WorldWideScience

Sample records for sparse channel separation

  1. Linear Regression on Sparse Features for Single-Channel Speech Separation

    Schmidt, Mikkel N.; Olsson, Rasmus Kongsgaard

    2007-01-01

    In this work we address the problem of separating multiple speakers from a single microphone recording. We formulate a linear regression model for estimating each speaker based on features derived from the mixture. The employed feature representation is a sparse, non-negative encoding of the speech...... mixture in terms of pre-learned speaker-dependent dictionaries. Previous work has shown that this feature representation by itself provides some degree of separation. We show that the performance is significantly improved when regression analysis is performed on the sparse, non-negative features, both...

  2. Bayesian Inference Methods for Sparse Channel Estimation

    Pedersen, Niels Lovmand

    2013-01-01

    This thesis deals with sparse Bayesian learning (SBL) with application to radio channel estimation. As opposed to the classical approach for sparse signal representation, we focus on the problem of inferring complex signals. Our investigations within SBL constitute the basis for the development...... of Bayesian inference algorithms for sparse channel estimation. Sparse inference methods aim at finding the sparse representation of a signal given in some overcomplete dictionary of basis vectors. Within this context, one of our main contributions to the field of SBL is a hierarchical representation...... analysis of the complex prior representation, where we show that the ability to induce sparse estimates of a given prior heavily depends on the inference method used and, interestingly, whether real or complex variables are inferred. We also show that the Bayesian estimators derived from the proposed...

  3. Subspace Based Blind Sparse Channel Estimation

    Hayashi, Kazunori; Matsushima, Hiroki; Sakai, Hideaki

    2012-01-01

    The paper proposes a subspace based blind sparse channel estimation method using 1–2 optimization by replacing the 2–norm minimization in the conventional subspace based method by the 1–norm minimization problem. Numerical results confirm that the proposed method can significantly improve...

  4. Improved Sparse Channel Estimation for Cooperative Communication Systems

    Guan Gui

    2012-01-01

    Full Text Available Accurate channel state information (CSI is necessary at receiver for coherent detection in amplify-and-forward (AF cooperative communication systems. To estimate the channel, traditional methods, that is, least squares (LS and least absolute shrinkage and selection operator (LASSO, are based on assumptions of either dense channel or global sparse channel. However, LS-based linear method neglects the inherent sparse structure information while LASSO-based sparse channel method cannot take full advantage of the prior information. Based on the partial sparse assumption of the cooperative channel model, we propose an improved channel estimation method with partial sparse constraint. At first, by using sparse decomposition theory, channel estimation is formulated as a compressive sensing problem. Secondly, the cooperative channel is reconstructed by LASSO with partial sparse constraint. Finally, numerical simulations are carried out to confirm the superiority of proposed methods over global sparse channel estimation methods.

  5. Efficient collaborative sparse channel estimation in massive MIMO

    Masood, Mudassir; Afify, Laila H.; Al-Naffouri, Tareq Y.

    2015-01-01

    We propose a method for estimation of sparse frequency selective channels within MIMO-OFDM systems. These channels are independently sparse and share a common support. The method estimates the impulse response for each channel observed by the antennas at the receiver. Estimation is performed in a coordinated manner by sharing minimal information among neighboring antennas to achieve results better than many contemporary methods. Simulations demonstrate the superior performance of the proposed method.

  6. Efficient collaborative sparse channel estimation in massive MIMO

    Masood, Mudassir

    2015-08-12

    We propose a method for estimation of sparse frequency selective channels within MIMO-OFDM systems. These channels are independently sparse and share a common support. The method estimates the impulse response for each channel observed by the antennas at the receiver. Estimation is performed in a coordinated manner by sharing minimal information among neighboring antennas to achieve results better than many contemporary methods. Simulations demonstrate the superior performance of the proposed method.

  7. Decentralized modal identification using sparse blind source separation

    Sadhu, A; Hazra, B; Narasimhan, S; Pandey, M D

    2011-01-01

    Popular ambient vibration-based system identification methods process information collected from a dense array of sensors centrally to yield the modal properties. In such methods, the need for a centralized processing unit capable of satisfying large memory and processing demands is unavoidable. With the advent of wireless smart sensor networks, it is now possible to process information locally at the sensor level, instead. The information at the individual sensor level can then be concatenated to obtain the global structure characteristics. A novel decentralized algorithm based on wavelet transforms to infer global structure mode information using measurements obtained using a small group of sensors at a time is proposed in this paper. The focus of the paper is on algorithmic development, while the actual hardware and software implementation is not pursued here. The problem of identification is cast within the framework of under-determined blind source separation invoking transformations of measurements to the time–frequency domain resulting in a sparse representation. The partial mode shape coefficients so identified are then combined to yield complete modal information. The transformations are undertaken using stationary wavelet packet transform (SWPT), yielding a sparse representation in the wavelet domain. Principal component analysis (PCA) is then performed on the resulting wavelet coefficients, yielding the partial mixing matrix coefficients from a few measurement channels at a time. This process is repeated using measurements obtained from multiple sensor groups, and the results so obtained from each group are concatenated to obtain the global modal characteristics of the structure

  8. Decentralized modal identification using sparse blind source separation

    Sadhu, A.; Hazra, B.; Narasimhan, S.; Pandey, M. D.

    2011-12-01

    Popular ambient vibration-based system identification methods process information collected from a dense array of sensors centrally to yield the modal properties. In such methods, the need for a centralized processing unit capable of satisfying large memory and processing demands is unavoidable. With the advent of wireless smart sensor networks, it is now possible to process information locally at the sensor level, instead. The information at the individual sensor level can then be concatenated to obtain the global structure characteristics. A novel decentralized algorithm based on wavelet transforms to infer global structure mode information using measurements obtained using a small group of sensors at a time is proposed in this paper. The focus of the paper is on algorithmic development, while the actual hardware and software implementation is not pursued here. The problem of identification is cast within the framework of under-determined blind source separation invoking transformations of measurements to the time-frequency domain resulting in a sparse representation. The partial mode shape coefficients so identified are then combined to yield complete modal information. The transformations are undertaken using stationary wavelet packet transform (SWPT), yielding a sparse representation in the wavelet domain. Principal component analysis (PCA) is then performed on the resulting wavelet coefficients, yielding the partial mixing matrix coefficients from a few measurement channels at a time. This process is repeated using measurements obtained from multiple sensor groups, and the results so obtained from each group are concatenated to obtain the global modal characteristics of the structure.

  9. Efficient coordinated recovery of sparse channels in massive MIMO

    Masood, Mudassir

    2015-01-01

    This paper addresses the problem of estimating sparse channels in massive MIMO-OFDM systems. Most wireless channels are sparse in nature with large delay spread. In addition, these channels as observed by multiple antennas in a neighborhood have approximately common support. The sparsity and common support properties are attractive when it comes to the efficient estimation of large number of channels in massive MIMO systems. Moreover, to avoid pilot contamination and to achieve better spectral efficiency, it is important to use a small number of pilots. We present a novel channel estimation approach which utilizes the sparsity and common support properties to estimate sparse channels and requires a small number of pilots. Two algorithms based on this approach have been developed that perform Bayesian estimates of sparse channels even when the prior is non-Gaussian or unknown. Neighboring antennas share among each other their beliefs about the locations of active channel taps to perform estimation. The coordinated approach improves channel estimates and also reduces the required number of pilots. Further improvement is achieved by the data-aided version of the algorithm. Extensive simulation results are provided to demonstrate the performance of the proposed algorithms.

  10. Efficient coordinated recovery of sparse channels in massive MIMO

    Masood, Mudassir; Afify, Laila H.; Al-Naffouri, Tareq Y.

    2015-01-01

    on this approach have been developed that perform Bayesian estimates of sparse channels even when the prior is non-Gaussian or unknown. Neighboring antennas share among each other their beliefs about the locations of active channel taps to perform estimation

  11. Low-Complexity Bayesian Estimation of Cluster-Sparse Channels

    Ballal, Tarig; Al-Naffouri, Tareq Y.; Ahmed, Syed

    2015-01-01

    This paper addresses the problem of channel impulse response estimation for cluster-sparse channels under the Bayesian estimation framework. We develop a novel low-complexity minimum mean squared error (MMSE) estimator by exploiting the sparsity of the received signal profile and the structure of the measurement matrix. It is shown that due to the banded Toeplitz/circulant structure of the measurement matrix, a channel impulse response, such as underwater acoustic channel impulse responses, can be partitioned into a number of orthogonal or approximately orthogonal clusters. The orthogonal clusters, the sparsity of the channel impulse response and the structure of the measurement matrix, all combined, result in a computationally superior realization of the MMSE channel estimator. The MMSE estimator calculations boil down to simpler in-cluster calculations that can be reused in different clusters. The reduction in computational complexity allows for a more accurate implementation of the MMSE estimator. The proposed approach is tested using synthetic Gaussian channels, as well as simulated underwater acoustic channels. Symbol-error-rate performance and computation time confirm the superiority of the proposed method compared to selected benchmark methods in systems with preamble-based training signals transmitted over clustersparse channels.

  12. Low-Complexity Bayesian Estimation of Cluster-Sparse Channels

    Ballal, Tarig

    2015-09-18

    This paper addresses the problem of channel impulse response estimation for cluster-sparse channels under the Bayesian estimation framework. We develop a novel low-complexity minimum mean squared error (MMSE) estimator by exploiting the sparsity of the received signal profile and the structure of the measurement matrix. It is shown that due to the banded Toeplitz/circulant structure of the measurement matrix, a channel impulse response, such as underwater acoustic channel impulse responses, can be partitioned into a number of orthogonal or approximately orthogonal clusters. The orthogonal clusters, the sparsity of the channel impulse response and the structure of the measurement matrix, all combined, result in a computationally superior realization of the MMSE channel estimator. The MMSE estimator calculations boil down to simpler in-cluster calculations that can be reused in different clusters. The reduction in computational complexity allows for a more accurate implementation of the MMSE estimator. The proposed approach is tested using synthetic Gaussian channels, as well as simulated underwater acoustic channels. Symbol-error-rate performance and computation time confirm the superiority of the proposed method compared to selected benchmark methods in systems with preamble-based training signals transmitted over clustersparse channels.

  13. Multiuser TOA Estimation Algorithm in DS-CDMA Sparse Channel for Radiolocation

    Kim, Sunwoo

    This letter considers multiuser time delay estimation in a sparse channel environment for radiolocation. The generalized successive interference cancellation (GSIC) algorithm is used to eliminate the multiple access interference (MAI). To adapt GSIC to sparse channels the alternating maximization (AM) algorithm is considered, and the continuous time delay of each path is estimated without requiring a priori known data sequences.

  14. Separation of Particles in Channels Rotary Engine

    Zyatikov Pavel

    2015-01-01

    Full Text Available The article considers the separation of particles in channels with different relative length. It is shown that the intensity of turbulence at the inlet section of the channel varies considerably in its length. The dependence of the turbulence damping along the channel expressing by fraction of the distance is shown. The ratio of the particle separation efficiency out the gas flow in the rotor channel is defined. The values of particle separation efficiency in the channel for the angle α=π/4 in turbulent aerosol flow is shows, including without mixing the particles.

  15. Hydrodynamic blood plasma separation in microfluidic channels

    Jouvet, Lionel

    2010-01-01

    The separation of red blood cells from plasma flowing in microchannels is possible by biophysical effects such as the Zweifach–Fung bifurcation law. In the present study, daughter channels are placed alongside a main channel such that cells and plasma are collected separately. The device is aimed...

  16. Bandwidth efficient channel estimation method for airborne hyperspectral data transmission in sparse doubly selective communication channels

    Vahidi, Vahid; Saberinia, Ebrahim; Regentova, Emma E.

    2017-10-01

    A channel estimation (CE) method based on compressed sensing (CS) is proposed to estimate the sparse and doubly selective (DS) channel for hyperspectral image transmission from unmanned aircraft vehicles to ground stations. The proposed method contains three steps: (1) the priori estimate of the channel by orthogonal matching pursuit (OMP), (2) calculation of the linear minimum mean square error (LMMSE) estimate of the received pilots given the estimated channel, and (3) estimate of the complex amplitudes and Doppler shifts of the channel using the enhanced received pilot data applying a second round of a CS algorithm. The proposed method is named DS-LMMSE-OMP, and its performance is evaluated by simulating transmission of AVIRIS hyperspectral data via the communication channel and assessing their fidelity for the automated analysis after demodulation. The performance of the DS-LMMSE-OMP approach is compared with that of two other state-of-the-art CE methods. The simulation results exhibit up to 8-dB figure of merit in the bit error rate and 50% improvement in the hyperspectral image classification accuracy.

  17. Compressive Sensing Based Bayesian Sparse Channel Estimation for OFDM Communication Systems: High Performance and Low Complexity

    Xu, Li; Shan, Lin; Adachi, Fumiyuki

    2014-01-01

    In orthogonal frequency division modulation (OFDM) communication systems, channel state information (CSI) is required at receiver due to the fact that frequency-selective fading channel leads to disgusting intersymbol interference (ISI) over data transmission. Broadband channel model is often described by very few dominant channel taps and they can be probed by compressive sensing based sparse channel estimation (SCE) methods, for example, orthogonal matching pursuit algorithm, which can take the advantage of sparse structure effectively in the channel as for prior information. However, these developed methods are vulnerable to both noise interference and column coherence of training signal matrix. In other words, the primary objective of these conventional methods is to catch the dominant channel taps without a report of posterior channel uncertainty. To improve the estimation performance, we proposed a compressive sensing based Bayesian sparse channel estimation (BSCE) method which cannot only exploit the channel sparsity but also mitigate the unexpected channel uncertainty without scarifying any computational complexity. The proposed method can reveal potential ambiguity among multiple channel estimators that are ambiguous due to observation noise or correlation interference among columns in the training matrix. Computer simulations show that proposed method can improve the estimation performance when comparing with conventional SCE methods. PMID:24983012

  18. Interference-Aware OFDM Receiver for Channels with Sparse Common Supports

    Barbu, Oana-Elena; Manchón, Carles Navarro; Badiu, Mihai Alin

    2017-01-01

    We design an algorithm for OFDM receivers operating in co-channel interference conditions, where the serving and interfering transmitters are synchronized in time. The channel estimation problem is formulated as one of sparse signal reconstruction using multiple measurement vectors. The proposed...

  19. OFDM receiver for fast time-varying channels using block-sparse Bayesian learning

    Barbu, Oana-Elena; Manchón, Carles Navarro; Rom, Christian

    2016-01-01

    characterized with a basis expansion model using a small number of terms. As a result, the channel estimation problem is posed as that of estimating a vector of complex coefficients that exhibits a block-sparse structure, which we solve with tools from block-sparse Bayesian learning. Using variational Bayesian...... inference, we embed the channel estimator in a receiver structure that performs iterative channel and noise precision estimation, intercarrier interference cancellation, detection and decoding. Simulation results illustrate the superior performance of the proposed receiver over state-of-art receivers....

  20. Sparse Channel Estimation Including the Impact of the Transceiver Filters with Application to OFDM

    Barbu, Oana-Elena; Pedersen, Niels Lovmand; Manchón, Carles Navarro

    2014-01-01

    Traditionally, the dictionary matrices used in sparse wireless channel estimation have been based on the discrete Fourier transform, following the assumption that the channel frequency response (CFR) can be approximated as a linear combination of a small number of multipath components, each one......) and receive (demodulation) filters. Hence, the assumption of the CFR being sparse in the canonical Fourier dictionary may no longer hold. In this work, we derive a signal model and subsequently a novel dictionary matrix for sparse estimation that account for the impact of transceiver filters. Numerical...... results obtained in an OFDM transmission scenario demonstrate the superior accuracy of a sparse estimator that uses our proposed dictionary rather than the classical Fourier dictionary, and its robustness against a mismatch in the assumed transmit filter characteristics....

  1. Sparse Variational Bayesian SAGE Algorithm With Application to the Estimation of Multipath Wireless Channels

    Shutin, Dmitriy; Fleury, Bernard Henri

    2011-01-01

    In this paper, we develop a sparse variational Bayesian (VB) extension of the space-alternating generalized expectation-maximization (SAGE) algorithm for the high resolution estimation of the parameters of relevant multipath components in the response of frequency and spatially selective wireless...... channels. The application context of the algorithm considered in this contribution is parameter estimation from channel sounding measurements for radio channel modeling purpose. The new sparse VB-SAGE algorithm extends the classical SAGE algorithm in two respects: i) by monotonically minimizing...... parametric sparsity priors for the weights of the multipath components. We revisit the Gaussian sparsity priors within the sparse VB-SAGE framework and extend the results by considering Laplace priors. The structure of the VB-SAGE algorithm allows for an analytical stability analysis of the update expression...

  2. Smooth Approximation l 0-Norm Constrained Affine Projection Algorithm and Its Applications in Sparse Channel Estimation

    2014-01-01

    We propose a smooth approximation l 0-norm constrained affine projection algorithm (SL0-APA) to improve the convergence speed and the steady-state error of affine projection algorithm (APA) for sparse channel estimation. The proposed algorithm ensures improved performance in terms of the convergence speed and the steady-state error via the combination of a smooth approximation l 0-norm (SL0) penalty on the coefficients into the standard APA cost function, which gives rise to a zero attractor that promotes the sparsity of the channel taps in the channel estimation and hence accelerates the convergence speed and reduces the steady-state error when the channel is sparse. The simulation results demonstrate that our proposed SL0-APA is superior to the standard APA and its sparsity-aware algorithms in terms of both the convergence speed and the steady-state behavior in a designated sparse channel. Furthermore, SL0-APA is shown to have smaller steady-state error than the previously proposed sparsity-aware algorithms when the number of nonzero taps in the sparse channel increases. PMID:24790588

  3. Sparse Adaptive Channel Estimation Based on lp-Norm-Penalized Affine Projection Algorithm

    Yingsong Li

    2014-01-01

    Full Text Available We propose an lp-norm-penalized affine projection algorithm (LP-APA for broadband multipath adaptive channel estimations. The proposed LP-APA is realized by incorporating an lp-norm into the cost function of the conventional affine projection algorithm (APA to exploit the sparsity property of the broadband wireless multipath channel, by which the convergence speed and steady-state performance of the APA are significantly improved. The implementation of the LP-APA is equivalent to adding a zero attractor to its iterations. The simulation results, which are obtained from a sparse channel estimation, demonstrate that the proposed LP-APA can efficiently improve channel estimation performance in terms of both the convergence speed and steady-state performance when the channel is exactly sparse.

  4. Sparse Channel Estimation for MIMO-OFDM Two-Way Relay Network with Compressed Sensing

    Aihua Zhang

    2013-01-01

    Full Text Available Accurate channel impulse response (CIR is required for equalization and can help improve communication service quality in next-generation wireless communication systems. An example of an advanced system is amplify-and-forward multiple-input multiple-output two-way relay network, which is modulated by orthogonal frequency-division multiplexing. Linear channel estimation methods, for example, least squares and expectation conditional maximization, have been proposed previously for the system. However, these methods do not take advantage of channel sparsity, and they decrease estimation performance. We propose a sparse channel estimation scheme, which is different from linear methods, at end users under the relay channel to enable us to exploit sparsity. First, we formulate the sparse channel estimation problem as a compressed sensing problem by using sparse decomposition theory. Second, the CIR is reconstructed by CoSaMP and OMP algorithms. Finally, computer simulations are conducted to confirm the superiority of the proposed methods over traditional linear channel estimation methods.

  5. An investigation of 'sparse channel networks'. Characteristic behaviours and their causes

    Black, J.H. (In Situ Solutions, East Bridgford (GB)); Barker, J.A.; Woodman, N.D. (Univ. of Southampton (GB))

    2007-09-15

    This report represents a third study in a series concerned with groundwater flow in poorly permeable fractured crystalline rocks. The study has brought together three linked, but distinct, elements; a mathematical analysis of the intersection of ellipses, a review of field measurements associated with nuclear waste repository investigations and probabilistic simulations using a lattice network numerical model. We conclude that the model of channels that traverse fracture intersections without necessarily branching is a very likely representation of reality. More generally, assembling all the lines of evidence, it is suggested that groundwater flow systems in fractured crystalline rocks in the environs of underground laboratories have the following characteristics: Groundwater flows within a sparse network of channels just above the percolation limit. The frequency of intersections is low in that individual channels extend considerable distances between significant junctions. Individual channels often extend over many fracture surfaces and the resulting flow system is only weakly related to the density or size of mappable fractures. The sparseness of systems compared to the size of drifts and tunnels means that only a very few flow channels are intersected by drifts and tunnels. Highly convergent flow is required to connect to the rest of the network and this is misinterpreted as a skin of low hydraulic conductivity. Systems are so sparse that they are controlled by a few 'chokes' that give rise to compartments of head, and probably, of groundwater chemistry. Channels occur on all fracture planes, including those within fracture zones, and although the characteristics of the fracture zone channel networks may differ from those in surrounding rocks, they are nonetheless still channel networks. The actively flowing sparse channel network, occurring within any particular rock, is a naturally selected, small sub-set of the available channels. Hence, there are

  6. An investigation of 'sparse channel networks'. Characteristic behaviours and their causes

    Black, J.H.; Barker, J.A.; Woodman, N.D.

    2007-09-01

    This report represents a third study in a series concerned with groundwater flow in poorly permeable fractured crystalline rocks. The study has brought together three linked, but distinct, elements; a mathematical analysis of the intersection of ellipses, a review of field measurements associated with nuclear waste repository investigations and probabilistic simulations using a lattice network numerical model. We conclude that the model of channels that traverse fracture intersections without necessarily branching is a very likely representation of reality. More generally, assembling all the lines of evidence, it is suggested that groundwater flow systems in fractured crystalline rocks in the environs of underground laboratories have the following characteristics: Groundwater flows within a sparse network of channels just above the percolation limit. The frequency of intersections is low in that individual channels extend considerable distances between significant junctions. Individual channels often extend over many fracture surfaces and the resulting flow system is only weakly related to the density or size of mappable fractures. The sparseness of systems compared to the size of drifts and tunnels means that only a very few flow channels are intersected by drifts and tunnels. Highly convergent flow is required to connect to the rest of the network and this is misinterpreted as a skin of low hydraulic conductivity. Systems are so sparse that they are controlled by a few 'chokes' that give rise to compartments of head, and probably, of groundwater chemistry. Channels occur on all fracture planes, including those within fracture zones, and although the characteristics of the fracture zone channel networks may differ from those in surrounding rocks, they are nonetheless still channel networks. The actively flowing sparse channel network, occurring within any particular rock, is a naturally selected, small sub-set of the available channels. Hence, there are many

  7. Sinusoidal masks for single channel speech separation

    Mowlaee, Pejman; Christensen, Mads Græsbøll; Jensen, Søren Holdt

    2010-01-01

    In this paper we present a new approach for binary and soft masks used in single-channel speech separation. We present a novel approach called the sinusoidal mask (binary mask and Wiener filter) in a sinusoidal space. Theoretical analysis is presented for the proposed method, and we show...... that the proposed method is able to minimize the target speech distortion while suppressing the crosstalk to a predetermined threshold. It is observed that compared to the STFTbased masks, the proposed sinusoidal masks improve the separation performance in terms of objective measures (SSNR and PESQ) and are mostly...

  8. Iterative Sparse Channel Estimation and Decoding for Underwater MIMO-OFDM

    Berger ChristianR

    2010-01-01

    Full Text Available We propose a block-by-block iterative receiver for underwater MIMO-OFDM that couples channel estimation with multiple-input multiple-output (MIMO detection and low-density parity-check (LDPC channel decoding. In particular, the channel estimator is based on a compressive sensing technique to exploit the channel sparsity, the MIMO detector consists of a hybrid use of successive interference cancellation and soft minimum mean-square error (MMSE equalization, and channel coding uses nonbinary LDPC codes. Various feedback strategies from the channel decoder to the channel estimator are studied, including full feedback of hard or soft symbol decisions, as well as their threshold-controlled versions. We study the receiver performance using numerical simulation and experimental data collected from the RACE08 and SPACE08 experiments. We find that iterative receiver processing including sparse channel estimation leads to impressive performance gains. These gains are more pronounced when the number of available pilots to estimate the channel is decreased, for example, when a fixed number of pilots is split between an increasing number of parallel data streams in MIMO transmission. For the various feedback strategies for iterative channel estimation, we observe that soft decision feedback slightly outperforms hard decision feedback.

  9. Multiple Speech Source Separation Using Inter-Channel Correlation and Relaxed Sparsity

    Maoshen Jia

    2018-01-01

    Full Text Available In this work, a multiple speech source separation method using inter-channel correlation and relaxed sparsity is proposed. A B-format microphone with four spatially located channels is adopted due to the size of the microphone array to preserve the spatial parameter integrity of the original signal. Specifically, we firstly measure the proportion of overlapped components among multiple sources and find that there exist many overlapped time-frequency (TF components with increasing source number. Then, considering the relaxed sparsity of speech sources, we propose a dynamic threshold-based separation approach of sparse components where the threshold is determined by the inter-channel correlation among the recording signals. After conducting a statistical analysis of the number of active sources at each TF instant, a form of relaxed sparsity called the half-K assumption is proposed so that the active source number in a certain TF bin does not exceed half the total number of simultaneously occurring sources. By applying the half-K assumption, the non-sparse components are recovered by regarding the extracted sparse components as a guide, combined with vector decomposition and matrix factorization. Eventually, the final TF coefficients of each source are recovered by the synthesis of sparse and non-sparse components. The proposed method has been evaluated using up to six simultaneous speech sources under both anechoic and reverberant conditions. Both objective and subjective evaluations validated that the perceptual quality of the separated speech by the proposed approach outperforms existing blind source separation (BSS approaches. Besides, it is robust to different speeches whilst confirming all the separated speeches with similar perceptual quality.

  10. Efficient image enhancement using sparse source separation in the Retinex theory

    Yoon, Jongsu; Choi, Jangwon; Choe, Yoonsik

    2017-11-01

    Color constancy is the feature of the human vision system (HVS) that ensures the relative constancy of the perceived color of objects under varying illumination conditions. The Retinex theory of machine vision systems is based on the HVS. Among Retinex algorithms, the physics-based algorithms are efficient; however, they generally do not satisfy the local characteristics of the original Retinex theory because they eliminate global illumination from their optimization. We apply the sparse source separation technique to the Retinex theory to present a physics-based algorithm that satisfies the locality characteristic of the original Retinex theory. Previous Retinex algorithms have limited use in image enhancement because the total variation Retinex results in an overly enhanced image and the sparse source separation Retinex cannot completely restore the original image. In contrast, our proposed method preserves the image edge and can very nearly replicate the original image without any special operation.

  11. Simultaneous Channel and Feature Selection of Fused EEG Features Based on Sparse Group Lasso

    Jin-Jia Wang

    2015-01-01

    Full Text Available Feature extraction and classification of EEG signals are core parts of brain computer interfaces (BCIs. Due to the high dimension of the EEG feature vector, an effective feature selection algorithm has become an integral part of research studies. In this paper, we present a new method based on a wrapped Sparse Group Lasso for channel and feature selection of fused EEG signals. The high-dimensional fused features are firstly obtained, which include the power spectrum, time-domain statistics, AR model, and the wavelet coefficient features extracted from the preprocessed EEG signals. The wrapped channel and feature selection method is then applied, which uses the logistical regression model with Sparse Group Lasso penalized function. The model is fitted on the training data, and parameter estimation is obtained by modified blockwise coordinate descent and coordinate gradient descent method. The best parameters and feature subset are selected by using a 10-fold cross-validation. Finally, the test data is classified using the trained model. Compared with existing channel and feature selection methods, results show that the proposed method is more suitable, more stable, and faster for high-dimensional feature fusion. It can simultaneously achieve channel and feature selection with a lower error rate. The test accuracy on the data used from international BCI Competition IV reached 84.72%.

  12. Massive-MIMO Sparse Uplink Channel Estimation Using Implicit Training and Compressed Sensing

    Babar Mansoor

    2017-01-01

    Full Text Available Massive multiple-input multiple-output (massive-MIMO is foreseen as a potential technology for future 5G cellular communication networks due to its substantial benefits in terms of increased spectral and energy efficiency. These advantages of massive-MIMO are a consequence of equipping the base station (BS with quite a large number of antenna elements, thus resulting in an aggressive spatial multiplexing. In order to effectively reap the benefits of massive-MIMO, an adequate estimate of the channel impulse response (CIR between each transmit–receive link is of utmost importance. It has been established in the literature that certain specific multipath propagation environments lead to a sparse structured CIR in spatial and/or delay domains. In this paper, implicit training and compressed sensing based CIR estimation techniques are proposed for the case of massive-MIMO sparse uplink channels. In the proposed superimposed training (SiT based techniques, a periodic and low power training sequence is superimposed (arithmetically added over the information sequence, thus avoiding any dedicated time/frequency slots for the training sequence. For the estimation of such massive-MIMO sparse uplink channels, two greedy pursuits based compressed sensing approaches are proposed, viz: SiT based stage-wise orthogonal matching pursuit (SiT-StOMP and gradient pursuit (SiT-GP. In order to demonstrate the validity of proposed techniques, a performance comparison in terms of normalized mean square error (NCMSE and bit error rate (BER is performed with a notable SiT based least squares (SiT-LS channel estimation technique. The effect of channels’ sparsity, training-to-information power ratio (TIR and signal-to-noise ratio (SNR on BER and NCMSE performance of proposed schemes is thoroughly studied. For a simulation scenario of: 4 × 64 massive-MIMO with a channel sparsity level of 80 % and signal-to-noise ratio (SNR of 10 dB , a performance gain of 18 dB and 13 d

  13. A Sparse Bayesian Imaging Technique for Efficient Recovery of Reservoir Channels With Time-Lapse Seismic Measurements

    Sana, Furrukh

    2016-06-01

    Subsurface reservoir flow channels are characterized by high-permeability values and serve as preferred pathways for fluid propagation. Accurate estimation of their geophysical structures is thus of great importance for the oil industry. The ensemble Kalman filter (EnKF) is a widely used statistical technique for estimating subsurface reservoir model parameters. However, accurate reconstruction of the subsurface geological features with the EnKF is challenging because of the limited measurements available from the wells and the smoothing effects imposed by the \\\\ell _{2} -norm nature of its update step. A new EnKF scheme based on sparse domain representation was introduced by Sana et al. (2015) to incorporate useful prior structural information in the estimation process for efficient recovery of subsurface channels. In this paper, we extend this work in two ways: 1) investigate the effects of incorporating time-lapse seismic data on the channel reconstruction; and 2) explore a Bayesian sparse reconstruction algorithm with the potential ability to reduce the computational requirements. Numerical results suggest that the performance of the new sparse Bayesian based EnKF scheme is enhanced with the availability of seismic measurements, leading to further improvement in the recovery of flow channels structures. The sparse Bayesian approach further provides a computationally efficient framework for enforcing a sparse solution, especially with the possibility of using high sparsity rates through the inclusion of seismic data.

  14. A Sparse Bayesian Imaging Technique for Efficient Recovery of Reservoir Channels With Time-Lapse Seismic Measurements

    Sana, Furrukh; Ravanelli, Fabio; Al-Naffouri, Tareq Y.; Hoteit, Ibrahim

    2016-01-01

    Subsurface reservoir flow channels are characterized by high-permeability values and serve as preferred pathways for fluid propagation. Accurate estimation of their geophysical structures is thus of great importance for the oil industry. The ensemble Kalman filter (EnKF) is a widely used statistical technique for estimating subsurface reservoir model parameters. However, accurate reconstruction of the subsurface geological features with the EnKF is challenging because of the limited measurements available from the wells and the smoothing effects imposed by the \\ell _{2} -norm nature of its update step. A new EnKF scheme based on sparse domain representation was introduced by Sana et al. (2015) to incorporate useful prior structural information in the estimation process for efficient recovery of subsurface channels. In this paper, we extend this work in two ways: 1) investigate the effects of incorporating time-lapse seismic data on the channel reconstruction; and 2) explore a Bayesian sparse reconstruction algorithm with the potential ability to reduce the computational requirements. Numerical results suggest that the performance of the new sparse Bayesian based EnKF scheme is enhanced with the availability of seismic measurements, leading to further improvement in the recovery of flow channels structures. The sparse Bayesian approach further provides a computationally efficient framework for enforcing a sparse solution, especially with the possibility of using high sparsity rates through the inclusion of seismic data.

  15. Low Complexity Bayesian Single Channel Source Separation

    Beierholm, Thomas; Pedersen, Brian Dam; Winther, Ole

    2004-01-01

    can be estimated quite precisely using ML-II, but the estimation is quite sensitive to the accuracy of the priors as opposed to the source separation quality for known mixing coefficients, which is quite insensitive to the accuracy of the priors. Finally, we discuss how to improve our approach while...

  16. Joint Single-Channel Speech Separation and Speaker Identification

    Mowlaee, Pejman; Saeidi, Rahim; Tan, Zheng-Hua

    2010-01-01

    In this paper, we propose a closed loop system to improve the performance of single-channel speech separation in a speaker independent scenario. The system is composed of two interconnected blocks: a separation block and a speaker identiſcation block. The improvement is accomplished by incorporat......In this paper, we propose a closed loop system to improve the performance of single-channel speech separation in a speaker independent scenario. The system is composed of two interconnected blocks: a separation block and a speaker identiſcation block. The improvement is accomplished...... enhances the quality of the separated output signals. To assess the improvements, the results are reported in terms of PESQ for both target and masked signals....

  17. Trajectory separation of channeled ions in crystalline materials

    Temkin, Misha; Chakarov, Ivan; Webb, Roger

    2000-01-01

    Spatial distributions of ions implanted into crystals can be of a very complex shape with 'lobes' due to ions penetrating through open channels in several directions. This paper suggests an analytical model which represents such a distribution as a linear combination of 'random' distribution and one or more 'channeled' distributions. This study is focused on the algorithm of the separation of ion trajectories into several distributions. The first distribution includes those ions which have undergone predominantly random collisions. The other distributions include those ions which have undergone mainly 'weak' collisions and traveled mostly along the main channeling directions. Our binary collision approximation (BCA) simulator is used for generating and analyzing ion trajectories. The spatial moments can be extracted from each separated distribution. It is shown that 2D analytical distributions obtained as a linear combination of distributions derived from these moments and aligned along corresponding channeling direction are in a very good agreement with direct BCA calculations

  18. Single channel blind source separation based on ICA feature extraction

    2007-01-01

    A new technique is proposed to solve the blind source separation (BSS) given only a single channel observation. The basis functions and the density of the coefficients of source signals learned by ICA are used as the prior knowledge. Based on the learned prior information the learning rules of single channel BSS are presented by maximizing the joint log likelihood of the mixed sources to obtain source signals from single observation,in which the posterior density of the given measurements is maximized. The experimental results exhibit a successful separation performance for mixtures of speech and music signals.

  19. Conditions for uniqueness of product representations for separable quantum channels and separable quantum states

    Cohen, Scott M.

    2014-01-01

    We give a sufficient condition that an operator sum representation of a separable quantum channel in terms of product operators is the unique product representation for that channel, and then provide examples of such channels for any number of parties. This result has implications for efforts to determine whether or not a given separable channel can be exactly implemented by local operations and classical communication. By the Choi-Jamiolkowski isomorphism, it also translates to a condition for the uniqueness of product state ensembles representing a given quantum state. These ideas follow from considerations concerning whether or not a subspace spanned by a given set of product operators contains at least one additional product operator

  20. Low Complexity Sparse Bayesian Learning for Channel Estimation Using Generalized Mean Field

    Pedersen, Niels Lovmand; Manchón, Carles Navarro; Fleury, Bernard Henri

    2014-01-01

    We derive low complexity versions of a wide range of algorithms for sparse Bayesian learning (SBL) in underdetermined linear systems. The proposed algorithms are obtained by applying the generalized mean field (GMF) inference framework to a generic SBL probabilistic model. In the GMF framework, we...

  1. Separating rings detection in fuel channels of Embalse NPP

    Obrutsky, L.S.; Otero, P.A.; Schmidt, O.A.

    1988-01-01

    The design specifications of Embalse Nuclear Power Plants (CANDU Type Reactor 600Mw) define the positions to be taken by 4 separating rings of the fuel channels. Experience has demonstrated the displacement possibility of the above mentioned rings. It means a risk of contact between pressure tube and calandria tube. In order to determine the position of separating rings, an inspection system based on Eddy Currents technique was developed by CNEA personnel. Detection is performed through two special probes operating according the ''emitter-receiver'' principle. Obtained signals and its relative position are recorded in a video tape and registered in paper. The probe is telecommanded by an automatic equipment. In this paper the construction and calibration of the detection equipment is described, as well as the propulsion. Final results are also outlined in the inspection carried out in November 1986 when an effective displacement of separating rings was verified from its design position in most of the inspected tubes

  2. Signal Separation of Helicopter Radar Returns Using Wavelet-Based Sparse Signal Optimisation

    2016-10-01

    helicopter from the composite radar returns. The received signal consists of returns from the rotating main and tail rotor blades, the helicopter body...is used to separate the main and tail rotor blade components of a helicopter from the composite radar returns. The received signal consists of returns...Two algorithms are presented in the report to separately extract main rotor blade returns and tail rotor blade returns from the composite signal

  3. Learning Discriminative Sparse Models for Source Separation and Mapping of Hyperspectral Imagery

    2010-10-01

    Ψ λGI  . We solve the coupling using a standard Gauss - Seidel type of iteration (or primal decomposition), where we iteratively solve the problem...This tells us that the MSE is lower bounded by a very slow convergence rate in the number of samples relative to the dimension (b-channels). Thus, we...36] are widely used in the processing of natural images for this task. In this work, we use a Projected Gradient (PG) iteration , where we update the i

  4. Linear program differentiation for single-channel speech separation

    Pearlmutter, Barak A.; Olsson, Rasmus Kongsgaard

    2006-01-01

    Many apparently difficult problems can be solved by reduction to linear programming. Such problems are often subproblems within larger systems. When gradient optimisation of the entire larger system is desired, it is necessary to propagate gradients through the internally-invoked LP solver....... For instance, when an intermediate quantity z is the solution to a linear program involving constraint matrix A, a vector of sensitivities dE/dz will induce sensitivities dE/dA. Here we show how these can be efficiently calculated, when they exist. This allows algorithmic differentiation to be applied...... to algorithms that invoke linear programming solvers as subroutines, as is common when using sparse representations in signal processing. Here we apply it to gradient optimisation of over complete dictionaries for maximally sparse representations of a speech corpus. The dictionaries are employed in a single...

  5. Integrated acoustic and magnetic separation in microfluidic channels

    Adams, Jonathan; Thevoz, Patrick; Bruus, Henrik

    2009-01-01

    With a growing number of cell-based biotechnological applications, there is a need for particle separation systems capable of multiparameter separations at high purity and throughput, beyond what is presently offered by traditional methods including fluorescence activated cell sorting and column......-based magnetic separation. Toward this aim, we report on the integration of microfluidic acoustic and magnetic separation in a monolithic device for multiparameter particle separation. Using our device, we demonstrate high-purity separation of a multicomponent particle mixture at a throughput of up to 10...

  6. A Subjective Evaluation of the Minimum Audible Channel Separation in Binaural Reproduction Systems Through Loudspeakers

    Lacouture Parodi, Yesenia; Rubak, Per

    2010-01-01

    To evaluate the performance of crosstalk cancellation systems the channel separation is usually used as parameter.  However, no systematic evaluation of the minimum audible channel separation has been found in the literature known by the authors.  This paper describes a set of subjective experime......To evaluate the performance of crosstalk cancellation systems the channel separation is usually used as parameter.  However, no systematic evaluation of the minimum audible channel separation has been found in the literature known by the authors.  This paper describes a set of subjective...... simulated.  Results indicate that  in order to avoid lateralization the  channel separation should be below -15dB for most of the stimuli and around -20dB for broad-band noise....

  7. Emitter signal separation method based on multi-level digital channelization

    Han, Xun; Ping, Yifan; Wang, Sujun; Feng, Ying; Kuang, Yin; Yang, Xinquan

    2018-02-01

    To solve the problem of emitter separation under complex electromagnetic environment, a signal separation method based on multi-level digital channelization is proposed in this paper. A two-level structure which can divide signal into different channel is designed first, after that, the peaks of different channels are tracked using the track filter and the coincident signals in time domain are separated in time-frequency domain. Finally, the time domain waveforms of different signals are acquired by reverse transformation. The validness of the proposed method is proved by experiment.

  8. Encoding of rat working memory by power of multi-channel local field potentials via sparse non-negative matrix factorization

    Xu Liu; Tiao-Tiao Liu; Wen-Wen Bai; Hu Yi; Shuang-Yan Li; Xin Tian

    2013-01-01

    Working memory plays an important role in human cognition.This study investigated how working memory was encoded by the power of multi-channel local field potentials (LFPs) based on sparse nonnegative matrix factorization (SNMF).SNMF was used to extract features from LFPs recorded from the prefrontal cortex of four Sprague-Dawley rats during a memory task in a Y maze,with 10 trials for each rat.Then the power-increased LFP components were selected as working memory-related features and the other components were removed.After that,the inverse operation of SNMF was used to study the encoding of working memory in the timefrequency domain.We demonstrated that theta and gamma power increased significantly during the working memory task.The results suggested that postsynaptic activity was simulated well by the sparse activity model.The theta and gamma bands were meaningful for encoding working memory.

  9. A Mathematical Model of Membrane Gas Separation with Energy Transfer by Molecules of Gas Flowing in a Channel to Molecules Penetrating this Channel from the Adjacent Channel

    Szwast Maciej

    2015-06-01

    Full Text Available The paper presents the mathematical modelling of selected isothermal separation processes of gaseous mixtures, taking place in plants using membranes, in particular nonporous polymer membranes. The modelling concerns membrane modules consisting of two channels - the feeding and the permeate channels. Different shapes of the channels cross-section were taken into account. Consideration was given to co-current and counter-current flows, for feeding and permeate streams, respectively, flowing together with the inert gas receiving permeate. In the proposed mathematical model it was considered that pressure of gas changes along the length of flow channels was the result of both - the drop of pressure connected with flow resistance, and energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel. The literature on membrane technology takes into account only the drop of pressure connected with flow resistance. Consideration given to energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel constitute the essential novelty in the current study. The paper also presents results of calculations obtained by means of a computer program which used equations of the derived model. Physicochemical data concerning separation of the CO2/CH4 mixture with He as the sweep gas and data concerning properties of the membrane made of PDMS were assumed for calculations.

  10. Single-channel source separation using non-negative matrix factorization

    Schmidt, Mikkel Nørgaard

    -determined and its solution relies on making appropriate assumptions concerning the sources. This dissertation is concerned with model-based probabilistic single-channel source separation based on non-negative matrix factorization, and consists of two parts: i) three introductory chapters and ii) five published...... papers. The first part introduces the single-channel source separation problem as well as non-negative matrix factorization and provides a comprehensive review of existing approaches, applications, and practical algorithms. This serves to provide context for the second part, the published papers......, in which a number of methods for single-channel source separation based on non-negative matrix factorization are presented. In the papers, the methods are applied to separating audio signals such as speech and musical instruments and separating different types of tissue in chemical shift imaging....

  11. Sequencing of real-world samples using a microfabricated hybrid device having unconstrained straight separation channels.

    Liu, Shaorong; Elkin, Christopher; Kapur, Hitesh

    2003-11-01

    We describe a microfabricated hybrid device that consists of a microfabricated chip containing multiple twin-T injectors attached to an array of capillaries that serve as the separation channels. A new fabrication process was employed to create two differently sized round channels in a chip. Twin-T injectors were formed by the smaller round channels that match the bore of the separation capillaries and separation capillaries were incorporated to the injectors through the larger round channels that match the outer diameter of the capillaries. This allows for a minimum dead volume and provides a robust chip/capillary interface. This hybrid design takes full advantage, such as sample stacking and purification and uniform signal intensity profile, of the unique chip injection scheme for DNA sequencing while employing long straight capillaries for the separations. In essence, the separation channel length is optimized for both speed and resolution since it is unconstrained by chip size. To demonstrate the reliability and practicality of this hybrid device, we sequenced over 1000 real-world samples from Human Chromosome 5 and Ciona intestinalis, prepared at Joint Genome Institute. We achieved average Phred20 read of 675 bases in about 70 min with a success rate of 91%. For the similar type of samples on MegaBACE 1000, the average Phred20 read is about 550-600 bases in 120 min separation time with a success rate of about 80-90%.

  12. Output channel design for collecting closely-spaced particle streams from spiral inertial separation devices

    Caffiyar Mohamed Yousuff

    2017-08-01

    Full Text Available Recent advances in inertial microfluidics designs have enabled high throughput, label-free separation of cells for a variety of bioanalytical applications. Various device configurations have been proposed for binary separation with a focus on enhancing the separation distance between particle streams to improve the efficiency of separate particle collection. These configurations have not demonstrated scaling beyond 3 particle streams either because the channel width is a constraint at the collection outlets or particle streams would be too closely spaced to be collected separately. We propose a method to design collection outlets for inertial focusing and separation devices which can collect closely-spaced particle streams and easily scale to an arbitrary number of collection channels without constraining the outlet channel width, which is the usual cause of clogging or cell damage. According to our approach, collection outlets are a series of side-branching channels perpendicular to the main channel of egress. The width and length of the outlets can be chosen subject to constraints from the position of the particle streams and fluidic resistance ratio computed from fluid dynamics simulations. We show the efficacy of this approach by demonstrating a successful collection of upto 3 particle streams of 7μm, 10μm and 15μm fluorescent beads which have been focused and separated by a spiral inertial device with a separation distance of only 10μm -15μm. With a throughput of 1.8mL/min, we achieved collection efficiency exceeding 90% for each particle at the respective collection outlet. The flexibility to use wide collection channels also enabled us to fabricate the microfluidic device with an epoxy mold that was created using xurography, a low cost, and imprecise fabrication technique.

  13. Vector sparse representation of color image using quaternion matrix analysis.

    Xu, Yi; Yu, Licheng; Xu, Hongteng; Zhang, Hao; Nguyen, Truong

    2015-04-01

    Traditional sparse image models treat color image pixel as a scalar, which represents color channels separately or concatenate color channels as a monochrome image. In this paper, we propose a vector sparse representation model for color images using quaternion matrix analysis. As a new tool for color image representation, its potential applications in several image-processing tasks are presented, including color image reconstruction, denoising, inpainting, and super-resolution. The proposed model represents the color image as a quaternion matrix, where a quaternion-based dictionary learning algorithm is presented using the K-quaternion singular value decomposition (QSVD) (generalized K-means clustering for QSVD) method. It conducts the sparse basis selection in quaternion space, which uniformly transforms the channel images to an orthogonal color space. In this new color space, it is significant that the inherent color structures can be completely preserved during vector reconstruction. Moreover, the proposed sparse model is more efficient comparing with the current sparse models for image restoration tasks due to lower redundancy between the atoms of different color channels. The experimental results demonstrate that the proposed sparse image model avoids the hue bias issue successfully and shows its potential as a general and powerful tool in color image analysis and processing domain.

  14. Subjective and Objective Quality Assessment of Single-Channel Speech Separation Algorithms

    Mowlaee, Pejman; Saeidi, Rahim; Christensen, Mads Græsbøll

    2012-01-01

    Previous studies on performance evaluation of single-channel speech separation (SCSS) algorithms mostly focused on automatic speech recognition (ASR) accuracy as their performance measure. Assessing the separated signals by different metrics other than this has the benefit that the results...... are expected to carry on to other applications beyond ASR. In this paper, in addition to conventional speech quality metrics (PESQ and SNRloss), we also evaluate the separation systems output using different source separation metrics: blind source separation evaluation (BSS EVAL) and perceptual evaluation...... that PESQ and PEASS quality metrics predict well the subjective quality of separated signals obtained by the separation systems. From the results it is observed that the short-time objective intelligibility (STOI) measure predict the speech intelligibility results....

  15. Boundary separating the seismically active reelfoot rift from the sparsely seismic Rough Creek graben, Kentucky and Illinois

    Wheeler, R.L.

    1997-01-01

    The Reelfoot rift is the most active of six Iapetan rifts and grabens in central and eastern North America. In contrast, the Rough Creek graben is one of the least active, being seismically indistinguishable from the central craton of North America. Yet the rift and graben adjoin. Hazard assessment in the rift and graben would be aided by identification of a boundary between them. Changes in the strikes of single large faults, the location of a Cambrian transfer zone, and the geographic extent of alkaline igneous rocks provide three independent estimates of the location of a structural boundary between the rift and the graben. The boundary trends north-northwest through the northeastern part of the Fluorspar Area Fault Complex of Kentucky and Illinois, and has no obvious surface expression. The boundary involves the largest faults, which are the most likely to penetrate to hypocentral depths, and the boundary coincides with the geographic change from abundant seismicity in the rift to sparse seismicity in the graben. Because the structural boundary was defined by geologic variables that are expected to be causally associated with seismicity, it may continue to bound the Reelfoot rift seismicity in the future.

  16. Separation of ions in nanofluidic channels with combined pressure-driven and electro-osmotic flow.

    Gillespie, Dirk; Pennathur, Sumita

    2013-03-05

    Separation of ionic species with the same electrophoretic mobility but different valence in electrolyte systems can occur within nanometer-scale channels with finite electrical double layers (EDLs). This is because EDL thicknesses are a significant fraction of slit height in such channels and can create transverse analyte concentration profiles that allow for unique separation modalities when combined with axial fluid flow. Previous work has shown such separation to occur using either pressure-driven flow or electro-osmotic flow separately. Here, we develop a Poisson-Boltzmann model to compare the separation of such ions using the combination of both pressure-driven and electro-osmotic flow. Applying a pressure gradient in the opposite direction of electro-osmotic flow can allow for zero or infinite retention of analyte species, which we investigate using three different wall boundary conditions. Furthermore, we determine conditions in fused silica nanochannels with which to generate optimal separation between two analytes of different charge but the same mobility. We also give simple rules of thumb to achieve the best separation efficacy in nanochannel systems.

  17. New Results on Single-Channel Speech Separation Using Sinusoidal Modeling

    Mowlaee, Pejman; Christensen, Mads Græsbøll; Jensen, Søren Holdt

    2011-01-01

    We present new results on single-channel speech separation and suggest a new separation approach to improve the speech quality of separated signals from an observed mix- ture. The key idea is to derive a mixture estimator based on sinusoidal parameters. The proposed estimator is aimed at finding...... mixture estimator used in binary masks and the Wiener filtering approach, it is observed that the proposed method achieves an acceptable perceptual speech quality with less cross- talk at different signal-to-signal ratios. Moreover, the method is independent of pitch estimates and reduces the computational...... complexity of the separation by replacing the short-time Fourier transform (STFT) feature vectors of high dimensionality with sinusoidal feature vectors. We report separation results for the proposed method and compare them with respect to other benchmark methods. The improvements made by applying...

  18. A Joint Approach for Single-Channel Speaker Identification and Speech Separation

    Mowlaee, Pejman; Saeidi, Rahim; Christensen, Mads Græsbøll

    2012-01-01

    ) accuracy, here, we report the objective and subjective results as well. The results show that the proposed system performs as well as the best of the state-of-the-art in terms of perceived quality while its performance in terms of speaker identification and automatic speech recognition results......In this paper, we present a novel system for joint speaker identification and speech separation. For speaker identification a single-channel speaker identification algorithm is proposed which provides an estimate of signal-to-signal ratio (SSR) as a by-product. For speech separation, we propose...... a sinusoidal model-based algorithm. The speech separation algorithm consists of a double-talk/single-talk detector followed by a minimum mean square error estimator of sinusoidal parameters for finding optimal codevectors from pre-trained speaker codebooks. In evaluating the proposed system, we start from...

  19. System of multiwire proportional chambers at the separated particle channel for the Mirabelle bubble chamber

    Bryukhanov, N.S.; Galyaev, N.A.; Kotov, V.I.; Prosin, B.V.; Romanov, Yu.A.; Khodyrev, Yu.S.

