 35 years; range, 25-56 years) and 60 patients scheduled to undergo a routine cardiac examination that included LV analysis (mean age, 58 years; range, 20-86 years) underwent a fully sampled segmented multiple BH cine sequence (standard of reference) and a prototype undersampled SSIR sequence performed during a single BH and during free breathing (non-BH imaging). Quantitative analysis of LV function and mass was performed. Linear regression, Bland-Altman analysis, and paired t testing were performed. Results Similar to the results in control subjects, analysis of the 60 patients showed excellent correlation with the standard of reference for single-BH SSIR (r = 0.93-0.99) and non-BH SSIR (r = 0.92-0.98) for LV ejection fraction (EF), volume, and mass (P 3.0 T is noninferior to the standard of reference irrespective of BH commands. LV mass, however, is overestimated with SSIR. © RSNA, 2016 Online supplemental material is available for this article.

  3. CT Image Sequence Restoration Based on Sparse and Low-Rank Decomposition

    Science.gov (United States)

    Gou, Shuiping; Wang, Yueyue; Wang, Zhilong; Peng, Yong; Zhang, Xiaopeng; Jiao, Licheng; Wu, Jianshe

    2013-01-01

    Blurry organ boundaries and soft tissue structures present a major challenge in biomedical image restoration. In this paper, we propose a low-rank decomposition-based method for computed tomography (CT) image sequence restoration, where the CT image sequence is decomposed into a sparse component and a low-rank component. A new point spread function of Weiner filter is employed to efficiently remove blur in the sparse component; a wiener filtering with the Gaussian PSF is used to recover the average image of the low-rank component. And then we get the recovered CT image sequence by combining the recovery low-rank image with all recovery sparse image sequence. Our method achieves restoration results with higher contrast, sharper organ boundaries and richer soft tissue structure information, compared with existing CT image restoration methods. The robustness of our method was assessed with numerical experiments using three different low-rank models: Robust Principle Component Analysis (RPCA), Linearized Alternating Direction Method with Adaptive Penalty (LADMAP) and Go Decomposition (GoDec). Experimental results demonstrated that the RPCA model was the most suitable for the small noise CT images whereas the GoDec model was the best for the large noisy CT images. PMID:24023764

  4. A Sparse Bayesian Imaging Technique for Efficient Recovery of Reservoir Channels With Time-Lapse Seismic Measurements

    KAUST Repository

    Sana, Furrukh

    2016-06-01

    Subsurface reservoir flow channels are characterized by high-permeability values and serve as preferred pathways for fluid propagation. Accurate estimation of their geophysical structures is thus of great importance for the oil industry. The ensemble Kalman filter (EnKF) is a widely used statistical technique for estimating subsurface reservoir model parameters. However, accurate reconstruction of the subsurface geological features with the EnKF is challenging because of the limited measurements available from the wells and the smoothing effects imposed by the \\\\ell _{2} -norm nature of its update step. A new EnKF scheme based on sparse domain representation was introduced by Sana et al. (2015) to incorporate useful prior structural information in the estimation process for efficient recovery of subsurface channels. In this paper, we extend this work in two ways: 1) investigate the effects of incorporating time-lapse seismic data on the channel reconstruction; and 2) explore a Bayesian sparse reconstruction algorithm with the potential ability to reduce the computational requirements. Numerical results suggest that the performance of the new sparse Bayesian based EnKF scheme is enhanced with the availability of seismic measurements, leading to further improvement in the recovery of flow channels structures. The sparse Bayesian approach further provides a computationally efficient framework for enforcing a sparse solution, especially with the possibility of using high sparsity rates through the inclusion of seismic data.

  5. A Sparse Bayesian Imaging Technique for Efficient Recovery of Reservoir Channels With Time-Lapse Seismic Measurements

    KAUST Repository

    Sana, Furrukh; Ravanelli, Fabio; Al-Naffouri, Tareq Y.; Hoteit, Ibrahim

    2016-01-01

    Subsurface reservoir flow channels are characterized by high-permeability values and serve as preferred pathways for fluid propagation. Accurate estimation of their geophysical structures is thus of great importance for the oil industry. The ensemble Kalman filter (EnKF) is a widely used statistical technique for estimating subsurface reservoir model parameters. However, accurate reconstruction of the subsurface geological features with the EnKF is challenging because of the limited measurements available from the wells and the smoothing effects imposed by the \\ell _{2} -norm nature of its update step. A new EnKF scheme based on sparse domain representation was introduced by Sana et al. (2015) to incorporate useful prior structural information in the estimation process for efficient recovery of subsurface channels. In this paper, we extend this work in two ways: 1) investigate the effects of incorporating time-lapse seismic data on the channel reconstruction; and 2) explore a Bayesian sparse reconstruction algorithm with the potential ability to reduce the computational requirements. Numerical results suggest that the performance of the new sparse Bayesian based EnKF scheme is enhanced with the availability of seismic measurements, leading to further improvement in the recovery of flow channels structures. The sparse Bayesian approach further provides a computationally efficient framework for enforcing a sparse solution, especially with the possibility of using high sparsity rates through the inclusion of seismic data.

  6. Image Classification Based on Convolutional Denoising Sparse Autoencoder

    Directory of Open Access Journals (Sweden)

    Shuangshuang Chen

    2017-01-01

    Full Text Available Image classification aims to group images into corresponding semantic categories. Due to the difficulties of interclass similarity and intraclass variability, it is a challenging issue in computer vision. In this paper, an unsupervised feature learning approach called convolutional denoising sparse autoencoder (CDSAE is proposed based on the theory of visual attention mechanism and deep learning methods. Firstly, saliency detection method is utilized to get training samples for unsupervised feature learning. Next, these samples are sent to the denoising sparse autoencoder (DSAE, followed by convolutional layer and local contrast normalization layer. Generally, prior in a specific task is helpful for the task solution. Therefore, a new pooling strategy—spatial pyramid pooling (SPP fused with center-bias prior—is introduced into our approach. Experimental results on the common two image datasets (STL-10 and CIFAR-10 demonstrate that our approach is effective in image classification. They also demonstrate that none of these three components: local contrast normalization, SPP fused with center-prior, and l2 vector normalization can be excluded from our proposed approach. They jointly improve image representation and classification performance.

  7. A Two-Stage Framework for 3D Face Reconstruction from RGBD Images.

    Science.gov (United States)

    Wang, Kangkan; Wang, Xianwang; Pan, Zhigeng; Liu, Kai

    2014-08-01

    This paper proposes a new approach for 3D face reconstruction with RGBD images from an inexpensive commodity sensor. The challenges we face are: 1) substantial random noise and corruption are present in low-resolution depth maps; and 2) there is high degree of variability in pose and face expression. We develop a novel two-stage algorithm that effectively maps low-quality depth maps to realistic face models. Each stage is targeted toward a certain type of noise. The first stage extracts sparse errors from depth patches through the data-driven local sparse coding, while the second stage smooths noise on the boundaries between patches and reconstructs the global shape by combining local shapes using our template-based surface refinement. Our approach does not require any markers or user interaction. We perform quantitative and qualitative evaluations on both synthetic and real test sets. Experimental results show that the proposed approach is able to produce high-resolution 3D face models with high accuracy, even if inputs are of low quality, and have large variations in viewpoint and face expression.

  8. Visual properties and memorising scenes: Effects of image-space sparseness and uniformity.

    Science.gov (United States)

    Lukavský, Jiří; Děchtěrenko, Filip

    2017-10-01

    Previous studies have demonstrated that humans have a remarkable capacity to memorise a large number of scenes. The research on memorability has shown that memory performance can be predicted by the content of an image. We explored how remembering an image is affected by the image properties within the context of the reference set, including the extent to which it is different from its neighbours (image-space sparseness) and if it belongs to the same category as its neighbours (uniformity). We used a reference set of 2,048 scenes (64 categories), evaluated pairwise scene similarity using deep features from a pretrained convolutional neural network (CNN), and calculated the image-space sparseness and uniformity for each image. We ran three memory experiments, varying the memory workload with experiment length and colour/greyscale presentation. We measured the sensitivity and criterion value changes as a function of image-space sparseness and uniformity. Across all three experiments, we found separate effects of 1) sparseness on memory sensitivity, and 2) uniformity on the recognition criterion. People better remembered (and correctly rejected) images that were more separated from others. People tended to make more false alarms and fewer miss errors in images from categorically uniform portions of the image-space. We propose that both image-space properties affect human decisions when recognising images. Additionally, we found that colour presentation did not yield better memory performance over grayscale images.

  9. Improving temporal resolution in fMRI using a 3D spiral acquisition and low rank plus sparse (L+S) reconstruction.

    Science.gov (United States)

    Petrov, Andrii Y; Herbst, Michael; Andrew Stenger, V

    2017-08-15

    Rapid whole-brain dynamic Magnetic Resonance Imaging (MRI) is of particular interest in Blood Oxygen Level Dependent (BOLD) functional MRI (fMRI). Faster acquisitions with higher temporal sampling of the BOLD time-course provide several advantages including increased sensitivity in detecting functional activation, the possibility of filtering out physiological noise for improving temporal SNR, and freezing out head motion. Generally, faster acquisitions require undersampling of the data which results in aliasing artifacts in the object domain. A recently developed low-rank (L) plus sparse (S) matrix decomposition model (L+S) is one of the methods that has been introduced to reconstruct images from undersampled dynamic MRI data. The L+S approach assumes that the dynamic MRI data, represented as a space-time matrix M, is a linear superposition of L and S components, where L represents highly spatially and temporally correlated elements, such as the image background, while S captures dynamic information that is sparse in an appropriate transform domain. This suggests that L+S might be suited for undersampled task or slow event-related fMRI acquisitions because the periodic nature of the BOLD signal is sparse in the temporal Fourier transform domain and slowly varying low-rank brain background signals, such as physiological noise and drift, will be predominantly low-rank. In this work, as a proof of concept, we exploit the L+S method for accelerating block-design fMRI using a 3D stack of spirals (SoS) acquisition where undersampling is performed in the k z -t domain. We examined the feasibility of the L+S method to accurately separate temporally correlated brain background information in the L component while capturing periodic BOLD signals in the S component. We present results acquired in control human volunteers at 3T for both retrospective and prospectively acquired fMRI data for a visual activation block-design task. We show that a SoS fMRI acquisition with an

  10. Multicore Performance of Block Algebraic Iterative Reconstruction Methods

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik B.; Hansen, Per Christian

    2014-01-01

    Algebraic iterative methods are routinely used for solving the ill-posed sparse linear systems arising in tomographic image reconstruction. Here we consider the algebraic reconstruction technique (ART) and the simultaneous iterative reconstruction techniques (SIRT), both of which rely on semiconv......Algebraic iterative methods are routinely used for solving the ill-posed sparse linear systems arising in tomographic image reconstruction. Here we consider the algebraic reconstruction technique (ART) and the simultaneous iterative reconstruction techniques (SIRT), both of which rely...... on semiconvergence. Block versions of these methods, based on a partitioning of the linear system, are able to combine the fast semiconvergence of ART with the better multicore properties of SIRT. These block methods separate into two classes: those that, in each iteration, access the blocks in a sequential manner...... a fixed relaxation parameter in each method, namely, the one that leads to the fastest semiconvergence. Computational results show that for multicore computers, the sequential approach is preferable....

  11. Fast method of sparse acquisition and reconstruction of view and illumination dependent datasets

    Czech Academy of Sciences Publication Activity Database

    Filip, Jiří; Vávra, Radomír

    2013-01-01

    Roč. 37, č. 5 (2013), s. 376-388 ISSN 0097-8493 R&D Projects: GA ČR GAP103/11/0335 Grant - others:EC ERG (European Reintegration Grant) FP7(BE) 239294 Institutional support: RVO:67985556 Keywords : apparent BRDF * measurement * reconstruction * sparse sampling * portable setup Subject RIV: BD - Theory of Information Impact factor: 1.029, year: 2013 http://library.utia.cas.cz/separaty/2013/RO/filip-0392214.pdf

  12. Sparse PDF maps for non-linear multi-resolution image operations

    KAUST Repository

    Hadwiger, Markus

    2012-11-01

    We introduce a new type of multi-resolution image pyramid for high-resolution images called sparse pdf maps (sPDF-maps). Each pyramid level consists of a sparse encoding of continuous probability density functions (pdfs) of pixel neighborhoods in the original image. The encoded pdfs enable the accurate computation of non-linear image operations directly in any pyramid level with proper pre-filtering for anti-aliasing, without accessing higher or lower resolutions. The sparsity of sPDF-maps makes them feasible for gigapixel images, while enabling direct evaluation of a variety of non-linear operators from the same representation. We illustrate this versatility for antialiased color mapping, O(n) local Laplacian filters, smoothed local histogram filters (e.g., median or mode filters), and bilateral filters. © 2012 ACM.

  13. Face recognition via sparse representation of SIFT feature on hexagonal-sampling image

    Science.gov (United States)

    Zhang, Daming; Zhang, Xueyong; Li, Lu; Liu, Huayong

    2018-04-01

    This paper investigates a face recognition approach based on Scale Invariant Feature Transform (SIFT) feature and sparse representation. The approach takes advantage of SIFT which is local feature other than holistic feature in classical Sparse Representation based Classification (SRC) algorithm and possesses strong robustness to expression, pose and illumination variations. Since hexagonal image has more inherit merits than square image to make recognition process more efficient, we extract SIFT keypoint in hexagonal-sampling image. Instead of matching SIFT feature, firstly the sparse representation of each SIFT keypoint is given according the constructed dictionary; secondly these sparse vectors are quantized according dictionary; finally each face image is represented by a histogram and these so-called Bag-of-Words vectors are classified by SVM. Due to use of local feature, the proposed method achieves better result even when the number of training sample is small. In the experiments, the proposed method gave higher face recognition rather than other methods in ORL and Yale B face databases; also, the effectiveness of the hexagonal-sampling in the proposed method is verified.

  14. 2D sparse array transducer optimization for 3D ultrasound imaging

    International Nuclear Information System (INIS)

    Choi, Jae Hoon; Park, Kwan Kyu

    2014-01-01

    A 3D ultrasound image is desired in many medical examinations. However, the implementation of a 2D array, which is needed for a 3D image, is challenging with respect to fabrication, interconnection and cabling. A 2D sparse array, which needs fewer elements than a dense array, is a realistic way to achieve 3D images. Because the number of ways the elements can be placed in an array is extremely large, a method for optimizing the array configuration is needed. Previous research placed the target point far from the transducer array, making it impossible to optimize the array in the operating range. In our study, we focused on optimizing a 2D sparse array transducer for 3D imaging by using a simulated annealing method. We compared the far-field optimization method with the near-field optimization method by analyzing a point-spread function (PSF). The resolution of the optimized sparse array is comparable to that of the dense array.

  15. Image Reconstruction. Chapter 13

    Energy Technology Data Exchange (ETDEWEB)

    Nuyts, J. [Department of Nuclear Medicine and Medical Imaging Research Center, Katholieke Universiteit Leuven, Leuven (Belgium); Matej, S. [Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA (United States)

    2014-12-15

    This chapter discusses how 2‑D or 3‑D images of tracer distribution can be reconstructed from a series of so-called projection images acquired with a gamma camera or a positron emission tomography (PET) system [13.1]. This is often called an ‘inverse problem’. The reconstruction is the inverse of the acquisition. The reconstruction is called an inverse problem because making software to compute the true tracer distribution from the acquired data turns out to be more difficult than the ‘forward’ direction, i.e. making software to simulate the acquisition. There are basically two approaches to image reconstruction: analytical reconstruction and iterative reconstruction. The analytical approach is based on mathematical inversion, yielding efficient, non-iterative reconstruction algorithms. In the iterative approach, the reconstruction problem is reduced to computing a finite number of image values from a finite number of measurements. That simplification enables the use of iterative instead of mathematical inversion. Iterative inversion tends to require more computer power, but it can cope with more complex (and hopefully more accurate) models of the acquisition process.

  16. Variational 3D-PIV with sparse descriptors

    Science.gov (United States)

    Lasinger, Katrin; Vogel, Christoph; Pock, Thomas; Schindler, Konrad

    2018-06-01

    3D particle imaging velocimetry (3D-PIV) aims to recover the flow field in a volume of fluid, which has been seeded with tracer particles and observed from multiple camera viewpoints. The first step of 3D-PIV is to reconstruct the 3D locations of the tracer particles from synchronous views of the volume. We propose a new method for iterative particle reconstruction, in which the locations and intensities of all particles are inferred in one joint energy minimization. The energy function is designed to penalize deviations between the reconstructed 3D particles and the image evidence, while at the same time aiming for a sparse set of particles. We find that the new method, without any post-processing, achieves significantly cleaner particle volumes than a conventional, tomographic MART reconstruction, and can handle a wide range of particle densities. The second step of 3D-PIV is to then recover the dense motion field from two consecutive particle reconstructions. We propose a variational model, which makes it possible to directly include physical properties, such as incompressibility and viscosity, in the estimation of the motion field. To further exploit the sparse nature of the input data, we propose a novel, compact descriptor of the local particle layout. Hence, we avoid the memory-intensive storage of high-resolution intensity volumes. Our framework is generic and allows for a variety of different data costs (correlation measures) and regularizers. We quantitatively evaluate it with both the sum of squared differences and the normalized cross-correlation, respectively with both a hard and a soft version of the incompressibility constraint.

  17. WE-G-18A-04: 3D Dictionary Learning Based Statistical Iterative Reconstruction for Low-Dose Cone Beam CT Imaging

    International Nuclear Information System (INIS)

    Bai, T; Yan, H; Shi, F; Jia, X; Jiang, Steve B.; Lou, Y; Xu, Q; Mou, X

    2014-01-01

    Purpose: To develop a 3D dictionary learning based statistical reconstruction algorithm on graphic processing units (GPU), to improve the quality of low-dose cone beam CT (CBCT) imaging with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms) of 3x3x3 voxels was trained from a high quality volume image. During reconstruction, we utilized a Cholesky decomposition based orthogonal matching pursuit algorithm to find a sparse representation on this dictionary basis of each patch in the reconstructed image, in order to regularize the image quality. To accelerate the time-consuming sparse coding in the 3D case, we implemented our algorithm in a parallel fashion by taking advantage of the tremendous computational power of GPU. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with a tight frame (TF) based one using a subset data of 121 projections. The image qualities under different resolutions in z-direction, with or without statistical weighting are also studied. Results: Compared to the TF-based CBCT reconstruction, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, to remove more streaking artifacts, and is less susceptible to blocky artifacts. It is also observed that statistical reconstruction approach is sensitive to inconsistency between the forward and backward projection operations in parallel computing. Using high a spatial resolution along z direction helps improving the algorithm robustness. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppressing noise, and hence to achieve high quality reconstruction. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential

  18. WE-G-18A-04: 3D Dictionary Learning Based Statistical Iterative Reconstruction for Low-Dose Cone Beam CT Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bai, T [Xi' an Jiaotong University, Xi' an (China); UT Southwestern Medical Center, Dallas, TX (United States); Yan, H; Shi, F; Jia, X; Jiang, Steve B. [UT Southwestern Medical Center, Dallas, TX (United States); Lou, Y [University of California Irvine, Irvine, CA (United States); Xu, Q; Mou, X [Xi' an Jiaotong University, Xi' an (China)

    2014-06-15

    Purpose: To develop a 3D dictionary learning based statistical reconstruction algorithm on graphic processing units (GPU), to improve the quality of low-dose cone beam CT (CBCT) imaging with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms) of 3x3x3 voxels was trained from a high quality volume image. During reconstruction, we utilized a Cholesky decomposition based orthogonal matching pursuit algorithm to find a sparse representation on this dictionary basis of each patch in the reconstructed image, in order to regularize the image quality. To accelerate the time-consuming sparse coding in the 3D case, we implemented our algorithm in a parallel fashion by taking advantage of the tremendous computational power of GPU. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with a tight frame (TF) based one using a subset data of 121 projections. The image qualities under different resolutions in z-direction, with or without statistical weighting are also studied. Results: Compared to the TF-based CBCT reconstruction, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, to remove more streaking artifacts, and is less susceptible to blocky artifacts. It is also observed that statistical reconstruction approach is sensitive to inconsistency between the forward and backward projection operations in parallel computing. Using high a spatial resolution along z direction helps improving the algorithm robustness. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppressing noise, and hence to achieve high quality reconstruction. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential

  19. Sparse linear models: Variational approximate inference and Bayesian experimental design

    International Nuclear Information System (INIS)

    Seeger, Matthias W

    2009-01-01

    A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian posterior contains useful information far beyond its mode, which can be used to drive methods for sampling optimization (active learning), feature relevance ranking, or hyperparameter estimation, if only this representation of uncertainty can be approximated in a tractable manner. In this paper, we review recent results for variational sparse inference, and show that they share underlying computational primitives. We discuss how sampling optimization can be implemented as sequential Bayesian experimental design. While there has been tremendous recent activity to develop sparse estimation, little attendance has been given to sparse approximate inference. In this paper, we argue that many problems in practice, such as compressive sensing for real-world image reconstruction, are served much better by proper uncertainty approximations than by ever more aggressive sparse estimation algorithms. Moreover, since some variational inference methods have been given strong convex optimization characterizations recently, theoretical analysis may become possible, promising new insights into nonlinear experimental design.

  20. Sparse linear models: Variational approximate inference and Bayesian experimental design

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Matthias W [Saarland University and Max Planck Institute for Informatics, Campus E1.4, 66123 Saarbruecken (Germany)

    2009-12-01

    A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian posterior contains useful information far beyond its mode, which can be used to drive methods for sampling optimization (active learning), feature relevance ranking, or hyperparameter estimation, if only this representation of uncertainty can be approximated in a tractable manner. In this paper, we review recent results for variational sparse inference, and show that they share underlying computational primitives. We discuss how sampling optimization can be implemented as sequential Bayesian experimental design. While there has been tremendous recent activity to develop sparse estimation, little attendance has been given to sparse approximate inference. In this paper, we argue that many problems in practice, such as compressive sensing for real-world image reconstruction, are served much better by proper uncertainty approximations than by ever more aggressive sparse estimation algorithms. Moreover, since some variational inference methods have been given strong convex optimization characterizations recently, theoretical analysis may become possible, promising new insights into nonlinear experimental design.

  1. Tensor-based Dictionary Learning for Spectral CT Reconstruction

    Science.gov (United States)

    Zhang, Yanbo; Wang, Ge

    2016-01-01

    Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods. PMID:27541628

  2. Tensor-Based Dictionary Learning for Spectral CT Reconstruction.

    Science.gov (United States)

    Zhang, Yanbo; Mou, Xuanqin; Wang, Ge; Yu, Hengyong

    2017-01-01

    Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods.

  3. When sparse coding meets ranking: a joint framework for learning sparse codes and ranking scores

    KAUST Repository

    Wang, Jim Jing-Yan

    2017-06-28

    Sparse coding, which represents a data point as a sparse reconstruction code with regard to a dictionary, has been a popular data representation method. Meanwhile, in database retrieval problems, learning the ranking scores from data points plays an important role. Up to now, these two problems have always been considered separately, assuming that data coding and ranking are two independent and irrelevant problems. However, is there any internal relationship between sparse coding and ranking score learning? If yes, how to explore and make use of this internal relationship? In this paper, we try to answer these questions by developing the first joint sparse coding and ranking score learning algorithm. To explore the local distribution in the sparse code space, and also to bridge coding and ranking problems, we assume that in the neighborhood of each data point, the ranking scores can be approximated from the corresponding sparse codes by a local linear function. By considering the local approximation error of ranking scores, the reconstruction error and sparsity of sparse coding, and the query information provided by the user, we construct a unified objective function for learning of sparse codes, the dictionary and ranking scores. We further develop an iterative algorithm to solve this optimization problem.

  4. In Defense of Sparse Tracking: Circulant Sparse Tracker

    KAUST Repository

    Zhang, Tianzhu; Bibi, Adel Aamer; Ghanem, Bernard

    2016-01-01

    Sparse representation has been introduced to visual tracking by finding the best target candidate with minimal reconstruction error within the particle filter framework. However, most sparse representation based trackers have high computational cost, less than promising tracking performance, and limited feature representation. To deal with the above issues, we propose a novel circulant sparse tracker (CST), which exploits circulant target templates. Because of the circulant structure property, CST has the following advantages: (1) It can refine and reduce particles using circular shifts of target templates. (2) The optimization can be efficiently solved entirely in the Fourier domain. (3) High dimensional features can be embedded into CST to significantly improve tracking performance without sacrificing much computation time. Both qualitative and quantitative evaluations on challenging benchmark sequences demonstrate that CST performs better than all other sparse trackers and favorably against state-of-the-art methods.

  5. In Defense of Sparse Tracking: Circulant Sparse Tracker

    KAUST Repository

    Zhang, Tianzhu

    2016-12-13

    Sparse representation has been introduced to visual tracking by finding the best target candidate with minimal reconstruction error within the particle filter framework. However, most sparse representation based trackers have high computational cost, less than promising tracking performance, and limited feature representation. To deal with the above issues, we propose a novel circulant sparse tracker (CST), which exploits circulant target templates. Because of the circulant structure property, CST has the following advantages: (1) It can refine and reduce particles using circular shifts of target templates. (2) The optimization can be efficiently solved entirely in the Fourier domain. (3) High dimensional features can be embedded into CST to significantly improve tracking performance without sacrificing much computation time. Both qualitative and quantitative evaluations on challenging benchmark sequences demonstrate that CST performs better than all other sparse trackers and favorably against state-of-the-art methods.

  6. When sparse coding meets ranking: a joint framework for learning sparse codes and ranking scores

    KAUST Repository

    Wang, Jim Jing-Yan; Cui, Xuefeng; Yu, Ge; Guo, Lili; Gao, Xin

    2017-01-01

    Sparse coding, which represents a data point as a sparse reconstruction code with regard to a dictionary, has been a popular data representation method. Meanwhile, in database retrieval problems, learning the ranking scores from data points plays

  7. Incomplete projection reconstruction of computed tomography based on the modified discrete algebraic reconstruction technique

    Science.gov (United States)

    Yang, Fuqiang; Zhang, Dinghua; Huang, Kuidong; Gao, Zongzhao; Yang, YaFei

    2018-02-01

    Based on the discrete algebraic reconstruction technique (DART), this study aims to address and test a new improved algorithm applied to incomplete projection data to generate a high quality reconstruction image by reducing the artifacts and noise in computed tomography. For the incomplete projections, an augmented Lagrangian based on compressed sensing is first used in the initial reconstruction for segmentation of the DART to get higher contrast graphics for boundary and non-boundary pixels. Then, the block matching 3D filtering operator was used to suppress the noise and to improve the gray distribution of the reconstructed image. Finally, simulation studies on the polychromatic spectrum were performed to test the performance of the new algorithm. Study results show a significant improvement in the signal-to-noise ratios (SNRs) and average gradients (AGs) of the images reconstructed from incomplete data. The SNRs and AGs of the new images reconstructed by DART-ALBM were on average 30%-40% and 10% higher than the images reconstructed by DART algorithms. Since the improved DART-ALBM algorithm has a better robustness to limited-view reconstruction, which not only makes the edge of the image clear but also makes the gray distribution of non-boundary pixels better, it has the potential to improve image quality from incomplete projections or sparse projections.

  8. Speckle Reduction on Ultrasound Liver Images Based on a Sparse Representation over a Learned Dictionary

    Directory of Open Access Journals (Sweden)

    Mohamed Yaseen Jabarulla

    2018-05-01

    Full Text Available Ultrasound images are corrupted with multiplicative noise known as speckle, which reduces the effectiveness of image processing and hampers interpretation. This paper proposes a multiplicative speckle suppression technique for ultrasound liver images, based on a new signal reconstruction model known as sparse representation (SR over dictionary learning. In the proposed technique, the non-uniform multiplicative signal is first converted into additive noise using an enhanced homomorphic filter. This is followed by pixel-based total variation (TV regularization and patch-based SR over a dictionary trained using K-singular value decomposition (KSVD. Finally, the split Bregman algorithm is used to solve the optimization problem and estimate the de-speckled image. The simulations performed on both synthetic and clinical ultrasound images for speckle reduction, the proposed technique achieved peak signal-to-noise ratios of 35.537 dB for the dictionary trained on noisy image patches and 35.033 dB for the dictionary trained using a set of reference ultrasound image patches. Further, the evaluation results show that the proposed method performs better than other state-of-the-art denoising algorithms in terms of both peak signal-to-noise ratio and subjective visual quality assessment.

  9. Optimization of image quality and acquisition time for lab-based X-ray microtomography using an iterative reconstruction algorithm

    Science.gov (United States)

    Lin, Qingyang; Andrew, Matthew; Thompson, William; Blunt, Martin J.; Bijeljic, Branko

    2018-05-01

    Non-invasive laboratory-based X-ray microtomography has been widely applied in many industrial and research disciplines. However, the main barrier to the use of laboratory systems compared to a synchrotron beamline is its much longer image acquisition time (hours per scan compared to seconds to minutes at a synchrotron), which results in limited application for dynamic in situ processes. Therefore, the majority of existing laboratory X-ray microtomography is limited to static imaging; relatively fast imaging (tens of minutes per scan) can only be achieved by sacrificing imaging quality, e.g. reducing exposure time or number of projections. To alleviate this barrier, we introduce an optimized implementation of a well-known iterative reconstruction algorithm that allows users to reconstruct tomographic images with reasonable image quality, but requires lower X-ray signal counts and fewer projections than conventional methods. Quantitative analysis and comparison between the iterative and the conventional filtered back-projection reconstruction algorithm was performed using a sandstone rock sample with and without liquid phases in the pore space. Overall, by implementing the iterative reconstruction algorithm, the required image acquisition time for samples such as this, with sparse object structure, can be reduced by a factor of up to 4 without measurable loss of sharpness or signal to noise ratio.

  10. Reconstruction of sparse connectivity in neural networks from spike train covariances

    International Nuclear Information System (INIS)

    Pernice, Volker; Rotter, Stefan

    2013-01-01

    The inference of causation from correlation is in general highly problematic. Correspondingly, it is difficult to infer the existence of physical synaptic connections between neurons from correlations in their activity. Covariances in neural spike trains and their relation to network structure have been the subject of intense research, both experimentally and theoretically. The influence of recurrent connections on covariances can be characterized directly in linear models, where connectivity in the network is described by a matrix of linear coupling kernels. However, as indirect connections also give rise to covariances, the inverse problem of inferring network structure from covariances can generally not be solved unambiguously. Here we study to what degree this ambiguity can be resolved if the sparseness of neural networks is taken into account. To reconstruct a sparse network, we determine the minimal set of linear couplings consistent with the measured covariances by minimizing the L 1 norm of the coupling matrix under appropriate constraints. Contrary to intuition, after stochastic optimization of the coupling matrix, the resulting estimate of the underlying network is directed, despite the fact that a symmetric matrix of count covariances is used for inference. The performance of the new method is best if connections are neither exceedingly sparse, nor too dense, and it is easily applicable for networks of a few hundred nodes. Full coupling kernels can be obtained from the matrix of full covariance functions. We apply our method to networks of leaky integrate-and-fire neurons in an asynchronous–irregular state, where spike train covariances are well described by a linear model. (paper)

  11. Improved compressed sensing-based cone-beam CT reconstruction using adaptive prior image constraints

    Science.gov (United States)

    Lee, Ho; Xing, Lei; Davidi, Ran; Li, Ruijiang; Qian, Jianguo; Lee, Rena

    2012-04-01

    Volumetric cone-beam CT (CBCT) images are acquired repeatedly during a course of radiation therapy and a natural question to ask is whether CBCT images obtained earlier in the process can be utilized as prior knowledge to reduce patient imaging dose in subsequent scans. The purpose of this work is to develop an adaptive prior image constrained compressed sensing (APICCS) method to solve this problem. Reconstructed images using full projections are taken on the first day of radiation therapy treatment and are used as prior images. The subsequent scans are acquired using a protocol of sparse projections. In the proposed APICCS algorithm, the prior images are utilized as an initial guess and are incorporated into the objective function in the compressed sensing (CS)-based iterative reconstruction process. Furthermore, the prior information is employed to detect any possible mismatched regions between the prior and current images for improved reconstruction. For this purpose, the prior images and the reconstructed images are classified into three anatomical regions: air, soft tissue and bone. Mismatched regions are identified by local differences of the corresponding groups in the two classified sets of images. A distance transformation is then introduced to convert the information into an adaptive voxel-dependent relaxation map. In constructing the relaxation map, the matched regions (unchanged anatomy) between the prior and current images are assigned with smaller weight values, which are translated into less influence on the CS iterative reconstruction process. On the other hand, the mismatched regions (changed anatomy) are associated with larger values and the regions are updated more by the new projection data, thus avoiding any possible adverse effects of prior images. The APICCS approach was systematically assessed by using patient data acquired under standard and low-dose protocols for qualitative and quantitative comparisons. The APICCS method provides an

  12. Robust Single Image Super-Resolution via Deep Networks With Sparse Prior.

    Science.gov (United States)

    Liu, Ding; Wang, Zhaowen; Wen, Bihan; Yang, Jianchao; Han, Wei; Huang, Thomas S

    2016-07-01

    Single image super-resolution (SR) is an ill-posed problem, which tries to recover a high-resolution image from its low-resolution observation. To regularize the solution of the problem, previous methods have focused on designing good priors for natural images, such as sparse representation, or directly learning the priors from a large data set with models, such as deep neural networks. In this paper, we argue that domain expertise from the conventional sparse coding model can be combined with the key ingredients of deep learning to achieve further improved results. We demonstrate that a sparse coding model particularly designed for SR can be incarnated as a neural network with the merit of end-to-end optimization over training data. The network has a cascaded structure, which boosts the SR performance for both fixed and incremental scaling factors. The proposed training and testing schemes can be extended for robust handling of images with additional degradation, such as noise and blurring. A subjective assessment is conducted and analyzed in order to thoroughly evaluate various SR techniques. Our proposed model is tested on a wide range of images, and it significantly outperforms the existing state-of-the-art methods for various scaling factors both quantitatively and perceptually.

  13. Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method.

    Science.gov (United States)

    He, Xiaowei; Liang, Jimin; Wang, Xiaorui; Yu, Jingjing; Qu, Xiaochao; Wang, Xiaodong; Hou, Yanbin; Chen, Duofang; Liu, Fang; Tian, Jie

    2010-11-22

    In this paper, we present an incomplete variables truncated conjugate gradient (IVTCG) method for bioluminescence tomography (BLT). Considering the sparse characteristic of the light source and insufficient surface measurement in the BLT scenarios, we combine a sparseness-inducing (ℓ1 norm) regularization term with a quadratic error term in the IVTCG-based framework for solving the inverse problem. By limiting the number of variables updated at each iterative and combining a variable splitting strategy to find the search direction more efficiently, it obtains fast and stable source reconstruction, even without a priori information of the permissible source region and multispectral measurements. Numerical experiments on a mouse atlas validate the effectiveness of the method. In vivo mouse experimental results further indicate its potential for a practical BLT system.

  14. Accelerated dynamic cardiac MRI exploiting sparse-Kalman-smoother self-calibration and reconstruction (k  −  t SPARKS)

    International Nuclear Information System (INIS)

    Park, Suhyung; Park, Jaeseok

    2015-01-01

    Accelerated dynamic MRI, which exploits spatiotemporal redundancies in k  −  t space and coil dimension, has been widely used to reduce the number of signal encoding and thus increase imaging efficiency with minimal loss of image quality. Nonetheless, particularly in cardiac MRI it still suffers from artifacts and amplified noise in the presence of time-drifting coil sensitivity due to relative motion between coil and subject (e.g. free breathing). Furthermore, a substantial number of additional calibrating signals is to be acquired to warrant accurate calibration of coil sensitivity. In this work, we propose a novel, accelerated dynamic cardiac MRI with sparse-Kalman-smoother self-calibration and reconstruction (k  −  t SPARKS), which is robust to time-varying coil sensitivity even with a small number of calibrating signals. The proposed k  −  t SPARKS incorporates Kalman-smoother self-calibration in k  −  t space and sparse signal recovery in x  −   f space into a single optimization problem, leading to iterative, joint estimation of time-varying convolution kernels and missing signals in k  −  t space. In the Kalman-smoother calibration, motion-induced uncertainties over the entire time frames were included in modeling state transition while a coil-dependent noise statistic in describing measurement process. The sparse signal recovery iteratively alternates with the self-calibration to tackle the ill-conditioning problem potentially resulting from insufficient calibrating signals. Simulations and experiments were performed using both the proposed and conventional methods for comparison, revealing that the proposed k  −  t SPARKS yields higher signal-to-error ratio and superior temporal fidelity in both breath-hold and free-breathing cardiac applications over all reduction factors. (paper)

  15. Sparse reconstruction using distribution agnostic bayesian matching pursuit

    KAUST Repository

    Masood, Mudassir

    2013-11-01

    A fast matching pursuit method using a Bayesian approach is introduced for sparse signal recovery. This method performs Bayesian estimates of sparse signals even when the signal prior is non-Gaussian or unknown. It is agnostic on signal statistics and utilizes a priori statistics of additive noise and the sparsity rate of the signal, which are shown to be easily estimated from data if not available. The method utilizes a greedy approach and order-recursive updates of its metrics to find the most dominant sparse supports to determine the approximate minimum mean-square error (MMSE) estimate of the sparse signal. Simulation results demonstrate the power and robustness of our proposed estimator. © 2013 IEEE.

  16. Overview of image reconstruction

    International Nuclear Information System (INIS)

    Marr, R.B.

    1980-04-01

    Image reconstruction (or computerized tomography, etc.) is any process whereby a function, f, on R/sup n/ is estimated from empirical data pertaining to its integrals, ∫f(x) dx, for some collection of hyperplanes of dimension k < n. The paper begins with background information on how image reconstruction problems have arisen in practice, and describes some of the application areas of past or current interest; these include radioastronomy, optics, radiology and nuclear medicine, electron microscopy, acoustical imaging, geophysical tomography, nondestructive testing, and NMR zeugmatography. Then the various reconstruction algorithms are discussed in five classes: summation, or simple back-projection; convolution, or filtered back-projection; Fourier and other functional transforms; orthogonal function series expansion; and iterative methods. Certain more technical mathematical aspects of image reconstruction are considered from the standpoint of uniqueness, consistency, and stability of solution. The paper concludes by presenting certain open problems. 73 references

  17. Adaptive structured dictionary learning for image fusion based on group-sparse-representation

    Science.gov (United States)

    Yang, Jiajie; Sun, Bin; Luo, Chengwei; Wu, Yuzhong; Xu, Limei

    2018-04-01

    Dictionary learning is the key process of sparse representation which is one of the most widely used image representation theories in image fusion. The existing dictionary learning method does not use the group structure information and the sparse coefficients well. In this paper, we propose a new adaptive structured dictionary learning algorithm and a l1-norm maximum fusion rule that innovatively utilizes grouped sparse coefficients to merge the images. In the dictionary learning algorithm, we do not need prior knowledge about any group structure of the dictionary. By using the characteristics of the dictionary in expressing the signal, our algorithm can automatically find the desired potential structure information that hidden in the dictionary. The fusion rule takes the physical meaning of the group structure dictionary, and makes activity-level judgement on the structure information when the images are being merged. Therefore, the fused image can retain more significant information. Comparisons have been made with several state-of-the-art dictionary learning methods and fusion rules. The experimental results demonstrate that, the dictionary learning algorithm and the fusion rule both outperform others in terms of several objective evaluation metrics.

