WorldWideScience

Sample records for spark discharge plasma

  1. Analysis on discharge process of a plasma-jet triggered gas spark switch

    Science.gov (United States)

    Weihao, TIE; Cui, MENG; Yuting, ZHANG; Zirang, YAN; Qiaogen, ZHANG

    2018-01-01

    The plasma-jet triggered gas switch (PJTGS) could operate at a low working coefficient with a low jitter. We observed and analyzed the discharge process of the PJTGS at the lowest working coefficient of 47% with the trigger voltage of 40 kV and the pulse energy of 2 J to evaluate the effect of the plasma jet. The temporal and spatial evolution and the optical emission spectrum of the plasma jet were captured. And the spraying delay time and outlet velocity under different gas pressures were investigated. In addition, the particle in cell with Monte Carlo collision was employed to obtain the particle distribution of the plasma jet varying with time. The results show that, the plasma jet generated by spark discharge is sprayed into a spark gap within tens of nanoseconds, and its outlet velocity could reach 104 m s-1. The plasma jet plays a non-penetrating inducing role in the triggered discharge process of the PJTGS. On the one hand, the plasma jet provides the initial electrons needed by the discharge; on the other hand, a large number of electrons focusing on the head of the plasma jet distort the electric field between the head of the plasma jet and the opposite electrode. Therefore, a fast discharge originated from the plasma jet is induced and quickly bridges two electrodes.

  2. Multi-spark discharge system for preparation of nutritious water

    Science.gov (United States)

    Nakaso, Tetsushi; Harigai, Toru; Kusumawan, Sholihatta Aziz; Shimomura, Tomoya; Tanimoto, Tsuyoshi; Suda, Yoshiyuki; Takikawa, Hirofumi

    2018-01-01

    The nitrogen compound concentration in water is increased by atmospheric-pressure plasma discharge treatment. A rod-to-water electrode discharge treatment system using plasma discharge has been developed by our group to obtain water with a high concentration of nitrogen compounds, and this plasma-treated water improves the growth of chrysanthemum roots. However, it is difficult to apply the system to the agriculture because the amount of treated water obtained by using the system too small. In this study, a multi-spark discharge system (MSDS) equipped multiple spark plugs is presented to obtain a large amount of plasma-treated water. The MSDS consisted of inexpensive parts in order to reduce the system introduction cost for agriculture. To suppress the temperature increase of the spark plugs, the 9 spark plugs were divided into 3 groups, which were discharged in order. The plasma-treated water with a NO3- concentration of 50 mg/L was prepared using the MSDS for 90 min, and the treatment efficiency was about 6 times higher than that of our previous system. It was confirmed that the NO2-, O3, and H2O2 concentrations in the water were also increased by treating the water using the MSDS.

  3. Apparatus for atmospheric pressure pin-to-hole spark discharge and uses thereof

    Science.gov (United States)

    Dobrynin, Danil V.; Fridman, Alexander; Cho, Young I.; Fridman, Gregory; Friedman, Gennady

    2016-12-06

    Disclosed herein are atmospheric pressure pin-to-hole pulsed spark discharge devices and methods for creating plasma. The devices include a conduit for fluidically communicating a gas, a plasma, or both, therethrough, portion of the conduit capable of being connected to a gas supply, and a second portion of the conduit capable of emitting a plasma; a positive electrode comprising a sharp tip; and a ground plate electrode. Disclosed are methods for treating a skin ulcer using non-thermal plasma include flowing a gas through a cold spark discharge zone simultaneously with the creation of a pulsed spark discharge to give rise to a non-thermal plasma emitted from a conduit, the non-thermal plasma comprising NO; and contacting a skin ulcer with said non-thermal plasma for sufficient time and intensity to give rise to treatment of the skin ulcer.