    1980-01-01

    A system of multiwire proportional chambers (MPC) operating on-line with a M-6000 computer used during tuning and monitoring of beam parameters in a separated particle channel for the Mirabelle bubble chamber is described. Peculiarities of the construction and main characteristics of two MPC versions are considered. The first version is intended for placing in a vacuum at the edges of high-frequency separator deflector, the second one - for placing outside a vacuum in ionoguide gaps. Power supply of the proportional chambers is carried out from local compact (160x95x50 mm) high-voltage sources remotely controlled from a channel panel by low voltage. A MPC position diagram in the accelerator channel, flowsheet of registering electronics for the MPC system, main circuits of high-voltage power source, analog-to-digital converter of a code and trunk amplifier are given. A graph of amplifier signal amplitude dependence on high voltage of a chamber for a different composition of a gaseous mixture is presented. It is noted that the used elements of the electronic system provide the reliable processing of data and its transmission for a great distance (approximately 400 m). It is underlined that the MPC system operation for a long time has shown its high efficiency and reliability

  20. Multiple-channel ultra-violet absorbance detector for two-dimensional chromatographic separations.

    Lynch, Kyle B; Yang, Yu; Ren, Jiangtao; Liu, Shaorong

    2018-05-01

    In recent years, much research has gone into developing online comprehensive two-dimensional liquid chromatographic systems allowing for high peak capacities in comparable separation times to that of one-dimensional liquid chromatographic systems. However, the speed requirements in the second dimension (2nd-D) still remain one challenge for complex biological samples due to the current configuration of two column/two detector systems. Utilization of multiple 2nd-D columns can mitigate this challenge. To adapt this approach, we need a multiple channel detector. Here we develop a versatile multichannel ultraviolet (UV) light absorbance detector that is capable of simultaneously monitoring separations in 12 columns. The detector consists of a deuterium lighthouse, a flow cell assembly (a 13-channel flow cell fitted with a 13-photodiode-detection system), and a data acquisition and monitoring terminal. Through the use of a custom high optical quality furcated fiber to improve light transmission, precise machining of a flow cell to reduce background stray light through precision alignment, and sensitive electronic circuitry to reduce electronic noise through an active low pass filter, the background noise level is measured in the tens of µAU. We obtain a linear dynamic range of close to three orders of magnitude. Compared to a commercialized multichannel UV light absorbance detector like the Waters 2488 UV/Vis, our device provides an increase in channel detection while residing within the same noise region and linear range. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Achieving high permeability and enhanced selectivity for Angstrom-scale separations using artificial water channel membranes.

    Shen, Yue-Xiao; Song, Woochul C; Barden, D Ryan; Ren, Tingwei; Lang, Chao; Feroz, Hasin; Henderson, Codey B; Saboe, Patrick O; Tsai, Daniel; Yan, Hengjing; Butler, Peter J; Bazan, Guillermo C; Phillip, William A; Hickey, Robert J; Cremer, Paul S; Vashisth, Harish; Kumar, Manish

    2018-06-12

    Synthetic polymer membranes, critical to diverse energy-efficient separations, are subject to permeability-selectivity trade-offs that decrease their overall efficacy. These trade-offs are due to structural variations (e.g., broad pore size distributions) in both nonporous membranes used for Angstrom-scale separations and porous membranes used for nano to micron-scale separations. Biological membranes utilize well-defined Angstrom-scale pores to provide exceptional transport properties and can be used as inspiration to overcome this trade-off. Here, we present a comprehensive demonstration of such a bioinspired approach based on pillar[5]arene artificial water channels, resulting in artificial water channel-based block copolymer membranes. These membranes have a sharp selectivity profile with a molecular weight cutoff of ~ 500 Da, a size range challenging to achieve with current membranes, while achieving a large improvement in permeability (~65 L m -2  h -1  bar -1  compared with 4-7 L m -2  h -1  bar -1 ) over similarly rated commercial membranes.

  2. Effect of Non Submerged Vanes on Separation Zone at Strongly-curved Channel Bends, a Laboratory Scale Study

    Ali Akbar Akhtari

    2010-03-01

    Full Text Available Bends along open channels always pose difficulties for water transfer systems. One undesirable effect of bends in such channels, i.e. separation of water from inner banks, was studied. For the purposes of this study, the literature on the subject was first reviewed, and a strongly-curved open channel was designed and constructed on the laboratory scale. Several tests were performed to evaluate the accuracy of the lab model, data homogeneity, and systematic errors. The model was then calibrated and the influence of curvature on flow pattern past the curve was investigated. Also, for the first time, the influence of separation walls on flow pattern was investigated. Experimental results on three strongly-curved open channels with a curvature radius to channel width ratio of 1.5 and curvature angles of 30°, 60°, and 90° showed that, in all the cases studied, the effect of flow separation could be observed immediately after the curve. In addition, the greatest effect of flow separation was seen at a distance equal to channel width from the bend end. In the presence of middle walls and flow separation, the effect of water separation reduced at the bend, especially for a curvature of 90°.

  3. Comparison of Miniaturized and Conventional Asymmetrical Flow Field-Flow Fractionation (AF4 Channels for Nanoparticle Separations

    Zengchao You

    2017-03-01

    Full Text Available The performance of a miniaturized channel for the separation of polymer and metal nanoparticles (NP using Asymmetrical Flow Field-Flow Fractionation (AF4 was investigated and compared with a conventional AF4 system. To develop standard separation methods, experimental parameters like cross flow, gradient profile and injection time were varied and optimized. Corresponding chromatographic parameters were calculated and compared. Our results indicate that the chromatographic resolution in the miniaturized channel is lower, whereas significantly shorter analyses time and less solvent consumption were obtained. Moreover, the limit of detection (LOD and limit of quantification (LOQ obtained from hyphenation with a UV-detector are obviously lower than in a conventional channel, which makes the miniaturized channel interesting for trace analysis.

  4. Influences of the separation distance, ship speed and channel dimension on ship maneuverability in a confined waterway

    Du, Peng; Ouahsine, Abdellatif; Sergent, Philippe

    2018-05-01

    Ship maneuvering in the confined inland waterway is investigated using the system-based method, where a nonlinear transient hydrodynamic model is adopted and confinement models are implemented to account for the influence of the channel bank and bottom. The maneuvering model is validated using the turning circle test, and the confinement model is validated using the experimental data. The separation distance, ship speed, and channel width are then varied to investigate their influences on ship maneuverability. With smaller separation distances and higher speeds near the bank, the ship's trajectory deviates more from the original course and the bow is repelled with a larger yaw angle, which increase the difficulty of maneuvering. Smaller channel widths induce higher advancing resistances on the ship. The minimum distance to the bank are extracted and studied. It is suggested to navigate the ship in the middle of the channel and with a reasonable speed in the restricted waterway.

  5. Triple-channel portable capillary electrophoresis instrument with individual background electrolytes for the concurrent separations of anionic and cationic species

    Mai, Thanh Duc; Le, Minh Duc [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Sáiz, Jorge [Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Ctra. Madrid-Barcelona Km 33.6, Alcalá de Henares, Madrid (Spain); Duong, Hong Anh [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Koenka, Israel Joel [University of Basel, Department of Chemistry, Spitalstrasse 51, 4056 Basel (Switzerland); Pham, Hung Viet, E-mail: phamhungviet@hus.edu.vn [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Hauser, Peter C., E-mail: Peter.Hauser@unibas.ch [University of Basel, Department of Chemistry, Spitalstrasse 51, 4056 Basel (Switzerland)

    2016-03-10

    The portable capillary electrophoresis instrument is automated and features three independent channels with different background electrolytes to allow the concurrent optimized determination of three different categories of charged analytes. The fluidic system is based on a miniature manifold which is based on mechanically milled channels for injection of samples and buffers. The planar manifold pattern was designed to minimize the number of electronic valves required for each channel. The system utilizes pneumatic pressurization to transport solutions at the grounded as well as the high voltage side of the separation capillaries. The instrument has a compact design, with all components arranged in a briefcase with dimensions of 45 (w) × 35 (d) × 15 cm (h) and a weight of about 15 kg. It can operate continuously for 8 h in the battery-powered mode if only one electrophoresis channel is in use, or for about 2.5 h in the case of simultaneous employment of all three channels. The different operations, i.e. capillary flushing, rinsing of the interfaces at both capillary ends, sample injection and electrophoretic separation, are activated automatically with a control program featuring a graphical user interface. For demonstration, the system was employed successfully for the concurrent separation of different inorganic cations and anions, organic preservatives, additives and artificial sweeteners in various beverage and food matrices. - Highlights: • The use of parallel channels allows the concurrent separation of different classes of analytes. • Separate background electrolytes allow individual optimization. • The instrument is compact and field portable.

  6. Triple-channel portable capillary electrophoresis instrument with individual background electrolytes for the concurrent separations of anionic and cationic species

    Mai, Thanh Duc; Le, Minh Duc; Sáiz, Jorge; Duong, Hong Anh; Koenka, Israel Joel; Pham, Hung Viet; Hauser, Peter C.

    2016-01-01

    The portable capillary electrophoresis instrument is automated and features three independent channels with different background electrolytes to allow the concurrent optimized determination of three different categories of charged analytes. The fluidic system is based on a miniature manifold which is based on mechanically milled channels for injection of samples and buffers. The planar manifold pattern was designed to minimize the number of electronic valves required for each channel. The system utilizes pneumatic pressurization to transport solutions at the grounded as well as the high voltage side of the separation capillaries. The instrument has a compact design, with all components arranged in a briefcase with dimensions of 45 (w) × 35 (d) × 15 cm (h) and a weight of about 15 kg. It can operate continuously for 8 h in the battery-powered mode if only one electrophoresis channel is in use, or for about 2.5 h in the case of simultaneous employment of all three channels. The different operations, i.e. capillary flushing, rinsing of the interfaces at both capillary ends, sample injection and electrophoretic separation, are activated automatically with a control program featuring a graphical user interface. For demonstration, the system was employed successfully for the concurrent separation of different inorganic cations and anions, organic preservatives, additives and artificial sweeteners in various beverage and food matrices. - Highlights: • The use of parallel channels allows the concurrent separation of different classes of analytes. • Separate background electrolytes allow individual optimization. • The instrument is compact and field portable.

  7. On-line coupling of sample preconcentration by LVSEP with gel electrophoretic separation on T-channel chips.

    Kitagawa, Fumihiko; Kinami, Saeko; Takegawa, Yuuki; Nukatsuka, Isoshi; Sueyoshi, Kenji; Kawai, Takayuki; Otsuka, Koji

    2017-01-01

    To achieve an on-line coupling of the sample preconcentration by a large-volume sample stacking with an electroosmotic flow pump (LVSEP) with microchip gel electrophoresis (MCGE), a sample solution, a background solution for LVSEP and a sieving solution for MCGE were loaded in a T-form channel and three reservoirs on PDMS microchips. By utilizing the difference in the flow resistance of the two channels, a low-viscosity sample and a viscous polymer solution were easily introduced into the LVSEP and MCGE channels, respectively. Fluorescence imaging of the sequential LVSEP-MCGE processes clearly demonstrated that a faster stacking of anionic fluorescein and successive introduction into the MCGE channel can be carried out on the T-channel chip. To evaluate the preconcentration performance, a conventional MCZE analysis of fluorescein on the cross-channel chip was compared with LVSEP-MCGE on the short T-channel chip, and as a result that the value of sensitive enhancement factor (SEF) was estimated to be 370. The repeatability of the peak height was good with the RSD value of 3.2%, indicating the robustness of the enrichment performance. In the successive LVSEP-MCGE analysis of φX174/HaeIII digest, the DNA fragments were well enriched to a sharp peak in the LVSEP channel, and they were separated in the MCGE channel, whose electropherogram was well-resembled with that in the conventional MCGE. The values of SEF for the DNA fragments were calculated to be ranging from 74 to 108. Thus, the successive LVSEP-MCGE analysis was effective for both preconcentrating and separating DNA fragments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Long-term morphological developments of river channels separated by a longitudinal training wall

    Le, T.B.; Crosato, A.; Uijttewaal, W.S.J.

    2018-01-01

    Rivers have been trained for centuries by channel narrowing and straightening. This caused important damages to their ecosystems, particularly around the bank areas. We analyse here the possibility to train rivers in a new way by subdividing their channel in main and ecological channel with a

  9. Wiring assembly and method of forming a channel in a wiring assembly for receiving conductor and providing separate regions of conductor contact with the channel

    Stelzer, Gerald; Meinke, Rainer; Senti, Mark

    2018-03-06

    A conductor assembly and method for constructing an assembly of the type which, when conducting current, generates a magnetic field or which, in the presence of a changing magnetic field, induces a voltage. In one embodiment the method provides a first insulative layer tubular in shape and including a surface along which a conductor segment may be positioned. A channel formed in the surface of the insulative layer defines a first conductor path and includes a surface of first contour in cross section along a first plane transverse to the conductor path. A segment of conductor having a surface of second contour in cross section is positioned at least partly in the channel and extends along the conductor path. Along the first plane, contact between the conductor surface of second contour and the channel surface of first contour includes at least two separate regions of contact.

  10. Interferometric interpolation of sparse marine data

    Hanafy, Sherif M.

    2013-10-11

    We present the theory and numerical results for interferometrically interpolating 2D and 3D marine surface seismic profiles data. For the interpolation of seismic data we use the combination of a recorded Green\\'s function and a model-based Green\\'s function for a water-layer model. Synthetic (2D and 3D) and field (2D) results show that the seismic data with sparse receiver intervals can be accurately interpolated to smaller intervals using multiples in the data. An up- and downgoing separation of both recorded and model-based Green\\'s functions can help in minimizing artefacts in a virtual shot gather. If the up- and downgoing separation is not possible, noticeable artefacts will be generated in the virtual shot gather. As a partial remedy we iteratively use a non-stationary 1D multi-channel matching filter with the interpolated data. Results suggest that a sparse marine seismic survey can yield more information about reflectors if traces are interpolated by interferometry. Comparing our results to those of f-k interpolation shows that the synthetic example gives comparable results while the field example shows better interpolation quality for the interferometric method. © 2013 European Association of Geoscientists & Engineers.

  11. Blood–plasma separation in Y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study

    Li, Xuejin; Karniadakis, George Em; Popel, Aleksander S

    2012-01-01

    The motion of a suspension of red blood cells (RBCs) flowing in a Y-shaped bifurcating microfluidic channel is investigated using a validated low-dimensional RBC model based on dissipative particle dynamics. Specifically, the RBC is represented as a closed torus-like ring of ten colloidal particles, which leads to efficient simulations of blood flow in microcirculation over a wide range of hematocrits. Adaptive no-slip wall boundary conditions were implemented to model hydrodynamic flow within a specific wall structure of diverging three-dimensional microfluidic channels, paying attention to controlling density fluctuations. Plasma skimming and the all-or-nothing phenomenon of RBCs in a bifurcating microfluidic channel have been investigated in our simulations for healthy and diseased blood, including the size of a cell-free layer on the daughter branches. The feed hematocrit level in the parent channel has considerable influence on blood–plasma separation. Compared to the blood–plasma separation efficiencies of healthy RBCs, malaria-infected stiff RBCs (iRBCs) have a tendency to travel into the low flow-rate daughter branch because of their different initial distribution in the parent channel. Our simulation results are consistent with previously published experimental results and theoretical predictions. (paper)

  12. Cell swelling activates separate taurine and chloride channels in Ehrlich mouse ascites tumor cells

    Lambert, Ian Henry; Hoffmann, Else Kay

    1994-01-01

    The taurine efflux from Ehrlich ascites tumor cells is stimulated by hypotonic cell swelling. The swelling-activated taurine efflux is unaffected by substitution of gluconate for extracellular Cl– but inhibited by addition of MK196 (anion channel blocker) and 4,4 -diisothiocyanostilbene-2......,2 -disulfonic acid (DIDS; anion channel and anion exchange blocker) and by depolarization of the cell membrane. This is taken to indicate that taurine does not leave the osmotically swollen Ehrlich cells in exchange for extracellular Cl–, i.e., via the anion exchanger but via a MK196- and DIDS-sensitive channel...... that is potential dependent. An additional stimulation of the swelling-activated taurine efflux is seen after addition of arachidonic acid and oleic acid. Cell swelling also activates a Mini Cl– channel. The Cl– efflux via this Cl– channel, in contrast to the swelling-activated taurine efflux, is unaffected by DIDS...

  13. Two-dimensional fluid dynamics in a sharply bent channel: Laminar flow, separation bubble, and vortex dynamics

    Matsumoto, Daichi; Fukudome, Koji; Wada, Hirofumi

    2016-10-01

    Understanding the hydrodynamic properties of fluid flow in a curving pipe and channel is important for controlling the flow behavior in technologies and biomechanics. The nature of the resulting flow in a bent pipe is extremely complicated because of the presence of a cross-stream secondary flow. In an attempt to disentangle this complexity, we investigate the fluid dynamics in a bent channel via the direct numerical simulation of the Navier-Stokes equation in two spatial dimensions. We exploit the absence of secondary flow from our model and systematically investigate the flow structure along the channel as a function of both the bend angle and Reynolds number of the laminar-to-turbulent regime. We numerically suggest a scaling relation between the shape of the separation bubble and the flow conductance, and construct an integrated phase diagram.

  14. Random mutagenesis screening indicates the absence of a separate H(+)-sensor in the pH-sensitive Kir channels.

    Paynter, Jennifer J; Shang, Lijun; Bollepalli, Murali K; Baukrowitz, Thomas; Tucker, Stephen J

    2010-01-01

    Several inwardly-rectifying (Kir) potassium channels (Kir1.1, Kir4.1 and Kir4.2) are characterised by their sensitivity to inhibition by intracellular H(+) within the physiological range. The mechanism by which these channels are regulated by intracellular pH has been the subject of intense scrutiny for over a decade, yet the molecular identity of the titratable pH-sensor remains elusive. In this study we have taken advantage of the acidic intracellular environment of S. cerevisiae and used a K(+) -auxotrophic strain to screen for mutants of Kir1.1 with impaired pH-sensitivity. In addition to the previously identified K80M mutation, this unbiased screening approach identified a novel mutation (S172T) in the second transmembrane domain (TM2) that also produces a marked reduction in pH-sensitivity through destabilization of the closed-state. However, despite this extensive mutagenic approach, no mutations could be identified which removed channel pH-sensitivity or which were likely to act as a separate H(+) -sensor unique to the pH-sensitive Kir channels. In order to explain these results we propose a model in which the pH-sensing mechanism is part of an intrinsic gating mechanism common to all Kir channels, not just the pH-sensitive Kir channels. In this model, mutations which disrupt this pH-sensor would result in an increase, not reduction, in pH-sensitivity. This has major implications for any future studies of Kir channel pH-sensitivity and explains why formal identification of these pH-sensing residues still represents a major challenge.

  15. Sparse structure regularized ranking

    Wang, Jim Jing-Yan; Sun, Yijun; Gao, Xin

    2014-01-01

    Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse

  16. Nonnegative Matrix Factor 2-D Deconvolution for Blind Single Channel Source Separation

    Schmidt, Mikkel N.; Mørup, Morten

    2006-01-01

    We present a novel method for blind separation of instruments in polyphonic music based on a non-negative matrix factor 2-D deconvolution algorithm. Using a model which is convolutive in both time and frequency we factorize a spectrogram representation of music into components corresponding...

  17. A Maximum Likelihood Estimation of Vocal-Tract-Related Filter Characteristics for Single Channel Speech Separation

    Dansereau Richard M

    2007-01-01

    Full Text Available We present a new technique for separating two speech signals from a single recording. The proposed method bridges the gap between underdetermined blind source separation techniques and those techniques that model the human auditory system, that is, computational auditory scene analysis (CASA. For this purpose, we decompose the speech signal into the excitation signal and the vocal-tract-related filter and then estimate the components from the mixed speech using a hybrid model. We first express the probability density function (PDF of the mixed speech's log spectral vectors in terms of the PDFs of the underlying speech signal's vocal-tract-related filters. Then, the mean vectors of PDFs of the vocal-tract-related filters are obtained using a maximum likelihood estimator given the mixed signal. Finally, the estimated vocal-tract-related filters along with the extracted fundamental frequencies are used to reconstruct estimates of the individual speech signals. The proposed technique effectively adds vocal-tract-related filter characteristics as a new cue to CASA models using a new grouping technique based on an underdetermined blind source separation. We compare our model with both an underdetermined blind source separation and a CASA method. The experimental results show that our model outperforms both techniques in terms of SNR improvement and the percentage of crosstalk suppression.

  18. A Maximum Likelihood Estimation of Vocal-Tract-Related Filter Characteristics for Single Channel Speech Separation

    Mohammad H. Radfar

    2006-11-01

    Full Text Available We present a new technique for separating two speech signals from a single recording. The proposed method bridges the gap between underdetermined blind source separation techniques and those techniques that model the human auditory system, that is, computational auditory scene analysis (CASA. For this purpose, we decompose the speech signal into the excitation signal and the vocal-tract-related filter and then estimate the components from the mixed speech using a hybrid model. We first express the probability density function (PDF of the mixed speech's log spectral vectors in terms of the PDFs of the underlying speech signal's vocal-tract-related filters. Then, the mean vectors of PDFs of the vocal-tract-related filters are obtained using a maximum likelihood estimator given the mixed signal. Finally, the estimated vocal-tract-related filters along with the extracted fundamental frequencies are used to reconstruct estimates of the individual speech signals. The proposed technique effectively adds vocal-tract-related filter characteristics as a new cue to CASA models using a new grouping technique based on an underdetermined blind source separation. We compare our model with both an underdetermined blind source separation and a CASA method. The experimental results show that our model outperforms both techniques in terms of SNR improvement and the percentage of crosstalk suppression.

  19. Enhanced gas separation factors of microporous polymer constrained in the channels of anodic alumina membranes.

    Chernova, Ekaterina; Petukhov, Dmitrii; Boytsova, Olga; Alentiev, Alexander; Budd, Peter; Yampolskii, Yuri; Eliseev, Andrei

    2016-08-08

    New composite membranes based on porous anodic alumina films and polymer of intrinsic microporosity (PIM-1) have been prepared using a spin-coating technique. According to scanning electron microscopy, partial penetration of polymer into the pores of alumina supports takes place giving rise to selective polymeric layers with fiber-like microstructure. Geometric confinement of rigid PIM-1 in the channels of anodic alumina causes reduction of small-scale mobility in polymeric chains. As a result, transport of permanent gases, such as CH4, becomes significantly hindered across composite membranes. Contrary, the transport of condensable gases (CO2, С4H10), did not significantly suffer from the confinement due to high solubility in the polymer matrix. This strategy enables enhancement of selectivity towards CO2 and C4H10 without significant loss of the membrane performance and seems to be prospective for drain and sweetening of natural gas.

  20. Separation of Parkinson's patients in early and mature stages from control subjects using one EOG channel

    Christensen, Julie A.E.; Frandsen, Rune; Kempfner, Jacob

    2012-01-01

    In this study, polysomnographic left side EOG signals from ten control subjects, ten iRBD patients and ten Parkinson's patients were decomposed in time and frequency using wavelet transformation. A total of 28 features were computed as the means and standard deviations in energy measures from...... different reconstructed detail subbands across all sleep epochs during a whole night of sleep. A subset of features was chosen based on a cross validated Shrunken Centroids Regularized Discriminant Analysis, where the controls were treated as one group and the patients as another. Classification...... reflecting EMG activity. This study demonstrates that both analysis of eye movements during sleep as well as EMG activity measured at the EOG channel hold potential of being biomarkers for Parkinson's disease....

  1. Separation followed by direct SERS detection of explosives on a novel black silicon multifunctional nanostructured surface prepared in a microfluidic channel

    Talian, Ivan; Hübner, Jörg

    2013-01-01

    The article describes the multifunctionality of a novel black silicon (BS) nanostructured surface covered with a thin layer of noble metal prepared in the a microfluidic channel. It is focused on the separation properties of the BS substrate with direct detection of the separated analytes utilizing...

  2. Separate channels for processing form, texture, and color: evidence from FMRI adaptation and visual object agnosia.

    Cavina-Pratesi, C; Kentridge, R W; Heywood, C A; Milner, A D

    2010-10-01

    Previous neuroimaging research suggests that although object shape is analyzed in the lateral occipital cortex, surface properties of objects, such as color and texture, are dealt with in more medial areas, close to the collateral sulcus (CoS). The present study sought to determine whether there is a single medial region concerned with surface properties in general or whether instead there are multiple foci independently extracting different surface properties. We used stimuli varying in their shape, texture, or color, and tested healthy participants and 2 object-agnosic patients, in both a discrimination task and a functional MR adaptation paradigm. We found a double dissociation between medial and lateral occipitotemporal cortices in processing surface (texture or color) versus geometric (shape) properties, respectively. In Experiment 2, we found that the medial occipitotemporal cortex houses separate foci for color (within anterior CoS and lingual gyrus) and texture (caudally within posterior CoS). In addition, we found that areas selective for shape, texture, and color individually were quite distinct from those that respond to all of these features together (shape and texture and color). These latter areas appear to correspond to those associated with the perception of complex stimuli such as faces and places.

  3. Study of the Calibration Channel Width for a Digital Sideband Separating System for SIS 2SB Receiver

    Khudchenko, Andrey; Finger, R.; Baryshev, A. M.; Mena, F. P.; Rodriguez, R.; Hesper, R.; Fuentes, R.; Bronfman, L.

    2018-01-01

    A Digital Sideband Separating (DSS) system has been recently applied to a full 2SB receiver, i.e., one with the analog IF hybrid still in place. This concept allows reaching IRR level around 45 dB and it presents additional advantages in calibration stability compared to the case when no IF hybrid is present. If implemented in multipixel cameras, the DSS system relaxes the requirements for the IRR level of the analog receiver substantially enabling to reach at least an IRR of 30 dB with relatively simple hardware. It would be ideal for spectral line surveys since it practically eliminates the line confusion in addition to rejecting the atmospheric noise in the image band. Therefore, the DSS system is a potential option for a future ALMA upgrade. Here we present our study on an important practical question: how wide should the calibration-channel width in order to reach a desired IRR level? This parameter determines, for a large part, the calibration speed of the DSS system and influences the back-end architecture. We estimate that for currently installed ALMA bands (B3-B8), the channel width of the DSS system can be at least 45 MHz to reach a 30db IRR level in entire band.

  4. Structural Sparse Tracking

    Zhang, Tianzhu

    2015-06-01

    Sparse representation has been applied to visual tracking by finding the best target candidate with minimal reconstruction error by use of target templates. However, most sparse representation based trackers only consider holistic or local representations and do not make full use of the intrinsic structure among and inside target candidates, thereby making the representation less effective when similar objects appear or under occlusion. In this paper, we propose a novel Structural Sparse Tracking (SST) algorithm, which not only exploits the intrinsic relationship among target candidates and their local patches to learn their sparse representations jointly, but also preserves the spatial layout structure among the local patches inside each target candidate. We show that our SST algorithm accommodates most existing sparse trackers with the respective merits. Both qualitative and quantitative evaluations on challenging benchmark image sequences demonstrate that the proposed SST algorithm performs favorably against several state-of-the-art methods.

  5. iSAP: Interactive Sparse Astronomical Data Analysis Packages

    Fourt, O.; Starck, J.-L.; Sureau, F.; Bobin, J.; Moudden, Y.; Abrial, P.; Schmitt, J.

    2013-03-01

    iSAP consists of three programs, written in IDL, which together are useful for spherical data analysis. MR/S (MultiResolution on the Sphere) contains routines for wavelet, ridgelet and curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and Independent Component Analysis on the Sphere. MR/S has been designed for the PLANCK project, but can be used for many other applications. SparsePol (Polarized Spherical Wavelets and Curvelets) has routines for polarized wavelet, polarized ridgelet and polarized curvelet transform on the sphere, and applications such denoising on the sphere using wavelets and/or curvelets, Gaussianity tests and blind source separation on the Sphere. SparsePol has been designed for the PLANCK project. MS-VSTS (Multi-Scale Variance Stabilizing Transform on the Sphere), designed initially for the FERMI project, is useful for spherical mono-channel and multi-channel data analysis when the data are contaminated by a Poisson noise. It contains routines for wavelet/curvelet denoising, wavelet deconvolution, multichannel wavelet denoising and deconvolution.

  6. When sparse coding meets ranking: a joint framework for learning sparse codes and ranking scores

    Wang, Jim Jing-Yan

    2017-06-28

    Sparse coding, which represents a data point as a sparse reconstruction code with regard to a dictionary, has been a popular data representation method. Meanwhile, in database retrieval problems, learning the ranking scores from data points plays an important role. Up to now, these two problems have always been considered separately, assuming that data coding and ranking are two independent and irrelevant problems. However, is there any internal relationship between sparse coding and ranking score learning? If yes, how to explore and make use of this internal relationship? In this paper, we try to answer these questions by developing the first joint sparse coding and ranking score learning algorithm. To explore the local distribution in the sparse code space, and also to bridge coding and ranking problems, we assume that in the neighborhood of each data point, the ranking scores can be approximated from the corresponding sparse codes by a local linear function. By considering the local approximation error of ranking scores, the reconstruction error and sparsity of sparse coding, and the query information provided by the user, we construct a unified objective function for learning of sparse codes, the dictionary and ranking scores. We further develop an iterative algorithm to solve this optimization problem.

  7. Sparse structure regularized ranking

    Wang, Jim Jing-Yan

    2014-04-17

    Learning ranking scores is critical for the multimedia database retrieval problem. In this paper, we propose a novel ranking score learning algorithm by exploring the sparse structure and using it to regularize ranking scores. To explore the sparse structure, we assume that each multimedia object could be represented as a sparse linear combination of all other objects, and combination coefficients are regarded as a similarity measure between objects and used to regularize their ranking scores. Moreover, we propose to learn the sparse combination coefficients and the ranking scores simultaneously. A unified objective function is constructed with regard to both the combination coefficients and the ranking scores, and is optimized by an iterative algorithm. Experiments on two multimedia database retrieval data sets demonstrate the significant improvements of the propose algorithm over state-of-the-art ranking score learning algorithms.

  8. Structural Sparse Tracking

    Zhang, Tianzhu; Yang, Ming-Hsuan; Ahuja, Narendra; Ghanem, Bernard; Yan, Shuicheng; Xu, Changsheng; Liu, Si

    2015-01-01

    candidate. We show that our SST algorithm accommodates most existing sparse trackers with the respective merits. Both qualitative and quantitative evaluations on challenging benchmark image sequences demonstrate that the proposed SST algorithm performs

  9. SparseM: A Sparse Matrix Package for R *

    Roger Koenker

    2003-02-01

    Full Text Available SparseM provides some basic R functionality for linear algebra with sparse matrices. Use of the package is illustrated by a family of linear model fitting functions that implement least squares methods for problems with sparse design matrices. Significant performance improvements in memory utilization and computational speed are possible for applications involving large sparse matrices.

  10. Sparse distributed memory overview

    Raugh, Mike

    1990-01-01

    The Sparse Distributed Memory (SDM) project is investigating the theory and applications of massively parallel computing architecture, called sparse distributed memory, that will support the storage and retrieval of sensory and motor patterns characteristic of autonomous systems. The immediate objectives of the project are centered in studies of the memory itself and in the use of the memory to solve problems in speech, vision, and robotics. Investigation of methods for encoding sensory data is an important part of the research. Examples of NASA missions that may benefit from this work are Space Station, planetary rovers, and solar exploration. Sparse distributed memory offers promising technology for systems that must learn through experience and be capable of adapting to new circumstances, and for operating any large complex system requiring automatic monitoring and control. Sparse distributed memory is a massively parallel architecture motivated by efforts to understand how the human brain works. Sparse distributed memory is an associative memory, able to retrieve information from cues that only partially match patterns stored in the memory. It is able to store long temporal sequences derived from the behavior of a complex system, such as progressive records of the system's sensory data and correlated records of the system's motor controls.

  11. Efficient convolutional sparse coding

    Wohlberg, Brendt

    2017-06-20

    Computationally efficient algorithms may be applied for fast dictionary learning solving the convolutional sparse coding problem in the Fourier domain. More specifically, efficient convolutional sparse coding may be derived within an alternating direction method of multipliers (ADMM) framework that utilizes fast Fourier transforms (FFT) to solve the main linear system in the frequency domain. Such algorithms may enable a significant reduction in computational cost over conventional approaches by implementing a linear solver for the most critical and computationally expensive component of the conventional iterative algorithm. The theoretical computational cost of the algorithm may be reduced from O(M.sup.3N) to O(MN log N), where N is the dimensionality of the data and M is the number of elements in the dictionary. This significant improvement in efficiency may greatly increase the range of problems that can practically be addressed via convolutional sparse representations.

  12. Sparse approximation with bases

    2015-01-01

    This book systematically presents recent fundamental results on greedy approximation with respect to bases. Motivated by numerous applications, the last decade has seen great successes in studying nonlinear sparse approximation. Recent findings have established that greedy-type algorithms are suitable methods of nonlinear approximation in both sparse approximation with respect to bases and sparse approximation with respect to redundant systems. These insights, combined with some previous fundamental results, form the basis for constructing the theory of greedy approximation. Taking into account the theoretical and practical demand for this kind of theory, the book systematically elaborates a theoretical framework for greedy approximation and its applications.  The book addresses the needs of researchers working in numerical mathematics, harmonic analysis, and functional analysis. It quickly takes the reader from classical results to the latest frontier, but is written at the level of a graduate course and do...

  13. Supervised Convolutional Sparse Coding

    Affara, Lama Ahmed

    2018-04-08

    Convolutional Sparse Coding (CSC) is a well-established image representation model especially suited for image restoration tasks. In this work, we extend the applicability of this model by proposing a supervised approach to convolutional sparse coding, which aims at learning discriminative dictionaries instead of purely reconstructive ones. We incorporate a supervised regularization term into the traditional unsupervised CSC objective to encourage the final dictionary elements to be discriminative. Experimental results show that using supervised convolutional learning results in two key advantages. First, we learn more semantically relevant filters in the dictionary and second, we achieve improved image reconstruction on unseen data.

  14. Supervised Transfer Sparse Coding

    Al-Shedivat, Maruan

    2014-07-27

    A combination of the sparse coding and transfer learn- ing techniques was shown to be accurate and robust in classification tasks where training and testing objects have a shared feature space but are sampled from differ- ent underlying distributions, i.e., belong to different do- mains. The key assumption in such case is that in spite of the domain disparity, samples from different domains share some common hidden factors. Previous methods often assumed that all the objects in the target domain are unlabeled, and thus the training set solely comprised objects from the source domain. However, in real world applications, the target domain often has some labeled objects, or one can always manually label a small num- ber of them. In this paper, we explore such possibil- ity and show how a small number of labeled data in the target domain can significantly leverage classifica- tion accuracy of the state-of-the-art transfer sparse cod- ing methods. We further propose a unified framework named supervised transfer sparse coding (STSC) which simultaneously optimizes sparse representation, domain transfer and classification. Experimental results on three applications demonstrate that a little manual labeling and then learning the model in a supervised fashion can significantly improve classification accuracy.

  15. Discrete Sparse Coding.

    Exarchakis, Georgios; Lücke, Jörg

    2017-11-01

    Sparse coding algorithms with continuous latent variables have been the subject of a large number of studies. However, discrete latent spaces for sparse coding have been largely ignored. In this work, we study sparse coding with latents described by discrete instead of continuous prior distributions. We consider the general case in which the latents (while being sparse) can take on any value of a finite set of possible values and in which we learn the prior probability of any value from data. This approach can be applied to any data generated by discrete causes, and it can be applied as an approximation of continuous causes. As the prior probabilities are learned, the approach then allows for estimating the prior shape without assuming specific functional forms. To efficiently train the parameters of our probabilistic generative model, we apply a truncated expectation-maximization approach (expectation truncation) that we modify to work with a general discrete prior. We evaluate the performance of the algorithm by applying it to a variety of tasks: (1) we use artificial data to verify that the algorithm can recover the generating parameters from a random initialization, (2) use image patches of natural images and discuss the role of the prior for the extraction of image components, (3) use extracellular recordings of neurons to present a novel method of analysis for spiking neurons that includes an intuitive discretization strategy, and (4) apply the algorithm on the task of encoding audio waveforms of human speech. The diverse set of numerical experiments presented in this letter suggests that discrete sparse coding algorithms can scale efficiently to work with realistic data sets and provide novel statistical quantities to describe the structure of the data.

  16. Channel separation using the transversity parameter in the pi /sup +/n to p pi /sup +/ pi /sup -/ reaction at 9 GeV/c

    Armenise, N

    1978-01-01

    To solve the problem of separating competitive channels in a multiparticle final state the use of a parameter, called A(*), measuring the 'event transversity' has been suggested. The A parameter is found to be as powerful as prism plot analysis in separating different channels and economic with respect to the computer time. The transversity method is applied to the three-body reaction p/sup +/n to p pi /sup +/ pi /sup -/ at 9 TeV/c selected in pi /sup +/d interactions obtained in 2m-DBC exposed at CERN-PS. The main contributions in the final state are rho /sup 0/, f, g/sup 0/ (a dipion mass resonance) resonance production and neutron diffraction dissociation. (5 refs).

  17. A Novel Partial Discharge Ultra-High Frequency Signal De-Noising Method Based on a Single-Channel Blind Source Separation Algorithm

    Liangliang Wei

    2018-02-01

    Full Text Available To effectively de-noise the Gaussian white noise and periodic narrow-band interference in the background noise of partial discharge ultra-high frequency (PD UHF signals in field tests, a novel de-noising method, based on a single-channel blind source separation algorithm, is proposed. Compared with traditional methods, the proposed method can effectively de-noise the noise interference, and the distortion of the de-noising PD signal is smaller. Firstly, the PD UHF signal is time-frequency analyzed by S-transform to obtain the number of source signals. Then, the single-channel detected PD signal is converted into multi-channel signals by singular value decomposition (SVD, and background noise is separated from multi-channel PD UHF signals by the joint approximate diagonalization of eigen-matrix method. At last, the source PD signal is estimated and recovered by the l1-norm minimization method. The proposed de-noising method was applied on the simulation test and field test detected signals, and the de-noising performance of the different methods was compared. The simulation and field test results demonstrate the effectiveness and correctness of the proposed method.

  18. Separation of a single photon and products of the π0, η and K0s meson neutral decay channels using neural network

    Bandurin, D.V.; Skachkov, N.B.

    2004-01-01

    The artificial neural network approach is used for separation of signals from a single photon and products of the π 0 , η and K s 0 meson neutral decay channels on the basis of the data from the CMS electromagnetic calorimeter alone. Rejection values for the three types of mesons as a function of single photon selection efficiencies are obtained for two pseudorapidity regions and initial Et of 20, 40, 60 and 100 GeV. (author)

  19. Separation of a single photon and products of the π0-, η-, Ks0-meson neutral decay channels in the CMS electromagnetic calorimeter using neural network

    Bandurin, D.V.; Skachkov, N.B.

    2001-01-01

    The artificial neural network approach is used for separation of signals from a single photon γ and products of the π 0 -, η-, K s 0 -meson neutral decay channels on the basis of the data from the CMS electromagnetic calorimeter alone. Rejection values for the three types of mesons as a function of single photon selection efficiencies are obtained for two Barrel and one Endcap pseudorapidity regions and initial E t of 20, 40, 60 and 100 GeV

  20. Sparse inpainting and isotropy

    Feeney, Stephen M.; McEwen, Jason D.; Peiris, Hiranya V. [Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Marinucci, Domenico; Cammarota, Valentina [Department of Mathematics, University of Rome Tor Vergata, via della Ricerca Scientifica 1, Roma, 00133 (Italy); Wandelt, Benjamin D., E-mail: s.feeney@imperial.ac.uk, E-mail: marinucc@axp.mat.uniroma2.it, E-mail: jason.mcewen@ucl.ac.uk, E-mail: h.peiris@ucl.ac.uk, E-mail: wandelt@iap.fr, E-mail: cammarot@axp.mat.uniroma2.it [Kavli Institute for Theoretical Physics, Kohn Hall, University of California, 552 University Road, Santa Barbara, CA, 93106 (United States)

    2014-01-01

    Sparse inpainting techniques are gaining in popularity as a tool for cosmological data analysis, in particular for handling data which present masked regions and missing observations. We investigate here the relationship between sparse inpainting techniques using the spherical harmonic basis as a dictionary and the isotropy properties of cosmological maps, as for instance those arising from cosmic microwave background (CMB) experiments. In particular, we investigate the possibility that inpainted maps may exhibit anisotropies in the behaviour of higher-order angular polyspectra. We provide analytic computations and simulations of inpainted maps for a Gaussian isotropic model of CMB data, suggesting that the resulting angular trispectrum may exhibit small but non-negligible deviations from isotropy.

  1. Sparse matrix test collections

    Duff, I.

    1996-12-31

    This workshop will discuss plans for coordinating and developing sets of test matrices for the comparison and testing of sparse linear algebra software. We will talk of plans for the next release (Release 2) of the Harwell-Boeing Collection and recent work on improving the accessibility of this Collection and others through the World Wide Web. There will only be three talks of about 15 to 20 minutes followed by a discussion from the floor.

  2. A dual-channel gas chromatography method for the quantitation of low and high concentrations of NF3 and CF4 to study membrane separation of the two compounds

    Branken, D.J.; Le Roux, J.P.; Krieg, H.M.; Lachmann, G.

    2013-01-01

    A dual-channel gas chromatographic method is described in this paper that can be conveniently used for quantitation of NF3/CF4 mixtures with a thermal conductivity detector (TCD) on one channel for the quantitation of high-concentrations, and a pulsed discharge helium ionization detector (PDHID) on a second channel for the quantitation of low concentrations. It is shown that adequate separation is achieved on both channels with this dual single-column setup in which column switchi...

  3. Macrocyclic ligand decorated ordered mesoporous silica with large-pore and short-channel characteristics for effective separation of lithium isotopes: synthesis, adsorptive behavior study and DFT modeling.

    Liu, Yuekun; Liu, Fei; Ye, Gang; Pu, Ning; Wu, Fengcheng; Wang, Zhe; Huo, Xiaomei; Xu, Jian; Chen, Jing

    2016-10-18

    Effective separation of lithium isotopes is of strategic value which attracts growing attention worldwide. This study reports a new class of macrocyclic ligand decorated ordered mesoporous silica (OMS) with large-pore and short-channel characteristics, which holds the potential to effectively separate lithium isotopes in aqueous solutions. Initially, a series of benzo-15-crown-5 (B15C5) derivatives containing different electron-donating or -withdrawing substituents were synthesized. Extractive separation of lithium isotopes in a liquid-liquid system was comparatively studied, highlighting the effect of the substituent, solvent, counter anion and temperature. The optimal NH 2 -B15C5 ligands were then covalently anchored to a short-channel SBA-15 OMS precursor bearing alkyl halides via a post-modification protocol. Adsorptive separation of the lithium isotopes was fully investigated, combined with kinetics and thermodynamics analysis, and simulation by using classic adsorption isotherm models. The NH 2 -B15C5 ligand functionalized OMSs exhibited selectivity to lithium ions against other alkali metal ions including K(i). Additionally, a more efficient separation of lithium isotopes could be obtained at a lower temperature in systems with softer counter anions and solvents with a lower dielectric constant. The highest value separation factor (α = 1.049 ± 0.002) was obtained in CF 3 COOLi aqueous solution at 288.15 K. Moreover, theoretical computation based on the density functional theory (DFT) was performed to elucidate the complexation interactions between the macrocyclic ligands and lithium ions. A suggested mechanism involving an isotopic exchange equilibrium was proposed to describe the lithium isotope separation by the functionalized OMSs.

  4. Sparse regularization for force identification using dictionaries

    Qiao, Baijie; Zhang, Xingwu; Wang, Chenxi; Zhang, Hang; Chen, Xuefeng

    2016-04-01

    The classical function expansion method based on minimizing l2-norm of the response residual employs various basis functions to represent the unknown force. Its difficulty lies in determining the optimum number of basis functions. Considering the sparsity of force in the time domain or in other basis space, we develop a general sparse regularization method based on minimizing l1-norm of the coefficient vector of basis functions. The number of basis functions is adaptively determined by minimizing the number of nonzero components in the coefficient vector during the sparse regularization process. First, according to the profile of the unknown force, the dictionary composed of basis functions is determined. Second, a sparsity convex optimization model for force identification is constructed. Third, given the transfer function and the operational response, Sparse reconstruction by separable approximation (SpaRSA) is developed to solve the sparse regularization problem of force identification. Finally, experiments including identification of impact and harmonic forces are conducted on a cantilever thin plate structure to illustrate the effectiveness and applicability of SpaRSA. Besides the Dirac dictionary, other three sparse dictionaries including Db6 wavelets, Sym4 wavelets and cubic B-spline functions can also accurately identify both the single and double impact forces from highly noisy responses in a sparse representation frame. The discrete cosine functions can also successfully reconstruct the harmonic forces including the sinusoidal, square and triangular forces. Conversely, the traditional Tikhonov regularization method with the L-curve criterion fails to identify both the impact and harmonic forces in these cases.

  5. Two separate interfaces between the voltage sensor and pore are required for the function of voltage-dependent K(+ channels.

    Seok-Yong Lee

    2009-03-01

    Full Text Available Voltage-dependent K(+ (Kv channels gate open in response to the membrane voltage. To further our understanding of how cell membrane voltage regulates the opening of a Kv channel, we have studied the protein interfaces that attach the voltage-sensor domains to the pore. In the crystal structure, three physical interfaces exist. Only two of these consist of amino acids that are co-evolved across the interface between voltage sensor and pore according to statistical coupling analysis of 360 Kv channel sequences. A first co-evolved interface is formed by the S4-S5 linkers (one from each of four voltage sensors, which form a cuff surrounding the S6-lined pore opening at the intracellular surface. The crystal structure and published mutational studies support the hypothesis that the S4-S5 linkers convert voltage-sensor motions directly into gate opening and closing. A second co-evolved interface forms a small contact surface between S1 of the voltage sensor and the pore helix near the extracellular surface. We demonstrate through mutagenesis that this interface is necessary for the function and/or structure of two different Kv channels. This second interface is well positioned to act as a second anchor point between the voltage sensor and the pore, thus allowing efficient transmission of conformational changes to the pore's gate.

  6. Compressed sensing & sparse filtering

    Carmi, Avishy Y; Godsill, Simon J

    2013-01-01

    This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related app

  7. Semi-supervised sparse coding

    Wang, Jim Jing-Yan; Gao, Xin

    2014-01-01

    Sparse coding approximates the data sample as a sparse linear combination of some basic codewords and uses the sparse codes as new presentations. In this paper, we investigate learning discriminative sparse codes by sparse coding in a semi-supervised manner, where only a few training samples are labeled. By using the manifold structure spanned by the data set of both labeled and unlabeled samples and the constraints provided by the labels of the labeled samples, we learn the variable class labels for all the samples. Furthermore, to improve the discriminative ability of the learned sparse codes, we assume that the class labels could be predicted from the sparse codes directly using a linear classifier. By solving the codebook, sparse codes, class labels and classifier parameters simultaneously in a unified objective function, we develop a semi-supervised sparse coding algorithm. Experiments on two real-world pattern recognition problems demonstrate the advantage of the proposed methods over supervised sparse coding methods on partially labeled data sets.

  8. Semi-supervised sparse coding

    Wang, Jim Jing-Yan

    2014-07-06

    Sparse coding approximates the data sample as a sparse linear combination of some basic codewords and uses the sparse codes as new presentations. In this paper, we investigate learning discriminative sparse codes by sparse coding in a semi-supervised manner, where only a few training samples are labeled. By using the manifold structure spanned by the data set of both labeled and unlabeled samples and the constraints provided by the labels of the labeled samples, we learn the variable class labels for all the samples. Furthermore, to improve the discriminative ability of the learned sparse codes, we assume that the class labels could be predicted from the sparse codes directly using a linear classifier. By solving the codebook, sparse codes, class labels and classifier parameters simultaneously in a unified objective function, we develop a semi-supervised sparse coding algorithm. Experiments on two real-world pattern recognition problems demonstrate the advantage of the proposed methods over supervised sparse coding methods on partially labeled data sets.

  9. Benchmarking a computational fluid dynamics model of separated flow in a thin rectangular channel for use in predictive design analysis

    Stovall, T.K.; Crabtree, A.; Felde, D.

    1995-01-01

    The Advanced Neutron Source (ANS) reactor is being designed to provide a research tool with capabilities beyond those of any existing reactors. One portion of its state-of-the-art design requires high speed fluid flow through narrow channels between the fuel plates in the core. Experience with previous reactors has shown that fuel plate damage can occur when debris becomes lodged at the entrance to these channels. Such debris can disrupt the fluid flow to the plate surfaces and prevent adequate cooling of the fuel. Preliminary ANS designs addressed this issue by providing an unheated entrance length for each fuel plate. In theory, any flow disruption would recover within this unheated length, thus providing adequate heat removal from the downstream heated portions of the fuel plates

  10. Visible-light-driven TiO2/Ag3PO4/GO heterostructure photocatalyst with dual-channel for photo-generated charges separation

    Lu, Bingqing; Ma, Ni; Wang, Yaping; Qiu, Yiwei; Hu, Haihua; Zhao, Jiahuan; Liang, Dayu; Xu, Sheng; Li, Xiaoyun; Zhu, Zhiyan; Cui, Can

    2015-01-01

    Highlights: • TiO 2 /Ag 3 PO 4 /GO was synthesized with a facile two-step method. • TiO 2 /Ag 3 PO 4 /GO exhibit superior photocatalytic activity and stability. • TiO 2 /Ag 3 PO 4 /GO has dual-channel for photo-generated charges separation. • TiO 2 /Ag 3 PO 4 /GO composite reduces the consumption of Ag. - Abstract: A novel triple-component TiO 2 /Ag 3 PO 4 /graphene oxide (TiO 2 /Ag 3 PO 4 /GO) photocatalyst with dual channels for photo-generated charges separation has been synthesized to improve the photocatalytic activity and stability of Ag 3 PO 4 under visible light. The synthesis involved in-situ growth of Ag 3 PO 4 nanoparticles on GO sheets to form Ag 3 PO 4 /GO, and then deposited TiO 2 nanocrystals on the surface of Ag 3 PO 4 by hydrolysis of Ti(SO 4 ) 2 at low-temperature hydrothermal condition. The TiO 2 /Ag 3 PO 4 /GO exhibited superior photocatalytic activity and stability to bare Ag 3 PO 4 , TiO 2 /Ag 3 PO 4 and Ag 3 PO 4 /GO in degradation of Rhodamine B and phenol solutions under visible light. It is suggested that the photo-generated electrons in the conduction band of Ag 3 PO 4 can be quickly transferred to GO, while the holes in the valence band of Ag 3 PO 4 can be transferred to the valence band of TiO 2 . The dual transfer channels at the interfaces of TiO 2 /Ag 3 PO 4 /GO result in effective charges separation, leading to enhanced photocatalytic activity and stability. Furthermore, the content of noble metal Ag significantly reduces from 77 wt% in bare Ag 3 PO 4 to 55 wt% in the nanocomposite. The concept of establishing dual channels for charges separation in a triple-component heterostructure provides a promising way to develop photocatalysts with high efficiency

  11. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Measurement of wavefront distortions by the method of aperture sounding with spatially separated channels

    Prilepskiy, Boris V.; Alikhanov, Alexey N.; Berchenko, Evgeniy A.; Kiselev, Vladimir Yu; Narusbek, Ernest A.; Filatov, Aleksander S.

    2005-08-01

    Features of the formation of signals in wavefront sensors with the single-frequency light wave phase modulation and spatial separation of control channels are considered. Analysis is performed for sensors in which phase modulation is governed by a controlled element located in the pupil of the optical system of a sensor or in the focal plane of the objective of this system. Peculiarities of the signal formation for a tilted wavefront are considered separately for internal points of the exit pupil in the case of light wave phase modulation in the pupil. It is shown that a signal at the modulation frequency in these wavefront sensors for points located far from the pupil boundaries is determined by the wavefront curvature.

  12. Sparse distributed memory

    Denning, Peter J.

    1989-01-01

    Sparse distributed memory was proposed be Pentti Kanerva as a realizable architecture that could store large patterns and retrieve them based on partial matches with patterns representing current sensory inputs. This memory exhibits behaviors, both in theory and in experiment, that resemble those previously unapproached by machines - e.g., rapid recognition of faces or odors, discovery of new connections between seemingly unrelated ideas, continuation of a sequence of events when given a cue from the middle, knowing that one doesn't know, or getting stuck with an answer on the tip of one's tongue. These behaviors are now within reach of machines that can be incorporated into the computing systems of robots capable of seeing, talking, and manipulating. Kanerva's theory is a break with the Western rationalistic tradition, allowing a new interpretation of learning and cognition that respects biology and the mysteries of individual human beings.