  18. Efficient image enhancement using sparse source separation in the Retinex theory

    Science.gov (United States)

    Yoon, Jongsu; Choi, Jangwon; Choe, Yoonsik

    2017-11-01

    Color constancy is the feature of the human vision system (HVS) that ensures the relative constancy of the perceived color of objects under varying illumination conditions. The Retinex theory of machine vision systems is based on the HVS. Among Retinex algorithms, the physics-based algorithms are efficient; however, they generally do not satisfy the local characteristics of the original Retinex theory because they eliminate global illumination from their optimization. We apply the sparse source separation technique to the Retinex theory to present a physics-based algorithm that satisfies the locality characteristic of the original Retinex theory. Previous Retinex algorithms have limited use in image enhancement because the total variation Retinex results in an overly enhanced image and the sparse source separation Retinex cannot completely restore the original image. In contrast, our proposed method preserves the image edge and can very nearly replicate the original image without any special operation.

  19. Efficient methodologies for system matrix modelling in iterative image reconstruction for rotating high-resolution PET

    Energy Technology Data Exchange (ETDEWEB)

    Ortuno, J E; Kontaxakis, G; Rubio, J L; Santos, A [Departamento de Ingenieria Electronica (DIE), Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Guerra, P [Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain)], E-mail: juanen@die.upm.es

    2010-04-07

    A fully 3D iterative image reconstruction algorithm has been developed for high-resolution PET cameras composed of pixelated scintillator crystal arrays and rotating planar detectors, based on the ordered subsets approach. The associated system matrix is precalculated with Monte Carlo methods that incorporate physical effects not included in analytical models, such as positron range effects and interaction of the incident gammas with the scintillator material. Custom Monte Carlo methodologies have been developed and optimized for modelling of system matrices for fast iterative image reconstruction adapted to specific scanner geometries, without redundant calculations. According to the methodology proposed here, only one-eighth of the voxels within two central transaxial slices need to be modelled in detail. The rest of the system matrix elements can be obtained with the aid of axial symmetries and redundancies, as well as in-plane symmetries within transaxial slices. Sparse matrix techniques for the non-zero system matrix elements are employed, allowing for fast execution of the image reconstruction process. This 3D image reconstruction scheme has been compared in terms of image quality to a 2D fast implementation of the OSEM algorithm combined with Fourier rebinning approaches. This work confirms the superiority of fully 3D OSEM in terms of spatial resolution, contrast recovery and noise reduction as compared to conventional 2D approaches based on rebinning schemes. At the same time it demonstrates that fully 3D methodologies can be efficiently applied to the image reconstruction problem for high-resolution rotational PET cameras by applying accurate pre-calculated system models and taking advantage of the system's symmetries.

  20. Online sparse representation for remote sensing compressed-sensed video sampling

    Science.gov (United States)

    Wang, Jie; Liu, Kun; Li, Sheng-liang; Zhang, Li

    2014-11-01

    Most recently, an emerging Compressed Sensing (CS) theory has brought a major breakthrough for data acquisition and recovery. It asserts that a signal, which is highly compressible in a known basis, can be reconstructed with high probability through sampling frequency which is well below Nyquist Sampling Frequency. When applying CS to Remote Sensing (RS) Video imaging, it can directly and efficiently acquire compressed image data by randomly projecting original data to obtain linear and non-adaptive measurements. In this paper, with the help of distributed video coding scheme which is a low-complexity technique for resource limited sensors, the frames of a RS video sequence are divided into Key frames (K frames) and Non-Key frames (CS frames). In other words, the input video sequence consists of many groups of pictures (GOPs) and each GOP consists of one K frame followed by several CS frames. Both of them are measured based on block, but at different sampling rates. In this way, the major encoding computation burden will be shifted to the decoder. At the decoder, the Side Information (SI) is generated for the CS frames using traditional Motion-Compensated Interpolation (MCI) technique according to the reconstructed key frames. The over-complete dictionary is trained by dictionary learning methods based on SI. These learning methods include ICA-like, PCA, K-SVD, MOD, etc. Using these dictionaries, the CS frames could be reconstructed according to sparse-land model. In the numerical experiments, the reconstruction performance of ICA algorithm, which is often evaluated by Peak Signal-to-Noise Ratio (PSNR), has been made compared with other online sparse representation algorithms. The simulation results show its advantages in reducing reconstruction time and robustness in reconstruction performance when applying ICA algorithm to remote sensing video reconstruction.

  1. Accelerating the reconstruction of magnetic resonance imaging by three-dimensional dual-dictionary learning using CUDA.

    Science.gov (United States)

    Jiansen Li; Jianqi Sun; Ying Song; Yanran Xu; Jun Zhao

    2014-01-01

    An effective way to improve the data acquisition speed of magnetic resonance imaging (MRI) is using under-sampled k-space data, and dictionary learning method can be used to maintain the reconstruction quality. Three-dimensional dictionary trains the atoms in dictionary in the form of blocks, which can utilize the spatial correlation among slices. Dual-dictionary learning method includes a low-resolution dictionary and a high-resolution dictionary, for sparse coding and image updating respectively. However, the amount of data is huge for three-dimensional reconstruction, especially when the number of slices is large. Thus, the procedure is time-consuming. In this paper, we first utilize the NVIDIA Corporation's compute unified device architecture (CUDA) programming model to design the parallel algorithms on graphics processing unit (GPU) to accelerate the reconstruction procedure. The main optimizations operate in the dictionary learning algorithm and the image updating part, such as the orthogonal matching pursuit (OMP) algorithm and the k-singular value decomposition (K-SVD) algorithm. Then we develop another version of CUDA code with algorithmic optimization. Experimental results show that more than 324 times of speedup is achieved compared with the CPU-only codes when the number of MRI slices is 24.

  2. Z-Index Parameterization for Volumetric CT Image Reconstruction via 3-D Dictionary Learning.

    Science.gov (United States)

    Bai, Ti; Yan, Hao; Jia, Xun; Jiang, Steve; Wang, Ge; Mou, Xuanqin

    2017-12-01

    Despite the rapid developments of X-ray cone-beam CT (CBCT), image noise still remains a major issue for the low dose CBCT. To suppress the noise effectively while retain the structures well for low dose CBCT image, in this paper, a sparse constraint based on the 3-D dictionary is incorporated into a regularized iterative reconstruction framework, defining the 3-D dictionary learning (3-DDL) method. In addition, by analyzing the sparsity level curve associated with different regularization parameters, a new adaptive parameter selection strategy is proposed to facilitate our 3-DDL method. To justify the proposed method, we first analyze the distributions of the representation coefficients associated with the 3-D dictionary and the conventional 2-D dictionary to compare their efficiencies in representing volumetric images. Then, multiple real data experiments are conducted for performance validation. Based on these results, we found: 1) the 3-D dictionary-based sparse coefficients have three orders narrower Laplacian distribution compared with the 2-D dictionary, suggesting the higher representation efficiencies of the 3-D dictionary; 2) the sparsity level curve demonstrates a clear Z-shape, and hence referred to as Z-curve, in this paper; 3) the parameter associated with the maximum curvature point of the Z-curve suggests a nice parameter choice, which could be adaptively located with the proposed Z-index parameterization (ZIP) method; 4) the proposed 3-DDL algorithm equipped with the ZIP method could deliver reconstructions with the lowest root mean squared errors and the highest structural similarity index compared with the competing methods; 5) similar noise performance as the regular dose FDK reconstruction regarding the standard deviation metric could be achieved with the proposed method using (1/2)/(1/4)/(1/8) dose level projections. The contrast-noise ratio is improved by ~2.5/3.5 times with respect to two different cases under the (1/8) dose level compared

  3. Improved image registration by sparse patch-based deformation estimation.

    Science.gov (United States)

    Kim, Minjeong; Wu, Guorong; Wang, Qian; Lee, Seong-Whan; Shen, Dinggang

    2015-01-15

    Despite intensive efforts for decades, deformable image registration is still a challenging problem due to the potential large anatomical differences across individual images, which limits the registration performance. Fortunately, this issue could be alleviated if a good initial deformation can be provided for the two images under registration, which are often termed as the moving subject and the fixed template, respectively. In this work, we present a novel patch-based initial deformation prediction framework for improving the performance of existing registration algorithms. Our main idea is to estimate the initial deformation between subject and template in a patch-wise fashion by using the sparse representation technique. We argue that two image patches should follow the same deformation toward the template image if their patch-wise appearance patterns are similar. To this end, our framework consists of two stages, i.e., the training stage and the application stage. In the training stage, we register all training images to the pre-selected template, such that the deformation of each training image with respect to the template is known. In the application stage, we apply the following four steps to efficiently calculate the initial deformation field for the new test subject: (1) We pick a small number of key points in the distinctive regions of the test subject; (2) for each key point, we extract a local patch and form a coupled appearance-deformation dictionary from training images where each dictionary atom consists of the image intensity patch as well as their respective local deformations; (3) a small set of training image patches in the coupled dictionary are selected to represent the image patch of each subject key point by sparse representation. Then, we can predict the initial deformation for each subject key point by propagating the pre-estimated deformations on the selected training patches with the same sparse representation coefficients; and (4) we

  4. Sparse representations via learned dictionaries for x-ray angiogram image denoising

    Science.gov (United States)

    Shang, Jingfan; Huang, Zhenghua; Li, Qian; Zhang, Tianxu

    2018-03-01

    X-ray angiogram image denoising is always an active research topic in the field of computer vision. In particular, the denoising performance of many existing methods had been greatly improved by the widely use of nonlocal similar patches. However, the only nonlocal self-similar (NSS) patch-based methods can be still be improved and extended. In this paper, we propose an image denoising model based on the sparsity of the NSS patches to obtain high denoising performance and high-quality image. In order to represent the sparsely NSS patches in every location of the image well and solve the image denoising model more efficiently, we obtain dictionaries as a global image prior by the K-SVD algorithm over the processing image; Then the single and effectively alternating directions method of multipliers (ADMM) method is used to solve the image denoising model. The results of widely synthetic experiments demonstrate that, owing to learned dictionaries by K-SVD algorithm, a sparsely augmented lagrangian image denoising (SALID) model, which perform effectively, obtains a state-of-the-art denoising performance and better high-quality images. Moreover, we also give some denoising results of clinical X-ray angiogram images.

  5. Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme

    Science.gov (United States)

    Li, Xianye; Meng, Xiangfeng; Yang, Xiulun; Wang, Yurong; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2018-03-01

    A multiple-image encryption method via lifting wavelet transform (LWT) and XOR operation is proposed, which is based on a row scanning compressive ghost imaging scheme. In the encryption process, the scrambling operation is implemented for the sparse images transformed by LWT, then the XOR operation is performed on the scrambled images, and the resulting XOR images are compressed in the row scanning compressive ghost imaging, through which the ciphertext images can be detected by bucket detector arrays. During decryption, the participant who possesses his/her correct key-group, can successfully reconstruct the corresponding plaintext image by measurement key regeneration, compression algorithm reconstruction, XOR operation, sparse images recovery, and inverse LWT (iLWT). Theoretical analysis and numerical simulations validate the feasibility of the proposed method.

  6. Sparse reconstruction using distribution agnostic bayesian matching pursuit

    KAUST Repository

    Masood, Mudassir; Al-Naffouri, Tareq Y.

    2013-01-01

    A fast matching pursuit method using a Bayesian approach is introduced for sparse signal recovery. This method performs Bayesian estimates of sparse signals even when the signal prior is non-Gaussian or unknown. It is agnostic on signal statistics

  7. Noise properties of CT images reconstructed by use of constrained total-variation, data-discrepancy minimization

    DEFF Research Database (Denmark)

    Rose, Sean; Andersen, Martin S.; Sidky, Emil Y.

    2015-01-01

    Purpose: The authors develop and investigate iterative image reconstruction algorithms based on data-discrepancy minimization with a total-variation (TV) constraint. The various algorithms are derived with different data-discrepancy measures reflecting the maximum likelihood (ML) principle......: An incremental algorithm framework is developed for this purpose. The instances of the incremental algorithms are derived for solving optimization problems including a data fidelity objective function combined with a constraint on the image TV. For the data fidelity term the authors, compare application....... Simulations demonstrate the iterative algorithms and the resulting image statistical properties for low-dose CT data acquired with sparse projection view angle sampling. Of particular interest is to quantify improvement of image statistical properties by use of the ML data fidelity term. Methods...

  8. EIT Imaging Regularization Based on Spectral Graph Wavelets.

    Science.gov (United States)

    Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Vauhkonen, Marko; Wolf, Gerhard; Mueller-Lisse, Ullrich; Moeller, Knut

    2017-09-01

    The objective of electrical impedance tomographic reconstruction is to identify the distribution of tissue conductivity from electrical boundary conditions. This is an ill-posed inverse problem usually solved under the finite-element method framework. In previous studies, standard sparse regularization was used for difference electrical impedance tomography to achieve a sparse solution. However, regarding elementwise sparsity, standard sparse regularization interferes with the smoothness of conductivity distribution between neighboring elements and is sensitive to noise. As an effect, the reconstructed images are spiky and depict a lack of smoothness. Such unexpected artifacts are not realistic and may lead to misinterpretation in clinical applications. To eliminate such artifacts, we present a novel sparse regularization method that uses spectral graph wavelet transforms. Single-scale or multiscale graph wavelet transforms are employed to introduce local smoothness on different scales into the reconstructed images. The proposed approach relies on viewing finite-element meshes as undirected graphs and applying wavelet transforms derived from spectral graph theory. Reconstruction results from simulations, a phantom experiment, and patient data suggest that our algorithm is more robust to noise and produces more reliable images.

  9. Single Image Super Resolution via Sparse Reconstruction

    NARCIS (Netherlands)

    Kruithof, M.C.; Eekeren, A.W.M. van; Dijk, J.; Schutte, K.

    2012-01-01

    High resolution sensors are required for recognition purposes. Low resolution sensors, however, are still widely used. Software can be used to increase the resolution of such sensors. One way of increasing the resolution of the images produced is using multi-frame super resolution algorithms.

  10. Priori mask guided image reconstruction (p-MGIR) for ultra-low dose cone-beam computed tomography

    Science.gov (United States)

    Park, Justin C.; Zhang, Hao; Chen, Yunmei; Fan, Qiyong; Kahler, Darren L.; Liu, Chihray; Lu, Bo

    2015-11-01

    Recently, the compressed sensing (CS) based iterative reconstruction method has received attention because of its ability to reconstruct cone beam computed tomography (CBCT) images with good quality using sparsely sampled or noisy projections, thus enabling dose reduction. However, some challenges remain. In particular, there is always a tradeoff between image resolution and noise/streak artifact reduction based on the amount of regularization weighting that is applied uniformly across the CBCT volume. The purpose of this study is to develop a novel low-dose CBCT reconstruction algorithm framework called priori mask guided image reconstruction (p-MGIR) that allows reconstruction of high-quality low-dose CBCT images while preserving the image resolution. In p-MGIR, the unknown CBCT volume was mathematically modeled as a combination of two regions: (1) where anatomical structures are complex, and (2) where intensities are relatively uniform. The priori mask, which is the key concept of the p-MGIR algorithm, was defined as the matrix that distinguishes between the two separate CBCT regions where the resolution needs to be preserved and where streak or noise needs to be suppressed. We then alternately updated each part of image by solving two sub-minimization problems iteratively, where one minimization was focused on preserving the edge information of the first part while the other concentrated on the removal of noise/artifacts from the latter part. To evaluate the performance of the p-MGIR algorithm, a numerical head-and-neck phantom, a Catphan 600 physical phantom, and a clinical head-and-neck cancer case were used for analysis. The results were compared with the standard Feldkamp-Davis-Kress as well as conventional CS-based algorithms. Examination of the p-MGIR algorithm showed that high-quality low-dose CBCT images can be reconstructed without compromising the image resolution. For both phantom and the patient cases, the p-MGIR is able to achieve a clinically

  11. Methods of X-ray CT image reconstruction from few projections; Methodes de reconstruction d'images a partir d'un faible nombre de projections en tomographie par rayons X

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.

    2011-10-24

    To improve the safety (low dose) and the productivity (fast acquisition) of a X-ray CT system, we want to reconstruct a high quality image from a small number of projections. The classical reconstruction algorithms generally fail since the reconstruction procedure is unstable and suffers from artifacts. A new approach based on the recently developed 'Compressed Sensing' (CS) theory assumes that the unknown image is in some sense 'sparse' or 'compressible', and the reconstruction is formulated through a non linear optimization problem (TV/l1 minimization) by enhancing the sparsity. Using the pixel (or voxel in 3D) as basis, to apply the CS framework in CT one usually needs a 'sparsifying' transform, and combines it with the 'X-ray projector' which applies on the pixel image. In this thesis, we have adapted a 'CT-friendly' radial basis of Gaussian family called 'blob' to the CS-CT framework. The blob has better space-frequency localization properties than the pixel, and many operations, such as the X-ray transform, can be evaluated analytically and are highly parallelizable (on GPU platform). Compared to the classical Kaisser-Bessel blob, the new basis has a multi-scale structure: an image is the sum of dilated and translated radial Mexican hat functions. The typical medical objects are compressible under this basis, so the sparse representation system used in the ordinary CS algorithms is no more needed. 2D simulations show that the existing TV and l1 algorithms are more efficient and the reconstructions have better visual quality than the equivalent approach based on the pixel or wavelet basis. The new approach has also been validated on 2D experimental data, where we have observed that in general the number of projections can be reduced to about 50%, without compromising the image quality. (author) [French] Afin d'ameliorer la surete (faible dose) et la productivite (acquisition rapide) du

  12. MR image reconstruction via guided filter.

    Science.gov (United States)

    Huang, Heyan; Yang, Hang; Wang, Kang

    2018-04-01

    Magnetic resonance imaging (MRI) reconstruction from the smallest possible set of Fourier samples has been a difficult problem in medical imaging field. In our paper, we present a new approach based on a guided filter for efficient MRI recovery algorithm. The guided filter is an edge-preserving smoothing operator and has better behaviors near edges than the bilateral filter. Our reconstruction method is consist of two steps. First, we propose two cost functions which could be computed efficiently and thus obtain two different images. Second, the guided filter is used with these two obtained images for efficient edge-preserving filtering, and one image is used as the guidance image, the other one is used as a filtered image in the guided filter. In our reconstruction algorithm, we can obtain more details by introducing guided filter. We compare our reconstruction algorithm with some competitive MRI reconstruction techniques in terms of PSNR and visual quality. Simulation results are given to show the performance of our new method.

  13. Alternatively Constrained Dictionary Learning For Image Superresolution.

    Science.gov (United States)

    Lu, Xiaoqiang; Yuan, Yuan; Yan, Pingkun

    2014-03-01

    Dictionaries are crucial in sparse coding-based algorithm for image superresolution. Sparse coding is a typical unsupervised learning method to study the relationship between the patches of high-and low-resolution images. However, most of the sparse coding methods for image superresolution fail to simultaneously consider the geometrical structure of the dictionary and the corresponding coefficients, which may result in noticeable superresolution reconstruction artifacts. In other words, when a low-resolution image and its corresponding high-resolution image are represented in their feature spaces, the two sets of dictionaries and the obtained coefficients have intrinsic links, which has not yet been well studied. Motivated by the development on nonlocal self-similarity and manifold learning, a novel sparse coding method is reported to preserve the geometrical structure of the dictionary and the sparse coefficients of the data. Moreover, the proposed method can preserve the incoherence of dictionary entries and provide the sparse coefficients and learned dictionary from a new perspective, which have both reconstruction and discrimination properties to enhance the learning performance. Furthermore, to utilize the model of the proposed method more effectively for single-image superresolution, this paper also proposes a novel dictionary-pair learning method, which is named as two-stage dictionary training. Extensive experiments are carried out on a large set of images comparing with other popular algorithms for the same purpose, and the results clearly demonstrate the effectiveness of the proposed sparse representation model and the corresponding dictionary learning algorithm.

  14. Medical image reconstruction. A conceptual tutorial

    International Nuclear Information System (INIS)

    Zeng, Gengsheng Lawrence

    2010-01-01

    ''Medical Image Reconstruction: A Conceptual Tutorial'' introduces the classical and modern image reconstruction technologies, such as two-dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional (3D) parallel ray, parallel plane, and cone-beam imaging. This book presents both analytical and iterative methods of these technologies and their applications in X-ray CT (computed tomography), SPECT (single photon emission computed tomography), PET (positron emission tomography), and MRI (magnetic resonance imaging). Contemporary research results in exact region-of-interest (ROI) reconstruction with truncated projections, Katsevich's cone-beam filtered backprojection algorithm, and reconstruction with highly undersampled data with l 0 -minimization are also included. (orig.)

  15. EIT image reconstruction with four dimensional regularization.

    Science.gov (United States)

    Dai, Tao; Soleimani, Manuchehr; Adler, Andy

    2008-09-01

    Electrical impedance tomography (EIT) reconstructs internal impedance images of the body from electrical measurements on body surface. The temporal resolution of EIT data can be very high, although the spatial resolution of the images is relatively low. Most EIT reconstruction algorithms calculate images from data frames independently, although data are actually highly correlated especially in high speed EIT systems. This paper proposes a 4-D EIT image reconstruction for functional EIT. The new approach is developed to directly use prior models of the temporal correlations among images and 3-D spatial correlations among image elements. A fast algorithm is also developed to reconstruct the regularized images. Image reconstruction is posed in terms of an augmented image and measurement vector which are concatenated from a specific number of previous and future frames. The reconstruction is then based on an augmented regularization matrix which reflects the a priori constraints on temporal and 3-D spatial correlations of image elements. A temporal factor reflecting the relative strength of the image correlation is objectively calculated from measurement data. Results show that image reconstruction models which account for inter-element correlations, in both space and time, show improved resolution and noise performance, in comparison to simpler image models.

  16. Imaging in scattering media using correlation image sensors and sparse convolutional coding

    KAUST Repository

    Heide, Felix; Xiao, Lei; Kolb, Andreas; Hullin, Matthias B.; Heidrich, Wolfgang

    2014-01-01

    Correlation image sensors have recently become popular low-cost devices for time-of-flight, or range cameras. They usually operate under the assumption of a single light path contributing to each pixel. We show that a more thorough analysis of the sensor data from correlation sensors can be used can be used to analyze the light transport in much more complex environments, including applications for imaging through scattering and turbid media. The key of our method is a new convolutional sparse coding approach for recovering transient (light-in-flight) images from correlation image sensors. This approach is enabled by an analysis of sparsity in complex transient images, and the derivation of a new physically-motivated model for transient images with drastically improved sparsity.

  17. Imaging in scattering media using correlation image sensors and sparse convolutional coding

    KAUST Repository

    Heide, Felix

    2014-10-17

    Correlation image sensors have recently become popular low-cost devices for time-of-flight, or range cameras. They usually operate under the assumption of a single light path contributing to each pixel. We show that a more thorough analysis of the sensor data from correlation sensors can be used can be used to analyze the light transport in much more complex environments, including applications for imaging through scattering and turbid media. The key of our method is a new convolutional sparse coding approach for recovering transient (light-in-flight) images from correlation image sensors. This approach is enabled by an analysis of sparsity in complex transient images, and the derivation of a new physically-motivated model for transient images with drastically improved sparsity.

  18. A coarse-to-fine approach for medical hyperspectral image classification with sparse representation

    Science.gov (United States)

    Chang, Lan; Zhang, Mengmeng; Li, Wei

    2017-10-01

    A coarse-to-fine approach with sparse representation is proposed for medical hyperspectral image classification in this work. Segmentation technique with different scales is employed to exploit edges of the input image, where coarse super-pixel patches provide global classification information while fine ones further provide detail information. Different from common RGB image, hyperspectral image has multi bands to adjust the cluster center with more high precision. After segmentation, each super pixel is classified by recently-developed sparse representation-based classification (SRC), which assigns label for testing samples in one local patch by means of sparse linear combination of all the training samples. Furthermore, segmentation with multiple scales is employed because single scale is not suitable for complicate distribution of medical hyperspectral imagery. Finally, classification results for different sizes of super pixel are fused by some fusion strategy, offering at least two benefits: (1) the final result is obviously superior to that of segmentation with single scale, and (2) the fusion process significantly simplifies the choice of scales. Experimental results using real medical hyperspectral images demonstrate that the proposed method outperforms the state-of-the-art SRC.

  19. Alpha image reconstruction (AIR): A new iterative CT image reconstruction approach using voxel-wise alpha blending

    International Nuclear Information System (INIS)

    Hofmann, Christian; Sawall, Stefan; Knaup, Michael; Kachelrieß, Marc

    2014-01-01

    Purpose: Iterative image reconstruction gains more and more interest in clinical routine, as it promises to reduce image noise (and thereby patient dose), to reduce artifacts, or to improve spatial resolution. Among vendors and researchers, however, there is no consensus of how to best achieve these aims. The general approach is to incorporatea priori knowledge into iterative image reconstruction, for example, by adding additional constraints to the cost function, which penalize variations between neighboring voxels. However, this approach to regularization in general poses a resolution noise trade-off because the stronger the regularization, and thus the noise reduction, the stronger the loss of spatial resolution and thus loss of anatomical detail. The authors propose a method which tries to improve this trade-off. The proposed reconstruction algorithm is called alpha image reconstruction (AIR). One starts with generating basis images, which emphasize certain desired image properties, like high resolution or low noise. The AIR algorithm reconstructs voxel-specific weighting coefficients that are applied to combine the basis images. By combining the desired properties of each basis image, one can generate an image with lower noise and maintained high contrast resolution thus improving the resolution noise trade-off. Methods: All simulations and reconstructions are performed in native fan-beam geometry. A water phantom with resolution bar patterns and low contrast disks is simulated. A filtered backprojection (FBP) reconstruction with a Ram-Lak kernel is used as a reference reconstruction. The results of AIR are compared against the FBP results and against a penalized weighted least squares reconstruction which uses total variation as regularization. The simulations are based on the geometry of the Siemens Somatom Definition Flash scanner. To quantitatively assess image quality, the authors analyze line profiles through resolution patterns to define a contrast

  20. Brain perfusion imaging using a Reconstruction-of-Difference (RoD) approach for cone-beam computed tomography

    Science.gov (United States)

    Mow, M.; Zbijewski, W.; Sisniega, A.; Xu, J.; Dang, H.; Stayman, J. W.; Wang, X.; Foos, D. H.; Koliatsos, V.; Aygun, N.; Siewerdsen, J. H.

    2017-03-01

    Purpose: To improve the timely detection and treatment of intracranial hemorrhage or ischemic stroke, recent efforts include the development of cone-beam CT (CBCT) systems for perfusion imaging and new approaches to estimate perfusion parameters despite slow rotation speeds compared to multi-detector CT (MDCT) systems. This work describes development of a brain perfusion CBCT method using a reconstruction of difference (RoD) approach to enable perfusion imaging on a newly developed CBCT head scanner prototype. Methods: A new reconstruction approach using RoD with a penalized-likelihood framework was developed to image the temporal dynamics of vascular enhancement. A digital perfusion simulation was developed to give a realistic representation of brain anatomy, artifacts, noise, scanner characteristics, and hemo-dynamic properties. This simulation includes a digital brain phantom, time-attenuation curves and noise parameters, a novel forward projection method for improved computational efficiency, and perfusion parameter calculation. Results: Our results show the feasibility of estimating perfusion parameters from a set of images reconstructed from slow scans, sparse data sets, and arc length scans as short as 60 degrees. The RoD framework significantly reduces noise and time-varying artifacts from inconsistent projections. Proper regularization and the use of overlapping reconstructed arcs can potentially further decrease bias and increase temporal resolution, respectively. Conclusions: A digital brain perfusion simulation with RoD imaging approach has been developed and supports the feasibility of using a CBCT head scanner for perfusion imaging. Future work will include testing with data acquired using a 3D-printed perfusion phantom currently and translation to preclinical and clinical studies.

  1. Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection

    Science.gov (United States)

    Li, Zuhe; Fan, Yangyu; Liu, Weihua; Yu, Zeqi; Wang, Fengqin

    2017-01-01

    We aim to apply sparse autoencoder-based unsupervised feature learning to emotional semantic analysis for textile images. To tackle the problem of limited training data, we present a cross-domain feature learning scheme for emotional textile image classification using convolutional autoencoders. We further propose a correlation-analysis-based feature selection method for the weights learned by sparse autoencoders to reduce the number of features extracted from large size images. First, we randomly collect image patches on an unlabeled image dataset in the source domain and learn local features with a sparse autoencoder. We then conduct feature selection according to the correlation between different weight vectors corresponding to the autoencoder's hidden units. We finally adopt a convolutional neural network including a pooling layer to obtain global feature activations of textile images in the target domain and send these global feature vectors into logistic regression models for emotional image classification. The cross-domain unsupervised feature learning method achieves 65% to 78% average accuracy in the cross-validation experiments corresponding to eight emotional categories and performs better than conventional methods. Feature selection can reduce the computational cost of global feature extraction by about 50% while improving classification performance.

  2. Multichannel Signals Reconstruction Based on Tunable Q-Factor Wavelet Transform-Morphological Component Analysis and Sparse Bayesian Iteration for Rotating Machines

    Directory of Open Access Journals (Sweden)

    Qing Li

    2018-04-01

    Full Text Available High-speed remote transmission and large-capacity data storage are difficult issues in signals acquisition of rotating machines condition monitoring. To address these concerns, a novel multichannel signals reconstruction approach based on tunable Q-factor wavelet transform-morphological component analysis (TQWT-MCA and sparse Bayesian iteration algorithm combined with step-impulse dictionary is proposed under the frame of compressed sensing (CS. To begin with, to prevent the periodical impulses loss and effectively separate periodical impulses from the external noise and additive interference components, the TQWT-MCA method is introduced to divide the raw vibration signal into low-resonance component (LRC, i.e., periodical impulses and high-resonance component (HRC, thus, the periodical impulses are preserved effectively. Then, according to the amplitude range of generated LRC, the step-impulse dictionary atom is designed to match the physical structure of periodical impulses. Furthermore, the periodical impulses and HRC are reconstructed by the sparse Bayesian iteration combined with step-impulse dictionary, respectively, finally, the final reconstructed raw signals are obtained by adding the LRC and HRC, meanwhile, the fidelity of the final reconstructed signals is tested by the envelop spectrum and error analysis, respectively. In this work, the proposed algorithm is applied to simulated signal and engineering multichannel signals of a gearbox with multiple faults. Experimental results demonstrate that the proposed approach significantly improves the reconstructive accuracy compared with the state-of-the-art methods such as non-convex Lq (q = 0.5 regularization, spatiotemporal sparse Bayesian learning (SSBL and L1-norm, etc. Additionally, the processing time, i.e., speed of storage and transmission has increased dramatically, more importantly, the fault characteristics of the gearbox with multiple faults are detected and saved, i.e., the

  3. Low-dose X-ray CT reconstruction via dictionary learning.

    Science.gov (United States)

    Xu, Qiong; Yu, Hengyong; Mou, Xuanqin; Zhang, Lei; Hsieh, Jiang; Wang, Ge

    2012-09-01

    Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures.

  4. Interior tomography in microscopic CT with image reconstruction constrained by full field of view scan at low spatial resolution

    Science.gov (United States)

    Luo, Shouhua; Shen, Tao; Sun, Yi; Li, Jing; Li, Guang; Tang, Xiangyang

    2018-04-01

    In high resolution (microscopic) CT applications, the scan field of view should cover the entire specimen or sample to allow complete data acquisition and image reconstruction. However, truncation may occur in projection data and results in artifacts in reconstructed images. In this study, we propose a low resolution image constrained reconstruction algorithm (LRICR) for interior tomography in microscopic CT at high resolution. In general, the multi-resolution acquisition based methods can be employed to solve the data truncation problem if the project data acquired at low resolution are utilized to fill up the truncated projection data acquired at high resolution. However, most existing methods place quite strict restrictions on the data acquisition geometry, which greatly limits their utility in practice. In the proposed LRICR algorithm, full and partial data acquisition (scan) at low and high resolutions, respectively, are carried out. Using the image reconstructed from sparse projection data acquired at low resolution as the prior, a microscopic image at high resolution is reconstructed from the truncated projection data acquired at high resolution. Two synthesized digital phantoms, a raw bamboo culm and a specimen of mouse femur, were utilized to evaluate and verify performance of the proposed LRICR algorithm. Compared with the conventional TV minimization based algorithm and the multi-resolution scout-reconstruction algorithm, the proposed LRICR algorithm shows significant improvement in reduction of the artifacts caused by data truncation, providing a practical solution for high quality and reliable interior tomography in microscopic CT applications. The proposed LRICR algorithm outperforms the multi-resolution scout-reconstruction method and the TV minimization based reconstruction for interior tomography in microscopic CT.

  5. Constrained Convolutional Sparse Coding for Parametric Based Reconstruction of Line Drawings

    KAUST Repository

    Shaheen, Sara

    2017-12-25

    Convolutional sparse coding (CSC) plays an essential role in many computer vision applications ranging from image compression to deep learning. In this work, we spot the light on a new application where CSC can effectively serve, namely line drawing analysis. The process of drawing a line drawing can be approximated as the sparse spatial localization of a number of typical basic strokes, which in turn can be cast as a non-standard CSC model that considers the line drawing formation process from parametric curves. These curves are learned to optimize the fit between the model and a specific set of line drawings. Parametric representation of sketches is vital in enabling automatic sketch analysis, synthesis and manipulation. A couple of sketch manipulation examples are demonstrated in this work. Consequently, our novel method is expected to provide a reliable and automatic method for parametric sketch description. Through experiments, we empirically validate the convergence of our method to a feasible solution.

  6. Tomographic image reconstruction using training images

    DEFF Research Database (Denmark)

    Soltani, Sara; Andersen, Martin Skovgaard; Hansen, Per Christian

    2017-01-01

    We describe and examine an algorithm for tomographic image reconstruction where prior knowledge about the solution is available in the form of training images. We first construct a non-negative dictionary based on prototype elements from the training images; this problem is formulated within...

  7. Method for position emission mammography image reconstruction

    Science.gov (United States)

    Smith, Mark Frederick

    2004-10-12

    An image reconstruction method comprising accepting coincidence datat from either a data file or in real time from a pair of detector heads, culling event data that is outside a desired energy range, optionally saving the desired data for each detector position or for each pair of detector pixels on the two detector heads, and then reconstructing the image either by backprojection image reconstruction or by iterative image reconstruction. In the backprojection image reconstruction mode, rays are traced between centers of lines of response (LOR's), counts are then either allocated by nearest pixel interpolation or allocated by an overlap method and then corrected for geometric effects and attenuation and the data file updated. If the iterative image reconstruction option is selected, one implementation is to compute a grid Siddon retracing, and to perform maximum likelihood expectation maiximization (MLEM) computed by either: a) tracing parallel rays between subpixels on opposite detector heads; or b) tracing rays between randomized endpoint locations on opposite detector heads.

  8. A novel data processing technique for image reconstruction of penumbral imaging

    Science.gov (United States)

    Xie, Hongwei; Li, Hongyun; Xu, Zeping; Song, Guzhou; Zhang, Faqiang; Zhou, Lin

    2011-06-01

    CT image reconstruction technique was applied to the data processing of the penumbral imaging. Compared with other traditional processing techniques for penumbral coded pinhole image such as Wiener, Lucy-Richardson and blind technique, this approach is brand new. In this method, the coded aperture processing method was used for the first time independent to the point spread function of the image diagnostic system. In this way, the technical obstacles was overcome in the traditional coded pinhole image processing caused by the uncertainty of point spread function of the image diagnostic system. Then based on the theoretical study, the simulation of penumbral imaging and image reconstruction was carried out to provide fairly good results. While in the visible light experiment, the point source of light was used to irradiate a 5mm×5mm object after diffuse scattering and volume scattering. The penumbral imaging was made with aperture size of ~20mm. Finally, the CT image reconstruction technique was used for image reconstruction to provide a fairly good reconstruction result.

  9. High-speed reconstruction of compressed images

    Science.gov (United States)

    Cox, Jerome R., Jr.; Moore, Stephen M.

    1990-07-01

    A compression scheme is described that allows high-definition radiological images with greater than 8-bit intensity resolution to be represented by 8-bit pixels. Reconstruction of the images with their original intensity resolution can be carried out by means of a pipeline architecture suitable for compact, high-speed implementation. A reconstruction system is described that can be fabricated according to this approach and placed between an 8-bit display buffer and the display's video system thereby allowing contrast control of images at video rates. Results for 50 CR chest images are described showing that error-free reconstruction of the original 10-bit CR images can be achieved.