  4. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS)

    Energy Technology Data Exchange (ETDEWEB)

    Omori, M. [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    2000-08-15

    The graphite die set in spark plasma system (SPS) is heated by a pulse direct current. Weak plasma, discharge impact, electric field and electric current, which are based on this current, induce good effects on materials in the die. The surface films of aluminum and pure WC powders are ruptured by the spark plasma. Pure AlN powder is sintered without sintering additives in the electric field. The spark plasma leaves discharge patterns on insulators. Organic fibers are etched by the spark plasma. Thermosetting polyimide is consolidated by the spark plasma. Insoluble polymonomethylsilane is rearranged into the soluble one by the spark plasma. A single crystal of CoSb{sub 3} is grown from the compound powders in the electric field by slow heating. Coupled crystals of eutectic powder are connected with each other in the electric field. (orig.)

  5. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    International Nuclear Information System (INIS)

    Pai, David Z; Lacoste, Deanna A; Laux, Christophe O

    2010-01-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N 2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 10 15 cm -3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 10 11 cm -3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 10 8 cm -3 .

  6. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime

    Science.gov (United States)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-12-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  7. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    Energy Technology Data Exchange (ETDEWEB)

    Pai, David Z; Lacoste, Deanna A; Laux, Christophe O [Laboratoire EM2C, CNRS UPR288, Ecole Centrale Paris, 92295 Chatenay-Malabry (France)

    2010-12-15

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N{sub 2} (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 10{sup 15} cm{sup -3} towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 10{sup 11} cm{sup -3} produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 10{sup 8} cm{sup -3}.

  8. Evolution of Spark plasma using nitrogen laser shadowgraphy system

    International Nuclear Information System (INIS)

    Ishiekwene, G.C.

    1994-07-01

    A simple, low cost, home built high power nitrogen laser is used as the light source for a shadowgraphy system. A series of shadowgrams depicting the temporal growth of a spark plasma discharge is obtained. The results could be useful in plasma diagnostic studies. (author). 5 refs, 6 figs

  9. Air spark-like plasma source for antimicrobial NOx generation

    International Nuclear Information System (INIS)

    Pavlovich, M J; Galleher, C; Curtis, B; Clark, D S; Graves, D B; Ono, T; Machala, Z

    2014-01-01

    We demonstrate and analyse the generation of nitrogen oxides and their antimicrobial efficacy using atmospheric air spark-like plasmas. Spark-like discharges in air in a 1 L confined volume are shown to generate NO x at an initial rate of about 1.5  ×  10 16 NO x molecules/J dissipated in the plasma. Such a discharge operating in this confined volume generates on the order of 6000 ppm NO x in 10 min. Around 90% of the NO x is in the form of NO 2 after several minutes of operation in the confined volume, suggesting that NO 2 is the dominant antimicrobial component. The strong antimicrobial action of the NO x mixture after several minutes of plasma operation is demonstrated by measuring rates of E. coli disinfection on surfaces and in water exposed to the NO x mixture. Some possible applications of plasma generation of NO x (perhaps followed by dissolution in water) include disinfection of surfaces, skin or wound antisepsis, and sterilization of medical instruments at or near room temperature. (paper)

  10. Research on spark discharge of floating roof tank shunt

    International Nuclear Information System (INIS)

    Bi, Xiaolei; Liu, Quanzhen; Liu, Baoquan; Gao, Xin; Hu, Haiyan; Liu, Juan

    2013-01-01

    In order to quantitatively analyze the spark discharge risk of floating roof tank shunts, the breakdown voltage of shunt has been calculated by Townsend theory, the shunt spark discharge experiment is carried out by using 1.2/50 μs impulse voltage wave, and the relationship between breakdown voltage of shunt spark discharge and air gap is analyzed. It has been indicated by theoretical analysis and experimental study that the small gap is more easily cause spark discharge than the big gap when the contact between shunt and tank shell is poor. When air gap distance is equal to 0.1 cm, average breakdown voltage is 5280 V. When the air gap distance is less than 0.3 cm, experiment data agree well with Townsend theory. Therefore, in the condition of small gap, Townsend theory can be used to calculated breakdown voltage of shunt. Finally, based on the above conclusions, improvements for avoiding the spark discharge risk of shunt of floating roof tanks have been proposed.