  13. A density functional for sparse matter

    Langreth, D.C.; Lundqvist, Bengt; Chakarova-Kack, S.D.

    2009-01-01

    forces in molecules, to adsorbed molecules, like benzene, naphthalene, phenol and adenine on graphite, alumina and metals, to polymer and carbon nanotube (CNT) crystals, and hydrogen storage in graphite and metal-organic frameworks (MOFs), and to the structure of DNA and of DNA with intercalators......Sparse matter is abundant and has both strong local bonds and weak nonbonding forces, in particular nonlocal van der Waals (vdW) forces between atoms separated by empty space. It encompasses a broad spectrum of systems, like soft matter, adsorption systems and biostructures. Density-functional...... theory (DFT), long since proven successful for dense matter, seems now to have come to a point, where useful extensions to sparse matter are available. In particular, a functional form, vdW-DF (Dion et al 2004 Phys. Rev. Lett. 92 246401; Thonhauser et al 2007 Phys. Rev. B 76 125112), has been proposed...

  14. Improved Tensor-Based Singular Spectrum Analysis Based on Single Channel Blind Source Separation Algorithm and Its Application to Fault Diagnosis

    Dan Yang

    2017-04-01

    Full Text Available To solve the problem of multi-fault blind source separation (BSS in the case that the observed signals are under-determined, a novel approach for single channel blind source separation (SCBSS based on the improved tensor-based singular spectrum analysis (TSSA is proposed. As the most natural representation of high-dimensional data, tensor can preserve the intrinsic structure of the data to the maximum extent. Thus, TSSA method can be employed to extract the multi-fault features from the measured single-channel vibration signal. However, SCBSS based on TSSA still has some limitations, mainly including unsatisfactory convergence of TSSA in many cases and the number of source signals is hard to accurately estimate. Therefore, the improved TSSA algorithm based on canonical decomposition and parallel factors (CANDECOMP/PARAFAC weighted optimization, namely CP-WOPT, is proposed in this paper. CP-WOPT algorithm is applied to process the factor matrix using a first-order optimization approach instead of the original least square method in TSSA, so as to improve the convergence of this algorithm. In order to accurately estimate the number of the source signals in BSS, EMD-SVD-BIC (empirical mode decomposition—singular value decomposition—Bayesian information criterion method, instead of the SVD in the conventional TSSA, is introduced. To validate the proposed method, we applied it to the analysis of the numerical simulation signal and the multi-fault rolling bearing signals.

  15. Parallel Sparse Matrix - Vector Product

    Alexandersen, Joe; Lazarov, Boyan Stefanov; Dammann, Bernd

    This technical report contains a case study of a sparse matrix-vector product routine, implemented for parallel execution on a compute cluster with both pure MPI and hybrid MPI-OpenMP solutions. C++ classes for sparse data types were developed and the report shows how these class can be used...

  16. Sparse decompositions in 'incoherent' dictionaries

    Gribonval, R.; Nielsen, Morten

    2003-01-01

    a unique sparse representation in such a dictionary. In particular, it is proved that the result of Donoho and Huo, concerning the replacement of a combinatorial optimization problem with a linear programming problem when searching for sparse representations, has an analog for dictionaries that may...

  17. Efficient channel estimation in massive MIMO systems - a distributed approach

    Al-Naffouri, Tareq Y.

    2016-01-01

    We present two efficient algorithms for distributed estimation of channels in massive MIMO systems. The two cases of 1) generic, and 2) sparse channels is considered. The algorithms estimate the impulse response for each channel observed

  18. Consensus Convolutional Sparse Coding

    Choudhury, Biswarup

    2017-12-01

    Convolutional sparse coding (CSC) is a promising direction for unsupervised learning in computer vision. In contrast to recent supervised methods, CSC allows for convolutional image representations to be learned that are equally useful for high-level vision tasks and low-level image reconstruction and can be applied to a wide range of tasks without problem-specific retraining. Due to their extreme memory requirements, however, existing CSC solvers have so far been limited to low-dimensional problems and datasets using a handful of low-resolution example images at a time. In this paper, we propose a new approach to solving CSC as a consensus optimization problem, which lifts these limitations. By learning CSC features from large-scale image datasets for the first time, we achieve significant quality improvements in a number of imaging tasks. Moreover, the proposed method enables new applications in high-dimensional feature learning that has been intractable using existing CSC methods. This is demonstrated for a variety of reconstruction problems across diverse problem domains, including 3D multispectral demosaicing and 4D light field view synthesis.

  19. Consensus Convolutional Sparse Coding

    Choudhury, Biswarup

    2017-04-11

    Convolutional sparse coding (CSC) is a promising direction for unsupervised learning in computer vision. In contrast to recent supervised methods, CSC allows for convolutional image representations to be learned that are equally useful for high-level vision tasks and low-level image reconstruction and can be applied to a wide range of tasks without problem-specific retraining. Due to their extreme memory requirements, however, existing CSC solvers have so far been limited to low-dimensional problems and datasets using a handful of low-resolution example images at a time. In this paper, we propose a new approach to solving CSC as a consensus optimization problem, which lifts these limitations. By learning CSC features from large-scale image datasets for the first time, we achieve significant quality improvements in a number of imaging tasks. Moreover, the proposed method enables new applications in high dimensional feature learning that has been intractable using existing CSC methods. This is demonstrated for a variety of reconstruction problems across diverse problem domains, including 3D multispectral demosaickingand 4D light field view synthesis.

  20. Consensus Convolutional Sparse Coding

    Choudhury, Biswarup; Swanson, Robin; Heide, Felix; Wetzstein, Gordon; Heidrich, Wolfgang

    2017-01-01

    Convolutional sparse coding (CSC) is a promising direction for unsupervised learning in computer vision. In contrast to recent supervised methods, CSC allows for convolutional image representations to be learned that are equally useful for high-level vision tasks and low-level image reconstruction and can be applied to a wide range of tasks without problem-specific retraining. Due to their extreme memory requirements, however, existing CSC solvers have so far been limited to low-dimensional problems and datasets using a handful of low-resolution example images at a time. In this paper, we propose a new approach to solving CSC as a consensus optimization problem, which lifts these limitations. By learning CSC features from large-scale image datasets for the first time, we achieve significant quality improvements in a number of imaging tasks. Moreover, the proposed method enables new applications in high-dimensional feature learning that has been intractable using existing CSC methods. This is demonstrated for a variety of reconstruction problems across diverse problem domains, including 3D multispectral demosaicing and 4D light field view synthesis.

  1. Turbulent flows over sparse canopies

    Sharma, Akshath; García-Mayoral, Ricardo

    2018-04-01

    Turbulent flows over sparse and dense canopies exerting a similar drag force on the flow are investigated using Direct Numerical Simulations. The dense canopies are modelled using a homogeneous drag force, while for the sparse canopy, the geometry of the canopy elements is represented. It is found that on using the friction velocity based on the local shear at each height, the streamwise velocity fluctuations and the Reynolds stress within the sparse canopy are similar to those from a comparable smooth-wall case. In addition, when scaled with the local friction velocity, the intensity of the off-wall peak in the streamwise vorticity for sparse canopies also recovers a value similar to a smooth-wall. This indicates that the sparse canopy does not significantly disturb the near-wall turbulence cycle, but causes its rescaling to an intensity consistent with a lower friction velocity within the canopy. In comparison, the dense canopy is found to have a higher damping effect on the turbulent fluctuations. For the case of the sparse canopy, a peak in the spectral energy density of the wall-normal velocity, and Reynolds stress is observed, which may indicate the formation of Kelvin-Helmholtz-like instabilities. It is also found that a sparse canopy is better modelled by a homogeneous drag applied on the mean flow alone, and not the turbulent fluctuations.

  2. Sparse Regression by Projection and Sparse Discriminant Analysis

    Qi, Xin; Luo, Ruiyan; Carroll, Raymond J.; Zhao, Hongyu

    2015-01-01

    predictions. We introduce a new framework, regression by projection, and its sparse version to analyze high-dimensional data. The unique nature of this framework is that the directions of the regression coefficients are inferred first, and the lengths

  3. In Defense of Sparse Tracking: Circulant Sparse Tracker

    Zhang, Tianzhu; Bibi, Adel Aamer; Ghanem, Bernard

    2016-01-01

    Sparse representation has been introduced to visual tracking by finding the best target candidate with minimal reconstruction error within the particle filter framework. However, most sparse representation based trackers have high computational cost, less than promising tracking performance, and limited feature representation. To deal with the above issues, we propose a novel circulant sparse tracker (CST), which exploits circulant target templates. Because of the circulant structure property, CST has the following advantages: (1) It can refine and reduce particles using circular shifts of target templates. (2) The optimization can be efficiently solved entirely in the Fourier domain. (3) High dimensional features can be embedded into CST to significantly improve tracking performance without sacrificing much computation time. Both qualitative and quantitative evaluations on challenging benchmark sequences demonstrate that CST performs better than all other sparse trackers and favorably against state-of-the-art methods.

  4. In Defense of Sparse Tracking: Circulant Sparse Tracker

    Zhang, Tianzhu

    2016-12-13

    Sparse representation has been introduced to visual tracking by finding the best target candidate with minimal reconstruction error within the particle filter framework. However, most sparse representation based trackers have high computational cost, less than promising tracking performance, and limited feature representation. To deal with the above issues, we propose a novel circulant sparse tracker (CST), which exploits circulant target templates. Because of the circulant structure property, CST has the following advantages: (1) It can refine and reduce particles using circular shifts of target templates. (2) The optimization can be efficiently solved entirely in the Fourier domain. (3) High dimensional features can be embedded into CST to significantly improve tracking performance without sacrificing much computation time. Both qualitative and quantitative evaluations on challenging benchmark sequences demonstrate that CST performs better than all other sparse trackers and favorably against state-of-the-art methods.

  5. Unique battery with an active membrane separator having uniform physico-chemically functionalized ion channels and a method making the same

    Gerald, II, Rex E.; Ruscic, Katarina J [Chicago, IL; Sears, Devin N [Spruce Grove, CA; Smith, Luis J [Natick, MA; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL

    2012-02-21

    The invention relates to a unique battery having an active, porous membrane and method of making the same. More specifically the invention relates to a sealed battery system having a porous, metal oxide membrane with uniform, physicochemically functionalized ion channels capable of adjustable ionic interaction. The physicochemically-active porous membrane purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  6. Microfluidic curved-channel centrifuge for solution exchange of target microparticles and their simultaneous separation from bacteria.

    Bayat, Pouriya; Rezai, Pouya

    2018-05-21

    One of the common operations in sample preparation is to separate specific particles (e.g. target cells, embryos or microparticles) from non-target substances (e.g. bacteria) in a fluid and to wash them into clean buffers for further processing like detection (called solution exchange in this paper). For instance, solution exchange is widely needed in preparing fluidic samples for biosensing at the point-of-care and point-of-use, but still conducted via the use of cumbersome and time-consuming off-chip analyte washing and purification techniques. Existing small-scale and handheld active and passive devices for washing particles are often limited to very low throughputs or require external sources of energy. Here, we integrated Dean flow recirculation of two fluids in curved microchannels with selective inertial focusing of target particles to develop a microfluidic centrifuge device that can isolate specific particles (as surrogates for target analytes) from bacteria and wash them into a clean buffer at high throughput and efficiency. We could process micron-size particles at a flow rate of 1 mL min-1 and achieve throughputs higher than 104 particles per second. Our results reveal that the device is capable of singleplex solution exchange of 11 μm and 19 μm particles with efficiencies of 86 ± 2% and 93 ± 0.7%, respectively. A purity of 96 ± 2% was achieved in the duplex experiments where 11 μm particles were isolated from 4 μm particles. Application of our device in biological assays was shown by performing duplex experiments where 11 μm or 19 μm particles were isolated from an Escherichia coli bacterial suspension with purities of 91-98%. We envision that our technique will have applications in point-of-care devices for simultaneous purification and solution exchange of cells and embryos from smaller substances in high-volume suspensions at high throughput and efficiency.

  7. A dual-channel gas chromatography method for the quantitation of low and high concentrations of NF3 and CF4 to study membrane separation of the two compounds.

    Branken, D J; le Roux, J P; Krieg, H M; Lachmann, G

    2013-09-13

    A dual-channel gas chromatographic method is described in this paper that can be conveniently used for quantitation of NF3/CF4 mixtures with a thermal conductivity detector (TCD) on one channel for the quantitation of high-concentrations, and a pulsed discharge helium ionization detector (PDHID) on a second channel for the quantitation of low concentrations. It is shown that adequate separation is achieved on both channels with this dual single-column setup in which column switching as used for NF3/CF4 analysis in industrial chromatographic methods are not required, thus yielding an effective analysis method for laboratory-scale investigations. In addition, the use of packed columns with purified divinylbenzene-styrene co-polymers as the sole stationary phase yields satisfactory resolution between NF3 and CF4 at isothermal conditions of 30°C, with elution times of less than 8min on the TCD channel and less than 4min on the PDHID channel. Consequently, this method allows for reliable, straight-forward quantitation of NF3/CF4 mixtures, which is necessary when studying the commercially important problem of NF3 and CF4 separation by different methods. Therefore, the applicability of the method to studying membrane separation of NF3 and CF4 is briefly discussed and illustrated, for which the dual-channel setup is especially beneficial. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Language Recognition via Sparse Coding

    2016-09-08

    explanation is that sparse coding can achieve a near-optimal approximation of much complicated nonlinear relationship through local and piecewise linear...training examples, where x(i) ∈ RN is the ith example in the batch. Optionally, X can be normalized and whitened before sparse coding for better result...normalized input vectors are then ZCA- whitened [20]. Em- pirically, we choose ZCA- whitening over PCA- whitening , and there is no dimensionality reduction

  9. Dual-Channel, Molecular-Sieving Core/Shell ZIF@MOF Architectures as Engineered Fillers in Hybrid Membranes for Highly Selective CO2 Separation.

    Song, Zhuonan; Qiu, Fen; Zaia, Edmond W; Wang, Zhongying; Kunz, Martin; Guo, Jinghua; Brady, Michael; Mi, Baoxia; Urban, Jeffrey J

    2017-11-08

    A novel core/shell porous crystalline structure was prepared using a large pore metal organic framework (MOF, UiO-66-NH 2 , pore size, ∼ 0.6 nm) as core surrounded by a small pore zeolitic imidazolate framework (ZIF, ZIF-8, pore size, ∼ 0.4 nm) through a layer-by-layer deposition method and subsequently used as an engineered filler to construct hybrid polysulfone (PSF) membranes for CO 2 capture. Compared to traditional fillers utilizing only one type of porous material with rigid channels (either large or small), our custom designed core/shell fillers possess clear advantages via pore engineering: the large internal channels of the UiO-66-NH 2 MOFs create molecular highways to accelerate molecular transport through the membrane, while the thin shells with small pores (ZIF-8) or even smaller pores generated at the interface by the imperfect registry between the overlapping pores of ZIF and MOF enhance molecular sieving thus serving to distinguish slightly larger N 2 molecules (kinetic diameter, 0.364 nm) from smaller CO 2 molecules (kinetic diameter, 0.33 nm). The resultant core/shell ZIF@MOF and as-prepared hybrid PSF membranes were characterized by transmission electron microscopy, X-ray diffraction, wide-angle X-ray scattering, scanning electron microscopy, Fourier transform infrared, thermogravimetric analysis, differential scanning calorimetry, and contact angle tests. The dependence of the separation performance of the membranes on the MOF/ZIF ratio was also studied by varying the number of layers of ZIF coatings. The integrated PSF-ZIF@MOF hybrid membrane (40 wt % loading) with optimized ZIF coating cycles showed improved hydrophobicity and excellent CO 2 separation performance by simultaneously increasing CO 2 permeability (CO 2 permeability of 45.2 barrer, 710% higher than PSF membrane) and CO 2 /N 2 selectivity (CO 2 /N 2 selectivity of 39, 50% higher than PSF membrane), which is superior to most reported hybrid PSF membranes. The strategy of using

  10. A flexible framework for sparse simultaneous component based data integration

    Van Deun Katrijn

    2011-11-01

    Full Text Available Abstract 1 Background High throughput data are complex and methods that reveal structure underlying the data are most useful. Principal component analysis, frequently implemented as a singular value decomposition, is a popular technique in this respect. Nowadays often the challenge is to reveal structure in several sources of information (e.g., transcriptomics, proteomics that are available for the same biological entities under study. Simultaneous component methods are most promising in this respect. However, the interpretation of the principal and simultaneous components is often daunting because contributions of each of the biomolecules (transcripts, proteins have to be taken into account. 2 Results We propose a sparse simultaneous component method that makes many of the parameters redundant by shrinking them to zero. It includes principal component analysis, sparse principal component analysis, and ordinary simultaneous component analysis as special cases. Several penalties can be tuned that account in different ways for the block structure present in the integrated data. This yields known sparse approaches as the lasso, the ridge penalty, the elastic net, the group lasso, sparse group lasso, and elitist lasso. In addition, the algorithmic results can be easily transposed to the context of regression. Metabolomics data obtained with two measurement platforms for the same set of Escherichia coli samples are used to illustrate the proposed methodology and the properties of different penalties with respect to sparseness across and within data blocks. 3 Conclusion Sparse simultaneous component analysis is a useful method for data integration: First, simultaneous analyses of multiple blocks offer advantages over sequential and separate analyses and second, interpretation of the results is highly facilitated by their sparseness. The approach offered is flexible and allows to take the block structure in different ways into account. As such

  11. A flexible framework for sparse simultaneous component based data integration.

    Van Deun, Katrijn; Wilderjans, Tom F; van den Berg, Robert A; Antoniadis, Anestis; Van Mechelen, Iven

    2011-11-15

    High throughput data are complex and methods that reveal structure underlying the data are most useful. Principal component analysis, frequently implemented as a singular value decomposition, is a popular technique in this respect. Nowadays often the challenge is to reveal structure in several sources of information (e.g., transcriptomics, proteomics) that are available for the same biological entities under study. Simultaneous component methods are most promising in this respect. However, the interpretation of the principal and simultaneous components is often daunting because contributions of each of the biomolecules (transcripts, proteins) have to be taken into account. We propose a sparse simultaneous component method that makes many of the parameters redundant by shrinking them to zero. It includes principal component analysis, sparse principal component analysis, and ordinary simultaneous component analysis as special cases. Several penalties can be tuned that account in different ways for the block structure present in the integrated data. This yields known sparse approaches as the lasso, the ridge penalty, the elastic net, the group lasso, sparse group lasso, and elitist lasso. In addition, the algorithmic results can be easily transposed to the context of regression. Metabolomics data obtained with two measurement platforms for the same set of Escherichia coli samples are used to illustrate the proposed methodology and the properties of different penalties with respect to sparseness across and within data blocks. Sparse simultaneous component analysis is a useful method for data integration: First, simultaneous analyses of multiple blocks offer advantages over sequential and separate analyses and second, interpretation of the results is highly facilitated by their sparseness. The approach offered is flexible and allows to take the block structure in different ways into account. As such, structures can be found that are exclusively tied to one data platform

  12. Sparse BLIP: BLind Iterative Parallel imaging reconstruction using compressed sensing.

    She, Huajun; Chen, Rong-Rong; Liang, Dong; DiBella, Edward V R; Ying, Leslie

    2014-02-01

    To develop a sensitivity-based parallel imaging reconstruction method to reconstruct iteratively both the coil sensitivities and MR image simultaneously based on their prior information. Parallel magnetic resonance imaging reconstruction problem can be formulated as a multichannel sampling problem where solutions are sought analytically. However, the channel functions given by the coil sensitivities in parallel imaging are not known exactly and the estimation error usually leads to artifacts. In this study, we propose a new reconstruction algorithm, termed Sparse BLind Iterative Parallel, for blind iterative parallel imaging reconstruction using compressed sensing. The proposed algorithm reconstructs both the sensitivity functions and the image simultaneously from undersampled data. It enforces the sparseness constraint in the image as done in compressed sensing, but is different from compressed sensing in that the sensing matrix is unknown and additional constraint is enforced on the sensitivities as well. Both phantom and in vivo imaging experiments were carried out with retrospective undersampling to evaluate the performance of the proposed method. Experiments show improvement in Sparse BLind Iterative Parallel reconstruction when compared with Sparse SENSE, JSENSE, IRGN-TV, and L1-SPIRiT reconstructions with the same number of measurements. The proposed Sparse BLind Iterative Parallel algorithm reduces the reconstruction errors when compared to the state-of-the-art parallel imaging methods. Copyright © 2013 Wiley Periodicals, Inc.

  13. Shearlets and Optimally Sparse Approximations

    Kutyniok, Gitta; Lemvig, Jakob; Lim, Wang-Q

    2012-01-01

    Multivariate functions are typically governed by anisotropic features such as edges in images or shock fronts in solutions of transport-dominated equations. One major goal both for the purpose of compression as well as for an efficient analysis is the provision of optimally sparse approximations...... optimally sparse approximations of this model class in 2D as well as 3D. Even more, in contrast to all other directional representation systems, a theory for compactly supported shearlet frames was derived which moreover also satisfy this optimality benchmark. This chapter shall serve as an introduction...... to and a survey about sparse approximations of cartoon-like images by band-limited and also compactly supported shearlet frames as well as a reference for the state-of-the-art of this research field....

  14. Sparse Representations of Hyperspectral Images

    Swanson, Robin J.

    2015-01-01

    Hyperspectral image data has long been an important tool for many areas of sci- ence. The addition of spectral data yields significant improvements in areas such as object and image classification, chemical and mineral composition detection, and astronomy. Traditional capture methods for hyperspectral data often require each wavelength to be captured individually, or by sacrificing spatial resolution. Recently there have been significant improvements in snapshot hyperspectral captures using, in particular, compressed sensing methods. As we move to a compressed sensing image formation model the need for strong image priors to shape our reconstruction, as well as sparse basis become more important. Here we compare several several methods for representing hyperspectral images including learned three dimensional dictionaries, sparse convolutional coding, and decomposable nonlocal tensor dictionaries. Addi- tionally, we further explore their parameter space to identify which parameters provide the most faithful and sparse representations.

  15. Sparse Representations of Hyperspectral Images

    Swanson, Robin J.

    2015-11-23

    Hyperspectral image data has long been an important tool for many areas of sci- ence. The addition of spectral data yields significant improvements in areas such as object and image classification, chemical and mineral composition detection, and astronomy. Traditional capture methods for hyperspectral data often require each wavelength to be captured individually, or by sacrificing spatial resolution. Recently there have been significant improvements in snapshot hyperspectral captures using, in particular, compressed sensing methods. As we move to a compressed sensing image formation model the need for strong image priors to shape our reconstruction, as well as sparse basis become more important. Here we compare several several methods for representing hyperspectral images including learned three dimensional dictionaries, sparse convolutional coding, and decomposable nonlocal tensor dictionaries. Addi- tionally, we further explore their parameter space to identify which parameters provide the most faithful and sparse representations.

  16. Particle separator at Los Alamos

    Liska, D.J.

    1975-01-01

    The beam separator under development at LAMPF for the EPICS channel (Energetic Pion Channel and Spectrometer) is described. The separator operates on the electrostatic crossed-field principle but has several unusual features. (U.S.)

  17. Image understanding using sparse representations

    Thiagarajan, Jayaraman J; Turaga, Pavan; Spanias, Andreas

    2014-01-01

    Image understanding has been playing an increasingly crucial role in several inverse problems and computer vision. Sparse models form an important component in image understanding, since they emulate the activity of neural receptors in the primary visual cortex of the human brain. Sparse methods have been utilized in several learning problems because of their ability to provide parsimonious, interpretable, and efficient models. Exploiting the sparsity of natural signals has led to advances in several application areas including image compression, denoising, inpainting, compressed sensing, blin

  18. Partially ionized gas flow and heat transfer in the separation, reattachment, and redevelopment regions downstream of an abrupt circular channel expansion.

    Back, L. H.; Massier, P. F.; Roschke, E. J.

    1972-01-01

    Heat transfer and pressure measurements obtained in the separation, reattachment, and redevelopment regions along a tube and nozzle located downstream of an abrupt channel expansion are presented for a very high enthalpy flow of argon. The ionization energy fraction extended up to 0.6 at the tube inlet just downstream of the arc heater. Reattachment resulted from the growth of an instability in the vortex sheet-like shear layer between the central jet that discharged into the tube and the reverse flow along the wall at the lower Reynolds numbers, as indicated by water flow visualization studies which were found to dynamically model the high-temperature gas flow. A reasonably good prediction of the heat transfer in the reattachment region where the highest heat transfer occurred and in the redevelopment region downstream can be made by using existing laminar boundary layer theory for a partially ionized gas. In the experiments as much as 90 per cent of the inlet energy was lost by heat transfer to the tube and the nozzle wall.

  19. Galaxy redshift surveys with sparse sampling

    Chiang, Chi-Ting; Wullstein, Philipp; Komatsu, Eiichiro; Jee, Inh; Jeong, Donghui; Blanc, Guillermo A.; Ciardullo, Robin; Gronwall, Caryl; Hagen, Alex; Schneider, Donald P.; Drory, Niv; Fabricius, Maximilian; Landriau, Martin; Finkelstein, Steven; Jogee, Shardha; Cooper, Erin Mentuch; Tuttle, Sarah; Gebhardt, Karl; Hill, Gary J.

    2013-01-01

    Survey observations of the three-dimensional locations of galaxies are a powerful approach to measure the distribution of matter in the universe, which can be used to learn about the nature of dark energy, physics of inflation, neutrino masses, etc. A competitive survey, however, requires a large volume (e.g., V survey ∼ 10Gpc 3 ) to be covered, and thus tends to be expensive. A ''sparse sampling'' method offers a more affordable solution to this problem: within a survey footprint covering a given survey volume, V survey , we observe only a fraction of the volume. The distribution of observed regions should be chosen such that their separation is smaller than the length scale corresponding to the wavenumber of interest. Then one can recover the power spectrum of galaxies with precision expected for a survey covering a volume of V survey (rather than the volume of the sum of observed regions) with the number density of galaxies given by the total number of observed galaxies divided by V survey (rather than the number density of galaxies within an observed region). We find that regularly-spaced sampling yields an unbiased power spectrum with no window function effect, and deviations from regularly-spaced sampling, which are unavoidable in realistic surveys, introduce calculable window function effects and increase the uncertainties of the recovered power spectrum. On the other hand, we show that the two-point correlation function (pair counting) is not affected by sparse sampling. While we discuss the sparse sampling method within the context of the forthcoming Hobby-Eberly Telescope Dark Energy Experiment, the method is general and can be applied to other galaxy surveys

  20. Microwave-assisted grafting polymerization modification of nylon 6 capillary-channeled polymer fibers for enhanced weak cation exchange protein separations

    Jiang, Liuwei; Marcus, R. Kenneth, E-mail: marcusr@clemson.edu

    2017-02-15

    A weak cation exchange liquid chromatography stationary phase (nylon-COOH) was prepared by grafting polyacrylic acid on to native nylon 6 capillary-channeled polymer (C-CP) fibers via a microwave-assisted radical polymerization. To the best of our knowledge, this is the first study of applying microwave-assisted grafting polymerization to affect nylon material for protein separation. The C-CP fiber surfaces were characterized by attenuated total reflection (ATR) infrared spectroscopy and scanning electron microscope (SEM). The anticipated carbonyl peak at 1722.9 cm{sup −1} was found on the nylon-COOH fibers, but was not found on the native fiber, indicating the presence of the polyacrylic acid on nylon fibers after grafting. The nylon-COOH phase showed a ∼12× increase in lysozyme dynamic binding capacity (∼12 mg mL{sup −1}) when compared to the native fiber phase (∼1 mg mL{sup −1}). The loading capacity of the nylon-COOH phase is nearly independent of the lysozyme loading concentration (0.05–1 mg mL{sup −1}) and the mobile phase linear velocity (7.3–73 mm s{sup −1}). The reproducibility of the lysozyme recovery from the nylon-COOH (RSD = 0.3%, n = 10) and the batch-to-batch variability in the functionalization (RSD = 3%, n = 5) were also investigated, revealing very high levels of consistency. Fast baseline separations of myoglobin, α-chymotrypsinogen A, cytochrome c and lysozyme were achieved using the nylon-COOH column. It was found that a 5× increase in the mobile phase linear velocity (7.3-to-36.5 mm s{sup −1}) had little effect on the separation resolution. The microwave-assisted grafting polymerization has great potential as a generalized surface modification methodology across the applications of C-CP fibers. - Highlights: • A microwave-assisted grafting method to attach acrylic acid is described for the first time for chromatographic phases. • A high-density, weak cation exchange surface is created on a nylon

  1. Sparse PCA with Oracle Property.

    Gu, Quanquan; Wang, Zhaoran; Liu, Han

    In this paper, we study the estimation of the k -dimensional sparse principal subspace of covariance matrix Σ in the high-dimensional setting. We aim to recover the oracle principal subspace solution, i.e., the principal subspace estimator obtained assuming the true support is known a priori. To this end, we propose a family of estimators based on the semidefinite relaxation of sparse PCA with novel regularizations. In particular, under a weak assumption on the magnitude of the population projection matrix, one estimator within this family exactly recovers the true support with high probability, has exact rank- k , and attains a [Formula: see text] statistical rate of convergence with s being the subspace sparsity level and n the sample size. Compared to existing support recovery results for sparse PCA, our approach does not hinge on the spiked covariance model or the limited correlation condition. As a complement to the first estimator that enjoys the oracle property, we prove that, another estimator within the family achieves a sharper statistical rate of convergence than the standard semidefinite relaxation of sparse PCA, even when the previous assumption on the magnitude of the projection matrix is violated. We validate the theoretical results by numerical experiments on synthetic datasets.

  2. Sparse Regression by Projection and Sparse Discriminant Analysis

    Qi, Xin

    2015-04-03

    © 2015, © American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America. Recent years have seen active developments of various penalized regression methods, such as LASSO and elastic net, to analyze high-dimensional data. In these approaches, the direction and length of the regression coefficients are determined simultaneously. Due to the introduction of penalties, the length of the estimates can be far from being optimal for accurate predictions. We introduce a new framework, regression by projection, and its sparse version to analyze high-dimensional data. The unique nature of this framework is that the directions of the regression coefficients are inferred first, and the lengths and the tuning parameters are determined by a cross-validation procedure to achieve the largest prediction accuracy. We provide a theoretical result for simultaneous model selection consistency and parameter estimation consistency of our method in high dimension. This new framework is then generalized such that it can be applied to principal components analysis, partial least squares, and canonical correlation analysis. We also adapt this framework for discriminant analysis. Compared with the existing methods, where there is relatively little control of the dependency among the sparse components, our method can control the relationships among the components. We present efficient algorithms and related theory for solving the sparse regression by projection problem. Based on extensive simulations and real data analysis, we demonstrate that our method achieves good predictive performance and variable selection in the regression setting, and the ability to control relationships between the sparse components leads to more accurate classification. In supplementary materials available online, the details of the algorithms and theoretical proofs, and R codes for all simulation studies are provided.

  3. Miniature Laboratory for Detecting Sparse Biomolecules

    Lin, Ying; Yu, Nan

    2005-01-01

    A miniature laboratory system has been proposed for use in the field to detect sparsely distributed biomolecules. By emphasizing concentration and sorting of specimens prior to detection, the underlying system concept would make it possible to attain high detection sensitivities without the need to develop ever more sensitive biosensors. The original purpose of the proposal is to aid the search for signs of life on a remote planet by enabling the detection of specimens as sparse as a few molecules or microbes in a large amount of soil, dust, rocks, water/ice, or other raw sample material. Some version of the system could prove useful on Earth for remote sensing of biological contamination, including agents of biological warfare. Processing in this system would begin with dissolution of the raw sample material in a sample-separation vessel. The solution in the vessel would contain floating microscopic magnetic beads coated with substances that could engage in chemical reactions with various target functional groups that are parts of target molecules. The chemical reactions would cause the targeted molecules to be captured on the surfaces of the beads. By use of a controlled magnetic field, the beads would be concentrated in a specified location in the vessel. Once the beads were thus concentrated, the rest of the solution would be discarded. This procedure would obviate the filtration steps and thereby also eliminate the filter-clogging difficulties of typical prior sample-concentration schemes. For ferrous dust/soil samples, the dissolution would be done first in a separate vessel before the solution is transferred to the microbead-containing vessel.

  4. High Order Tensor Formulation for Convolutional Sparse Coding

    Bibi, Adel Aamer

    2017-12-25

    Convolutional sparse coding (CSC) has gained attention for its successful role as a reconstruction and a classification tool in the computer vision and machine learning community. Current CSC methods can only reconstruct singlefeature 2D images independently. However, learning multidimensional dictionaries and sparse codes for the reconstruction of multi-dimensional data is very important, as it examines correlations among all the data jointly. This provides more capacity for the learned dictionaries to better reconstruct data. In this paper, we propose a generic and novel formulation for the CSC problem that can handle an arbitrary order tensor of data. Backed with experimental results, our proposed formulation can not only tackle applications that are not possible with standard CSC solvers, including colored video reconstruction (5D- tensors), but it also performs favorably in reconstruction with much fewer parameters as compared to naive extensions of standard CSC to multiple features/channels.

  5. CHANNEL ESTIMATION TECHNIQUE

    2015-01-01

    A method includes determining a sequence of first coefficient estimates of a communication channel based on a sequence of pilots arranged according to a known pilot pattern and based on a receive signal, wherein the receive signal is based on the sequence of pilots transmitted over the communicat......A method includes determining a sequence of first coefficient estimates of a communication channel based on a sequence of pilots arranged according to a known pilot pattern and based on a receive signal, wherein the receive signal is based on the sequence of pilots transmitted over...... the communication channel. The method further includes determining a sequence of second coefficient estimates of the communication channel based on a decomposition of the first coefficient estimates in a dictionary matrix and a sparse vector of the second coefficient estimates, the dictionary matrix including...... filter characteristics of at least one known transceiver filter arranged in the communication channel....

  6. A novel integrated circuit for semiconductor radiation detectors with sparse readout

    Zhang Yacong; Chen Zhognjian; Lu Wengao; Zhao Baoying; Ji Lijiu

    2008-01-01

    A novel fully integrated CMOS readout circuit for semiconductor radiation detector with sparse readout is presented. The new sparse scheme is: when one channel is being read out, the trigger signal from other channels is delayed and then processed. Therefore, the dead time is reduced and so is the error rate. Besides sparse readout, sequential readout is also allowed, which means the analog voltages and addresses of all the channels are read out sequentially once there is a channel triggered. The circuit comprises Charge Sensitive Amplifier (CSA), pulse shaper, peak detect and hold circuit, and digital logic. A test chip of four channels designed in a 0.5 μ DPTM CMOS technology has been taped out. The results of post simulation indicate that the gain is 79.3 mV/fC with a linearity of 99.92%. The power dissipation is 4 mW per channel. Theory analysis and calculation shows that the error probability is approximately 2.5%, which means a reduction of about 37% is obtained compared with the traditional scanning scheme, assuming a 16-channel system with a particle rate of 100 k/s per channel. (authors)

  7. Sparse Matrices in Frame Theory

    Lemvig, Jakob; Krahmer, Felix; Kutyniok, Gitta

    2014-01-01

    Frame theory is closely intertwined with signal processing through a canon of methodologies for the analysis of signals using (redundant) linear measurements. The canonical dual frame associated with a frame provides a means for reconstruction by a least squares approach, but other dual frames...... yield alternative reconstruction procedures. The novel paradigm of sparsity has recently entered the area of frame theory in various ways. Of those different sparsity perspectives, we will focus on the situations where frames and (not necessarily canonical) dual frames can be written as sparse matrices...

  8. Diffusion Indexes with Sparse Loadings

    Kristensen, Johannes Tang

    The use of large-dimensional factor models in forecasting has received much attention in the literature with the consensus being that improvements on forecasts can be achieved when comparing with standard models. However, recent contributions in the literature have demonstrated that care needs...... to the problem by using the LASSO as a variable selection method to choose between the possible variables and thus obtain sparse loadings from which factors or diffusion indexes can be formed. This allows us to build a more parsimonious factor model which is better suited for forecasting compared...... it to be an important alternative to PC....

  9. Sparse Linear Identifiable Multivariate Modeling

    Henao, Ricardo; Winther, Ole

    2011-01-01

    and bench-marked on artificial and real biological data sets. SLIM is closest in spirit to LiNGAM (Shimizu et al., 2006), but differs substantially in inference, Bayesian network structure learning and model comparison. Experimentally, SLIM performs equally well or better than LiNGAM with comparable......In this paper we consider sparse and identifiable linear latent variable (factor) and linear Bayesian network models for parsimonious analysis of multivariate data. We propose a computationally efficient method for joint parameter and model inference, and model comparison. It consists of a fully...

  10. Programming for Sparse Minimax Optimization

    Jonasson, K.; Madsen, Kaj

    1994-01-01

    We present an algorithm for nonlinear minimax optimization which is well suited for large and sparse problems. The method is based on trust regions and sequential linear programming. On each iteration, a linear minimax problem is solved for a basic step. If necessary, this is followed...... by the determination of a minimum norm corrective step based on a first-order Taylor approximation. No Hessian information needs to be stored. Global convergence is proved. This new method has been extensively tested and compared with other methods, including two well known codes for nonlinear programming...

  11. Dynamic Representations of Sparse Graphs

    Brodal, Gerth Stølting; Fagerberg, Rolf

    1999-01-01

    We present a linear space data structure for maintaining graphs with bounded arboricity—a large class of sparse graphs containing e.g. planar graphs and graphs of bounded treewidth—under edge insertions, edge deletions, and adjacency queries. The data structure supports adjacency queries in worst...... case O(c) time, and edge insertions and edge deletions in amortized O(1) and O(c+log n) time, respectively, where n is the number of nodes in the graph, and c is the bound on the arboricity....

  12. Dentate Gyrus circuitry features improve performance of sparse approximation algorithms.

    Panagiotis C Petrantonakis

    Full Text Available Memory-related activity in the Dentate Gyrus (DG is characterized by sparsity. Memory representations are seen as activated neuronal populations of granule cells, the main encoding cells in DG, which are estimated to engage 2-4% of the total population. This sparsity is assumed to enhance the ability of DG to perform pattern separation, one of the most valuable contributions of DG during memory formation. In this work, we investigate how features of the DG such as its excitatory and inhibitory connectivity diagram can be used to develop theoretical algorithms performing Sparse Approximation, a widely used strategy in the Signal Processing field. Sparse approximation stands for the algorithmic identification of few components from a dictionary that approximate a certain signal. The ability of DG to achieve pattern separation by sparsifing its representations is exploited here to improve the performance of the state of the art sparse approximation algorithm "Iterative Soft Thresholding" (IST by adding new algorithmic features inspired by the DG circuitry. Lateral inhibition of granule cells, either direct or indirect, via mossy cells, is shown to enhance the performance of the IST. Apart from revealing the potential of DG-inspired theoretical algorithms, this work presents new insights regarding the function of particular cell types in the pattern separation task of the DG.

  13. THIRD PRINCIPLE ISSUE OF FUNCTIONAL REHABILITATION: SYSTEMIC RESPONSE TO THE CHANGE OF THE ACTIVITY OF SEPARATE ACUPUNCTURAL CHANNELS AND ITS DAY'S DYNAMIC

    D. Makats

    2015-12-01

    Вінницька філія Державного підприємства Український НДІ медицини транспорту МОЗ України   Abstract The following information provides the specifics of systemic dependency on the activity of separate traditional channels. Its day’s dynamics is illustrated on the example of separate functional systems. Key words: Zhenjiu therapy, acupunctural channels, functional-vegetative system of the human.   Реферат Наводиться специфіка системної залежності від активності окремих традиційних каналів. Показана її добова динаміка на прикладі окремих функціональних систем. Ключові слова: Чжень-цзю терапія, акупунктурні канали, функціонально-вегетативна система людини.   Реферат Рассмотрена специфика системной зависимости при возбуждении и угнетении активности отдельных акупунктурных каналов. Обращено внимание на феномен суточной синхронно-асинхронной динамики. Ключевые слова: Чжень-цзю терапия, акупунктурные каналы, функционально-вегетативная система человека.

  14. A Fast Iterative Bayesian Inference Algorithm for Sparse Channel Estimation

    Pedersen, Niels Lovmand; Manchón, Carles Navarro; Fleury, Bernard Henri

    2013-01-01

    representation of the Bessel K probability density function; a highly efficient, fast iterative Bayesian inference method is then applied to the proposed model. The resulting estimator outperforms other state-of-the-art Bayesian and non-Bayesian estimators, either by yielding lower mean squared estimation error...

  15. Sparse linear models: Variational approximate inference and Bayesian experimental design

    Seeger, Matthias W

    2009-01-01

    A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian posterior contains useful information far beyond its mode, which can be used to drive methods for sampling optimization (active learning), feature relevance ranking, or hyperparameter estimation, if only this representation of uncertainty can be approximated in a tractable manner. In this paper, we review recent results for variational sparse inference, and show that they share underlying computational primitives. We discuss how sampling optimization can be implemented as sequential Bayesian experimental design. While there has been tremendous recent activity to develop sparse estimation, little attendance has been given to sparse approximate inference. In this paper, we argue that many problems in practice, such as compressive sensing for real-world image reconstruction, are served much better by proper uncertainty approximations than by ever more aggressive sparse estimation algorithms. Moreover, since some variational inference methods have been given strong convex optimization characterizations recently, theoretical analysis may become possible, promising new insights into nonlinear experimental design.

  16. Sparse linear models: Variational approximate inference and Bayesian experimental design

    Seeger, Matthias W [Saarland University and Max Planck Institute for Informatics, Campus E1.4, 66123 Saarbruecken (Germany)

    2009-12-01

    A wide range of problems such as signal reconstruction, denoising, source separation, feature selection, and graphical model search are addressed today by posterior maximization for linear models with sparsity-favouring prior distributions. The Bayesian posterior contains useful information far beyond its mode, which can be used to drive methods for sampling optimization (active learning), feature relevance ranking, or hyperparameter estimation, if only this representation of uncertainty can be approximated in a tractable manner. In this paper, we review recent results for variational sparse inference, and show that they share underlying computational primitives. We discuss how sampling optimization can be implemented as sequential Bayesian experimental design. While there has been tremendous recent activity to develop sparse estimation, little attendance has been given to sparse approximate inference. In this paper, we argue that many problems in practice, such as compressive sensing for real-world image reconstruction, are served much better by proper uncertainty approximations than by ever more aggressive sparse estimation algorithms. Moreover, since some variational inference methods have been given strong convex optimization characterizations recently, theoretical analysis may become possible, promising new insights into nonlinear experimental design.

  17. Sparse principal component analysis in medical shape modeling

    Sjöstrand, Karl; Stegmann, Mikkel B.; Larsen, Rasmus

    2006-03-01

    Principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable is a linear combination of all original variables, sparse PCA (SPCA) aims at producing easily interpreted models through sparse loadings, i.e. each new variable is a linear combination of a subset of the original variables. One of the aims of using SPCA is the possible separation of the results into isolated and easily identifiable effects. This article introduces SPCA for shape analysis in medicine. Results for three different data sets are given in relation to standard PCA and sparse PCA by simple thresholding of small loadings. Focus is on a recent algorithm for computing sparse principal components, but a review of other approaches is supplied as well. The SPCA algorithm has been implemented using Matlab and is available for download. The general behavior of the algorithm is investigated, and strengths and weaknesses are discussed. The original report on the SPCA algorithm argues that the ordering of modes is not an issue. We disagree on this point and propose several approaches to establish sensible orderings. A method that orders modes by decreasing variance and maximizes the sum of variances for all modes is presented and investigated in detail.

  18. Color normalization of histology slides using graph regularized sparse NMF

    Sha, Lingdao; Schonfeld, Dan; Sethi, Amit

    2017-03-01

    Computer based automatic medical image processing and quantification are becoming popular in digital pathology. However, preparation of histology slides can vary widely due to differences in staining equipment, procedures and reagents, which can reduce the accuracy of algorithms that analyze their color and texture information. To re- duce the unwanted color variations, various supervised and unsupervised color normalization methods have been proposed. Compared with supervised color normalization methods, unsupervised color normalization methods have advantages of time and cost efficient and universal applicability. Most of the unsupervised color normaliza- tion methods for histology are based on stain separation. Based on the fact that stain concentration cannot be negative and different parts of the tissue absorb different stains, nonnegative matrix factorization (NMF), and particular its sparse version (SNMF), are good candidates for stain separation. However, most of the existing unsupervised color normalization method like PCA, ICA, NMF and SNMF fail to consider important information about sparse manifolds that its pixels occupy, which could potentially result in loss of texture information during color normalization. Manifold learning methods like Graph Laplacian have proven to be very effective in interpreting high-dimensional data. In this paper, we propose a novel unsupervised stain separation method called graph regularized sparse nonnegative matrix factorization (GSNMF). By considering the sparse prior of stain concentration together with manifold information from high-dimensional image data, our method shows better performance in stain color deconvolution than existing unsupervised color deconvolution methods, especially in keeping connected texture information. To utilized the texture information, we construct a nearest neighbor graph between pixels within a spatial area of an image based on their distances using heat kernal in lαβ space. The

  19. Image fusion using sparse overcomplete feature dictionaries

    Brumby, Steven P.; Bettencourt, Luis; Kenyon, Garrett T.; Chartrand, Rick; Wohlberg, Brendt

    2015-10-06

    Approaches for deciding what individuals in a population of visual system "neurons" are looking for using sparse overcomplete feature dictionaries are provided. A sparse overcomplete feature dictionary may be learned for an image dataset and a local sparse representation of the image dataset may be built using the learned feature dictionary. A local maximum pooling operation may be applied on the local sparse representation to produce a translation-tolerant representation of the image dataset. An object may then be classified and/or clustered within the translation-tolerant representation of the image dataset using a supervised classification algorithm and/or an unsupervised clustering algorithm.

  20. Sparse Image Reconstruction in Computed Tomography

    Jørgensen, Jakob Sauer

    In recent years, increased focus on the potentially harmful effects of x-ray computed tomography (CT) scans, such as radiation-induced cancer, has motivated research on new low-dose imaging techniques. Sparse image reconstruction methods, as studied for instance in the field of compressed sensing...... applications. This thesis takes a systematic approach toward establishing quantitative understanding of conditions for sparse reconstruction to work well in CT. A general framework for analyzing sparse reconstruction methods in CT is introduced and two sets of computational tools are proposed: 1...... contributions to a general set of computational characterization tools. Thus, the thesis contributions help advance sparse reconstruction methods toward routine use in...

  1. Wind Noise Reduction using Non-negative Sparse Coding

    Schmidt, Mikkel N.; Larsen, Jan; Hsiao, Fu-Tien

    2007-01-01

    We introduce a new speaker independent method for reducing wind noise in single-channel recordings of noisy speech. The method is based on non-negative sparse coding and relies on a wind noise dictionary which is estimated from an isolated noise recording. We estimate the parameters of the model ...... and discuss their sensitivity. We then compare the algorithm with the classical spectral subtraction method and the Qualcomm-ICSI-OGI noise reduction method. We optimize the sound quality in terms of signal-to-noise ratio and provide results on a noisy speech recognition task....

  2. When sparse coding meets ranking: a joint framework for learning sparse codes and ranking scores

    Wang, Jim Jing-Yan; Cui, Xuefeng; Yu, Ge; Guo, Lili; Gao, Xin

    2017-01-01

    Sparse coding, which represents a data point as a sparse reconstruction code with regard to a dictionary, has been a popular data representation method. Meanwhile, in database retrieval problems, learning the ranking scores from data points plays

  3. Neural Network for Sparse Reconstruction

    Qingfa Li

    2014-01-01

    Full Text Available We construct a neural network based on smoothing approximation techniques and projected gradient method to solve a kind of sparse reconstruction problems. Neural network can be implemented by circuits and can be seen as an important method for solving optimization problems, especially large scale problems. Smoothing approximation is an efficient technique for solving nonsmooth optimization problems. We combine these two techniques to overcome the difficulties of the choices of the step size in discrete algorithms and the item in the set-valued map of differential inclusion. In theory, the proposed network can converge to the optimal solution set of the given problem. Furthermore, some numerical experiments show the effectiveness of the proposed network in this paper.

  4. Diffusion Indexes With Sparse Loadings

    Kristensen, Johannes Tang

    2017-01-01

    The use of large-dimensional factor models in forecasting has received much attention in the literature with the consensus being that improvements on forecasts can be achieved when comparing with standard models. However, recent contributions in the literature have demonstrated that care needs...... to the problem by using the least absolute shrinkage and selection operator (LASSO) as a variable selection method to choose between the possible variables and thus obtain sparse loadings from which factors or diffusion indexes can be formed. This allows us to build a more parsimonious factor model...... in forecasting accuracy and thus find it to be an important alternative to PC. Supplementary materials for this article are available online....

  5. Sparse and stable Markowitz portfolios.

    Brodie, Joshua; Daubechies, Ingrid; De Mol, Christine; Giannone, Domenico; Loris, Ignace

    2009-07-28

    We consider the problem of portfolio selection within the classical Markowitz mean-variance framework, reformulated as a constrained least-squares regression problem. We propose to add to the objective function a penalty proportional to the sum of the absolute values of the portfolio weights. This penalty regularizes (stabilizes) the optimization problem, encourages sparse portfolios (i.e., portfolios with only few active positions), and allows accounting for transaction costs. Our approach recovers as special cases the no-short-positions portfolios, but does allow for short positions in limited number. We implement this methodology on two benchmark data sets constructed by Fama and French. Using only a modest amount of training data, we construct portfolios whose out-of-sample performance, as measured by Sharpe ratio, is consistently and significantly better than that of the naïve evenly weighted portfolio.

  6. SPARSE FARADAY ROTATION MEASURE SYNTHESIS

    Andrecut, M.; Stil, J. M.; Taylor, A. R.

    2012-01-01

    Faraday rotation measure synthesis is a method for analyzing multichannel polarized radio emissions, and it has emerged as an important tool in the study of Galactic and extragalactic magnetic fields. The method requires the recovery of the Faraday dispersion function from measurements restricted to limited wavelength ranges, which is an ill-conditioned deconvolution problem. Here, we discuss a recovery method that assumes a sparse approximation of the Faraday dispersion function in an overcomplete dictionary of functions. We discuss the general case when both thin and thick components are included in the model, and we present the implementation of a greedy deconvolution algorithm. We illustrate the method with several numerical simulations that emphasize the effect of the covered range and sampling resolution in the Faraday depth space, and the effect of noise on the observed data.

  7. Robust and Secure Watermarking Using Sparse Information of Watermark for Biometric Data Protection

    Rohit M Thanki

    2016-08-01

    Full Text Available Biometric based human authentication system is used for security purpose in many organizations in the present world. This biometric authentication system has several vulnerable points. Two of vulnerable points are protection of biometric templates at system database and protection of biometric templates at communication channel between two modules of biometric authentication systems. In this paper proposed a robust watermarking scheme using the sparse information of watermark biometric to secure vulnerable point like protection of biometric templates at the communication channel of biometric authentication systems. A compressive sensing theory procedure is used for generation of sparse information on watermark biometric data using detail wavelet coefficients. Then sparse information of watermark biometric data is embedded into DCT coefficients of host biometric data. This proposed scheme is robust to common signal processing and geometric attacks like JPEG compression, adding noise, filtering, and cropping, histogram equalization. This proposed scheme has more advantages and high quality measures compared to existing schemes in the literature.

  8. Numerical solution of large sparse linear systems

    Meurant, Gerard; Golub, Gene.