  10. Volumetric CT with sparse detector arrays (and application to Si-strip photon counters).

    Science.gov (United States)

    Sisniega, A; Zbijewski, W; Stayman, J W; Xu, J; Taguchi, K; Fredenberg, E; Lundqvist, Mats; Siewerdsen, J H

    2016-01-07

    Novel x-ray medical imaging sensors, such as photon counting detectors (PCDs) and large area CCD and CMOS cameras can involve irregular and/or sparse sampling of the detector plane. Application of such detectors to CT involves undersampling that is markedly different from the commonly considered case of sparse angular sampling. This work investigates volumetric sampling in CT systems incorporating sparsely sampled detectors with axial and helical scan orbits and evaluates performance of model-based image reconstruction (MBIR) with spatially varying regularization in mitigating artifacts due to sparse detector sampling. Volumetric metrics of sampling density and uniformity were introduced. Penalized-likelihood MBIR with a spatially varying penalty that homogenized resolution by accounting for variations in local sampling density (i.e. detector gaps) was evaluated. The proposed methodology was tested in simulations and on an imaging bench based on a Si-strip PCD (total area 5 cm  ×  25 cm) consisting of an arrangement of line sensors separated by gaps of up to 2.5 mm. The bench was equipped with translation/rotation stages allowing a variety of scanning trajectories, ranging from a simple axial acquisition to helical scans with variable pitch. Statistical (spherical clutter) and anthropomorphic (hand) phantoms were considered. Image quality was compared to that obtained with a conventional uniform penalty in terms of structural similarity index (SSIM), image uniformity, spatial resolution, contrast, and noise. Scan trajectories with intermediate helical width (~10 mm longitudinal distance per 360° rotation) demonstrated optimal tradeoff between the average sampling density and the homogeneity of sampling throughout the volume. For a scan trajectory with 10.8 mm helical width, the spatially varying penalty resulted in significant visual reduction of sampling artifacts, confirmed by a 10% reduction in minimum SSIM (from 0.88 to 0.8) and a 40

  11. Remote sensing image segmentation using local sparse structure constrained latent low rank representation

    Science.gov (United States)

    Tian, Shu; Zhang, Ye; Yan, Yimin; Su, Nan; Zhang, Junping

    2016-09-01

    Latent low-rank representation (LatLRR) has been attached considerable attention in the field of remote sensing image segmentation, due to its effectiveness in exploring the multiple subspace structures of data. However, the increasingly heterogeneous texture information in the high spatial resolution remote sensing images, leads to more severe interference of pixels in local neighborhood, and the LatLRR fails to capture the local complex structure information. Therefore, we present a local sparse structure constrainted latent low-rank representation (LSSLatLRR) segmentation method, which explicitly imposes the local sparse structure constraint on LatLRR to capture the intrinsic local structure in manifold structure feature subspaces. The whole segmentation framework can be viewed as two stages in cascade. In the first stage, we use the local histogram transform to extract the texture local histogram features (LHOG) at each pixel, which can efficiently capture the complex and micro-texture pattern. In the second stage, a local sparse structure (LSS) formulation is established on LHOG, which aims to preserve the local intrinsic structure and enhance the relationship between pixels having similar local characteristics. Meanwhile, by integrating the LSS and the LatLRR, we can efficiently capture the local sparse and low-rank structure in the mixture of feature subspace, and we adopt the subspace segmentation method to improve the segmentation accuracy. Experimental results on the remote sensing images with different spatial resolution show that, compared with three state-of-the-art image segmentation methods, the proposed method achieves more accurate segmentation results.

  12. Low-Dose X-ray CT Reconstruction via Dictionary Learning

    Science.gov (United States)

    Xu, Qiong; Zhang, Lei; Hsieh, Jiang; Wang, Ge

    2013-01-01

    Although diagnostic medical imaging provides enormous benefits in the early detection and accuracy diagnosis of various diseases, there are growing concerns on the potential side effect of radiation induced genetic, cancerous and other diseases. How to reduce radiation dose while maintaining the diagnostic performance is a major challenge in the computed tomography (CT) field. Inspired by the compressive sensing theory, the sparse constraint in terms of total variation (TV) minimization has already led to promising results for low-dose CT reconstruction. Compared to the discrete gradient transform used in the TV method, dictionary learning is proven to be an effective way for sparse representation. On the other hand, it is important to consider the statistical property of projection data in the low-dose CT case. Recently, we have developed a dictionary learning based approach for low-dose X-ray CT. In this paper, we present this method in detail and evaluate it in experiments. In our method, the sparse constraint in terms of a redundant dictionary is incorporated into an objective function in a statistical iterative reconstruction framework. The dictionary can be either predetermined before an image reconstruction task or adaptively defined during the reconstruction process. An alternating minimization scheme is developed to minimize the objective function. Our approach is evaluated with low-dose X-ray projections collected in animal and human CT studies, and the improvement associated with dictionary learning is quantified relative to filtered backprojection and TV-based reconstructions. The results show that the proposed approach might produce better images with lower noise and more detailed structural features in our selected cases. However, there is no proof that this is true for all kinds of structures. PMID:22542666

  13. Sinogram denoising via simultaneous sparse representation in learned dictionaries

    International Nuclear Information System (INIS)

    Karimi, Davood; Ward, Rabab K

    2016-01-01

    Reducing the radiation dose in computed tomography (CT) is highly desirable but it leads to excessive noise in the projection measurements. This can significantly reduce the diagnostic value of the reconstructed images. Removing the noise in the projection measurements is, therefore, essential for reconstructing high-quality images, especially in low-dose CT. In recent years, two new classes of patch-based denoising algorithms proved superior to other methods in various denoising applications. The first class is based on sparse representation of image patches in a learned dictionary. The second class is based on the non-local means method. Here, the image is searched for similar patches and the patches are processed together to find their denoised estimates. In this paper, we propose a novel denoising algorithm for cone-beam CT projections. The proposed method has similarities to both these algorithmic classes but is more effective and much faster. In order to exploit both the correlation between neighboring pixels within a projection and the correlation between pixels in neighboring projections, the proposed algorithm stacks noisy cone-beam projections together to form a 3D image and extracts small overlapping 3D blocks from this 3D image for processing. We propose a fast algorithm for clustering all extracted blocks. The central assumption in the proposed algorithm is that all blocks in a cluster have a joint-sparse representation in a well-designed dictionary. We describe algorithms for learning such a dictionary and for denoising a set of projections using this dictionary. We apply the proposed algorithm on simulated and real data and compare it with three other algorithms. Our results show that the proposed algorithm outperforms some of the best denoising algorithms, while also being much faster. (paper)

  14. Two-dimensional sparse wavenumber recovery for guided wavefields

    Science.gov (United States)

    Sabeti, Soroosh; Harley, Joel B.

    2018-04-01

    The multi-modal and dispersive behavior of guided waves is often characterized by their dispersion curves, which describe their frequency-wavenumber behavior. In prior work, compressive sensing based techniques, such as sparse wavenumber analysis (SWA), have been capable of recovering dispersion curves from limited data samples. A major limitation of SWA, however, is the assumption that the structure is isotropic. As a result, SWA fails when applied to composites and other anisotropic structures. There have been efforts to address this issue in the literature, but they either are not easily generalizable or do not sufficiently express the data. In this paper, we enhance the existing approaches by employing a two-dimensional wavenumber model to account for direction-dependent velocities in anisotropic media. We integrate this model with tools from compressive sensing to reconstruct a wavefield from incomplete data. Specifically, we create a modified two-dimensional orthogonal matching pursuit algorithm that takes an undersampled wavefield image, with specified unknown elements, and determines its sparse wavenumber characteristics. We then recover the entire wavefield from the sparse representations obtained with our small number of data samples.

  15. 3-D image reconstruction in radiology

    International Nuclear Information System (INIS)

    Grangeat, P.

    1999-01-01

    In this course, we present highlights on fully 3-D image reconstruction algorithms used in 3-D X-ray Computed Tomography (3-D-CT) and 3-D Rotational Radiography (3-D-RR). We first consider the case of spiral CT with a one-row detector. Starting from the 2-D fan-beam inversion formula for a circular trajectory, we introduce spiral CT 3-D image reconstruction algorithm using axial interpolation for each transverse slice. In order to improve the X-ray detection efficiency and to speed the acquisition process, the future is to use multi-row detectors associated with small angle cone-beam geometry. The generalization of the 2-D fan-beam image reconstruction algorithm to cone beam defined direct inversion formula referred as Feldkamp's algorithm for a circular trajectory and Wang's algorithm for a spiral trajectory. However, large area detectors does exist such as Radiological Image Intensifiers or in a near future solid state detectors. To get a larger zoom effect, it defines a cone-beam geometry associated with a large aperture angle. For this case, we introduce indirect image reconstruction algorithm by plane re-binning in the Radon domain. We will present some results from a prototype MORPHOMETER device using the RADON reconstruction software. Lastly, we consider the special case of 3-D Rotational Digital Subtraction Angiography with a restricted number of views. We introduce constraint optimization algorithm using quadratic, entropic or half-quadratic constraints. Generalized ART (Algebraic Reconstruction Technique) iterative reconstruction algorithm can be derived from the Bregman algorithm. We present reconstructed vascular trees from a prototype MORPHOMETER device. (author)

  16. Tomographic image reconstruction using Artificial Neural Networks

    International Nuclear Information System (INIS)

    Paschalis, P.; Giokaris, N.D.; Karabarbounis, A.; Loudos, G.K.; Maintas, D.; Papanicolas, C.N.; Spanoudaki, V.; Tsoumpas, Ch.; Stiliaris, E.

    2004-01-01

    A new image reconstruction technique based on the usage of an Artificial Neural Network (ANN) is presented. The most crucial factor in designing such a reconstruction system is the network architecture and the number of the input projections needed to reconstruct the image. Although the training phase requires a large amount of input samples and a considerable CPU time, the trained network is characterized by simplicity and quick response. The performance of this ANN is tested using several image patterns. It is intended to be used together with a phantom rotating table and the γ-camera of IASA for SPECT image reconstruction

  17. 3D dictionary learning based iterative cone beam CT reconstruction

    Directory of Open Access Journals (Sweden)

    Ti Bai

    2014-03-01

    Full Text Available Purpose: This work is to develop a 3D dictionary learning based cone beam CT (CBCT reconstruction algorithm on graphic processing units (GPU to improve the quality of sparse-view CBCT reconstruction with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms of 3 × 3 × 3 was trained from a large number of blocks extracted from a high quality volume image. On the basis, we utilized cholesky decomposition based orthogonal matching pursuit algorithm to find the sparse representation of each block. To accelerate the time-consuming sparse coding in the 3D case, we implemented the sparse coding in a parallel fashion by taking advantage of the tremendous computational power of GPU. Conjugate gradient least square algorithm was adopted to minimize the data fidelity term. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with tight frame (TF by performing reconstructions on a subset data of 121 projections. Results: Compared to TF based CBCT reconstruction that shows good overall performance, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, remove more streaking artifacts and also induce less blocky artifacts. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppress the noise, and hence to achieve high quality reconstruction under the case of sparse view. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential clinical application.-------------------------------Cite this article as: Bai T, Yan H, Shi F, Jia X, Lou Y, Xu Q, Jiang S, Mou X. 3D dictionary learning based iterative cone beam CT reconstruction. Int J Cancer Ther Oncol 2014; 2(2:020240. DOI: 10

  18. Tensor-based dictionary learning for dynamic tomographic reconstruction

    International Nuclear Information System (INIS)

    Tan, Shengqi; Wu, Zhifang; Zhang, Yanbo; Mou, Xuanqin; Wang, Ge; Cao, Guohua; Yu, Hengyong

    2015-01-01

    In dynamic computed tomography (CT) reconstruction, the data acquisition speed limits the spatio-temporal resolution. Recently, compressed sensing theory has been instrumental in improving CT reconstruction from far few-view projections. In this paper, we present an adaptive method to train a tensor-based spatio-temporal dictionary for sparse representation of an image sequence during the reconstruction process. The correlations among atoms and across phases are considered to capture the characteristics of an object. The reconstruction problem is solved by the alternating direction method of multipliers. To recover fine or sharp structures such as edges, the nonlocal total variation is incorporated into the algorithmic framework. Preclinical examples including a sheep lung perfusion study and a dynamic mouse cardiac imaging demonstrate that the proposed approach outperforms the vectorized dictionary-based CT reconstruction in the case of few-view reconstruction. (paper)

  19. Tensor-based Dictionary Learning for Dynamic Tomographic Reconstruction

    Science.gov (United States)

    Tan, Shengqi; Zhang, Yanbo; Wang, Ge; Mou, Xuanqin; Cao, Guohua; Wu, Zhifang; Yu, Hengyong

    2015-01-01

    In dynamic computed tomography (CT) reconstruction, the data acquisition speed limits the spatio-temporal resolution. Recently, compressed sensing theory has been instrumental in improving CT reconstruction from far few-view projections. In this paper, we present an adaptive method to train a tensor-based spatio-temporal dictionary for sparse representation of an image sequence during the reconstruction process. The correlations among atoms and across phases are considered to capture the characteristics of an object. The reconstruction problem is solved by the alternating direction method of multipliers. To recover fine or sharp structures such as edges, the nonlocal total variation is incorporated into the algorithmic framework. Preclinical examples including a sheep lung perfusion study and a dynamic mouse cardiac imaging demonstrate that the proposed approach outperforms the vectorized dictionary-based CT reconstruction in the case of few-view reconstruction. PMID:25779991

  20. Model-Based Reconstructive Elasticity Imaging Using Ultrasound

    Directory of Open Access Journals (Sweden)

    Salavat R. Aglyamov

    2007-01-01

    Full Text Available Elasticity imaging is a reconstructive imaging technique where tissue motion in response to mechanical excitation is measured using modern imaging systems, and the estimated displacements are then used to reconstruct the spatial distribution of Young's modulus. Here we present an ultrasound elasticity imaging method that utilizes the model-based technique for Young's modulus reconstruction. Based on the geometry of the imaged object, only one axial component of the strain tensor is used. The numerical implementation of the method is highly efficient because the reconstruction is based on an analytic solution of the forward elastic problem. The model-based approach is illustrated using two potential clinical applications: differentiation of liver hemangioma and staging of deep venous thrombosis. Overall, these studies demonstrate that model-based reconstructive elasticity imaging can be used in applications where the geometry of the object and the surrounding tissue is somewhat known and certain assumptions about the pathology can be made.

  1. Photoacoustic image reconstruction: a quantitative analysis

    Science.gov (United States)

    Sperl, Jonathan I.; Zell, Karin; Menzenbach, Peter; Haisch, Christoph; Ketzer, Stephan; Marquart, Markus; Koenig, Hartmut; Vogel, Mika W.

    2007-07-01

    Photoacoustic imaging is a promising new way to generate unprecedented contrast in ultrasound diagnostic imaging. It differs from other medical imaging approaches, in that it provides spatially resolved information about optical absorption of targeted tissue structures. Because the data acquisition process deviates from standard clinical ultrasound, choice of the proper image reconstruction method is crucial for successful application of the technique. In the literature, multiple approaches have been advocated, and the purpose of this paper is to compare four reconstruction techniques. Thereby, we focused on resolution limits, stability, reconstruction speed, and SNR. We generated experimental and simulated data and reconstructed images of the pressure distribution using four different methods: delay-and-sum (DnS), circular backprojection (CBP), generalized 2D Hough transform (HTA), and Fourier transform (FTA). All methods were able to depict the point sources properly. DnS and CBP produce blurred images containing typical superposition artifacts. The HTA provides excellent SNR and allows a good point source separation. The FTA is the fastest and shows the best FWHM. In our study, we found the FTA to show the best overall performance. It allows a very fast and theoretically exact reconstruction. Only a hardware-implemented DnS might be faster and enable real-time imaging. A commercial system may also perform several methods to fully utilize the new contrast mechanism and guarantee optimal resolution and fidelity.

  2. Dynamic PET Image reconstruction for parametric imaging using the HYPR kernel method

    Science.gov (United States)

    Spencer, Benjamin; Qi, Jinyi; Badawi, Ramsey D.; Wang, Guobao

    2017-03-01

    Dynamic PET image reconstruction is a challenging problem because of the ill-conditioned nature of PET and the lowcounting statistics resulted from short time-frames in dynamic imaging. The kernel method for image reconstruction has been developed to improve image reconstruction of low-count PET data by incorporating prior information derived from high-count composite data. In contrast to most of the existing regularization-based methods, the kernel method embeds image prior information in the forward projection model and does not require an explicit regularization term in the reconstruction formula. Inspired by the existing highly constrained back-projection (HYPR) algorithm for dynamic PET image denoising, we propose in this work a new type of kernel that is simpler to implement and further improves the kernel-based dynamic PET image reconstruction. Our evaluation study using a physical phantom scan with synthetic FDG tracer kinetics has demonstrated that the new HYPR kernel-based reconstruction can achieve a better region-of-interest (ROI) bias versus standard deviation trade-off for dynamic PET parametric imaging than the post-reconstruction HYPR denoising method and the previously used nonlocal-means kernel.

  3. Optimization-based reconstruction for reduction of CBCT artifact in IGRT

    Science.gov (United States)

    Xia, Dan; Zhang, Zheng; Paysan, Pascal; Seghers, Dieter; Brehm, Marcus; Munro, Peter; Sidky, Emil Y.; Pelizzari, Charles; Pan, Xiaochuan

    2016-04-01

    Kilo-voltage cone-beam computed tomography (CBCT) plays an important role in image guided radiation therapy (IGRT) by providing 3D spatial information of tumor potentially useful for optimizing treatment planning. In current IGRT CBCT system, reconstructed images obtained with analytic algorithms, such as FDK algorithm and its variants, may contain artifacts. In an attempt to compensate for the artifacts, we investigate optimization-based reconstruction algorithms such as the ASD-POCS algorithm for potentially reducing arti- facts in IGRT CBCT images. In this study, using data acquired with a physical phantom and a patient subject, we demonstrate that the ASD-POCS reconstruction can significantly reduce artifacts observed in clinical re- constructions. Moreover, patient images reconstructed by use of the ASD-POCS algorithm indicate a contrast level of soft-tissue improved over that of the clinical reconstruction. We have also performed reconstructions from sparse-view data, and observe that, for current clinical imaging conditions, ASD-POCS reconstructions from data collected at one half of the current clinical projection views appear to show image quality, in terms of spatial and soft-tissue-contrast resolution, higher than that of the corresponding clinical reconstructions.

  4. Application of regularization technique in image super-resolution algorithm via sparse representation

    Science.gov (United States)

    Huang, De-tian; Huang, Wei-qin; Huang, Hui; Zheng, Li-xin

    2017-11-01

    To make use of the prior knowledge of the image more effectively and restore more details of the edges and structures, a novel sparse coding objective function is proposed by applying the principle of the non-local similarity and manifold learning on the basis of super-resolution algorithm via sparse representation. Firstly, the non-local similarity regularization term is constructed by using the similar image patches to preserve the edge information. Then, the manifold learning regularization term is constructed by utilizing the locally linear embedding approach to enhance the structural information. The experimental results validate that the proposed algorithm has a significant improvement compared with several super-resolution algorithms in terms of the subjective visual effect and objective evaluation indices.

  5. Classification of multispectral or hyperspectral satellite imagery using clustering of sparse approximations on sparse representations in learned dictionaries obtained using efficient convolutional sparse coding

    Science.gov (United States)

    Moody, Daniela; Wohlberg, Brendt

    2018-01-02

    An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. The learned dictionaries may be derived using efficient convolutional sparse coding to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of images over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detect geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.

  6. Shape prior modeling using sparse representation and online dictionary learning.

    Science.gov (United States)

    Zhang, Shaoting; Zhan, Yiqiang; Zhou, Yan; Uzunbas, Mustafa; Metaxas, Dimitris N

    2012-01-01

    The recently proposed sparse shape composition (SSC) opens a new avenue for shape prior modeling. Instead of assuming any parametric model of shape statistics, SSC incorporates shape priors on-the-fly by approximating a shape instance (usually derived from appearance cues) by a sparse combination of shapes in a training repository. Theoretically, one can increase the modeling capability of SSC by including as many training shapes in the repository. However, this strategy confronts two limitations in practice. First, since SSC involves an iterative sparse optimization at run-time, the more shape instances contained in the repository, the less run-time efficiency SSC has. Therefore, a compact and informative shape dictionary is preferred to a large shape repository. Second, in medical imaging applications, training shapes seldom come in one batch. It is very time consuming and sometimes infeasible to reconstruct the shape dictionary every time new training shapes appear. In this paper, we propose an online learning method to address these two limitations. Our method starts from constructing an initial shape dictionary using the K-SVD algorithm. When new training shapes come, instead of re-constructing the dictionary from the ground up, we update the existing one using a block-coordinates descent approach. Using the dynamically updated dictionary, sparse shape composition can be gracefully scaled up to model shape priors from a large number of training shapes without sacrificing run-time efficiency. Our method is validated on lung localization in X-Ray and cardiac segmentation in MRI time series. Compared to the original SSC, it shows comparable performance while being significantly more efficient.

  7. Image denoising via collaborative support-agnostic recovery

    KAUST Repository

    Behzad, Muzammil; Masood, Mudassir; Ballal, Tarig; Shadaydeh, Maha; Al-Naffouri, Tareq Y.

    2017-01-01

    In this paper, we propose a novel patch-based image denoising algorithm using collaborative support-agnostic sparse reconstruction. In the proposed collaborative scheme, similar patches are assumed to share the same support taps. For sparse reconstruction, the likelihood of a tap being active in a patch is computed and refined through a collaboration process with other similar patches in the similarity group. This provides a very good patch support estimation, hence enhancing the quality of image restoration. Performance comparisons with state-of-the-art algorithms, in terms of PSNR and SSIM, demonstrate the superiority of the proposed algorithm.

  8. Image denoising via collaborative support-agnostic recovery

    KAUST Repository

    Behzad, Muzammil

    2017-06-20

    In this paper, we propose a novel patch-based image denoising algorithm using collaborative support-agnostic sparse reconstruction. In the proposed collaborative scheme, similar patches are assumed to share the same support taps. For sparse reconstruction, the likelihood of a tap being active in a patch is computed and refined through a collaboration process with other similar patches in the similarity group. This provides a very good patch support estimation, hence enhancing the quality of image restoration. Performance comparisons with state-of-the-art algorithms, in terms of PSNR and SSIM, demonstrate the superiority of the proposed algorithm.

  9. Heuristic optimization in penumbral image for high resolution reconstructed image

    International Nuclear Information System (INIS)

    Azuma, R.; Nozaki, S.; Fujioka, S.; Chen, Y. W.; Namihira, Y.

    2010-01-01

    Penumbral imaging is a technique which uses the fact that spatial information can be recovered from the shadow or penumbra that an unknown source casts through a simple large circular aperture. The size of the penumbral image on the detector can be mathematically determined as its aperture size, object size, and magnification. Conventional reconstruction methods are very sensitive to noise. On the other hand, the heuristic reconstruction method is very tolerant of noise. However, the aperture size influences the accuracy and resolution of the reconstructed image. In this article, we propose the optimization of the aperture size for the neutron penumbral imaging.

  10. LOR-interleaving image reconstruction for PET imaging with fractional-crystal collimation

    International Nuclear Information System (INIS)

    Li, Yusheng; Matej, Samuel; Karp, Joel S; Metzler, Scott D

    2015-01-01

    Positron emission tomography (PET) has become an important modality in medical and molecular imaging. However, in most PET applications, the resolution is still mainly limited by the physical crystal sizes or the detector’s intrinsic spatial resolution. To achieve images with better spatial resolution in a central region of interest (ROI), we have previously proposed using collimation in PET scanners. The collimator is designed to partially mask detector crystals to detect lines of response (LORs) within fractional crystals. A sequence of collimator-encoded LORs is measured with different collimation configurations. This novel collimated scanner geometry makes the reconstruction problem challenging, as both detector and collimator effects need to be modeled to reconstruct high-resolution images from collimated LORs. In this paper, we present a LOR-interleaving (LORI) algorithm, which incorporates these effects and has the advantage of reusing existing reconstruction software, to reconstruct high-resolution images for PET with fractional-crystal collimation. We also develop a 3D ray-tracing model incorporating both the collimator and crystal penetration for simulations and reconstructions of the collimated PET. By registering the collimator-encoded LORs with the collimator configurations, high-resolution LORs are restored based on the modeled transfer matrices using the non-negative least-squares method and EM algorithm. The resolution-enhanced images are then reconstructed from the high-resolution LORs using the MLEM or OSEM algorithm. For validation, we applied the LORI method to a small-animal PET scanner, A-PET, with a specially designed collimator. We demonstrate through simulated reconstructions with a hot-rod phantom and MOBY phantom that the LORI reconstructions can substantially improve spatial resolution and quantification compared to the uncollimated reconstructions. The LORI algorithm is crucial to improve overall image quality of collimated PET, which

  11. Computational acceleration for MR image reconstruction in partially parallel imaging.

    Science.gov (United States)

    Ye, Xiaojing; Chen, Yunmei; Huang, Feng

    2011-05-01

    In this paper, we present a fast numerical algorithm for solving total variation and l(1) (TVL1) based image reconstruction with application in partially parallel magnetic resonance imaging. Our algorithm uses variable splitting method to reduce computational cost. Moreover, the Barzilai-Borwein step size selection method is adopted in our algorithm for much faster convergence. Experimental results on clinical partially parallel imaging data demonstrate that the proposed algorithm requires much fewer iterations and/or less computational cost than recently developed operator splitting and Bregman operator splitting methods, which can deal with a general sensing matrix in reconstruction framework, to get similar or even better quality of reconstructed images.

  12. Enhancement of snow cover change detection with sparse representation and dictionary learning

    Science.gov (United States)

    Varade, D.; Dikshit, O.

    2014-11-01

    Sparse representation and decoding is often used for denoising images and compression of images with respect to inherent features. In this paper, we adopt a methodology incorporating sparse representation of a snow cover change map using the K-SVD trained dictionary and sparse decoding to enhance the change map. The pixels often falsely characterized as "changes" are eliminated using this approach. The preliminary change map was generated using differenced NDSI or S3 maps in case of Resourcesat-2 and Landsat 8 OLI imagery respectively. These maps are extracted into patches for compressed sensing using Discrete Cosine Transform (DCT) to generate an initial dictionary which is trained by the K-SVD approach. The trained dictionary is used for sparse coding of the change map using the Orthogonal Matching Pursuit (OMP) algorithm. The reconstructed change map incorporates a greater degree of smoothing and represents the features (snow cover changes) with better accuracy. The enhanced change map is segmented using kmeans to discriminate between the changed and non-changed pixels. The segmented enhanced change map is compared, firstly with the difference of Support Vector Machine (SVM) classified NDSI maps and secondly with a reference data generated as a mask by visual interpretation of the two input images. The methodology is evaluated using multi-spectral datasets from Resourcesat-2 and Landsat-8. The k-hat statistic is computed to determine the accuracy of the proposed approach.

  13. Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain

    International Nuclear Information System (INIS)

    Yang, Bingxin; Yuan, Min; Ma, Yide; Zhang, Jiuwen; Zhan, Kun

    2015-01-01

    Compressed sensing(CS) has been well applied to speed up imaging by exploring image sparsity over predefined basis functions or learnt dictionary. Firstly, the sparse representation is generally obtained in a single transform domain by using wavelet-like methods, which cannot produce optimal sparsity considering sparsity, data adaptivity and computational complexity. Secondly, most state-of-the-art reconstruction models seldom consider composite regularization upon the various structural features of images and transform coefficients sub-bands. Therefore, these two points lead to high sampling rates for reconstructing high-quality images. In this paper, an efficient composite sparsity structure is proposed. It learns adaptive dictionary from lowpass uniform discrete curvelet transform sub-band coefficients patches. Consistent with the sparsity structure, a novel composite regularization reconstruction model is developed to improve reconstruction results from highly undersampled k-space data. It is established via minimizing spatial image and lowpass sub-band coefficients total variation regularization, transform sub-bands coefficients l 1 sparse regularization and constraining k-space measurements fidelity. A new augmented Lagrangian method is then introduced to optimize the reconstruction model. It updates representation coefficients of lowpass sub-band coefficients over dictionary, transform sub-bands coefficients and k-space measurements upon the ideas of constrained split augmented Lagrangian shrinkage algorithm. Experimental results on in vivo data show that the proposed method obtains high-quality reconstructed images. The reconstructed images exhibit the least aliasing artifacts and reconstruction error among current CS MRI methods. The proposed sparsity structure can fit and provide hierarchical sparsity for magnetic resonance images simultaneously, bridging the gap between predefined sparse representation methods and explicit dictionary. The new augmented

  14. Simulated annealing image reconstruction for positron emission tomography

    International Nuclear Information System (INIS)

    Sundermann, E.; Lemahieu, I.; Desmedt, P.

    1994-01-01

    In Positron Emission Tomography (PET) images have to be reconstructed from moisy projection data. The noise on the PET data can be modeled by a Poison distribution. In this paper, we present the results of using the simulated annealing technique to reconstruct PET images. Various parameter settings of the simulated annealing algorithm are discussed and optimized. The reconstructed images are of good quality and high contrast, in comparison to other reconstruction techniques. (authors)

  15. Optimization of the alpha image reconstruction. An iterative CT-image reconstruction with well-defined image quality metrics

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Sergej; Sawall, Stefan; Knaup, Michael; Kachelriess, Marc [German Cancer Research Center, Heidelberg (Germany).

    2017-10-01

    Optimization of the AIR-algorithm for improved convergence and performance. TThe AIR method is an iterative algorithm for CT image reconstruction. As a result of its linearity with respect to the basis images, the AIR algorithm possesses well defined, regular image quality metrics, e.g. point spread function (PSF) or modulation transfer function (MTF), unlike other iterative reconstruction algorithms. The AIR algorithm computes weighting images α to blend between a set of basis images that preferably have mutually exclusive properties, e.g. high spatial resolution or low noise. The optimized algorithm uses an approach that alternates between the optimization of rawdata fidelity using an OSSART like update and regularization using gradient descent, as opposed to the initially proposed AIR using a straightforward gradient descent implementation. A regularization strength for a given task is chosen by formulating a requirement for the noise reduction and checking whether it is fulfilled for different regularization strengths, while monitoring the spatial resolution using the voxel-wise defined modulation transfer function for the AIR image. The optimized algorithm computes similar images in a shorter time compared to the initial gradient descent implementation of AIR. The result can be influenced by multiple parameters that can be narrowed down to a relatively simple framework to compute high quality images. The AIR images, for instance, can have at least a 50% lower noise level compared to the sharpest basis image, while the spatial resolution is mostly maintained. The optimization improves performance by a factor of 6, while maintaining image quality. Furthermore, it was demonstrated that the spatial resolution for AIR can be determined using regular image quality metrics, given smooth weighting images. This is not possible for other iterative reconstructions as a result of their non linearity. A simple set of parameters for the algorithm is discussed that provides

  16. Optimization of the alpha image reconstruction. An iterative CT-image reconstruction with well-defined image quality metrics

    International Nuclear Information System (INIS)

    Lebedev, Sergej; Sawall, Stefan; Knaup, Michael; Kachelriess, Marc

    2017-01-01

    Optimization of the AIR-algorithm for improved convergence and performance. TThe AIR method is an iterative algorithm for CT image reconstruction. As a result of its linearity with respect to the basis images, the AIR algorithm possesses well defined, regular image quality metrics, e.g. point spread function (PSF) or modulation transfer function (MTF), unlike other iterative reconstruction algorithms. The AIR algorithm computes weighting images α to blend between a set of basis images that preferably have mutually exclusive properties, e.g. high spatial resolution or low noise. The optimized algorithm uses an approach that alternates between the optimization of rawdata fidelity using an OSSART like update and regularization using gradient descent, as opposed to the initially proposed AIR using a straightforward gradient descent implementation. A regularization strength for a given task is chosen by formulating a requirement for the noise reduction and checking whether it is fulfilled for different regularization strengths, while monitoring the spatial resolution using the voxel-wise defined modulation transfer function for the AIR image. The optimized algorithm computes similar images in a shorter time compared to the initial gradient descent implementation of AIR. The result can be influenced by multiple parameters that can be narrowed down to a relatively simple framework to compute high quality images. The AIR images, for instance, can have at least a 50% lower noise level compared to the sharpest basis image, while the spatial resolution is mostly maintained. The optimization improves performance by a factor of 6, while maintaining image quality. Furthermore, it was demonstrated that the spatial resolution for AIR can be determined using regular image quality metrics, given smooth weighting images. This is not possible for other iterative reconstructions as a result of their non linearity. A simple set of parameters for the algorithm is discussed that provides

  17. Soft-tissue imaging with C-arm cone-beam CT using statistical reconstruction

    International Nuclear Information System (INIS)

    Wang, Adam S; Stayman, J Webster; Otake, Yoshito; Siewerdsen, Jeffrey H; Kleinszig, Gerhard; Vogt, Sebastian; Gallia, Gary L; Khanna, A Jay

    2014-01-01

    The potential for statistical image reconstruction methods such as penalized-likelihood (PL) to improve C-arm cone-beam CT (CBCT) soft-tissue visualization for intraoperative imaging over conventional filtered backprojection (FBP) is assessed in this work by making a fair comparison in relation to soft-tissue performance. A prototype mobile C-arm was used to scan anthropomorphic head and abdomen phantoms as well as a cadaveric torso at doses substantially lower than typical values in diagnostic CT, and the effects of dose reduction via tube current reduction and sparse sampling were also compared. Matched spatial resolution between PL and FBP was determined by the edge spread function of low-contrast (∼40–80 HU) spheres in the phantoms, which were representative of soft-tissue imaging tasks. PL using the non-quadratic Huber penalty was found to substantially reduce noise relative to FBP, especially at lower spatial resolution where PL provides a contrast-to-noise ratio increase up to 1.4–2.2× over FBP at 50% dose reduction across all objects. Comparison of sampling strategies indicates that soft-tissue imaging benefits from fully sampled acquisitions at dose above ∼1.7 mGy and benefits from 50% sparsity at dose below ∼1.0 mGy. Therefore, an appropriate sampling strategy along with the improved low-contrast visualization offered by statistical reconstruction demonstrates the potential for extending intraoperative C-arm CBCT to applications in soft-tissue interventions in neurosurgery as well as thoracic and abdominal surgeries by overcoming conventional tradeoffs in noise, spatial resolution, and dose. (paper)

  18. Hyperspectral Image Classification Based on the Combination of Spatial-spectral Feature and Sparse Representation

    Directory of Open Access Journals (Sweden)

    YANG Zhaoxia

    2015-07-01

    Full Text Available In order to avoid the problem of being over-dependent on high-dimensional spectral feature in the traditional hyperspectral image classification, a novel approach based on the combination of spatial-spectral feature and sparse representation is proposed in this paper. Firstly, we extract the spatial-spectral feature by reorganizing the local image patch with the first d principal components(PCs into a vector representation, followed by a sorting scheme to make the vector invariant to local image rotation. Secondly, we learn the dictionary through a supervised method, and use it to code the features from test samples afterwards. Finally, we embed the resulting sparse feature coding into the support vector machine(SVM for hyperspectral image classification. Experiments using three hyperspectral data show that the proposed method can effectively improve the classification accuracy comparing with traditional classification methods.

  19. Super-Resolution Image Reconstruction Applied to Medical Ultrasound

    Science.gov (United States)

    Ellis, Michael

    Ultrasound is the preferred imaging modality for many diagnostic applications due to its real-time image reconstruction and low cost. Nonetheless, conventional ultrasound is not used in many applications because of limited spatial resolution and soft tissue contrast. Most commercial ultrasound systems reconstruct images using a simple delay-and-sum architecture on receive, which is fast and robust but does not utilize all information available in the raw data. Recently, more sophisticated image reconstruction methods have been developed that make use of far more information in the raw data to improve resolution and contrast. One such method is the Time-Domain Optimized Near-Field Estimator (TONE), which employs a maximum a priori estimation to solve a highly underdetermined problem, given a well-defined system model. TONE has been shown to significantly improve both the contrast and resolution of ultrasound images when compared to conventional methods. However, TONE's lack of robustness to variations from the system model and extremely high computational cost hinder it from being readily adopted in clinical scanners. This dissertation aims to reduce the impact of TONE's shortcomings, transforming it from an academic construct to a clinically viable image reconstruction algorithm. By altering the system model from a collection of individual hypothetical scatterers to a collection of weighted, diffuse regions, dTONE is able to achieve much greater robustness to modeling errors. A method for efficient parallelization of dTONE is presented that reduces reconstruction time by more than an order of magnitude with little loss in image fidelity. An alternative reconstruction algorithm, called qTONE, is also developed and is able to reduce reconstruction times by another two orders of magnitude while simultaneously improving image contrast. Each of these methods for improving TONE are presented, their limitations are explored, and all are used in concert to reconstruct in

  20. Learning Low-Rank Class-Specific Dictionary and Sparse Intra-Class Variant Dictionary for Face Recognition

    Science.gov (United States)

    Tang, Xin; Feng, Guo-can; Li, Xiao-xin; Cai, Jia-xin

    2015-01-01

    Face recognition is challenging especially when the images from different persons are similar to each other due to variations in illumination, expression, and occlusion. If we have sufficient training images of each person which can span the facial variations of that person under testing conditions, sparse representation based classification (SRC) achieves very promising results. However, in many applications, face recognition often encounters the small sample size problem arising from the small number of available training images for each person. In this paper, we present a novel face recognition framework by utilizing low-rank and sparse error matrix decomposition, and sparse coding techniques (LRSE+SC). Firstly, the low-rank matrix recovery technique is applied to decompose the face images per class into a low-rank matrix and a sparse error matrix. The low-rank matrix of each individual is a class-specific dictionary and it captures the discriminative feature of this individual. The sparse error matrix represents the intra-class variations, such as illumination, expression changes. Secondly, we combine the low-rank part (representative basis) of each person into a supervised dictionary and integrate all the sparse error matrix of each individual into a within-individual variant dictionary which can be applied to represent the possible variations between the testing and training images. Then these two dictionaries are used to code the query image. The within-individual variant dictionary can be shared by all the subjects and only contribute to explain the lighting conditions, expressions, and occlusions of the query image rather than discrimination. At last, a reconstruction-based scheme is adopted for face recognition. Since the within-individual dictionary is introduced, LRSE+SC can handle the problem of the corrupted training data and the situation that not all subjects have enough samples for training. Experimental results show that our method achieves the

  1. Learning Low-Rank Class-Specific Dictionary and Sparse Intra-Class Variant Dictionary for Face Recognition.

    Science.gov (United States)

    Tang, Xin; Feng, Guo-Can; Li, Xiao-Xin; Cai, Jia-Xin

    2015-01-01

    Face recognition is challenging especially when the images from different persons are similar to each other due to variations in illumination, expression, and occlusion. If we have sufficient training images of each person which can span the facial variations of that person under testing conditions, sparse representation based classification (SRC) achieves very promising results. However, in many applications, face recognition often encounters the small sample size problem arising from the small number of available training images for each person. In this paper, we present a novel face recognition framework by utilizing low-rank and sparse error matrix decomposition, and sparse coding techniques (LRSE+SC). Firstly, the low-rank matrix recovery technique is applied to decompose the face images per class into a low-rank matrix and a sparse error matrix. The low-rank matrix of each individual is a class-specific dictionary and it captures the discriminative feature of this individual. The sparse error matrix represents the intra-class variations, such as illumination, expression changes. Secondly, we combine the low-rank part (representative basis) of each person into a supervised dictionary and integrate all the sparse error matrix of each individual into a within-individual variant dictionary which can be applied to represent the possible variations between the testing and training images. Then these two dictionaries are used to code the query image. The within-individual variant dictionary can be shared by all the subjects and only contribute to explain the lighting conditions, expressions, and occlusions of the query image rather than discrimination. At last, a reconstruction-based scheme is adopted for face recognition. Since the within-individual dictionary is introduced, LRSE+SC can handle the problem of the corrupted training data and the situation that not all subjects have enough samples for training. Experimental results show that our method achieves the

  2. Learning Low-Rank Class-Specific Dictionary and Sparse Intra-Class Variant Dictionary for Face Recognition.

    Directory of Open Access Journals (Sweden)

    Xin Tang

    Full Text Available Face recognition is challenging especially when the images from different persons are similar to each other due to variations in illumination, expression, and occlusion. If we have sufficient training images of each person which can span the facial variations of that person under testing conditions, sparse representation based classification (SRC achieves very promising results. However, in many applications, face recognition often encounters the small sample size problem arising from the small number of available training images for each person. In this paper, we present a novel face recognition framework by utilizing low-rank and sparse error matrix decomposition, and sparse coding techniques (LRSE+SC. Firstly, the low-rank matrix recovery technique is applied to decompose the face images per class into a low-rank matrix and a sparse error matrix. The low-rank matrix of each individual is a class-specific dictionary and it captures the discriminative feature of this individual. The sparse error matrix represents the intra-class variations, such as illumination, expression changes. Secondly, we combine the low-rank part (representative basis of each person into a supervised dictionary and integrate all the sparse error matrix of each individual into a within-individual variant dictionary which can be applied to represent the possible variations between the testing and training images. Then these two dictionaries are used to code the query image. The within-individual variant dictionary can be shared by all the subjects and only contribute to explain the lighting conditions, expressions, and occlusions of the query image rather than discrimination. At last, a reconstruction-based scheme is adopted for face recognition. Since the within-individual dictionary is introduced, LRSE+SC can handle the problem of the corrupted training data and the situation that not all subjects have enough samples for training. Experimental results show that our

  3. Computed tomography imaging with the Adaptive Statistical Iterative Reconstruction (ASIR) algorithm: dependence of image quality on the blending level of reconstruction.