  11. Specific features of a single-pulse sliding discharge in neon near the threshold for spark breakdown

    Science.gov (United States)

    Trusov, K. K.

    2017-08-01

    Experimental data on the spatial structure of a single-pulse sliding discharge in neon at voltages below, equal to, and above the threshold for spark breakdown are discussed. The experiments were carried at gas pressures of 30 and 100 kPa and different polarities of the discharge voltage. Photographs of the plasma structure in two discharge chambers with different dimensions of the discharge zone and different thicknesses of an alumina dielectric plate on the surface of which the discharge develops are inspected. Common features of the prebreakdown discharge and its specific features depending on the voltage polarity and gas pressure are analyzed. It is shown that, at voltages below the threshold for spark breakdown, a low-current glow discharge with cathode and anode spots develops in the electrode gap. Above the breakdown threshold, regardless of the voltage polarity, spark channels directed from the cathode to the anode develop against the background of a low-current discharge.

  12. Discharge behaviors during plasma electrolytic oxidation on aluminum alloy

    International Nuclear Information System (INIS)

    Liu, Run; Wu, Jie; Xue, Wenbin; Qu, Yao; Yang, Chaolin; Wang, Bin; Wu, Xianying

    2014-01-01

    A plasma electrolytic oxidation (PEO) process was performed on the 2024 aluminum alloy in silicate electrolyte to fabricate ceramic coatings under a constant voltage. Optical emission spectroscopy (OES) was employed to evaluate the characteristics of plasma discharge during PEO process. The plasma electron temperature and density were obtained by analyzing the spectral lines of OES, and the atomic ionization degree in discharge zone was calculated in terms of Saha thermal ionization equation. The illumination intensity of plasma discharge and the temperature in the interior of alloy were measured. Combining the surface morphology and cross-sectional microstructure with the optical emission spectra and illumination at different discharge stage, a discharge model in the growth of PEO ceramic coatings was proposed. It is found that there are two discharge modes of type A with small spark size and type B with large spark size, and the latter only appears in the intermediate stage of PEO process. The illumination intensity has a maximum value in the initial stage of oxidation with many sparks of discharge type A. The electron temperature in plasma discharge zone is about 3000 K–7000 K and atomic ionization degree of Al is about 2.0 × 10 −5 –7.2 × 10 −3 , which depend on discharge stage. The discharge type B plays a key role on the electron temperature and atomic ionization degree. The electron density keeps stable in the range of about 8.5 × 10 21  m −3 –2.6 × 10 22  m −3 . - Highlights: • The characteristics of PEO plasma discharge was evaluated by OES. • Electron temperature, concentration, atomic ionization degree were calculated. • Discharge model for the growth of PEO coatings was proposed. • Temperature in the interior of alloy during PEO process was measured

  13. Gas temperature of capacitance spark discharge in air

    International Nuclear Information System (INIS)

    Ono, Ryo; Nifuku, Masaharu; Fujiwara, Shuzo; Horiguchi, Sadashige; Oda, Tetsuji

    2005-01-01

    Capacitance spark discharge has been widely used for studying the ignition of flammable gas caused by electrostatic discharge. In the present study, the gas temperature of capacitance spark discharge is measured. The gas temperature is an important factor in understanding the electrostatic ignition process because it influences the reaction rate of ignition. Spark discharge is generated in air with a pulse duration shorter than 100 ns. The discharge energy is set to 0.03-1 mJ. The rotational and vibrational temperatures of the N 2 molecule are measured using the emission spectrum of the N 2 second positive system. The rotational and vibrational temperatures are estimated to be 500 and 5000 K, respectively, which are independent of the discharge energy. This result indicates that most of the electron energy is consumed in the excitation of vibrational levels of molecules rather than the heating of the gas. The gas temperature after discharge is also measured by laser-induced fluorescence of OH radicals. It is shown that the gas temperature increases after discharge and reaches approximately 1000 K at 3 μs after discharge. Then the temperature decreases at a rate in the range of 8-35 K/μs depending on the discharge energy