    1982-02-01

    This note is based on one of the lectures given at the 1980 CEA-EDF-INRIA Numerical Analysis Summer School whose aim is the study of large sparse linear systems. The main topics are solving least squares problems by orthogonal transformation, fast Poisson solvers and solution of sparse linear system by iterative methods with a special emphasis on preconditioned conjuguate gradient method [fr

  9. Sparse seismic imaging using variable projection

    Aravkin, Aleksandr Y.; Tu, Ning; van Leeuwen, Tristan

    2013-01-01

    We consider an important class of signal processing problems where the signal of interest is known to be sparse, and can be recovered from data given auxiliary information about how the data was generated. For example, a sparse Green's function may be recovered from seismic experimental data using

  10. Example-Based Image Colorization Using Locality Consistent Sparse Representation.

    Bo Li; Fuchen Zhao; Zhuo Su; Xiangguo Liang; Yu-Kun Lai; Rosin, Paul L

    2017-11-01

    Image colorization aims to produce a natural looking color image from a given gray-scale image, which remains a challenging problem. In this paper, we propose a novel example-based image colorization method exploiting a new locality consistent sparse representation. Given a single reference color image, our method automatically colorizes the target gray-scale image by sparse pursuit. For efficiency and robustness, our method operates at the superpixel level. We extract low-level intensity features, mid-level texture features, and high-level semantic features for each superpixel, which are then concatenated to form its descriptor. The collection of feature vectors for all the superpixels from the reference image composes the dictionary. We formulate colorization of target superpixels as a dictionary-based sparse reconstruction problem. Inspired by the observation that superpixels with similar spatial location and/or feature representation are likely to match spatially close regions from the reference image, we further introduce a locality promoting regularization term into the energy formulation, which substantially improves the matching consistency and subsequent colorization results. Target superpixels are colorized based on the chrominance information from the dominant reference superpixels. Finally, to further improve coherence while preserving sharpness, we develop a new edge-preserving filter for chrominance channels with the guidance from the target gray-scale image. To the best of our knowledge, this is the first work on sparse pursuit image colorization from single reference images. Experimental results demonstrate that our colorization method outperforms the state-of-the-art methods, both visually and quantitatively using a user study.

  11. Separation of Acetylene from Carbon Dioxide and Ethylene by a Water-Stable Microporous Metal-Organic Framework with Aligned Imidazolium Groups inside the Channels.

    Lee, Jaechul; Chuah, Chong Yang; Kim, Jaheon; Kim, Youngsuk; Ko, Nakeun; Seo, Younggyu; Kim, Kimoon; Bae, Tae Hyun; Lee, Eunsung

    2018-04-24

    Separation of acetylene from carbon dioxide and ethylene is challenging in view of their similar sizes and physical properties. Metal-organic frameworks (MOFs) in general are strong candidates for these separations owing to the presence of functional pore surfaces that can selectively capture a specific target molecule. Here, we report a novel 3D microporous cationic framework named JCM-1. This structure possesses imidazolium functional groups on the pore surfaces and pyrazolate as a metal binding group, which is well known to form strong metal-to-ligand bonds. The selective sorption of acetylene over carbon dioxide and ethylene in JCM-1 was successfully demonstrated by equilibrium gas adsorption analysis as well as dynamic breakthrough measurement. Furthermore, its excellent hydrolytic stability makes the separation processes highly recyclable without a substantial loss in acetylene uptake capacity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Apparatus for diffusion separation

    Nierenberg, W.A.

    1976-01-01

    A diffuser separator apparatus is described which comprises a plurality of flow channels in a single stage. Each of said channels has an inlet port and an outlet port and a constant cross sectional area between said ports. At least a portion of the defining surface of each of said channels is a diffusion separation membrane, and each of said channels is a different cross sectional area. Means are provided for connecting said channels in series so that each successive channel of said series has a smaller cross sectional area than the previous channel of said series. Also provided are a source of gaseous mixture, individual means for flowing said gaseous mixture to the inlet port of each of said channels, gas receiving and analyzing means, individual means for flowing gas passing from each of said outlet ports and means for flowing gas passing through said membranes to said receiving and analyzing means, and individual means for connecting the outlet port of each channel with the inlet port of the channel having the next smaller cross sectional area

  13. Orthogonal sparse linear discriminant analysis

    Liu, Zhonghua; Liu, Gang; Pu, Jiexin; Wang, Xiaohong; Wang, Haijun

    2018-03-01

    Linear discriminant analysis (LDA) is a linear feature extraction approach, and it has received much attention. On the basis of LDA, researchers have done a lot of research work on it, and many variant versions of LDA were proposed. However, the inherent problem of LDA cannot be solved very well by the variant methods. The major disadvantages of the classical LDA are as follows. First, it is sensitive to outliers and noises. Second, only the global discriminant structure is preserved, while the local discriminant information is ignored. In this paper, we present a new orthogonal sparse linear discriminant analysis (OSLDA) algorithm. The k nearest neighbour graph is first constructed to preserve the locality discriminant information of sample points. Then, L2,1-norm constraint on the projection matrix is used to act as loss function, which can make the proposed method robust to outliers in data points. Extensive experiments have been performed on several standard public image databases, and the experiment results demonstrate the performance of the proposed OSLDA algorithm.

  14. Spectra of sparse random matrices

    Kuehn, Reimer

    2008-01-01

    We compute the spectral density for ensembles of sparse symmetric random matrices using replica. Our formulation of the replica-symmetric ansatz shares the symmetries of that suggested in a seminal paper by Rodgers and Bray (symmetry with respect to permutation of replica and rotation symmetry in the space of replica), but uses a different representation in terms of superpositions of Gaussians. It gives rise to a pair of integral equations which can be solved by a stochastic population-dynamics algorithm. Remarkably our representation allows us to identify pure-point contributions to the spectral density related to the existence of normalizable eigenstates. Our approach is not restricted to matrices defined on graphs with Poissonian degree distribution. Matrices defined on regular random graphs or on scale-free graphs, are easily handled. We also look at matrices with row constraints such as discrete graph Laplacians. Our approach naturally allows us to unfold the total density of states into contributions coming from vertices of different local coordinations and an example of such an unfolding is presented. Our results are well corroborated by numerical diagonalization studies of large finite random matrices

  15. Discriminative sparse coding on multi-manifolds

    Wang, J.J.-Y.; Bensmail, H.; Yao, N.; Gao, Xin

    2013-01-01

    Sparse coding has been popularly used as an effective data representation method in various applications, such as computer vision, medical imaging and bioinformatics. However, the conventional sparse coding algorithms and their manifold-regularized variants (graph sparse coding and Laplacian sparse coding), learn codebooks and codes in an unsupervised manner and neglect class information that is available in the training set. To address this problem, we propose a novel discriminative sparse coding method based on multi-manifolds, that learns discriminative class-conditioned codebooks and sparse codes from both data feature spaces and class labels. First, the entire training set is partitioned into multiple manifolds according to the class labels. Then, we formulate the sparse coding as a manifold-manifold matching problem and learn class-conditioned codebooks and codes to maximize the manifold margins of different classes. Lastly, we present a data sample-manifold matching-based strategy to classify the unlabeled data samples. Experimental results on somatic mutations identification and breast tumor classification based on ultrasonic images demonstrate the efficacy of the proposed data representation and classification approach. 2013 The Authors. All rights reserved.

  16. Discriminative sparse coding on multi-manifolds

    Wang, J.J.-Y.

    2013-09-26

    Sparse coding has been popularly used as an effective data representation method in various applications, such as computer vision, medical imaging and bioinformatics. However, the conventional sparse coding algorithms and their manifold-regularized variants (graph sparse coding and Laplacian sparse coding), learn codebooks and codes in an unsupervised manner and neglect class information that is available in the training set. To address this problem, we propose a novel discriminative sparse coding method based on multi-manifolds, that learns discriminative class-conditioned codebooks and sparse codes from both data feature spaces and class labels. First, the entire training set is partitioned into multiple manifolds according to the class labels. Then, we formulate the sparse coding as a manifold-manifold matching problem and learn class-conditioned codebooks and codes to maximize the manifold margins of different classes. Lastly, we present a data sample-manifold matching-based strategy to classify the unlabeled data samples. Experimental results on somatic mutations identification and breast tumor classification based on ultrasonic images demonstrate the efficacy of the proposed data representation and classification approach. 2013 The Authors. All rights reserved.

  17. Microphase separation and the formation of ion conductivity channels in poly(ionic liquid)s: A coarse-grained molecular dynamics study

    Weyman, Alexander; Bier, Markus; Holm, Christian; Smiatek, Jens

    2018-05-01

    We study generic properties of poly(ionic liquid)s (PILs) via coarse-grained molecular dynamics simulations in bulk solution and under confinement. The influence of different side chain lengths on the spatial properties of the PIL systems and on the ionic transport mechanism is investigated in detail. Our results reveal the formation of apolar and polar nanodomains with increasing side chain length in good agreement with previous results for molecular ionic liquids. The ion transport numbers are unaffected by the occurrence of these domains, and the corresponding values highlight the potential role of PILs as single-ion conductors in electrochemical devices. In contrast to bulk behavior, a pronounced formation of ion conductivity channels in confined systems is initiated in close vicinity to the boundaries. We observe higher ion conductivities in these channels for increasing PIL side chain lengths in comparison with bulk values and provide an explanation for this effect. The appearance of these domains points to an improved application of PILs in modern polymer electrolyte batteries.

  18. Enhancing Scalability of Sparse Direct Methods

    Li, Xiaoye S.; Demmel, James; Grigori, Laura; Gu, Ming; Xia, Jianlin; Jardin, Steve; Sovinec, Carl; Lee, Lie-Quan

    2007-01-01

    TOPS is providing high-performance, scalable sparse direct solvers, which have had significant impacts on the SciDAC applications, including fusion simulation (CEMM), accelerator modeling (COMPASS), as well as many other mission-critical applications in DOE and elsewhere. Our recent developments have been focusing on new techniques to overcome scalability bottleneck of direct methods, in both time and memory. These include parallelizing symbolic analysis phase and developing linear-complexity sparse factorization methods. The new techniques will make sparse direct methods more widely usable in large 3D simulations on highly-parallel petascale computers

  19. Regression with Sparse Approximations of Data

    Noorzad, Pardis; Sturm, Bob L.

    2012-01-01

    We propose sparse approximation weighted regression (SPARROW), a method for local estimation of the regression function that uses sparse approximation with a dictionary of measurements. SPARROW estimates the regression function at a point with a linear combination of a few regressands selected...... by a sparse approximation of the point in terms of the regressors. We show SPARROW can be considered a variant of \\(k\\)-nearest neighbors regression (\\(k\\)-NNR), and more generally, local polynomial kernel regression. Unlike \\(k\\)-NNR, however, SPARROW can adapt the number of regressors to use based...

  20. Sparse adaptive filters for echo cancellation

    Paleologu, Constantin

    2011-01-01

    Adaptive filters with a large number of coefficients are usually involved in both network and acoustic echo cancellation. Consequently, it is important to improve the convergence rate and tracking of the conventional algorithms used for these applications. This can be achieved by exploiting the sparseness character of the echo paths. Identification of sparse impulse responses was addressed mainly in the last decade with the development of the so-called ``proportionate''-type algorithms. The goal of this book is to present the most important sparse adaptive filters developed for echo cancellati

  1. Technique detection software for Sparse Matrices

    KHAN Muhammad Taimoor

    2009-12-01

    Full Text Available Sparse storage formats are techniques for storing and processing the sparse matrix data efficiently. The performance of these storage formats depend upon the distribution of non-zeros, within the matrix in different dimensions. In order to have better results we need a technique that suits best the organization of data in a particular matrix. So the decision of selecting a better technique is the main step towards improving the system's results otherwise the efficiency can be decreased. The purpose of this research is to help identify the best storage format in case of reduced storage size and high processing efficiency for a sparse matrix.

  2. Massive Asynchronous Parallelization of Sparse Matrix Factorizations

    Chow, Edmond [Georgia Inst. of Technology, Atlanta, GA (United States)

    2018-01-08

    Solving sparse problems is at the core of many DOE computational science applications. We focus on the challenge of developing sparse algorithms that can fully exploit the parallelism in extreme-scale computing systems, in particular systems with massive numbers of cores per node. Our approach is to express a sparse matrix factorization as a large number of bilinear constraint equations, and then solving these equations via an asynchronous iterative method. The unknowns in these equations are the matrix entries of the factorization that is desired.

  3. Calculation of the inverse data space via sparse inversion

    Saragiotis, Christos

    2011-01-01

    The inverse data space provides a natural separation of primaries and surface-related multiples, as the surface multiples map onto the area around the origin while the primaries map elsewhere. However, the calculation of the inverse data is far from trivial as theory requires infinite time and offset recording. Furthermore regularization issues arise during inversion. We perform the inversion by minimizing the least-squares norm of the misfit function by constraining the $ell_1$ norm of the solution, being the inverse data space. In this way a sparse inversion approach is obtained. We show results on field data with an application to surface multiple removal.

  4. Point-source reconstruction with a sparse light-sensor array for optical TPC readout

    Rutter, G; Richards, M; Bennieston, A J; Ramachers, Y A

    2011-01-01

    A reconstruction technique for sparse array optical signal readout is introduced and applied to the generic challenge of large-area readout of a large number of point light sources. This challenge finds a prominent example in future, large volume neutrino detector studies based on liquid argon. It is concluded that the sparse array option may be ruled out for reasons of required number of channels when compared to a benchmark derived from charge readout on wire-planes. Smaller-scale detectors, however, could benefit from this technology.

  5. Wireless Sensor Array Network DoA Estimation from Compressed Array Data via Joint Sparse Representation.

    Yu, Kai; Yin, Ming; Luo, Ji-An; Wang, Yingguan; Bao, Ming; Hu, Yu-Hen; Wang, Zhi

    2016-05-23

    A compressive sensing joint sparse representation direction of arrival estimation (CSJSR-DoA) approach is proposed for wireless sensor array networks (WSAN). By exploiting the joint spatial and spectral correlations of acoustic sensor array data, the CSJSR-DoA approach provides reliable DoA estimation using randomly-sampled acoustic sensor data. Since random sampling is performed at remote sensor arrays, less data need to be transmitted over lossy wireless channels to the fusion center (FC), and the expensive source coding operation at sensor nodes can be avoided. To investigate the spatial sparsity, an upper bound of the coherence of incoming sensor signals is derived assuming a linear sensor array configuration. This bound provides a theoretical constraint on the angular separation of acoustic sources to ensure the spatial sparsity of the received acoustic sensor array signals. The Cram e ´ r-Rao bound of the CSJSR-DoA estimator that quantifies the theoretical DoA estimation performance is also derived. The potential performance of the CSJSR-DoA approach is validated using both simulations and field experiments on a prototype WSAN platform. Compared to existing compressive sensing-based DoA estimation methods, the CSJSR-DoA approach shows significant performance improvement.

  6. Structure-based bayesian sparse reconstruction

    Quadeer, Ahmed Abdul; Al-Naffouri, Tareq Y.

    2012-01-01

    Sparse signal reconstruction algorithms have attracted research attention due to their wide applications in various fields. In this paper, we present a simple Bayesian approach that utilizes the sparsity constraint and a priori statistical

  7. Biclustering via Sparse Singular Value Decomposition

    Lee, Mihee

    2010-02-16

    Sparse singular value decomposition (SSVD) is proposed as a new exploratory analysis tool for biclustering or identifying interpretable row-column associations within high-dimensional data matrices. SSVD seeks a low-rank, checkerboard structured matrix approximation to data matrices. The desired checkerboard structure is achieved by forcing both the left- and right-singular vectors to be sparse, that is, having many zero entries. By interpreting singular vectors as regression coefficient vectors for certain linear regressions, sparsity-inducing regularization penalties are imposed to the least squares regression to produce sparse singular vectors. An efficient iterative algorithm is proposed for computing the sparse singular vectors, along with some discussion of penalty parameter selection. A lung cancer microarray dataset and a food nutrition dataset are used to illustrate SSVD as a biclustering method. SSVD is also compared with some existing biclustering methods using simulated datasets. © 2010, The International Biometric Society.

  8. Tunable Sparse Network Coding for Multicast Networks

    Feizi, Soheil; Roetter, Daniel Enrique Lucani; Sørensen, Chres Wiant

    2014-01-01

    This paper shows the potential and key enabling mechanisms for tunable sparse network coding, a scheme in which the density of network coded packets varies during a transmission session. At the beginning of a transmission session, sparsely coded packets are transmitted, which benefits decoding...... complexity. At the end of a transmission, when receivers have accumulated degrees of freedom, coding density is increased. We propose a family of tunable sparse network codes (TSNCs) for multicast erasure networks with a controllable trade-off between completion time performance to decoding complexity...... a mechanism to perform efficient Gaussian elimination over sparse matrices going beyond belief propagation but maintaining low decoding complexity. Supporting simulation results are provided showing the trade-off between decoding complexity and completion time....

  9. SPARSE ELECTROMAGNETIC IMAGING USING NONLINEAR LANDWEBER ITERATIONS

    Desmal, Abdulla; Bagci, Hakan

    2015-01-01

    minimization problem is solved using nonlinear Landweber iterations, where at each iteration a thresholding function is applied to enforce the sparseness-promoting L0/L1-norm constraint. The thresholded nonlinear Landweber iterations are applied to several two

  10. Learning sparse generative models of audiovisual signals

    Monaci, Gianluca; Sommer, Friedrich T.; Vandergheynst, Pierre

    2008-01-01

    This paper presents a novel framework to learn sparse represen- tations for audiovisual signals. An audiovisual signal is modeled as a sparse sum of audiovisual kernels. The kernels are bimodal functions made of synchronous audio and video components that can be positioned independently and arbitrarily in space and time. We design an algorithm capable of learning sets of such audiovi- sual, synchronous, shift-invariant functions by alternatingly solving a coding and a learning pr...

  11. Hyperspectral Unmixing with Robust Collaborative Sparse Regression

    Chang Li

    2016-07-01

    Full Text Available Recently, sparse unmixing (SU of hyperspectral data has received particular attention for analyzing remote sensing images. However, most SU methods are based on the commonly admitted linear mixing model (LMM, which ignores the possible nonlinear effects (i.e., nonlinearity. In this paper, we propose a new method named robust collaborative sparse regression (RCSR based on the robust LMM (rLMM for hyperspectral unmixing. The rLMM takes the nonlinearity into consideration, and the nonlinearity is merely treated as outlier, which has the underlying sparse property. The RCSR simultaneously takes the collaborative sparse property of the abundance and sparsely distributed additive property of the outlier into consideration, which can be formed as a robust joint sparse regression problem. The inexact augmented Lagrangian method (IALM is used to optimize the proposed RCSR. The qualitative and quantitative experiments on synthetic datasets and real hyperspectral images demonstrate that the proposed RCSR is efficient for solving the hyperspectral SU problem compared with the other four state-of-the-art algorithms.

  12. Sparse estimation of model-based diffuse thermal dust emission

    Irfan, Melis O.; Bobin, Jérôme

    2018-03-01

    Component separation for the Planck High Frequency Instrument (HFI) data is primarily concerned with the estimation of thermal dust emission, which requires the separation of thermal dust from the cosmic infrared background (CIB). For that purpose, current estimation methods rely on filtering techniques to decouple thermal dust emission from CIB anisotropies, which tend to yield a smooth, low-resolution, estimation of the dust emission. In this paper, we present a new parameter estimation method, premise: Parameter Recovery Exploiting Model Informed Sparse Estimates. This method exploits the sparse nature of thermal dust emission to calculate all-sky maps of thermal dust temperature, spectral index, and optical depth at 353 GHz. premise is evaluated and validated on full-sky simulated data. We find the percentage difference between the premise results and the true values to be 2.8, 5.7, and 7.2 per cent at the 1σ level across the full sky for thermal dust temperature, spectral index, and optical depth at 353 GHz, respectively. A comparison between premise and a GNILC-like method over selected regions of our sky simulation reveals that both methods perform comparably within high signal-to-noise regions. However, outside of the Galactic plane, premise is seen to outperform the GNILC-like method with increasing success as the signal-to-noise ratio worsens.

  13. An RFI Detection Algorithm for Microwave Radiometers Using Sparse Component Analysis

    Mohammed-Tano, Priscilla N.; Korde-Patel, Asmita; Gholian, Armen; Piepmeier, Jeffrey R.; Schoenwald, Adam; Bradley, Damon

    2017-01-01

    Radio Frequency Interference (RFI) is a threat to passive microwave measurements and if undetected, can corrupt science retrievals. The sparse component analysis (SCA) for blind source separation has been investigated to detect RFI in microwave radiometer data. Various techniques using SCA have been simulated to determine detection performance with continuous wave (CW) RFI.

  14. Sparse Learning with Stochastic Composite Optimization.

    Zhang, Weizhong; Zhang, Lijun; Jin, Zhongming; Jin, Rong; Cai, Deng; Li, Xuelong; Liang, Ronghua; He, Xiaofei

    2017-06-01

    In this paper, we study Stochastic Composite Optimization (SCO) for sparse learning that aims to learn a sparse solution from a composite function. Most of the recent SCO algorithms have already reached the optimal expected convergence rate O(1/λT), but they often fail to deliver sparse solutions at the end either due to the limited sparsity regularization during stochastic optimization (SO) or due to the limitation in online-to-batch conversion. Even when the objective function is strongly convex, their high probability bounds can only attain O(√{log(1/δ)/T}) with δ is the failure probability, which is much worse than the expected convergence rate. To address these limitations, we propose a simple yet effective two-phase Stochastic Composite Optimization scheme by adding a novel powerful sparse online-to-batch conversion to the general Stochastic Optimization algorithms. We further develop three concrete algorithms, OptimalSL, LastSL and AverageSL, directly under our scheme to prove the effectiveness of the proposed scheme. Both the theoretical analysis and the experiment results show that our methods can really outperform the existing methods at the ability of sparse learning and at the meantime we can improve the high probability bound to approximately O(log(log(T)/δ)/λT).

  15. In-place sparse suffix sorting

    Prezza, Nicola

    2018-01-01

    information regarding the lexicographical order of a size-b subset of all n text suffixes is often needed. Such information can be stored space-efficiently (in b words) in the sparse suffix array (SSA). The SSA and its relative sparse LCP array (SLCP) can be used as a space-efficient substitute of the sparse...... suffix tree. Very recently, Gawrychowski and Kociumaka [11] showed that the sparse suffix tree (and therefore SSA and SLCP) can be built in asymptotically optimal O(b) space with a Monte Carlo algorithm running in O(n) time. The main reason for using the SSA and SLCP arrays in place of the sparse suffix...... tree is, however, their reduced space of b words each. This leads naturally to the quest for in-place algorithms building these arrays. Franceschini and Muthukrishnan [8] showed that the full suffix array can be built in-place and in optimal running time. On the other hand, finding sub-quadratic in...

  16. Scalable group level probabilistic sparse factor analysis

    Hinrich, Jesper Løve; Nielsen, Søren Føns Vind; Riis, Nicolai Andre Brogaard

    2017-01-01

    Many data-driven approaches exist to extract neural representations of functional magnetic resonance imaging (fMRI) data, but most of them lack a proper probabilistic formulation. We propose a scalable group level probabilistic sparse factor analysis (psFA) allowing spatially sparse maps, component...... pruning using automatic relevance determination (ARD) and subject specific heteroscedastic spatial noise modeling. For task-based and resting state fMRI, we show that the sparsity constraint gives rise to components similar to those obtained by group independent component analysis. The noise modeling...... shows that noise is reduced in areas typically associated with activation by the experimental design. The psFA model identifies sparse components and the probabilistic setting provides a natural way to handle parameter uncertainties. The variational Bayesian framework easily extends to more complex...

  17. SPARSE ELECTROMAGNETIC IMAGING USING NONLINEAR LANDWEBER ITERATIONS

    Desmal, Abdulla

    2015-07-29

    A scheme for efficiently solving the nonlinear electromagnetic inverse scattering problem on sparse investigation domains is described. The proposed scheme reconstructs the (complex) dielectric permittivity of an investigation domain from fields measured away from the domain itself. Least-squares data misfit between the computed scattered fields, which are expressed as a nonlinear function of the permittivity, and the measured fields is constrained by the L0/L1-norm of the solution. The resulting minimization problem is solved using nonlinear Landweber iterations, where at each iteration a thresholding function is applied to enforce the sparseness-promoting L0/L1-norm constraint. The thresholded nonlinear Landweber iterations are applied to several two-dimensional problems, where the ``measured\\'\\' fields are synthetically generated or obtained from actual experiments. These numerical experiments demonstrate the accuracy, efficiency, and applicability of the proposed scheme in reconstructing sparse profiles with high permittivity values.

  18. Fast wavelet based sparse approximate inverse preconditioner

    Wan, W.L. [Univ. of California, Los Angeles, CA (United States)

    1996-12-31

    Incomplete LU factorization is a robust preconditioner for both general and PDE problems but unfortunately not easy to parallelize. Recent study of Huckle and Grote and Chow and Saad showed that sparse approximate inverse could be a potential alternative while readily parallelizable. However, for special class of matrix A that comes from elliptic PDE problems, their preconditioners are not optimal in the sense that independent of mesh size. A reason may be that no good sparse approximate inverse exists for the dense inverse matrix. Our observation is that for this kind of matrices, its inverse entries typically have piecewise smooth changes. We can take advantage of this fact and use wavelet compression techniques to construct a better sparse approximate inverse preconditioner. We shall show numerically that our approach is effective for this kind of matrices.

  19. Orthogonal Matching Pursuit for Enhanced Recovery of Sparse Geological Structures With the Ensemble Kalman Filter

    Sana, Furrukh; Katterbauer, Klemens; Al-Naffouri, Tareq Y.; Hoteit, Ibrahim

    2016-01-01

    Estimating the locations and the structures of subsurface channels holds significant importance for forecasting the subsurface flow and reservoir productivity. These channels exhibit high permeability and are easily contrasted from the low-permeability rock formations in their surroundings. This enables formulating the flow channels estimation problem as a sparse field recovery problem. The ensemble Kalman filter (EnKF) is a widely used technique for the estimation and calibration of subsurface reservoir model parameters, such as permeability. However, the conventional EnKF framework does not provide an efficient mechanism to incorporate prior information on the wide varieties of subsurface geological structures, and often fails to recover and preserve flow channel structures. Recent works in the area of compressed sensing (CS) have shown that estimating in a sparse domain, using algorithms such as the orthogonal matching pursuit (OMP), may significantly improve the estimation quality when dealing with such problems. We propose two new, and computationally efficient, algorithms combining OMP with the EnKF to improve the estimation and recovery of the subsurface geological channels. Numerical experiments suggest that the proposed algorithms provide efficient mechanisms to incorporate and preserve structural information in the EnKF and result in significant improvements in recovering flow channel structures.

  20. Orthogonal Matching Pursuit for Enhanced Recovery of Sparse Geological Structures With the Ensemble Kalman Filter

    Sana, Furrukh

    2016-02-23

    Estimating the locations and the structures of subsurface channels holds significant importance for forecasting the subsurface flow and reservoir productivity. These channels exhibit high permeability and are easily contrasted from the low-permeability rock formations in their surroundings. This enables formulating the flow channels estimation problem as a sparse field recovery problem. The ensemble Kalman filter (EnKF) is a widely used technique for the estimation and calibration of subsurface reservoir model parameters, such as permeability. However, the conventional EnKF framework does not provide an efficient mechanism to incorporate prior information on the wide varieties of subsurface geological structures, and often fails to recover and preserve flow channel structures. Recent works in the area of compressed sensing (CS) have shown that estimating in a sparse domain, using algorithms such as the orthogonal matching pursuit (OMP), may significantly improve the estimation quality when dealing with such problems. We propose two new, and computationally efficient, algorithms combining OMP with the EnKF to improve the estimation and recovery of the subsurface geological channels. Numerical experiments suggest that the proposed algorithms provide efficient mechanisms to incorporate and preserve structural information in the EnKF and result in significant improvements in recovering flow channel structures.

  1. Analog system for computing sparse codes

    Rozell, Christopher John; Johnson, Don Herrick; Baraniuk, Richard Gordon; Olshausen, Bruno A.; Ortman, Robert Lowell

    2010-08-24

    A parallel dynamical system for computing sparse representations of data, i.e., where the data can be fully represented in terms of a small number of non-zero code elements, and for reconstructing compressively sensed images. The system is based on the principles of thresholding and local competition that solves a family of sparse approximation problems corresponding to various sparsity metrics. The system utilizes Locally Competitive Algorithms (LCAs), nodes in a population continually compete with neighboring units using (usually one-way) lateral inhibition to calculate coefficients representing an input in an over complete dictionary.

  2. Parallel transposition of sparse data structures

    Wang, Hao; Liu, Weifeng; Hou, Kaixi

    2016-01-01

    Many applications in computational sciences and social sciences exploit sparsity and connectivity of acquired data. Even though many parallel sparse primitives such as sparse matrix-vector (SpMV) multiplication have been extensively studied, some other important building blocks, e.g., parallel tr...... transposition in the latest vendor-supplied library on an Intel multicore CPU platform, and the MergeTrans approach achieves on average of 3.4-fold (up to 11.7-fold) speedup on an Intel Xeon Phi many-core processor....

  3. Structure-based bayesian sparse reconstruction

    Quadeer, Ahmed Abdul

    2012-12-01

    Sparse signal reconstruction algorithms have attracted research attention due to their wide applications in various fields. In this paper, we present a simple Bayesian approach that utilizes the sparsity constraint and a priori statistical information (Gaussian or otherwise) to obtain near optimal estimates. In addition, we make use of the rich structure of the sensing matrix encountered in many signal processing applications to develop a fast sparse recovery algorithm. The computational complexity of the proposed algorithm is very low compared with the widely used convex relaxation methods as well as greedy matching pursuit techniques, especially at high sparsity. © 1991-2012 IEEE.

  4. Binary Sparse Phase Retrieval via Simulated Annealing

    Wei Peng

    2016-01-01

    Full Text Available This paper presents the Simulated Annealing Sparse PhAse Recovery (SASPAR algorithm for reconstructing sparse binary signals from their phaseless magnitudes of the Fourier transform. The greedy strategy version is also proposed for a comparison, which is a parameter-free algorithm. Sufficient numeric simulations indicate that our method is quite effective and suggest the binary model is robust. The SASPAR algorithm seems competitive to the existing methods for its efficiency and high recovery rate even with fewer Fourier measurements.

  5. Channel Estimation in DCT-Based OFDM

    Wang, Yulin; Zhang, Gengxin; Xie, Zhidong; Hu, Jing

    2014-01-01

    This paper derives the channel estimation of a discrete cosine transform- (DCT-) based orthogonal frequency-division multiplexing (OFDM) system over a frequency-selective multipath fading channel. Channel estimation has been proved to improve system throughput and performance by allowing for coherent demodulation. Pilot-aided methods are traditionally used to learn the channel response. Least square (LS) and mean square error estimators (MMSE) are investigated. We also study a compressed sensing (CS) based channel estimation, which takes the sparse property of wireless channel into account. Simulation results have shown that the CS based channel estimation is expected to have better performance than LS. However MMSE can achieve optimal performance because of prior knowledge of the channel statistic. PMID:24757439

  6. Robust and Secure Watermarking Using Sparse Information of Watermark for Biometric Data Protection

    Rohit M Thanki; Ved Vyas Dwivedi; Komal Borisagar

    2016-01-01

    Biometric based human authentication system is used for security purpose in many organizations in the present world. This biometric authentication system has several vulnerable points. Two of vulnerable points are protection of biometric templates at system database and protection of biometric templates at communication channel between two modules of biometric authentication systems. In this paper proposed a robust watermarking scheme using the sparse information of watermark biometric to sec...

  7. Multilevel sparse functional principal component analysis.

    Di, Chongzhi; Crainiceanu, Ciprian M; Jank, Wolfgang S

    2014-01-29

    We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we consider the case when functions are sparsely sampled and may contain only a few observations per function. We exploit the multilevel structure of covariance operators and achieve data reduction by principal component decompositions at both between and within subject levels. We address inherent methodological differences in the sparse sampling context to: 1) estimate the covariance operators; 2) estimate the functional principal component scores; 3) predict the underlying curves. Through simulations the proposed method is able to discover dominating modes of variations and reconstruct underlying curves well even in sparse settings. Our approach is illustrated by two applications, the Sleep Heart Health Study and eBay auctions.

  8. Continuous speech recognition with sparse coding

    Smit, WJ

    2009-04-01

    Full Text Available generative model. The spike train is classified by making use of a spike train model and dynamic programming. It is computationally expensive to find a sparse code. We use an iterative subset selection algorithm with quadratic programming for this process...

  9. Multisnapshot Sparse Bayesian Learning for DOA

    Gerstoft, Peter; Mecklenbrauker, Christoph F.; Xenaki, Angeliki

    2016-01-01

    The directions of arrival (DOA) of plane waves are estimated from multisnapshot sensor array data using sparse Bayesian learning (SBL). The prior for the source amplitudes is assumed independent zero-mean complex Gaussian distributed with hyperparameters, the unknown variances (i.e., the source...

  10. Better Size Estimation for Sparse Matrix Products

    Amossen, Rasmus Resen; Campagna, Andrea; Pagh, Rasmus

    2010-01-01

    We consider the problem of doing fast and reliable estimation of the number of non-zero entries in a sparse Boolean matrix product. Let n denote the total number of non-zero entries in the input matrices. We show how to compute a 1 ± ε approximation (with small probability of error) in expected t...

  11. Rotational image deblurring with sparse matrices

    Hansen, Per Christian; Nagy, James G.; Tigkos, Konstantinos

    2014-01-01

    We describe iterative deblurring algorithms that can handle blur caused by a rotation along an arbitrary axis (including the common case of pure rotation). Our algorithms use a sparse-matrix representation of the blurring operation, which allows us to easily handle several different boundary...

  12. Feature based omnidirectional sparse visual path following

    Goedemé, Toon; Tuytelaars, Tinne; Van Gool, Luc; Vanacker, Gerolf; Nuttin, Marnix

    2005-01-01

    Goedemé T., Tuytelaars T., Van Gool L., Vanacker G., Nuttin M., ''Feature based omnidirectional sparse visual path following'', Proceedings IEEE/RSJ international conference on intelligent robots and systems - IROS2005, pp. 1003-1008, August 2-6, 2005, Edmonton, Alberta, Canada.

  13. Comparison of sparse point distribution models

    Erbou, Søren Gylling Hemmingsen; Vester-Christensen, Martin; Larsen, Rasmus

    2010-01-01

    This paper compares several methods for obtaining sparse and compact point distribution models suited for data sets containing many variables. These are evaluated on a database consisting of 3D surfaces of a section of the pelvic bone obtained from CT scans of 33 porcine carcasses. The superior m...

  14. A sparse-grid isogeometric solver

    Beck, Joakim

    2018-02-28

    Isogeometric Analysis (IGA) typically adopts tensor-product splines and NURBS as a basis for the approximation of the solution of PDEs. In this work, we investigate to which extent IGA solvers can benefit from the so-called sparse-grids construction in its combination technique form, which was first introduced in the early 90’s in the context of the approximation of high-dimensional PDEs.The tests that we report show that, in accordance to the literature, a sparse-grid construction can indeed be useful if the solution of the PDE at hand is sufficiently smooth. Sparse grids can also be useful in the case of non-smooth solutions when some a-priori knowledge on the location of the singularities of the solution can be exploited to devise suitable non-equispaced meshes. Finally, we remark that sparse grids can be seen as a simple way to parallelize pre-existing serial IGA solvers in a straightforward fashion, which can be beneficial in many practical situations.

  15. A sparse version of IGA solvers

    Beck, Joakim

    2017-07-30

    Isogeometric Analysis (IGA) typically adopts tensor-product splines and NURBS as a basis for the approximation of the solution of PDEs. In this work, we investigate to which extent IGA solvers can benefit from the so-called sparse-grids construction in its combination technique form, which was first introduced in the early 90s in the context of the approximation of high-dimensional PDEs. The tests that we report show that, in accordance to the literature, a sparse grids construction can indeed be useful if the solution of the PDE at hand is sufficiently smooth. Sparse grids can also be useful in the case of non-smooth solutions when some a-priori knowledge on the location of the singularities of the solution can be exploited to devise suitable non-equispaced meshes. Finally, we remark that sparse grids can be seen as a simple way to parallelize pre-existing serial IGA solvers in a straightforward fashion, which can be beneficial in many practical situations.

  16. A sparse-grid isogeometric solver

    Beck, Joakim; Sangalli, Giancarlo; Tamellini, Lorenzo

    2018-01-01

    Isogeometric Analysis (IGA) typically adopts tensor-product splines and NURBS as a basis for the approximation of the solution of PDEs. In this work, we investigate to which extent IGA solvers can benefit from the so-called sparse-grids construction in its combination technique form, which was first introduced in the early 90’s in the context of the approximation of high-dimensional PDEs.The tests that we report show that, in accordance to the literature, a sparse-grid construction can indeed be useful if the solution of the PDE at hand is sufficiently smooth. Sparse grids can also be useful in the case of non-smooth solutions when some a-priori knowledge on the location of the singularities of the solution can be exploited to devise suitable non-equispaced meshes. Finally, we remark that sparse grids can be seen as a simple way to parallelize pre-existing serial IGA solvers in a straightforward fashion, which can be beneficial in many practical situations.

  17. A sparse version of IGA solvers

    Beck, Joakim; Sangalli, Giancarlo; Tamellini, Lorenzo

    2017-01-01

    Isogeometric Analysis (IGA) typically adopts tensor-product splines and NURBS as a basis for the approximation of the solution of PDEs. In this work, we investigate to which extent IGA solvers can benefit from the so-called sparse-grids construction in its combination technique form, which was first introduced in the early 90s in the context of the approximation of high-dimensional PDEs. The tests that we report show that, in accordance to the literature, a sparse grids construction can indeed be useful if the solution of the PDE at hand is sufficiently smooth. Sparse grids can also be useful in the case of non-smooth solutions when some a-priori knowledge on the location of the singularities of the solution can be exploited to devise suitable non-equispaced meshes. Finally, we remark that sparse grids can be seen as a simple way to parallelize pre-existing serial IGA solvers in a straightforward fashion, which can be beneficial in many practical situations.

  18. New methods for sampling sparse populations

    Anna Ringvall

    2007-01-01

    To improve surveys of sparse objects, methods that use auxiliary information have been suggested. Guided transect sampling uses prior information, e.g., from aerial photographs, for the layout of survey strips. Instead of being laid out straight, the strips will wind between potentially more interesting areas. 3P sampling (probability proportional to prediction) uses...

  19. A fast sparse reconstruction algorithm for electrical tomography

    Zhao, Jia; Xu, Yanbin; Tan, Chao; Dong, Feng

    2014-01-01

    Electrical tomography (ET) has been widely investigated due to its advantages of being non-radiative, low-cost and high-speed. However, the image reconstruction of ET is a nonlinear and ill-posed inverse problem and the imaging results are easily affected by measurement noise. A sparse reconstruction algorithm based on L 1 regularization is robust to noise and consequently provides a high quality of reconstructed images. In this paper, a sparse reconstruction by separable approximation algorithm (SpaRSA) is extended to solve the ET inverse problem. The algorithm is competitive with the fastest state-of-the-art algorithms in solving the standard L 2 −L 1 problem. However, it is computationally expensive when the dimension of the matrix is large. To further improve the calculation speed of solving inverse problems, a projection method based on the Krylov subspace is employed and combined with the SpaRSA algorithm. The proposed algorithm is tested with image reconstruction of electrical resistance tomography (ERT). Both simulation and experimental results demonstrate that the proposed method can reduce the computational time and improve the noise robustness for the image reconstruction. (paper)

  20. Permuting sparse rectangular matrices into block-diagonal form

    Aykanat, Cevdet; Pinar, Ali; Catalyurek, Umit V.

    2002-12-09

    This work investigates the problem of permuting a sparse rectangular matrix into block diagonal form. Block diagonal form of a matrix grants an inherent parallelism for the solution of the deriving problem, as recently investigated in the context of mathematical programming, LU factorization and QR factorization. We propose graph and hypergraph models to represent the nonzero structure of a matrix, which reduce the permutation problem to those of graph partitioning by vertex separator and hypergraph partitioning, respectively. Besides proposing the models to represent sparse matrices and investigating related combinatorial problems, we provide a detailed survey of relevant literature to bridge the gap between different societies, investigate existing techniques for partitioning and propose new ones, and finally present a thorough empirical study of these techniques. Our experiments on a wide range of matrices, using state-of-the-art graph and hypergraph partitioning tools MeTiS and PaT oH, revealed that the proposed methods yield very effective solutions both in terms of solution quality and run time.

  1. Sparse Representation Based Binary Hypothesis Model for Hyperspectral Image Classification

    Yidong Tang

    2016-01-01

    Full Text Available The sparse representation based classifier (SRC and its kernel version (KSRC have been employed for hyperspectral image (HSI classification. However, the state-of-the-art SRC often aims at extended surface objects with linear mixture in smooth scene and assumes that the number of classes is given. Considering the small target with complex background, a sparse representation based binary hypothesis (SRBBH model is established in this paper. In this model, a query pixel is represented in two ways, which are, respectively, by background dictionary and by union dictionary. The background dictionary is composed of samples selected from the local dual concentric window centered at the query pixel. Thus, for each pixel the classification issue becomes an adaptive multiclass classification problem, where only the number of desired classes is required. Furthermore, the kernel method is employed to improve the interclass separability. In kernel space, the coding vector is obtained by using kernel-based orthogonal matching pursuit (KOMP algorithm. Then the query pixel can be labeled by the characteristics of the coding vectors. Instead of directly using the reconstruction residuals, the different impacts the background dictionary and union dictionary have on reconstruction are used for validation and classification. It enhances the discrimination and hence improves the performance.

  2. Pedestrian detection from thermal images: A sparse representation based approach

    Qi, Bin; John, Vijay; Liu, Zheng; Mita, Seiichi

    2016-05-01

    Pedestrian detection, a key technology in computer vision, plays a paramount role in the applications of advanced driver assistant systems (ADASs) and autonomous vehicles. The objective of pedestrian detection is to identify and locate people in a dynamic environment so that accidents can be avoided. With significant variations introduced by illumination, occlusion, articulated pose, and complex background, pedestrian detection is a challenging task for visual perception. Different from visible images, thermal images are captured and presented with intensity maps based objects' emissivity, and thus have an enhanced spectral range to make human beings perceptible from the cool background. In this study, a sparse representation based approach is proposed for pedestrian detection from thermal images. We first adopted the histogram of sparse code to represent image features and then detect pedestrian with the extracted features in an unimodal and a multimodal framework respectively. In the unimodal framework, two types of dictionaries, i.e. joint dictionary and individual dictionary, are built by learning from prepared training samples. In the multimodal framework, a weighted fusion scheme is proposed to further highlight the contributions from features with higher separability. To validate the proposed approach, experiments were conducted to compare with three widely used features: Haar wavelets (HWs), histogram of oriented gradients (HOG), and histogram of phase congruency (HPC) as well as two classification methods, i.e. AdaBoost and support vector machine (SVM). Experimental results on a publicly available data set demonstrate the superiority of the proposed approach.

  3. Sparse/Low Rank Constrained Reconstruction for Dynamic PET Imaging.

    Xingjian Yu

    Full Text Available In dynamic Positron Emission Tomography (PET, an estimate of the radio activity concentration is obtained from a series of frames of sinogram data taken at ranging in duration from 10 seconds to minutes under some criteria. So far, all the well-known reconstruction algorithms require known data statistical properties. It limits the speed of data acquisition, besides, it is unable to afford the separated information about the structure and the variation of shape and rate of metabolism which play a major role in improving the visualization of contrast for some requirement of the diagnosing in application. This paper presents a novel low rank-based activity map reconstruction scheme from emission sinograms of dynamic PET, termed as SLCR representing Sparse/Low Rank Constrained Reconstruction for Dynamic PET Imaging. In this method, the stationary background is formulated as a low rank component while variations between successive frames are abstracted to the sparse. The resulting nuclear norm and l1 norm related minimization problem can also be efficiently solved by many recently developed numerical methods. In this paper, the linearized alternating direction method is applied. The effectiveness of the proposed scheme is illustrated on three data sets.

  4. Fast Sparse Coding for Range Data Denoising with Sparse Ridges Constraint.

    Gao, Zhi; Lao, Mingjie; Sang, Yongsheng; Wen, Fei; Ramesh, Bharath; Zhai, Ruifang

    2018-05-06

    Light detection and ranging (LiDAR) sensors have been widely deployed on intelligent systems such as unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) to perform localization, obstacle detection, and navigation tasks. Thus, research into range data processing with competitive performance in terms of both accuracy and efficiency has attracted increasing attention. Sparse coding has revolutionized signal processing and led to state-of-the-art performance in a variety of applications. However, dictionary learning, which plays the central role in sparse coding techniques, is computationally demanding, resulting in its limited applicability in real-time systems. In this study, we propose sparse coding algorithms with a fixed pre-learned ridge dictionary to realize range data denoising via leveraging the regularity of laser range measurements in man-made environments. Experiments on both synthesized data and real data demonstrate that our method obtains accuracy comparable to that of sophisticated sparse coding methods, but with much higher computational efficiency.

  5. A sparse electromagnetic imaging scheme using nonlinear landweber iterations

    Desmal, Abdulla; Bagci, Hakan

    2015-01-01

    Development and use of electromagnetic inverse scattering techniques for imagining sparse domains have been on the rise following the recent advancements in solving sparse optimization problems. Existing techniques rely on iteratively converting

  6. Efficient Pseudorecursive Evaluation Schemes for Non-adaptive Sparse Grids

    Buse, Gerrit; Pflü ger, Dirk; Jacob, Riko

    2014-01-01

    In this work we propose novel algorithms for storing and evaluating sparse grid functions, operating on regular (not spatially adaptive), yet potentially dimensionally adaptive grid types. Besides regular sparse grids our approach includes truncated

  7. Sparse reconstruction using distribution agnostic bayesian matching pursuit

    Masood, Mudassir; Al-Naffouri, Tareq Y.

    2013-01-01

    A fast matching pursuit method using a Bayesian approach is introduced for sparse signal recovery. This method performs Bayesian estimates of sparse signals even when the signal prior is non-Gaussian or unknown. It is agnostic on signal statistics

  8. The application of low-rank and sparse decomposition method in the field of climatology

    Gupta, Nitika; Bhaskaran, Prasad K.

    2018-04-01

    The present study reports a low-rank and sparse decomposition method that separates the mean and the variability of a climate data field. Until now, the application of this technique was limited only in areas such as image processing, web data ranking, and bioinformatics data analysis. In climate science, this method exactly separates the original data into a set of low-rank and sparse components, wherein the low-rank components depict the linearly correlated dataset (expected or mean behavior), and the sparse component represents the variation or perturbation in the dataset from its mean behavior. The study attempts to verify the efficacy of this proposed technique in the field of climatology with two examples of real world. The first example attempts this technique on the maximum wind-speed (MWS) data for the Indian Ocean (IO) region. The study brings to light a decadal reversal pattern in the MWS for the North Indian Ocean (NIO) during the months of June, July, and August (JJA). The second example deals with the sea surface temperature (SST) data for the Bay of Bengal region that exhibits a distinct pattern in the sparse component. The study highlights the importance of the proposed technique used for interpretation and visualization of climate data.

  9. Visual properties and memorising scenes: Effects of image-space sparseness and uniformity.

    Lukavský, Jiří; Děchtěrenko, Filip

    2017-10-01

    Previous studies have demonstrated that humans have a remarkable capacity to memorise a large number of scenes. The research on memorability has shown that memory performance can be predicted by the content of an image. We explored how remembering an image is affected by the image properties within the context of the reference set, including the extent to which it is different from its neighbours (image-space sparseness) and if it belongs to the same category as its neighbours (uniformity). We used a reference set of 2,048 scenes (64 categories), evaluated pairwise scene similarity using deep features from a pretrained convolutional neural network (CNN), and calculated the image-space sparseness and uniformity for each image. We ran three memory experiments, varying the memory workload with experiment length and colour/greyscale presentation. We measured the sensitivity and criterion value changes as a function of image-space sparseness and uniformity. Across all three experiments, we found separate effects of 1) sparseness on memory sensitivity, and 2) uniformity on the recognition criterion. People better remembered (and correctly rejected) images that were more separated from others. People tended to make more false alarms and fewer miss errors in images from categorically uniform portions of the image-space. We propose that both image-space properties affect human decisions when recognising images. Additionally, we found that colour presentation did not yield better memory performance over grayscale images.

  10. Sparse DOA estimation with polynomial rooting

    Xenaki, Angeliki; Gerstoft, Peter; Fernandez Grande, Efren

    2015-01-01

    Direction-of-arrival (DOA) estimation involves the localization of a few sources from a limited number of observations on an array of sensors. Thus, DOA estimation can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve highresol......Direction-of-arrival (DOA) estimation involves the localization of a few sources from a limited number of observations on an array of sensors. Thus, DOA estimation can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve...... highresolution imaging. Utilizing the dual optimal variables of the CS optimization problem, it is shown with Monte Carlo simulations that the DOAs are accurately reconstructed through polynomial rooting (Root-CS). Polynomial rooting is known to improve the resolution in several other DOA estimation methods...

  11. Sparse learning of stochastic dynamical equations

    Boninsegna, Lorenzo; Nüske, Feliks; Clementi, Cecilia

    2018-06-01

    With the rapid increase of available data for complex systems, there is great interest in the extraction of physically relevant information from massive datasets. Recently, a framework called Sparse Identification of Nonlinear Dynamics (SINDy) has been introduced to identify the governing equations of dynamical systems from simulation data. In this study, we extend SINDy to stochastic dynamical systems which are frequently used to model biophysical processes. We prove the asymptotic correctness of stochastic SINDy in the infinite data limit, both in the original and projected variables. We discuss algorithms to solve the sparse regression problem arising from the practical implementation of SINDy and show that cross validation is an essential tool to determine the right level of sparsity. We demonstrate the proposed methodology on two test systems, namely, the diffusion in a one-dimensional potential and the projected dynamics of a two-dimensional diffusion process.

  12. Sparseness- and continuity-constrained seismic imaging

    Herrmann, Felix J.

    2005-04-01

    Non-linear solution strategies to the least-squares seismic inverse-scattering problem with sparseness and continuity constraints are proposed. Our approach is designed to (i) deal with substantial amounts of additive noise (SNR formulating the solution of the seismic inverse problem in terms of an optimization problem. During the optimization, sparseness on the basis and continuity along the reflectors are imposed by jointly minimizing the l1- and anisotropic diffusion/total-variation norms on the coefficients and reflectivity, respectively. [Joint work with Peyman P. Moghaddam was carried out as part of the SINBAD project, with financial support secured through ITF (the Industry Technology Facilitator) from the following organizations: BG Group, BP, ExxonMobil, and SHELL. Additional funding came from the NSERC Discovery Grants 22R81254.

  13. Robust Fringe Projection Profilometry via Sparse Representation.

    Budianto; Lun, Daniel P K

    2016-04-01

    In this paper, a robust fringe projection profilometry (FPP) algorithm using the sparse dictionary learning and sparse coding techniques is proposed. When reconstructing the 3D model of objects, traditional FPP systems often fail to perform if the captured fringe images have a complex scene, such as having multiple and occluded objects. It introduces great difficulty to the phase unwrapping process of an FPP system that can result in serious distortion in the final reconstructed 3D model. For the proposed algorithm, it encodes the period order information, which is essential to phase unwrapping, into some texture patterns and embeds them to the projected fringe patterns. When the encoded fringe image is captured, a modified morphological component analysis and a sparse classification procedure are performed to decode and identify the embedded period order information. It is then used to assist the phase unwrapping process to deal with the different artifacts in the fringe images. Experimental results show that the proposed algorithm can significantly improve the robustness of an FPP system. It performs equally well no matter the fringe images have a simple or complex scene, or are affected due to the ambient lighting of the working environment.

  14. Solving Sparse Polynomial Optimization Problems with Chordal Structure Using the Sparse, Bounded-Degree Sum-of-Squares Hierarchy

    Marandi, Ahmadreza; de Klerk, Etienne; Dahl, Joachim

    The sparse bounded degree sum-of-squares (sparse-BSOS) hierarchy of Weisser, Lasserre and Toh [arXiv:1607.01151,2016] constructs a sequence of lower bounds for a sparse polynomial optimization problem. Under some assumptions, it is proven by the authors that the sequence converges to the optimal

  15. Multi-threaded Sparse Matrix Sparse Matrix Multiplication for Many-Core and GPU Architectures.

    Deveci, Mehmet [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trott, Christian Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rajamanickam, Sivasankaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-01-01

    Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scientific computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix- matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and data structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.

  16. Efficient channel estimation in massive MIMO systems - a distributed approach

    Al-Naffouri, Tareq Y.

    2016-01-21

    We present two efficient algorithms for distributed estimation of channels in massive MIMO systems. The two cases of 1) generic, and 2) sparse channels is considered. The algorithms estimate the impulse response for each channel observed by the antennas at the receiver (base station) in a coordinated manner by sharing minimal information among neighboring antennas. Simulations demonstrate the superior performance of the proposed methods as compared to other methods.