    Science.gov (United States)

    Barca, Patrizio; Giannelli, Marco; Fantacci, Maria Evelina; Caramella, Davide

    2018-06-01

    Computed tomography (CT) is a useful and widely employed imaging technique, which represents the largest source of population exposure to ionizing radiation in industrialized countries. Adaptive Statistical Iterative Reconstruction (ASIR) is an iterative reconstruction algorithm with the potential to allow reduction of radiation exposure while preserving diagnostic information. The aim of this phantom study was to assess the performance of ASIR, in terms of a number of image quality indices, when different reconstruction blending levels are employed. CT images of the Catphan-504 phantom were reconstructed using conventional filtered back-projection (FBP) and ASIR with reconstruction blending levels of 20, 40, 60, 80, and 100%. Noise, noise power spectrum (NPS), contrast-to-noise ratio (CNR) and modulation transfer function (MTF) were estimated for different scanning parameters and contrast objects. Noise decreased and CNR increased non-linearly up to 50 and 100%, respectively, with increasing blending level of reconstruction. Also, ASIR has proven to modify the NPS curve shape. The MTF of ASIR reconstructed images depended on tube load/contrast and decreased with increasing blending level of reconstruction. In particular, for low radiation exposure and low contrast acquisitions, ASIR showed lower performance than FBP, in terms of spatial resolution for all blending levels of reconstruction. CT image quality varies substantially with the blending level of reconstruction. ASIR has the potential to reduce noise whilst maintaining diagnostic information in low radiation exposure CT imaging. Given the opposite variation of CNR and spatial resolution with the blending level of reconstruction, it is recommended to use an optimal value of this parameter for each specific clinical application.

  4. Sparse seismic imaging using variable projection

    NARCIS (Netherlands)

    Aravkin, Aleksandr Y.; Tu, Ning; van Leeuwen, Tristan

    2013-01-01

    We consider an important class of signal processing problems where the signal of interest is known to be sparse, and can be recovered from data given auxiliary information about how the data was generated. For example, a sparse Green's function may be recovered from seismic experimental data using

  5. Simulated annealing image reconstruction for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sundermann, E; Lemahieu, I; Desmedt, P [Department of Electronics and Information Systems, University of Ghent, St. Pietersnieuwstraat 41, B-9000 Ghent, Belgium (Belgium)

    1994-12-31

    In Positron Emission Tomography (PET) images have to be reconstructed from moisy projection data. The noise on the PET data can be modeled by a Poison distribution. In this paper, we present the results of using the simulated annealing technique to reconstruct PET images. Various parameter settings of the simulated annealing algorithm are discussed and optimized. The reconstructed images are of good quality and high contrast, in comparison to other reconstruction techniques. (authors). 11 refs., 2 figs.

  6. Adaptive compressive ghost imaging based on wavelet trees and sparse representation.

    Science.gov (United States)

    Yu, Wen-Kai; Li, Ming-Fei; Yao, Xu-Ri; Liu, Xue-Feng; Wu, Ling-An; Zhai, Guang-Jie

    2014-03-24

    Compressed sensing is a theory which can reconstruct an image almost perfectly with only a few measurements by finding its sparsest representation. However, the computation time consumed for large images may be a few hours or more. In this work, we both theoretically and experimentally demonstrate a method that combines the advantages of both adaptive computational ghost imaging and compressed sensing, which we call adaptive compressive ghost imaging, whereby both the reconstruction time and measurements required for any image size can be significantly reduced. The technique can be used to improve the performance of all computational ghost imaging protocols, especially when measuring ultra-weak or noisy signals, and can be extended to imaging applications at any wavelength.

  7. Simultaneous maximum a posteriori longitudinal PET image reconstruction

    Science.gov (United States)

    Ellis, Sam; Reader, Andrew J.

    2017-09-01

    Positron emission tomography (PET) is frequently used to monitor functional changes that occur over extended time scales, for example in longitudinal oncology PET protocols that include routine clinical follow-up scans to assess the efficacy of a course of treatment. In these contexts PET datasets are currently reconstructed into images using single-dataset reconstruction methods. Inspired by recently proposed joint PET-MR reconstruction methods, we propose to reconstruct longitudinal datasets simultaneously by using a joint penalty term in order to exploit the high degree of similarity between longitudinal images. We achieved this by penalising voxel-wise differences between pairs of longitudinal PET images in a one-step-late maximum a posteriori (MAP) fashion, resulting in the MAP simultaneous longitudinal reconstruction (SLR) method. The proposed method reduced reconstruction errors and visually improved images relative to standard maximum likelihood expectation-maximisation (ML-EM) in simulated 2D longitudinal brain tumour scans. In reconstructions of split real 3D data with inserted simulated tumours, noise across images reconstructed with MAP-SLR was reduced to levels equivalent to doubling the number of detected counts when using ML-EM. Furthermore, quantification of tumour activities was largely preserved over a variety of longitudinal tumour changes, including changes in size and activity, with larger changes inducing larger biases relative to standard ML-EM reconstructions. Similar improvements were observed for a range of counts levels, demonstrating the robustness of the method when used with a single penalty strength. The results suggest that longitudinal regularisation is a simple but effective method of improving reconstructed PET images without using resolution degrading priors.

  8. Pedestrian detection from thermal images: A sparse representation based approach

    Science.gov (United States)

    Qi, Bin; John, Vijay; Liu, Zheng; Mita, Seiichi

    2016-05-01

    Pedestrian detection, a key technology in computer vision, plays a paramount role in the applications of advanced driver assistant systems (ADASs) and autonomous vehicles. The objective of pedestrian detection is to identify and locate people in a dynamic environment so that accidents can be avoided. With significant variations introduced by illumination, occlusion, articulated pose, and complex background, pedestrian detection is a challenging task for visual perception. Different from visible images, thermal images are captured and presented with intensity maps based objects' emissivity, and thus have an enhanced spectral range to make human beings perceptible from the cool background. In this study, a sparse representation based approach is proposed for pedestrian detection from thermal images. We first adopted the histogram of sparse code to represent image features and then detect pedestrian with the extracted features in an unimodal and a multimodal framework respectively. In the unimodal framework, two types of dictionaries, i.e. joint dictionary and individual dictionary, are built by learning from prepared training samples. In the multimodal framework, a weighted fusion scheme is proposed to further highlight the contributions from features with higher separability. To validate the proposed approach, experiments were conducted to compare with three widely used features: Haar wavelets (HWs), histogram of oriented gradients (HOG), and histogram of phase congruency (HPC) as well as two classification methods, i.e. AdaBoost and support vector machine (SVM). Experimental results on a publicly available data set demonstrate the superiority of the proposed approach.

  9. Parallel CT image reconstruction based on GPUs

    International Nuclear Information System (INIS)

    Flores, Liubov A.; Vidal, Vicent; Mayo, Patricia; Rodenas, Francisco; Verdú, Gumersindo

    2014-01-01

    In X-ray computed tomography (CT) iterative methods are more suitable for the reconstruction of images with high contrast and precision in noisy conditions from a small number of projections. However, in practice, these methods are not widely used due to the high computational cost of their implementation. Nowadays technology provides the possibility to reduce effectively this drawback. It is the goal of this work to develop a fast GPU-based algorithm to reconstruct high quality images from under sampled and noisy projection data. - Highlights: • We developed GPU-based iterative algorithm to reconstruct images. • Iterative algorithms are capable to reconstruct images from under sampled set of projections. • The computer cost of the implementation of the developed algorithm is low. • The efficiency of the algorithm increases for the large scale problems

  10. Research of ART method in CT image reconstruction

    International Nuclear Information System (INIS)

    Li Zhipeng; Cong Peng; Wu Haifeng

    2005-01-01

    This paper studied Algebraic Reconstruction Technique (ART) in CT image reconstruction. Discussed the ray number influence on image quality. And the adopting of smooth method got high quality CT image. (authors)

  11. Segmentation of Hyperacute Cerebral Infarcts Based on Sparse Representation of Diffusion Weighted Imaging

    Directory of Open Access Journals (Sweden)

    Xiaodong Zhang

    2016-01-01

    Full Text Available Segmentation of infarcts at hyperacute stage is challenging as they exhibit substantial variability which may even be hard for experts to delineate manually. In this paper, a sparse representation based classification method is explored. For each patient, four volumetric data items including three volumes of diffusion weighted imaging and a computed asymmetry map are employed to extract patch features which are then fed to dictionary learning and classification based on sparse representation. Elastic net is adopted to replace the traditional L0-norm/L1-norm constraints on sparse representation to stabilize sparse code. To decrease computation cost and to reduce false positives, regions-of-interest are determined to confine candidate infarct voxels. The proposed method has been validated on 98 consecutive patients recruited within 6 hours from onset. It is shown that the proposed method could handle well infarcts with intensity variability and ill-defined edges to yield significantly higher Dice coefficient (0.755 ± 0.118 than the other two methods and their enhanced versions by confining their segmentations within the regions-of-interest (average Dice coefficient less than 0.610. The proposed method could provide a potential tool to quantify infarcts from diffusion weighted imaging at hyperacute stage with accuracy and speed to assist the decision making especially for thrombolytic therapy.

  12. Automatic Texture Optimization for 3D Urban Reconstruction

    Directory of Open Access Journals (Sweden)

    LI Ming

    2017-03-01

    Full Text Available In order to solve the problem of texture optimization in 3D city reconstruction by using multi-lens oblique images, the paper presents a method of seamless texture model reconstruction. At first, it corrects the radiation information of images by camera response functions and image dark channel. Then, according to the corresponding relevance between terrain triangular mesh surface model to image, implements occlusion detection by sparse triangulation method, and establishes the triangles' texture list of visible. Finally, combines with triangles' topology relationship in 3D triangular mesh surface model and means and variances of image, constructs a graph-cuts-based texture optimization algorithm under the framework of MRF(Markov random filed, to solve the discrete label problem of texture optimization selection and clustering, ensures the consistency of the adjacent triangles in texture mapping, achieves the seamless texture reconstruction of city. The experimental results verify the validity and superiority of our proposed method.

  13. Duality reconstruction algorithm for use in electrical impedance tomography

    International Nuclear Information System (INIS)

    Abdullah, M.Z.; Dickin, F.J.

    1996-01-01

    A duality reconstruction algorithm for solving the inverse problem in electrical impedance tomography (EIT) is described. In this method, an algorithm based on the Geselowitz compensation (GC) theorem is used first to reconstruct an approximate version of the image. It is then fed as a first guessed data to the modified Newton-Raphson (MNR) algorithm which iteratively correct the image until a final acceptable solution is reached. The implementation of the GC and MNR based algorithms using the finite element method will be discussed. Reconstructed images produced by the algorithm will also be presented. Consideration is also given to the most computationally intensive aspects of the algorithm, namely the inversion of the large and sparse matrices. The methods taken to approximately compute the inverse ot those matrices will be outlined. (author)

  14. Airship Sparse Array Antenna Radar Real Aperture Imaging Based on Compressed Sensing and Sparsity in Transform Domain

    Directory of Open Access Journals (Sweden)

    Li Liechen

    2016-02-01

    Full Text Available A conformal sparse array based on combined Barker code is designed for airship platform. The performance of the designed array such as signal-to-noise ratio is analyzed. Using the hovering characteristics of the airship, interferometry operation can be applied on the real aperture imaging results of two pulses, which can eliminate the random backscatter phase and make the image sparse in the transform domain. Building the relationship between echo and transform coefficients, the Compressed Sensing (CS theory can be introduced to solve the formula and achieving imaging. The image quality of the proposed method can reach the image formed by the full array imaging. The simulation results show the effectiveness of the proposed method.

  15. Low dose CT reconstruction via L1 norm dictionary learning using alternating minimization algorithm and balancing principle.

    Science.gov (United States)

    Wu, Junfeng; Dai, Fang; Hu, Gang; Mou, Xuanqin

    2018-04-18

    Excessive radiation exposure in computed tomography (CT) scans increases the chance of developing cancer and has become a major clinical concern. Recently, statistical iterative reconstruction (SIR) with l0-norm dictionary learning regularization has been developed to reconstruct CT images from the low dose and few-view dataset in order to reduce radiation dose. Nonetheless, the sparse regularization term adopted in this approach is l0-norm, which cannot guarantee the global convergence of the proposed algorithm. To address this problem, in this study we introduced the l1-norm dictionary learning penalty into SIR framework for low dose CT image reconstruction, and developed an alternating minimization algorithm to minimize the associated objective function, which transforms CT image reconstruction problem into a sparse coding subproblem and an image updating subproblem. During the image updating process, an efficient model function approach based on balancing principle is applied to choose the regularization parameters. The proposed alternating minimization algorithm was evaluated first using real projection data of a sheep lung CT perfusion and then using numerical simulation based on sheep lung CT image and chest image. Both visual assessment and quantitative comparison using terms of root mean square error (RMSE) and structural similarity (SSIM) index demonstrated that the new image reconstruction algorithm yielded similar performance with l0-norm dictionary learning penalty and outperformed the conventional filtered backprojection (FBP) and total variation (TV) minimization algorithms.

  16. Hybrid Geometric Calibration Method for Multi-Platform Spaceborne SAR Image with Sparse Gcps

    Science.gov (United States)

    Lv, G.; Tang, X.; Ai, B.; Li, T.; Chen, Q.

    2018-04-01

    Geometric calibration is able to provide high-accuracy geometric coordinates of spaceborne SAR image through accurate geometric parameters in the Range-Doppler model by ground control points (GCPs). However, it is very difficult to obtain GCPs that covering large-scale areas, especially in the mountainous regions. In addition, the traditional calibration method is only used for single platform SAR images and can't support the hybrid geometric calibration for multi-platform images. To solve the above problems, a hybrid geometric calibration method for multi-platform spaceborne SAR images with sparse GCPs is proposed in this paper. First, we calibrate the master image that contains GCPs. Secondly, the point tracking algorithm is used to obtain the tie points (TPs) between the master and slave images. Finally, we calibrate the slave images using TPs as the GCPs. We take the Beijing-Tianjin- Hebei region as an example to study SAR image hybrid geometric calibration method using 3 TerraSAR-X images, 3 TanDEM-X images and 5 GF-3 images covering more than 235 kilometers in the north-south direction. Geometric calibration of all images is completed using only 5 GCPs. The GPS data extracted from GNSS receiver are used to assess the plane accuracy after calibration. The results after geometric calibration with sparse GCPs show that the geometric positioning accuracy is 3 m for TSX/TDX images and 7.5 m for GF-3 images.

  17. Adaptive wavelet tight frame construction for accelerating MRI reconstruction

    Directory of Open Access Journals (Sweden)

    Genjiao Zhou

    2017-09-01

    Full Text Available The sparsity regularization approach, which assumes that the image of interest is likely to have sparse representation in some transform domain, has been an active research area in image processing and medical image reconstruction. Although various sparsifying transforms have been used in medical image reconstruction such as wavelet, contourlet, and total variation (TV etc., the efficiency of these transforms typically rely on the special structure of the underlying image. A better way to address this issue is to develop an overcomplete dictionary from the input data in order to get a better sparsifying transform for the underlying image. However, the general overcomplete dictionaries do not satisfy the so-called perfect reconstruction property which ensures that the given signal can be perfectly represented by its canonical coefficients in a manner similar to orthonormal bases, resulting in time consuming in the iterative image reconstruction. This work is to develop an adaptive wavelet tight frame method for magnetic resonance image reconstruction. The proposed scheme incorporates the adaptive wavelet tight frame approach into the magnetic resonance image reconstruction by solving a l0-regularized minimization problem. Numerical results show that the proposed approach provides significant time savings as compared to the over-complete dictionary based methods with comparable performance in terms of both peak signal-to-noise ratio and subjective visual quality.

  18. A Dictionary Learning Method with Total Generalized Variation for MRI Reconstruction.

    Science.gov (United States)

    Lu, Hongyang; Wei, Jingbo; Liu, Qiegen; Wang, Yuhao; Deng, Xiaohua

    2016-01-01

    Reconstructing images from their noisy and incomplete measurements is always a challenge especially for medical MR image with important details and features. This work proposes a novel dictionary learning model that integrates two sparse regularization methods: the total generalized variation (TGV) approach and adaptive dictionary learning (DL). In the proposed method, the TGV selectively regularizes different image regions at different levels to avoid oil painting artifacts largely. At the same time, the dictionary learning adaptively represents the image features sparsely and effectively recovers details of images. The proposed model is solved by variable splitting technique and the alternating direction method of multiplier. Extensive simulation experimental results demonstrate that the proposed method consistently recovers MR images efficiently and outperforms the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.

  19. Signal Sampling for Efficient Sparse Representation of Resting State FMRI Data

    Science.gov (United States)

    Ge, Bao; Makkie, Milad; Wang, Jin; Zhao, Shijie; Jiang, Xi; Li, Xiang; Lv, Jinglei; Zhang, Shu; Zhang, Wei; Han, Junwei; Guo, Lei; Liu, Tianming

    2015-01-01

    As the size of brain imaging data such as fMRI grows explosively, it provides us with unprecedented and abundant information about the brain. How to reduce the size of fMRI data but not lose much information becomes a more and more pressing issue. Recent literature studies tried to deal with it by dictionary learning and sparse representation methods, however, their computation complexities are still high, which hampers the wider application of sparse representation method to large scale fMRI datasets. To effectively address this problem, this work proposes to represent resting state fMRI (rs-fMRI) signals of a whole brain via a statistical sampling based sparse representation. First we sampled the whole brain’s signals via different sampling methods, then the sampled signals were aggregate into an input data matrix to learn a dictionary, finally this dictionary was used to sparsely represent the whole brain’s signals and identify the resting state networks. Comparative experiments demonstrate that the proposed signal sampling framework can speed-up by ten times in reconstructing concurrent brain networks without losing much information. The experiments on the 1000 Functional Connectomes Project further demonstrate its effectiveness and superiority. PMID:26646924

  20. Improved Sparse Channel Estimation for Cooperative Communication Systems

    Directory of Open Access Journals (Sweden)

    Guan Gui

    2012-01-01

    Full Text Available Accurate channel state information (CSI is necessary at receiver for coherent detection in amplify-and-forward (AF cooperative communication systems. To estimate the channel, traditional methods, that is, least squares (LS and least absolute shrinkage and selection operator (LASSO, are based on assumptions of either dense channel or global sparse channel. However, LS-based linear method neglects the inherent sparse structure information while LASSO-based sparse channel method cannot take full advantage of the prior information. Based on the partial sparse assumption of the cooperative channel model, we propose an improved channel estimation method with partial sparse constraint. At first, by using sparse decomposition theory, channel estimation is formulated as a compressive sensing problem. Secondly, the cooperative channel is reconstructed by LASSO with partial sparse constraint. Finally, numerical simulations are carried out to confirm the superiority of proposed methods over global sparse channel estimation methods.

  1. A sparse electromagnetic imaging scheme using nonlinear landweber iterations

    KAUST Repository

    Desmal, Abdulla

    2015-10-26

    Development and use of electromagnetic inverse scattering techniques for imagining sparse domains have been on the rise following the recent advancements in solving sparse optimization problems. Existing techniques rely on iteratively converting the nonlinear forward scattering operator into a sequence of linear ill-posed operations (for example using the Born iterative method) and applying sparsity constraints to the linear minimization problem of each iteration through the use of L0/L1-norm penalty term (A. Desmal and H. Bagci, IEEE Trans. Antennas Propag, 7, 3878–3884, 2014, and IEEE Trans. Geosci. Remote Sens., 3, 532–536, 2015). It has been shown that these techniques produce more accurate and sharper images than their counterparts which solve a minimization problem constrained with smoothness promoting L2-norm penalty term. But these existing techniques are only applicable to investigation domains involving weak scatterers because the linearization process breaks down for high values of dielectric permittivity.

  2. A Kalman filter technique applied for medical image reconstruction

    International Nuclear Information System (INIS)

    Goliaei, S.; Ghorshi, S.; Manzuri, M. T.; Mortazavi, M.

    2011-01-01

    Medical images contain information about vital organic tissues inside of human body and are widely used for diagnoses of disease or for surgical purposes. Image reconstruction is essential for medical images for some applications such as suppression of noise or de-blurring the image in order to provide images with better quality and contrast. Due to vital rule of image reconstruction in medical sciences the corresponding algorithms with better efficiency and higher speed is desirable. Most algorithms in image reconstruction are operated on frequency domain such as the most popular one known as filtered back projection. In this paper we introduce a Kalman filter technique which is operated in time domain for medical image reconstruction. Results indicated that as the number of projection increases in both normal collected ray sum and the collected ray sum corrupted by noise the quality of reconstructed image becomes better in terms of contract and transparency. It is also seen that as the number of projection increases the error index decreases.

  3. Tomographic Image Reconstruction Using Training Images with Matrix and Tensor Formulations

    DEFF Research Database (Denmark)

    Soltani, Sara

    the image resolution compared to a classical reconstruction method such as Filtered Back Projection (FBP). Some priors for the tomographic reconstruction take the form of cross-section images of similar objects, providing a set of the so-called training images, that hold the key to the structural......Reducing X-ray exposure while maintaining the image quality is a major challenge in computed tomography (CT); since the imperfect data produced from the few view and/or low intensity projections results in low-quality images that are suffering from severe artifacts when using conventional...... information about the solution. The training images must be reliable and application-specific. This PhD project aims at providing a mathematical and computational framework for the use of training sets as non-parametric priors for the solution in tomographic image reconstruction. Through an unsupervised...

  4. Speeding up image reconstruction in computed tomography

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Computed tomography (CT) is a technique for imaging cross-sections of an object using X-ray measurements taken from different angles. In last decades a significant progress has happened there: today advanced algorithms allow fast image reconstruction and obtaining high-quality images even with missing or dirty data, modern detectors provide high resolution without increasing radiation dose, and high-performance multi-core computing devices are there to help us solving such tasks even faster. I will start with CT basics, then briefly present existing classes of reconstruction algorithms and their differences. After that I will proceed to employing distinctive architectural features of modern multi-core devices (CPUs and GPUs) and popular program interfaces (OpenMP, MPI, CUDA, OpenCL) for developing effective parallel realizations of image reconstruction algorithms. Decreasing full reconstruction time from long hours up to minutes or even seconds has a revolutionary impact in diagnostic medicine and industria...

  5. Natural image sequences constrain dynamic receptive fields and imply a sparse code.

    Science.gov (United States)

    Häusler, Chris; Susemihl, Alex; Nawrot, Martin P

    2013-11-06

    In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Image reconstruction design of industrial CT instrument for teaching

    International Nuclear Information System (INIS)

    Zou Yongning; Cai Yufang

    2009-01-01

    Industrial CT instrument for teaching is applied to teaching and study in field of physics and radiology major, image reconstruction is an important part of software on CT instrument. The paper expatiate on CT physical theory and first generation CT reconstruction algorithm, describe scan process of industrial CT instrument for teaching; analyze image artifact as result of displacement of rotation center, implement method of center displacement correcting, design and complete image reconstruction software, application shows that reconstructed image is very clear and qualitatively high. (authors)

  7. Sparse Detector Imaging Sensor with Two-Class Silhouette Classification

    Directory of Open Access Journals (Sweden)

    David Russomanno

    2008-12-01

    Full Text Available This paper presents the design and test of a simple active near-infrared sparse detector imaging sensor. The prototype of the sensor is novel in that it can capture remarkable silhouettes or profiles of a wide-variety of moving objects, including humans, animals, and vehicles using a sparse detector array comprised of only sixteen sensing elements deployed in a vertical configuration. The prototype sensor was built to collect silhouettes for a variety of objects and to evaluate several algorithms for classifying the data obtained from the sensor into two classes: human versus non-human. Initial tests show that the classification of individually sensed objects into two classes can be achieved with accuracy greater than ninety-nine percent (99% with a subset of the sixteen detectors using a representative dataset consisting of 512 signatures. The prototype also includes a Webservice interface such that the sensor can be tasked in a network-centric environment. The sensor appears to be a low-cost alternative to traditional, high-resolution focal plane array imaging sensors for some applications. After a power optimization study, appropriate packaging, and testing with more extensive datasets, the sensor may be a good candidate for deployment in vast geographic regions for a myriad of intelligent electronic fence and persistent surveillance applications, including perimeter security scenarios.

  8. 3D Reconstruction of NMR Images

    Directory of Open Access Journals (Sweden)

    Peter Izak

    2007-01-01

    Full Text Available This paper introduces experiment of 3D reconstruction NMR images scanned from magnetic resonance device. There are described methods which can be used for 3D reconstruction magnetic resonance images in biomedical application. The main idea is based on marching cubes algorithm. For this task was chosen sophistication method by program Vision Assistant, which is a part of program LabVIEW.

  9. Stokes image reconstruction for two-color microgrid polarization imaging systems.

    Science.gov (United States)

    Lemaster, Daniel A

    2011-07-18

    The Air Force Research Laboratory has developed a new microgrid polarization imaging system capable of simultaneously reconstructing linear Stokes parameter images in two colors on a single focal plane array. In this paper, an effective method for extracting Stokes images is presented for this type of camera system. It is also shown that correlations between the color bands can be exploited to significantly increase overall spatial resolution. Test data is used to show the advantages of this approach over bilinear interpolation. The bounds (in terms of available reconstruction bandwidth) on image resolution are also provided.

  10. 3D Reconstruction of human bones based on dictionary learning.

    Science.gov (United States)

    Zhang, Binkai; Wang, Xiang; Liang, Xiao; Zheng, Jinjin

    2017-11-01

    An effective method for reconstructing a 3D model of human bones from computed tomography (CT) image data based on dictionary learning is proposed. In this study, the dictionary comprises the vertices of triangular meshes, and the sparse coefficient matrix indicates the connectivity information. For better reconstruction performance, we proposed a balance coefficient between the approximation and regularisation terms and a method for optimisation. Moreover, we applied a local updating strategy and a mesh-optimisation method to update the dictionary and the sparse matrix, respectively. The two updating steps are iterated alternately until the objective function converges. Thus, a reconstructed mesh could be obtained with high accuracy and regularisation. The experimental results show that the proposed method has the potential to obtain high precision and high-quality triangular meshes for rapid prototyping, medical diagnosis, and tissue engineering. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Spectrum recovery method based on sparse representation for segmented multi-Gaussian model

    Science.gov (United States)

    Teng, Yidan; Zhang, Ye; Ti, Chunli; Su, Nan

    2016-09-01

    Hyperspectral images can realize crackajack features discriminability for supplying diagnostic characteristics with high spectral resolution. However, various degradations may generate negative influence on the spectral information, including water absorption, bands-continuous noise. On the other hand, the huge data volume and strong redundancy among spectrums produced intense demand on compressing HSIs in spectral dimension, which also leads to the loss of spectral information. The reconstruction of spectral diagnostic characteristics has irreplaceable significance for the subsequent application of HSIs. This paper introduces a spectrum restoration method for HSIs making use of segmented multi-Gaussian model (SMGM) and sparse representation. A SMGM is established to indicating the unsymmetrical spectral absorption and reflection characteristics, meanwhile, its rationality and sparse property are discussed. With the application of compressed sensing (CS) theory, we implement sparse representation to the SMGM. Then, the degraded and compressed HSIs can be reconstructed utilizing the uninjured or key bands. Finally, we take low rank matrix recovery (LRMR) algorithm for post processing to restore the spatial details. The proposed method was tested on the spectral data captured on the ground with artificial water absorption condition and an AVIRIS-HSI data set. The experimental results in terms of qualitative and quantitative assessments demonstrate that the effectiveness on recovering the spectral information from both degradations and loss compression. The spectral diagnostic characteristics and the spatial geometry feature are well preserved.

  12. Piecewise spectrally band-pass for compressive coded aperture spectral imaging

    International Nuclear Information System (INIS)

    Qian Lu-Lu; Lü Qun-Bo; Huang Min; Xiang Li-Bin

    2015-01-01

    Coded aperture snapshot spectral imaging (CASSI) has been discussed in recent years. It has the remarkable advantages of high optical throughput, snapshot imaging, etc. The entire spatial-spectral data-cube can be reconstructed with just a single two-dimensional (2D) compressive sensing measurement. On the other hand, for less spectrally sparse scenes, the insufficiency of sparse sampling and aliasing in spatial-spectral images reduce the accuracy of reconstructed three-dimensional (3D) spectral cube. To solve this problem, this paper extends the improved CASSI. A band-pass filter array is mounted on the coded mask, and then the first image plane is divided into some continuous spectral sub-band areas. The entire 3D spectral cube could be captured by the relative movement between the object and the instrument. The principle analysis and imaging simulation are presented. Compared with peak signal-to-noise ratio (PSNR) and the information entropy of the reconstructed images at different numbers of spectral sub-band areas, the reconstructed 3D spectral cube reveals an observable improvement in the reconstruction fidelity, with an increase in the number of the sub-bands and a simultaneous decrease in the number of spectral channels of each sub-band. (paper)

  13. Sparse regularization for force identification using dictionaries

    Science.gov (United States)

    Qiao, Baijie; Zhang, Xingwu; Wang, Chenxi; Zhang, Hang; Chen, Xuefeng

    2016-04-01

    The classical function expansion method based on minimizing l2-norm of the response residual employs various basis functions to represent the unknown force. Its difficulty lies in determining the optimum number of basis functions. Considering the sparsity of force in the time domain or in other basis space, we develop a general sparse regularization method based on minimizing l1-norm of the coefficient vector of basis functions. The number of basis functions is adaptively determined by minimizing the number of nonzero components in the coefficient vector during the sparse regularization process. First, according to the profile of the unknown force, the dictionary composed of basis functions is determined. Second, a sparsity convex optimization model for force identification is constructed. Third, given the transfer function and the operational response, Sparse reconstruction by separable approximation (SpaRSA) is developed to solve the sparse regularization problem of force identification. Finally, experiments including identification of impact and harmonic forces are conducted on a cantilever thin plate structure to illustrate the effectiveness and applicability of SpaRSA. Besides the Dirac dictionary, other three sparse dictionaries including Db6 wavelets, Sym4 wavelets and cubic B-spline functions can also accurately identify both the single and double impact forces from highly noisy responses in a sparse representation frame. The discrete cosine functions can also successfully reconstruct the harmonic forces including the sinusoidal, square and triangular forces. Conversely, the traditional Tikhonov regularization method with the L-curve criterion fails to identify both the impact and harmonic forces in these cases.

  14. An in-depth study of sparse codes on abnormality detection

    DEFF Research Database (Denmark)

    Ren, Huamin; Pan, Hong; Olsen, Søren Ingvor

    2016-01-01

    Sparse representation has been applied successfully in abnormal event detection, in which the baseline is to learn a dictionary accompanied by sparse codes. While much emphasis is put on discriminative dictionary construction, there are no comparative studies of sparse codes regarding abnormality...... are carried out from various angles to better understand the applicability of sparse codes, including computation time, reconstruction error, sparsity, detection accuracy, and their performance combining various detection methods. The experiment results show that combining OMP codes with maximum coordinate...

  15. A Dictionary Learning Method with Total Generalized Variation for MRI Reconstruction

    Directory of Open Access Journals (Sweden)

    Hongyang Lu

    2016-01-01

    Full Text Available Reconstructing images from their noisy and incomplete measurements is always a challenge especially for medical MR image with important details and features. This work proposes a novel dictionary learning model that integrates two sparse regularization methods: the total generalized variation (TGV approach and adaptive dictionary learning (DL. In the proposed method, the TGV selectively regularizes different image regions at different levels to avoid oil painting artifacts largely. At the same time, the dictionary learning adaptively represents the image features sparsely and effectively recovers details of images. The proposed model is solved by variable splitting technique and the alternating direction method of multiplier. Extensive simulation experimental results demonstrate that the proposed method consistently recovers MR images efficiently and outperforms the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.

  16. Non-Cartesian parallel imaging reconstruction.

    Science.gov (United States)

    Wright, Katherine L; Hamilton, Jesse I; Griswold, Mark A; Gulani, Vikas; Seiberlich, Nicole

    2014-11-01

    Non-Cartesian parallel imaging has played an important role in reducing data acquisition time in MRI. The use of non-Cartesian trajectories can enable more efficient coverage of k-space, which can be leveraged to reduce scan times. These trajectories can be undersampled to achieve even faster scan times, but the resulting images may contain aliasing artifacts. Just as Cartesian parallel imaging can be used to reconstruct images from undersampled Cartesian data, non-Cartesian parallel imaging methods can mitigate aliasing artifacts by using additional spatial encoding information in the form of the nonhomogeneous sensitivities of multi-coil phased arrays. This review will begin with an overview of non-Cartesian k-space trajectories and their sampling properties, followed by an in-depth discussion of several selected non-Cartesian parallel imaging algorithms. Three representative non-Cartesian parallel imaging methods will be described, including Conjugate Gradient SENSE (CG SENSE), non-Cartesian generalized autocalibrating partially parallel acquisition (GRAPPA), and Iterative Self-Consistent Parallel Imaging Reconstruction (SPIRiT). After a discussion of these three techniques, several potential promising clinical applications of non-Cartesian parallel imaging will be covered. © 2014 Wiley Periodicals, Inc.

  17. Reconstruction of Undersampled Atomic Force Microscopy Images

    DEFF Research Database (Denmark)

    Jensen, Tobias Lindstrøm; Arildsen, Thomas; Østergaard, Jan

    2013-01-01

    Atomic force microscopy (AFM) is one of the most advanced tools for high-resolution imaging and manipulation of nanoscale matter. Unfortunately, standard AFM imaging requires a timescale on the order of seconds to minutes to acquire an image which makes it complicated to observe dynamic processes....... Moreover, it is often required to take several images before a relevant observation region is identified. In this paper we show how to significantly reduce the image acquisition time by undersampling. The reconstruction of an undersampled AFM image can be viewed as an inpainting, interpolating problem...... should be reconstructed using interpolation....

  18. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kotasidis, Fotis A. [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland and Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, M20 3LJ, Manchester (United Kingdom); Angelis, Georgios I. [Faculty of Health Sciences, Brain and Mind Research Institute, University of Sydney, NSW 2006, Sydney (Australia); Anton-Rodriguez, Jose; Matthews, Julian C. [Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, Manchester M20 3LJ (United Kingdom); Reader, Andrew J. [Montreal Neurological Institute, McGill University, Montreal QC H3A 2B4, Canada and Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King' s College London, St. Thomas’ Hospital, London SE1 7EH (United Kingdom); Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland); Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30 001, Groningen 9700 RB (Netherlands)

    2014-05-15

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  19. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    International Nuclear Information System (INIS)

    Kotasidis, Fotis A.; Angelis, Georgios I.; Anton-Rodriguez, Jose; Matthews, Julian C.; Reader, Andrew J.; Zaidi, Habib

    2014-01-01

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  20. Isotope specific resolution recovery image reconstruction in high resolution PET imaging.

    Science.gov (United States)

    Kotasidis, Fotis A; Angelis, Georgios I; Anton-Rodriguez, Jose; Matthews, Julian C; Reader, Andrew J; Zaidi, Habib

    2014-05-01

    Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution recovery image reconstruction. The

  1. Simbol-X Formation Flight and Image Reconstruction

    Science.gov (United States)

    Civitani, M.; Djalal, S.; Le Duigou, J. M.; La Marle, O.; Chipaux, R.

    2009-05-01

    Simbol-X is the first operational mission relying on two satellites flying in formation. The dynamics of the telescope, due to the formation flight concept, raises a variety of problematic, like image reconstruction, that can be better evaluated via a simulation tools. We present here the first results obtained with Simulos, simulation tool aimed to study the relative spacecrafts navigation and the weight of the different parameters in image reconstruction and telescope performance evaluation. The simulation relies on attitude and formation flight sensors models, formation flight dynamics and control, mirror model and focal plane model, while the image reconstruction is based on the Line of Sight (LOS) concept.

  2. A three-step reconstruction method for fluorescence molecular tomography based on compressive sensing

    DEFF Research Database (Denmark)

    Zhu, Yansong; Jha, Abhinav K.; Dreyer, Jakob K.

    2017-01-01

    Fluorescence molecular tomography (FMT) is a promising tool for real time in vivo quantification of neurotransmission (NT) as we pursue in our BRAIN initiative effort. However, the acquired image data are noisy and the reconstruction problem is ill-posed. Further, while spatial sparsity of the NT...... matrix coherence. The resultant image data are input to a homotopy-based reconstruction strategy that exploits sparsity via ℓ1 regularization. The reconstructed image is then input to a maximum-likelihood expectation maximization (MLEM) algorithm that retains the sparseness of the input estimate...... and improves upon the quantitation by accurate Poisson noise modeling. The proposed reconstruction method was evaluated in a three-dimensional simulated setup with fluorescent sources in a cuboidal scattering medium with optical properties simulating human brain cortex (reduced scattering coefficient: 9.2 cm-1...