  17. PARTRACK - A particle tracking algorithm for transport and dispersion of solutes in a sparsely fractured rock

    Svensson, Urban

    2001-04-01

    A particle tracking algorithm, PARTRACK, that simulates transport and dispersion in a sparsely fractured rock is described. The main novel feature of the algorithm is the introduction of multiple particle states. It is demonstrated that the introduction of this feature allows for the simultaneous simulation of Taylor dispersion, sorption and matrix diffusion. A number of test cases are used to verify and demonstrate the features of PARTRACK. It is shown that PARTRACK can simulate the following processes, believed to be important for the problem addressed: the split up of a tracer cloud at a fracture intersection, channeling in a fracture plane, Taylor dispersion and matrix diffusion and sorption. From the results of the test cases, it is concluded that PARTRACK is an adequate framework for simulation of transport and dispersion of a solute in a sparsely fractured rock

  18. Parallelized preconditioned BiCGStab solution of sparse linear system equations in F-COBRA-TF

    Geemert, Rene van; Glück, Markus; Riedmann, Michael; Gabriel, Harry

    2011-01-01

    Recently, the in-house development of a preconditioned and parallelized BiCGStab solver has been pursued successfully in AREVA’s advanced sub-channel code F-COBRA-TF. This solver can be run either in a sequential computation mode on a single CPU, or in a parallel computation mode on multiple parallel CPUs. The developed procedure enables the computation of several thousands of successive sparse linear system solutions in F-COBRA-TF with acceptable wall clock run times. The current paper provides general information about F-COBRA-TF in terms of modeling capabilities and application areas, and points out where the relevance arises for the efficient iterative solution of sparse linear systems. Furthermore, the preconditioning and parallelization strategies in the developed BiCGStab iterative solution approach are discussed. The paper is concluded with a number of verification examples. (author)

  19. Noniterative MAP reconstruction using sparse matrix representations.

    Cao, Guangzhi; Bouman, Charles A; Webb, Kevin J

    2009-09-01

    We present a method for noniterative maximum a posteriori (MAP) tomographic reconstruction which is based on the use of sparse matrix representations. Our approach is to precompute and store the inverse matrix required for MAP reconstruction. This approach has generally not been used in the past because the inverse matrix is typically large and fully populated (i.e., not sparse). In order to overcome this problem, we introduce two new ideas. The first idea is a novel theory for the lossy source coding of matrix transformations which we refer to as matrix source coding. This theory is based on a distortion metric that reflects the distortions produced in the final matrix-vector product, rather than the distortions in the coded matrix itself. The resulting algorithms are shown to require orthonormal transformations of both the measurement data and the matrix rows and columns before quantization and coding. The second idea is a method for efficiently storing and computing the required orthonormal transformations, which we call a sparse-matrix transform (SMT). The SMT is a generalization of the classical FFT in that it uses butterflies to compute an orthonormal transform; but unlike an FFT, the SMT uses the butterflies in an irregular pattern, and is numerically designed to best approximate the desired transforms. We demonstrate the potential of the noniterative MAP reconstruction with examples from optical tomography. The method requires offline computation to encode the inverse transform. However, once these offline computations are completed, the noniterative MAP algorithm is shown to reduce both storage and computation by well over two orders of magnitude, as compared to a linear iterative reconstruction methods.

  20. An interactive visualization tool for multi-channel confocal microscopy data in neurobiology research

    Yong Wan,; Otsuna, H.; Chi-Bin Chien,; Hansen, C.

    2009-01-01

    ; one channel may have dense data, while another has sparse; and there are often structures at several spatial scales: subneuronal domains, neurons, and large groups of neurons (brain regions). Even qualitative analysis can therefore require

  1. A view of Kanerva's sparse distributed memory

    Denning, P. J.

    1986-01-01

    Pentti Kanerva is working on a new class of computers, which are called pattern computers. Pattern computers may close the gap between capabilities of biological organisms to recognize and act on patterns (visual, auditory, tactile, or olfactory) and capabilities of modern computers. Combinations of numeric, symbolic, and pattern computers may one day be capable of sustaining robots. The overview of the requirements for a pattern computer, a summary of Kanerva's Sparse Distributed Memory (SDM), and examples of tasks this computer can be expected to perform well are given.

  2. Wavelets for Sparse Representation of Music

    Endelt, Line Ørtoft; Harbo, Anders La-Cour

    2004-01-01

    We are interested in obtaining a sparse representation of music signals by means of a discrete wavelet transform (DWT). That means we want the energy in the representation to be concentrated in few DWT coefficients. It is well-known that the decay of the DWT coefficients is strongly related...... to the number of vanishing moments of the mother wavelet, and to the smoothness of the signal. In this paper we present the result of applying two classical families of wavelets to a series of musical signals. The purpose is to determine a general relation between the number of vanishing moments of the wavelet...

  3. Sparse dynamics for partial differential equations.

    Schaeffer, Hayden; Caflisch, Russel; Hauck, Cory D; Osher, Stanley

    2013-04-23

    We investigate the approximate dynamics of several differential equations when the solutions are restricted to a sparse subset of a given basis. The restriction is enforced at every time step by simply applying soft thresholding to the coefficients of the basis approximation. By reducing or compressing the information needed to represent the solution at every step, only the essential dynamics are represented. In many cases, there are natural bases derived from the differential equations, which promote sparsity. We find that our method successfully reduces the dynamics of convection equations, diffusion equations, weak shocks, and vorticity equations with high-frequency source terms.

  4. Abnormal Event Detection Using Local Sparse Representation

    Ren, Huamin; Moeslund, Thomas B.

    2014-01-01

    We propose to detect abnormal events via a sparse subspace clustering algorithm. Unlike most existing approaches, which search for optimized normal bases and detect abnormality based on least square error or reconstruction error from the learned normal patterns, we propose an abnormality measurem...... is found that satisfies: the distance between its local space and the normal space is large. We evaluate our method on two public benchmark datasets: UCSD and Subway Entrance datasets. The comparison to the state-of-the-art methods validate our method's effectiveness....

  5. Partitioning sparse rectangular matrices for parallel processing

    Kolda, T.G.

    1998-05-01

    The authors are interested in partitioning sparse rectangular matrices for parallel processing. The partitioning problem has been well-studied in the square symmetric case, but the rectangular problem has received very little attention. They will formalize the rectangular matrix partitioning problem and discuss several methods for solving it. They will extend the spectral partitioning method for symmetric matrices to the rectangular case and compare this method to three new methods -- the alternating partitioning method and two hybrid methods. The hybrid methods will be shown to be best.

  6. Functional fixedness in a technologically sparse culture.

    German, Tim P; Barrett, H Clark

    2005-01-01

    Problem solving can be inefficient when the solution requires subjects to generate an atypical function for an object and the object's typical function has been primed. Subjects become "fixed" on the design function of the object, and problem solving suffers relative to control conditions in which the object's function is not demonstrated. In the current study, such functional fixedness was demonstrated in a sample of adolescents (mean age of 16 years) among the Shuar of Ecuadorian Amazonia, whose technologically sparse culture provides limited access to large numbers of artifacts with highly specialized functions. This result suggests that design function may universally be the core property of artifact concepts in human semantic memory.

  7. Parallel preconditioning techniques for sparse CG solvers

    Basermann, A.; Reichel, B.; Schelthoff, C. [Central Institute for Applied Mathematics, Juelich (Germany)

    1996-12-31

    Conjugate gradient (CG) methods to solve sparse systems of linear equations play an important role in numerical methods for solving discretized partial differential equations. The large size and the condition of many technical or physical applications in this area result in the need for efficient parallelization and preconditioning techniques of the CG method. In particular for very ill-conditioned matrices, sophisticated preconditioner are necessary to obtain both acceptable convergence and accuracy of CG. Here, we investigate variants of polynomial and incomplete Cholesky preconditioners that markedly reduce the iterations of the simply diagonally scaled CG and are shown to be well suited for massively parallel machines.

  8. Radiation gradient isotope separator

    Hughes, J.L.

    1980-01-01

    A system is described for transporting, separating and storing charged particles, charged antiparticles and fully or partially ionized isotopes of any element comprising a laser beam generator, laser beam intensity profiler, a laser beam variable intensity attenuator, and means for injecting charged particles, charged antiparticles and ionized isotopes into the beam and extracting them from the system as required. The invention is particularly useful for channelling electrons and ions used for fuel pellet compression in inertial fusion systems, for separating the isotopes of elements and for the confinement of charged antiparticles and particle/antiparticle plasmas

  9. Multi-Layer Sparse Representation for Weighted LBP-Patches Based Facial Expression Recognition

    Qi Jia

    2015-03-01

    Full Text Available In this paper, a novel facial expression recognition method based on sparse representation is proposed. Most contemporary facial expression recognition systems suffer from limited ability to handle image nuisances such as low resolution and noise. Especially for low intensity expression, most of the existing training methods have quite low recognition rates. Motivated by sparse representation, the problem can be solved by finding sparse coefficients of the test image by the whole training set. Deriving an effective facial representation from original face images is a vital step for successful facial expression recognition. We evaluate facial representation based on weighted local binary patterns, and Fisher separation criterion is used to calculate the weighs of patches. A multi-layer sparse representation framework is proposed for multi-intensity facial expression recognition, especially for low-intensity expressions and noisy expressions in reality, which is a critical problem but seldom addressed in the existing works. To this end, several experiments based on low-resolution and multi-intensity expressions are carried out. Promising results on publicly available databases demonstrate the potential of the proposed approach.

  10. An Improved Sparse Representation over Learned Dictionary Method for Seizure Detection.

    Li, Junhui; Zhou, Weidong; Yuan, Shasha; Zhang, Yanli; Li, Chengcheng; Wu, Qi

    2016-02-01

    Automatic seizure detection has played an important role in the monitoring, diagnosis and treatment of epilepsy. In this paper, a patient specific method is proposed for seizure detection in the long-term intracranial electroencephalogram (EEG) recordings. This seizure detection method is based on sparse representation with online dictionary learning and elastic net constraint. The online learned dictionary could sparsely represent the testing samples more accurately, and the elastic net constraint which combines the 11-norm and 12-norm not only makes the coefficients sparse but also avoids over-fitting problem. First, the EEG signals are preprocessed using wavelet filtering and differential filtering, and the kernel function is applied to make the samples closer to linearly separable. Then the dictionaries of seizure and nonseizure are respectively learned from original ictal and interictal training samples with online dictionary optimization algorithm to compose the training dictionary. After that, the test samples are sparsely coded over the learned dictionary and the residuals associated with ictal and interictal sub-dictionary are calculated, respectively. Eventually, the test samples are classified as two distinct categories, seizure or nonseizure, by comparing the reconstructed residuals. The average segment-based sensitivity of 95.45%, specificity of 99.08%, and event-based sensitivity of 94.44% with false detection rate of 0.23/h and average latency of -5.14 s have been achieved with our proposed method.

  11. Regularized generalized eigen-decomposition with applications to sparse supervised feature extraction and sparse discriminant analysis

    Han, Xixuan; Clemmensen, Line Katrine Harder

    2015-01-01

    We propose a general technique for obtaining sparse solutions to generalized eigenvalue problems, and call it Regularized Generalized Eigen-Decomposition (RGED). For decades, Fisher's discriminant criterion has been applied in supervised feature extraction and discriminant analysis, and it is for...

  12. Fast Sparse Coding for Range Data Denoising with Sparse Ridges Constraint

    Zhi Gao

    2018-05-01

    Full Text Available Light detection and ranging (LiDAR sensors have been widely deployed on intelligent systems such as unmanned ground vehicles (UGVs and unmanned aerial vehicles (UAVs to perform localization, obstacle detection, and navigation tasks. Thus, research into range data processing with competitive performance in terms of both accuracy and efficiency has attracted increasing attention. Sparse coding has revolutionized signal processing and led to state-of-the-art performance in a variety of applications. However, dictionary learning, which plays the central role in sparse coding techniques, is computationally demanding, resulting in its limited applicability in real-time systems. In this study, we propose sparse coding algorithms with a fixed pre-learned ridge dictionary to realize range data denoising via leveraging the regularity of laser range measurements in man-made environments. Experiments on both synthesized data and real data demonstrate that our method obtains accuracy comparable to that of sophisticated sparse coding methods, but with much higher computational efficiency.

  13. Sparse Nonnegative Matrix Factorization Strategy for Cochlear Implants

    Hongmei Hu

    2015-12-01

    Full Text Available Current cochlear implant (CI strategies carry speech information via the waveform envelope in frequency subbands. CIs require efficient speech processing to maximize information transfer to the brain, especially in background noise, where the speech envelope is not robust to noise interference. In such conditions, the envelope, after decomposition into frequency bands, may be enhanced by sparse transformations, such as nonnegative matrix factorization (NMF. Here, a novel CI processing algorithm is described, which works by applying NMF to the envelope matrix (envelopogram of 22 frequency channels in order to improve performance in noisy environments. It is evaluated for speech in eight-talker babble noise. The critical sparsity constraint parameter was first tuned using objective measures and then evaluated with subjective speech perception experiments for both normal hearing and CI subjects. Results from vocoder simulations with 10 normal hearing subjects showed that the algorithm significantly enhances speech intelligibility with the selected sparsity constraints. Results from eight CI subjects showed no significant overall improvement compared with the standard advanced combination encoder algorithm, but a trend toward improvement of word identification of about 10 percentage points at +15 dB signal-to-noise ratio (SNR was observed in the eight CI subjects. Additionally, a considerable reduction of the spread of speech perception performance from 40% to 93% for advanced combination encoder to 80% to 100% for the suggested NMF coding strategy was observed.

  14. Precise RFID localization in impaired environment through sparse signal recovery

    Subedi, Saurav; Zhang, Yimin D.; Amin, Moeness G.

    2013-05-01

    Radio frequency identification (RFID) is a rapidly developing wireless communication technology for electronically identifying, locating, and tracking products, assets, and personnel. RFID has become one of the most important means to construct real-time locating systems (RTLS) that track and identify the location of objects in real time using simple, inexpensive tags and readers. The applicability and usefulness of RTLS techniques depend on their achievable accuracy. In particular, when multilateration-based localization techniques are exploited, the achievable accuracy primarily relies on the precision of the range estimates between a reader and the tags. Such range information can be obtained by using the received signal strength indicator (RSSI) and/or the phase difference of arrival (PDOA). In both cases, however, the accuracy is significantly compromised when the operation environment is impaired. In particular, multipath propagation significantly affects the measurement accuracy of both RSSI and phase information. In addition, because RFID systems are typically operated in short distances, RSSI and phase measurements are also coupled with the reader and tag antenna patterns, making accurate RFID localization very complicated and challenging. In this paper, we develop new methods to localize RFID tags or readers by exploiting sparse signal recovery techniques. The proposed method allows the channel environment and antenna patterns to be taken into account and be properly compensated at a low computational cost. As such, the proposed technique yields superior performance in challenging operation environments with the above-mentioned impairments.

  15. Balanced and sparse Tamo-Barg codes

    Halbawi, Wael; Duursma, Iwan; Dau, Hoang; Hassibi, Babak

    2017-01-01

    We construct balanced and sparse generator matrices for Tamo and Barg's Locally Recoverable Codes (LRCs). More specifically, for a cyclic Tamo-Barg code of length n, dimension k and locality r, we show how to deterministically construct a generator matrix where the number of nonzeros in any two columns differs by at most one, and where the weight of every row is d + r - 1, where d is the minimum distance of the code. Since LRCs are designed mainly for distributed storage systems, the results presented in this work provide a computationally balanced and efficient encoding scheme for these codes. The balanced property ensures that the computational effort exerted by any storage node is essentially the same, whilst the sparse property ensures that this effort is minimal. The work presented in this paper extends a similar result previously established for Reed-Solomon (RS) codes, where it is now known that any cyclic RS code possesses a generator matrix that is balanced as described, but is sparsest, meaning that each row has d nonzeros.

  16. Atmospheric inverse modeling via sparse reconstruction

    Hase, Nils; Miller, Scot M.; Maaß, Peter; Notholt, Justus; Palm, Mathias; Warneke, Thorsten

    2017-10-01

    Many applications in atmospheric science involve ill-posed inverse problems. A crucial component of many inverse problems is the proper formulation of a priori knowledge about the unknown parameters. In most cases, this knowledge is expressed as a Gaussian prior. This formulation often performs well at capturing smoothed, large-scale processes but is often ill equipped to capture localized structures like large point sources or localized hot spots. Over the last decade, scientists from a diverse array of applied mathematics and engineering fields have developed sparse reconstruction techniques to identify localized structures. In this study, we present a new regularization approach for ill-posed inverse problems in atmospheric science. It is based on Tikhonov regularization with sparsity constraint and allows bounds on the parameters. We enforce sparsity using a dictionary representation system. We analyze its performance in an atmospheric inverse modeling scenario by estimating anthropogenic US methane (CH4) emissions from simulated atmospheric measurements. Different measures indicate that our sparse reconstruction approach is better able to capture large point sources or localized hot spots than other methods commonly used in atmospheric inversions. It captures the overall signal equally well but adds details on the grid scale. This feature can be of value for any inverse problem with point or spatially discrete sources. We show an example for source estimation of synthetic methane emissions from the Barnett shale formation.

  17. Balanced and sparse Tamo-Barg codes

    Halbawi, Wael

    2017-08-29

    We construct balanced and sparse generator matrices for Tamo and Barg\\'s Locally Recoverable Codes (LRCs). More specifically, for a cyclic Tamo-Barg code of length n, dimension k and locality r, we show how to deterministically construct a generator matrix where the number of nonzeros in any two columns differs by at most one, and where the weight of every row is d + r - 1, where d is the minimum distance of the code. Since LRCs are designed mainly for distributed storage systems, the results presented in this work provide a computationally balanced and efficient encoding scheme for these codes. The balanced property ensures that the computational effort exerted by any storage node is essentially the same, whilst the sparse property ensures that this effort is minimal. The work presented in this paper extends a similar result previously established for Reed-Solomon (RS) codes, where it is now known that any cyclic RS code possesses a generator matrix that is balanced as described, but is sparsest, meaning that each row has d nonzeros.

  18. Eddy energy separator

    Mukhutdinov, R.Kh.; Prokopov, O.I.

    1982-01-01

    An eddy energy separator is proposed which contains a chamber with nozzle input of compressed air and sleeves for cold and hot streams. In order to increase productivity, the chamber is cylindrical and the nozzle input is arranged along its axis. Coaxially to the input, there is an adaptor forming an annular channel with its end arranged in an angle to the axis of the chamber. The nozzle input and the adaptor are installed with the possibility of relative movement.

  19. Parallel sparse direct solver for integrated circuit simulation

    Chen, Xiaoming; Yang, Huazhong

    2017-01-01

    This book describes algorithmic methods and parallelization techniques to design a parallel sparse direct solver which is specifically targeted at integrated circuit simulation problems. The authors describe a complete flow and detailed parallel algorithms of the sparse direct solver. They also show how to improve the performance by simple but effective numerical techniques. The sparse direct solver techniques described can be applied to any SPICE-like integrated circuit simulator and have been proven to be high-performance in actual circuit simulation. Readers will benefit from the state-of-the-art parallel integrated circuit simulation techniques described in this book, especially the latest parallel sparse matrix solution techniques. · Introduces complicated algorithms of sparse linear solvers, using concise principles and simple examples, without complex theory or lengthy derivations; · Describes a parallel sparse direct solver that can be adopted to accelerate any SPICE-like integrated circuit simulato...

  20. A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems

    Benzi, M.; Tůma, Miroslav

    1998-01-01

    Roč. 19, č. 3 (1998), s. 968-994 ISSN 1064-8275 R&D Projects: GA ČR GA201/93/0067; GA AV ČR IAA230401 Keywords : large sparse systems * interative methods * preconditioning * approximate inverse * sparse linear systems * sparse matrices * incomplete factorizations * conjugate gradient -type methods Subject RIV: BA - General Mathematics Impact factor: 1.378, year: 1998

  1. A separator

    Prokopyuk, S.G.; Dyachenko, A.Ye.; Mukhametov, M.N.; Prokopov, O.I.

    1982-01-01

    A separator is proposed which contains separating slanted plates and baffle plates installed at a distance to them at an acute angle to them. To increase the effectiveness of separating a gas and liquid stream and the throughput through reducing the secondary carry away of the liquid drops and to reduce the hydraulic resistance, as well, openings are made in the plates. The horizontal projections of each opening from the lower and upper surfaces of the plate do not overlap each other.

  2. Dose-shaping using targeted sparse optimization

    Sayre, George A.; Ruan, Dan [Department of Radiation Oncology, University of California - Los Angeles School of Medicine, 200 Medical Plaza, Los Angeles, California 90095 (United States)

    2013-07-15

    Purpose: Dose volume histograms (DVHs) are common tools in radiation therapy treatment planning to characterize plan quality. As statistical metrics, DVHs provide a compact summary of the underlying plan at the cost of losing spatial information: the same or similar dose-volume histograms can arise from substantially different spatial dose maps. This is exactly the reason why physicians and physicists scrutinize dose maps even after they satisfy all DVH endpoints numerically. However, up to this point, little has been done to control spatial phenomena, such as the spatial distribution of hot spots, which has significant clinical implications. To this end, the authors propose a novel objective function that enables a more direct tradeoff between target coverage, organ-sparing, and planning target volume (PTV) homogeneity, and presents our findings from four prostate cases, a pancreas case, and a head-and-neck case to illustrate the advantages and general applicability of our method.Methods: In designing the energy minimization objective (E{sub tot}{sup sparse}), the authors utilized the following robust cost functions: (1) an asymmetric linear well function to allow differential penalties for underdose, relaxation of prescription dose, and overdose in the PTV; (2) a two-piece linear function to heavily penalize high dose and mildly penalize low and intermediate dose in organs-at risk (OARs); and (3) a total variation energy, i.e., the L{sub 1} norm applied to the first-order approximation of the dose gradient in the PTV. By minimizing a weighted sum of these robust costs, general conformity to dose prescription and dose-gradient prescription is achieved while encouraging prescription violations to follow a Laplace distribution. In contrast, conventional quadratic objectives are associated with a Gaussian distribution of violations, which is less forgiving to large violations of prescription than the Laplace distribution. As a result, the proposed objective E{sub tot

  3. Dose-shaping using targeted sparse optimization

    Sayre, George A.; Ruan, Dan

    2013-01-01

    Purpose: Dose volume histograms (DVHs) are common tools in radiation therapy treatment planning to characterize plan quality. As statistical metrics, DVHs provide a compact summary of the underlying plan at the cost of losing spatial information: the same or similar dose-volume histograms can arise from substantially different spatial dose maps. This is exactly the reason why physicians and physicists scrutinize dose maps even after they satisfy all DVH endpoints numerically. However, up to this point, little has been done to control spatial phenomena, such as the spatial distribution of hot spots, which has significant clinical implications. To this end, the authors propose a novel objective function that enables a more direct tradeoff between target coverage, organ-sparing, and planning target volume (PTV) homogeneity, and presents our findings from four prostate cases, a pancreas case, and a head-and-neck case to illustrate the advantages and general applicability of our method.Methods: In designing the energy minimization objective (E tot sparse ), the authors utilized the following robust cost functions: (1) an asymmetric linear well function to allow differential penalties for underdose, relaxation of prescription dose, and overdose in the PTV; (2) a two-piece linear function to heavily penalize high dose and mildly penalize low and intermediate dose in organs-at risk (OARs); and (3) a total variation energy, i.e., the L 1 norm applied to the first-order approximation of the dose gradient in the PTV. By minimizing a weighted sum of these robust costs, general conformity to dose prescription and dose-gradient prescription is achieved while encouraging prescription violations to follow a Laplace distribution. In contrast, conventional quadratic objectives are associated with a Gaussian distribution of violations, which is less forgiving to large violations of prescription than the Laplace distribution. As a result, the proposed objective E tot sparse improves

  4. Dose-shaping using targeted sparse optimization.

    Sayre, George A; Ruan, Dan

    2013-07-01

    Dose volume histograms (DVHs) are common tools in radiation therapy treatment planning to characterize plan quality. As statistical metrics, DVHs provide a compact summary of the underlying plan at the cost of losing spatial information: the same or similar dose-volume histograms can arise from substantially different spatial dose maps. This is exactly the reason why physicians and physicists scrutinize dose maps even after they satisfy all DVH endpoints numerically. However, up to this point, little has been done to control spatial phenomena, such as the spatial distribution of hot spots, which has significant clinical implications. To this end, the authors propose a novel objective function that enables a more direct tradeoff between target coverage, organ-sparing, and planning target volume (PTV) homogeneity, and presents our findings from four prostate cases, a pancreas case, and a head-and-neck case to illustrate the advantages and general applicability of our method. In designing the energy minimization objective (E tot (sparse)), the authors utilized the following robust cost functions: (1) an asymmetric linear well function to allow differential penalties for underdose, relaxation of prescription dose, and overdose in the PTV; (2) a two-piece linear function to heavily penalize high dose and mildly penalize low and intermediate dose in organs-at risk (OARs); and (3) a total variation energy, i.e., the L1 norm applied to the first-order approximation of the dose gradient in the PTV. By minimizing a weighted sum of these robust costs, general conformity to dose prescription and dose-gradient prescription is achieved while encouraging prescription violations to follow a Laplace distribution. In contrast, conventional quadratic objectives are associated with a Gaussian distribution of violations, which is less forgiving to large violations of prescription than the Laplace distribution. As a result, the proposed objective E tot (sparse) improves tradeoff between

  5. Data analysis in high-dimensional sparse spaces

    Clemmensen, Line Katrine Harder

    classification techniques for high-dimensional problems are presented: Sparse discriminant analysis, sparse mixture discriminant analysis and orthogonality constrained support vector machines. The first two introduces sparseness to the well known linear and mixture discriminant analysis and thereby provide low...... are applied to classifications of fish species, ear canal impressions used in the hearing aid industry, microbiological fungi species, and various cancerous tissues and healthy tissues. In addition, novel applications of sparse regressions (also called the elastic net) to the medical, concrete, and food...

  6. Greedy vs. L1 convex optimization in sparse coding

    Ren, Huamin; Pan, Hong; Olsen, Søren Ingvor

    2015-01-01

    Sparse representation has been applied successfully in many image analysis applications, including abnormal event detection, in which a baseline is to learn a dictionary from the training data and detect anomalies from its sparse codes. During this procedure, sparse codes which can be achieved...... solutions. Considering the property of abnormal event detection, i.e., only normal videos are used as training data due to practical reasons, effective codes in classification application may not perform well in abnormality detection. Therefore, we compare the sparse codes and comprehensively evaluate...... their performance from various aspects to better understand their applicability, including computation time, reconstruction error, sparsity, detection...

  7. A fast algorithm for sparse matrix computations related to inversion

    Li, S.; Wu, W.; Darve, E.

    2013-01-01

    We have developed a fast algorithm for computing certain entries of the inverse of a sparse matrix. Such computations are critical to many applications, such as the calculation of non-equilibrium Green’s functions G r and G for nano-devices. The FIND (Fast Inverse using Nested Dissection) algorithm is optimal in the big-O sense. However, in practice, FIND suffers from two problems due to the width-2 separators used by its partitioning scheme. One problem is the presence of a large constant factor in the computational cost of FIND. The other problem is that the partitioning scheme used by FIND is incompatible with most existing partitioning methods and libraries for nested dissection, which all use width-1 separators. Our new algorithm resolves these problems by thoroughly decomposing the computation process such that width-1 separators can be used, resulting in a significant speedup over FIND for realistic devices — up to twelve-fold in simulation. The new algorithm also has the added advantage that desired off-diagonal entries can be computed for free. Consequently, our algorithm is faster than the current state-of-the-art recursive methods for meshes of any size. Furthermore, the framework used in the analysis of our algorithm is the first attempt to explicitly apply the widely-used relationship between mesh nodes and matrix computations to the problem of multiple eliminations with reuse of intermediate results. This framework makes our algorithm easier to generalize, and also easier to compare against other methods related to elimination trees. Finally, our accuracy analysis shows that the algorithms that require back-substitution are subject to significant extra round-off errors, which become extremely large even for some well-conditioned matrices or matrices with only moderately large condition numbers. When compared to these back-substitution algorithms, our algorithm is generally a few orders of magnitude more accurate, and our produced round-off errors

  8. Sparse Bayesian Learning for Nonstationary Data Sources

    Fujimaki, Ryohei; Yairi, Takehisa; Machida, Kazuo

    This paper proposes an online Sparse Bayesian Learning (SBL) algorithm for modeling nonstationary data sources. Although most learning algorithms implicitly assume that a data source does not change over time (stationary), one in the real world usually does due to such various factors as dynamically changing environments, device degradation, sudden failures, etc (nonstationary). The proposed algorithm can be made useable for stationary online SBL by setting time decay parameters to zero, and as such it can be interpreted as a single unified framework for online SBL for use with stationary and nonstationary data sources. Tests both on four types of benchmark problems and on actual stock price data have shown it to perform well.

  9. Narrowband interference parameterization for sparse Bayesian recovery

    Ali, Anum

    2015-09-11

    This paper addresses the problem of narrowband interference (NBI) in SC-FDMA systems by using tools from compressed sensing and stochastic geometry. The proposed NBI cancellation scheme exploits the frequency domain sparsity of the unknown signal and adopts a Bayesian sparse recovery procedure. This is done by keeping a few randomly chosen sub-carriers data free to sense the NBI signal at the receiver. As Bayesian recovery requires knowledge of some NBI parameters (i.e., mean, variance and sparsity rate), we use tools from stochastic geometry to obtain analytical expressions for the required parameters. Our simulation results validate the analysis and depict suitability of the proposed recovery method for NBI mitigation. © 2015 IEEE.

  10. Modern algorithms for large sparse eigenvalue problems

    Meyer, A.

    1987-01-01

    The volume is written for mathematicians interested in (numerical) linear algebra and in the solution of large sparse eigenvalue problems, as well as for specialists in engineering, who use the considered algorithms in the investigation of eigenoscillations of structures, in reactor physics, etc. Some variants of the algorithms based on the idea of a gradient-type direction of movement are presented and their convergence properties are discussed. From this, a general strategy for the direct use of preconditionings for the eigenvalue problem is derived. In this new approach the necessity of the solution of large linear systems is entirely avoided. Hence, these methods represent a new alternative to some other modern eigenvalue algorithms, as they show a slightly slower convergence on the one hand but essentially lower numerical and data processing problems on the other hand. A brief description and comparison of some well-known methods (i.e. simultaneous iteration, Lanczos algorithm) completes this volume. (author)

  11. Sparse random matrices: The eigenvalue spectrum revisited

    Semerjian, Guilhem; Cugliandolo, Leticia F.

    2003-08-01

    We revisit the derivation of the density of states of sparse random matrices. We derive a recursion relation that allows one to compute the spectrum of the matrix of incidence for finite trees that determines completely the low concentration limit. Using the iterative scheme introduced by Biroli and Monasson [J. Phys. A 32, L255 (1999)] we find an approximate expression for the density of states expected to hold exactly in the opposite limit of large but finite concentration. The combination of the two methods yields a very simple geometric interpretation of the tails of the spectrum. We test the analytic results with numerical simulations and we suggest an indirect numerical method to explore the tails of the spectrum. (author)

  12. ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES.

    Fan, Jianqing; Rigollet, Philippe; Wang, Weichen

    High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓ r norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics.

  13. Isotope separation

    Eerkens, J.W.

    1979-01-01

    A method of isotope separation is described which involves the use of a laser photon beam to selectively induce energy level transitions of an isotope molecule containing the isotope to be separated. The use of the technique for 235 U enrichment is demonstrated. (UK)

  14. Fuel channel refilling

    Shoukri, M.; Abdul-Razzak, A.

    1990-04-01

    Analysis of existing data on fuel channel refilling is presented. The analysis focuses on the data obtained using the Stern Laboratories Cold Water Injection Test (CWIT) Facility. The two-fluid model thermal-hydraulics computer code CATHENA is also used to simulate experimental results on fuel channel refilling from both the CWIT and RD-14 facilities. Conclusions related to single and double break tests, including the effect of non-condensible gases, are presented. A set of recommendations is given for further analysis and separate effect experiments. (67 figs., 5 tabs., 24 refs.)

  15. Efficient Sparse Signal Transmission over a Lossy Link Using Compressive Sensing

    Liantao Wu

    2015-08-01

    Full Text Available Reliable data transmission over lossy communication link is expensive due to overheads for error protection. For signals that have inherent sparse structures, compressive sensing (CS is applied to facilitate efficient sparse signal transmissions over lossy communication links without data compression or error protection. The natural packet loss in the lossy link is modeled as a random sampling process of the transmitted data, and the original signal will be reconstructed from the lossy transmission results using the CS-based reconstruction method at the receiving end. The impacts of packet lengths on transmission efficiency under different channel conditions have been discussed, and interleaving is incorporated to mitigate the impact of burst data loss. Extensive simulations and experiments have been conducted and compared to the traditional automatic repeat request (ARQ interpolation technique, and very favorable results have been observed in terms of both accuracy of the reconstructed signals and the transmission energy consumption. Furthermore, the packet length effect provides useful insights for using compressed sensing for efficient sparse signal transmission via lossy links.

  16. Learning Joint-Sparse Codes for Calibration-Free Parallel MR Imaging.

    Wang, Shanshan; Tan, Sha; Gao, Yuan; Liu, Qiegen; Ying, Leslie; Xiao, Taohui; Liu, Yuanyuan; Liu, Xin; Zheng, Hairong; Liang, Dong

    2018-01-01

    The integration of compressed sensing and parallel imaging (CS-PI) has shown an increased popularity in recent years to accelerate magnetic resonance (MR) imaging. Among them, calibration-free techniques have presented encouraging performances due to its capability in robustly handling the sensitivity information. Unfortunately, existing calibration-free methods have only explored joint-sparsity with direct analysis transform projections. To further exploit joint-sparsity and improve reconstruction accuracy, this paper proposes to Learn joINt-sparse coDes for caliBration-free parallEl mR imaGing (LINDBERG) by modeling the parallel MR imaging problem as an - - minimization objective with an norm constraining data fidelity, Frobenius norm enforcing sparse representation error and the mixed norm triggering joint sparsity across multichannels. A corresponding algorithm has been developed to alternatively update the sparse representation, sensitivity encoded images and K-space data. Then, the final image is produced as the square root of sum of squares of all channel images. Experimental results on both physical phantom and in vivo data sets show that the proposed method is comparable and even superior to state-of-the-art CS-PI reconstruction approaches. Specifically, LINDBERG has presented strong capability in suppressing noise and artifacts while reconstructing MR images from highly undersampled multichannel measurements.

  17. A coordinate descent MM algorithm for fast computation of sparse logistic PCA

    Lee, Seokho

    2013-06-01

    Sparse logistic principal component analysis was proposed in Lee et al. (2010) for exploratory analysis of binary data. Relying on the joint estimation of multiple principal components, the algorithm therein is computationally too demanding to be useful when the data dimension is high. We develop a computationally fast algorithm using a combination of coordinate descent and majorization-minimization (MM) auxiliary optimization. Our new algorithm decouples the joint estimation of multiple components into separate estimations and consists of closed-form elementwise updating formulas for each sparse principal component. The performance of the proposed algorithm is tested using simulation and high-dimensional real-world datasets. © 2013 Elsevier B.V. All rights reserved.

  18. A Fast Gradient Method for Nonnegative Sparse Regression With Self-Dictionary

    Gillis, Nicolas; Luce, Robert

    2018-01-01

    A nonnegative matrix factorization (NMF) can be computed efficiently under the separability assumption, which asserts that all the columns of the given input data matrix belong to the cone generated by a (small) subset of them. The provably most robust methods to identify these conic basis columns are based on nonnegative sparse regression and self dictionaries, and require the solution of large-scale convex optimization problems. In this paper we study a particular nonnegative sparse regression model with self dictionary. As opposed to previously proposed models, this model yields a smooth optimization problem where the sparsity is enforced through linear constraints. We show that the Euclidean projection on the polyhedron defined by these constraints can be computed efficiently, and propose a fast gradient method to solve our model. We compare our algorithm with several state-of-the-art methods on synthetic data sets and real-world hyperspectral images.

  19. CENTRIFUGAL SEPARATORS

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  20. Microparticle Separation by Cyclonic Separation

    Karback, Keegan; Leith, Alexander

    2017-11-01

    The ability to separate particles based on their size has wide ranging applications from the industrial to the medical. Currently, cyclonic separators are primarily used in agriculture and manufacturing to syphon out contaminates or products from an air supply. This has led us to believe that cyclonic separation has more applications than the agricultural and industrial. Using the OpenFoam computational package, we were able to determine the flow parameters of a vortex in a cyclonic separator in order to segregate dust particles to a cutoff size of tens of nanometers. To test the model, we constructed an experiment to separate a test dust of various sized particles. We filled a chamber with Arizona test dust and utilized an acoustic suspension technique to segregate particles finer than a coarse cutoff size and introduce them into the cyclonic separation apparatus where they were further separated via a vortex following our computational model. The size of the particles separated from this experiment will be used to further refine our model. Metropolitan State University of Denver, Colorado University of Denver, Dr. Randall Tagg, Dr. Richard Krantz.

  1. Classification of multispectral or hyperspectral satellite imagery using clustering of sparse approximations on sparse representations in learned dictionaries obtained using efficient convolutional sparse coding

    Moody, Daniela; Wohlberg, Brendt

    2018-01-02

    An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. The learned dictionaries may be derived using efficient convolutional sparse coding to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of images over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detect geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.

  2. Sparse Source EEG Imaging with the Variational Garrote

    Hansen, Sofie Therese; Stahlhut, Carsten; Hansen, Lars Kai

    2013-01-01

    EEG imaging, the estimation of the cortical source distribution from scalp electrode measurements, poses an extremely ill-posed inverse problem. Recent work by Delorme et al. (2012) supports the hypothesis that distributed source solutions are sparse. We show that direct search for sparse solutions...

  3. Support agnostic Bayesian matching pursuit for block sparse signals

    Masood, Mudassir; Al-Naffouri, Tareq Y.

    2013-01-01

    priori knowledge of block partition and utilizes a greedy approach and order-recursive updates of its metrics to find the most dominant sparse supports to determine the approximate minimum mean square error (MMSE) estimate of the block-sparse signal

  4. Local posterior concentration rate for multilevel sparse sequences

    Belitser, E.N.; Nurushev, N.

    2017-01-01

    We consider empirical Bayesian inference in the many normal means model in the situation when the high-dimensional mean vector is multilevel sparse, that is,most of the entries of the parameter vector are some fixed values. For instance, the traditional sparse signal is a particular case (with one

  5. Joint Group Sparse PCA for Compressed Hyperspectral Imaging.

    Khan, Zohaib; Shafait, Faisal; Mian, Ajmal

    2015-12-01

    A sparse principal component analysis (PCA) seeks a sparse linear combination of input features (variables), so that the derived features still explain most of the variations in the data. A group sparse PCA introduces structural constraints on the features in seeking such a linear combination. Collectively, the derived principal components may still require measuring all the input features. We present a joint group sparse PCA (JGSPCA) algorithm, which forces the basic coefficients corresponding to a group of features to be jointly sparse. Joint sparsity ensures that the complete basis involves only a sparse set of input features, whereas the group sparsity ensures that the structural integrity of the features is maximally preserved. We evaluate the JGSPCA algorithm on the problems of compressed hyperspectral imaging and face recognition. Compressed sensing results show that the proposed method consistently outperforms sparse PCA and group sparse PCA in reconstructing the hyperspectral scenes of natural and man-made objects. The efficacy of the proposed compressed sensing method is further demonstrated in band selection for face recognition.

  6. Confidence of model based shape reconstruction from sparse data

    Baka, N.; de Bruijne, Marleen; Reiber, J. H. C.

    2010-01-01

    Statistical shape models (SSM) are commonly applied for plausible interpolation of missing data in medical imaging. However, when fitting a shape model to sparse information, many solutions may fit the available data. In this paper we derive a constrained SSM to fit noisy sparse input landmarks...

  7. Comparison of Methods for Sparse Representation of Musical Signals

    Endelt, Line Ørtoft; la Cour-Harbo, Anders

    2005-01-01

    by a number of sparseness measures and results are shown on the ℓ1 norm of the coefficients, using a dictionary containing a Dirac basis, a Discrete Cosine Transform, and a Wavelet Packet. Evaluated only on the sparseness Matching Pursuit is the best method, and it is also relatively fast....

  8. Robust Face Recognition Via Gabor Feature and Sparse Representation

    Hao Yu-Juan

    2016-01-01

    Full Text Available Sparse representation based on compressed sensing theory has been widely used in the field of face recognition, and has achieved good recognition results. but the face feature extraction based on sparse representation is too simple, and the sparse coefficient is not sparse. In this paper, we improve the classification algorithm based on the fusion of sparse representation and Gabor feature, and then improved algorithm for Gabor feature which overcomes the problem of large dimension of the vector dimension, reduces the computation and storage cost, and enhances the robustness of the algorithm to the changes of the environment.The classification efficiency of sparse representation is determined by the collaborative representation,we simplify the sparse constraint based on L1 norm to the least square constraint, which makes the sparse coefficients both positive and reduce the complexity of the algorithm. Experimental results show that the proposed method is robust to illumination, facial expression and pose variations of face recognition, and the recognition rate of the algorithm is improved.

  9. Ion channeling

    Erramli, H.; Blondiaux, G.

    1994-01-01

    Channeling phenomenon was predicted, many years ago, by stark. The first channeling experiments were performed in 1963 by Davies and his coworkers. Parallely Robinson and Oen have investigated this process by simulating trajectories of ions in monocrystals. This technique has been combined with many methods like Rutherford Backscattering Spectrometry (R.B.S.), Particles Induced X-rays Emission (P.I.X.E) and online Nuclear Reaction (N.R.A.) to localize trace elements in the crystal or to determine crystalline quality. To use channeling for material characterization we need data about the stopping power of the incident particle in the channeled direction. The ratios of channeled to random stopping powers of silicon for irradiation in the direction have been investigated and compared to the available theoretical results. We describe few applications of ion channeling in the field of materials characterization. Special attention is given to ion channeling combined with Charged Particle Activation Analysis (C.P.A.A.) for studying the behaviour of oxygen atoms in Czochralski silicon lattices under the influence of internal gettering and in different gaseous atmospheres. Association between ion channeling and C.P.A.A was also utilised for studying the influence of the growing conditions on concentration and position of carbon atoms at trace levels in the MOVPE Ga sub (1-x) Al sub x lattice. 6 figs., 1 tab., 32 refs. (author)

  10. Isotopic separation

    Castle, P.M.

    1979-01-01

    This invention relates to molecular and atomic isotope separation and is particularly applicable to the separation of 235 U from other uranium isotopes including 238 U. In the method described a desired isotope is separated mechanically from an atomic or molecular beam formed from an isotope mixture utilising the isotropic recoil momenta resulting from selective excitation of the desired isotope species by radiation, followed by ionization or dissociation by radiation or electron attachment. By forming a matrix of UF 6 molecules in HBr molecules so as to collapse the V 3 vibrational mode of the UF 6 molecule the 235 UF 6 molecules are selectively excited to promote reduction of UF 6 molecules containing 235 U and facilitate separation. (UK)

  11. Isotopic separation

    Chen, C.L.

    1979-01-01

    Isotopic species in an isotopic mixture including a first species having a first isotope and a second species having a second isotope are separated by selectively exciting the first species in preference to the second species and then reacting the selectively excited first species with an additional preselected radiation, an electron or another chemical species so as to form a product having a mass different from the original species and separating the product from the balance of the mixture in a centrifugal separating device such as centrifuge or aerodynamic nozzle. In the centrifuge the isotopic mixture is passed into a rotor where it is irradiated through a window. Heavier and lighter components can be withdrawn. The irradiated mixture experiences a large centrifugal force and is separated in a deflection area into lighter and heavier components. (UK)

  12. Separations chemistry

    Anon.

    1976-01-01

    Results of studies on the photochemistry of aqueous Pu solutions and the stability of iodine in liquid and gaseous CO 2 are reported. Progress is reported in studies on: the preparation of macroporous bodies filled with oxides and sulfides to be used as adsorbents; the beneficiation of photographic wastes; the anion exchange adsorption of transition elements from thiosulfate solutions; advanced filtration applications of energy significance; high-resolution separations; and, the examination of the separation agents, octylphenylphosphoric acid (OPPA) and trihexyl phosphate (THP)

  13. Isotopic separation

    Chen, C.L.

    1982-01-01

    A method is described for separating isotopes in which photo-excitation of selected isotope species is used together with the reaction of the excited species with postive ions of predetermined ionization energy, other excited species, or free electrons to produce ions or ion fragments of the selected species. Ions and electrons are produced by an electrical discharge, and separation is achieved through radial ambipolar diffusion, electrostatic techniques, or magnetohydrodynamic methods

  14. Sparse Frequency Waveform Design for Radar-Embedded Communication

    Chaoyun Mai

    2016-01-01

    Full Text Available According to the Tag application with function of covert communication, a method for sparse frequency waveform design based on radar-embedded communication is proposed. Firstly, sparse frequency waveforms are designed based on power spectral density fitting and quasi-Newton method. Secondly, the eigenvalue decomposition of the sparse frequency waveform sequence is used to get the dominant space. Finally the communication waveforms are designed through the projection of orthogonal pseudorandom vectors in the vertical subspace. Compared with the linear frequency modulation waveform, the sparse frequency waveform can further improve the bandwidth occupation of communication signals, thus achieving higher communication rate. A certain correlation exists between the reciprocally orthogonal communication signals samples and the sparse frequency waveform, which guarantees the low SER (signal error rate and LPI (low probability of intercept. The simulation results verify the effectiveness of this method.

  15. Relaxations to Sparse Optimization Problems and Applications

    Skau, Erik West

    Parsimony is a fundamental property that is applied to many characteristics in a variety of fields. Of particular interest are optimization problems that apply rank, dimensionality, or support in a parsimonious manner. In this thesis we study some optimization problems and their relaxations, and focus on properties and qualities of the solutions of these problems. The Gramian tensor decomposition problem attempts to decompose a symmetric tensor as a sum of rank one tensors.We approach the Gramian tensor decomposition problem with a relaxation to a semidefinite program. We study conditions which ensure that the solution of the relaxed semidefinite problem gives the minimal Gramian rank decomposition. Sparse representations with learned dictionaries are one of the leading image modeling techniques for image restoration. When learning these dictionaries from a set of training images, the sparsity parameter of the dictionary learning algorithm strongly influences the content of the dictionary atoms.We describe geometrically the content of trained dictionaries and how it changes with the sparsity parameter.We use statistical analysis to characterize how the different content is used in sparse representations. Finally, a method to control the structure of the dictionaries is demonstrated, allowing us to learn a dictionary which can later be tailored for specific applications. Variations of dictionary learning can be broadly applied to a variety of applications.We explore a pansharpening problem with a triple factorization variant of coupled dictionary learning. Another application of dictionary learning is computer vision. Computer vision relies heavily on object detection, which we explore with a hierarchical convolutional dictionary learning model. Data fusion of disparate modalities is a growing topic of interest.We do a case study to demonstrate the benefit of using social media data with satellite imagery to estimate hazard extents. In this case study analysis we

  16. Sparse-view proton computed tomography using modulated proton beams

    Lee, Jiseoc; Kim, Changhwan; Cho, Seungryong, E-mail: scho@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejon 305-701 (Korea, Republic of); Min, Byungjun [Department of Radiation Oncology, Kangbuk Samsung Hospital, 110–746 (Korea, Republic of); Kwak, Jungwon [Department of Radiation Oncology, Asan Medical Center, 138–736 (Korea, Republic of); Park, Seyjoon; Lee, Se Byeong [Proton Therapy Center, National Cancer Center, 410–769 (Korea, Republic of); Park, Sungyong [Proton Therapy Center, McLaren Cancer Institute, Flint, Michigan 48532 (United States)

    2015-02-15

    Purpose: Proton imaging that uses a modulated proton beam and an intensity detector allows a relatively fast image acquisition compared to the imaging approach based on a trajectory tracking detector. In addition, it requires a relatively simple implementation in a conventional proton therapy equipment. The model of geometric straight ray assumed in conventional computed tomography (CT) image reconstruction is however challenged by multiple-Coulomb scattering and energy straggling in the proton imaging. Radiation dose to the patient is another important issue that has to be taken care of for practical applications. In this work, the authors have investigated iterative image reconstructions after a deconvolution of the sparsely view-sampled data to address these issues in proton CT. Methods: Proton projection images were acquired using the modulated proton beams and the EBT2 film as an intensity detector. Four electron-density cylinders representing normal soft tissues and bone were used as imaged object and scanned at 40 views that are equally separated over 360°. Digitized film images were converted to water-equivalent thickness by use of an empirically derived conversion curve. For improving the image quality, a deconvolution-based image deblurring with an empirically acquired point spread function was employed. They have implemented iterative image reconstruction algorithms such as adaptive steepest descent-projection onto convex sets (ASD-POCS), superiorization method–projection onto convex sets (SM-POCS), superiorization method–expectation maximization (SM-EM), and expectation maximization-total variation minimization (EM-TV). Performance of the four image reconstruction algorithms was analyzed and compared quantitatively via contrast-to-noise ratio (CNR) and root-mean-square-error (RMSE). Results: Objects of higher electron density have been reconstructed more accurately than those of lower density objects. The bone, for example, has been reconstructed

  17. Channel box

    Tanabe, Akira.

    1993-01-01

    In a channel box of a BWR type reactor, protruding pads are disposed in axial position on the lateral side of a channel box opposing to a control rod and facing the outer side portion of the control rod in a reactor core loaded state. In the initial loading stage of fuel assemblies, channel fasteners and spacer pads are abutted against each other in the upper portion between the channel boxes sandwiching the control rod therebetween. Further, in the lower portion, a gap as a channel for the movement of the control rod is ensured by the support of fuel support metals. If the channel box is bent toward the control rod along with reactor operation, the pads are abutted against each other to always ensure the gap through which the control rod can move easily. Further, when the pads are brought into contact with each other, the bending deformation of the channel box is corrected by urging to each other. Thus, the control rod can always be moved smoothly to attain reactor safety operation. (N.H.)

  18. Epileptic Seizure Detection with Log-Euclidean Gaussian Kernel-Based Sparse Representation.

    Yuan, Shasha; Zhou, Weidong; Wu, Qi; Zhang, Yanli

    2016-05-01

    Epileptic seizure detection plays an important role in the diagnosis of epilepsy and reducing the massive workload of reviewing electroencephalography (EEG) recordings. In this work, a novel algorithm is developed to detect seizures employing log-Euclidean Gaussian kernel-based sparse representation (SR) in long-term EEG recordings. Unlike the traditional SR for vector data in Euclidean space, the log-Euclidean Gaussian kernel-based SR framework is proposed for seizure detection in the space of the symmetric positive definite (SPD) matrices, which form a Riemannian manifold. Since the Riemannian manifold is nonlinear, the log-Euclidean Gaussian kernel function is applied to embed it into a reproducing kernel Hilbert space (RKHS) for performing SR. The EEG signals of all channels are divided into epochs and the SPD matrices representing EEG epochs are generated by covariance descriptors. Then, the testing samples are sparsely coded over the dictionary composed by training samples utilizing log-Euclidean Gaussian kernel-based SR. The classification of testing samples is achieved by computing the minimal reconstructed residuals. The proposed method is evaluated on the Freiburg EEG dataset of 21 patients and shows its notable performance on both epoch-based and event-based assessments. Moreover, this method handles multiple channels of EEG recordings synchronously which is more speedy and efficient than traditional seizure detection methods.

  19. Sparse alignment for robust tensor learning.

    Lai, Zhihui; Wong, Wai Keung; Xu, Yong; Zhao, Cairong; Sun, Mingming

    2014-10-01

    Multilinear/tensor extensions of manifold learning based algorithms have been widely used in computer vision and pattern recognition. This paper first provides a systematic analysis of the multilinear extensions for the most popular methods by using alignment techniques, thereby obtaining a general tensor alignment framework. From this framework, it is easy to show that the manifold learning based tensor learning methods are intrinsically different from the alignment techniques. Based on the alignment framework, a robust tensor learning method called sparse tensor alignment (STA) is then proposed for unsupervised tensor feature extraction. Different from the existing tensor learning methods, L1- and L2-norms are introduced to enhance the robustness in the alignment step of the STA. The advantage of the proposed technique is that the difficulty in selecting the size of the local neighborhood can be avoided in the manifold learning based tensor feature extraction algorithms. Although STA is an unsupervised learning method, the sparsity encodes the discriminative information in the alignment step and provides the robustness of STA. Extensive experiments on the well-known image databases as well as action and hand gesture databases by encoding object images as tensors demonstrate that the proposed STA algorithm gives the most competitive performance when compared with the tensor-based unsupervised learning methods.

  20. Regression analysis of sparse asynchronous longitudinal data.

    Cao, Hongyuan; Zeng, Donglin; Fine, Jason P

    2015-09-01

    We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus.

  1. Duplex scanning using sparse data sequences

    Møllenbach, S. K.; Jensen, Jørgen Arendt

    2008-01-01

    reconstruction of the missing samples possible. The periodic pattern has the length T = M + A samples, where M are for B-mode and A for velocity estimation. The missing samples can now be reconstructed using a filter bank. One filter bank reconstructs one missing sample, so the number of filter banks corresponds...... to M. The number of sub filters in every filter bank is the same as A. Every sub filter contains fractional delay (FD) filter and an interpolation function. Many different sequences can be selected to adapt the B-mode frame rate needed. The drawback of the method is that the maximum velocity detectable......, the fprf and the resolution are 15 MHz, 3.5 kHz, and 12 bit sample (8 kHz and 16 bit for the Carotid artery). The resulting data contains 8000 RF lines with 128 samples at a depth of 45 mm for the vein and 50 mm for Aorta. Sparse sequences are constructed from the full data sequences to have both...

  2. Transformer fault diagnosis using continuous sparse autoencoder.

    Wang, Lukun; Zhao, Xiaoying; Pei, Jiangnan; Tang, Gongyou

    2016-01-01

    This paper proposes a novel continuous sparse autoencoder (CSAE) which can be used in unsupervised feature learning. The CSAE adds Gaussian stochastic unit into activation function to extract features of nonlinear data. In this paper, CSAE is applied to solve the problem of transformer fault recognition. Firstly, based on dissolved gas analysis method, IEC three ratios are calculated by the concentrations of dissolved gases. Then IEC three ratios data is normalized to reduce data singularity and improve training speed. Secondly, deep belief network is established by two layers of CSAE and one layer of back propagation (BP) network. Thirdly, CSAE is adopted to unsupervised training and getting features. Then BP network is used for supervised training and getting transformer fault. Finally, the experimental data from IEC TC 10 dataset aims to illustrate the effectiveness of the presented approach. Comparative experiments clearly show that CSAE can extract features from the original data, and achieve a superior correct differentiation rate on transformer fault diagnosis.

  3. Joint Sparse Recovery With Semisupervised MUSIC

    Wen, Zaidao; Hou, Biao; Jiao, Licheng

    2017-05-01

    Discrete multiple signal classification (MUSIC) with its low computational cost and mild condition requirement becomes a significant noniterative algorithm for joint sparse recovery (JSR). However, it fails in rank defective problem caused by coherent or limited amount of multiple measurement vectors (MMVs). In this letter, we provide a novel sight to address this problem by interpreting JSR as a binary classification problem with respect to atoms. Meanwhile, MUSIC essentially constructs a supervised classifier based on the labeled MMVs so that its performance will heavily depend on the quality and quantity of these training samples. From this viewpoint, we develop a semisupervised MUSIC (SS-MUSIC) in the spirit of machine learning, which declares that the insufficient supervised information in the training samples can be compensated from those unlabeled atoms. Instead of constructing a classifier in a fully supervised manner, we iteratively refine a semisupervised classifier by exploiting the labeled MMVs and some reliable unlabeled atoms simultaneously. Through this way, the required conditions and iterations can be greatly relaxed and reduced. Numerical experimental results demonstrate that SS-MUSIC can achieve much better recovery performances than other MUSIC extended algorithms as well as some typical greedy algorithms for JSR in terms of iterations and recovery probability.

  4. SLAP, Large Sparse Linear System Solution Package

    Greenbaum, A.

    1987-01-01

    1 - Description of program or function: SLAP is a set of routines for solving large sparse systems of linear equations. One need not store the entire matrix - only the nonzero elements and their row and column numbers. Any nonzero structure is acceptable, so the linear system solver need not be modified when the structure of the matrix changes. Auxiliary storage space is acquired and released within the routines themselves by use of the LRLTRAN POINTER statement. 2 - Method of solution: SLAP contains one direct solver, a band matrix factorization and solution routine, BAND, and several interactive solvers. The iterative routines are as follows: JACOBI, Jacobi iteration; GS, Gauss-Seidel Iteration; ILUIR, incomplete LU decomposition with iterative refinement; DSCG and ICCG, diagonal scaling and incomplete Cholesky decomposition with conjugate gradient iteration (for symmetric positive definite matrices only); DSCGN and ILUGGN, diagonal scaling and incomplete LU decomposition with conjugate gradient interaction on the normal equations; DSBCG and ILUBCG, diagonal scaling and incomplete LU decomposition with bi-conjugate gradient iteration; and DSOMN and ILUOMN, diagonal scaling and incomplete LU decomposition with ORTHOMIN iteration

  5. Separation system

    Rubin, L.S.

    1986-01-01

    A disposal container is described for use in disposal of radioactive waste materials consisting of: top wall structure, bottom wall structure, and circumferential side wall structure interconnecting the top and bottom wall structures to define an enclosed container, separation structure in the container adjacent the inner surface of the side wall structure for allowing passage of liquid and retention of solids, inlet port structure in the top wall structure, discharge port structure at the periphery of the container in communication with the outer surface of the separation structure for receiving liquid that passes through the separation structure, first centrifugally actuated valve structure having a normal position closing the inlet port structure and a centrifugally actuated position opening the inlet port structure, second centrifugally actuated valve structure having a normal position closing the discharge port structure and a centrifugally actuated position opening the discharge port structure, and coupling structure integral with wall structure of the container for releasable engagement with centrifugal drive structure

  6. Separable algebras

    Ford, Timothy J

    2017-01-01

    This book presents a comprehensive introduction to the theory of separable algebras over commutative rings. After a thorough introduction to the general theory, the fundamental roles played by separable algebras are explored. For example, Azumaya algebras, the henselization of local rings, and Galois theory are rigorously introduced and treated. Interwoven throughout these applications is the important notion of étale algebras. Essential connections are drawn between the theory of separable algebras and Morita theory, the theory of faithfully flat descent, cohomology, derivations, differentials, reflexive lattices, maximal orders, and class groups. The text is accessible to graduate students who have finished a first course in algebra, and it includes necessary foundational material, useful exercises, and many nontrivial examples.

  7. Isotope separation

    Bartlett, R.J.; Morrey, J.R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated

  8. Object tracking by occlusion detection via structured sparse learning

    Zhang, Tianzhu

    2013-06-01

    Sparse representation based methods have recently drawn much attention in visual tracking due to good performance against illumination variation and occlusion. They assume the errors caused by image variations can be modeled as pixel-wise sparse. However, in many practical scenarios these errors are not truly pixel-wise sparse but rather sparsely distributed in a structured way. In fact, pixels in error constitute contiguous regions within the object\\'s track. This is the case when significant occlusion occurs. To accommodate for non-sparse occlusion in a given frame, we assume that occlusion detected in previous frames can be propagated to the current one. This propagated information determines which pixels will contribute to the sparse representation of the current track. In other words, pixels that were detected as part of an occlusion in the previous frame will be removed from the target representation process. As such, this paper proposes a novel tracking algorithm that models and detects occlusion through structured sparse learning. We test our tracker on challenging benchmark sequences, such as sports videos, which involve heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that our tracker consistently outperforms the state-of-the-art. © 2013 IEEE.

  9. Manifold regularization for sparse unmixing of hyperspectral images.

    Liu, Junmin; Zhang, Chunxia; Zhang, Jiangshe; Li, Huirong; Gao, Yuelin

    2016-01-01

    Recently, sparse unmixing has been successfully applied to spectral mixture analysis of remotely sensed hyperspectral images. Based on the assumption that the observed image signatures can be expressed in the form of linear combinations of a number of pure spectral signatures known in advance, unmixing of each mixed pixel in the scene is to find an optimal subset of signatures in a very large spectral library, which is cast into the framework of sparse regression. However, traditional sparse regression models, such as collaborative sparse regression , ignore the intrinsic geometric structure in the hyperspectral data. In this paper, we propose a novel model, called manifold regularized collaborative sparse regression , by introducing a manifold regularization to the collaborative sparse regression model. The manifold regularization utilizes a graph Laplacian to incorporate the locally geometrical structure of the hyperspectral data. An algorithm based on alternating direction method of multipliers has been developed for the manifold regularized collaborative sparse regression model. Experimental results on both the simulated and real hyperspectral data sets have demonstrated the effectiveness of our proposed model.

  10. Underdetermined Blind Source Separation in Echoic Environments Using DESPRIT

    Melia Thomas

    2007-01-01

    Full Text Available The DUET blind source separation algorithm can demix an arbitrary number of speech signals using anechoic mixtures of the signals. DUET however is limited in that it relies upon source signals which are mixed in an anechoic environment and which are sufficiently sparse such that it is assumed that only one source is active at a given time frequency point. The DUET-ESPRIT (DESPRIT blind source separation algorithm extends DUET to situations where sparsely echoic mixtures of an arbitrary number of sources overlap in time frequency. This paper outlines the development of the DESPRIT method and demonstrates its properties through various experiments conducted on synthetic and real world mixtures.

  11. Surface channeling

    Sizmann, R.; Varelas, C.

    1976-01-01

    There is experimental evidence that swift light ions incident at small angles towards single crystalline surfaces can lose an appreciable fraction of their kinetic energy during reflection. It is shown that these projectiles penetrate into the bulk surface region of the crystal. They can travel as channeled particles along long paths through the solid (surface channeling). The angular distribution and the depth history of the re-emerged projectiles are investigated by computer simulations. A considerable fraction of the penetrating projectiles re-emerges from the crystal with constant transverse energy if the angle of incidence is smaller than the critical angle for axial channeling. Analytical formulae are derived based on a diffusion model for surface channeling. A comparison with experimental data exhibits the relevance of the analytical solutions. (Auth.)

  12. Pathways-driven sparse regression identifies pathways and genes associated with high-density lipoprotein cholesterol in two Asian cohorts.

    Matt Silver

    2013-11-01

    Full Text Available Standard approaches to data analysis in genome-wide association studies (GWAS ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK

  13. Pathways-Driven Sparse Regression Identifies Pathways and Genes Associated with High-Density Lipoprotein Cholesterol in Two Asian Cohorts

    Silver, Matt; Chen, Peng; Li, Ruoying; Cheng, Ching-Yu; Wong, Tien-Yin; Tai, E-Shyong; Teo, Yik-Ying; Montana, Giovanni

    2013-01-01

    Standard approaches to data analysis in genome-wide association studies (GWAS) ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs) or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK signalling and immune

  14. Spark Channels

    Haydon, S. C. [Department of Physics, University of New England, Armidale, NSW (Australia)

    1968-04-15

    A brief summary is given of the principal methods used for initiating spark channels and the various highly time-resolved techniques developed recently for studies with nanosecond resolution. The importance of the percentage overvoltage in determining the early history and subsequent development of the various phases of the growth of the spark channel is discussed. An account is then given of the recent photographic, oscillographic and spectroscopic investigations of spark channels initiated by co-axial cable discharges of spark gaps at low [{approx} 1%] overvoltages. The phenomena observed in the development of the immediate post-breakdown phase, the diffuse glow structure, the growth of the luminous filament and the final formation of the spark channel in hydrogen are described. A brief account is also given of the salient features emerging from corresponding studies of highly overvolted spark gaps in which the spark channel develops from single avalanche conditions. The essential differences between the two types of channel formation are summarized and possible explanations of the general features are indicated. (author)

  15. A comprehensive study of sparse codes on abnormality detection

    Ren, Huamin; Pan, Hong; Olsen, Søren Ingvor

    2017-01-01

    Sparse representation has been applied successfully in abnor-mal event detection, in which the baseline is to learn a dic-tionary accompanied by sparse codes. While much empha-sis is put on discriminative dictionary construction, there areno comparative studies of sparse codes regarding abnormal-ity...... detection. We comprehensively study two types of sparsecodes solutions - greedy algorithms and convex L1-norm so-lutions - and their impact on abnormality detection perfor-mance. We also propose our framework of combining sparsecodes with different detection methods. Our comparative ex-periments are carried...

  16. Electromagnetic Formation Flight (EMFF) for Sparse Aperture Arrays

    Kwon, Daniel W.; Miller, David W.; Sedwick, Raymond J.

    2004-01-01

    Traditional methods of actuating spacecraft in sparse aperture arrays use propellant as a reaction mass. For formation flying systems, propellant becomes a critical consumable which can be quickly exhausted while maintaining relative orientation. Additional problems posed by propellant include optical contamination, plume impingement, thermal emission, and vibration excitation. For these missions where control of relative degrees of freedom is important, we consider using a system of electromagnets, in concert with reaction wheels, to replace the consumables. Electromagnetic Formation Flight sparse apertures, powered by solar energy, are designed differently from traditional propulsion systems, which are based on V. This paper investigates the design of sparse apertures both inside and outside the Earth's gravity field.

  17. Sparse Principal Component Analysis in Medical Shape Modeling

    Sjöstrand, Karl; Stegmann, Mikkel Bille; Larsen, Rasmus

    2006-01-01

    Principal component analysis (PCA) is a widely used tool in medical image analysis for data reduction, model building, and data understanding and exploration. While PCA is a holistic approach where each new variable is a linear combination of all original variables, sparse PCA (SPCA) aims...... analysis in medicine. Results for three different data sets are given in relation to standard PCA and sparse PCA by simple thresholding of sufficiently small loadings. Focus is on a recent algorithm for computing sparse principal components, but a review of other approaches is supplied as well. The SPCA...

  18. Optical Communications Channel Combiner

    Quirk, Kevin J.; Quirk, Kevin J.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    NASA has identified deep-space optical communications links as an integral part of a unified space communication network in order to provide data rates in excess of 100 Mb/s. The distances and limited power inherent in a deep-space optical downlink necessitate the use of photon-counting detectors and a power-efficient modulation such as pulse position modulation (PPM). For the output of each photodetector, whether from a separate telescope or a portion of the detection area, a communication receiver estimates a log-likelihood ratio for each PPM slot. To realize the full effective aperture of these receivers, their outputs must be combined prior to information decoding. A channel combiner was developed to synchronize the log-likelihood ratio (LLR) sequences of multiple receivers, and then combines these into a single LLR sequence for information decoding. The channel combiner synchronizes the LLR sequences of up to three receivers and then combines these into a single LLR sequence for output. The channel combiner has three channel inputs, each of which takes as input a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The cross-correlation between the channels LLR time series are calculated and used to synchronize the sequences prior to combining. The output of the channel combiner is a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The unit is controlled through a 1 Gb/s Ethernet UDP/IP interface. A deep-space optical communication link has not yet been demonstrated. This ground-station channel combiner was developed to demonstrate this capability and is unique in its ability to process such a signal.

  19. A fast algorithm for sparse matrix computations related to inversion

    Li, S., E-mail: lisong@stanford.edu [Institute for Computational and Mathematical Engineering, Stanford University, 496 Lomita Mall, Durand Building, Stanford, CA 94305 (United States); Wu, W. [Department of Electrical Engineering, Stanford University, 350 Serra Mall, Packard Building, Room 268, Stanford, CA 94305 (United States); Darve, E. [Institute for Computational and Mathematical Engineering, Stanford University, 496 Lomita Mall, Durand Building, Stanford, CA 94305 (United States); Department of Mechanical Engineering, Stanford University, 496 Lomita Mall, Durand Building, Room 209, Stanford, CA 94305 (United States)

    2013-06-01

    We have developed a fast algorithm for computing certain entries of the inverse of a sparse matrix. Such computations are critical to many applications, such as the calculation of non-equilibrium Green’s functions G{sup r} and G{sup <} for nano-devices. The FIND (Fast Inverse using Nested Dissection) algorithm is optimal in the big-O sense. However, in practice, FIND suffers from two problems due to the width-2 separators used by its partitioning scheme. One problem is the presence of a large constant factor in the computational cost of FIND. The other problem is that the partitioning scheme used by FIND is incompatible with most existing partitioning methods and libraries for nested dissection, which all use width-1 separators. Our new algorithm resolves these problems by thoroughly decomposing the computation process such that width-1 separators can be used, resulting in a significant speedup over FIND for realistic devices — up to twelve-fold in simulation. The new algorithm also has the added advantage that desired off-diagonal entries can be computed for free. Consequently, our algorithm is faster than the current state-of-the-art recursive methods for meshes of any size. Furthermore, the framework used in the analysis of our algorithm is the first attempt to explicitly apply the widely-used relationship between mesh nodes and matrix computations to the problem of multiple eliminations with reuse of intermediate results. This framework makes our algorithm easier to generalize, and also easier to compare against other methods related to elimination trees. Finally, our accuracy analysis shows that the algorithms that require back-substitution are subject to significant extra round-off errors, which become extremely large even for some well-conditioned matrices or matrices with only moderately large condition numbers. When compared to these back-substitution algorithms, our algorithm is generally a few orders of magnitude more accurate, and our produced round

  20. The Cortex Transform as an image preprocessor for sparse distributed memory: An initial study

    Olshausen, Bruno; Watson, Andrew

    1990-01-01

    An experiment is described which was designed to evaluate the use of the Cortex Transform as an image processor for Sparse Distributed Memory (SDM). In the experiment, a set of images were injected with Gaussian noise, preprocessed with the Cortex Transform, and then encoded into bit patterns. The various spatial frequency bands of the Cortex Transform were encoded separately so that they could be evaluated based on their ability to properly cluster patterns belonging to the same class. The results of this study indicate that by simply encoding the low pass band of the Cortex Transform, a very suitable input representation for the SDM can be achieved.

  1. Real-Space Analysis of Scanning Tunneling Microscopy Topography Datasets Using Sparse Modeling Approach

    Miyama, Masamichi J.; Hukushima, Koji

    2018-04-01

    A sparse modeling approach is proposed for analyzing scanning tunneling microscopy topography data, which contain numerous peaks originating from the electron density of surface atoms and/or impurities. The method, based on the relevance vector machine with L1 regularization and k-means clustering, enables separation of the peaks and peak center positioning with accuracy beyond the resolution of the measurement grid. The validity and efficiency of the proposed method are demonstrated using synthetic data in comparison with the conventional least-squares method. An application of the proposed method to experimental data of a metallic oxide thin-film clearly indicates the existence of defects and corresponding local lattice distortions.

  2. Marketing channel behaviour and performance

    Duarte, Margarida

    2000-01-01

    Thesis submitted to University of Manchester for the degree of Doctor of Philosophy in the Faculty of Business Administration. A major aim of this study is to offer a relatively comprehensive picture of marketing channel behaviour and performance. Given the statistical difficulties in testing a very large, comprehensive model to achieve this aim, two separate but overlapping models are proposed. One model specifically addresses behaviour in marketing channels, while the other integrates k...

  3. Interferometric interpolation of sparse marine data

    Hanafy, Sherif M.; Schuster, Gerard T.

    2013-01-01

    recorded and model-based Green's functions can help in minimizing artefacts in a virtual shot gather. If the up- and downgoing separation is not possible, noticeable artefacts will be generated in the virtual shot gather. As a partial remedy we iteratively

  4. High Order Tensor Formulation for Convolutional Sparse Coding

    Bibi, Adel Aamer; Ghanem, Bernard

    2017-01-01

    Convolutional sparse coding (CSC) has gained attention for its successful role as a reconstruction and a classification tool in the computer vision and machine learning community. Current CSC methods can only reconstruct singlefeature 2D images

  5. Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging

    Desmal, Abdulla; Bagci, Hakan

    2014-01-01

    with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm

  6. Multiple instance learning tracking method with local sparse representation

    Xie, Chengjun; Tan, Jieqing; Chen, Peng; Zhang, Jie; Helg, Lei

    2013-01-01

    as training data for the MIL framework. First, local image patches of a target object are represented as sparse codes with an overcomplete dictionary, where the adaptive representation can be helpful in overcoming partial occlusion in object tracking. Then MIL

  7. Low-rank sparse learning for robust visual tracking

    Zhang, Tianzhu; Ghanem, Bernard; Liu, Si; Ahuja, Narendra

    2012-01-01

    In this paper, we propose a new particle-filter based tracking algorithm that exploits the relationship between particles (candidate targets). By representing particles as sparse linear combinations of dictionary templates, this algorithm

  8. Robust visual tracking via multi-task sparse learning

    Zhang, Tianzhu; Ghanem, Bernard; Liu, Si; Ahuja, Narendra

    2012-01-01

    In this paper, we formulate object tracking in a particle filter framework as a multi-task sparse learning problem, which we denote as Multi-Task Tracking (MTT). Since we model particles as linear combinations of dictionary templates

  9. Sparse Machine Learning Methods for Understanding Large Text Corpora

    National Aeronautics and Space Administration — Sparse machine learning has recently emerged as powerful tool to obtain models of high-dimensional data with high degree of interpretability, at low computational...

  10. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering

    Sicat, Ronell Barrera; Kruger, Jens; Moller, Torsten; Hadwiger, Markus

    2014-01-01

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined

  11. Sparse Linear Solver for Power System Analysis Using FPGA

    Johnson, J. R; Nagvajara, P; Nwankpa, C

    2005-01-01

    .... Numerical solution to load flow equations are typically computed using Newton-Raphson iteration, and the most time consuming component of the computation is the solution of a sparse linear system...

  12. Support agnostic Bayesian matching pursuit for block sparse signals

    Masood, Mudassir

    2013-05-01

    A fast matching pursuit method using a Bayesian approach is introduced for block-sparse signal recovery. This method performs Bayesian estimates of block-sparse signals even when the distribution of active blocks is non-Gaussian or unknown. It is agnostic to the distribution of active blocks in the signal and utilizes a priori statistics of additive noise and the sparsity rate of the signal, which are shown to be easily estimated from data and no user intervention is required. The method requires a priori knowledge of block partition and utilizes a greedy approach and order-recursive updates of its metrics to find the most dominant sparse supports to determine the approximate minimum mean square error (MMSE) estimate of the block-sparse signal. Simulation results demonstrate the power and robustness of our proposed estimator. © 2013 IEEE.

  13. Detection of Pitting in Gears Using a Deep Sparse Autoencoder

    Yongzhi Qu

    2017-05-01

    Full Text Available In this paper; a new method for gear pitting fault detection is presented. The presented method is developed based on a deep sparse autoencoder. The method integrates dictionary learning in sparse coding into a stacked autoencoder network. Sparse coding with dictionary learning is viewed as an adaptive feature extraction method for machinery fault diagnosis. An autoencoder is an unsupervised machine learning technique. A stacked autoencoder network with multiple hidden layers is considered to be a deep learning network. The presented method uses a stacked autoencoder network to perform the dictionary learning in sparse coding and extract features from raw vibration data automatically. These features are then used to perform gear pitting fault detection. The presented method is validated with vibration data collected from gear tests with pitting faults in a gearbox test rig and compared with an existing deep learning-based approach.

  14. Sparse logistic principal components analysis for binary data

    Lee, Seokho; Huang, Jianhua Z.; Hu, Jianhua

    2010-01-01

    with a criterion function motivated from a penalized Bernoulli likelihood. A Majorization-Minimization algorithm is developed to efficiently solve the optimization problem. The effectiveness of the proposed sparse logistic PCA method is illustrated

  15. Sparse reconstruction using distribution agnostic bayesian matching pursuit

    Masood, Mudassir

    2013-11-01

    A fast matching pursuit method using a Bayesian approach is introduced for sparse signal recovery. This method performs Bayesian estimates of sparse signals even when the signal prior is non-Gaussian or unknown. It is agnostic on signal statistics and utilizes a priori statistics of additive noise and the sparsity rate of the signal, which are shown to be easily estimated from data if not available. The method utilizes a greedy approach and order-recursive updates of its metrics to find the most dominant sparse supports to determine the approximate minimum mean-square error (MMSE) estimate of the sparse signal. Simulation results demonstrate the power and robustness of our proposed estimator. © 2013 IEEE.

  16. Occlusion detection via structured sparse learning for robust object tracking

    Zhang, Tianzhu; Ghanem, Bernard; Xu, Changsheng; Ahuja, Narendra

    2014-01-01

    occlusion through structured sparse learning. We test our tracker on challenging benchmark sequences, such as sports videos, which involve heavy occlusion, drastic illumination changes, and large pose variations. Extensive experimental results show that our

  17. Object tracking by occlusion detection via structured sparse learning

    Zhang, Tianzhu; Ghanem, Bernard; Xu, Changsheng; Ahuja, Narendra

    2013-01-01

    occlusion through structured sparse learning. We test our tracker on challenging benchmark sequences, such as sports videos, which involve heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that our tracker

  18. Sparse Vector Distributions and Recovery from Compressed Sensing

    Sturm, Bob L.

    It is well known that the performance of sparse vector recovery algorithms from compressive measurements can depend on the distribution underlying the non-zero elements of a sparse vector. However, the extent of these effects has yet to be explored, and formally presented. In this paper, I...... empirically investigate this dependence for seven distributions and fifteen recovery algorithms. The two morals of this work are: 1) any judgement of the recovery performance of one algorithm over that of another must be prefaced by the conditions for which this is observed to be true, including sparse vector...... distributions, and the criterion for exact recovery; and 2) a recovery algorithm must be selected carefully based on what distribution one expects to underlie the sensed sparse signal....

  19. Sparse encoding of automatic visual association in hippocampal networks

    Hulme, Oliver J; Skov, Martin; Chadwick, Martin J

    2014-01-01

    Intelligent action entails exploiting predictions about associations between elements of ones environment. The hippocampus and mediotemporal cortex are endowed with the network topology, physiology, and neurochemistry to automatically and sparsely code sensori-cognitive associations that can...

  20. Fast convolutional sparse coding using matrix inversion lemma

    Šorel, Michal; Šroubek, Filip

    2016-01-01

    Roč. 55, č. 1 (2016), s. 44-51 ISSN 1051-2004 R&D Projects: GA ČR GA13-29225S Institutional support: RVO:67985556 Keywords : Convolutional sparse coding * Feature learning * Deconvolution networks * Shift-invariant sparse coding Subject RIV: JD - Computer Applications, Robotics Impact factor: 2.337, year: 2016 http://library.utia.cas.cz/separaty/2016/ZOI/sorel-0459332.pdf

  1. Discussion of CoSA: Clustering of Sparse Approximations

    Armstrong, Derek Elswick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-07

    The purpose of this talk is to discuss the possible applications of CoSA (Clustering of Sparse Approximations) to the exploitation of HSI (HyperSpectral Imagery) data. CoSA is presented by Moody et al. in the Journal of Applied Remote Sensing (“Land cover classification in multispectral imagery using clustering of sparse approximations over learned feature dictionaries”, Vol. 8, 2014) and is based on machine learning techniques.

  2. In-Storage Embedded Accelerator for Sparse Pattern Processing

    Jun, Sang-Woo; Nguyen, Huy T.; Gadepally, Vijay N.; Arvind

    2016-01-01

    We present a novel architecture for sparse pattern processing, using flash storage with embedded accelerators. Sparse pattern processing on large data sets is the essence of applications such as document search, natural language processing, bioinformatics, subgraph matching, machine learning, and graph processing. One slice of our prototype accelerator is capable of handling up to 1TB of data, and experiments show that it can outperform C/C++ software solutions on a 16-core system at a fracti...

  3. Process Knowledge Discovery Using Sparse Principal Component Analysis

    Gao, Huihui; Gajjar, Shriram; Kulahci, Murat

    2016-01-01

    As the goals of ensuring process safety and energy efficiency become ever more challenging, engineers increasingly rely on data collected from such processes for informed decision making. During recent decades, extracting and interpreting valuable process information from large historical data sets...... SPCA approach that helps uncover the underlying process knowledge regarding variable relations. This approach systematically determines the optimal sparse loadings for each sparse PC while improving interpretability and minimizing information loss. The salient features of the proposed approach...

  4. Occlusion detection via structured sparse learning for robust object tracking

    Zhang, Tianzhu

    2014-01-01

    Sparse representation based methods have recently drawn much attention in visual tracking due to good performance against illumination variation and occlusion. They assume the errors caused by image variations can be modeled as pixel-wise sparse. However, in many practical scenarios, these errors are not truly pixel-wise sparse but rather sparsely distributed in a structured way. In fact, pixels in error constitute contiguous regions within the object’s track. This is the case when significant occlusion occurs. To accommodate for nonsparse occlusion in a given frame, we assume that occlusion detected in previous frames can be propagated to the current one. This propagated information determines which pixels will contribute to the sparse representation of the current track. In other words, pixels that were detected as part of an occlusion in the previous frame will be removed from the target representation process. As such, this paper proposes a novel tracking algorithm that models and detects occlusion through structured sparse learning. We test our tracker on challenging benchmark sequences, such as sports videos, which involve heavy occlusion, drastic illumination changes, and large pose variations. Extensive experimental results show that our proposed tracker consistently outperforms the state-of-the-art trackers.

  5. Exhaustive Search for Sparse Variable Selection in Linear Regression

    Igarashi, Yasuhiko; Takenaka, Hikaru; Nakanishi-Ohno, Yoshinori; Uemura, Makoto; Ikeda, Shiro; Okada, Masato

    2018-04-01

    We propose a K-sparse exhaustive search (ES-K) method and a K-sparse approximate exhaustive search method (AES-K) for selecting variables in linear regression. With these methods, K-sparse combinations of variables are tested exhaustively assuming that the optimal combination of explanatory variables is K-sparse. By collecting the results of exhaustively computing ES-K, various approximate methods for selecting sparse variables can be summarized as density of states. With this density of states, we can compare different methods for selecting sparse variables such as relaxation and sampling. For large problems where the combinatorial explosion of explanatory variables is crucial, the AES-K method enables density of states to be effectively reconstructed by using the replica-exchange Monte Carlo method and the multiple histogram method. Applying the ES-K and AES-K methods to type Ia supernova data, we confirmed the conventional understanding in astronomy when an appropriate K is given beforehand. However, we found the difficulty to determine K from the data. Using virtual measurement and analysis, we argue that this is caused by data shortage.

  6. Sparse Representation Based SAR Vehicle Recognition along with Aspect Angle

    Xiangwei Xing

    2014-01-01

    Full Text Available As a method of representing the test sample with few training samples from an overcomplete dictionary, sparse representation classification (SRC has attracted much attention in synthetic aperture radar (SAR automatic target recognition (ATR recently. In this paper, we develop a novel SAR vehicle recognition method based on sparse representation classification along with aspect information (SRCA, in which the correlation between the vehicle’s aspect angle and the sparse representation vector is exploited. The detailed procedure presented in this paper can be summarized as follows. Initially, the sparse representation vector of a test sample is solved by sparse representation algorithm with a principle component analysis (PCA feature-based dictionary. Then, the coefficient vector is projected onto a sparser one within a certain range of the vehicle’s aspect angle. Finally, the vehicle is classified into a certain category that minimizes the reconstruction error with the novel sparse representation vector. Extensive experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR dataset and the results demonstrate that the proposed method performs robustly under the variations of depression angle and target configurations, as well as incomplete observation.

  7. Structure-aware Local Sparse Coding for Visual Tracking

    Qi, Yuankai

    2018-01-24

    Sparse coding has been applied to visual tracking and related vision problems with demonstrated success in recent years. Existing tracking methods based on local sparse coding sample patches from a target candidate and sparsely encode these using a dictionary consisting of patches sampled from target template images. The discriminative strength of existing methods based on local sparse coding is limited as spatial structure constraints among the template patches are not exploited. To address this problem, we propose a structure-aware local sparse coding algorithm which encodes a target candidate using templates with both global and local sparsity constraints. For robust tracking, we show local regions of a candidate region should be encoded only with the corresponding local regions of the target templates that are the most similar from the global view. Thus, a more precise and discriminative sparse representation is obtained to account for appearance changes. To alleviate the issues with tracking drifts, we design an effective template update scheme. Extensive experiments on challenging image sequences demonstrate the effectiveness of the proposed algorithm against numerous stateof- the-art methods.

  8. Sparse Reconstruction Schemes for Nonlinear Electromagnetic Imaging

    Desmal, Abdulla

    2016-03-01

    synthetically generated or actually measured scattered fields, show that the images recovered by these sparsity-regularized methods are sharper and more accurate than those produced by existing methods. The methods developed in this work have potential application areas ranging from oil/gas reservoir engineering to biological imaging where sparse domains naturally exist.

  9. MARKETING CHANNELS

    Ljiljana Stošić Mihajlović

    2014-07-01

    Full Text Available Marketing channel is a set of entities and institutions, completion of distribution and marketing activities, attend the efficient and effective networking of producers and consumers. Marketing channels include the total flows of goods, money and information taking place between the institutions in the system of marketing, establishing a connection between them. The functions of the exchange, the physical supply and service activities, inherent in the system of marketing and trade. They represent paths which products and services are moving after the production, which will ultimately end up buying and eating by the user.

  10. Gas separating

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  11. Isotope separation

    Rosevear, A.; Sims, H.E.

    1985-01-01

    sup(195m)Au for medical usage is separated from sup(195m)Hg in a solution containing ions of sup(195m)Hg by contacting the solution with an adsorbing agent to adsorb 195 Hgsup(H) thereon, followed by selective elution of sup(195m)Au generated by radioactive decay of the sup(195m)Hg. The adsorbing agent comprises a composite material in the form of an inert porous inorganic substrate (e.g. Kieselguhr),the pores of which are occupied by a hydrogel of a polysaccharide (e.g. agarose) carrying terminal thiol groups for binding Hgsup(H) ions. (author)

  12. Simulation of sparse matrix array designs

    Boehm, Rainer; Heckel, Thomas

    2018-04-01

    Matrix phased array probes are becoming more prominently used in industrial applications. The main drawbacks, using probes incorporating a very large number of transducer elements, are needed for an appropriate cabling and an ultrasonic device offering many parallel channels. Matrix arrays designed for extended functionality feature at least 64 or more elements. Typical arrangements are square matrices, e.g., 8 by 8 or 11 by 11 or rectangular matrixes, e.g., 8 by 16 or 10 by 12 to fit a 128-channel phased array system. In some phased array systems, the number of simultaneous active elements is limited to a certain number, e.g., 32 or 64. Those setups do not allow running the probe with all elements active, which may cause a significant change in the directivity pattern of the resulting sound beam. When only a subset of elements can be used during a single acquisition, different strategies may be applied to collect enough data for rebuilding the missing information from the echo signal. Omission of certain elements may be one approach, overlay of subsequent shots with different active areas may be another one. This paper presents the influence of a decreased number of active elements on the sound field and their distribution on the array. Solutions using subsets with different element activity patterns on matrix arrays and their advantages and disadvantages concerning the sound field are evaluated using semi-analytical simulation tools. Sound field criteria are discussed, which are significant for non-destructive testing results and for the system setup.

  13. An Effective Channel Allocation Scheme to Reduce Co-Channel and Adjacent Channel Interference for WMN Backhaul

    Abbasi, S.; Ismaili, I.A.; Khuhawar, F.Y.

    2016-01-01

    Two folded work presents channel allocation scheme sustaining channel orthogonality and channel spacing to reduce CCI (Co-Channel Interference) and ACI (Adjacent Channel Interference) for inter flow of an intra-flow link. Proposed scheme as a part of radio resource allocation is applied on infrastructure based backhaul of wireless mesh network using directional antennas. The proposed approach is applied separately on 2.4 and 5GHz bands. Interference of connectivity graph is modelled by strongly connected directed graph and greedy algorithms are used for channel allocation. We have used OPNET Modeller suite to simulate network models for this research. The proposed arrangement reduces the channel interference and increases system throughput. In this research, the influence of channel is computed in terms of network throughput and delay. (author)

  14. Single-channel kinetics of BK (Slo1 channels

    Yanyan eGeng

    2015-01-01

    Full Text Available Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1 channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD attached to four surrounding transmembrane voltage sensing domains (VSD and a large intracellular cytosolic domain (CTD, also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with 5 closed states on the upper tier and 5 open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states.

  15. Sparse modeling of spatial environmental variables associated with asthma.

    Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W

    2015-02-01

    Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Performance of the LAMPF particle separator

    Liska, D.J.; Dauelsberg, L.B.

    1977-01-01

    The electrostatic beam separator in the EPICS channel at LAMPF is now nearly fully operational. Improvements to the high voltage transmission system and the electronic controls as well as a higher quality channel vacuum have allowed the unit to be operated at its design field strengths. The bias electrode has proven to be useful in reducing ion-exchange currents and associated electrode heating. The detachable shielding and other apparatus for removing the separator from the activated channel was perfected and its application is described

  17. Volumetric CT with sparse detector arrays (and application to Si-strip photon counters).

    Sisniega, A; Zbijewski, W; Stayman, J W; Xu, J; Taguchi, K; Fredenberg, E; Lundqvist, Mats; Siewerdsen, J H

    2016-01-07

    Novel x-ray medical imaging sensors, such as photon counting detectors (PCDs) and large area CCD and CMOS cameras can involve irregular and/or sparse sampling of the detector plane. Application of such detectors to CT involves undersampling that is markedly different from the commonly considered case of sparse angular sampling. This work investigates volumetric sampling in CT systems incorporating sparsely sampled detectors with axial and helical scan orbits and evaluates performance of model-based image reconstruction (MBIR) with spatially varying regularization in mitigating artifacts due to sparse detector sampling. Volumetric metrics of sampling density and uniformity were introduced. Penalized-likelihood MBIR with a spatially varying penalty that homogenized resolution by accounting for variations in local sampling density (i.e. detector gaps) was evaluated. The proposed methodology was tested in simulations and on an imaging bench based on a Si-strip PCD (total area 5 cm  ×  25 cm) consisting of an arrangement of line sensors separated by gaps of up to 2.5 mm. The bench was equipped with translation/rotation stages allowing a variety of scanning trajectories, ranging from a simple axial acquisition to helical scans with variable pitch. Statistical (spherical clutter) and anthropomorphic (hand) phantoms were considered. Image quality was compared to that obtained with a conventional uniform penalty in terms of structural similarity index (SSIM), image uniformity, spatial resolution, contrast, and noise. Scan trajectories with intermediate helical width (~10 mm longitudinal distance per 360° rotation) demonstrated optimal tradeoff between the average sampling density and the homogeneity of sampling throughout the volume. For a scan trajectory with 10.8 mm helical width, the spatially varying penalty resulted in significant visual reduction of sampling artifacts, confirmed by a 10% reduction in minimum SSIM (from 0.88 to 0.8) and a 40

  18. Channel Power in Multi-Channel Environments

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)

    2004-01-01

    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key

  19. Radioactive substance separation systems

    Sakai, Takuhiko.

    1981-01-01

    Purpose: To enable separation of fission products, radioactive corrosion products and the likes in primary coolants with no requirement for the replacement of separation system during plant service life, by providing protruded magnetic pole plates in a liquid metal flow channel to thereby form slopes magnetic fields. Constitution: A plurality of magnetic pole plates are disposed vertically in a comb-like arrangement so as not to contact with each other along the direction of flow in a rectangular primary coolant pipeway at the exit of the reactor core in an LMFBR type reactor. Large magnetic poles are provided to the upper and lower sides of the pipeway and coils are wound on the side opposed to the pipeway. When electrical current is supplied to the coils, the magnetic pole is magnetized intensely and thus the magnetic pole plates are also magnetized intensely and thus the magnetic pole plates are also magnetized intensely to form large gradient in the magnetic fields between the upper and lower magnetic plates, whereby ferromagnetic and ferrimagnetic fission products and radioactive corrosion products in the coolants are intensely adsorbed and not detached by the flow of the coolants. Accordingly, the fission products and the radioactive corrosion products can surely be removed with no requirement for the exchange of separation system during plant service life. (Horiuchi, T.)

  20. Image fusion via nonlocal sparse K-SVD dictionary learning.

    Li, Ying; Li, Fangyi; Bai, Bendu; Shen, Qiang

    2016-03-01

    Image fusion aims to merge two or more images captured via various sensors of the same scene to construct a more informative image by integrating their details. Generally, such integration is achieved through the manipulation of the representations of the images concerned. Sparse representation plays an important role in the effective description of images, offering a great potential in a variety of image processing tasks, including image fusion. Supported by sparse representation, in this paper, an approach for image fusion by the use of a novel dictionary learning scheme is proposed. The nonlocal self-similarity property of the images is exploited, not only at the stage of learning the underlying description dictionary but during the process of image fusion. In particular, the property of nonlocal self-similarity is combined with the traditional sparse dictionary. This results in an improved learned dictionary, hereafter referred to as the nonlocal sparse K-SVD dictionary (where K-SVD stands for the K times singular value decomposition that is commonly used in the literature), and abbreviated to NL_SK_SVD. The performance of the NL_SK_SVD dictionary is applied for image fusion using simultaneous orthogonal matching pursuit. The proposed approach is evaluated with different types of images, and compared with a number of alternative image fusion techniques. The resultant superior fused images using the present approach demonstrates the efficacy of the NL_SK_SVD dictionary in sparse image representation.

  1. Sparse dictionary for synthetic transmit aperture medical ultrasound imaging.

    Wang, Ping; Jiang, Jin-Yang; Li, Na; Luo, Han-Wu; Li, Fang; Cui, Shi-Gang

    2017-07-01

    It is possible to recover a signal below the Nyquist sampling limit using a compressive sensing technique in ultrasound imaging. However, the reconstruction enabled by common sparse transform approaches does not achieve satisfactory results. Considering the ultrasound echo signal's features of attenuation, repetition, and superposition, a sparse dictionary with the emission pulse signal is proposed. Sparse coefficients in the proposed dictionary have high sparsity. Images reconstructed with this dictionary were compared with those obtained with the three other common transforms, namely, discrete Fourier transform, discrete cosine transform, and discrete wavelet transform. The performance of the proposed dictionary was analyzed via a simulation and experimental data. The mean absolute error (MAE) was used to quantify the quality of the reconstructions. Experimental results indicate that the MAE associated with the proposed dictionary was always the smallest, the reconstruction time required was the shortest, and the lateral resolution and contrast of the reconstructed images were also the closest to the original images. The proposed sparse dictionary performed better than the other three sparse transforms. With the same sampling rate, the proposed dictionary achieved excellent reconstruction quality.

  2. A sparse matrix based full-configuration interaction algorithm

    Rolik, Zoltan; Szabados, Agnes; Surjan, Peter R.

    2008-01-01

    We present an algorithm related to the full-configuration interaction (FCI) method that makes complete use of the sparse nature of the coefficient vector representing the many-electron wave function in a determinantal basis. Main achievements of the presented sparse FCI (SFCI) algorithm are (i) development of an iteration procedure that avoids the storage of FCI size vectors; (ii) development of an efficient algorithm to evaluate the effect of the Hamiltonian when both the initial and the product vectors are sparse. As a result of point (i) large disk operations can be skipped which otherwise may be a bottleneck of the procedure. At point (ii) we progress by adopting the implementation of the linear transformation by Olsen et al. [J. Chem Phys. 89, 2185 (1988)] for the sparse case, getting the algorithm applicable to larger systems and faster at the same time. The error of a SFCI calculation depends only on the dropout thresholds for the sparse vectors, and can be tuned by controlling the amount of system memory passed to the procedure. The algorithm permits to perform FCI calculations on single node workstations for systems previously accessible only by supercomputers

  3. X-ray computed tomography using curvelet sparse regularization.

    Wieczorek, Matthias; Frikel, Jürgen; Vogel, Jakob; Eggl, Elena; Kopp, Felix; Noël, Peter B; Pfeiffer, Franz; Demaret, Laurent; Lasser, Tobias

    2015-04-01

    Reconstruction of x-ray computed tomography (CT) data remains a mathematically challenging problem in medical imaging. Complementing the standard analytical reconstruction methods, sparse regularization is growing in importance, as it allows inclusion of prior knowledge. The paper presents a method for sparse regularization based on the curvelet frame for the application to iterative reconstruction in x-ray computed tomography. In this work, the authors present an iterative reconstruction approach based on the alternating direction method of multipliers using curvelet sparse regularization. Evaluation of the method is performed on a specifically crafted numerical phantom dataset to highlight the method's strengths. Additional evaluation is performed on two real datasets from commercial scanners with different noise characteristics, a clinical bone sample acquired in a micro-CT and a human abdomen scanned in a diagnostic CT. The results clearly illustrate that curvelet sparse regularization has characteristic strengths. In particular, it improves the restoration and resolution of highly directional, high contrast features with smooth contrast variations. The authors also compare this approach to the popular technique of total variation and to traditional filtered backprojection. The authors conclude that curvelet sparse regularization is able to improve reconstruction quality by reducing noise while preserving highly directional features.

  4. Selectivity and sparseness in randomly connected balanced networks.

    Cengiz Pehlevan

    Full Text Available Neurons in sensory cortex show stimulus selectivity and sparse population response, even in cases where no strong functionally specific structure in connectivity can be detected. This raises the question whether selectivity and sparseness can be generated and maintained in randomly connected networks. We consider a recurrent network of excitatory and inhibitory spiking neurons with random connectivity, driven by random projections from an input layer of stimulus selective neurons. In this architecture, the stimulus-to-stimulus and neuron-to-neuron modulation of total synaptic input is weak compared to the mean input. Surprisingly, we show that in the balanced state the network can still support high stimulus selectivity and sparse population response. In the balanced state, strong synapses amplify the variation in synaptic input and recurrent inhibition cancels the mean. Functional specificity in connectivity emerges due to the inhomogeneity caused by the generative statistical rule used to build the network. We further elucidate the mechanism behind and evaluate the effects of model parameters on population sparseness and stimulus selectivity. Network response to mixtures of stimuli is investigated. It is shown that a balanced state with unselective inhibition can be achieved with densely connected input to inhibitory population. Balanced networks exhibit the "paradoxical" effect: an increase in excitatory drive to inhibition leads to decreased inhibitory population firing rate. We compare and contrast selectivity and sparseness generated by the balanced network to randomly connected unbalanced networks. Finally, we discuss our results in light of experiments.

  5. Low-count PET image restoration using sparse representation

    Li, Tao; Jiang, Changhui; Gao, Juan; Yang, Yongfeng; Liang, Dong; Liu, Xin; Zheng, Hairong; Hu, Zhanli

    2018-04-01

    In the field of positron emission tomography (PET), reconstructed images are often blurry and contain noise. These problems are primarily caused by the low resolution of projection data. Solving this problem by improving hardware is an expensive solution, and therefore, we attempted to develop a solution based on optimizing several related algorithms in both the reconstruction and image post-processing domains. As sparse technology is widely used, sparse prediction is increasingly applied to solve this problem. In this paper, we propose a new sparse method to process low-resolution PET images. Two dictionaries (D1 for low-resolution PET images and D2 for high-resolution PET images) are learned from a group real PET image data sets. Among these two dictionaries, D1 is used to obtain a sparse representation for each patch of the input PET image. Then, a high-resolution PET image is generated from this sparse representation using D2. Experimental results indicate that the proposed method exhibits a stable and superior ability to enhance image resolution and recover image details. Quantitatively, this method achieves better performance than traditional methods. This proposed strategy is a new and efficient approach for improving the quality of PET images.

  6. Separations chemistry

    Anon.

    1977-01-01

    Infrared spectra of Pu(IV) polymer show effects of CO 2 adsorption and of aging. Uv light (300 nm) increases the rate of reduction of PuO 2 2+ and Pu 4+ to Pu 3+ and the Pu--U separation factor using TBP. Distribution ratios for Zr and Hf between Dowex 50W--X8 resin and H 2 SO 4 solutions were found to decrease sharply with H 2 SO 4 content. Octylphenyl acid phosphate, a mixture of monooctylphenyl and dioctylphenyl phosphoric acids, is being studied for U recovery from wet-process phosphoric acid. A study of HNO 3 leaching of Ra from U ores was completed. Effects of particle size of the packed bed on the dispersion of the boundary of the miscible phase used in oil recovery are being studied. Effects of sulfonates on toluene--n-butanol--water phase relations were determined, as were the effects of salts and solutes on the max water content of 1:1 toluene--alcohol solutions. A study was begun of hydrocarbon solubility in water--surfactant--alcohol. The mechanism of the formation of hydrous ZrO 2 --polyacrylate membranes and their use for sulfate rejection were studied. Salt rejection through hyperfiltration by clay membranes (bentonite and kaolin) was also investigated. Preliminary results are given for hyperfiltration of wood-pulping wastes by ZrO 2 membranes. 13 figures

  7. A network of spiking neurons for computing sparse representations in an energy-efficient way.

    Hu, Tao; Genkin, Alexander; Chklovskii, Dmitri B

    2012-11-01

    Computing sparse redundant representations is an important problem in both applied mathematics and neuroscience. In many applications, this problem must be solved in an energy-efficient way. Here, we propose a hybrid distributed algorithm (HDA), which solves this problem on a network of simple nodes communicating by low-bandwidth channels. HDA nodes perform both gradient-descent-like steps on analog internal variables and coordinate-descent-like steps via quantized external variables communicated to each other. Interestingly, the operation is equivalent to a network of integrate-and-fire neurons, suggesting that HDA may serve as a model of neural computation. We show that the numerical performance of HDA is on par with existing algorithms. In the asymptotic regime, the representation error of HDA decays with time, t, as 1/t. HDA is stable against time-varying noise; specifically, the representation error decays as 1/√t for gaussian white noise.

  8. On the Automatic Parallelization of Sparse and Irregular Fortran Programs

    Yuan Lin

    1999-01-01

    Full Text Available Automatic parallelization is usually believed to be less effective at exploiting implicit parallelism in sparse/irregular programs than in their dense/regular counterparts. However, not much is really known because there have been few research reports on this topic. In this work, we have studied the possibility of using an automatic parallelizing compiler to detect the parallelism in sparse/irregular programs. The study with a collection of sparse/irregular programs led us to some common loop patterns. Based on these patterns new techniques were derived that produced good speedups when manually applied to our benchmark codes. More importantly, these parallelization methods can be implemented in a parallelizing compiler and can be applied automatically.

  9. Joint sparse representation for robust multimodal biometrics recognition.

    Shekhar, Sumit; Patel, Vishal M; Nasrabadi, Nasser M; Chellappa, Rama

    2014-01-01

    Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of using multiple sources of information for establishing the identity has been widely recognized, computational models for multimodal biometrics recognition have only recently received attention. We propose a multimodal sparse representation method, which represents the test data by a sparse linear combination of training data, while constraining the observations from different modalities of the test subject to share their sparse representations. Thus, we simultaneously take into account correlations as well as coupling information among biometric modalities. A multimodal quality measure is also proposed to weigh each modality as it gets fused. Furthermore, we also kernelize the algorithm to handle nonlinearity in data. The optimization problem is solved using an efficient alternative direction method. Various experiments show that the proposed method compares favorably with competing fusion-based methods.

  10. Sparse Representation Denoising for Radar High Resolution Range Profiling

    Min Li

    2014-01-01

    Full Text Available Radar high resolution range profile has attracted considerable attention in radar automatic target recognition. In practice, radar return is usually contaminated by noise, which results in profile distortion and recognition performance degradation. To deal with this problem, in this paper, a novel denoising method based on sparse representation is proposed to remove the Gaussian white additive noise. The return is sparsely described in the Fourier redundant dictionary and the denoising problem is described as a sparse representation model. Noise level of the return, which is crucial to the denoising performance but often unknown, is estimated by performing subspace method on the sliding subsequence correlation matrix. Sliding window process enables noise level estimation using only one observation sequence, not only guaranteeing estimation efficiency but also avoiding the influence of profile time-shift sensitivity. Experimental results show that the proposed method can effectively improve the signal-to-noise ratio of the return, leading to a high-quality profile.

  11. A Projected Conjugate Gradient Method for Sparse Minimax Problems

    Madsen, Kaj; Jonasson, Kristjan

    1993-01-01

    A new method for nonlinear minimax problems is presented. The method is of the trust region type and based on sequential linear programming. It is a first order method that only uses first derivatives and does not approximate Hessians. The new method is well suited for large sparse problems...... as it only requires that software for sparse linear programming and a sparse symmetric positive definite equation solver are available. On each iteration a special linear/quadratic model of the function is minimized, but contrary to the usual practice in trust region methods the quadratic model is only...... with the method are presented. In fact, we find that the number of iterations required is comparable to that of state-of-the-art quasi-Newton codes....