  3. Imaging the Schwarzschild-radius-scale Structure of M87 with the Event Horizon Telescope Using Sparse Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Kazunori; Fish, Vincent L.; Doeleman, Sheperd S. [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States); Kuramochi, Kazuki; Tazaki, Fumie; Honma, Mareki [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Ikeda, Shiro [Department of Statistical Science, School of Multidisciplinary Sciences, Graduate University for Advanced Studies, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562 (Japan); Broderick, Avery E. [Perimeter Institute for Theoretical Physics, 31 Caroline Street, North Waterloo, Ontario N2L 2Y5 (Canada); Dexter, Jason [Max Planck Institute for Extraterrestrial Physics, Giessenbachstr. 1, D-85748 Garching (Germany); Mościbrodzka, Monika [Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Bouman, Katherine L. [Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139 (United States); Chael, Andrew A. [Black Hole Initiative, Harvard University, 20 Garden Street,Cambridge, MA 02138,USA (United States); Zaizen, Masamichi, E-mail: kazu@haystack.mit.edu [Department of Astronomy, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2017-03-20

    We propose a new imaging technique for radio and optical/infrared interferometry. The proposed technique reconstructs the image from the visibility amplitude and closure phase, which are standard data products of short-millimeter very long baseline interferometers such as the Event Horizon Telescope (EHT) and optical/infrared interferometers, by utilizing two regularization functions: the ℓ {sub 1}-norm and total variation (TV) of the brightness distribution. In the proposed method, optimal regularization parameters, which represent the sparseness and effective spatial resolution of the image, are derived from data themselves using cross-validation (CV). As an application of this technique, we present simulated observations of M87 with the EHT based on four physically motivated models. We confirm that ℓ {sub 1} + TV regularization can achieve an optimal resolution of ∼20%–30% of the diffraction limit λ / D {sub max}, which is the nominal spatial resolution of a radio interferometer. With the proposed technique, the EHT can robustly and reasonably achieve super-resolution sufficient to clearly resolve the black hole shadow. These results make it promising for the EHT to provide an unprecedented view of the event-horizon-scale structure in the vicinity of the supermassive black hole in M87 and also the Galactic center Sgr A*.

  4. Prospective regularization design in prior-image-based reconstruction

    International Nuclear Information System (INIS)

    Dang, Hao; Siewerdsen, Jeffrey H; Stayman, J Webster

    2015-01-01

    Prior-image-based reconstruction (PIBR) methods leveraging patient-specific anatomical information from previous imaging studies and/or sequences have demonstrated dramatic improvements in dose utilization and image quality for low-fidelity data. However, a proper balance of information from the prior images and information from the measurements is required (e.g. through careful tuning of regularization parameters). Inappropriate selection of reconstruction parameters can lead to detrimental effects including false structures and failure to improve image quality. Traditional methods based on heuristics are subject to error and sub-optimal solutions, while exhaustive searches require a large number of computationally intensive image reconstructions. In this work, we propose a novel method that prospectively estimates the optimal amount of prior image information for accurate admission of specific anatomical changes in PIBR without performing full image reconstructions. This method leverages an analytical approximation to the implicitly defined PIBR estimator, and introduces a predictive performance metric leveraging this analytical form and knowledge of a particular presumed anatomical change whose accurate reconstruction is sought. Additionally, since model-based PIBR approaches tend to be space-variant, a spatially varying prior image strength map is proposed to optimally admit changes everywhere in the image (eliminating the need to know change locations a priori). Studies were conducted in both an ellipse phantom and a realistic thorax phantom emulating a lung nodule surveillance scenario. The proposed method demonstrated accurate estimation of the optimal prior image strength while achieving a substantial computational speedup (about a factor of 20) compared to traditional exhaustive search. Moreover, the use of the proposed prior strength map in PIBR demonstrated accurate reconstruction of anatomical changes without foreknowledge of change locations in

  5. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    OpenAIRE

    Kotasidis Fotis A.; Kotasidis Fotis A.; Angelis Georgios I.; Anton-Rodriguez Jose; Matthews Julian C.; Reader Andrew J.; Reader Andrew J.; Zaidi Habib; Zaidi Habib; Zaidi Habib

    2014-01-01

    Purpose: Measuring and incorporating a scanner specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However due to the short half life of clinically used isotopes other long lived isotopes not used in clinical practice are used to perform the PSF measurements. As such non optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction usuall...

  6. Image quality of iterative reconstruction in cranial CT imaging: comparison of model-based iterative reconstruction (MBIR) and adaptive statistical iterative reconstruction (ASiR).

    Science.gov (United States)

    Notohamiprodjo, S; Deak, Z; Meurer, F; Maertz, F; Mueck, F G; Geyer, L L; Wirth, S

    2015-01-01

    The purpose of this study was to compare cranial CT (CCT) image quality (IQ) of the MBIR algorithm with standard iterative reconstruction (ASiR). In this institutional review board (IRB)-approved study, raw data sets of 100 unenhanced CCT examinations (120 kV, 50-260 mAs, 20 mm collimation, 0.984 pitch) were reconstructed with both ASiR and MBIR. Signal-to-noise (SNR) and contrast-to-noise (CNR) were calculated from attenuation values measured in caudate nucleus, frontal white matter, anterior ventricle horn, fourth ventricle, and pons. Two radiologists, who were blinded to the reconstruction algorithms, evaluated anonymized multiplanar reformations of 2.5 mm with respect to depiction of different parenchymal structures and impact of artefacts on IQ with a five-point scale (0: unacceptable, 1: less than average, 2: average, 3: above average, 4: excellent). MBIR decreased artefacts more effectively than ASiR (p ASiR was 2 (p ASiR (p ASiR. As CCT is an examination that is frequently required, the use of MBIR may allow for substantial reduction of radiation exposure caused by medical diagnostics. • Model-Based iterative reconstruction (MBIR) effectively decreased artefacts in cranial CT. • MBIR reconstructed images were rated with significantly higher scores for image quality. • Model-Based iterative reconstruction may allow reduced-dose diagnostic examination protocols.

  7. The influence of image reconstruction algorithms on linear thorax EIT image analysis of ventilation

    International Nuclear Information System (INIS)

    Zhao, Zhanqi; Möller, Knut; Frerichs, Inéz; Pulletz, Sven; Müller-Lisse, Ullrich

    2014-01-01

    Analysis methods of electrical impedance tomography (EIT) images based on different reconstruction algorithms were examined. EIT measurements were performed on eight mechanically ventilated patients with acute respiratory distress syndrome. A maneuver with step increase of airway pressure was performed. EIT raw data were reconstructed offline with (1) filtered back-projection (BP); (2) the Dräger algorithm based on linearized Newton–Raphson (DR); (3) the GREIT (Graz consensus reconstruction algorithm for EIT) reconstruction algorithm with a circular forward model (GR C ) and (4) GREIT with individual thorax geometry (GR T ). Individual thorax contours were automatically determined from the routine computed tomography images. Five indices were calculated on the resulting EIT images respectively: (a) the ratio between tidal and deep inflation impedance changes; (b) tidal impedance changes in the right and left lungs; (c) center of gravity; (d) the global inhomogeneity index and (e) ventilation delay at mid-dorsal regions. No significant differences were found in all examined indices among the four reconstruction algorithms (p > 0.2, Kruskal–Wallis test). The examined algorithms used for EIT image reconstruction do not influence the selected indices derived from the EIT image analysis. Indices that validated for images with one reconstruction algorithm are also valid for other reconstruction algorithms. (paper)

  8. The influence of image reconstruction algorithms on linear thorax EIT image analysis of ventilation.

    Science.gov (United States)

    Zhao, Zhanqi; Frerichs, Inéz; Pulletz, Sven; Müller-Lisse, Ullrich; Möller, Knut

    2014-06-01

    Analysis methods of electrical impedance tomography (EIT) images based on different reconstruction algorithms were examined. EIT measurements were performed on eight mechanically ventilated patients with acute respiratory distress syndrome. A maneuver with step increase of airway pressure was performed. EIT raw data were reconstructed offline with (1) filtered back-projection (BP); (2) the Dräger algorithm based on linearized Newton-Raphson (DR); (3) the GREIT (Graz consensus reconstruction algorithm for EIT) reconstruction algorithm with a circular forward model (GR(C)) and (4) GREIT with individual thorax geometry (GR(T)). Individual thorax contours were automatically determined from the routine computed tomography images. Five indices were calculated on the resulting EIT images respectively: (a) the ratio between tidal and deep inflation impedance changes; (b) tidal impedance changes in the right and left lungs; (c) center of gravity; (d) the global inhomogeneity index and (e) ventilation delay at mid-dorsal regions. No significant differences were found in all examined indices among the four reconstruction algorithms (p > 0.2, Kruskal-Wallis test). The examined algorithms used for EIT image reconstruction do not influence the selected indices derived from the EIT image analysis. Indices that validated for images with one reconstruction algorithm are also valid for other reconstruction algorithms.

  9. Image reconstruction methods in positron tomography

    International Nuclear Information System (INIS)

    Townsend, D.W.; Defrise, M.

    1993-01-01

    In the two decades since the introduction of the X-ray scanner into radiology, medical imaging techniques have become widely established as essential tools in the diagnosis of disease. As a consequence of recent technological and mathematical advances, the non-invasive, three-dimensional imaging of internal organs such as the brain and the heart is now possible, not only for anatomical investigations using X-ray but also for studies which explore the functional status of the body using positron-emitting radioisotopes. This report reviews the historical and physical basis of medical imaging techniques using positron-emitting radioisotopes. Mathematical methods which enable three-dimensional distributions of radioisotopes to be reconstructed from projection data (sinograms) acquired by detectors suitably positioned around the patient are discussed. The extension of conventional two-dimensional tomographic reconstruction algorithms to fully three-dimensional reconstruction is described in detail. (orig.)

  10. Thin-film sparse boundary array design for passive acoustic mapping during ultrasound therapy.

    Science.gov (United States)

    Coviello, Christian M; Kozick, Richard J; Hurrell, Andrew; Smith, Penny Probert; Coussios, Constantin-C

    2012-10-01

    A new 2-D hydrophone array for ultrasound therapy monitoring is presented, along with a novel algorithm for passive acoustic mapping using a sparse weighted aperture. The array is constructed using existing polyvinylidene fluoride (PVDF) ultrasound sensor technology, and is utilized for its broadband characteristics and its high receive sensitivity. For most 2-D arrays, high-resolution imagery is desired, which requires a large aperture at the cost of a large number of elements. The proposed array's geometry is sparse, with elements only on the boundary of the rectangular aperture. The missing information from the interior is filled in using linear imaging techniques. After receiving acoustic emissions during ultrasound therapy, this algorithm applies an apodization to the sparse aperture to limit side lobes and then reconstructs acoustic activity with high spatiotemporal resolution. Experiments show verification of the theoretical point spread function, and cavitation maps in agar phantoms correspond closely to predicted areas, showing the validity of the array and methodology.

  11. Discriminative sparse coding on multi-manifolds

    KAUST Repository

    Wang, J.J.-Y.; Bensmail, H.; Yao, N.; Gao, Xin

    2013-01-01

    Sparse coding has been popularly used as an effective data representation method in various applications, such as computer vision, medical imaging and bioinformatics. However, the conventional sparse coding algorithms and their manifold-regularized variants (graph sparse coding and Laplacian sparse coding), learn codebooks and codes in an unsupervised manner and neglect class information that is available in the training set. To address this problem, we propose a novel discriminative sparse coding method based on multi-manifolds, that learns discriminative class-conditioned codebooks and sparse codes from both data feature spaces and class labels. First, the entire training set is partitioned into multiple manifolds according to the class labels. Then, we formulate the sparse coding as a manifold-manifold matching problem and learn class-conditioned codebooks and codes to maximize the manifold margins of different classes. Lastly, we present a data sample-manifold matching-based strategy to classify the unlabeled data samples. Experimental results on somatic mutations identification and breast tumor classification based on ultrasonic images demonstrate the efficacy of the proposed data representation and classification approach. 2013 The Authors. All rights reserved.

  12. Discriminative sparse coding on multi-manifolds

    KAUST Repository

    Wang, J.J.-Y.

    2013-09-26

    Sparse coding has been popularly used as an effective data representation method in various applications, such as computer vision, medical imaging and bioinformatics. However, the conventional sparse coding algorithms and their manifold-regularized variants (graph sparse coding and Laplacian sparse coding), learn codebooks and codes in an unsupervised manner and neglect class information that is available in the training set. To address this problem, we propose a novel discriminative sparse coding method based on multi-manifolds, that learns discriminative class-conditioned codebooks and sparse codes from both data feature spaces and class labels. First, the entire training set is partitioned into multiple manifolds according to the class labels. Then, we formulate the sparse coding as a manifold-manifold matching problem and learn class-conditioned codebooks and codes to maximize the manifold margins of different classes. Lastly, we present a data sample-manifold matching-based strategy to classify the unlabeled data samples. Experimental results on somatic mutations identification and breast tumor classification based on ultrasonic images demonstrate the efficacy of the proposed data representation and classification approach. 2013 The Authors. All rights reserved.

  13. Reconstruction CT imaging of the hypopharynx and the larynx

    International Nuclear Information System (INIS)

    Okuno, Tetsuji; Fujimura, Akiko; Murakami, Yasushi; Shiga, Hayao

    1986-01-01

    The multiplanar reconstruction CT imaging of the hypopharynx and the larynx was performed on a total of 20 cases: 8 with laryngeal carcinomas, 6 with hypopharyngeal carcinomas, 4 with vocal cord paralyses due to various causes, 1 with laryngeal amyloidosis, 1 with inflammatory granuloma of the hypopharynx. Coronal, segittal, and parasagittal reconstruction images were obtained from either 1 or 2 mm overlapping axial scans with 4 or 5 mm slice thickness (3 cases) using 5 sec scan times during queit breathing. In 15 cases with coronal reconstruction imaging, the anatomical derangements of the laryngopharyngeal structures especially along the undersurface of the true vocal cord to the false cord level, the lateral wall of the pyriform sinus, and the paraglottic space were demonstrated more clearly than the axial CT imaging. In 5 cases with sagittal reconstruction imaging, the vertical extension of the lesions through the anterior commisure was more clearly depicted than the axial CT imaging. In 8 cases with parasagittal reconstruction imaging, which is along the vocal fold or across the aryepiglottic fold, pathological changes along the aryepiglottic fold, the arytenoid-corniculate cartilage complex, and the tip of the pyriform sinus were more clearly demonstrated than the axial CT imaging. In determining the feasibility of conservation surgery of the larynx and the hypopharynx, reconstruction CT imaging is recommended as the diagnostic procedure of a choice, which would supplement the findings of the routine axial CT imaging. (author)

  14. Image Quality Assessment via Quality-aware Group Sparse Coding

    Directory of Open Access Journals (Sweden)

    Minglei Tong

    2014-12-01

    Full Text Available Image quality assessment has been attracting growing attention at an accelerated pace over the past decade, in the fields of image processing, vision and machine learning. In particular, general purpose blind image quality assessment is technically challenging and lots of state-of-the-art approaches have been developed to solve this problem, most under the supervised learning framework where the human scored samples are needed for training a regression model. In this paper, we propose an unsupervised learning approach that work without the human label. In the off-line stage, our method trains a dictionary covering different levels of image quality patch atoms across the training samples without knowing the human score, where each atom is associated with a quality score induced from the reference image; at the on-line stage, given each image patch, our method performs group sparse coding to encode the sample, such that the sample quality can be estimated from the few labeled atoms whose encoding coefficients are nonzero. Experimental results on the public dataset show the promising performance of our approach and future research direction is also discussed.

  15. Sparse Reconstruction of Regional Gravity Signal Based on Stabilized Orthogonal Matching Pursuit (SOMP)

    Science.gov (United States)

    Saadat, S. A.; Safari, A.; Needell, D.

    2016-06-01

    The main role of gravity field recovery is the study of dynamic processes in the interior of the Earth especially in exploration geophysics. In this paper, the Stabilized Orthogonal Matching Pursuit (SOMP) algorithm is introduced for sparse reconstruction of regional gravity signals of the Earth. In practical applications, ill-posed problems may be encountered regarding unknown parameters that are sensitive to the data perturbations. Therefore, an appropriate regularization method needs to be applied to find a stabilized solution. The SOMP algorithm aims to regularize the norm of the solution vector, while also minimizing the norm of the corresponding residual vector. In this procedure, a convergence point of the algorithm that specifies optimal sparsity-level of the problem is determined. The results show that the SOMP algorithm finds the stabilized solution for the ill-posed problem at the optimal sparsity-level, improving upon existing sparsity based approaches.

  16. Single and Multiple Object Tracking Using a Multi-Feature Joint Sparse Representation.

    Science.gov (United States)

    Hu, Weiming; Li, Wei; Zhang, Xiaoqin; Maybank, Stephen

    2015-04-01

    In this paper, we propose a tracking algorithm based on a multi-feature joint sparse representation. The templates for the sparse representation can include pixel values, textures, and edges. In the multi-feature joint optimization, noise or occlusion is dealt with using a set of trivial templates. A sparse weight constraint is introduced to dynamically select the relevant templates from the full set of templates. A variance ratio measure is adopted to adaptively adjust the weights of different features. The multi-feature template set is updated adaptively. We further propose an algorithm for tracking multi-objects with occlusion handling based on the multi-feature joint sparse reconstruction. The observation model based on sparse reconstruction automatically focuses on the visible parts of an occluded object by using the information in the trivial templates. The multi-object tracking is simplified into a joint Bayesian inference. The experimental results show the superiority of our algorithm over several state-of-the-art tracking algorithms.

  17. Matrix-based image reconstruction methods for tomography

    International Nuclear Information System (INIS)

    Llacer, J.; Meng, J.D.

    1984-10-01

    Matrix methods of image reconstruction have not been used, in general, because of the large size of practical matrices, ill condition upon inversion and the success of Fourier-based techniques. An exception is the work that has been done at the Lawrence Berkeley Laboratory for imaging with accelerated radioactive ions. An extension of that work into more general imaging problems shows that, with a correct formulation of the problem, positron tomography with ring geometries results in well behaved matrices which can be used for image reconstruction with no distortion of the point response in the field of view and flexibility in the design of the instrument. Maximum Likelihood Estimator methods of reconstruction, which use the system matrices tailored to specific instruments and do not need matrix inversion, are shown to result in good preliminary images. A parallel processing computer structure based on multiple inexpensive microprocessors is proposed as a system to implement the matrix-MLE methods. 14 references, 7 figures

  18. Discrete Sparse Coding.

    Science.gov (United States)

    Exarchakis, Georgios; Lücke, Jörg

    2017-11-01

    Sparse coding algorithms with continuous latent variables have been the subject of a large number of studies. However, discrete latent spaces for sparse coding have been largely ignored. In this work, we study sparse coding with latents described by discrete instead of continuous prior distributions. We consider the general case in which the latents (while being sparse) can take on any value of a finite set of possible values and in which we learn the prior probability of any value from data. This approach can be applied to any data generated by discrete causes, and it can be applied as an approximation of continuous causes. As the prior probabilities are learned, the approach then allows for estimating the prior shape without assuming specific functional forms. To efficiently train the parameters of our probabilistic generative model, we apply a truncated expectation-maximization approach (expectation truncation) that we modify to work with a general discrete prior. We evaluate the performance of the algorithm by applying it to a variety of tasks: (1) we use artificial data to verify that the algorithm can recover the generating parameters from a random initialization, (2) use image patches of natural images and discuss the role of the prior for the extraction of image components, (3) use extracellular recordings of neurons to present a novel method of analysis for spiking neurons that includes an intuitive discretization strategy, and (4) apply the algorithm on the task of encoding audio waveforms of human speech. The diverse set of numerical experiments presented in this letter suggests that discrete sparse coding algorithms can scale efficiently to work with realistic data sets and provide novel statistical quantities to describe the structure of the data.

  19. ℓ1/2-norm regularized nonnegative low-rank and sparse affinity graph for remote sensing image segmentation

    Science.gov (United States)

    Tian, Shu; Zhang, Ye; Yan, Yiming; Su, Nan

    2016-10-01

    Segmentation of real-world remote sensing images is a challenge due to the complex texture information with high heterogeneity. Thus, graph-based image segmentation methods have been attracting great attention in the field of remote sensing. However, most of the traditional graph-based approaches fail to capture the intrinsic structure of the feature space and are sensitive to noises. A ℓ-norm regularization-based graph segmentation method is proposed to segment remote sensing images. First, we use the occlusion of the random texture model (ORTM) to extract the local histogram features. Then, a ℓ-norm regularized low-rank and sparse representation (LNNLRS) is implemented to construct a ℓ-regularized nonnegative low-rank and sparse graph (LNNLRS-graph), by the union of feature subspaces. Moreover, the LNNLRS-graph has a high ability to discriminate the manifold intrinsic structure of highly homogeneous texture information. Meanwhile, the LNNLRS representation takes advantage of the low-rank and sparse characteristics to remove the noises and corrupted data. Last, we introduce the LNNLRS-graph into the graph regularization nonnegative matrix factorization to enhance the segmentation accuracy. The experimental results using remote sensing images show that when compared to five state-of-the-art image segmentation methods, the proposed method achieves more accurate segmentation results.

  20. A Convex Formulation for Magnetic Particle Imaging X-Space Reconstruction.

    Science.gov (United States)

    Konkle, Justin J; Goodwill, Patrick W; Hensley, Daniel W; Orendorff, Ryan D; Lustig, Michael; Conolly, Steven M

    2015-01-01

    Magnetic Particle Imaging (mpi) is an emerging imaging modality with exceptional promise for clinical applications in rapid angiography, cell therapy tracking, cancer imaging, and inflammation imaging. Recent publications have demonstrated quantitative mpi across rat sized fields of view with x-space reconstruction methods. Critical to any medical imaging technology is the reliability and accuracy of image reconstruction. Because the average value of the mpi signal is lost during direct-feedthrough signal filtering, mpi reconstruction algorithms must recover this zero-frequency value. Prior x-space mpi recovery techniques were limited to 1d approaches which could introduce artifacts when reconstructing a 3d image. In this paper, we formulate x-space reconstruction as a 3d convex optimization problem and apply robust a priori knowledge of image smoothness and non-negativity to reduce non-physical banding and haze artifacts. We conclude with a discussion of the powerful extensibility of the presented formulation for future applications.

  1. Sparse-sampling with time-encoded (TICO) stimulated Raman scattering for fast image acquisition

    Science.gov (United States)

    Hakert, Hubertus; Eibl, Matthias; Karpf, Sebastian; Huber, Robert

    2017-07-01

    Modern biomedical imaging modalities aim to provide researchers a multimodal contrast for a deeper insight into a specimen under investigation. A very promising technique is stimulated Raman scattering (SRS) microscopy, which can unveil the chemical composition of a sample with a very high specificity. Although the signal intensities are enhanced manifold to achieve a faster acquisition of images if compared to standard Raman microscopy, there is a trade-off between specificity and acquisition speed. Commonly used SRS concepts either probe only very few Raman transitions as the tuning of the applied laser sources is complicated or record whole spectra with a spectrometer based setup. While the first approach is fast, it reduces the specificity and the spectrometer approach records whole spectra -with energy differences where no Raman information is present-, which limits the acquisition speed. Therefore, we present a new approach based on the TICO-Raman concept, which we call sparse-sampling. The TICO-sparse-sampling setup is fully electronically controllable and allows probing of only the characteristic peaks of a Raman spectrum instead of always acquiring a whole spectrum. By reducing the spectral points to the relevant peaks, the acquisition time can be greatly reduced compared to a uniformly, equidistantly sampled Raman spectrum while the specificity and the signal to noise ratio (SNR) are maintained. Furthermore, all laser sources are completely fiber based. The synchronized detection enables a full resolution of the Raman signal, whereas the analogue and digital balancing allows shot noise limited detection. First imaging results with polystyrene (PS) and polymethylmethacrylate (PMMA) beads confirm the advantages of TICO sparse-sampling. We achieved a pixel dwell time as low as 35 μs for an image differentiating both species. The mechanical properties of the applied voice coil stage for scanning the sample currently limits even faster acquisition.

  2. Monte-Carlo simulations and image reconstruction for novel imaging scenarios in emission tomography

    International Nuclear Information System (INIS)

    Gillam, John E.; Rafecas, Magdalena

    2016-01-01

    Emission imaging incorporates both the development of dedicated devices for data acquisition as well as algorithms for recovering images from that data. Emission tomography is an indirect approach to imaging. The effect of device modification on the final image can be understood through both the way in which data are gathered, using simulation, and the way in which the image is formed from that data, or image reconstruction. When developing novel devices, systems and imaging tasks, accurate simulation and image reconstruction allow performance to be estimated, and in some cases optimized, using computational methods before or during the process of physical construction. However, there are a vast range of approaches, algorithms and pre-existing computational tools that can be exploited and the choices made will affect the accuracy of the in silico results and quality of the reconstructed images. On the one hand, should important physical effects be neglected in either the simulation or reconstruction steps, specific enhancements provided by novel devices may not be represented in the results. On the other hand, over-modeling of device characteristics in either step leads to large computational overheads that can confound timely results. Here, a range of simulation methodologies and toolkits are discussed, as well as reconstruction algorithms that may be employed in emission imaging. The relative advantages and disadvantages of a range of options are highlighted using specific examples from current research scenarios.

  3. Monte-Carlo simulations and image reconstruction for novel imaging scenarios in emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gillam, John E. [The University of Sydney, Faculty of Health Sciences and The Brain and Mind Centre, Camperdown (Australia); Rafecas, Magdalena, E-mail: rafecas@imt.uni-luebeck.de [University of Lubeck, Institute of Medical Engineering, Ratzeburger Allee 160, 23538 Lübeck (Germany)

    2016-02-11

    Emission imaging incorporates both the development of dedicated devices for data acquisition as well as algorithms for recovering images from that data. Emission tomography is an indirect approach to imaging. The effect of device modification on the final image can be understood through both the way in which data are gathered, using simulation, and the way in which the image is formed from that data, or image reconstruction. When developing novel devices, systems and imaging tasks, accurate simulation and image reconstruction allow performance to be estimated, and in some cases optimized, using computational methods before or during the process of physical construction. However, there are a vast range of approaches, algorithms and pre-existing computational tools that can be exploited and the choices made will affect the accuracy of the in silico results and quality of the reconstructed images. On the one hand, should important physical effects be neglected in either the simulation or reconstruction steps, specific enhancements provided by novel devices may not be represented in the results. On the other hand, over-modeling of device characteristics in either step leads to large computational overheads that can confound timely results. Here, a range of simulation methodologies and toolkits are discussed, as well as reconstruction algorithms that may be employed in emission imaging. The relative advantages and disadvantages of a range of options are highlighted using specific examples from current research scenarios.

  4. An efficient algorithm for MR image reconstruction and compression

    International Nuclear Information System (INIS)

    Wang, Hang; Rosenfeld, D.; Braun, M.; Yan, Hong

    1992-01-01

    In magnetic resonance imaging (MRI), the original data are sampled in the spatial frequency domain. The sampled data thus constitute a set of discrete Fourier transform (DFT) coefficients. The image is usually reconstructed by taking inverse DFT. The image data may then be efficiently compressed using the discrete cosine transform (DCT). A method of using DCT to treat the sampled data is presented which combines two procedures, image reconstruction and data compression. This method may be particularly useful in medical picture archiving and communication systems where both image reconstruction and compression are important issues. 11 refs., 3 figs

  5. Algorithms for Reconstruction of Undersampled Atomic Force Microscopy Images Supplementary Material

    DEFF Research Database (Denmark)

    2017-01-01

    Two Jupyter Notebooks showcasing reconstructions of undersampled atomic force microscopy images. The reconstructions were obtained using a variety of interpolation and reconstruction methods.......Two Jupyter Notebooks showcasing reconstructions of undersampled atomic force microscopy images. The reconstructions were obtained using a variety of interpolation and reconstruction methods....

  6. Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Gao, Yaozong; Shi, Feng; Liao, Shu; Li, Gang [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599 (United States); Chen, Ken Chung [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 and Department of Stomatology, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan 70403 (China); Shen, Steve G. F.; Yan, Jin [Department of Oral and Craniomaxillofacial Surgery and Science, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, China 200011 (China); Lee, Philip K. M.; Chow, Ben [Hong Kong Dental Implant and Maxillofacial Centre, Hong Kong, China 999077 (China); Liu, Nancy X. [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 and Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China 100050 (China); Xia, James J. [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 (United States); Department of Surgery (Oral and Maxillofacial Surgery), Weill Medical College, Cornell University, New York, New York 10065 (United States); Department of Oral and Craniomaxillofacial Surgery and Science, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, China 200011 (China); Shen, Dinggang, E-mail: dgshen@med.unc.edu [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599 and Department of Brain and Cognitive Engineering, Korea University, Seoul, 136701 (Korea, Republic of)

    2014-04-15

    Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate three-dimensional (3D) models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the poor image quality, including very low signal-to-noise ratio and the widespread image artifacts such as noise, beam hardening, and inhomogeneity, it is challenging to segment the CBCT images. In this paper, the authors present a new automatic segmentation method to address these problems. Methods: To segment CBCT images, the authors propose a new method for fully automated CBCT segmentation by using patch-based sparse representation to (1) segment bony structures from the soft tissues and (2) further separate the mandible from the maxilla. Specifically, a region-specific registration strategy is first proposed to warp all the atlases to the current testing subject and then a sparse-based label propagation strategy is employed to estimate a patient-specific atlas from all aligned atlases. Finally, the patient-specific atlas is integrated into amaximum a posteriori probability-based convex segmentation framework for accurate segmentation. Results: The proposed method has been evaluated on a dataset with 15 CBCT images. The effectiveness of the proposed region-specific registration strategy and patient-specific atlas has been validated by comparing with the traditional registration strategy and population-based atlas. The experimental results show that the proposed method achieves the best segmentation accuracy by comparison with other state-of-the-art segmentation methods. Conclusions: The authors have proposed a new CBCT segmentation method by using patch-based sparse representation and convex optimization, which can achieve considerably accurate segmentation results in CBCT

  7. Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization

    International Nuclear Information System (INIS)

    Wang, Li; Gao, Yaozong; Shi, Feng; Liao, Shu; Li, Gang; Chen, Ken Chung; Shen, Steve G. F.; Yan, Jin; Lee, Philip K. M.; Chow, Ben; Liu, Nancy X.; Xia, James J.; Shen, Dinggang

    2014-01-01

    Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate three-dimensional (3D) models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the poor image quality, including very low signal-to-noise ratio and the widespread image artifacts such as noise, beam hardening, and inhomogeneity, it is challenging to segment the CBCT images. In this paper, the authors present a new automatic segmentation method to address these problems. Methods: To segment CBCT images, the authors propose a new method for fully automated CBCT segmentation by using patch-based sparse representation to (1) segment bony structures from the soft tissues and (2) further separate the mandible from the maxilla. Specifically, a region-specific registration strategy is first proposed to warp all the atlases to the current testing subject and then a sparse-based label propagation strategy is employed to estimate a patient-specific atlas from all aligned atlases. Finally, the patient-specific atlas is integrated into amaximum a posteriori probability-based convex segmentation framework for accurate segmentation. Results: The proposed method has been evaluated on a dataset with 15 CBCT images. The effectiveness of the proposed region-specific registration strategy and patient-specific atlas has been validated by comparing with the traditional registration strategy and population-based atlas. The experimental results show that the proposed method achieves the best segmentation accuracy by comparison with other state-of-the-art segmentation methods. Conclusions: The authors have proposed a new CBCT segmentation method by using patch-based sparse representation and convex optimization, which can achieve considerably accurate segmentation results in CBCT

  8. Fast dictionary-based reconstruction for diffusion spectrum imaging.

    Science.gov (United States)

    Bilgic, Berkin; Chatnuntawech, Itthi; Setsompop, Kawin; Cauley, Stephen F; Yendiki, Anastasia; Wald, Lawrence L; Adalsteinsson, Elfar

    2013-11-01

    Diffusion spectrum imaging reveals detailed local diffusion properties at the expense of substantially long imaging times. It is possible to accelerate acquisition by undersampling in q-space, followed by image reconstruction that exploits prior knowledge on the diffusion probability density functions (pdfs). Previously proposed methods impose this prior in the form of sparsity under wavelet and total variation transforms, or under adaptive dictionaries that are trained on example datasets to maximize the sparsity of the representation. These compressed sensing (CS) methods require full-brain processing times on the order of hours using MATLAB running on a workstation. This work presents two dictionary-based reconstruction techniques that use analytical solutions, and are two orders of magnitude faster than the previously proposed dictionary-based CS approach. The first method generates a dictionary from the training data using principal component analysis (PCA), and performs the reconstruction in the PCA space. The second proposed method applies reconstruction using pseudoinverse with Tikhonov regularization with respect to a dictionary. This dictionary can either be obtained using the K-SVD algorithm, or it can simply be the training dataset of pdfs without any training. All of the proposed methods achieve reconstruction times on the order of seconds per imaging slice, and have reconstruction quality comparable to that of dictionary-based CS algorithm.

  9. Two-step superresolution approach for surveillance face image through radial basis function-partial least squares regression and locality-induced sparse representation

    Science.gov (United States)

    Jiang, Junjun; Hu, Ruimin; Han, Zhen; Wang, Zhongyuan; Chen, Jun

    2013-10-01

    Face superresolution (SR), or face hallucination, refers to the technique of generating a high-resolution (HR) face image from a low-resolution (LR) one with the help of a set of training examples. It aims at transcending the limitations of electronic imaging systems. Applications of face SR include video surveillance, in which the individual of interest is often far from cameras. A two-step method is proposed to infer a high-quality and HR face image from a low-quality and LR observation. First, we establish the nonlinear relationship between LR face images and HR ones, according to radial basis function and partial least squares (RBF-PLS) regression, to transform the LR face into the global face space. Then, a locality-induced sparse representation (LiSR) approach is presented to enhance the local facial details once all the global faces for each LR training face are constructed. A comparison of some state-of-the-art SR methods shows the superiority of the proposed two-step approach, RBF-PLS global face regression followed by LiSR-based local patch reconstruction. Experiments also demonstrate the effectiveness under both simulation conditions and some real conditions.

  10. Functional Principal Component Analysis and Randomized Sparse Clustering Algorithm for Medical Image Analysis

    Science.gov (United States)

    Lin, Nan; Jiang, Junhai; Guo, Shicheng; Xiong, Momiao

    2015-01-01

    Due to the advancement in sensor technology, the growing large medical image data have the ability to visualize the anatomical changes in biological tissues. As a consequence, the medical images have the potential to enhance the diagnosis of disease, the prediction of clinical outcomes and the characterization of disease progression. But in the meantime, the growing data dimensions pose great methodological and computational challenges for the representation and selection of features in image cluster analysis. To address these challenges, we first extend the functional principal component analysis (FPCA) from one dimension to two dimensions to fully capture the space variation of image the signals. The image signals contain a large number of redundant features which provide no additional information for clustering analysis. The widely used methods for removing the irrelevant features are sparse clustering algorithms using a lasso-type penalty to select the features. However, the accuracy of clustering using a lasso-type penalty depends on the selection of the penalty parameters and the threshold value. In practice, they are difficult to determine. Recently, randomized algorithms have received a great deal of attentions in big data analysis. This paper presents a randomized algorithm for accurate feature selection in image clustering analysis. The proposed method is applied to both the liver and kidney cancer histology image data from the TCGA database. The results demonstrate that the randomized feature selection method coupled with functional principal component analysis substantially outperforms the current sparse clustering algorithms in image cluster analysis. PMID:26196383

  11. A subspace approach to high-resolution spectroscopic imaging.

    Science.gov (United States)

    Lam, Fan; Liang, Zhi-Pei

    2014-04-01

    To accelerate spectroscopic imaging using sparse sampling of (k,t)-space and subspace (or low-rank) modeling to enable high-resolution metabolic imaging with good signal-to-noise ratio. The proposed method, called SPectroscopic Imaging by exploiting spatiospectral CorrElation, exploits a unique property known as partial separability of spectroscopic signals. This property indicates that high-dimensional spectroscopic signals reside in a very low-dimensional subspace and enables special data acquisition and image reconstruction strategies to be used to obtain high-resolution spatiospectral distributions with good signal-to-noise ratio. More specifically, a hybrid chemical shift imaging/echo-planar spectroscopic imaging pulse sequence is proposed for sparse sampling of (k,t)-space, and a low-rank model-based algorithm is proposed for subspace estimation and image reconstruction from sparse data with the capability to incorporate prior information and field inhomogeneity correction. The performance of the proposed method has been evaluated using both computer simulations and phantom studies, which produced very encouraging results. For two-dimensional spectroscopic imaging experiments on a metabolite phantom, a factor of 10 acceleration was achieved with a minimal loss in signal-to-noise ratio compared to the long chemical shift imaging experiments and with a significant gain in signal-to-noise ratio compared to the accelerated echo-planar spectroscopic imaging experiments. The proposed method, SPectroscopic Imaging by exploiting spatiospectral CorrElation, is able to significantly accelerate spectroscopic imaging experiments, making high-resolution metabolic imaging possible. Copyright © 2014 Wiley Periodicals, Inc.

  12. Biologically inspired EM image alignment and neural reconstruction.

    Science.gov (United States)

    Knowles-Barley, Seymour; Butcher, Nancy J; Meinertzhagen, Ian A; Armstrong, J Douglas

    2011-08-15

    Three-dimensional reconstruction of consecutive serial-section transmission electron microscopy (ssTEM) images of neural tissue currently requires many hours of manual tracing and annotation. Several computational techniques have already been applied to ssTEM images to facilitate 3D reconstruction and ease this burden. Here, we present an alternative computational approach for ssTEM image analysis. We have used biologically inspired receptive fields as a basis for a ridge detection algorithm to identify cell membranes, synaptic contacts and mitochondria. Detected line segments are used to improve alignment between consecutive images and we have joined small segments of membrane into cell surfaces using a dynamic programming algorithm similar to the Needleman-Wunsch and Smith-Waterman DNA sequence alignment procedures. A shortest path-based approach has been used to close edges and achieve image segmentation. Partial reconstructions were automatically generated and used as a basis for semi-automatic reconstruction of neural tissue. The accuracy of partial reconstructions was evaluated and 96% of membrane could be identified at the cost of 13% false positive detections. An open-source reference implementation is available in the Supplementary information. seymour.kb@ed.ac.uk; douglas.armstrong@ed.ac.uk Supplementary data are available at Bioinformatics online.

  13. Gadgetron: An Open Source Framework for Medical Image Reconstruction

    DEFF Research Database (Denmark)

    Hansen, Michael Schacht; Sørensen, Thomas Sangild

    2013-01-01

    This work presents a new open source framework for medical image reconstruction called the “Gadgetron.” The framework implements a flexible system for creating streaming data processing pipelines where data pass through a series of modules or “Gadgets” from raw data to reconstructed images...... with a set of dedicated toolboxes in shared libraries for medical image reconstruction. This includes generic toolboxes for data-parallel (e.g., GPU-based) execution of compute-intensive components. The basic framework architecture is independent of medical imaging modality, but this article focuses on its...

  14. Improvement of Quality of Reconstructed Images in Multi-Frame Fresnel Digital Holography

    International Nuclear Information System (INIS)

    Xiao-Wei, Lu; Jing-Zhen, Li; Hong-Yi, Chen

    2010-01-01

    A modified reconstruction algorithm to improve the quality of reconstructed images of multi-frame Fresnel digital holography is presented. When the reference beams are plane or spherical waves with azimuth encoding, by introducing two spherical wave factors, images can be reconstructed with only one time Fourier transform. In numerical simulation, this algorithm could simplify the reconstruction process and improve the signal-to-noise ratio of the reconstructed images. In single-frame reconstruction experiments, the accurate reconstructed image is obtained with this simplified algorithm

  15. Time-of-flight PET image reconstruction using origin ensembles

    Science.gov (United States)

    Wülker, Christian; Sitek, Arkadiusz; Prevrhal, Sven

    2015-03-01

    The origin ensemble (OE) algorithm is a novel statistical method for minimum-mean-square-error (MMSE) reconstruction of emission tomography data. This method allows one to perform reconstruction entirely in the image domain, i.e. without the use of forward and backprojection operations. We have investigated the OE algorithm in the context of list-mode (LM) time-of-flight (TOF) PET reconstruction. In this paper, we provide a general introduction to MMSE reconstruction, and a statistically rigorous derivation of the OE algorithm. We show how to efficiently incorporate TOF information into the reconstruction process, and how to correct for random coincidences and scattered events. To examine the feasibility of LM-TOF MMSE reconstruction with the OE algorithm, we applied MMSE-OE and standard maximum-likelihood expectation-maximization (ML-EM) reconstruction to LM-TOF phantom data with a count number typically registered in clinical PET examinations. We analyzed the convergence behavior of the OE algorithm, and compared reconstruction time and image quality to that of the EM algorithm. In summary, during the reconstruction process, MMSE-OE contrast recovery (CRV) remained approximately the same, while background variability (BV) gradually decreased with an increasing number of OE iterations. The final MMSE-OE images exhibited lower BV and a slightly lower CRV than the corresponding ML-EM images. The reconstruction time of the OE algorithm was approximately 1.3 times longer. At the same time, the OE algorithm can inherently provide a comprehensive statistical characterization of the acquired data. This characterization can be utilized for further data processing, e.g. in kinetic analysis and image registration, making the OE algorithm a promising approach in a variety of applications.

  16. Low dose reconstruction algorithm for differential phase contrast imaging.

    Science.gov (United States)

    Wang, Zhentian; Huang, Zhifeng; Zhang, Li; Chen, Zhiqiang; Kang, Kejun; Yin, Hongxia; Wang, Zhenchang; Marco, Stampanoni

    2011-01-01

    Differential phase contrast imaging computed tomography (DPCI-CT) is a novel x-ray inspection method to reconstruct the distribution of refraction index rather than the attenuation coefficient in weakly absorbing samples. In this paper, we propose an iterative reconstruction algorithm for DPCI-CT which benefits from the new compressed sensing theory. We first realize a differential algebraic reconstruction technique (DART) by discretizing the projection process of the differential phase contrast imaging into a linear partial derivative matrix. In this way the compressed sensing reconstruction problem of DPCI reconstruction can be transformed to a resolved problem in the transmission imaging CT. Our algorithm has the potential to reconstruct the refraction index distribution of the sample from highly undersampled projection data. Thus it can significantly reduce the dose and inspection time. The proposed algorithm has been validated by numerical simulations and actual experiments.

  17. Sparse Matrices in Frame Theory

    DEFF Research Database (Denmark)

    Lemvig, Jakob; Krahmer, Felix; Kutyniok, Gitta

    2014-01-01

    Frame theory is closely intertwined with signal processing through a canon of methodologies for the analysis of signals using (redundant) linear measurements. The canonical dual frame associated with a frame provides a means for reconstruction by a least squares approach, but other dual frames...... yield alternative reconstruction procedures. The novel paradigm of sparsity has recently entered the area of frame theory in various ways. Of those different sparsity perspectives, we will focus on the situations where frames and (not necessarily canonical) dual frames can be written as sparse matrices...

  18. Multilevel sparse functional principal component analysis.

    Science.gov (United States)

    Di, Chongzhi; Crainiceanu, Ciprian M; Jank, Wolfgang S

    2014-01-29

    We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we consider the case when functions are sparsely sampled and may contain only a few observations per function. We exploit the multilevel structure of covariance operators and achieve data reduction by principal component decompositions at both between and within subject levels. We address inherent methodological differences in the sparse sampling context to: 1) estimate the covariance operators; 2) estimate the functional principal component scores; 3) predict the underlying curves. Through simulations the proposed method is able to discover dominating modes of variations and reconstruct underlying curves well even in sparse settings. Our approach is illustrated by two applications, the Sleep Heart Health Study and eBay auctions.

  19. EEG Source Reconstruction using Sparse Basis Function Representations

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Hansen, Lars Kai

    2014-01-01

    -validation this approach is more automated than competing approaches such as Multiple Sparse Priors (Friston et al., 2008) or Champagne (Wipf et al., 2010) that require manual selection of noise level and auxiliary signal free data, respectively. Finally, we propose an unbiased estimator of the reproducibility...

  20. Binary Sparse Phase Retrieval via Simulated Annealing

    Directory of Open Access Journals (Sweden)

    Wei Peng

    2016-01-01

    Full Text Available This paper presents the Simulated Annealing Sparse PhAse Recovery (SASPAR algorithm for reconstructing sparse binary signals from their phaseless magnitudes of the Fourier transform. The greedy strategy version is also proposed for a comparison, which is a parameter-free algorithm. Sufficient numeric simulations indicate that our method is quite effective and suggest the binary model is robust. The SASPAR algorithm seems competitive to the existing methods for its efficiency and high recovery rate even with fewer Fourier measurements.

  1. Two-stage sparse coding of region covariance via Log-Euclidean kernels to detect saliency.

    Science.gov (United States)

    Zhang, Ying-Ying; Yang, Cai; Zhang, Ping

    2017-05-01

    In this paper, we present a novel bottom-up saliency detection algorithm from the perspective of covariance matrices on a Riemannian manifold. Each superpixel is described by a region covariance matrix on Riemannian Manifolds. We carry out a two-stage sparse coding scheme via Log-Euclidean kernels to extract salient objects efficiently. In the first stage, given background dictionary on image borders, sparse coding of each region covariance via Log-Euclidean kernels is performed. The reconstruction error on the background dictionary is regarded as the initial saliency of each superpixel. In the second stage, an improvement of the initial result is achieved by calculating reconstruction errors of the superpixels on foreground dictionary, which is extracted from the first stage saliency map. The sparse coding in the second stage is similar to the first stage, but is able to effectively highlight the salient objects uniformly from the background. Finally, three post-processing methods-highlight-inhibition function, context-based saliency weighting, and the graph cut-are adopted to further refine the saliency map. Experiments on four public benchmark datasets show that the proposed algorithm outperforms the state-of-the-art methods in terms of precision, recall and mean absolute error, and demonstrate the robustness and efficiency of the proposed method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU.

    Science.gov (United States)

    Arefan, D; Talebpour, A; Ahmadinejhad, N; Kamali Asl, A

    2015-06-01

    Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study ultra-fast image reconstruction technique for Tomosynthesis Mammography systems using Graphics Processing Unit (GPU). At first, projections of Tomosynthesis mammography have been simulated. In order to produce Tomosynthesis projections, it has been designed a 3D breast phantom from empirical data. It is based on MRI data in its natural form. Then, projections have been created from 3D breast phantom. The image reconstruction algorithm based on FBP was programmed with C++ language in two methods using central processing unit (CPU) card and the Graphics Processing Unit (GPU). It calculated the time of image reconstruction in two kinds of programming (using CPU and GPU).

  3. Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU

    Directory of Open Access Journals (Sweden)

    Arefan D

    2015-06-01

    Full Text Available Digital Breast Tomosynthesis (DBT is a technology that creates three dimensional (3D images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study ultra-fast image reconstruction technique for Tomosynthesis Mammography systems using Graphics Processing Unit (GPU. At first, projections of Tomosynthesis mammography have been simulated. In order to produce Tomosynthesis projections, it has been designed a 3D breast phantom from empirical data. It is based on MRI data in its natural form. Then, projections have been created from 3D breast phantom. The image reconstruction algorithm based on FBP was programmed with C++ language in two methods using central processing unit (CPU card and the Graphics Processing Unit (GPU. It calculated the time of image reconstruction in two kinds of programming (using CPU and GPU.

  4. Superiority of CT imaging reconstruction on Linux OS

    International Nuclear Information System (INIS)

    Lin Shaochun; Yan Xufeng; Wu Tengfang; Luo Xiaomei; Cai Huasong

    2010-01-01

    Objective: To compare the speed of CT reconstruction using the Linux and Windows OS. Methods: Shepp-Logan head phantom in different pixel size was projected to obtain the sinogram by using the inverse Fourier transformation, filtered back projection and Radon transformation on both Linux and Windows OS. Results: CT image reconstruction using the Linux operating system was significantly better and more efficient than Windows. Conclusion: CT image reconstruction using the Linux operating system is more efficient. (authors)

  5. Fully 3-D list-mode positron emission tomography image reconstruction on a multi-GPU cluster

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jingyu [Stanford Univ., CA (United States). Dept. of Electrical Engineering; Prevrhal, Sven; Shao, Lingxiong [Philips Healthcare, San Jose, CA (United States); Pratx, Guillem [Stanford Univ., CA (United States). Dept. of Radiation Oncology; Levin, Craig S. [Stanford Univ., CA (United States). Dept. of Radiology, Electrical Engineering, and Physics; Stanford Univ., CA (United States). Molecular Imaging Program at Stanford (MIPS); Stanford Univ., CA (United States). School of Medicine

    2011-07-01

    List-mode processing is an efficient way of dealing with the sparse nature of PET data sets, and is the processing method of choice for time-of-flight (ToF) PET. We present a novel method of computing line projection operations required for list-mode ordered subsets expectation maximization (OSEM) for fully 3-D PET image reconstruction on a graphics processing unit (GPU) using the compute unified device architecture (CUDA) framework. Our method overcomes challenges such as compute thread divergence, and exploits GPU capabilities such as shared memory and atomic operations. When applied to line projection operations for list-mode time-of-flight PET, this new GPU-CUDA reformulation is 188X faster than a single-threaded reference CPU implementation. When embedded in a multi-process environment on a GPU-equipped small cluster, a speedup of 4X was observed over the same configuration but without GPU support. Image quality is preserved with root mean squared (RMS) deviation of 0.05% between CPU and GPU-generated images, which has negligible effect in typical clinical applications. (orig.)

  6. Influence of image reconstruction methods on statistical parametric mapping of brain PET images

    International Nuclear Information System (INIS)

    Yin Dayi; Chen Yingmao; Yao Shulin; Shao Mingzhe; Yin Ling; Tian Jiahe; Cui Hongyan

    2007-01-01

    Objective: Statistic parametric mapping (SPM) was widely recognized as an useful tool in brain function study. The aim of this study was to investigate if imaging reconstruction algorithm of PET images could influence SPM of brain. Methods: PET imaging of whole brain was performed in six normal volunteers. Each volunteer had two scans with true and false acupuncturing. The PET scans were reconstructed using ordered subsets expectation maximization (OSEM) and filtered back projection (FBP) with 3 varied parameters respectively. The images were realigned, normalized and smoothed using SPM program. The difference between true and false acupuncture scans was tested using a matched pair t test at every voxel. Results: (1) SPM corrected multiple comparison (P corrected uncorrected <0.001): SPM derived from the images with different reconstruction method were different. The largest difference, in number and position of the activated voxels, was noticed between FBP and OSEM re- construction algorithm. Conclusions: The method of PET image reconstruction could influence the results of SPM uncorrected multiple comparison. Attention should be paid when the conclusion was drawn using SPM uncorrected multiple comparison. (authors)

  7. A combinational fast algorithm for image reconstruction

    International Nuclear Information System (INIS)

    Wu Zhongquan

    1987-01-01

    A combinational fast algorithm has been developed in order to increase the speed of reconstruction. First, an interpolation method based on B-spline functions is used in image reconstruction. Next, the influence of the boundary conditions assumed here on the interpolation of filtered projections and on the image reconstruction is discussed. It is shown that this boundary condition has almost no influence on the image in the central region of the image space, because the error of interpolation rapidly decreases by a factor of ten in shifting two pixels from the edge toward the center. In addition, a fast algorithm for computing the detecting angle has been used with the mentioned interpolation algorithm, and the cost for detecting angle computaton is reduced by a factor of two. The implementation results show that in the same subjective and objective fidelity, the computational cost for the interpolation using this algorithm is about one-twelfth of the conventional algorithm

  8. Dual-source CT coronary imaging in heart transplant recipients: image quality and optimal reconstruction interval

    International Nuclear Information System (INIS)

    Bastarrika, Gorka; Arraiza, Maria; Pueyo, Jesus C.; Cecco, Carlo N. de; Ubilla, Matias; Mastrobuoni, Stefano; Rabago, Gregorio

    2008-01-01

    The image quality and optimal reconstruction interval for coronary arteries in heart transplant recipients undergoing non-invasive dual-source computed tomography (DSCT) coronary angiography was evaluated. Twenty consecutive heart transplant recipients who underwent DSCT coronary angiography were included (19 male, one female; mean age 63.1±10.7 years). Data sets were reconstructed in 5% steps from 30% to 80% of the R-R interval. Two blinded independent observers assessed the image quality of each coronary segments using a five-point scale (from 0 = not evaluative to 4=excellent quality). A total of 289 coronary segments in 20 heart transplant recipients were evaluated. Mean heart rate during the scan was 89.1±10.4 bpm. At the best reconstruction interval, diagnostic image quality (score ≥2) was obtained in 93.4% of the coronary segments (270/289) with a mean image quality score of 3.04± 0.63. Systolic reconstruction intervals provided better image quality scores than diastolic reconstruction intervals (overall mean quality scores obtained with the systolic and diastolic reconstructions 3.03±1.06 and 2.73±1.11, respectively; P<0.001). Different systolic reconstruction intervals (35%, 40%, 45% of RR interval) did not yield to significant differences in image quality scores for the coronary segments (P=0.74). Reconstructions obtained at the systolic phase of the cardiac cycle allowed excellent diagnostic image quality coronary angiograms in heart transplant recipients undergoing DSCT coronary angiography. (orig.)

  9. Quantitative reconstruction from a single diffraction-enhanced image

    International Nuclear Information System (INIS)

    Paganin, D.M.; Lewis, R.A.; Kitchen, M.

    2003-01-01

    Full text: We develop an algorithm for using a single diffraction-enhanced image (DEI) to obtain a quantitative reconstruction of the projected thickness of a single-material sample which is embedded within a substrate of approximately constant thickness. This algorithm is used to quantitatively map inclusions in a breast phantom, from a single synchrotron DEI image. In particular, the reconstructed images quantitatively represent the projected thickness in the bulk of the sample, in contrast to DEI images which greatly emphasise sharp edges (high spatial frequencies). In the context of an ultimate aim of improved methods for breast cancer detection, the reconstructions are potentially of greater diagnostic value compared to the DEI data. Lastly, we point out that the methods of analysis presented here are also applicable to the quantitative analysis of differential interference contrast (DIC) images

  10. Image reconstruction under non-Gaussian noise

    DEFF Research Database (Denmark)

    Sciacchitano, Federica

    During acquisition and transmission, images are often blurred and corrupted by noise. One of the fundamental tasks of image processing is to reconstruct the clean image from a degraded version. The process of recovering the original image from the data is an example of inverse problem. Due...... to the ill-posedness of the problem, the simple inversion of the degradation model does not give any good reconstructions. Therefore, to deal with the ill-posedness it is necessary to use some prior information on the solution or the model and the Bayesian approach. Additive Gaussian noise has been......D thesis intends to solve some of the many open questions for image restoration under non-Gaussian noise. The two main kinds of noise studied in this PhD project are the impulse noise and the Cauchy noise. Impulse noise is due to for instance the malfunctioning pixel elements in the camera sensors, errors...

  11. Fast parallel algorithm for CT image reconstruction.

    Science.gov (United States)

    Flores, Liubov A; Vidal, Vicent; Mayo, Patricia; Rodenas, Francisco; Verdú, Gumersindo

    2012-01-01

    In X-ray computed tomography (CT) the X rays are used to obtain the projection data needed to generate an image of the inside of an object. The image can be generated with different techniques. Iterative methods are more suitable for the reconstruction of images with high contrast and precision in noisy conditions and from a small number of projections. Their use may be important in portable scanners for their functionality in emergency situations. However, in practice, these methods are not widely used due to the high computational cost of their implementation. In this work we analyze iterative parallel image reconstruction with the Portable Extensive Toolkit for Scientific computation (PETSc).

  12. Fast Dictionary-Based Reconstruction for Diffusion Spectrum Imaging

    Science.gov (United States)

    Bilgic, Berkin; Chatnuntawech, Itthi; Setsompop, Kawin; Cauley, Stephen F.; Yendiki, Anastasia; Wald, Lawrence L.; Adalsteinsson, Elfar

    2015-01-01

    Diffusion Spectrum Imaging (DSI) reveals detailed local diffusion properties at the expense of substantially long imaging times. It is possible to accelerate acquisition by undersampling in q-space, followed by image reconstruction that exploits prior knowledge on the diffusion probability density functions (pdfs). Previously proposed methods impose this prior in the form of sparsity under wavelet and total variation (TV) transforms, or under adaptive dictionaries that are trained on example datasets to maximize the sparsity of the representation. These compressed sensing (CS) methods require full-brain processing times on the order of hours using Matlab running on a workstation. This work presents two dictionary-based reconstruction techniques that use analytical solutions, and are two orders of magnitude faster than the previously proposed dictionary-based CS approach. The first method generates a dictionary from the training data using Principal Component Analysis (PCA), and performs the reconstruction in the PCA space. The second proposed method applies reconstruction using pseudoinverse with Tikhonov regularization with respect to a dictionary. This dictionary can either be obtained using the K-SVD algorithm, or it can simply be the training dataset of pdfs without any training. All of the proposed methods achieve reconstruction times on the order of seconds per imaging slice, and have reconstruction quality comparable to that of dictionary-based CS algorithm. PMID:23846466

  13. Framing U-Net via Deep Convolutional Framelets: Application to Sparse-View CT.

    Science.gov (United States)

    Han, Yoseob; Ye, Jong Chul

    2018-06-01

    X-ray computed tomography (CT) using sparse projection views is a recent approach to reduce the radiation dose. However, due to the insufficient projection views, an analytic reconstruction approach using the filtered back projection (FBP) produces severe streaking artifacts. Recently, deep learning approaches using large receptive field neural networks such as U-Net have demonstrated impressive performance for sparse-view CT reconstruction. However, theoretical justification is still lacking. Inspired by the recent theory of deep convolutional framelets, the main goal of this paper is, therefore, to reveal the limitation of U-Net and propose new multi-resolution deep learning schemes. In particular, we show that the alternative U-Net variants such as dual frame and tight frame U-Nets satisfy the so-called frame condition which makes them better for effective recovery of high frequency edges in sparse-view CT. Using extensive experiments with real patient data set, we demonstrate that the new network architectures provide better reconstruction performance.

  14. Sparse representation for infrared Dim target detection via a discriminative over-complete dictionary learned online.

    Science.gov (United States)

    Li, Zheng-Zhou; Chen, Jing; Hou, Qian; Fu, Hong-Xia; Dai, Zhen; Jin, Gang; Li, Ru-Zhang; Liu, Chang-Ju

    2014-05-27

    It is difficult for structural over-complete dictionaries such as the Gabor function and discriminative over-complete dictionary, which are learned offline and classified manually, to represent natural images with the goal of ideal sparseness and to enhance the difference between background clutter and target signals. This paper proposes an infrared dim target detection approach based on sparse representation on a discriminative over-complete dictionary. An adaptive morphological over-complete dictionary is trained and constructed online according to the content of infrared image by K-singular value decomposition (K-SVD) algorithm. Then the adaptive morphological over-complete dictionary is divided automatically into a target over-complete dictionary describing target signals, and a background over-complete dictionary embedding background by the criteria that the atoms in the target over-complete dictionary could be decomposed more sparsely based on a Gaussian over-complete dictionary than the one in the background over-complete dictionary. This discriminative over-complete dictionary can not only capture significant features of background clutter and dim targets better than a structural over-complete dictionary, but also strengthens the sparse feature difference between background and target more efficiently than a discriminative over-complete dictionary learned offline and classified manually. The target and background clutter can be sparsely decomposed over their corresponding over-complete dictionaries, yet couldn't be sparsely decomposed based on their opposite over-complete dictionary, so their residuals after reconstruction by the prescribed number of target and background atoms differ very visibly. Some experiments are included and the results show that this proposed approach could not only improve the sparsity more efficiently, but also enhance the performance of small target detection more effectively.

  15. Sparse Representation for Infrared Dim Target Detection via a Discriminative Over-Complete Dictionary Learned Online

    Directory of Open Access Journals (Sweden)

    Zheng-Zhou Li

    2014-05-01

    Full Text Available It is difficult for structural over-complete dictionaries such as the Gabor function and discriminative over-complete dictionary, which are learned offline and classified manually, to represent natural images with the goal of ideal sparseness and to enhance the difference between background clutter and target signals. This paper proposes an infrared dim target detection approach based on sparse representation on a discriminative over-complete dictionary. An adaptive morphological over-complete dictionary is trained and constructed online according to the content of infrared image by K-singular value decomposition (K-SVD algorithm. Then the adaptive morphological over-complete dictionary is divided automatically into a target over-complete dictionary describing target signals, and a background over-complete dictionary embedding background by the criteria that the atoms in the target over-complete dictionary could be decomposed more sparsely based on a Gaussian over-complete dictionary than the one in the background over-complete dictionary. This discriminative over-complete dictionary can not only capture significant features of background clutter and dim targets better than a structural over-complete dictionary, but also strengthens the sparse feature difference between background and target more efficiently than a discriminative over-complete dictionary learned offline and classified manually. The target and background clutter can be sparsely decomposed over their corresponding over-complete dictionaries, yet couldn’t be sparsely decomposed based on their opposite over-complete dictionary, so their residuals after reconstruction by the prescribed number of target and background atoms differ very visibly. Some experiments are included and the results show that this proposed approach could not only improve the sparsity more efficiently, but also enhance the performance of small target detection more effectively.

  16. Improved statistical power with a sparse shape model in detecting an aging effect in the hippocampus and amygdala

    Science.gov (United States)

    Chung, Moo K.; Kim, Seung-Goo; Schaefer, Stacey M.; van Reekum, Carien M.; Peschke-Schmitz, Lara; Sutterer, Matthew J.; Davidson, Richard J.

    2014-03-01

    The sparse regression framework has been widely used in medical image processing and analysis. However, it has been rarely used in anatomical studies. We present a sparse shape modeling framework using the Laplace- Beltrami (LB) eigenfunctions of the underlying shape and show its improvement of statistical power. Tradition- ally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes as a form of Fourier descriptors. To reduce high frequency noise, only the first few terms are used in the expansion and higher frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute significantly in reconstructing the surfaces. Motivated by this idea, we present a LB-based method to filter out only the significant eigenfunctions by imposing a sparse penalty. For dense anatomical data such as deformation fields on a surface mesh, the sparse regression behaves like a smoothing process, which will reduce the error of incorrectly detecting false negatives. Hence the statistical power improves. The sparse shape model is then applied in investigating the influence of age on amygdala and hippocampus shapes in the normal population. The advantage of the LB sparse framework is demonstrated by showing the increased statistical power.

  17. Accelerating image reconstruction in three-dimensional optoacoustic tomography on graphics processing units.

    Science.gov (United States)

    Wang, Kun; Huang, Chao; Kao, Yu-Jiun; Chou, Cheng-Ying; Oraevsky, Alexander A; Anastasio, Mark A

    2013-02-01

    Optoacoustic tomography (OAT) is inherently a three-dimensional (3D) inverse problem. However, most studies of OAT image reconstruction still employ two-dimensional imaging models. One important reason is because 3D image reconstruction is computationally burdensome. The aim of this work is to accelerate existing image reconstruction algorithms for 3D OAT by use of parallel programming techniques. Parallelization strategies are proposed to accelerate a filtered backprojection (FBP) algorithm and two different pairs of projection/backprojection operations that correspond to two different numerical imaging models. The algorithms are designed to fully exploit the parallel computing power of graphics processing units (GPUs). In order to evaluate the parallelization strategies for the projection/backprojection pairs, an iterative image reconstruction algorithm is implemented. Computer simulation and experimental studies are conducted to investigate the computational efficiency and numerical accuracy of the developed algorithms. The GPU implementations improve the computational efficiency by factors of 1000, 125, and 250 for the FBP algorithm and the two pairs of projection/backprojection operators, respectively. Accurate images are reconstructed by use of the FBP and iterative image reconstruction algorithms from both computer-simulated and experimental data. Parallelization strategies for 3D OAT image reconstruction are proposed for the first time. These GPU-based implementations significantly reduce the computational time for 3D image reconstruction, complementing our earlier work on 3D OAT iterative image reconstruction.

  18. Compressive sensing for sparse time-frequency representation of nonstationary signals in the presence of impulsive noise

    Science.gov (United States)

    Orović, Irena; Stanković, Srdjan; Amin, Moeness

    2013-05-01

    A modified robust two-dimensional compressive sensing algorithm for reconstruction of sparse time-frequency representation (TFR) is proposed. The ambiguity function domain is assumed to be the domain of observations. The two-dimensional Fourier bases are used to linearly relate the observations to the sparse TFR, in lieu of the Wigner distribution. We assume that a set of available samples in the ambiguity domain is heavily corrupted by an impulsive type of noise. Consequently, the problem of sparse TFR reconstruction cannot be tackled using standard compressive sensing optimization algorithms. We introduce a two-dimensional L-statistics based modification into the transform domain representation. It provides suitable initial conditions that will produce efficient convergence of the reconstruction algorithm. This approach applies sorting and weighting operations to discard an expected amount of samples corrupted by noise. The remaining samples serve as observations used in sparse reconstruction of the time-frequency signal representation. The efficiency of the proposed approach is demonstrated on numerical examples that comprise both cases of monocomponent and multicomponent signals.

  19. Compressively sampled MR image reconstruction using generalized thresholding iterative algorithm

    Science.gov (United States)

    Elahi, Sana; kaleem, Muhammad; Omer, Hammad

    2018-01-01

    Compressed sensing (CS) is an emerging area of interest in Magnetic Resonance Imaging (MRI). CS is used for the reconstruction of the images from a very limited number of samples in k-space. This significantly reduces the MRI data acquisition time. One important requirement for signal recovery in CS is the use of an appropriate non-linear reconstruction algorithm. It is a challenging task to choose a reconstruction algorithm that would accurately reconstruct the MR images from the under-sampled k-space data. Various algorithms have been used to solve the system of non-linear equations for better image quality and reconstruction speed in CS. In the recent past, iterative soft thresholding algorithm (ISTA) has been introduced in CS-MRI. This algorithm directly cancels the incoherent artifacts produced because of the undersampling in k -space. This paper introduces an improved iterative algorithm based on p -thresholding technique for CS-MRI image reconstruction. The use of p -thresholding function promotes sparsity in the image which is a key factor for CS based image reconstruction. The p -thresholding based iterative algorithm is a modification of ISTA, and minimizes non-convex functions. It has been shown that the proposed p -thresholding iterative algorithm can be used effectively to recover fully sampled image from the under-sampled data in MRI. The performance of the proposed method is verified using simulated and actual MRI data taken at St. Mary's Hospital, London. The quality of the reconstructed images is measured in terms of peak signal-to-noise ratio (PSNR), artifact power (AP), and structural similarity index measure (SSIM). The proposed approach shows improved performance when compared to other iterative algorithms based on log thresholding, soft thresholding and hard thresholding techniques at different reduction factors.

  20. Efficient Sparse Signal Transmission over a Lossy Link Using Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Liantao Wu

    2015-08-01

    Full Text Available Reliable data transmission over lossy communication link is expensive due to overheads for error protection. For signals that have inherent sparse structures, compressive sensing (CS is applied to facilitate efficient sparse signal transmissions over lossy communication links without data compression or error protection. The natural packet loss in the lossy link is modeled as a random sampling process of the transmitted data, and the original signal will be reconstructed from the lossy transmission results using the CS-based reconstruction method at the receiving end. The impacts of packet lengths on transmission efficiency under different channel conditions have been discussed, and interleaving is incorporated to mitigate the impact of burst data loss. Extensive simulations and experiments have been conducted and compared to the traditional automatic repeat request (ARQ interpolation technique, and very favorable results have been observed in terms of both accuracy of the reconstructed signals and the transmission energy consumption. Furthermore, the packet length effect provides useful insights for using compressed sensing for efficient sparse signal transmission via lossy links.

  1. Three dimensional image reconstruction in the Fourier domain

    International Nuclear Information System (INIS)

    Stearns, C.W.; Chesler, D.A.; Brownell, G.L.

    1987-01-01

    Filtered backprojection reconstruction algorithms are based upon the relationship between the Fourier transform of the imaged object and the Fourier transforms of its projections. A new reconstruction algorithm has been developed which performs the image assembly operation in Fourier space, rather than in image space by backprojection. This represents a significant decrease in the number of operations required to assemble the image. The new Fourier domain algorithm has resolution comparable to the filtered backprojection algorithm, and, after correction by a pointwise multiplication, demonstrates proper recovery throughout image space. Although originally intended for three-dimensional imaging applications, the Fourier domain algorithm can also be developed for two-dimensional imaging applications such as planar positron imaging systems

  2. Radionuclide imaging with coded apertures and three-dimensional image reconstruction from focal-plane tomography

    International Nuclear Information System (INIS)

    Chang, L.T.

    1976-05-01

    Two techniques for radionuclide imaging and reconstruction have been studied;; both are used for improvement of depth resolution. The first technique is called coded aperture imaging, which is a technique of tomographic imaging. The second technique is a special 3-D image reconstruction method which is introduced as an improvement to the so called focal-plane tomography

  3. The application of sparse linear prediction dictionary to compressive sensing in speech signals

    Directory of Open Access Journals (Sweden)

    YOU Hanxu

    2016-04-01

    Full Text Available Appling compressive sensing (CS,which theoretically guarantees that signal sampling and signal compression can be achieved simultaneously,into audio and speech signal processing is one of the most popular research topics in recent years.In this paper,K-SVD algorithm was employed to learn a sparse linear prediction dictionary regarding as the sparse basis of underlying speech signals.Compressed signals was obtained by applying random Gaussian matrix to sample original speech frames.Orthogonal matching pursuit (OMP and compressive sampling matching pursuit (CoSaMP were adopted to recovery original signals from compressed one.Numbers of experiments were carried out to investigate the impact of speech frames length,compression ratios,sparse basis and reconstruction algorithms on CS performance.Results show that sparse linear prediction dictionary can advance the performance of speech signals reconstruction compared with discrete cosine transform (DCT matrix.

  4. Reconstructed coronal views of CT and isotopic images of the pancreas

    International Nuclear Information System (INIS)

    Kasuga, Toshio; Kobayashi, Toshio; Nakanishi, Fumiko

    1980-01-01

    To compare functional images of the pancreas by scintigraphy with morphological views of the pancreas by CT, CT coronal views of the pancreas were reconstructed. As CT coronal views were reconstructed from the routine scanning, there was a problem in longitudinal spatial resolution. However, almost satisfactory total images of the pancreas were obtained by improving images adequately. In 27 patients whose diseases had been confirmed, it was easy to compare pancreatic scintigrams with pancreatic CT images by using reconstructed CT coronal views, and information which had not been obtained by original CT images could be obtained by using reconstructed CT coronal views. Especially, defects on pancreatic images and the shape of pancreas which had not been visualized clearly by scintigraphy alone could be visualized by using reconstructed CT coronal views of the pancreas. (Tsunoda, M.)

  5. A preconditioned inexact newton method for nonlinear sparse electromagnetic imaging

    KAUST Repository

    Desmal, Abdulla

    2015-03-01

    A nonlinear inversion scheme for the electromagnetic microwave imaging of domains with sparse content is proposed. Scattering equations are constructed using a contrast-source (CS) formulation. The proposed method uses an inexact Newton (IN) scheme to tackle the nonlinearity of these equations. At every IN iteration, a system of equations, which involves the Frechet derivative (FD) matrix of the CS operator, is solved for the IN step. A sparsity constraint is enforced on the solution via thresholded Landweber iterations, and the convergence is significantly increased using a preconditioner that levels the FD matrix\\'s singular values associated with contrast and equivalent currents. To increase the accuracy, the weight of the regularization\\'s penalty term is reduced during the IN iterations consistently with the scheme\\'s quadratic convergence. At the end of each IN iteration, an additional thresholding, which removes small \\'ripples\\' that are produced by the IN step, is applied to maintain the solution\\'s sparsity. Numerical results demonstrate the applicability of the proposed method in recovering sparse and discontinuous dielectric profiles with high contrast values.

  6. TREE STEM RECONSTRUCTION USING VERTICAL FISHEYE IMAGES: A PRELIMINARY STUDY

    Directory of Open Access Journals (Sweden)

    A. Berveglieri

    2016-06-01

    Full Text Available A preliminary study was conducted to assess a tree stem reconstruction technique with panoramic images taken with fisheye lenses. The concept is similar to the Structure from Motion (SfM technique, but the acquisition and data preparation rely on fisheye cameras to generate a vertical image sequence with height variations of the camera station. Each vertical image is rectified to four vertical planes, producing horizontal lateral views. The stems in the lateral view are rectified to the same scale in the image sequence to facilitate image matching. Using bundle adjustment, the stems are reconstructed, enabling later measurement and extraction of several attributes. The 3D reconstruction was performed with the proposed technique and compared with SfM. The preliminary results showed that the stems were correctly reconstructed by using the lateral virtual images generated from the vertical fisheye images and with the advantage of using fewer images and taken from one single station.

  7. Qualitative and quantitative analysis of reconstructed images using projections with noises

    International Nuclear Information System (INIS)

    Lopes, R.T.; Assis, J.T. de

    1988-01-01

    The reconstruction of a two-dimencional image from one-dimensional projections in an analytic algorithm ''convolution method'' is simulated on a microcomputer. In this work it was analysed the effects caused in the reconstructed image in function of the number of projections and noise level added to the projection data. Qualitative and quantitative (distortion and image noise) comparison were done with the original image and the reconstructed images. (author) [pt

  8. Improving parallel imaging by jointly reconstructing multi-contrast data.

    Science.gov (United States)

    Bilgic, Berkin; Kim, Tae Hyung; Liao, Congyu; Manhard, Mary Kate; Wald, Lawrence L; Haldar, Justin P; Setsompop, Kawin

    2018-08-01

    To develop parallel imaging techniques that simultaneously exploit coil sensitivity encoding, image phase prior information, similarities across multiple images, and complementary k-space sampling for highly accelerated data acquisition. We introduce joint virtual coil (JVC)-generalized autocalibrating partially parallel acquisitions (GRAPPA) to jointly reconstruct data acquired with different contrast preparations, and show its application in 2D, 3D, and simultaneous multi-slice (SMS) acquisitions. We extend the joint parallel imaging concept to exploit limited support and smooth phase constraints through Joint (J-) LORAKS formulation. J-LORAKS allows joint parallel imaging from limited autocalibration signal region, as well as permitting partial Fourier sampling and calibrationless reconstruction. We demonstrate highly accelerated 2D balanced steady-state free precession with phase cycling, SMS multi-echo spin echo, 3D multi-echo magnetization-prepared rapid gradient echo, and multi-echo gradient recalled echo acquisitions in vivo. Compared to conventional GRAPPA, proposed joint acquisition/reconstruction techniques provide more than 2-fold reduction in reconstruction error. JVC-GRAPPA takes advantage of additional spatial encoding from phase information and image similarity, and employs different sampling patterns across acquisitions. J-LORAKS achieves a more parsimonious low-rank representation of local k-space by considering multiple images as additional coils. Both approaches provide dramatic improvement in artifact and noise mitigation over conventional single-contrast parallel imaging reconstruction. Magn Reson Med 80:619-632, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  9. Silhouette-based approach of 3D image reconstruction for automated image acquisition using robotic arm

    Science.gov (United States)

    Azhar, N.; Saad, W. H. M.; Manap, N. A.; Saad, N. M.; Syafeeza, A. R.

    2017-06-01

    This study presents the approach of 3D image reconstruction using an autonomous robotic arm for the image acquisition process. A low cost of the automated imaging platform is created using a pair of G15 servo motor connected in series to an Arduino UNO as a main microcontroller. Two sets of sequential images were obtained using different projection angle of the camera. The silhouette-based approach is used in this study for 3D reconstruction from the sequential images captured from several different angles of the object. Other than that, an analysis based on the effect of different number of sequential images on the accuracy of 3D model reconstruction was also carried out with a fixed projection angle of the camera. The effecting elements in the 3D reconstruction are discussed and the overall result of the analysis is concluded according to the prototype of imaging platform.

  10. Shearlets and Optimally Sparse Approximations

    DEFF Research Database (Denmark)

    Kutyniok, Gitta; Lemvig, Jakob; Lim, Wang-Q

    2012-01-01

    Multivariate functions are typically governed by anisotropic features such as edges in images or shock fronts in solutions of transport-dominated equations. One major goal both for the purpose of compression as well as for an efficient analysis is the provision of optimally sparse approximations...... optimally sparse approximations of this model class in 2D as well as 3D. Even more, in contrast to all other directional representation systems, a theory for compactly supported shearlet frames was derived which moreover also satisfy this optimality benchmark. This chapter shall serve as an introduction...... to and a survey about sparse approximations of cartoon-like images by band-limited and also compactly supported shearlet frames as well as a reference for the state-of-the-art of this research field....

  11. A biomechanical modeling-guided simultaneous motion estimation and image reconstruction technique (SMEIR-Bio) for 4D-CBCT reconstruction

    Science.gov (United States)

    Huang, Xiaokun; Zhang, You; Wang, Jing

    2018-02-01

    Reconstructing four-dimensional cone-beam computed tomography (4D-CBCT) images directly from respiratory phase-sorted traditional 3D-CBCT projections can capture target motion trajectory, reduce motion artifacts, and reduce imaging dose and time. However, the limited numbers of projections in each phase after phase-sorting decreases CBCT image quality under traditional reconstruction techniques. To address this problem, we developed a simultaneous motion estimation and image reconstruction (SMEIR) algorithm, an iterative method that can reconstruct higher quality 4D-CBCT images from limited projections using an inter-phase intensity-driven motion model. However, the accuracy of the intensity-driven motion model is limited in regions with fine details whose quality is degraded due to insufficient projection number, which consequently degrades the reconstructed image quality in corresponding regions. In this study, we developed a new 4D-CBCT reconstruction algorithm by introducing biomechanical modeling into SMEIR (SMEIR-Bio) to boost the accuracy of the motion model in regions with small fine structures. The biomechanical modeling uses tetrahedral meshes to model organs of interest and solves internal organ motion using tissue elasticity parameters and mesh boundary conditions. This physics-driven approach enhances the accuracy of solved motion in the organ’s fine structures regions. This study used 11 lung patient cases to evaluate the performance of SMEIR-Bio, making both qualitative and quantitative comparisons between SMEIR-Bio, SMEIR, and the algebraic reconstruction technique with total variation regularization (ART-TV). The reconstruction results suggest that SMEIR-Bio improves the motion model’s accuracy in regions containing small fine details, which consequently enhances the accuracy and quality of the reconstructed 4D-CBCT images.