  12. A Multiobjective Sparse Feature Learning Model for Deep Neural Networks.

    Gong, Maoguo; Liu, Jia; Li, Hao; Cai, Qing; Su, Linzhi

    2015-12-01

    Hierarchical deep neural networks are currently popular learning models for imitating the hierarchical architecture of human brain. Single-layer feature extractors are the bricks to build deep networks. Sparse feature learning models are popular models that can learn useful representations. But most of those models need a user-defined constant to control the sparsity of representations. In this paper, we propose a multiobjective sparse feature learning model based on the autoencoder. The parameters of the model are learnt by optimizing two objectives, reconstruction error and the sparsity of hidden units simultaneously to find a reasonable compromise between them automatically. We design a multiobjective induced learning procedure for this model based on a multiobjective evolutionary algorithm. In the experiments, we demonstrate that the learning procedure is effective, and the proposed multiobjective model can learn useful sparse features.

  13. Massively parallel sparse matrix function calculations with NTPoly

    Dawson, William; Nakajima, Takahito

    2018-04-01

    We present NTPoly, a massively parallel library for computing the functions of sparse, symmetric matrices. The theory of matrix functions is a well developed framework with a wide range of applications including differential equations, graph theory, and electronic structure calculations. One particularly important application area is diagonalization free methods in quantum chemistry. When the input and output of the matrix function are sparse, methods based on polynomial expansions can be used to compute matrix functions in linear time. We present a library based on these methods that can compute a variety of matrix functions. Distributed memory parallelization is based on a communication avoiding sparse matrix multiplication algorithm. OpenMP task parallellization is utilized to implement hybrid parallelization. We describe NTPoly's interface and show how it can be integrated with programs written in many different programming languages. We demonstrate the merits of NTPoly by performing large scale calculations on the K computer.

  14. Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging

    Desmal, Abdulla; Bagci, Hakan

    2014-01-01

    Newton-type algorithms have been extensively studied in nonlinear microwave imaging due to their quadratic convergence rate and ability to recover images with high contrast values. In the past, Newton methods have been implemented in conjunction with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm is formulated and implemented in conjunction with a linear sparse optimization scheme. A novel preconditioning technique is proposed to increase the convergence rate of the optimization problem. Numerical results demonstrate that the proposed framework produces sharper and more accurate images when applied in sparse/sparsified domains.

  15. Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging

    Desmal, Abdulla

    2014-05-04

    Newton-type algorithms have been extensively studied in nonlinear microwave imaging due to their quadratic convergence rate and ability to recover images with high contrast values. In the past, Newton methods have been implemented in conjunction with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm is formulated and implemented in conjunction with a linear sparse optimization scheme. A novel preconditioning technique is proposed to increase the convergence rate of the optimization problem. Numerical results demonstrate that the proposed framework produces sharper and more accurate images when applied in sparse/sparsified domains.

  16. Preconditioned Inexact Newton for Nonlinear Sparse Electromagnetic Imaging

    Desmal, Abdulla

    2014-01-06

    Newton-type algorithms have been extensively studied in nonlinear microwave imaging due to their quadratic convergence rate and ability to recover images with high contrast values. In the past, Newton methods have been implemented in conjunction with smoothness promoting optimization/regularization schemes. However, this type of regularization schemes are known to perform poorly when applied in imagining domains with sparse content or sharp variations. In this work, an inexact Newton algorithm is formulated and implemented in conjunction with a linear sparse optimization scheme. A novel preconditioning technique is proposed to increase the convergence rate of the optimization problem. Numerical results demonstrate that the proposed framework produces sharper and more accurate images when applied in sparse/sparsified domains.

  17. Identification of MIMO systems with sparse transfer function coefficients

    Qiu, Wanzhi; Saleem, Syed Khusro; Skafidas, Efstratios

    2012-12-01

    We study the problem of estimating transfer functions of multivariable (multiple-input multiple-output--MIMO) systems with sparse coefficients. We note that subspace identification methods are powerful and convenient tools in dealing with MIMO systems since they neither require nonlinear optimization nor impose any canonical form on the systems. However, subspace-based methods are inefficient for systems with sparse transfer function coefficients since they work on state space models. We propose a two-step algorithm where the first step identifies the system order using the subspace principle in a state space format, while the second step estimates coefficients of the transfer functions via L1-norm convex optimization. The proposed algorithm retains good features of subspace methods with improved noise-robustness for sparse systems.

  18. A General Sparse Tensor Framework for Electronic Structure Theory.

    Manzer, Samuel; Epifanovsky, Evgeny; Krylov, Anna I; Head-Gordon, Martin

    2017-03-14

    Linear-scaling algorithms must be developed in order to extend the domain of applicability of electronic structure theory to molecules of any desired size. However, the increasing complexity of modern linear-scaling methods makes code development and maintenance a significant challenge. A major contributor to this difficulty is the lack of robust software abstractions for handling block-sparse tensor operations. We therefore report the development of a highly efficient symbolic block-sparse tensor library in order to provide access to high-level software constructs to treat such problems. Our implementation supports arbitrary multi-dimensional sparsity in all input and output tensors. We avoid cumbersome machine-generated code by implementing all functionality as a high-level symbolic C++ language library and demonstrate that our implementation attains very high performance for linear-scaling sparse tensor contractions.

  19. Sparse dictionary learning of resting state fMRI networks.

    Eavani, Harini; Filipovych, Roman; Davatzikos, Christos; Satterthwaite, Theodore D; Gur, Raquel E; Gur, Ruben C

    2012-07-02

    Research in resting state fMRI (rsfMRI) has revealed the presence of stable, anti-correlated functional subnetworks in the brain. Task-positive networks are active during a cognitive process and are anti-correlated with task-negative networks, which are active during rest. In this paper, based on the assumption that the structure of the resting state functional brain connectivity is sparse, we utilize sparse dictionary modeling to identify distinct functional sub-networks. We propose two ways of formulating the sparse functional network learning problem that characterize the underlying functional connectivity from different perspectives. Our results show that the whole-brain functional connectivity can be concisely represented with highly modular, overlapping task-positive/negative pairs of sub-networks.

  20. Uncovering Transcriptional Regulatory Networks by Sparse Bayesian Factor Model

    Qi Yuan(Alan

    2010-01-01

    Full Text Available Abstract The problem of uncovering transcriptional regulation by transcription factors (TFs based on microarray data is considered. A novel Bayesian sparse correlated rectified factor model (BSCRFM is proposed that models the unknown TF protein level activity, the correlated regulations between TFs, and the sparse nature of TF-regulated genes. The model admits prior knowledge from existing database regarding TF-regulated target genes based on a sparse prior and through a developed Gibbs sampling algorithm, a context-specific transcriptional regulatory network specific to the experimental condition of the microarray data can be obtained. The proposed model and the Gibbs sampling algorithm were evaluated on the simulated systems, and results demonstrated the validity and effectiveness of the proposed approach. The proposed model was then applied to the breast cancer microarray data of patients with Estrogen Receptor positive ( status and Estrogen Receptor negative ( status, respectively.

  1. P-SPARSLIB: A parallel sparse iterative solution package

    Saad, Y. [Univ. of Minnesota, Minneapolis, MN (United States)

    1994-12-31

    Iterative methods are gaining popularity in engineering and sciences at a time where the computational environment is changing rapidly. P-SPARSLIB is a project to build a software library for sparse matrix computations on parallel computers. The emphasis is on iterative methods and the use of distributed sparse matrices, an extension of the domain decomposition approach to general sparse matrices. One of the goals of this project is to develop a software package geared towards specific applications. For example, the author will test the performance and usefulness of P-SPARSLIB modules on linear systems arising from CFD applications. Equally important is the goal of portability. In the long run, the author wishes to ensure that this package is portable on a variety of platforms, including SIMD environments and shared memory environments.

  2. MULTISCALE SPARSE APPEARANCE MODELING AND SIMULATION OF PATHOLOGICAL DEFORMATIONS

    Rami Zewail

    2017-08-01

    Full Text Available Machine learning and statistical modeling techniques has drawn much interest within the medical imaging research community. However, clinically-relevant modeling of anatomical structures continues to be a challenging task. This paper presents a novel method for multiscale sparse appearance modeling in medical images with application to simulation of pathological deformations in X-ray images of human spine. The proposed appearance model benefits from the non-linear approximation power of Contourlets and its ability to capture higher order singularities to achieve a sparse representation while preserving the accuracy of the statistical model. Independent Component Analysis is used to extract statistical independent modes of variations from the sparse Contourlet-based domain. The new model is then used to simulate clinically-relevant pathological deformations in radiographic images.

  3. Coolant channel module CCM

    Hoeld, Alois

    2007-01-01

    A complete and detailed description of the theoretical background of an '(1D) thermal-hydraulic drift-flux based mixture-fluid' coolant channel model and its resulting module CCM will be presented. The objective of this module is to simulate as universally as possible the steady state and transient behaviour of the key characteristic parameters of a single- or two-phase fluid flowing within any type of heated or non-heated coolant channel. Due to the possibility that different flow regimes can appear along any channel, such a 'basic (BC)' 1D channel is assumed to be subdivided into a number of corresponding sub-channels (SC-s). Each SC can belong to only two types of flow regime, an SC with just a single-phase fluid, containing exclusively either sub-cooled water or superheated steam, or an SC with a two-phase mixture flow. After an appropriate nodalisation of such a BC (and therefore also its SC-s) a 'modified finite volume method' has been applied for the spatial discretisation of the partial differential equations (PDE-s) which represent the basic conservation equations of thermal-hydraulics. Special attention had to be given to the possibility of variable SC entrance or outlet positions (which describe boiling boundaries or mixture levels) and thus the fact that an SC can even disappear or be created anew. The procedure yields for each SC type (and thus the entire BC), a set of non-linear ordinary 1st order differential equations (ODE-s). To link the resulting mean nodal with the nodal boundary function values, both of which are present in the discretised differential equations, a special quadratic polygon approximation procedure (PAX) had to be constructed. Together with the very thoroughly tested packages for drift-flux, heat transfer and single- and two-phase friction factors this procedure represents the central part of the here presented 'Separate-Region' approach, a theoretical model which provides the basis to the very effective working code package CCM

  4. Isotachophoresis system having larger-diameter channels flowing into channels with reduced diameter and with selectable counter-flow

    Mariella, Jr., Raymond P.

    2018-03-06

    An isotachophoresis system for separating a sample containing particles into discrete packets including a flow channel, the flow channel having a large diameter section and a small diameter section; a negative electrode operably connected to the flow channel; a positive electrode operably connected to the flow channel; a leading carrier fluid in the flow channel; a trailing carrier fluid in the flow channel; and a control for separating the particles in the sample into discrete packets using the leading carrier fluid, the trailing carrier fluid, the large diameter section, and the small diameter section.

  5. Universal Regularizers For Robust Sparse Coding and Modeling

    Ramirez, Ignacio; Sapiro, Guillermo

    2010-01-01

    Sparse data models, where data is assumed to be well represented as a linear combination of a few elements from a dictionary, have gained considerable attention in recent years, and their use has led to state-of-the-art results in many signal and image processing tasks. It is now well understood that the choice of the sparsity regularization term is critical in the success of such models. Based on a codelength minimization interpretation of sparse coding, and using tools from universal coding...

  6. Uniform sparse bounds for discrete quadratic phase Hilbert transforms

    Kesler, Robert; Arias, Darío Mena

    2017-09-01

    For each α \\in T consider the discrete quadratic phase Hilbert transform acting on finitely supported functions f : Z → C according to H^{α }f(n):= \\sum _{m ≠ 0} e^{iα m^2} f(n - m)/m. We prove that, uniformly in α \\in T , there is a sparse bound for the bilinear form for every pair of finitely supported functions f,g : Z→ C . The sparse bound implies several mapping properties such as weighted inequalities in an intersection of Muckenhoupt and reverse Hölder classes.

  7. Sparse reconstruction by means of the standard Tikhonov regularization

    Lu Shuai; Pereverzev, Sergei V

    2008-01-01

    It is a common belief that Tikhonov scheme with || · ||L 2 -penalty fails in sparse reconstruction. We are going to show, however, that this standard regularization can help if the stability measured in L 1 -norm will be properly taken into account in the choice of the regularization parameter. The crucial point is that now a stability bound may depend on the bases with respect to which the solution of the problem is assumed to be sparse. We discuss how such a stability can be estimated numerically and present the results of computational experiments giving the evidence of the reliability of our approach.

  8. Sparse electromagnetic imaging using nonlinear iterative shrinkage thresholding

    Desmal, Abdulla; Bagci, Hakan

    2015-01-01

    A sparse nonlinear electromagnetic imaging scheme is proposed for reconstructing dielectric contrast of investigation domains from measured fields. The proposed approach constructs the optimization problem by introducing the sparsity constraint to the data misfit between the scattered fields expressed as a nonlinear function of the contrast and the measured fields and solves it using the nonlinear iterative shrinkage thresholding algorithm. The thresholding is applied to the result of every nonlinear Landweber iteration to enforce the sparsity constraint. Numerical results demonstrate the accuracy and efficiency of the proposed method in reconstructing sparse dielectric profiles.

  9. Sparse electromagnetic imaging using nonlinear iterative shrinkage thresholding

    Desmal, Abdulla

    2015-04-13

    A sparse nonlinear electromagnetic imaging scheme is proposed for reconstructing dielectric contrast of investigation domains from measured fields. The proposed approach constructs the optimization problem by introducing the sparsity constraint to the data misfit between the scattered fields expressed as a nonlinear function of the contrast and the measured fields and solves it using the nonlinear iterative shrinkage thresholding algorithm. The thresholding is applied to the result of every nonlinear Landweber iteration to enforce the sparsity constraint. Numerical results demonstrate the accuracy and efficiency of the proposed method in reconstructing sparse dielectric profiles.

  10. Sparse grid techniques for particle-in-cell schemes

    Ricketson, L. F.; Cerfon, A. J.

    2017-02-01

    We propose the use of sparse grids to accelerate particle-in-cell (PIC) schemes. By using the so-called ‘combination technique’ from the sparse grids literature, we are able to dramatically increase the size of the spatial cells in multi-dimensional PIC schemes while paying only a slight penalty in grid-based error. The resulting increase in cell size allows us to reduce the statistical noise in the simulation without increasing total particle number. We present initial proof-of-principle results from test cases in two and three dimensions that demonstrate the new scheme’s efficiency, both in terms of computation time and memory usage.

  11. Ordering sparse matrices for cache-based systems

    Biswas, Rupak; Oliker, Leonid

    2001-01-01

    The Conjugate Gradient (CG) algorithm is the oldest and best-known Krylov subspace method used to solve sparse linear systems. Most of the coating-point operations within each CG iteration is spent performing sparse matrix-vector multiplication (SPMV). We examine how various ordering and partitioning strategies affect the performance of CG and SPMV when different programming paradigms are used on current commercial cache-based computers. However, a multithreaded implementation on the cacheless Cray MTA demonstrates high efficiency and scalability without any special ordering or partitioning

  12. Sparse Matrix for ECG Identification with Two-Lead Features

    Kuo-Kun Tseng

    2015-01-01

    Full Text Available Electrocardiograph (ECG human identification has the potential to improve biometric security. However, improvements in ECG identification and feature extraction are required. Previous work has focused on single lead ECG signals. Our work proposes a new algorithm for human identification by mapping two-lead ECG signals onto a two-dimensional matrix then employing a sparse matrix method to process the matrix. And that is the first application of sparse matrix techniques for ECG identification. Moreover, the results of our experiments demonstrate the benefits of our approach over existing methods.

  13. Low-rank and sparse modeling for visual analysis

    Fu, Yun

    2014-01-01

    This book provides a view of low-rank and sparse computing, especially approximation, recovery, representation, scaling, coding, embedding and learning among unconstrained visual data. The book includes chapters covering multiple emerging topics in this new field. It links multiple popular research fields in Human-Centered Computing, Social Media, Image Classification, Pattern Recognition, Computer Vision, Big Data, and Human-Computer Interaction. Contains an overview of the low-rank and sparse modeling techniques for visual analysis by examining both theoretical analysis and real-world applic

  14. The MUSIC algorithm for sparse objects: a compressed sensing analysis

    Fannjiang, Albert C

    2011-01-01

    The multiple signal classification (MUSIC) algorithm, and its extension for imaging sparse extended objects, with noisy data is analyzed by compressed sensing (CS) techniques. A thresholding rule is developed to augment the standard MUSIC algorithm. The notion of restricted isometry property (RIP) and an upper bound on the restricted isometry constant (RIC) are employed to establish sufficient conditions for the exact localization by MUSIC with or without noise. In the noiseless case, the sufficient condition gives an upper bound on the numbers of random sampling and incident directions necessary for exact localization. In the noisy case, the sufficient condition assumes additionally an upper bound for the noise-to-object ratio in terms of the RIC and the dynamic range of objects. This bound points to the super-resolution capability of the MUSIC algorithm. Rigorous comparison of performance between MUSIC and the CS minimization principle, basis pursuit denoising (BPDN), is given. In general, the MUSIC algorithm guarantees to recover, with high probability, s scatterers with n=O(s 2 ) random sampling and incident directions and sufficiently high frequency. For the favorable imaging geometry where the scatterers are distributed on a transverse plane MUSIC guarantees to recover, with high probability, s scatterers with a median frequency and n=O(s) random sampling/incident directions. Moreover, for the problems of spectral estimation and source localizations both BPDN and MUSIC guarantee, with high probability, to identify exactly the frequencies of random signals with the number n=O(s) of sampling times. However, in the absence of abundant realizations of signals, BPDN is the preferred method for spectral estimation. Indeed, BPDN can identify the frequencies approximately with just one realization of signals with the recovery error at worst linearly proportional to the noise level. Numerical results confirm that BPDN outperforms MUSIC in the well-resolved case while

  15. Statistical model of natural stimuli predicts edge-like pooling of spatial frequency channels in V2

    Gutmann Michael

    2005-02-01

    Full Text Available Abstract Background It has been shown that the classical receptive fields of simple and complex cells in the primary visual cortex emerge from the statistical properties of natural images by forcing the cell responses to be maximally sparse or independent. We investigate how to learn features beyond the primary visual cortex from the statistical properties of modelled complex-cell outputs. In previous work, we showed that a new model, non-negative sparse coding, led to the emergence of features which code for contours of a given spatial frequency band. Results We applied ordinary independent component analysis to modelled outputs of complex cells that span different frequency bands. The analysis led to the emergence of features which pool spatially coherent across-frequency activity in the modelled primary visual cortex. Thus, the statistically optimal way of processing complex-cell outputs abandons separate frequency channels, while preserving and even enhancing orientation tuning and spatial localization. As a technical aside, we found that the non-negativity constraint is not necessary: ordinary independent component analysis produces essentially the same results as our previous work. Conclusion We propose that the pooling that emerges allows the features to code for realistic low-level image features related to step edges. Further, the results prove the viability of statistical modelling of natural images as a framework that produces quantitative predictions of visual processing.

  16. Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization

    Wang, Li; Gao, Yaozong; Shi, Feng; Liao, Shu; Li, Gang [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599 (United States); Chen, Ken Chung [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 and Department of Stomatology, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan 70403 (China); Shen, Steve G. F.; Yan, Jin [Department of Oral and Craniomaxillofacial Surgery and Science, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, China 200011 (China); Lee, Philip K. M.; Chow, Ben [Hong Kong Dental Implant and Maxillofacial Centre, Hong Kong, China 999077 (China); Liu, Nancy X. [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 and Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China 100050 (China); Xia, James J. [Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital Research Institute, Houston, Texas 77030 (United States); Department of Surgery (Oral and Maxillofacial Surgery), Weill Medical College, Cornell University, New York, New York 10065 (United States); Department of Oral and Craniomaxillofacial Surgery and Science, Shanghai Ninth People' s Hospital, Shanghai Jiao Tong University College of Medicine, Shanghai, China 200011 (China); Shen, Dinggang, E-mail: dgshen@med.unc.edu [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599 and Department of Brain and Cognitive Engineering, Korea University, Seoul, 136701 (Korea, Republic of)

    2014-04-15

    Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate three-dimensional (3D) models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the poor image quality, including very low signal-to-noise ratio and the widespread image artifacts such as noise, beam hardening, and inhomogeneity, it is challenging to segment the CBCT images. In this paper, the authors present a new automatic segmentation method to address these problems. Methods: To segment CBCT images, the authors propose a new method for fully automated CBCT segmentation by using patch-based sparse representation to (1) segment bony structures from the soft tissues and (2) further separate the mandible from the maxilla. Specifically, a region-specific registration strategy is first proposed to warp all the atlases to the current testing subject and then a sparse-based label propagation strategy is employed to estimate a patient-specific atlas from all aligned atlases. Finally, the patient-specific atlas is integrated into amaximum a posteriori probability-based convex segmentation framework for accurate segmentation. Results: The proposed method has been evaluated on a dataset with 15 CBCT images. The effectiveness of the proposed region-specific registration strategy and patient-specific atlas has been validated by comparing with the traditional registration strategy and population-based atlas. The experimental results show that the proposed method achieves the best segmentation accuracy by comparison with other state-of-the-art segmentation methods. Conclusions: The authors have proposed a new CBCT segmentation method by using patch-based sparse representation and convex optimization, which can achieve considerably accurate segmentation results in CBCT

  17. Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization

    Wang, Li; Gao, Yaozong; Shi, Feng; Liao, Shu; Li, Gang; Chen, Ken Chung; Shen, Steve G. F.; Yan, Jin; Lee, Philip K. M.; Chow, Ben; Liu, Nancy X.; Xia, James J.; Shen, Dinggang

    2014-01-01

    Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate three-dimensional (3D) models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the poor image quality, including very low signal-to-noise ratio and the widespread image artifacts such as noise, beam hardening, and inhomogeneity, it is challenging to segment the CBCT images. In this paper, the authors present a new automatic segmentation method to address these problems. Methods: To segment CBCT images, the authors propose a new method for fully automated CBCT segmentation by using patch-based sparse representation to (1) segment bony structures from the soft tissues and (2) further separate the mandible from the maxilla. Specifically, a region-specific registration strategy is first proposed to warp all the atlases to the current testing subject and then a sparse-based label propagation strategy is employed to estimate a patient-specific atlas from all aligned atlases. Finally, the patient-specific atlas is integrated into amaximum a posteriori probability-based convex segmentation framework for accurate segmentation. Results: The proposed method has been evaluated on a dataset with 15 CBCT images. The effectiveness of the proposed region-specific registration strategy and patient-specific atlas has been validated by comparing with the traditional registration strategy and population-based atlas. The experimental results show that the proposed method achieves the best segmentation accuracy by comparison with other state-of-the-art segmentation methods. Conclusions: The authors have proposed a new CBCT segmentation method by using patch-based sparse representation and convex optimization, which can achieve considerably accurate segmentation results in CBCT

  18. Low Complexity Submatrix Divided MMSE Sparse-SQRD Detection for MIMO-OFDM with ESPAR Antenna Receiver

    Diego Javier Reinoso Chisaguano

    2013-01-01

    Full Text Available Multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM with an electronically steerable passive array radiator (ESPAR antenna receiver can improve the bit error rate performance and obtains additional diversity gain without increasing the number of Radio Frequency (RF front-end circuits. However, due to the large size of the channel matrix, the computational cost required for the detection process using Vertical-Bell Laboratories Layered Space-Time (V-BLAST detection is too high to be implemented. Using the minimum mean square error sparse-sorted QR decomposition (MMSE sparse-SQRD algorithm for the detection process the average computational cost can be considerably reduced but is still higher compared with a conventional MIMOOFDM system without ESPAR antenna receiver. In this paper, we propose to use a low complexity submatrix divided MMSE sparse-SQRD algorithm for the detection process of MIMOOFDM with ESPAR antenna receiver. The computational cost analysis and simulation results show that on average the proposed scheme can further reduce the computational cost and achieve a complexity comparable to the conventional MIMO-OFDM detection schemes.

  19. Groundwater flow into underground openings in fractured crystalline rocks: an interpretation based on long channels

    Black, John H.; Woodman, Nicholas D.; Barker, John A.

    2017-03-01

    Rethinking an old tracer experiment in fractured crystalline rock suggests a concept of groundwater flow in sparse networks of long channels that is supported by results from an innovative lattice network model. The model, HyperConv, can vary the mean length of `strings' of connected bonds, and the gaps between them, using two independent probability functions. It is found that networks of long channels are able to percolate at lower values of (bond) density than networks of short channels. A general relationship between mean channel length, mean gap length and probability of percolation has been developed which incorporates the well-established result for `classical' lattice network models as a special case. Using parameters appropriate to a 4-m diameter drift located 360 m below surface at Stripa Mine Underground Research Laboratory in Sweden, HyperConv is able to reproduce values of apparent positive skin, as observed in the so-called Macropermeability Experiment, but only when mean channel length exceeds 10 m. This implies that such channel systems must cross many fracture intersections without bifurcating. A general relationship in terms of flow dimension is suggested. Some initial investigations using HyperConv show that the commonly observed feature, `compartmentalization', only occurs when channel density is just above the percolation threshold. Such compartments have been observed at Kamaishi Experimental Mine (Japan) implying a sparse flow network. It is suggested that compartments and skin are observable in the field, indicate sparse channel systems, and could form part of site characterization for deep nuclear waste repositories.

  20. Sparse Generalized Fourier Series via Collocation-based Optimization

    2014-11-01

    Theory 51, 12 (2005) 4203– 4215. [6] P. CONSTANTINE , M. ELDRED AND E. PHIPPS, Sparse pseu- dospectral approximation method. Comput. Methods Appl. Mech...Visition XVI: Algorithms, Techniques, Active Vision , and Materials Handling, 224 (1997). [15] J. SHEN AND L. WANG, Some recent advances on spectral methods

  1. A Sparse Bayesian Learning Algorithm With Dictionary Parameter Estimation

    Hansen, Thomas Lundgaard; Badiu, Mihai Alin; Fleury, Bernard Henri

    2014-01-01

    This paper concerns sparse decomposition of a noisy signal into atoms which are specified by unknown continuous-valued parameters. An example could be estimation of the model order, frequencies and amplitudes of a superposition of complex sinusoids. The common approach is to reduce the continuous...

  2. Robust visual tracking via structured multi-task sparse learning

    Zhang, Tianzhu; Ghanem, Bernard; Liu, Si; Ahuja, Narendra

    2012-01-01

    In this paper, we formulate object tracking in a particle filter framework as a structured multi-task sparse learning problem, which we denote as Structured Multi-Task Tracking (S-MTT). Since we model particles as linear combinations of dictionary

  3. Behavior of greedy sparse representation algorithms on nested supports

    Mailhé, Boris; Sturm, Bob L.; Plumbley, Mark

    2013-01-01

    is not locally nested: there is a dictionary and supports Γ ⊃ Γ′ such that OMP can recover all signals with support Γ, but not all signals with support Γ′. We also show that the support recovery optimality of OMP is globally nested: if OMP can recover all s-sparse signals, then it can recover all s...

  4. Inference algorithms and learning theory for Bayesian sparse factor analysis

    Rattray, Magnus; Sharp, Kevin; Stegle, Oliver; Winn, John

    2009-01-01

    Bayesian sparse factor analysis has many applications; for example, it has been applied to the problem of inferring a sparse regulatory network from gene expression data. We describe a number of inference algorithms for Bayesian sparse factor analysis using a slab and spike mixture prior. These include well-established Markov chain Monte Carlo (MCMC) and variational Bayes (VB) algorithms as well as a novel hybrid of VB and Expectation Propagation (EP). For the case of a single latent factor we derive a theory for learning performance using the replica method. We compare the MCMC and VB/EP algorithm results with simulated data to the theoretical prediction. The results for MCMC agree closely with the theory as expected. Results for VB/EP are slightly sub-optimal but show that the new algorithm is effective for sparse inference. In large-scale problems MCMC is infeasible due to computational limitations and the VB/EP algorithm then provides a very useful computationally efficient alternative.

  5. Inference algorithms and learning theory for Bayesian sparse factor analysis

    Rattray, Magnus; Sharp, Kevin [School of Computer Science, University of Manchester, Manchester M13 9PL (United Kingdom); Stegle, Oliver [Max-Planck-Institute for Biological Cybernetics, Tuebingen (Germany); Winn, John, E-mail: magnus.rattray@manchester.ac.u [Microsoft Research Cambridge, Roger Needham Building, Cambridge, CB3 0FB (United Kingdom)

    2009-12-01

    Bayesian sparse factor analysis has many applications; for example, it has been applied to the problem of inferring a sparse regulatory network from gene expression data. We describe a number of inference algorithms for Bayesian sparse factor analysis using a slab and spike mixture prior. These include well-established Markov chain Monte Carlo (MCMC) and variational Bayes (VB) algorithms as well as a novel hybrid of VB and Expectation Propagation (EP). For the case of a single latent factor we derive a theory for learning performance using the replica method. We compare the MCMC and VB/EP algorithm results with simulated data to the theoretical prediction. The results for MCMC agree closely with the theory as expected. Results for VB/EP are slightly sub-optimal but show that the new algorithm is effective for sparse inference. In large-scale problems MCMC is infeasible due to computational limitations and the VB/EP algorithm then provides a very useful computationally efficient alternative.

  6. Low-rank sparse learning for robust visual tracking

    Zhang, Tianzhu

    2012-01-01

    In this paper, we propose a new particle-filter based tracking algorithm that exploits the relationship between particles (candidate targets). By representing particles as sparse linear combinations of dictionary templates, this algorithm capitalizes on the inherent low-rank structure of particle representations that are learned jointly. As such, it casts the tracking problem as a low-rank matrix learning problem. This low-rank sparse tracker (LRST) has a number of attractive properties. (1) Since LRST adaptively updates dictionary templates, it can handle significant changes in appearance due to variations in illumination, pose, scale, etc. (2) The linear representation in LRST explicitly incorporates background templates in the dictionary and a sparse error term, which enables LRST to address the tracking drift problem and to be robust against occlusion respectively. (3) LRST is computationally attractive, since the low-rank learning problem can be efficiently solved as a sequence of closed form update operations, which yield a time complexity that is linear in the number of particles and the template size. We evaluate the performance of LRST by applying it to a set of challenging video sequences and comparing it to 6 popular tracking methods. Our experiments show that by representing particles jointly, LRST not only outperforms the state-of-the-art in tracking accuracy but also significantly improves the time complexity of methods that use a similar sparse linear representation model for particles [1]. © 2012 Springer-Verlag.

  7. Structure-aware Local Sparse Coding for Visual Tracking

    Qi, Yuankai; Qin, Lei; Zhang, Jian; Zhang, Shengping; Huang, Qingming; Yang, Ming-Hsuan

    2018-01-01

    with the corresponding local regions of the target templates that are the most similar from the global view. Thus, a more precise and discriminative sparse representation is obtained to account for appearance changes. To alleviate the issues with tracking drifts, we

  8. A Practical View on Tunable Sparse Network Coding

    Sørensen, Chres Wiant; Shahbaz Badr, Arash; Cabrera Guerrero, Juan Alberto

    2015-01-01

    Tunable sparse network coding (TSNC) constitutes a promising concept for trading off computational complexity and delay performance. This paper advocates for the use of judicious feedback as a key not only to make TSNC practical, but also to deliver a highly consistent and controlled delay perfor...

  9. Parallel and Scalable Sparse Basic Linear Algebra Subprograms

    Liu, Weifeng

    and heterogeneous processors. The thesis compares the proposed methods with state-of-the-art approaches on six homogeneous and five heterogeneous processors from Intel, AMD and nVidia. Using in total 38 sparse matrices as a benchmark suite, the experimental results show that the proposed methods obtain significant...

  10. SparseBeads data: benchmarking sparsity-regularized computed tomography

    Jørgensen, Jakob Sauer; Coban, Sophia B.; Lionheart, William R. B.

    2017-01-01

    -regularized reconstruction. A collection of 48 x-ray CT datasets called SparseBeads was designed for benchmarking SR reconstruction algorithms. Beadpacks comprising glass beads of five different sizes as well as mixtures were scanned in a micro-CT scanner to provide structured datasets with variable image sparsity levels...

  11. Hierarchical Bayesian sparse image reconstruction with application to MRFM.

    Dobigeon, Nicolas; Hero, Alfred O; Tourneret, Jean-Yves

    2009-09-01

    This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical Bayesian model. To overcome the complexity of the posterior distribution, a Gibbs sampling strategy is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g., by maximizing the estimated posterior distribution. In our fully Bayesian approach, the posteriors of all the parameters are available. Thus, our algorithm provides more information than other previously proposed sparse reconstruction methods that only give a point estimate. The performance of the proposed hierarchical Bayesian sparse reconstruction method is illustrated on synthetic data and real data collected from a tobacco virus sample using a prototype MRFM instrument.

  12. Multiple instance learning tracking method with local sparse representation

    Xie, Chengjun

    2013-10-01

    When objects undergo large pose change, illumination variation or partial occlusion, most existed visual tracking algorithms tend to drift away from targets and even fail in tracking them. To address this issue, in this study, the authors propose an online algorithm by combining multiple instance learning (MIL) and local sparse representation for tracking an object in a video system. The key idea in our method is to model the appearance of an object by local sparse codes that can be formed as training data for the MIL framework. First, local image patches of a target object are represented as sparse codes with an overcomplete dictionary, where the adaptive representation can be helpful in overcoming partial occlusion in object tracking. Then MIL learns the sparse codes by a classifier to discriminate the target from the background. Finally, results from the trained classifier are input into a particle filter framework to sequentially estimate the target state over time in visual tracking. In addition, to decrease the visual drift because of the accumulative errors when updating the dictionary and classifier, a two-step object tracking method combining a static MIL classifier with a dynamical MIL classifier is proposed. Experiments on some publicly available benchmarks of video sequences show that our proposed tracker is more robust and effective than others. © The Institution of Engineering and Technology 2013.

  13. Fast sparse matrix-vector multiplication by partitioning and reordering

    Yzelman, A.N.

    2011-01-01

    The thesis introduces a cache-oblivious method for the sparse matrix-vector (SpMV) multiplication, which is an important computational kernel in many applications. The method works by permuting rows and columns of the input matrix so that the resulting reordered matrix induces cache-friendly

  14. Sobol indices for dimension adaptivity in sparse grids

    Dwight, R.P.; Desmedt, S.G.L.; Shoeibi Omrani, P.

    2016-01-01

    Propagation of random variables through computer codes of many inputs is primarily limited by computational expense. The use of sparse grids mitigates these costs somewhat; here we show how Sobol indices can be used to perform dimension adaptivity to mitigate them further. The method is compared to

  15. Discriminative object tracking via sparse representation and online dictionary learning.

    Xie, Yuan; Zhang, Wensheng; Li, Cuihua; Lin, Shuyang; Qu, Yanyun; Zhang, Yinghua

    2014-04-01

    We propose a robust tracking algorithm based on local sparse coding with discriminative dictionary learning and new keypoint matching schema. This algorithm consists of two parts: the local sparse coding with online updated discriminative dictionary for tracking (SOD part), and the keypoint matching refinement for enhancing the tracking performance (KP part). In the SOD part, the local image patches of the target object and background are represented by their sparse codes using an over-complete discriminative dictionary. Such discriminative dictionary, which encodes the information of both the foreground and the background, may provide more discriminative power. Furthermore, in order to adapt the dictionary to the variation of the foreground and background during the tracking, an online learning method is employed to update the dictionary. The KP part utilizes refined keypoint matching schema to improve the performance of the SOD. With the help of sparse representation and online updated discriminative dictionary, the KP part are more robust than the traditional method to reject the incorrect matches and eliminate the outliers. The proposed method is embedded into a Bayesian inference framework for visual tracking. Experimental results on several challenging video sequences demonstrate the effectiveness and robustness of our approach.

  16. Fast Estimation of Optimal Sparseness of Music Signals

    la Cour-Harbo, Anders

    2006-01-01

    We want to use a variety of sparseness measured applied to ‘the minimal L1 norm representation' of a music signal in an overcomplete dictionary as features for automatic classification of music. Unfortunately, the process of computing the optimal L1 norm representation is rather slow, and we...

  17. Robust Visual Tracking Via Consistent Low-Rank Sparse Learning

    Zhang, Tianzhu; Liu, Si; Ahuja, Narendra; Yang, Ming-Hsuan; Ghanem, Bernard

    2014-01-01

    and the low-rank minimization problem for learning joint sparse representations can be efficiently solved by a sequence of closed form update operations. We evaluate the proposed CLRST algorithm against 14 state-of-the-art tracking methods on a set of 25

  18. Non-Cartesian MRI scan time reduction through sparse sampling

    Wajer, F.T.A.W.

    2001-01-01

    Non-Cartesian MRI Scan-Time Reduction through Sparse Sampling Magnetic resonance imaging (MRI) signals are measured in the Fourier domain, also called k-space. Samples of the MRI signal can not be taken at will, but lie along k-space trajectories determined by the magnetic field gradients. MRI

  19. Sparsely-Packetized Predictive Control by Orthogonal Matching Pursuit

    Nagahara, Masaaki; Quevedo, Daniel; Østergaard, Jan

    2012-01-01

    We study packetized predictive control, known to be robust against packet dropouts in networked systems. To obtain sparse packets for rate-limited networks, we design control packets via an ℓ0 optimization, which can be eectively solved by orthogonal matching pursuit. Our formulation ensures...

  20. Proportionate Minimum Error Entropy Algorithm for Sparse System Identification

    Zongze Wu

    2015-08-01

    Full Text Available Sparse system identification has received a great deal of attention due to its broad applicability. The proportionate normalized least mean square (PNLMS algorithm, as a popular tool, achieves excellent performance for sparse system identification. In previous studies, most of the cost functions used in proportionate-type sparse adaptive algorithms are based on the mean square error (MSE criterion, which is optimal only when the measurement noise is Gaussian. However, this condition does not hold in most real-world environments. In this work, we use the minimum error entropy (MEE criterion, an alternative to the conventional MSE criterion, to develop the proportionate minimum error entropy (PMEE algorithm for sparse system identification, which may achieve much better performance than the MSE based methods especially in heavy-tailed non-Gaussian situations. Moreover, we analyze the convergence of the proposed algorithm and derive a sufficient condition that ensures the mean square convergence. Simulation results confirm the excellent performance of the new algorithm.

  1. Robust Visual Tracking Via Consistent Low-Rank Sparse Learning

    Zhang, Tianzhu

    2014-06-19

    Object tracking is the process of determining the states of a target in consecutive video frames based on properties of motion and appearance consistency. In this paper, we propose a consistent low-rank sparse tracker (CLRST) that builds upon the particle filter framework for tracking. By exploiting temporal consistency, the proposed CLRST algorithm adaptively prunes and selects candidate particles. By using linear sparse combinations of dictionary templates, the proposed method learns the sparse representations of image regions corresponding to candidate particles jointly by exploiting the underlying low-rank constraints. In addition, the proposed CLRST algorithm is computationally attractive since temporal consistency property helps prune particles and the low-rank minimization problem for learning joint sparse representations can be efficiently solved by a sequence of closed form update operations. We evaluate the proposed CLRST algorithm against 14 state-of-the-art tracking methods on a set of 25 challenging image sequences. Experimental results show that the CLRST algorithm performs favorably against state-of-the-art tracking methods in terms of accuracy and execution time.

  2. Sparse PDF Volumes for Consistent Multi-Resolution Volume Rendering

    Sicat, Ronell Barrera

    2014-12-31

    This paper presents a new multi-resolution volume representation called sparse pdf volumes, which enables consistent multi-resolution volume rendering based on probability density functions (pdfs) of voxel neighborhoods. These pdfs are defined in the 4D domain jointly comprising the 3D volume and its 1D intensity range. Crucially, the computation of sparse pdf volumes exploits data coherence in 4D, resulting in a sparse representation with surprisingly low storage requirements. At run time, we dynamically apply transfer functions to the pdfs using simple and fast convolutions. Whereas standard low-pass filtering and down-sampling incur visible differences between resolution levels, the use of pdfs facilitates consistent results independent of the resolution level used. We describe the efficient out-of-core computation of large-scale sparse pdf volumes, using a novel iterative simplification procedure of a mixture of 4D Gaussians. Finally, our data structure is optimized to facilitate interactive multi-resolution volume rendering on GPUs.

  3. EEG Source Reconstruction using Sparse Basis Function Representations

    Hansen, Sofie Therese; Hansen, Lars Kai

    2014-01-01

    -validation this approach is more automated than competing approaches such as Multiple Sparse Priors (Friston et al., 2008) or Champagne (Wipf et al., 2010) that require manual selection of noise level and auxiliary signal free data, respectively. Finally, we propose an unbiased estimator of the reproducibility...

  4. Aliasing-free wideband beamforming using sparse signal representation

    Tang, Z.; Blacquière, G.; Leus, G.

    2011-01-01

    Sparse signal representation (SSR) is considered to be an appealing alternative to classical beamforming for direction-of-arrival (DOA) estimation. For wideband signals, the SSR-based approach constructs steering matrices, referred to as dictionaries in this paper, corresponding to different

  5. Channelling and electromagnetic radiation of channelling particles

    Kalashnikov, N.

    1983-01-01

    A brief description is presented of the channelling of charged particles between atoms in the crystal lattice. The specificities are discussed of the transverse motion of channelling particles as are the origin and properties of quasi-characteristic radiation of channelling particles which accompany transfers from one band of permissible energies of the transverse motion of channelling particles to the other. (B.S.)

  6. Deformable segmentation via sparse representation and dictionary learning.

    Zhang, Shaoting; Zhan, Yiqiang; Metaxas, Dimitris N

    2012-10-01

    "Shape" and "appearance", the two pillars of a deformable model, complement each other in object segmentation. In many medical imaging applications, while the low-level appearance information is weak or mis-leading, shape priors play a more important role to guide a correct segmentation, thanks to the strong shape characteristics of biological structures. Recently a novel shape prior modeling method has been proposed based on sparse learning theory. Instead of learning a generative shape model, shape priors are incorporated on-the-fly through the sparse shape composition (SSC). SSC is robust to non-Gaussian errors and still preserves individual shape characteristics even when such characteristics is not statistically significant. Although it seems straightforward to incorporate SSC into a deformable segmentation framework as shape priors, the large-scale sparse optimization of SSC has low runtime efficiency, which cannot satisfy clinical requirements. In this paper, we design two strategies to decrease the computational complexity of SSC, making a robust, accurate and efficient deformable segmentation system. (1) When the shape repository contains a large number of instances, which is often the case in 2D problems, K-SVD is used to learn a more compact but still informative shape dictionary. (2) If the derived shape instance has a large number of vertices, which often appears in 3D problems, an affinity propagation method is used to partition the surface into small sub-regions, on which the sparse shape composition is performed locally. Both strategies dramatically decrease the scale of the sparse optimization problem and hence speed up the algorithm. Our method is applied on a diverse set of biomedical image analysis problems. Compared to the original SSC, these two newly-proposed modules not only significant reduce the computational complexity, but also improve the overall accuracy. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Predictive spatio-temporal model for spatially sparse global solar radiation data

    André, Maïna; Dabo-Niang, Sophie; Soubdhan, Ted; Ould-Baba, Hanany

    2016-01-01

    This paper introduces a new approach for the forecasting of solar radiation series at a located station for very short time scale. We built a multivariate model in using few stations (3 stations) separated with irregular distances from 26 km to 56 km. The proposed model is a spatio temporal vector autoregressive VAR model specifically designed for the analysis of spatially sparse spatio-temporal data. This model differs from classic linear models in using spatial and temporal parameters where the available predictors are the lagged values at each station. A spatial structure of stations is defined by the sequential introduction of predictors in the model. Moreover, an iterative strategy in the process of our model will select the necessary stations removing the uninteresting predictors and also selecting the optimal p-order. We studied the performance of this model. The metric error, the relative root mean squared error (rRMSE), is presented at different short time scales. Moreover, we compared the results of our model to simple and well known persistence model and those found in literature. - Highlights: • A spatio-temporal VAR forecast model is used for spatially sparse data solar. • Lags and locations are selected by an optimization strategy. • Definition of spatial ordering of predictors influences forecasting results. • The model shows a better performance predictive at 30 min ahead in our context. • Benchmarking study shows a more accurate forecast at 1 h ahead with spatio-temporal VAR.

  8. Sparse grid-based polynomial chaos expansion for aerodynamics of an airfoil with uncertainties

    Xiaojing WU

    2018-05-01

    Full Text Available The uncertainties can generate fluctuations with aerodynamic characteristics. Uncertainty Quantification (UQ is applied to compute its impact on the aerodynamic characteristics. In addition, the contribution of each uncertainty to aerodynamic characteristics should be computed by uncertainty sensitivity analysis. Non-Intrusive Polynomial Chaos (NIPC has been successfully applied to uncertainty quantification and uncertainty sensitivity analysis. However, the non-intrusive polynomial chaos method becomes inefficient as the number of random variables adopted to describe uncertainties increases. This deficiency becomes significant in stochastic aerodynamic analysis considering the geometric uncertainty because the description of geometric uncertainty generally needs many parameters. To solve the deficiency, a Sparse Grid-based Polynomial Chaos (SGPC expansion is used to do uncertainty quantification and sensitivity analysis for stochastic aerodynamic analysis considering geometric and operational uncertainties. It is proved that the method is more efficient than non-intrusive polynomial chaos and Monte Carlo Simulation (MSC method for the stochastic aerodynamic analysis. By uncertainty quantification, it can be learnt that the flow characteristics of shock wave and boundary layer separation are sensitive to the geometric uncertainty in transonic region. The uncertainty sensitivity analysis reveals the individual and coupled effects among the uncertainty parameters. Keywords: Non-intrusive polynomial chaos, Sparse grid, Stochastic aerodynamic analysis, Uncertainty sensitivity analysis, Uncertainty quantification

  9. Channel Modeling

    Schmitz, Arne; Schinnenburg, Marc; Gross, James; Aguiar, Ana

    For any communication system the Signal-to-Interference-plus-Noise-Ratio of the link is a fundamental metric. Recall (cf. Chapter 9) that the SINR is defined as the ratio between the received power of the signal of interest and the sum of all "disturbing" power sources (i.e. interference and noise). From information theory it is known that a higher SINR increases the maximum possible error-free transmission rate (referred to as Shannon capacity [417] of any communication system and vice versa). Conversely, the higher the SINR, the lower will be the bit error rate in practical systems. While one aspect of the SINR is the sum of all distracting power sources, another issue is the received power. This depends on the transmitted power, the used antennas, possibly on signal processing techniques and ultimately on the channel gain between transmitter and receiver.

  10. Channeling experiment

    Abelin, H.; Birgersson, L.; Widen, H.; Aagren, T.; Moreno, L.; Neretnieks, I.

    1990-07-01

    Channeling of water flow and tracer transport in real fractures in a granite body at Stripa have been investigated experimentally. The experimental site was located 360 m below the ground level. Two kinds of experiments were performed. In the single hole experiments, 20 cm diameter holes were drilled about 2.5 m into the rock in the plane of the fracture. Specially designed packers were used to inject water into the fracture in 5 cm intervals all along the fracture trace in the hole. The variation of the injection flowrates along the fracture were used to determine the transmissivity variations in the fracture plane. Detailed photographs were taken from inside the hole and the visual fracture aperture was compared with the injection flowrates in the same locations. Geostatistical methods were used to evaluate the results. Five holes were measured in great detail. In addition 7 holes were drilled and scanned by simpler packer systems. A double hole experiment was performed where two parallel holes were drilled in the same fracture plane at nearly 2 m distance. Pressure pulse tests were made between the holes in both directions. Tracers were injected in 5 locations in one hole and monitored for in many locations in the other hole. The single hole experiment and the double hole experiment show that most of the fracture planes are tight but that there are open sections which form connected channels over distances of at least 2 meters. It was also found in the double hole experiment that the investigated fracture was intersected by at least one fracture between the two holes which diverted a large amount of the injected tracers to several distant locations at the tunnel wall. (authours)

  11. Channeling ion implantation through palladium films

    Ishiwara, H.; Furukawa, S.

    1975-01-01

    The possibility of channeling ion implantation into semiconductors through polycrystalline metallic layers is studied. Minimum values and standard deviations of channeling angular yield in polycrystalline Pd 2 Si layers formed on Si have been measured by protons and 4 He, and 14 N ion backscattering and channeling measurements. Depth distributions of the spread of crystallite orientations and scattering centers such as lattice defects have been separately derived by using the above two quantities. It has been concluded that the channeling-ion-implantation technique will become a practical one by using the parallel scanning system

  12. Conveyance estimation in channels with emergent bank vegetation ...

    Emergent vegetation along the banks of a river channel influences its conveyance considerably. The total channel discharge can be estimated as the sum of the discharges of the vegetated and clear channel zones calculated separately. The vegetated zone discharge is often negligible, but can be estimated using ...

  13. Feature selection and multi-kernel learning for sparse representation on a manifold

    Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin

    2014-01-01

    combination of some basic items in a dictionary. Gao etal. (2013) recently proposed Laplacian sparse coding by regularizing the sparse codes with an affinity graph. However, due to the noisy features and nonlinear distribution of the data samples, the affinity

  14. Building Input Adaptive Parallel Applications: A Case Study of Sparse Grid Interpolation

    Murarasu, Alin; Weidendorfer, Josef

    2012-01-01

    bring a substantial contribution to the speedup. By identifying common patterns in the input data, we propose new algorithms for sparse grid interpolation that accelerate the state-of-the-art non-specialized version. Sparse grid interpolation

  15. A Non-static Data Layout Enhancing Parallelism and Vectorization in Sparse Grid Algorithms

    Buse, Gerrit; Pfluger, Dirk; Murarasu, Alin; Jacob, Riko

    2012-01-01

    performance and facilitate the use of vector registers for our sparse grid benchmark problem hierarchization. Based on the compact data structure proposed for regular sparse grids in [2], we developed a new algorithm that outperforms existing implementations

  16. Group sparse canonical correlation analysis for genomic data integration.

    Lin, Dongdong; Zhang, Jigang; Li, Jingyao; Calhoun, Vince D; Deng, Hong-Wen; Wang, Yu-Ping

    2013-08-12

    The emergence of high-throughput genomic datasets from different sources and platforms (e.g., gene expression, single nucleotide polymorphisms (SNP), and copy number variation (CNV)) has greatly enhanced our understandings of the interplay of these genomic factors as well as their influences on the complex diseases. It is challenging to explore the relationship between these different types of genomic data sets. In this paper, we focus on a multivariate statistical method, canonical correlation analysis (CCA) method for this problem. Conventional CCA method does not work effectively if the number of data samples is significantly less than that of biomarkers, which is a typical case for genomic data (e.g., SNPs). Sparse CCA (sCCA) methods were introduced to overcome such difficulty, mostly using penalizations with l-1 norm (CCA-l1) or the combination of l-1and l-2 norm (CCA-elastic net). However, they overlook the structural or group effect within genomic data in the analysis, which often exist and are important (e.g., SNPs spanning a gene interact and work together as a group). We propose a new group sparse CCA method (CCA-sparse group) along with an effective numerical algorithm to study the mutual relationship between two different types of genomic data (i.e., SNP and gene expression). We then extend the model to a more general formulation that can include the existing sCCA models. We apply the model to feature/variable selection from two data sets and compare our group sparse CCA method with existing sCCA methods on both simulation and two real datasets (human gliomas data and NCI60 data). We use a graphical representation of the samples with a pair of canonical variates to demonstrate the discriminating characteristic of the selected features. Pathway analysis is further performed for biological interpretation of those features. The CCA-sparse group method incorporates group effects of features into the correlation analysis while performs individual feature

  17. Direction-of-Arrival Estimation for Coherent Sources via Sparse Bayesian Learning

    Zhang-Meng Liu

    2014-01-01

    Full Text Available A spatial filtering-based relevance vector machine (RVM is proposed in this paper to separate coherent sources and estimate their directions-of-arrival (DOA, with the filter parameters and DOA estimates initialized and refined via sparse Bayesian learning. The RVM is used to exploit the spatial sparsity of the incident signals and gain improved adaptability to much demanding scenarios, such as low signal-to-noise ratio (SNR, limited snapshots, and spatially adjacent sources, and the spatial filters are introduced to enhance global convergence of the original RVM in the case of coherent sources. The proposed method adapts to arbitrary array geometry, and simulation results show that it surpasses the existing methods in DOA estimation performance.