  12. Level-set-based reconstruction algorithm for EIT lung images: first clinical results.

    Science.gov (United States)

    Rahmati, Peyman; Soleimani, Manuchehr; Pulletz, Sven; Frerichs, Inéz; Adler, Andy

    2012-05-01

    We show the first clinical results using the level-set-based reconstruction algorithm for electrical impedance tomography (EIT) data. The level-set-based reconstruction method (LSRM) allows the reconstruction of non-smooth interfaces between image regions, which are typically smoothed by traditional voxel-based reconstruction methods (VBRMs). We develop a time difference formulation of the LSRM for 2D images. The proposed reconstruction method is applied to reconstruct clinical EIT data of a slow flow inflation pressure-volume manoeuvre in lung-healthy and adult lung-injury patients. Images from the LSRM and the VBRM are compared. The results show comparable reconstructed images, but with an improved ability to reconstruct sharp conductivity changes in the distribution of lung ventilation using the LSRM.

  13. Level-set-based reconstruction algorithm for EIT lung images: first clinical results

    International Nuclear Information System (INIS)

    Rahmati, Peyman; Adler, Andy; Soleimani, Manuchehr; Pulletz, Sven; Frerichs, Inéz

    2012-01-01

    We show the first clinical results using the level-set-based reconstruction algorithm for electrical impedance tomography (EIT) data. The level-set-based reconstruction method (LSRM) allows the reconstruction of non-smooth interfaces between image regions, which are typically smoothed by traditional voxel-based reconstruction methods (VBRMs). We develop a time difference formulation of the LSRM for 2D images. The proposed reconstruction method is applied to reconstruct clinical EIT data of a slow flow inflation pressure–volume manoeuvre in lung-healthy and adult lung-injury patients. Images from the LSRM and the VBRM are compared. The results show comparable reconstructed images, but with an improved ability to reconstruct sharp conductivity changes in the distribution of lung ventilation using the LSRM. (paper)

  14. Multi-information fusion sparse coding with preserving local structure for hyperspectral image classification

    Science.gov (United States)

    Wei, Xiaohui; Zhu, Wen; Liao, Bo; Gu, Changlong; Li, Weibiao

    2017-10-01

    The key question of sparse coding (SC) is how to exploit the information that already exists to acquire the robust sparse representations (SRs) of distinguishing different objects for hyperspectral image (HSI) classification. We propose a multi-information fusion SC framework, which fuses the spectral, spatial, and label information in the same level, to solve the above question. In particular, pixels from disjointed spatial clusters, which are obtained by cutting the given HSI in space, are individually and sparsely encoded. Then, due to the importance of spatial structure, graph- and hypergraph-based regularizers are enforced to motivate the obtained representations smoothness and to preserve the local consistency for each spatial cluster. The latter simultaneously considers the spectrum, spatial, and label information of multiple pixels that have a great probability with the same label. Finally, a linear support vector machine is selected as the final classifier with the learned SRs as input. Experiments conducted on three frequently used real HSIs show that our methods can achieve satisfactory results compared with other state-of-the-art methods.

  15. On an image reconstruction method for ECT

    Science.gov (United States)

    Sasamoto, Akira; Suzuki, Takayuki; Nishimura, Yoshihiro

    2007-04-01

    An image by Eddy Current Testing(ECT) is a blurred image to original flaw shape. In order to reconstruct fine flaw image, a new image reconstruction method has been proposed. This method is based on an assumption that a very simple relationship between measured data and source were described by a convolution of response function and flaw shape. This assumption leads to a simple inverse analysis method with deconvolution.In this method, Point Spread Function (PSF) and Line Spread Function(LSF) play a key role in deconvolution processing. This study proposes a simple data processing to determine PSF and LSF from ECT data of machined hole and line flaw. In order to verify its validity, ECT data for SUS316 plate(200x200x10mm) with artificial machined hole and notch flaw had been acquired by differential coil type sensors(produced by ZETEC Inc). Those data were analyzed by the proposed method. The proposed method restored sharp discrete multiple hole image from interfered data by multiple holes. Also the estimated width of line flaw has been much improved compared with original experimental data. Although proposed inverse analysis strategy is simple and easy to implement, its validity to holes and line flaw have been shown by many results that much finer image than original image have been reconstructed.

  16. Super resolution reconstruction of infrared images based on classified dictionary learning

    Science.gov (United States)

    Liu, Fei; Han, Pingli; Wang, Yi; Li, Xuan; Bai, Lu; Shao, Xiaopeng

    2018-05-01

    Infrared images always suffer from low-resolution problems resulting from limitations of imaging devices. An economical approach to combat this problem involves reconstructing high-resolution images by reasonable methods without updating devices. Inspired by compressed sensing theory, this study presents and demonstrates a Classified Dictionary Learning method to reconstruct high-resolution infrared images. It classifies features of the samples into several reasonable clusters and trained a dictionary pair for each cluster. The optimal pair of dictionaries is chosen for each image reconstruction and therefore, more satisfactory results is achieved without the increase in computational complexity and time cost. Experiments and results demonstrated that it is a viable method for infrared images reconstruction since it improves image resolution and recovers detailed information of targets.

  17. Sparse-View Ultrasound Diffraction Tomography Using Compressed Sensing with Nonuniform FFT

    Directory of Open Access Journals (Sweden)

    Shaoyan Hua

    2014-01-01

    Full Text Available Accurate reconstruction of the object from sparse-view sampling data is an appealing issue for ultrasound diffraction tomography (UDT. In this paper, we present a reconstruction method based on compressed sensing framework for sparse-view UDT. Due to the piecewise uniform characteristics of anatomy structures, the total variation is introduced into the cost function to find a more faithful sparse representation of the object. The inverse problem of UDT is iteratively resolved by conjugate gradient with nonuniform fast Fourier transform. Simulation results show the effectiveness of the proposed method that the main characteristics of the object can be properly presented with only 16 views. Compared to interpolation and multiband method, the proposed method can provide higher resolution and lower artifacts with the same view number. The robustness to noise and the computation complexity are also discussed.

  18. MO-C-18A-01: Advances in Model-Based 3D Image Reconstruction

    International Nuclear Information System (INIS)

    Chen, G; Pan, X; Stayman, J; Samei, E

    2014-01-01

    Recent years have seen the emergence of CT image reconstruction techniques that exploit physical models of the imaging system, photon statistics, and even the patient to achieve improved 3D image quality and/or reduction of radiation dose. With numerous advantages in comparison to conventional 3D filtered backprojection, such techniques bring a variety of challenges as well, including: a demanding computational load associated with sophisticated forward models and iterative optimization methods; nonlinearity and nonstationarity in image quality characteristics; a complex dependency on multiple free parameters; and the need to understand how best to incorporate prior information (including patient-specific prior images) within the reconstruction process. The advantages, however, are even greater – for example: improved image quality; reduced dose; robustness to noise and artifacts; task-specific reconstruction protocols; suitability to novel CT imaging platforms and noncircular orbits; and incorporation of known characteristics of the imager and patient that are conventionally discarded. This symposium features experts in 3D image reconstruction, image quality assessment, and the translation of such methods to emerging clinical applications. Dr. Chen will address novel methods for the incorporation of prior information in 3D and 4D CT reconstruction techniques. Dr. Pan will show recent advances in optimization-based reconstruction that enable potential reduction of dose and sampling requirements. Dr. Stayman will describe a “task-based imaging” approach that leverages models of the imaging system and patient in combination with a specification of the imaging task to optimize both the acquisition and reconstruction process. Dr. Samei will describe the development of methods for image quality assessment in such nonlinear reconstruction techniques and the use of these methods to characterize and optimize image quality and dose in a spectrum of clinical

  19. Hyperspectral Unmixing with Robust Collaborative Sparse Regression

    Directory of Open Access Journals (Sweden)

    Chang Li

    2016-07-01

    Full Text Available Recently, sparse unmixing (SU of hyperspectral data has received particular attention for analyzing remote sensing images. However, most SU methods are based on the commonly admitted linear mixing model (LMM, which ignores the possible nonlinear effects (i.e., nonlinearity. In this paper, we propose a new method named robust collaborative sparse regression (RCSR based on the robust LMM (rLMM for hyperspectral unmixing. The rLMM takes the nonlinearity into consideration, and the nonlinearity is merely treated as outlier, which has the underlying sparse property. The RCSR simultaneously takes the collaborative sparse property of the abundance and sparsely distributed additive property of the outlier into consideration, which can be formed as a robust joint sparse regression problem. The inexact augmented Lagrangian method (IALM is used to optimize the proposed RCSR. The qualitative and quantitative experiments on synthetic datasets and real hyperspectral images demonstrate that the proposed RCSR is efficient for solving the hyperspectral SU problem compared with the other four state-of-the-art algorithms.

  20. Pragmatic fully 3D image reconstruction for the MiCES mouse imaging PET scanner

    International Nuclear Information System (INIS)

    Lee, Kisung; Kinahan, Paul E; Fessler, Jeffrey A; Miyaoka, Robert S; Janes, Marie; Lewellen, Tom K

    2004-01-01

    We present a pragmatic approach to image reconstruction for data from the micro crystal elements system (MiCES) fully 3D mouse imaging positron emission tomography (PET) scanner under construction at the University of Washington. Our approach is modelled on fully 3D image reconstruction used in clinical PET scanners, which is based on Fourier rebinning (FORE) followed by 2D iterative image reconstruction using ordered-subsets expectation-maximization (OSEM). The use of iterative methods allows modelling of physical effects (e.g., statistical noise, detector blurring, attenuation, etc), while FORE accelerates the reconstruction process by reducing the fully 3D data to a stacked set of independent 2D sinograms. Previous investigations have indicated that non-stationary detector point-spread response effects, which are typically ignored for clinical imaging, significantly impact image quality for the MiCES scanner geometry. To model the effect of non-stationary detector blurring (DB) in the FORE+OSEM(DB) algorithm, we have added a factorized system matrix to the ASPIRE reconstruction library. Initial results indicate that the proposed approach produces an improvement in resolution without an undue increase in noise and without a significant increase in the computational burden. The impact on task performance, however, remains to be evaluated

  1. Prior image constrained image reconstruction in emerging computed tomography applications

    Science.gov (United States)

    Brunner, Stephen T.

    Advances have been made in computed tomography (CT), especially in the past five years, by incorporating prior images into the image reconstruction process. In this dissertation, we investigate prior image constrained image reconstruction in three emerging CT applications: dual-energy CT, multi-energy photon-counting CT, and cone-beam CT in image-guided radiation therapy. First, we investigate the application of Prior Image Constrained Compressed Sensing (PICCS) in dual-energy CT, which has been called "one of the hottest research areas in CT." Phantom and animal studies are conducted using a state-of-the-art 64-slice GE Discovery 750 HD CT scanner to investigate the extent to which PICCS can enable radiation dose reduction in material density and virtual monochromatic imaging. Second, we extend the application of PICCS from dual-energy CT to multi-energy photon-counting CT, which has been called "one of the 12 topics in CT to be critical in the next decade." Numerical simulations are conducted to generate multiple energy bin images for a photon-counting CT acquisition and to investigate the extent to which PICCS can enable radiation dose efficiency improvement. Third, we investigate the performance of a newly proposed prior image constrained scatter correction technique to correct scatter-induced shading artifacts in cone-beam CT, which, when used in image-guided radiation therapy procedures, can assist in patient localization, and potentially, dose verification and adaptive radiation therapy. Phantom studies are conducted using a Varian 2100 EX system with an on-board imager to investigate the extent to which the prior image constrained scatter correction technique can mitigate scatter-induced shading artifacts in cone-beam CT. Results show that these prior image constrained image reconstruction techniques can reduce radiation dose in dual-energy CT by 50% in phantom and animal studies in material density and virtual monochromatic imaging, can lead to radiation

  2. Structural Sparse Tracking

    KAUST Repository

    Zhang, Tianzhu; Yang, Ming-Hsuan; Ahuja, Narendra; Ghanem, Bernard; Yan, Shuicheng; Xu, Changsheng; Liu, Si

    2015-01-01

    candidate. We show that our SST algorithm accommodates most existing sparse trackers with the respective merits. Both qualitative and quantitative evaluations on challenging benchmark image sequences demonstrate that the proposed SST algorithm performs

  3. 3D Reconstruction of NMR Images by LabVIEW

    Directory of Open Access Journals (Sweden)

    Peter IZAK

    2007-01-01

    Full Text Available This paper introduces the experiment of 3D reconstruction NMR images via virtual instrumentation - LabVIEW. The main idea is based on marching cubes algorithm and image processing implemented by module of Vision assistant. The two dimensional images shot by the magnetic resonance device provide information about the surface properties of human body. There is implemented algorithm which can be used for 3D reconstruction of magnetic resonance images in biomedical application.

  4. Spatial, Temporal and Spectral Satellite Image Fusion via Sparse Representation

    Science.gov (United States)

    Song, Huihui

    Remote sensing provides good measurements for monitoring and further analyzing the climate change, dynamics of ecosystem, and human activities in global or regional scales. Over the past two decades, the number of launched satellite sensors has been increasing with the development of aerospace technologies and the growing requirements on remote sensing data in a vast amount of application fields. However, a key technological challenge confronting these sensors is that they tradeoff between spatial resolution and other properties, including temporal resolution, spectral resolution, swath width, etc., due to the limitations of hardware technology and budget constraints. To increase the spatial resolution of data with other good properties, one possible cost-effective solution is to explore data integration methods that can fuse multi-resolution data from multiple sensors, thereby enhancing the application capabilities of available remote sensing data. In this thesis, we propose to fuse the spatial resolution with temporal resolution and spectral resolution, respectively, based on sparse representation theory. Taking the study case of Landsat ETM+ (with spatial resolution of 30m and temporal resolution of 16 days) and MODIS (with spatial resolution of 250m ~ 1km and daily temporal resolution) reflectance, we propose two spatial-temporal fusion methods to combine the fine spatial information of Landsat image and the daily temporal resolution of MODIS image. Motivated by that the images from these two sensors are comparable on corresponding bands, we propose to link their spatial information on available Landsat- MODIS image pair (captured on prior date) and then predict the Landsat image from the MODIS counterpart on prediction date. To well-learn the spatial details from the prior images, we use a redundant dictionary to extract the basic representation atoms for both Landsat and MODIS images based on sparse representation. Under the scenario of two prior Landsat

  5. Longitudinal and transverse digital image reconstruction with a tomographic scanner

    International Nuclear Information System (INIS)

    Pickens, D.R.; Price, R.R.; Erickson, J.J.; Patton, J.A.; Partain, C.L.; Rollo, F.D.

    1981-01-01

    A Siemens Gammasonics PHO/CON-192 Multiplane Imager is interfaced to a digital computer for the purpose of performing tomographic reconstructions from the data collected during a single scan. Data from the two moving gamma cameras as well as camera position information are sent to the computer by an interface designed in the authors' laboratory. Backprojection reconstruction is implemented by the computer. Longitudinal images in whole-body format as well as smaller formats are reconstructed for up to six planes simultaneously from the list mode data. Transverse reconstructions are demonstrated for 201 T1 myocardial scans. Post-reconstruction deconvolution processing to remove the blur artifact (characteristic of focal plane tomography) is applied to a multiplane phantom. Digital data acquisition of data and reconstruction of images are practical, and can extend the usefulness of the machine when compared with the film output (author)

  6. Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms

    International Nuclear Information System (INIS)

    Sidky, Emil Y.; Pan Xiaochuan; Reiser, Ingrid S.; Nishikawa, Robert M.; Moore, Richard H.; Kopans, Daniel B.

    2009-01-01

    Purpose: The authors develop a practical, iterative algorithm for image-reconstruction in undersampled tomographic systems, such as digital breast tomosynthesis (DBT). Methods: The algorithm controls image regularity by minimizing the image total p variation (TpV), a function that reduces to the total variation when p=1.0 or the image roughness when p=2.0. Constraints on the image, such as image positivity and estimated projection-data tolerance, are enforced by projection onto convex sets. The fact that the tomographic system is undersampled translates to the mathematical property that many widely varied resultant volumes may correspond to a given data tolerance. Thus the application of image regularity serves two purposes: (1) Reduction in the number of resultant volumes out of those allowed by fixing the data tolerance, finding the minimum image TpV for fixed data tolerance, and (2) traditional regularization, sacrificing data fidelity for higher image regularity. The present algorithm allows for this dual role of image regularity in undersampled tomography. Results: The proposed image-reconstruction algorithm is applied to three clinical DBT data sets. The DBT cases include one with microcalcifications and two with masses. Conclusions: Results indicate that there may be a substantial advantage in using the present image-reconstruction algorithm for microcalcification imaging.

  7. Choice of reconstructed tissue properties affects interpretation of lung EIT images.

    Science.gov (United States)

    Grychtol, Bartłomiej; Adler, Andy

    2014-06-01

    Electrical impedance tomography (EIT) estimates an image of change in electrical properties within a body from stimulations and measurements at surface electrodes. There is significant interest in EIT as a tool to monitor and guide ventilation therapy in mechanically ventilated patients. In lung EIT, the EIT inverse problem is commonly linearized and only changes in electrical properties are reconstructed. Early algorithms reconstructed changes in resistivity, while most recent work using the finite element method reconstructs conductivity. Recently, we demonstrated that EIT images of ventilation can be misleading if the electrical contrasts within the thorax are not taken into account during the image reconstruction process. In this paper, we explore the effect of the choice of the reconstructed electrical properties (resistivity or conductivity) on the resulting EIT images. We show in simulation and experimental data that EIT images reconstructed with the same algorithm but with different parametrizations lead to large and clinically significant differences in the resulting images, which persist even after attempts to eliminate the impact of the parameter choice by recovering volume changes from the EIT images. Since there is no consensus among the most popular reconstruction algorithms and devices regarding the parametrization, this finding has implications for potential clinical use of EIT. We propose a program of research to develop reconstruction techniques that account for both the relationship between air volume and electrical properties of the lung and artefacts introduced by the linearization.

  8. Choice of reconstructed tissue properties affects interpretation of lung EIT images

    International Nuclear Information System (INIS)

    Grychtol, Bartłomiej; Adler, Andy

    2014-01-01

    Electrical impedance tomography (EIT) estimates an image of change in electrical properties within a body from stimulations and measurements at surface electrodes. There is significant interest in EIT as a tool to monitor and guide ventilation therapy in mechanically ventilated patients. In lung EIT, the EIT inverse problem is commonly linearized and only changes in electrical properties are reconstructed. Early algorithms reconstructed changes in resistivity, while most recent work using the finite element method reconstructs conductivity. Recently, we demonstrated that EIT images of ventilation can be misleading if the electrical contrasts within the thorax are not taken into account during the image reconstruction process. In this paper, we explore the effect of the choice of the reconstructed electrical properties (resistivity or conductivity) on the resulting EIT images. We show in simulation and experimental data that EIT images reconstructed with the same algorithm but with different parametrizations lead to large and clinically significant differences in the resulting images, which persist even after attempts to eliminate the impact of the parameter choice by recovering volume changes from the EIT images. Since there is no consensus among the most popular reconstruction algorithms and devices regarding the parametrization, this finding has implications for potential clinical use of EIT. We propose a program of research to develop reconstruction techniques that account for both the relationship between air volume and electrical properties of the lung and artefacts introduced by the linearization. (paper)

  9. Evaluation of imaging protocol for ECT based on CS image reconstruction algorithm

    International Nuclear Information System (INIS)

    Zhou Xiaolin; Yun Mingkai; Cao Xuexiang; Liu Shuangquan; Wang Lu; Huang Xianchao; Wei Long

    2014-01-01

    Single-photon emission computerized tomography and positron emission tomography are essential medical imaging tools, for which the sampling angle number and scan time should be carefully chosen to give a good compromise between image quality and radiopharmaceutical dose. In this study, the image quality of different acquisition protocols was evaluated via varied angle number and count number per angle with Monte Carlo simulation data. It was shown that, when similar imaging counts were used, the factor of acquisition counts was more important than that of the sampling number in emission computerized tomography. To further reduce the activity requirement and the scan duration, an iterative image reconstruction algorithm for limited-view and low-dose tomography based on compressed sensing theory has been developed. The total variation regulation was added to the reconstruction process to improve the signal to noise Ratio and reduce artifacts caused by the limited angle sampling. Maximization of the maximum likelihood of the estimated image and the measured data and minimization of the total variation of the image are alternatively implemented. By using this advanced algorithm, the reconstruction process is able to achieve image quality matching or exceed that of normal scans with only half of the injection radiopharmaceutical dose. (authors)

  10. Reconstruction of a ring applicator using CT imaging: impact of the reconstruction method and applicator orientation

    International Nuclear Information System (INIS)

    Hellebust, Taran Paulsen; Tanderup, Kari; Bergstrand, Eva Stabell; Knutsen, Bjoern Helge; Roeislien, Jo; Olsen, Dag Rune

    2007-01-01

    The purpose of this study is to investigate whether the method of applicator reconstruction and/or the applicator orientation influence the dose calculation to points around the applicator for brachytherapy of cervical cancer with CT-based treatment planning. A phantom, containing a fixed ring applicator set and six lead pellets representing dose points, was used. The phantom was CT scanned with the ring applicator at four different angles related to the image plane. In each scan the applicator was reconstructed by three methods: (1) direct reconstruction in each image (DR) (2) reconstruction in multiplanar reconstructed images (MPR) and (3) library plans, using pre-defined applicator geometry (LIB). The doses to the lead pellets were calculated. The relative standard deviation (SD) for all reconstruction methods was less than 3.7% in the dose points. The relative SD for the LIB method was significantly lower (p < 0.05) than for the DR and MPR methods for all but two points. All applicator orientations had similar dose calculation reproducibility. Using library plans for applicator reconstruction gives the most reproducible dose calculation. However, with restrictive guidelines for applicator reconstruction the uncertainties for all methods are low compared to other factors influencing the accuracy of brachytherapy

  11. Fan-beam and cone-beam image reconstruction via filtering the backprojection image of differentiated projection data

    International Nuclear Information System (INIS)

    Zhuang Tingliang; Leng Shuai; Nett, Brian E; Chen Guanghong

    2004-01-01

    In this paper, a new image reconstruction scheme is presented based on Tuy's cone-beam inversion scheme and its fan-beam counterpart. It is demonstrated that Tuy's inversion scheme may be used to derive a new framework for fan-beam and cone-beam image reconstruction. In this new framework, images are reconstructed via filtering the backprojection image of differentiated projection data. The new framework is mathematically exact and is applicable to a general source trajectory provided the Tuy data sufficiency condition is satisfied. By choosing a piece-wise constant function for one of the components in the factorized weighting function, the filtering kernel is one dimensional, viz. the filtering process is along a straight line. Thus, the derived image reconstruction algorithm is mathematically exact and efficient. In the cone-beam case, the derived reconstruction algorithm is applicable to a large class of source trajectories where the pi-lines or the generalized pi-lines exist. In addition, the new reconstruction scheme survives the super-short scan mode in both the fan-beam and cone-beam cases provided the data are not transversely truncated. Numerical simulations were conducted to validate the new reconstruction scheme for the fan-beam case

  12. Reconstruction of CT images by the Bayes- back projection method

    CERN Document Server

    Haruyama, M; Takase, M; Tobita, H

    2002-01-01

    In the course of research on quantitative assay of non-destructive measurement of radioactive waste, the have developed a unique program based on the Bayesian theory for reconstruction of transmission computed tomography (TCT) image. The reconstruction of cross-section images in the CT technology usually employs the Filtered Back Projection method. The new imaging reconstruction program reported here is based on the Bayesian Back Projection method, and it has a function of iterative improvement images by every step of measurement. Namely, this method has the capability of prompt display of a cross-section image corresponding to each angled projection data from every measurement. Hence, it is possible to observe an improved cross-section view by reflecting each projection data in almost real time. From the basic theory of Baysian Back Projection method, it can be not only applied to CT types of 1st, 2nd, and 3rd generation. This reported deals with a reconstruction program of cross-section images in the CT of ...

  13. Software for 3D diagnostic image reconstruction and analysis

    International Nuclear Information System (INIS)

    Taton, G.; Rokita, E.; Sierzega, M.; Klek, S.; Kulig, J.; Urbanik, A.

    2005-01-01

    Recent advances in computer technologies have opened new frontiers in medical diagnostics. Interesting possibilities are the use of three-dimensional (3D) imaging and the combination of images from different modalities. Software prepared in our laboratories devoted to 3D image reconstruction and analysis from computed tomography and ultrasonography is presented. In developing our software it was assumed that it should be applicable in standard medical practice, i.e. it should work effectively with a PC. An additional feature is the possibility of combining 3D images from different modalities. The reconstruction and data processing can be conducted using a standard PC, so low investment costs result in the introduction of advanced and useful diagnostic possibilities. The program was tested on a PC using DICOM data from computed tomography and TIFF files obtained from a 3D ultrasound system. The results of the anthropomorphic phantom and patient data were taken into consideration. A new approach was used to achieve spatial correlation of two independently obtained 3D images. The method relies on the use of four pairs of markers within the regions under consideration. The user selects the markers manually and the computer calculates the transformations necessary for coupling the images. The main software feature is the possibility of 3D image reconstruction from a series of two-dimensional (2D) images. The reconstructed 3D image can be: (1) viewed with the most popular methods of 3D image viewing, (2) filtered and processed to improve image quality, (3) analyzed quantitatively (geometrical measurements), and (4) coupled with another, independently acquired 3D image. The reconstructed and processed 3D image can be stored at every stage of image processing. The overall software performance was good considering the relatively low costs of the hardware used and the huge data sets processed. The program can be freely used and tested (source code and program available at

  14. Visual recognition and inference using dynamic overcomplete sparse learning.

    Science.gov (United States)

    Murray, Joseph F; Kreutz-Delgado, Kenneth

    2007-09-01

    We present a hierarchical architecture and learning algorithm for visual recognition and other visual inference tasks such as imagination, reconstruction of occluded images, and expectation-driven segmentation. Using properties of biological vision for guidance, we posit a stochastic generative world model and from it develop a simplified world model (SWM) based on a tractable variational approximation that is designed to enforce sparse coding. Recent developments in computational methods for learning overcomplete representations (Lewicki & Sejnowski, 2000; Teh, Welling, Osindero, & Hinton, 2003) suggest that overcompleteness can be useful for visual tasks, and we use an overcomplete dictionary learning algorithm (Kreutz-Delgado, et al., 2003) as a preprocessing stage to produce accurate, sparse codings of images. Inference is performed by constructing a dynamic multilayer network with feedforward, feedback, and lateral connections, which is trained to approximate the SWM. Learning is done with a variant of the back-propagation-through-time algorithm, which encourages convergence to desired states within a fixed number of iterations. Vision tasks require large networks, and to make learning efficient, we take advantage of the sparsity of each layer to update only a small subset of elements in a large weight matrix at each iteration. Experiments on a set of rotated objects demonstrate various types of visual inference and show that increasing the degree of overcompleteness improves recognition performance in difficult scenes with occluded objects in clutter.

  15. Reconstruction of Optical Thickness from Hoffman Modulation Contrast Images

    DEFF Research Database (Denmark)

    Olsen, Niels Holm; Sporring, Jon; Nielsen, Mads

    2003-01-01

    Hoffman microscopy imaging systems are part of numerous fertility clinics world-wide. We discuss the physics of the Hoffman imaging system from optical thickness to image intensity, implement a simple, yet fast, reconstruction algorithm using Fast Fourier Transformation and discuss the usability...... of the method on a number of cells from a human embryo. Novelty is identifying the non-linearity of a typical Hoffman imaging system, and the application of Fourier Transformation to reconstruct the optical thickness....

  16. PROMISE: parallel-imaging and compressed-sensing reconstruction of multicontrast imaging using SharablE information.

    Science.gov (United States)

    Gong, Enhao; Huang, Feng; Ying, Kui; Wu, Wenchuan; Wang, Shi; Yuan, Chun

    2015-02-01

    A typical clinical MR examination includes multiple scans to acquire images with different contrasts for complementary diagnostic information. The multicontrast scheme requires long scanning time. The combination of partially parallel imaging and compressed sensing (CS-PPI) has been used to reconstruct accelerated scans. However, there are several unsolved problems in existing methods. The target of this work is to improve existing CS-PPI methods for multicontrast imaging, especially for two-dimensional imaging. If the same field of view is scanned in multicontrast imaging, there is significant amount of sharable information. It is proposed in this study to use manifold sharable information among multicontrast images to enhance CS-PPI in a sequential way. Coil sensitivity information and structure based adaptive regularization, which were extracted from previously reconstructed images, were applied to enhance the following reconstructions. The proposed method is called Parallel-imaging and compressed-sensing Reconstruction Of Multicontrast Imaging using SharablE information (PROMISE). Using L1 -SPIRiT as a CS-PPI example, results on multicontrast brain and carotid scans demonstrated that lower error level and better detail preservation can be achieved by exploiting manifold sharable information. Besides, the privilege of PROMISE still exists while there is interscan motion. Using the sharable information among multicontrast images can enhance CS-PPI with tolerance to motions. © 2014 Wiley Periodicals, Inc.

  17. Reprint of "Two-stage sparse coding of region covariance via Log-Euclidean kernels to detect saliency".

    Science.gov (United States)

    Zhang, Ying-Ying; Yang, Cai; Zhang, Ping

    2017-08-01

    In this paper, we present a novel bottom-up saliency detection algorithm from the perspective of covariance matrices on a Riemannian manifold. Each superpixel is described by a region covariance matrix on Riemannian Manifolds. We carry out a two-stage sparse coding scheme via Log-Euclidean kernels to extract salient objects efficiently. In the first stage, given background dictionary on image borders, sparse coding of each region covariance via Log-Euclidean kernels is performed. The reconstruction error on the background dictionary is regarded as the initial saliency of each superpixel. In the second stage, an improvement of the initial result is achieved by calculating reconstruction errors of the superpixels on foreground dictionary, which is extracted from the first stage saliency map. The sparse coding in the second stage is similar to the first stage, but is able to effectively highlight the salient objects uniformly from the background. Finally, three post-processing methods-highlight-inhibition function, context-based saliency weighting, and the graph cut-are adopted to further refine the saliency map. Experiments on four public benchmark datasets show that the proposed algorithm outperforms the state-of-the-art methods in terms of precision, recall and mean absolute error, and demonstrate the robustness and efficiency of the proposed method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Optical image reconstruction using DC data: simulations and experiments

    International Nuclear Information System (INIS)

    Huabei Jiang; Paulsen, K.D.; Oesterberg, U.L.

    1996-01-01

    In this paper, we explore optical image formation using a diffusion approximation of light propagation in tissue which is modelled with a finite-element method for optically heterogeneous media. We demonstrate successful image reconstruction based on absolute experimental DC data obtained with a continuous wave 633 nm He-Ne laser system and a 751 nm diode laser system in laboratory phantoms having two optically distinct regions. The experimental systems used exploit a tomographic type of data collection scheme that provides information from which a spatially variable optical property map is deduced. Reconstruction of scattering coefficient only and simultaneous reconstruction of both scattering and absorption profiles in tissue-like phantoms are obtained from measured and simulated data. Images with different contrast levels between the heterogeneity and the background are also reported and the results show that although it is possible to obtain qualitative visual information on the location and size of a heterogeneity, it may not be possible to quantitatively resolve contrast levels or optical properties using reconstructions from DC data only. Sensitivity of image reconstruction to noise in the measurement data is investigated through simulations. The application of boundary constraints has also been addressed. (author)

  19. Sparseness- and continuity-constrained seismic imaging

    Science.gov (United States)

    Herrmann, Felix J.

    2005-04-01

    Non-linear solution strategies to the least-squares seismic inverse-scattering problem with sparseness and continuity constraints are proposed. Our approach is designed to (i) deal with substantial amounts of additive noise (SNR formulating the solution of the seismic inverse problem in terms of an optimization problem. During the optimization, sparseness on the basis and continuity along the reflectors are imposed by jointly minimizing the l1- and anisotropic diffusion/total-variation norms on the coefficients and reflectivity, respectively. [Joint work with Peyman P. Moghaddam was carried out as part of the SINBAD project, with financial support secured through ITF (the Industry Technology Facilitator) from the following organizations: BG Group, BP, ExxonMobil, and SHELL. Additional funding came from the NSERC Discovery Grants 22R81254.

  20. Accelerated Compressed Sensing Based CT Image Reconstruction.

    Science.gov (United States)

    Hashemi, SayedMasoud; Beheshti, Soosan; Gill, Patrick R; Paul, Narinder S; Cobbold, Richard S C

    2015-01-01

    In X-ray computed tomography (CT) an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS) enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization.

  1. Accelerated Compressed Sensing Based CT Image Reconstruction

    Directory of Open Access Journals (Sweden)

    SayedMasoud Hashemi

    2015-01-01

    Full Text Available In X-ray computed tomography (CT an important objective is to reduce the radiation dose without significantly degrading the image quality. Compressed sensing (CS enables the radiation dose to be reduced by producing diagnostic images from a limited number of projections. However, conventional CS-based algorithms are computationally intensive and time-consuming. We propose a new algorithm that accelerates the CS-based reconstruction by using a fast pseudopolar Fourier based Radon transform and rebinning the diverging fan beams to parallel beams. The reconstruction process is analyzed using a maximum-a-posterior approach, which is transformed into a weighted CS problem. The weights involved in the proposed model are calculated based on the statistical characteristics of the reconstruction process, which is formulated in terms of the measurement noise and rebinning interpolation error. Therefore, the proposed method not only accelerates the reconstruction, but also removes the rebinning and interpolation errors. Simulation results are shown for phantoms and a patient. For example, a 512 × 512 Shepp-Logan phantom when reconstructed from 128 rebinned projections using a conventional CS method had 10% error, whereas with the proposed method the reconstruction error was less than 1%. Moreover, computation times of less than 30 sec were obtained using a standard desktop computer without numerical optimization.

  2. Electro-optical system for the high speed reconstruction of computed tomography images

    International Nuclear Information System (INIS)

    Tresp, V.

    1989-01-01

    An electro-optical system for the high-speed reconstruction of computed tomography (CT) images has been built and studied. The system is capable of reconstructing high-contrast and high-resolution images at video rate (30 images per second), which is more than two orders of magnitude faster than the reconstruction rate achieved by special purpose digital computers used in commercial CT systems. The filtered back-projection algorithm which was implemented in the reconstruction system requires the filtering of all projections with a prescribed filter function. A space-integrating acousto-optical convolver, a surface acoustic wave filter and a digital finite-impulse response filter were used for this purpose and their performances were compared. The second part of the reconstruction, the back projection of the filtered projections, is computationally very expensive. An optical back projector has been built which maps the filtered projections onto the two-dimensional image space using an anamorphic lens system and a prism image rotator. The reconstructed image is viewed by a video camera, routed through a real-time image-enhancement system, and displayed on a TV monitor. The system reconstructs parallel-beam projection data, and in a modified version, is also capable of reconstructing fan-beam projection data. This extension is important since the latter are the kind of projection data actually acquired in high-speed X-ray CT scanners. The reconstruction system was tested by reconstructing precomputed projection data of phantom images. These were stored in a special purpose projection memory and transmitted to the reconstruction system as an electronic signal. In this way, a projection measurement system that acquires projections sequentially was simulated

  3. A sparse electromagnetic imaging scheme using nonlinear landweber iterations

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2015-01-01

    Development and use of electromagnetic inverse scattering techniques for imagining sparse domains have been on the rise following the recent advancements in solving sparse optimization problems. Existing techniques rely on iteratively converting

  4. Does thorax EIT image analysis depend on the image reconstruction method?

    Science.gov (United States)

    Zhao, Zhanqi; Frerichs, Inéz; Pulletz, Sven; Müller-Lisse, Ullrich; Möller, Knut

    2013-04-01

    Different methods were proposed to analyze the resulting images of electrical impedance tomography (EIT) measurements during ventilation. The aim of our study was to examine if the analysis methods based on back-projection deliver the same results when applied on images based on other reconstruction algorithms. Seven mechanically ventilated patients with ARDS were examined by EIT. The thorax contours were determined from the routine CT images. EIT raw data was reconstructed offline with (1) filtered back-projection with circular forward model (BPC); (2) GREIT reconstruction method with circular forward model (GREITC) and (3) GREIT with individual thorax geometry (GREITT). Three parameters were calculated on the resulting images: linearity, global ventilation distribution and regional ventilation distribution. The results of linearity test are 5.03±2.45, 4.66±2.25 and 5.32±2.30 for BPC, GREITC and GREITT, respectively (median ±interquartile range). The differences among the three methods are not significant (p = 0.93, Kruskal-Wallis test). The proportions of ventilation in the right lung are 0.58±0.17, 0.59±0.20 and 0.59±0.25 for BPC, GREITC and GREITT, respectively (p = 0.98). The differences of the GI index based on different reconstruction methods (0.53±0.16, 0.51±0.25 and 0.54±0.16 for BPC, GREITC and GREITT, respectively) are also not significant (p = 0.93). We conclude that the parameters developed for images generated with GREITT are comparable with filtered back-projection and GREITC.

  5. A Denoising Scheme for Randomly Clustered Noise Removal in ICCD Sensing Image

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-01-01

    Full Text Available An Intensified Charge-Coupled Device (ICCD image is captured by the ICCD image sensor in extremely low-light conditions. Its noise has two distinctive characteristics. (a Different from the independent identically distributed (i.i.d. noise in natural image, the noise in the ICCD sensing image is spatially clustered, which induces unexpected structure information; (b The pattern of the clustered noise is formed randomly. In this paper, we propose a denoising scheme to remove the randomly clustered noise in the ICCD sensing image. First, we decompose the image into non-overlapped patches and classify them into flat patches and structure patches according to if real structure information is included. Then, two denoising algorithms are designed for them, respectively. For each flat patch, we simulate multiple similar patches for it in pseudo-time domain and remove its noise by averaging all the simulated patches, considering that the structure information induced by the noise varies randomly over time. For each structure patch, we design a structure-preserved sparse coding algorithm to reconstruct the real structure information. It reconstructs each patch by describing it as a weighted summation of its neighboring patches and incorporating the weights into the sparse representation of the current patch. Based on all the reconstructed patches, we generate a reconstructed image. After that, we repeat the whole process by changing relevant parameters, considering that blocking artifacts exist in a single reconstructed image. Finally, we obtain the reconstructed image by merging all the generated images into one. Experiments are conducted on an ICCD sensing image dataset, which verifies its subjective performance in removing the randomly clustered noise and preserving the real structure information in the ICCD sensing image.