  18. An application of sparse inversion on the calculation of the inverse data space of geophysical data

    Saragiotis, Christos

    2011-07-01

    Multiple reflections as observed in seismic reflection measurements often hide arrivals from the deeper target reflectors and need to be removed. The inverse data space provides a natural separation of primaries and surface-related multiples, as the surface multiples map onto the area around the origin while the primaries map elsewhere. However, the calculation of the inverse data is far from trivial as theory requires infinite time and offset recording. Furthermore regularization issues arise during inversion. We perform the inversion by minimizing the least-squares norm of the misfit function and by constraining the 1 norm of the solution, being the inverse data space. In this way a sparse inversion approach is obtained. We show results on field data with an application to surface multiple removal. © 2011 IEEE.

  19. Multichannel deconvolution and source detection using sparse representations: application to Fermi project

    Schmitt, Jeremy

    2011-01-01

    This thesis presents new methods for spherical Poisson data analysis for the Fermi mission. Fermi main scientific objectives, the study of diffuse galactic background et the building of the source catalog, are complicated by the weakness of photon flux and the point spread function of the instrument. This thesis proposes a new multi-scale representation for Poisson data on the sphere, the Multi-Scale Variance Stabilizing Transform on the Sphere (MS-VSTS), consisting in the combination of a spherical multi-scale transform (wavelets, curvelets) with a variance stabilizing transform (VST). This method is applied to mono- and multichannel Poisson noise removal, missing data interpolation, background extraction and multichannel deconvolution. Finally, this thesis deals with the problem of component separation using sparse representations (template fitting). (author) [fr

  20. An in-depth study of sparse codes on abnormality detection

    Ren, Huamin; Pan, Hong; Olsen, Søren Ingvor

    2016-01-01

    Sparse representation has been applied successfully in abnormal event detection, in which the baseline is to learn a dictionary accompanied by sparse codes. While much emphasis is put on discriminative dictionary construction, there are no comparative studies of sparse codes regarding abnormality...... are carried out from various angles to better understand the applicability of sparse codes, including computation time, reconstruction error, sparsity, detection accuracy, and their performance combining various detection methods. The experiment results show that combining OMP codes with maximum coordinate...

  1. Sparse representation, modeling and learning in visual recognition theory, algorithms and applications

    Cheng, Hong

    2015-01-01

    This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision. Topics and features: provides a thorough introduction to the fundamentals of sparse representation, modeling and learning, and the application of these techniques in visual recognition; describes sparse recovery approaches, robust and efficient sparse represen

  2. Porting of the DBCSR library for Sparse Matrix-Matrix Multiplications to Intel Xeon Phi systems

    Bethune, Iain; Gloess, Andeas; Hutter, Juerg; Lazzaro, Alfio; Pabst, Hans; Reid, Fiona

    2017-01-01

    Multiplication of two sparse matrices is a key operation in the simulation of the electronic structure of systems containing thousands of atoms and electrons. The highly optimized sparse linear algebra library DBCSR (Distributed Block Compressed Sparse Row) has been specifically designed to efficiently perform such sparse matrix-matrix multiplications. This library is the basic building block for linear scaling electronic structure theory and low scaling correlated methods in CP2K. It is para...

  3. Flow-induced separation in wall turbulence.

    Nguyen, Quoc; Srinivasan, Chiranth; Papavassiliou, Dimitrios V

    2015-03-01

    One of the defining characteristics of turbulence is its ability to promote mixing. We present here a case where the opposite happens-simulation results indicate that particles can separate near the wall of a turbulent channel flow, when they have sufficiently different Schmidt numbers without use of any other means. The physical mechanism of the separation is understood when the interplay between convection and diffusion, as expressed by their characteristic time scales, is considered, leading to the determination of the necessary conditions for a successful separation between particles. Practical applications of these results can be found when very small particles need to be separated or removed from a fluid.

  4. High-Order Sparse Linear Predictors for Audio Processing

    Giacobello, Daniele; van Waterschoot, Toon; Christensen, Mads Græsbøll

    2010-01-01

    Linear prediction has generally failed to make a breakthrough in audio processing, as it has done in speech processing. This is mostly due to its poor modeling performance, since an audio signal is usually an ensemble of different sources. Nevertheless, linear prediction comes with a whole set...... of interesting features that make the idea of using it in audio processing not far fetched, e.g., the strong ability of modeling the spectral peaks that play a dominant role in perception. In this paper, we provide some preliminary conjectures and experiments on the use of high-order sparse linear predictors...... in audio processing. These predictors, successfully implemented in modeling the short-term and long-term redundancies present in speech signals, will be used to model tonal audio signals, both monophonic and polyphonic. We will show how the sparse predictors are able to model efficiently the different...

  5. Sparse Covariance Matrix Estimation by DCA-Based Algorithms.

    Phan, Duy Nhat; Le Thi, Hoai An; Dinh, Tao Pham

    2017-11-01

    This letter proposes a novel approach using the [Formula: see text]-norm regularization for the sparse covariance matrix estimation (SCME) problem. The objective function of SCME problem is composed of a nonconvex part and the [Formula: see text] term, which is discontinuous and difficult to tackle. Appropriate DC (difference of convex functions) approximations of [Formula: see text]-norm are used that result in approximation SCME problems that are still nonconvex. DC programming and DCA (DC algorithm), powerful tools in nonconvex programming framework, are investigated. Two DC formulations are proposed and corresponding DCA schemes developed. Two applications of the SCME problem that are considered are classification via sparse quadratic discriminant analysis and portfolio optimization. A careful empirical experiment is performed through simulated and real data sets to study the performance of the proposed algorithms. Numerical results showed their efficiency and their superiority compared with seven state-of-the-art methods.

  6. Sample size reduction in groundwater surveys via sparse data assimilation

    Hussain, Z.

    2013-04-01

    In this paper, we focus on sparse signal recovery methods for data assimilation in groundwater models. The objective of this work is to exploit the commonly understood spatial sparsity in hydrodynamic models and thereby reduce the number of measurements to image a dynamic groundwater profile. To achieve this we employ a Bayesian compressive sensing framework that lets us adaptively select the next measurement to reduce the estimation error. An extension to the Bayesian compressive sensing framework is also proposed which incorporates the additional model information to estimate system states from even lesser measurements. Instead of using cumulative imaging-like measurements, such as those used in standard compressive sensing, we use sparse binary matrices. This choice of measurements can be interpreted as randomly sampling only a small subset of dug wells at each time step, instead of sampling the entire grid. Therefore, this framework offers groundwater surveyors a significant reduction in surveying effort without compromising the quality of the survey. © 2013 IEEE.

  7. Sample size reduction in groundwater surveys via sparse data assimilation

    Hussain, Z.; Muhammad, A.

    2013-01-01

    In this paper, we focus on sparse signal recovery methods for data assimilation in groundwater models. The objective of this work is to exploit the commonly understood spatial sparsity in hydrodynamic models and thereby reduce the number of measurements to image a dynamic groundwater profile. To achieve this we employ a Bayesian compressive sensing framework that lets us adaptively select the next measurement to reduce the estimation error. An extension to the Bayesian compressive sensing framework is also proposed which incorporates the additional model information to estimate system states from even lesser measurements. Instead of using cumulative imaging-like measurements, such as those used in standard compressive sensing, we use sparse binary matrices. This choice of measurements can be interpreted as randomly sampling only a small subset of dug wells at each time step, instead of sampling the entire grid. Therefore, this framework offers groundwater surveyors a significant reduction in surveying effort without compromising the quality of the survey. © 2013 IEEE.

  8. Sparse logistic principal components analysis for binary data

    Lee, Seokho

    2010-09-01

    We develop a new principal components analysis (PCA) type dimension reduction method for binary data. Different from the standard PCA which is defined on the observed data, the proposed PCA is defined on the logit transform of the success probabilities of the binary observations. Sparsity is introduced to the principal component (PC) loading vectors for enhanced interpretability and more stable extraction of the principal components. Our sparse PCA is formulated as solving an optimization problem with a criterion function motivated from a penalized Bernoulli likelihood. A Majorization-Minimization algorithm is developed to efficiently solve the optimization problem. The effectiveness of the proposed sparse logistic PCA method is illustrated by application to a single nucleotide polymorphism data set and a simulation study. © Institute ol Mathematical Statistics, 2010.

  9. Statistical mechanics of semi-supervised clustering in sparse graphs

    Ver Steeg, Greg; Galstyan, Aram; Allahverdyan, Armen E

    2011-01-01

    We theoretically study semi-supervised clustering in sparse graphs in the presence of pair-wise constraints on the cluster assignments of nodes. We focus on bi-cluster graphs and study the impact of semi-supervision for varying constraint density and overlap between the clusters. Recent results for unsupervised clustering in sparse graphs indicate that there is a critical ratio of within-cluster and between-cluster connectivities below which clusters cannot be recovered with better than random accuracy. The goal of this paper is to examine the impact of pair-wise constraints on the clustering accuracy. Our results suggest that the addition of constraints does not provide automatic improvement over the unsupervised case. When the density of the constraints is sufficiently small, their only impact is to shift the detection threshold while preserving the criticality. Conversely, if the density of (hard) constraints is above the percolation threshold, the criticality is suppressed and the detection threshold disappears

  10. A sparse electromagnetic imaging scheme using nonlinear landweber iterations

    Desmal, Abdulla

    2015-10-26

    Development and use of electromagnetic inverse scattering techniques for imagining sparse domains have been on the rise following the recent advancements in solving sparse optimization problems. Existing techniques rely on iteratively converting the nonlinear forward scattering operator into a sequence of linear ill-posed operations (for example using the Born iterative method) and applying sparsity constraints to the linear minimization problem of each iteration through the use of L0/L1-norm penalty term (A. Desmal and H. Bagci, IEEE Trans. Antennas Propag, 7, 3878–3884, 2014, and IEEE Trans. Geosci. Remote Sens., 3, 532–536, 2015). It has been shown that these techniques produce more accurate and sharper images than their counterparts which solve a minimization problem constrained with smoothness promoting L2-norm penalty term. But these existing techniques are only applicable to investigation domains involving weak scatterers because the linearization process breaks down for high values of dielectric permittivity.

  11. Semi-blind sparse image reconstruction with application to MRFM.

    Park, Se Un; Dobigeon, Nicolas; Hero, Alfred O

    2012-09-01

    We propose a solution to the image deconvolution problem where the convolution kernel or point spread function (PSF) is assumed to be only partially known. Small perturbations generated from the model are exploited to produce a few principal components explaining the PSF uncertainty in a high-dimensional space. Unlike recent developments on blind deconvolution of natural images, we assume the image is sparse in the pixel basis, a natural sparsity arising in magnetic resonance force microscopy (MRFM). Our approach adopts a Bayesian Metropolis-within-Gibbs sampling framework. The performance of our Bayesian semi-blind algorithm for sparse images is superior to previously proposed semi-blind algorithms such as the alternating minimization algorithm and blind algorithms developed for natural images. We illustrate our myopic algorithm on real MRFM tobacco virus data.

  12. Sparse data structure design for wavelet-based methods

    Latu Guillaume

    2011-12-01

    Full Text Available This course gives an introduction to the design of efficient datatypes for adaptive wavelet-based applications. It presents some code fragments and benchmark technics useful to learn about the design of sparse data structures and adaptive algorithms. Material and practical examples are given, and they provide good introduction for anyone involved in the development of adaptive applications. An answer will be given to the question: how to implement and efficiently use the discrete wavelet transform in computer applications? A focus will be made on time-evolution problems, and use of wavelet-based scheme for adaptively solving partial differential equations (PDE. One crucial issue is that the benefits of the adaptive method in term of algorithmic cost reduction can not be wasted by overheads associated to sparse data management.

  13. Split-Bregman-based sparse-view CT reconstruction

    Vandeghinste, Bert; Vandenberghe, Stefaan [Ghent Univ. (Belgium). Medical Image and Signal Processing (MEDISIP); Goossens, Bart; Pizurica, Aleksandra; Philips, Wilfried [Ghent Univ. (Belgium). Image Processing and Interpretation Research Group (IPI); Beenhouwer, Jan de [Ghent Univ. (Belgium). Medical Image and Signal Processing (MEDISIP); Antwerp Univ., Wilrijk (Belgium). The Vision Lab; Staelens, Steven [Ghent Univ. (Belgium). Medical Image and Signal Processing (MEDISIP); Antwerp Univ., Edegem (Belgium). Molecular Imaging Centre Antwerp

    2011-07-01

    Total variation minimization has been extensively researched for image denoising and sparse view reconstruction. These methods show superior denoising performance for simple images with little texture, but result in texture information loss when applied to more complex images. It could thus be beneficial to use other regularizers within medical imaging. We propose a general regularization method, based on a split-Bregman approach. We show results for this framework combined with a total variation denoising operator, in comparison to ASD-POCS. We show that sparse-view reconstruction and noise regularization is possible. This general method will allow us to investigate other regularizers in the context of regularized CT reconstruction, and decrease the acquisition times in {mu}CT. (orig.)

  14. Sparse canonical correlation analysis: new formulation and algorithm.

    Chu, Delin; Liao, Li-Zhi; Ng, Michael K; Zhang, Xiaowei

    2013-12-01

    In this paper, we study canonical correlation analysis (CCA), which is a powerful tool in multivariate data analysis for finding the correlation between two sets of multidimensional variables. The main contributions of the paper are: 1) to reveal the equivalent relationship between a recursive formula and a trace formula for the multiple CCA problem, 2) to obtain the explicit characterization for all solutions of the multiple CCA problem even when the corresponding covariance matrices are singular, 3) to develop a new sparse CCA algorithm, and 4) to establish the equivalent relationship between the uncorrelated linear discriminant analysis and the CCA problem. We test several simulated and real-world datasets in gene classification and cross-language document retrieval to demonstrate the effectiveness of the proposed algorithm. The performance of the proposed method is competitive with the state-of-the-art sparse CCA algorithms.

  15. Sparse Nonlinear Electromagnetic Imaging Accelerated With Projected Steepest Descent Algorithm

    Desmal, Abdulla

    2017-04-03

    An efficient electromagnetic inversion scheme for imaging sparse 3-D domains is proposed. The scheme achieves its efficiency and accuracy by integrating two concepts. First, the nonlinear optimization problem is constrained using L₀ or L₁-norm of the solution as the penalty term to alleviate the ill-posedness of the inverse problem. The resulting Tikhonov minimization problem is solved using nonlinear Landweber iterations (NLW). Second, the efficiency of the NLW is significantly increased using a steepest descent algorithm. The algorithm uses a projection operator to enforce the sparsity constraint by thresholding the solution at every iteration. Thresholding level and iteration step are selected carefully to increase the efficiency without sacrificing the convergence of the algorithm. Numerical results demonstrate the efficiency and accuracy of the proposed imaging scheme in reconstructing sparse 3-D dielectric profiles.

  16. Multi scales based sparse matrix spectral clustering image segmentation

    Liu, Zhongmin; Chen, Zhicai; Li, Zhanming; Hu, Wenjin

    2018-04-01

    In image segmentation, spectral clustering algorithms have to adopt the appropriate scaling parameter to calculate the similarity matrix between the pixels, which may have a great impact on the clustering result. Moreover, when the number of data instance is large, computational complexity and memory use of the algorithm will greatly increase. To solve these two problems, we proposed a new spectral clustering image segmentation algorithm based on multi scales and sparse matrix. We devised a new feature extraction method at first, then extracted the features of image on different scales, at last, using the feature information to construct sparse similarity matrix which can improve the operation efficiency. Compared with traditional spectral clustering algorithm, image segmentation experimental results show our algorithm have better degree of accuracy and robustness.

  17. Nonredundant sparse feature extraction using autoencoders with receptive fields clustering.

    Ayinde, Babajide O; Zurada, Jacek M

    2017-09-01

    This paper proposes new techniques for data representation in the context of deep learning using agglomerative clustering. Existing autoencoder-based data representation techniques tend to produce a number of encoding and decoding receptive fields of layered autoencoders that are duplicative, thereby leading to extraction of similar features, thus resulting in filtering redundancy. We propose a way to address this problem and show that such redundancy can be eliminated. This yields smaller networks and produces unique receptive fields that extract distinct features. It is also shown that autoencoders with nonnegativity constraints on weights are capable of extracting fewer redundant features than conventional sparse autoencoders. The concept is illustrated using conventional sparse autoencoder and nonnegativity-constrained autoencoders with MNIST digits recognition, NORB normalized-uniform object data and Yale face dataset. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Greedy Algorithms for Nonnegativity-Constrained Simultaneous Sparse Recovery

    Kim, Daeun; Haldar, Justin P.

    2016-01-01

    This work proposes a family of greedy algorithms to jointly reconstruct a set of vectors that are (i) nonnegative and (ii) simultaneously sparse with a shared support set. The proposed algorithms generalize previous approaches that were designed to impose these constraints individually. Similar to previous greedy algorithms for sparse recovery, the proposed algorithms iteratively identify promising support indices. In contrast to previous approaches, the support index selection procedure has been adapted to prioritize indices that are consistent with both the nonnegativity and shared support constraints. Empirical results demonstrate for the first time that the combined use of simultaneous sparsity and nonnegativity constraints can substantially improve recovery performance relative to existing greedy algorithms that impose less signal structure. PMID:26973368

  19. Limited-memory trust-region methods for sparse relaxation

    Adhikari, Lasith; DeGuchy, Omar; Erway, Jennifer B.; Lockhart, Shelby; Marcia, Roummel F.

    2017-08-01

    In this paper, we solve the l2-l1 sparse recovery problem by transforming the objective function of this problem into an unconstrained differentiable function and applying a limited-memory trust-region method. Unlike gradient projection-type methods, which uses only the current gradient, our approach uses gradients from previous iterations to obtain a more accurate Hessian approximation. Numerical experiments show that our proposed approach eliminates spurious solutions more effectively while improving computational time.

  20. Obtaining sparse distributions in 2D inverse problems

    Reci, A; Sederman, Andrew John; Gladden, Lynn Faith

    2017-01-01

    The mathematics of inverse problems has relevance across numerous estimation problems in science and engineering. L1 regularization has attracted recent attention in reconstructing the system properties in the case of sparse inverse problems; i.e., when the true property sought is not adequately described by a continuous distribution, in particular in Compressed Sensing image reconstruction. In this work, we focus on the application of L1 regularization to a class of inverse problems; relaxat...

  1. Sparse optimization for inverse problems in atmospheric modelling

    Adam, Lukáš; Branda, Martin

    2016-01-01

    Roč. 79, č. 3 (2016), s. 256-266 ISSN 1364-8152 R&D Projects: GA MŠk(CZ) 7F14287 Institutional support: RVO:67985556 Keywords : Inverse modelling * Sparse optimization * Integer optimization * Least squares * European tracer experiment * Free Matlab codes Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.404, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/adam-0457037.pdf

  2. Reliability of Broadcast Communications Under Sparse Random Linear Network Coding

    Brown, Suzie; Johnson, Oliver; Tassi, Andrea

    2018-01-01

    Ultra-reliable Point-to-Multipoint (PtM) communications are expected to become pivotal in networks offering future dependable services for smart cities. In this regard, sparse Random Linear Network Coding (RLNC) techniques have been widely employed to provide an efficient way to improve the reliability of broadcast and multicast data streams. This paper addresses the pressing concern of providing a tight approximation to the probability of a user recovering a data stream protected by this kin...

  3. Efficient Pseudorecursive Evaluation Schemes for Non-adaptive Sparse Grids

    Buse, Gerrit

    2014-01-01

    In this work we propose novel algorithms for storing and evaluating sparse grid functions, operating on regular (not spatially adaptive), yet potentially dimensionally adaptive grid types. Besides regular sparse grids our approach includes truncated grids, both with and without boundary grid points. Similar to the implicit data structures proposed in Feuersänger (Dünngitterverfahren für hochdimensionale elliptische partielle Differntialgleichungen. Diploma Thesis, Institut für Numerische Simulation, Universität Bonn, 2005) and Murarasu et al. (Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel Programming. Cambridge University Press, New York, 2011, pp. 25–34) we also define a bijective mapping from the multi-dimensional space of grid points to a contiguous index, such that the grid data can be stored in a simple array without overhead. Our approach is especially well-suited to exploit all levels of current commodity hardware, including cache-levels and vector extensions. Furthermore, this kind of data structure is extremely attractive for today’s real-time applications, as it gives direct access to the hierarchical structure of the grids, while outperforming other common sparse grid structures (hash maps, etc.) which do not match with modern compute platforms that well. For dimensionality d ≤ 10 we achieve good speedups on a 12 core Intel Westmere-EP NUMA platform compared to the results presented in Murarasu et al. (Proceedings of the International Conference on Computational Science—ICCS 2012. Procedia Computer Science, 2012). As we show, this also holds for the results obtained on Nvidia Fermi GPUs, for which we observe speedups over our own CPU implementation of up to 4.5 when dealing with moderate dimensionality. In high-dimensional settings, in the order of tens to hundreds of dimensions, our sparse grid evaluation kernels on the CPU outperform any other known implementation.

  4. Iterative algorithms for large sparse linear systems on parallel computers

    Adams, L. M.

    1982-01-01

    Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.

  5. Distributed coding of multiview sparse sources with joint recovery

    Luong, Huynh Van; Deligiannis, Nikos; Forchhammer, Søren

    2016-01-01

    In support of applications involving multiview sources in distributed object recognition using lightweight cameras, we propose a new method for the distributed coding of sparse sources as visual descriptor histograms extracted from multiview images. The problem is challenging due to the computati...... transform (SIFT) descriptors extracted from multiview images shows that our method leads to bit-rate saving of up to 43% compared to the state-of-the-art distributed compressed sensing method with independent encoding of the sources....

  6. Optimal deep neural networks for sparse recovery via Laplace techniques

    Limmer, Steffen; Stanczak, Slawomir

    2017-01-01

    This paper introduces Laplace techniques for designing a neural network, with the goal of estimating simplex-constraint sparse vectors from compressed measurements. To this end, we recast the problem of MMSE estimation (w.r.t. a pre-defined uniform input distribution) as the problem of computing the centroid of some polytope that results from the intersection of the simplex and an affine subspace determined by the measurements. Owing to the specific structure, it is shown that the centroid ca...

  7. Shape prior modeling using sparse representation and online dictionary learning.

    Zhang, Shaoting; Zhan, Yiqiang; Zhou, Yan; Uzunbas, Mustafa; Metaxas, Dimitris N

    2012-01-01

    The recently proposed sparse shape composition (SSC) opens a new avenue for shape prior modeling. Instead of assuming any parametric model of shape statistics, SSC incorporates shape priors on-the-fly by approximating a shape instance (usually derived from appearance cues) by a sparse combination of shapes in a training repository. Theoretically, one can increase the modeling capability of SSC by including as many training shapes in the repository. However, this strategy confronts two limitations in practice. First, since SSC involves an iterative sparse optimization at run-time, the more shape instances contained in the repository, the less run-time efficiency SSC has. Therefore, a compact and informative shape dictionary is preferred to a large shape repository. Second, in medical imaging applications, training shapes seldom come in one batch. It is very time consuming and sometimes infeasible to reconstruct the shape dictionary every time new training shapes appear. In this paper, we propose an online learning method to address these two limitations. Our method starts from constructing an initial shape dictionary using the K-SVD algorithm. When new training shapes come, instead of re-constructing the dictionary from the ground up, we update the existing one using a block-coordinates descent approach. Using the dynamically updated dictionary, sparse shape composition can be gracefully scaled up to model shape priors from a large number of training shapes without sacrificing run-time efficiency. Our method is validated on lung localization in X-Ray and cardiac segmentation in MRI time series. Compared to the original SSC, it shows comparable performance while being significantly more efficient.

  8. Superresolving Black Hole Images with Full-Closure Sparse Modeling

    Crowley, Chelsea; Akiyama, Kazunori; Fish, Vincent

    2018-01-01

    It is believed that almost all galaxies have black holes at their centers. Imaging a black hole is a primary objective to answer scientific questions relating to relativistic accretion and jet formation. The Event Horizon Telescope (EHT) is set to capture images of two nearby black holes, Sagittarius A* at the center of the Milky Way galaxy roughly 26,000 light years away and the other M87 which is in Virgo A, a large elliptical galaxy that is 50 million light years away. Sparse imaging techniques have shown great promise for reconstructing high-fidelity superresolved images of black holes from simulated data. Previous work has included the effects of atmospheric phase errors and thermal noise, but not systematic amplitude errors that arise due to miscalibration. We explore a full-closure imaging technique with sparse modeling that uses closure amplitudes and closure phases to improve the imaging process. This new technique can successfully handle data with systematic amplitude errors. Applying our technique to synthetic EHT data of M87, we find that full-closure sparse modeling can reconstruct images better than traditional methods and recover key structural information on the source, such as the shape and size of the predicted photon ring. These results suggest that our new approach will provide superior imaging performance for data from the EHT and other interferometric arrays.

  9. Robust visual tracking via multiscale deep sparse networks

    Wang, Xin; Hou, Zhiqiang; Yu, Wangsheng; Xue, Yang; Jin, Zefenfen; Dai, Bo

    2017-04-01

    In visual tracking, deep learning with offline pretraining can extract more intrinsic and robust features. It has significant success solving the tracking drift in a complicated environment. However, offline pretraining requires numerous auxiliary training datasets and is considerably time-consuming for tracking tasks. To solve these problems, a multiscale sparse networks-based tracker (MSNT) under the particle filter framework is proposed. Based on the stacked sparse autoencoders and rectifier linear unit, the tracker has a flexible and adjustable architecture without the offline pretraining process and exploits the robust and powerful features effectively only through online training of limited labeled data. Meanwhile, the tracker builds four deep sparse networks of different scales, according to the target's profile type. During tracking, the tracker selects the matched tracking network adaptively in accordance with the initial target's profile type. It preserves the inherent structural information more efficiently than the single-scale networks. Additionally, a corresponding update strategy is proposed to improve the robustness of the tracker. Extensive experimental results on a large scale benchmark dataset show that the proposed method performs favorably against state-of-the-art methods in challenging environments.

  10. An Improved Information Hiding Method Based on Sparse Representation

    Minghai Yao

    2015-01-01

    Full Text Available A novel biometric authentication information hiding method based on the sparse representation is proposed for enhancing the security of biometric information transmitted in the network. In order to make good use of abundant information of the cover image, the sparse representation method is adopted to exploit the correlation between the cover and biometric images. Thus, the biometric image is divided into two parts. The first part is the reconstructed image, and the other part is the residual image. The biometric authentication image cannot be restored by any one part. The residual image and sparse representation coefficients are embedded into the cover image. Then, for the sake of causing much less attention of attackers, the visual attention mechanism is employed to select embedding location and embedding sequence of secret information. Finally, the reversible watermarking algorithm based on histogram is utilized for embedding the secret information. For verifying the validity of the algorithm, the PolyU multispectral palmprint and the CASIA iris databases are used as biometric information. The experimental results show that the proposed method exhibits good security, invisibility, and high capacity.

  11. Two-dimensional sparse wavenumber recovery for guided wavefields

    Sabeti, Soroosh; Harley, Joel B.

    2018-04-01

    The multi-modal and dispersive behavior of guided waves is often characterized by their dispersion curves, which describe their frequency-wavenumber behavior. In prior work, compressive sensing based techniques, such as sparse wavenumber analysis (SWA), have been capable of recovering dispersion curves from limited data samples. A major limitation of SWA, however, is the assumption that the structure is isotropic. As a result, SWA fails when applied to composites and other anisotropic structures. There have been efforts to address this issue in the literature, but they either are not easily generalizable or do not sufficiently express the data. In this paper, we enhance the existing approaches by employing a two-dimensional wavenumber model to account for direction-dependent velocities in anisotropic media. We integrate this model with tools from compressive sensing to reconstruct a wavefield from incomplete data. Specifically, we create a modified two-dimensional orthogonal matching pursuit algorithm that takes an undersampled wavefield image, with specified unknown elements, and determines its sparse wavenumber characteristics. We then recover the entire wavefield from the sparse representations obtained with our small number of data samples.

  12. Low-Rank Sparse Coding for Image Classification

    Zhang, Tianzhu; Ghanem, Bernard; Liu, Si; Xu, Changsheng; Ahuja, Narendra

    2013-01-01

    In this paper, we propose a low-rank sparse coding (LRSC) method that exploits local structure information among features in an image for the purpose of image-level classification. LRSC represents densely sampled SIFT descriptors, in a spatial neighborhood, collectively as low-rank, sparse linear combinations of code words. As such, it casts the feature coding problem as a low-rank matrix learning problem, which is different from previous methods that encode features independently. This LRSC has a number of attractive properties. (1) It encourages sparsity in feature codes, locality in codebook construction, and low-rankness for spatial consistency. (2) LRSC encodes local features jointly by considering their low-rank structure information, and is computationally attractive. We evaluate the LRSC by comparing its performance on a set of challenging benchmarks with that of 7 popular coding and other state-of-the-art methods. Our experiments show that by representing local features jointly, LRSC not only outperforms the state-of-the-art in classification accuracy but also improves the time complexity of methods that use a similar sparse linear representation model for feature coding.

  13. On A Nonlinear Generalization of Sparse Coding and Dictionary Learning.

    Xie, Yuchen; Ho, Jeffrey; Vemuri, Baba

    2013-01-01

    Existing dictionary learning algorithms are based on the assumption that the data are vectors in an Euclidean vector space ℝ d , and the dictionary is learned from the training data using the vector space structure of ℝ d and its Euclidean L 2 -metric. However, in many applications, features and data often originated from a Riemannian manifold that does not support a global linear (vector space) structure. Furthermore, the extrinsic viewpoint of existing dictionary learning algorithms becomes inappropriate for modeling and incorporating the intrinsic geometry of the manifold that is potentially important and critical to the application. This paper proposes a novel framework for sparse coding and dictionary learning for data on a Riemannian manifold, and it shows that the existing sparse coding and dictionary learning methods can be considered as special (Euclidean) cases of the more general framework proposed here. We show that both the dictionary and sparse coding can be effectively computed for several important classes of Riemannian manifolds, and we validate the proposed method using two well-known classification problems in computer vision and medical imaging analysis.

  14. Low-Rank Sparse Coding for Image Classification

    Zhang, Tianzhu

    2013-12-01

    In this paper, we propose a low-rank sparse coding (LRSC) method that exploits local structure information among features in an image for the purpose of image-level classification. LRSC represents densely sampled SIFT descriptors, in a spatial neighborhood, collectively as low-rank, sparse linear combinations of code words. As such, it casts the feature coding problem as a low-rank matrix learning problem, which is different from previous methods that encode features independently. This LRSC has a number of attractive properties. (1) It encourages sparsity in feature codes, locality in codebook construction, and low-rankness for spatial consistency. (2) LRSC encodes local features jointly by considering their low-rank structure information, and is computationally attractive. We evaluate the LRSC by comparing its performance on a set of challenging benchmarks with that of 7 popular coding and other state-of-the-art methods. Our experiments show that by representing local features jointly, LRSC not only outperforms the state-of-the-art in classification accuracy but also improves the time complexity of methods that use a similar sparse linear representation model for feature coding.

  15. Efficient MATLAB computations with sparse and factored tensors.

    Bader, Brett William; Kolda, Tamara Gibson (Sandia National Lab, Livermore, CA)

    2006-12-01

    In this paper, the term tensor refers simply to a multidimensional or N-way array, and we consider how specially structured tensors allow for efficient storage and computation. First, we study sparse tensors, which have the property that the vast majority of the elements are zero. We propose storing sparse tensors using coordinate format and describe the computational efficiency of this scheme for various mathematical operations, including those typical to tensor decomposition algorithms. Second, we study factored tensors, which have the property that they can be assembled from more basic components. We consider two specific types: a Tucker tensor can be expressed as the product of a core tensor (which itself may be dense, sparse, or factored) and a matrix along each mode, and a Kruskal tensor can be expressed as the sum of rank-1 tensors. We are interested in the case where the storage of the components is less than the storage of the full tensor, and we demonstrate that many elementary operations can be computed using only the components. All of the efficiencies described in this paper are implemented in the Tensor Toolbox for MATLAB.

  16. Fast Solution in Sparse LDA for Binary Classification

    Moghaddam, Baback

    2010-01-01

    An algorithm that performs sparse linear discriminant analysis (Sparse-LDA) finds near-optimal solutions in far less time than the prior art when specialized to binary classification (of 2 classes). Sparse-LDA is a type of feature- or variable- selection problem with numerous applications in statistics, machine learning, computer vision, computational finance, operations research, and bio-informatics. Because of its combinatorial nature, feature- or variable-selection problems are NP-hard or computationally intractable in cases involving more than 30 variables or features. Therefore, one typically seeks approximate solutions by means of greedy search algorithms. The prior Sparse-LDA algorithm was a greedy algorithm that considered the best variable or feature to add/ delete to/ from its subsets in order to maximally discriminate between multiple classes of data. The present algorithm is designed for the special but prevalent case of 2-class or binary classification (e.g. 1 vs. 0, functioning vs. malfunctioning, or change versus no change). The present algorithm provides near-optimal solutions on large real-world datasets having hundreds or even thousands of variables or features (e.g. selecting the fewest wavelength bands in a hyperspectral sensor to do terrain classification) and does so in typical computation times of minutes as compared to days or weeks as taken by the prior art. Sparse LDA requires solving generalized eigenvalue problems for a large number of variable subsets (represented by the submatrices of the input within-class and between-class covariance matrices). In the general (fullrank) case, the amount of computation scales at least cubically with the number of variables and thus the size of the problems that can be solved is limited accordingly. However, in binary classification, the principal eigenvalues can be found using a special analytic formula, without resorting to costly iterative techniques. The present algorithm exploits this analytic

  17. Message-Passing Receiver for OFDM Systems over Highly Delay-Dispersive Channels

    Barbu, Oana-Elena; Manchón, Carles Navarro; Rom, Christian

    2017-01-01

    Propagation channels with maximum excess delay exceeding the duration of the cyclic prefix (CP) in OFDM systems cause intercarrier and intersymbol interference which, unless accounted for, degrade the receiver performance. Using tools from Bayesian inference and sparse signal reconstruction, we...... derive an iterative algorithm that estimates an approximate representation of the channel impulse response and the noise variance, estimates and cancels the intrinsic interference and decodes the data over a block of symbols. Simulation results show that the receiver employing our algorithm outperforms...

  18. Steam-water separator

    Modrak, T.M.; Curtis, R.W.

    1978-01-01

    The steam-water separator connected downstream of a steam generator consists of a vertical centrifugal separator with swirl blades between two concentric pipes and a cyclone separator located above. The water separated in the cyclone separator is collected in the inner tube of the centrifugal separator which is closed at the bottom. This design allows the overall height of the separator to be reduced. (DG) [de

  19. Uncertainty analysis for hot channel

    Panka, I.; Kereszturi, A.

    2006-01-01

    The fulfillment of the safety analysis acceptance criteria is usually evaluated by separate hot channel calculations using the results of neutronic or/and thermo hydraulic system calculations. In case of an ATWS event (inadvertent withdrawal of control assembly), according to the analysis, a number of fuel rods are experiencing DNB for a longer time and must be regarded as failed. Their number must be determined for a further evaluation of the radiological consequences. In the deterministic approach, the global power history must be multiplied by different hot channel factors (kx) taking into account the radial power peaking factors for each fuel pin. If DNB occurs it is necessary to perform a few number of hot channel calculations to determine the limiting kx leading just to DNB and fuel failure (the conservative DNBR limit is 1.33). Knowing the pin power distribution from the core design calculation, the number of failed fuel pins can be calculated. The above procedure can be performed by conservative assumptions (e.g. conservative input parameters in the hot channel calculations), as well. In case of hot channel uncertainty analysis, the relevant input parameters (k x, mass flow, inlet temperature of the coolant, pin average burnup, initial gap size, selection of power history influencing the gap conductance value) of hot channel calculations and the DNBR limit are varied considering the respective uncertainties. An uncertainty analysis methodology was elaborated combining the response surface method with the one sided tolerance limit method of Wilks. The results of deterministic and uncertainty hot channel calculations are compared regarding to the number of failed fuel rods, max. temperature of the clad surface and max. temperature of the fuel (Authors)

  20. Storage of sparse files using parallel log-structured file system

    Bent, John M.; Faibish, Sorin; Grider, Gary; Torres, Aaron

    2017-11-07

    A sparse file is stored without holes by storing a data portion of the sparse file using a parallel log-structured file system; and generating an index entry for the data portion, the index entry comprising a logical offset, physical offset and length of the data portion. The holes can be restored to the sparse file upon a reading of the sparse file. The data portion can be stored at a logical end of the sparse file. Additional storage efficiency can optionally be achieved by (i) detecting a write pattern for a plurality of the data portions and generating a single patterned index entry for the plurality of the patterned data portions; and/or (ii) storing the patterned index entries for a plurality of the sparse files in a single directory, wherein each entry in the single directory comprises an identifier of a corresponding sparse file.

  1. Fictional Separation Logic

    Jensen, Jonas Buhrkal; Birkedal, Lars

    2012-01-01

    , separation means physical separation. In this paper, we introduce \\emph{fictional separation logic}, which includes more general forms of fictional separating conjunctions P * Q, where "*" does not require physical separation, but may also be used in situations where the memory resources described by P and Q...

  2. Flow separation on transversal ribs in an open channel

    Příhoda, Jaromír; Šulc, J.; Sedlář, M.; Zubík, P.

    2009-01-01

    Roč. 13, - (2009), s. 218-220 ISSN 1335-2938. [Stretnutie katedier mechaniky tekutín a termomechaniky. Jasná, Demanovská dolina, 24.06.2009-26.06.2009] R&D Projects: GA ČR GA103/09/0977 Institutional research plan: CEZ:AV0Z20760514 Keywords : free-surface flow * supercritical flow over ribs * numerical and experimental modelling Subject RIV: BK - Fluid Dynamics

  3. Citizens and service channels: channel choice and channel management implications

    Pieterson, Willem Jan

    2010-01-01

    The arrival of electronic channels in the 1990s has had a huge impact on governmental service delivery. The new channels have led to many new opportunities to improve public service delivery, not only in terms of citizen satisfaction, but also in cost reduction for governmental agencies. However,

  4. Social biases determine spatiotemporal sparseness of ciliate mating heuristics.

    Clark, Kevin B

    2012-01-01

    Ciliates become highly social, even displaying animal-like qualities, in the joint presence of aroused conspecifics and nonself mating pheromones. Pheromone detection putatively helps trigger instinctual and learned courtship and dominance displays from which social judgments are made about the availability, compatibility, and fitness representativeness or likelihood of prospective mates and rivals. In earlier studies, I demonstrated the heterotrich Spirostomum ambiguum improves mating competence by effecting preconjugal strategies and inferences in mock social trials via behavioral heuristics built from Hebbian-like associative learning. Heuristics embody serial patterns of socially relevant action that evolve into ordered, topologically invariant computational networks supporting intra- and intermate selection. S. ambiguum employs heuristics to acquire, store, plan, compare, modify, select, and execute sets of mating propaganda. One major adaptive constraint over formation and use of heuristics involves a ciliate's initial subjective bias, responsiveness, or preparedness, as defined by Stevens' Law of subjective stimulus intensity, for perceiving the meaningfulness of mechanical pressures accompanying cell-cell contacts and additional perimating events. This bias controls durations and valences of nonassociative learning, search rates for appropriate mating strategies, potential net reproductive payoffs, levels of social honesty and deception, successful error diagnosis and correction of mating signals, use of insight or analysis to solve mating dilemmas, bioenergetics expenditures, and governance of mating decisions by classical or quantum statistical mechanics. I now report this same social bias also differentially affects the spatiotemporal sparseness, as measured with metric entropy, of ciliate heuristics. Sparseness plays an important role in neural systems through optimizing the specificity, efficiency, and capacity of memory representations. The present

  5. Deploying temporary networks for upscaling of sparse network stations

    Coopersmith, Evan J.; Cosh, Michael H.; Bell, Jesse E.; Kelly, Victoria; Hall, Mark; Palecki, Michael A.; Temimi, Marouane

    2016-10-01

    Soil observations networks at the national scale play an integral role in hydrologic modeling, drought assessment, agricultural decision support, and our ability to understand climate change. Understanding soil moisture variability is necessary to apply these measurements to model calibration, business and consumer applications, or even human health issues. The installation of soil moisture sensors as sparse, national networks is necessitated by limited financial resources. However, this results in the incomplete sampling of the local heterogeneity of soil type, vegetation cover, topography, and the fine spatial distribution of precipitation events. To this end, temporary networks can be installed in the areas surrounding a permanent installation within a sparse network. The temporary networks deployed in this study provide a more representative average at the 3 km and 9 km scales, localized about the permanent gauge. The value of such temporary networks is demonstrated at test sites in Millbrook, New York and Crossville, Tennessee. The capacity of a single U.S. Climate Reference Network (USCRN) sensor set to approximate the average of a temporary network at the 3 km and 9 km scales using a simple linear scaling function is tested. The capacity of a temporary network to provide reliable estimates with diminishing numbers of sensors, the temporal stability of those networks, and ultimately, the relationship of the variability of those networks to soil moisture conditions at the permanent sensor are investigated. In this manner, this work demonstrates the single-season installation of a temporary network as a mechanism to characterize the soil moisture variability at a permanent gauge within a sparse network.

  6. Social biases determine spatiotemporal sparseness of ciliate mating heuristics

    2012-01-01

    Ciliates become highly social, even displaying animal-like qualities, in the joint presence of aroused conspecifics and nonself mating pheromones. Pheromone detection putatively helps trigger instinctual and learned courtship and dominance displays from which social judgments are made about the availability, compatibility, and fitness representativeness or likelihood of prospective mates and rivals. In earlier studies, I demonstrated the heterotrich Spirostomum ambiguum improves mating competence by effecting preconjugal strategies and inferences in mock social trials via behavioral heuristics built from Hebbian-like associative learning. Heuristics embody serial patterns of socially relevant action that evolve into ordered, topologically invariant computational networks supporting intra- and intermate selection. S. ambiguum employs heuristics to acquire, store, plan, compare, modify, select, and execute sets of mating propaganda. One major adaptive constraint over formation and use of heuristics involves a ciliate’s initial subjective bias, responsiveness, or preparedness, as defined by Stevens’ Law of subjective stimulus intensity, for perceiving the meaningfulness of mechanical pressures accompanying cell-cell contacts and additional perimating events. This bias controls durations and valences of nonassociative learning, search rates for appropriate mating strategies, potential net reproductive payoffs, levels of social honesty and deception, successful error diagnosis and correction of mating signals, use of insight or analysis to solve mating dilemmas, bioenergetics expenditures, and governance of mating decisions by classical or quantum statistical mechanics. I now report this same social bias also differentially affects the spatiotemporal sparseness, as measured with metric entropy, of ciliate heuristics. Sparseness plays an important role in neural systems through optimizing the specificity, efficiency, and capacity of memory representations. The

  7. Separation Anxiety (For Parents)

    ... Safe Videos for Educators Search English Español Separation Anxiety KidsHealth / For Parents / Separation Anxiety What's in this ... both of you get through it. About Separation Anxiety Babies adapt pretty well to other caregivers. Parents ...

  8. Fast Convolutional Sparse Coding in the Dual Domain

    Affara, Lama Ahmed

    2017-09-27

    Convolutional sparse coding (CSC) is an important building block of many computer vision applications ranging from image and video compression to deep learning. We present two contributions to the state of the art in CSC. First, we significantly speed up the computation by proposing a new optimization framework that tackles the problem in the dual domain. Second, we extend the original formulation to higher dimensions in order to process a wider range of inputs, such as color inputs, or HOG features. Our results show a significant speedup compared to the current state of the art in CSC.

  9. Oscillator Neural Network Retrieving Sparsely Coded Phase Patterns

    Aoyagi, Toshio; Nomura, Masaki

    1999-08-01

    Little is known theoretically about the associative memory capabilities of neural networks in which information is encoded not only in the mean firing rate but also in the timing of firings. Particularly, in the case of sparsely coded patterns, it is biologically important to consider the timings of firings and to study how such consideration influences storage capacities and quality of recalled patterns. For this purpose, we propose a simple extended model of oscillator neural networks to allow for expression of a nonfiring state. Analyzing both equilibrium states and dynamical properties in recalling processes, we find that the system possesses good associative memory.

  10. Sparse inverse covariance estimation with the graphical lasso.

    Friedman, Jerome; Hastie, Trevor; Tibshirani, Robert

    2008-07-01

    We consider the problem of estimating sparse graphs by a lasso penalty applied to the inverse covariance matrix. Using a coordinate descent procedure for the lasso, we develop a simple algorithm--the graphical lasso--that is remarkably fast: It solves a 1000-node problem ( approximately 500,000 parameters) in at most a minute and is 30-4000 times faster than competing methods. It also provides a conceptual link between the exact problem and the approximation suggested by Meinshausen and Bühlmann (2006). We illustrate the method on some cell-signaling data from proteomics.

  11. Fast Convolutional Sparse Coding in the Dual Domain

    Affara, Lama Ahmed; Ghanem, Bernard; Wonka, Peter

    2017-01-01

    Convolutional sparse coding (CSC) is an important building block of many computer vision applications ranging from image and video compression to deep learning. We present two contributions to the state of the art in CSC. First, we significantly speed up the computation by proposing a new optimization framework that tackles the problem in the dual domain. Second, we extend the original formulation to higher dimensions in order to process a wider range of inputs, such as color inputs, or HOG features. Our results show a significant speedup compared to the current state of the art in CSC.

  12. Blind spectrum reconstruction algorithm with L0-sparse representation

    Liu, Hai; Zhang, Zhaoli; Liu, Sanyan; Shu, Jiangbo; Liu, Tingting; Zhang, Tianxu

    2015-01-01

    Raman spectrum often suffers from band overlap and Poisson noise. This paper presents a new blind Poissonian Raman spectrum reconstruction method, which incorporates the L 0 -sparse prior together with the total variation constraint into the maximum a posteriori framework. Furthermore, the greedy analysis pursuit algorithm is adopted to solve the L 0 -based minimization problem. Simulated and real spectrum experimental results show that the proposed method can effectively preserve spectral structure and suppress noise. The reconstructed Raman spectra are easily used for interpreting unknown chemical mixtures. (paper)

  13. Dynamic Stochastic Superresolution of sparsely observed turbulent systems

    Branicki, M.; Majda, A.J.

    2013-01-01

    Real-time capture of the relevant features of the unresolved turbulent dynamics of complex natural systems from sparse noisy observations and imperfect models is a notoriously difficult problem. The resulting lack of observational resolution and statistical accuracy in estimating the important turbulent processes, which intermittently send significant energy to the large-scale fluctuations, hinders efficient parameterization and real-time prediction using discretized PDE models. This issue is particularly subtle and important when dealing with turbulent geophysical systems with an vast range of interacting spatio-temporal scales and rough energy spectra near the mesh scale of numerical models. Here, we introduce and study a suite of general Dynamic Stochastic Superresolution (DSS) algorithms and show that, by appropriately filtering sparse regular observations with the help of cheap stochastic exactly solvable models, one can derive stochastically ‘superresolved’ velocity fields and gain insight into the important characteristics of the unresolved dynamics, including the detection of the so-called black swans. The DSS algorithms operate in Fourier domain and exploit the fact that the coarse observation network aliases high-wavenumber information into the resolved waveband. It is shown that these cheap algorithms are robust and have significant skill on a test bed of turbulent solutions from realistic nonlinear turbulent spatially extended systems in the presence of a significant model error. In particular, the DSS algorithms are capable of successfully capturing time-localized extreme events in the unresolved modes, and they provide good and robust skill for recovery of the unresolved processes in terms of pattern correlation. Moreover, we show that DSS improves the skill for recovering the primary modes associated with the sparse observation mesh which is equally important in applications. The skill of the various DSS algorithms depends on the energy spectrum

  14. Sparse least-squares reverse time migration using seislets

    Dutta, Gaurav

    2015-08-19

    We propose sparse least-squares reverse time migration (LSRTM) using seislets as a basis for the reflectivity distribution. This basis is used along with a dip-constrained preconditioner that emphasizes image updates only along prominent dips during the iterations. These dips can be estimated from the standard migration image or from the gradient using plane-wave destruction filters or structural tensors. Numerical tests on synthetic datasets demonstrate the benefits of this method for mitigation of aliasing artifacts and crosstalk noise in multisource least-squares migration.

  15. Predicting E-commerce Consumer Behaviour Using Sparse Session Data

    Thorrud, Thorstein Kaldahl; Myklatun, Øyvind

    2015-01-01

    This thesis research consumer behavior in an e-commerce domain by using a data set of sparse session data collected from an anonymous European e-commerce site. The goal is to predict whether a consumer session results in a purchase, and if so, which items are purchased. The data is supplied by the ACM Recommender System Challenge, which is a yearly challenge held by the ACM Recommender System Conference. Classification is used for predicting whether or not a session made a purchase, as w...

  16. Anisotropic Third-Order Regularization for Sparse Digital Elevation Models

    Lellmann, Jan

    2013-01-01

    We consider the problem of interpolating a surface based on sparse data such as individual points or level lines. We derive interpolators satisfying a list of desirable properties with an emphasis on preserving the geometry and characteristic features of the contours while ensuring smoothness across level lines. We propose an anisotropic third-order model and an efficient method to adaptively estimate both the surface and the anisotropy. Our experiments show that the approach outperforms AMLE and higher-order total variation methods qualitatively and quantitatively on real-world digital elevation data. © 2013 Springer-Verlag.

  17. Algorithms for sparse, symmetric, definite quadratic lambda-matrix eigenproblems

    Scott, D.S.; Ward, R.C.

    1981-01-01

    Methods are presented for computing eigenpairs of the quadratic lambda-matrix, M lambda 2 + C lambda + K, where M, C, and K are large and sparse, and have special symmetry-type properties. These properties are sufficient to insure that all the eigenvalues are real and that theory analogous to the standard symmetric eigenproblem exists. The methods employ some standard techniques such as partial tri-diagonalization via the Lanczos Method and subsequent eigenpair calculation, shift-and- invert strategy and subspace iteration. The methods also employ some new techniques such as Rayleigh-Ritz quadratic roots and the inertia of symmetric, definite, quadratic lambda-matrices

  18. Multi-channel polarized thermal emitter

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P

    2013-07-16

    A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.

  19. Continuous separation of submicron particles using Angled electrodes

    Yunus, Nurul A Md; Green, Nicolas G

    2008-01-01

    Dielectrophoretic separation of particles is achieved by the generation of electric forces on the particles by non-uniform electric fields. This paper presents a technique based on negative dielectrophoresis in a novel design of electrode array for the non-contact separation of polarisable particles. Angled electrodes are used to generate a lateral force in a microfluidic channel separating a mixed stream of particles into distinct streams of constituent components and achieving a high degree of spatial separation.

  20. Performance of Firth-and logF-type penalized methods in risk prediction for small or sparse binary data.

    Rahman, M Shafiqur; Sultana, Mahbuba

    2017-02-23

    When developing risk models for binary data with small or sparse data sets, the standard maximum likelihood estimation (MLE) based logistic regression faces several problems including biased or infinite estimate of the regression coefficient and frequent convergence failure of the likelihood due to separation. The problem of separation occurs commonly even if sample size is large but there is sufficient number of strong predictors. In the presence of separation, even if one develops the model, it produces overfitted model with poor predictive performance. Firth-and logF-type penalized regression methods are popular alternative to MLE, particularly for solving separation-problem. Despite the attractive advantages, their use in risk prediction is very limited. This paper evaluated these methods in risk prediction in comparison with MLE and other commonly used penalized methods such as ridge. The predictive performance of the methods was evaluated through assessing calibration, discrimination and overall predictive performance using an extensive simulation study. Further an illustration of the methods were provided using a real data example with low prevalence of outcome. The MLE showed poor performance in risk prediction in small or sparse data sets. All penalized methods offered some improvements in calibration, discrimination and overall predictive performance. Although the Firth-and logF-type methods showed almost equal amount of improvement, Firth-type penalization produces some bias in the average predicted probability, and the amount of bias is even larger than that produced by MLE. Of the logF(1,1) and logF(2,2) penalization, logF(2,2) provides slight bias in the estimate of regression coefficient of binary predictor and logF(1,1) performed better in all aspects. Similarly, ridge performed well in discrimination and overall predictive performance but it often produces underfitted model and has high rate of convergence failure (even the rate is higher than that