  6. Bubble parameters analysis of gas-liquid two-phase sparse bubbly flow based on image method

    International Nuclear Information System (INIS)

    Zhou Yunlong; Zhou Hongjuan; Song Lianzhuang; Liu Qian

    2012-01-01

    The sparse rising bubbles of gas-liquid two-phase flow in vertical pipe were measured and studied based on image method. The bubble images were acquired by high-speed video camera systems, the characteristic parameters of bubbles were extracted by using image processing techniques. Then velocity variation of rising bubbles were drawn. Area and centroid variation of single bubble were also drawn. And then parameters and movement law of bubbles were analyzed and studied. The test results showed that parameters of bubbles had been analyzed well by using image method. (authors)

  7. GPU-accelerated Kernel Regression Reconstruction for Freehand 3D Ultrasound Imaging.

    Science.gov (United States)

    Wen, Tiexiang; Li, Ling; Zhu, Qingsong; Qin, Wenjian; Gu, Jia; Yang, Feng; Xie, Yaoqin

    2017-07-01

    Volume reconstruction method plays an important role in improving reconstructed volumetric image quality for freehand three-dimensional (3D) ultrasound imaging. By utilizing the capability of programmable graphics processing unit (GPU), we can achieve a real-time incremental volume reconstruction at a speed of 25-50 frames per second (fps). After incremental reconstruction and visualization, hole-filling is performed on GPU to fill remaining empty voxels. However, traditional pixel nearest neighbor-based hole-filling fails to reconstruct volume with high image quality. On the contrary, the kernel regression provides an accurate volume reconstruction method for 3D ultrasound imaging but with the cost of heavy computational complexity. In this paper, a GPU-based fast kernel regression method is proposed for high-quality volume after the incremental reconstruction of freehand ultrasound. The experimental results show that improved image quality for speckle reduction and details preservation can be obtained with the parameter setting of kernel window size of [Formula: see text] and kernel bandwidth of 1.0. The computational performance of the proposed GPU-based method can be over 200 times faster than that on central processing unit (CPU), and the volume with size of 50 million voxels in our experiment can be reconstructed within 10 seconds.

  8. Usefulness of three dimensional reconstructive images for thoracic trauma induced fractures

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kyung Hun; Kim, Dong Hun; Kim, Young Sook; Byun, Joo Nam [Chosun University Hospital, Gwangju (Korea, Republic of)

    2006-09-15

    We wanted to evaluate the usefulness of three-dimensional reconstructive images using multidetector computed tomography (MDCT) for thoracic traumatic patients visiting emergency room. 76 patients with fractures of the 105 patients who visited our emergency room with complaints of thoracic trauma were analyzed retrospectively. All the patients had thoracic MDCT performed and the three-dimensional reconstructive images were taken. The fractures were confirmed by axial CT, the clinical information, whole body bone scanning and the multiplanar reformation images. Plain x-ray images were analyzed by the fractured sites in a blind comparison of two radiologists' readings, and then that finding was compared with the axial CT scans and the three-dimensional reconstructive images. The fracture sites were rib (n 68), sternum (n = 14), clavicle (n = 6), scapula (n = 3), spine (n = 5) and combined fractures (n = 14). Plain x-ray and axial CT scans had a correspondency of 0.555 for the rib fractures. Axial CT scans and the three-dimensional reconstructive images had a correspondency of .952. For sternal fractures, those values were 0.692 and 0.928, respectively. The axial CT scans and three-dimensional reconstructive images showed sensitivities of 94% and 91% for rib and other fractures, respectively, and 93% and 100% for sternal fracture, respectively. Three-dimensional reconstructive image had an especially high sensitivity for the diagnosis of sternal fracture. While evaluating thoracic trauma at the emergency room, the three-dimensional reconstructive image was useful to easily diagnose the extent of fracture and it was very sensitive for detecting sternal fracture.

  9. Usefulness of three dimensional reconstructive images for thoracic trauma induced fractures

    International Nuclear Information System (INIS)

    Koh, Kyung Hun; Kim, Dong Hun; Kim, Young Sook; Byun, Joo Nam

    2006-01-01

    We wanted to evaluate the usefulness of three-dimensional reconstructive images using multidetector computed tomography (MDCT) for thoracic traumatic patients visiting emergency room. 76 patients with fractures of the 105 patients who visited our emergency room with complaints of thoracic trauma were analyzed retrospectively. All the patients had thoracic MDCT performed and the three-dimensional reconstructive images were taken. The fractures were confirmed by axial CT, the clinical information, whole body bone scanning and the multiplanar reformation images. Plain x-ray images were analyzed by the fractured sites in a blind comparison of two radiologists' readings, and then that finding was compared with the axial CT scans and the three-dimensional reconstructive images. The fracture sites were rib (n 68), sternum (n = 14), clavicle (n = 6), scapula (n = 3), spine (n = 5) and combined fractures (n = 14). Plain x-ray and axial CT scans had a correspondency of 0.555 for the rib fractures. Axial CT scans and the three-dimensional reconstructive images had a correspondency of .952. For sternal fractures, those values were 0.692 and 0.928, respectively. The axial CT scans and three-dimensional reconstructive images showed sensitivities of 94% and 91% for rib and other fractures, respectively, and 93% and 100% for sternal fracture, respectively. Three-dimensional reconstructive image had an especially high sensitivity for the diagnosis of sternal fracture. While evaluating thoracic trauma at the emergency room, the three-dimensional reconstructive image was useful to easily diagnose the extent of fracture and it was very sensitive for detecting sternal fracture

  10. Fast implementations of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction

    International Nuclear Information System (INIS)

    Kadrmas, Dan J.; Karimi, Seemeen S.; Frey, Eric C.; Tsui, Benjamin M.W.

    1998-01-01

    Accurate scatter compensation in SPECT can be performed by modelling the scatter response function during the reconstruction process. This method is called reconstruction-based scatter compensation (RBSC). It has been shown that RBSC has a number of advantages over other methods of compensating for scatter, but using RBSC for fully 3D compensation has resulted in prohibitively long reconstruction times. In this work we propose two new methods that can be used in conjunction with existing methods to achieve marked reductions in RBSC reconstruction times. The first method, coarse-grid scatter modelling, significantly accelerates the scatter model by exploiting the fact that scatter is dominated by low-frequency information. The second method, intermittent RBSC, further accelerates the reconstruction process by limiting the number of iterations during which scatter is modelled. The fast implementations were evaluated using a Monte Carlo simulated experiment of the 3D MCAT phantom with 99m Tc tracer, and also using experimentally acquired data with 201 Tl tracer. Results indicated that these fast methods can reconstruct, with fully 3D compensation, images very similar to those obtained using standard RBSC methods, and in reconstruction times that are an order of magnitude shorter. Using these methods, fully 3D iterative reconstruction with RBSC can be performed well within the realm of clinically realistic times (under 10 minutes for 64x64x24 image reconstruction). (author)

  11. Parallel Algorithm for Reconstruction of TAC Images

    International Nuclear Information System (INIS)

    Vidal Gimeno, V.

    2012-01-01

    The algebraic reconstruction methods are based on solving a system of linear equations. In a previous study, was used and showed as the PETSc library, was and is a scientific computing tool, which facilitates and enables the optimal use of a computer system in the image reconstruction process.

  12. 3.5D dynamic PET image reconstruction incorporating kinetics-based clusters

    International Nuclear Information System (INIS)

    Lu Lijun; Chen Wufan; Karakatsanis, Nicolas A; Rahmim, Arman; Tang Jing

    2012-01-01

    Standard 3D dynamic positron emission tomographic (PET) imaging consists of independent image reconstructions of individual frames followed by application of appropriate kinetic model to the time activity curves at the voxel or region-of-interest (ROI). The emerging field of 4D PET reconstruction, by contrast, seeks to move beyond this scheme and incorporate information from multiple frames within the image reconstruction task. Here we propose a novel reconstruction framework aiming to enhance quantitative accuracy of parametric images via introduction of priors based on voxel kinetics, as generated via clustering of preliminary reconstructed dynamic images to define clustered neighborhoods of voxels with similar kinetics. This is then followed by straightforward maximum a posteriori (MAP) 3D PET reconstruction as applied to individual frames; and as such the method is labeled ‘3.5D’ image reconstruction. The use of cluster-based priors has the advantage of further enhancing quantitative performance in dynamic PET imaging, because: (a) there are typically more voxels in clusters than in conventional local neighborhoods, and (b) neighboring voxels with distinct kinetics are less likely to be clustered together. Using realistic simulated 11 C-raclopride dynamic PET data, the quantitative performance of the proposed method was investigated. Parametric distribution-volume (DV) and DV ratio (DVR) images were estimated from dynamic image reconstructions using (a) maximum-likelihood expectation maximization (MLEM), and MAP reconstructions using (b) the quadratic prior (QP-MAP), (c) the Green prior (GP-MAP) and (d, e) two proposed cluster-based priors (CP-U-MAP and CP-W-MAP), followed by graphical modeling, and were qualitatively and quantitatively compared for 11 ROIs. Overall, the proposed dynamic PET reconstruction methodology resulted in substantial visual as well as quantitative accuracy improvements (in terms of noise versus bias performance) for parametric DV

  13. Multiscale Region-Level VHR Image Change Detection via Sparse Change Descriptor and Robust Discriminative Dictionary Learning

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2015-01-01

    Full Text Available Very high resolution (VHR image change detection is challenging due to the low discriminative ability of change feature and the difficulty of change decision in utilizing the multilevel contextual information. Most change feature extraction techniques put emphasis on the change degree description (i.e., in what degree the changes have happened, while they ignore the change pattern description (i.e., how the changes changed, which is of equal importance in characterizing the change signatures. Moreover, the simultaneous consideration of the classification robust to the registration noise and the multiscale region-consistent fusion is often neglected in change decision. To overcome such drawbacks, in this paper, a novel VHR image change detection method is proposed based on sparse change descriptor and robust discriminative dictionary learning. Sparse change descriptor combines the change degree component and the change pattern component, which are encoded by the sparse representation error and the morphological profile feature, respectively. Robust change decision is conducted by multiscale region-consistent fusion, which is implemented by the superpixel-level cosparse representation with robust discriminative dictionary and the conditional random field model. Experimental results confirm the effectiveness of the proposed change detection technique.

  14. Complications of anterior cruciate ligament reconstruction: MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Papakonstantinou, Olympia; Chung, Christine B.; Chanchairujira, Kullanuch; Resnick, Donald L. [Department of Radiology, Veterans Affairs Medical Center, University of California, 3350 La Jolla Village Dr., San Diego, CA 92161 (United States)

    2003-05-01

    Arthroscopic reconstruction of the anterior cruciate ligament (ACL) using autografts or allografts is being performed with increasing frequency, particularly in young athletes. Although the procedure is generally well tolerated, with good success rates, early and late complications have been documented. As clinical manifestations of graft complications are often non-specific and plain radiographs cannot directly visualize the graft and the adjacent soft tissues, MR imaging has a definite role in the diagnosis of complications after ACL reconstruction and may direct subsequent therapeutic management. Our purpose is to review the normal MR imaging of the ACL graft and present the MR imaging findings of a wide spectrum of complications after ACL reconstruction, such as graft impingement, graft rupture, cystic degeneration of the graft, postoperative infection of the knee, diffuse and localized (i.e., cyclops lesion) arthrofibrosis, and associated donor site abnormalities. Awareness of the MR imaging findings of complications as well as the normal appearances of the normal ACL graft is essential for correct interpretation. (orig.)

  15. Complications of anterior cruciate ligament reconstruction: MR imaging

    International Nuclear Information System (INIS)

    Papakonstantinou, Olympia; Chung, Christine B.; Chanchairujira, Kullanuch; Resnick, Donald L.

    2003-01-01

    Arthroscopic reconstruction of the anterior cruciate ligament (ACL) using autografts or allografts is being performed with increasing frequency, particularly in young athletes. Although the procedure is generally well tolerated, with good success rates, early and late complications have been documented. As clinical manifestations of graft complications are often non-specific and plain radiographs cannot directly visualize the graft and the adjacent soft tissues, MR imaging has a definite role in the diagnosis of complications after ACL reconstruction and may direct subsequent therapeutic management. Our purpose is to review the normal MR imaging of the ACL graft and present the MR imaging findings of a wide spectrum of complications after ACL reconstruction, such as graft impingement, graft rupture, cystic degeneration of the graft, postoperative infection of the knee, diffuse and localized (i.e., cyclops lesion) arthrofibrosis, and associated donor site abnormalities. Awareness of the MR imaging findings of complications as well as the normal appearances of the normal ACL graft is essential for correct interpretation. (orig.)

  16. CT image reconstruction system based on hardware implementation

    International Nuclear Information System (INIS)

    Silva, Hamilton P. da; Evseev, Ivan; Schelin, Hugo R.; Paschuk, Sergei A.; Milhoretto, Edney; Setti, Joao A.P.; Zibetti, Marcelo; Hormaza, Joel M.; Lopes, Ricardo T.

    2009-01-01

    Full text: The timing factor is very important for medical imaging systems, which can nowadays be synchronized by vital human signals, like heartbeats or breath. The use of hardware implemented devices in such a system has advantages considering the high speed of information treatment combined with arbitrary low cost on the market. This article refers to a hardware system which is based on electronic programmable logic called FPGA, model Cyclone II from ALTERA Corporation. The hardware was implemented on the UP3 ALTERA Kit. A partially connected neural network with unitary weights was programmed. The system was tested with 60 topographic projections, 100 points in each, of the Shepp and Logan phantom created by MATLAB. The main restriction was found to be the memory size available on the device: the dynamic range of reconstructed image was limited to 0 65535. Also, the normalization factor must be observed in order to do not saturate the image during the reconstruction and filtering process. The test shows a principal possibility to build CT image reconstruction systems for any reasonable amount of input data by arranging the parallel work of the hardware units like we have tested. However, further studies are necessary for better understanding of the error propagation from topographic projections to reconstructed image within the implemented method. (author)

  17. Bayesian PET image reconstruction incorporating anato-functional joint entropy

    International Nuclear Information System (INIS)

    Tang Jing; Rahmim, Arman

    2009-01-01

    We developed a maximum a posterior (MAP) reconstruction method for positron emission tomography (PET) image reconstruction incorporating magnetic resonance (MR) image information, with the joint entropy between the PET and MR image features serving as the regularization constraint. A non-parametric method was used to estimate the joint probability density of the PET and MR images. Using realistically simulated PET and MR human brain phantoms, the quantitative performance of the proposed algorithm was investigated. Incorporation of the anatomic information via this technique, after parameter optimization, was seen to dramatically improve the noise versus bias tradeoff in every region of interest, compared to the result from using conventional MAP reconstruction. In particular, hot lesions in the FDG PET image, which had no anatomical correspondence in the MR image, also had improved contrast versus noise tradeoff. Corrections were made to figures 3, 4 and 6, and to the second paragraph of section 3.1 on 13 November 2009. The corrected electronic version is identical to the print version.

  18. The SRT reconstruction algorithm for semiquantification in PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kastis, George A., E-mail: gkastis@academyofathens.gr [Research Center of Mathematics, Academy of Athens, Athens 11527 (Greece); Gaitanis, Anastasios [Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens 11527 (Greece); Samartzis, Alexandros P. [Nuclear Medicine Department, Evangelismos General Hospital, Athens 10676 (Greece); Fokas, Athanasios S. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB30WA, United Kingdom and Research Center of Mathematics, Academy of Athens, Athens 11527 (Greece)

    2015-10-15

    Purpose: The spline reconstruction technique (SRT) is a new, fast algorithm based on a novel numerical implementation of an analytic representation of the inverse Radon transform. The mathematical details of this algorithm and comparisons with filtered backprojection were presented earlier in the literature. In this study, the authors present a comparison between SRT and the ordered-subsets expectation–maximization (OSEM) algorithm for determining contrast and semiquantitative indices of {sup 18}F-FDG uptake. Methods: The authors implemented SRT in the software for tomographic image reconstruction (STIR) open-source platform and evaluated this technique using simulated and real sinograms obtained from the GE Discovery ST positron emission tomography/computer tomography scanner. All simulations and reconstructions were performed in STIR. For OSEM, the authors used the clinical protocol of their scanner, namely, 21 subsets and two iterations. The authors also examined images at one, four, six, and ten iterations. For the simulation studies, the authors analyzed an image-quality phantom with cold and hot lesions. Two different versions of the phantom were employed at two different hot-sphere lesion-to-background ratios (LBRs), namely, 2:1 and 4:1. For each noiseless sinogram, 20 Poisson realizations were created at five different noise levels. In addition to making visual comparisons of the reconstructed images, the authors determined contrast and bias as a function of the background image roughness (IR). For the real-data studies, sinograms of an image-quality phantom simulating the human torso were employed. The authors determined contrast and LBR as a function of the background IR. Finally, the authors present plots of contrast as a function of IR after smoothing each reconstructed image with Gaussian filters of six different sizes. Statistical significance was determined by employing the Wilcoxon rank-sum test. Results: In both simulated and real studies, SRT

  19. The SRT reconstruction algorithm for semiquantification in PET imaging

    International Nuclear Information System (INIS)

    Kastis, George A.; Gaitanis, Anastasios; Samartzis, Alexandros P.; Fokas, Athanasios S.

    2015-01-01

    Purpose: The spline reconstruction technique (SRT) is a new, fast algorithm based on a novel numerical implementation of an analytic representation of the inverse Radon transform. The mathematical details of this algorithm and comparisons with filtered backprojection were presented earlier in the literature. In this study, the authors present a comparison between SRT and the ordered-subsets expectation–maximization (OSEM) algorithm for determining contrast and semiquantitative indices of 18 F-FDG uptake. Methods: The authors implemented SRT in the software for tomographic image reconstruction (STIR) open-source platform and evaluated this technique using simulated and real sinograms obtained from the GE Discovery ST positron emission tomography/computer tomography scanner. All simulations and reconstructions were performed in STIR. For OSEM, the authors used the clinical protocol of their scanner, namely, 21 subsets and two iterations. The authors also examined images at one, four, six, and ten iterations. For the simulation studies, the authors analyzed an image-quality phantom with cold and hot lesions. Two different versions of the phantom were employed at two different hot-sphere lesion-to-background ratios (LBRs), namely, 2:1 and 4:1. For each noiseless sinogram, 20 Poisson realizations were created at five different noise levels. In addition to making visual comparisons of the reconstructed images, the authors determined contrast and bias as a function of the background image roughness (IR). For the real-data studies, sinograms of an image-quality phantom simulating the human torso were employed. The authors determined contrast and LBR as a function of the background IR. Finally, the authors present plots of contrast as a function of IR after smoothing each reconstructed image with Gaussian filters of six different sizes. Statistical significance was determined by employing the Wilcoxon rank-sum test. Results: In both simulated and real studies, SRT

  20. Robust framework for PET image reconstruction incorporating system and measurement uncertainties.

    Directory of Open Access Journals (Sweden)

    Huafeng Liu

    Full Text Available In Positron Emission Tomography (PET, an optimal estimate of the radioactivity concentration is obtained from the measured emission data under certain criteria. So far, all the well-known statistical reconstruction algorithms require exactly known system probability matrix a priori, and the quality of such system model largely determines the quality of the reconstructed images. In this paper, we propose an algorithm for PET image reconstruction for the real world case where the PET system model is subject to uncertainties. The method counts PET reconstruction as a regularization problem and the image estimation is achieved by means of an uncertainty weighted least squares framework. The performance of our work is evaluated with the Shepp-Logan simulated and real phantom data, which demonstrates significant improvements in image quality over the least squares reconstruction efforts.

  1. Spatiotemporal Fusion of Remote Sensing Images with Structural Sparsity and Semi-Coupled Dictionary Learning

    Directory of Open Access Journals (Sweden)

    Jingbo Wei

    2016-12-01

    Full Text Available Fusion of remote sensing images with different spatial and temporal resolutions is highly needed by diverse earth observation applications. A small number of spatiotemporal fusion methods using sparse representation appear to be more promising than traditional linear mixture methods in reflecting abruptly changing terrestrial content. However, one of the main difficulties is that the results of sparse representation have reduced expressional accuracy; this is due in part to insufficient prior knowledge. For remote sensing images, the cluster and joint structural sparsity of the sparse coefficients could be employed as a priori knowledge. In this paper, a new optimization model is constructed with the semi-coupled dictionary learning and structural sparsity to predict the unknown high-resolution image from known images. Specifically, the intra-block correlation and cluster-structured sparsity are considered for single-channel reconstruction, and the inter-band similarity of joint-structured sparsity is considered for multichannel reconstruction, and both are implemented with block sparse Bayesian learning. The detailed optimization steps are given iteratively. In the experimental procedure, the red, green, and near-infrared bands of Landsat-7 and Moderate Resolution Imaging Spectrometer (MODIS satellites are put to fusion with root mean square errors to check the prediction accuracy. It can be concluded from the experiment that the proposed methods can produce higher quality than state-of-the-art methods.

  2. Image Fusion of CT and MR with Sparse Representation in NSST Domain

    Directory of Open Access Journals (Sweden)

    Chenhui Qiu

    2017-01-01

    Full Text Available Multimodal image fusion techniques can integrate the information from different medical images to get an informative image that is more suitable for joint diagnosis, preoperative planning, intraoperative guidance, and interventional treatment. Fusing images of CT and different MR modalities are studied in this paper. Firstly, the CT and MR images are both transformed to nonsubsampled shearlet transform (NSST domain. So the low-frequency components and high-frequency components are obtained. Then the high-frequency components are merged using the absolute-maximum rule, while the low-frequency components are merged by a sparse representation- (SR- based approach. And the dynamic group sparsity recovery (DGSR algorithm is proposed to improve the performance of the SR-based approach. Finally, the fused image is obtained by performing the inverse NSST on the merged components. The proposed fusion method is tested on a number of clinical CT and MR images and compared with several popular image fusion methods. The experimental results demonstrate that the proposed fusion method can provide better fusion results in terms of subjective quality and objective evaluation.

  3. Denoising human cardiac diffusion tensor magnetic resonance images using sparse representation combined with segmentation

    International Nuclear Information System (INIS)

    Bao, L J; Zhu, Y M; Liu, W Y; Pu, Z B; Magnin, I E; Croisille, P; Robini, M

    2009-01-01

    Cardiac diffusion tensor magnetic resonance imaging (DT-MRI) is noise sensitive, and the noise can induce numerous systematic errors in subsequent parameter calculations. This paper proposes a sparse representation-based method for denoising cardiac DT-MRI images. The method first generates a dictionary of multiple bases according to the features of the observed image. A segmentation algorithm based on nonstationary degree detector is then introduced to make the selection of atoms in the dictionary adapted to the image's features. The denoising is achieved by gradually approximating the underlying image using the atoms selected from the generated dictionary. The results on both simulated image and real cardiac DT-MRI images from ex vivo human hearts show that the proposed denoising method performs better than conventional denoising techniques by preserving image contrast and fine structures.

  4. Renal Cyst Pseudoenhancement: Intraindividual Comparison Between Virtual Monochromatic Spectral Images and Conventional Polychromatic 120-kVp Images Obtained During the Same CT Examination and Comparisons Among Images Reconstructed Using Filtered Back Projection, Adaptive Statistical Iterative Reconstruction, and Model-Based Iterative Reconstruction

    Science.gov (United States)

    Yamada, Yoshitake; Yamada, Minoru; Sugisawa, Koichi; Akita, Hirotaka; Shiomi, Eisuke; Abe, Takayuki; Okuda, Shigeo; Jinzaki, Masahiro

    2015-01-01

    Abstract The purpose of this study was to compare renal cyst pseudoenhancement between virtual monochromatic spectral (VMS) and conventional polychromatic 120-kVp images obtained during the same abdominal computed tomography (CT) examination and among images reconstructed using filtered back projection (FBP), adaptive statistical iterative reconstruction (ASIR), and model-based iterative reconstruction (MBIR). Our institutional review board approved this prospective study; each participant provided written informed consent. Thirty-one patients (19 men, 12 women; age range, 59–85 years; mean age, 73.2 ± 5.5 years) with renal cysts underwent unenhanced 120-kVp CT followed by sequential fast kVp-switching dual-energy (80/140 kVp) and 120-kVp abdominal enhanced CT in the nephrographic phase over a 10-cm scan length with a random acquisition order and 4.5-second intervals. Fifty-one renal cysts (maximal diameter, 18.0 ± 14.7 mm [range, 4–61 mm]) were identified. The CT attenuation values of the cysts as well as of the kidneys were measured on the unenhanced images, enhanced VMS images (at 70 keV) reconstructed using FBP and ASIR from dual-energy data, and enhanced 120-kVp images reconstructed using FBP, ASIR, and MBIR. The results were analyzed using the mixed-effects model and paired t test with Bonferroni correction. The attenuation increases (pseudoenhancement) of the renal cysts on the VMS images reconstructed using FBP/ASIR (least square mean, 5.0/6.0 Hounsfield units [HU]; 95% confidence interval, 2.6–7.4/3.6–8.4 HU) were significantly lower than those on the conventional 120-kVp images reconstructed using FBP/ASIR/MBIR (least square mean, 12.1/12.8/11.8 HU; 95% confidence interval, 9.8–14.5/10.4–15.1/9.4–14.2 HU) (all P < .001); on the other hand, the CT attenuation values of the kidneys on the VMS images were comparable to those on the 120-kVp images. Regardless of the reconstruction algorithm, 70-keV VMS images showed

  5. Volume-of-change cone-beam CT for image-guided surgery

    International Nuclear Information System (INIS)

    Lee, Junghoon; Stayman, J Webster; Otake, Yoshito; Schafer, Sebastian; Zbijewski, Wojciech; Khanna, A Jay; Siewerdsen, Jeffrey H; Prince, Jerry L

    2012-01-01

    C-arm cone-beam CT (CBCT) can provide intraoperative 3D imaging capability for surgical guidance, but workflow and radiation dose are the significant barriers to broad utilization. One main reason is that each 3D image acquisition requires a complete scan with a full radiation dose to present a completely new 3D image every time. In this paper, we propose to utilize patient-specific CT or CBCT as prior knowledge to accurately reconstruct the aspects of the region that have changed by the surgical procedure from only a sparse set of x-rays. The proposed methods consist of a 3D–2D registration between the prior volume and a sparse set of intraoperative x-rays, creating digitally reconstructed radiographs (DRRs) from the registered prior volume, computing difference images by subtracting DRRs from the intraoperative x-rays, a penalized likelihood reconstruction of the volume of change (VOC) from the difference images, and finally a fusion of VOC reconstruction with the prior volume to visualize the entire surgical field. When the surgical changes are local and relatively small, the VOC reconstruction involves only a small volume size and a small number of projections, allowing less computation and lower radiation dose than is needed to reconstruct the entire surgical field. We applied this approach to sacroplasty phantom data obtained from a CBCT test bench and vertebroplasty data with a fresh cadaver acquired from a C-arm CBCT system with a flat-panel detector. The VOCs were reconstructed from a varying number of images (10–66 images) and compared to the CBCT ground truth using four different metrics (mean squared error, correlation coefficient, structural similarity index and perceptual difference model). The results show promising reconstruction quality with structural similarity to the ground truth close to 1 even when only 15–20 images were used, allowing dose reduction by the factor of 10–20. (paper)

  6. Molecular Imaging : Computer Reconstruction and Practice - Proceedings of the NATO Advanced Study Institute on Molecular Imaging from Physical Principles to Computer Reconstruction and Practice

    CERN Document Server

    Lemoigne, Yves

    2008-01-01

    This volume collects the lectures presented at the ninth ESI School held at Archamps (FR) in November 2006 and is dedicated to nuclear physics applications in molecular imaging. The lectures focus on the multiple facets of image reconstruction processing and management and illustrate the role of digital imaging in clinical practice. Medical computing and image reconstruction are introduced by analysing the underlying physics principles and their implementation, relevant quality aspects, clinical performance and recent advancements in the field. Several stages of the imaging process are specifically addressed, e.g. optimisation of data acquisition and storage, distributed computing, physiology and detector modelling, computer algorithms for image reconstruction and measurement in tomography applications, for both clinical and biomedical research applications. All topics are presented with didactical language and style, making this book an appropriate reference for students and professionals seeking a comprehen...

  7. Exhaustive Search for Sparse Variable Selection in Linear Regression

    Science.gov (United States)

    Igarashi, Yasuhiko; Takenaka, Hikaru; Nakanishi-Ohno, Yoshinori; Uemura, Makoto; Ikeda, Shiro; Okada, Masato

    2018-04-01

    We propose a K-sparse exhaustive search (ES-K) method and a K-sparse approximate exhaustive search method (AES-K) for selecting variables in linear regression. With these methods, K-sparse combinations of variables are tested exhaustively assuming that the optimal combination of explanatory variables is K-sparse. By collecting the results of exhaustively computing ES-K, various approximate methods for selecting sparse variables can be summarized as density of states. With this density of states, we can compare different methods for selecting sparse variables such as relaxation and sampling. For large problems where the combinatorial explosion of explanatory variables is crucial, the AES-K method enables density of states to be effectively reconstructed by using the replica-exchange Monte Carlo method and the multiple histogram method. Applying the ES-K and AES-K methods to type Ia supernova data, we confirmed the conventional understanding in astronomy when an appropriate K is given beforehand. However, we found the difficulty to determine K from the data. Using virtual measurement and analysis, we argue that this is caused by data shortage.

  8. Accelerated Computing in Magnetic Resonance Imaging: Real-Time Imaging Using Nonlinear Inverse Reconstruction

    Directory of Open Access Journals (Sweden)

    Sebastian Schaetz

    2017-01-01

    Full Text Available Purpose. To develop generic optimization strategies for image reconstruction using graphical processing units (GPUs in magnetic resonance imaging (MRI and to exemplarily report on our experience with a highly accelerated implementation of the nonlinear inversion (NLINV algorithm for dynamic MRI with high frame rates. Methods. The NLINV algorithm is optimized and ported to run on a multi-GPU single-node server. The algorithm is mapped to multiple GPUs by decomposing the data domain along the channel dimension. Furthermore, the algorithm is decomposed along the temporal domain by relaxing a temporal regularization constraint, allowing the algorithm to work on multiple frames in parallel. Finally, an autotuning method is presented that is capable of combining different decomposition variants to achieve optimal algorithm performance in different imaging scenarios. Results. The algorithm is successfully ported to a multi-GPU system and allows online image reconstruction with high frame rates. Real-time reconstruction with low latency and frame rates up to 30 frames per second is demonstrated. Conclusion. Novel parallel decomposition methods are presented which are applicable to many iterative algorithms for dynamic MRI. Using these methods to parallelize the NLINV algorithm on multiple GPUs, it is possible to achieve online image reconstruction with high frame rates.

  9. Image reconstruction technique using projection data from neutron tomography system

    Directory of Open Access Journals (Sweden)

    Waleed Abd el Bar

    2015-12-01

    Full Text Available Neutron tomography is a very powerful technique for nondestructive evaluation of heavy industrial components as well as for soft hydrogenous materials enclosed in heavy metals which are usually difficult to image using X-rays. Due to the properties of the image acquisition system, the projection images are distorted by several artifacts, and these reduce the quality of the reconstruction. In order to eliminate these harmful effects the projection images should be corrected before reconstruction. This paper gives a description of a filter back projection (FBP technique, which is used for reconstruction of projected data obtained from transmission measurements by neutron tomography system We demonstrated the use of spatial Discrete Fourier Transform (DFT and the 2D Inverse DFT in the formulation of the method, and outlined the theory of reconstruction of a 2D neutron image from a sequence of 1D projections taken at different angles between 0 and π in MATLAB environment. Projections are generated by applying the Radon transform to the original image at different angles.

  10. Adaptive reconstructions for magnetic resonance imaging of moving organs

    International Nuclear Information System (INIS)

    Lohezic, Maelene

    2011-01-01

    Magnetic resonance imaging (MRI) is a valuable tool for the clinical diagnosis for brain imaging as well as cardiac and abdominal imaging. For instance, MRI is the only modality that enables the visualization and characterization myocardial edema. However, motion remains a challenging problem for cardiac MRI. Breathing as well as cardiac beating have to be carefully handled during patient examination. Moreover they limit the achievable temporal and spatial resolution of the images. In this work an approach that takes these physiological motions into account during image reconstruction process has been proposed. It allows performing cardiac examination while breathing freely. First, an iterative reconstruction algorithm, that compensates motion estimated from a motion model constrained by physiological signals, is applied to morphological cardiac imaging. A semi-automatic method for edema detection has been tested on reconstructed images. It has also been associated with an adaptive acquisition strategy which enables free-breathing end-systolic imaging. This reconstruction has then been extended to the assessment of transverse relaxation times T2, which is used for myocardial edema characterization. The proposed method, ARTEMIS, enables free-breathing T2 mapping without additional acquisition time. The proposed free breathing approaches take advantage of physiological signals to estimate the motion that occurs during MR acquisitions. Several solutions have been tested to measure this information. Among them, accelerometer-based external sensors allow local measurements at several locations. Another approach consists in the use of k-space based measurements, which are 'embedded' inside the MRI pulse sequence (navigator) and prevent from the requirement of additional recording hardware. Hence, several adaptive reconstruction algorithms were developed to obtain diagnostic information from free breathing acquisitions. These works allow performing efficient and accurate

  11. Image quality of multiplanar reconstruction of pulmonary CT scans using adaptive statistical iterative reconstruction.

    Science.gov (United States)

    Honda, O; Yanagawa, M; Inoue, A; Kikuyama, A; Yoshida, S; Sumikawa, H; Tobino, K; Koyama, M; Tomiyama, N

    2011-04-01

    We investigated the image quality of multiplanar reconstruction (MPR) using adaptive statistical iterative reconstruction (ASIR). Inflated and fixed lungs were scanned with a garnet detector CT in high-resolution mode (HR mode) or non-high-resolution (HR) mode, and MPR images were then reconstructed. Observers compared 15 MPR images of ASIR (40%) and ASIR (80%) with those of ASIR (0%), and assessed image quality using a visual five-point scale (1, definitely inferior; 5, definitely superior), with particular emphasis on normal pulmonary structures, artefacts, noise and overall image quality. The mean overall image quality scores in HR mode were 3.67 with ASIR (40%) and 4.97 with ASIR (80%). Those in non-HR mode were 3.27 with ASIR (40%) and 3.90 with ASIR (80%). The mean artefact scores in HR mode were 3.13 with ASIR (40%) and 3.63 with ASIR (80%), but those in non-HR mode were 2.87 with ASIR (40%) and 2.53 with ASIR (80%). The mean scores of the other parameters were greater than 3, whereas those in HR mode were higher than those in non-HR mode. There were significant differences between ASIR (40%) and ASIR (80%) in overall image quality (pASIR did not suppress the severe artefacts of contrast medium. In general, MPR image quality with ASIR (80%) was superior to that with ASIR (40%). However, there was an increased incidence of artefacts by ASIR when CT images were obtained in non-HR mode.

  12. Application of Super-Resolution Image Reconstruction to Digital Holography

    Directory of Open Access Journals (Sweden)

    Zhang Shuqun

    2006-01-01

    Full Text Available We describe a new application of super-resolution image reconstruction to digital holography which is a technique for three-dimensional information recording and reconstruction. Digital holography has suffered from the low resolution of CCD sensors, which significantly limits the size of objects that can be recorded. The existing solution to this problem is to use optics to bandlimit the object to be recorded, which can cause the loss of details. Here super-resolution image reconstruction is proposed to be applied in enhancing the spatial resolution of digital holograms. By introducing a global camera translation before sampling, a high-resolution hologram can be reconstructed from a set of undersampled hologram images. This permits the recording of larger objects and reduces the distance between the object and the hologram. Practical results from real and simulated holograms are presented to demonstrate the feasibility of the proposed technique.

  13. Edge-oriented dual-dictionary guided enrichment (EDGE) for MRI-CT image reconstruction.

    Science.gov (United States)

    Li, Liang; Wang, Bigong; Wang, Ge

    2016-01-01

    In this paper, we formulate the joint/simultaneous X-ray CT and MRI image reconstruction. In particular, a novel algorithm is proposed for MRI image reconstruction from highly under-sampled MRI data and CT images. It consists of two steps. First, a training dataset is generated from a series of well-registered MRI and CT images on the same patients. Then, an initial MRI image of a patient can be reconstructed via edge-oriented dual-dictionary guided enrichment (EDGE) based on the training dataset and a CT image of the patient. Second, an MRI image is reconstructed using the dictionary learning (DL) algorithm from highly under-sampled k-space data and the initial MRI image. Our algorithm can establish a one-to-one correspondence between the two imaging modalities, and obtain a good initial MRI estimation. Both noise-free and noisy simulation studies were performed to evaluate and validate the proposed algorithm. The results with different under-sampling factors show that the proposed algorithm performed significantly better than those reconstructed using the DL algorithm from MRI data alone.

  14. Structure-aware Local Sparse Coding for Visual Tracking

    KAUST Repository

    Qi, Yuankai

    2018-01-24

    Sparse coding has been applied to visual tracking and related vision problems with demonstrated success in recent years. Existing tracking methods based on local sparse coding sample patches from a target candidate and sparsely encode these using a dictionary consisting of patches sampled from target template images. The discriminative strength of existing methods based on local sparse coding is limited as spatial structure constraints among the template patches are not exploited. To address this problem, we propose a structure-aware local sparse coding algorithm which encodes a target candidate using templates with both global and local sparsity constraints. For robust tracking, we show local regions of a candidate region should be encoded only with the corresponding local regions of the target templates that are the most similar from the global view. Thus, a more precise and discriminative sparse representation is obtained to account for appearance changes. To alleviate the issues with tracking drifts, we design an effective template update scheme. Extensive experiments on challenging image sequences demonstrate the effectiveness of the proposed algorithm against numerous stateof- the-art methods.

  15. Image quality in children with low-radiation chest CT using adaptive statistical iterative reconstruction and model-based iterative reconstruction.

    Directory of Open Access Journals (Sweden)

    Jihang Sun

    Full Text Available OBJECTIVE: To evaluate noise reduction and image quality improvement in low-radiation dose chest CT images in children using adaptive statistical iterative reconstruction (ASIR and a full model-based iterative reconstruction (MBIR algorithm. METHODS: Forty-five children (age ranging from 28 days to 6 years, median of 1.8 years who received low-dose chest CT scans were included. Age-dependent noise index (NI was used for acquisition.