  14. Protection of neutral-beam accelerator electrodes from spark discharges

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1977-01-01

    The high-voltage (HV) electrodes of neutral beam sources (NBS's) must be protected from occasional sparks to ground. Spark currents can be limited with special transformers and reactors which introduce time delays that are long enough to quench the spark or to disconnect the energy source. A saturated time delay transformer (STDT) connected in series with the HV power supply detects spark faults and limits the current supplied by the power supply and its capacitance to ground; it also initiates spark quenching. Nonsaturated, longitudinal reactors limit the discharge current supplied by the energy stored in the circuit capacitance of the NBS filament and arc power supplies long enough to discharge this capacitance into a resistor. The design principles of these protective circuits are presented

  15. Protection of neutral-beam-accelerator electrodes from spark discharges

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1977-01-01

    The high-voltage (HV) electrodes of neutral beam sources (NBS's) must be protected from occasional sparks to ground. Spark currents can be limited with special transformers and reactors which introduce time delays that are long enough to quench the spark or to disconnect the energy source. A saturated time delay transformer (STDT) connected in series with the HV power supply detects spark faults and limits the current supplied by the power supply and its capacitance to ground; it also initiates spark quenching. Nonsaturated, longitudinal reactors limit the discharge current supplied by the energy stored in the circuit capacitance of the NBS filament and arc power supplies long enough to discharge this capacitance into a resistor. The design principles of these protective circuits are presented in this paper

  16. Protection of neutral-beam-accelerator electrodes from spark discharges

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1978-01-01

    The high-voltage (HV) electrodes of neutral beam sources (NBS's) must be protected from occasional sparks to ground. Spark currents can be limited with special transformers and reactors which introduce time delays that are long enough to quench the spark or to disconnect the energy source. A saturated time delay transformer (STDT) connected in series with the HV power supply detects spark faults and limits the current supplied by the power supply and its capacitance to ground; it also initiates spark quenching. Nonsaturated, longitudinal reactors limit the discharge current supplied by the energy stored in the circuit capacitance of the NBS filament and arc power supplies long enough to discharge this capacitance into a resistor. The design principles of these protective circuits are presented in this paper

  17. Electrical and spectroscopic characterization of a surgical argon plasma discharge

    International Nuclear Information System (INIS)

    Keller, Sandra; Neugebauer, Alexander; Bibinov, Nikita; Awakowicz, Peter

    2013-01-01

    For electrosurgical procedures, the argon plasma coagulation (APC) discharge is a well-established atmospheric-pressure plasma tool for thermal haemostasis and devitalization of biological tissue. To characterize this plasma source, voltage-current measurements, microphotography, optical emission spectroscopy and numerical simulation are applied. Two discharge modes are established during the operation of the APC plasma source. A short transient spark discharge is ignited within the positive half period of the applied high voltage after a streamer channel connects the APC probe and the counter-electrode. During the second phase, which continues under negative high voltage, a glow discharge is stabilized in the plasma channel.

  18. The space-time evolution of an electrical discharge directed by a laser spark

    International Nuclear Information System (INIS)

    Asinovskii, E.I.; Vasilyak, L.M.; Unkovskii, S.Yu.

    1992-01-01

    The study of electrical discharges directed by a laser spark has been made necessary by the creation of new types of switches, plasma antennas, and lightning rods, channels for the transport of charged particle beams in inertial thermonuclear fusion devices, and also for modeling the processes in streak lightning. For the most part, previous studies have explored the feasibility of creating such discharges, depending on experimental conditions, and proposed possible mechanisms for the development of discharges, e.g., the stepwise nature of its propagation. A model was proposed in which the discharge front propagates as an ionization wave. This model was based on measurements of the electric potential along the trajectory of a directed discharge. To construct a model and obtain directed discharges with prescribed parameters, one must know the mechanisms of discharge development. In this work, the authors report the results of an electrooptical study of the origin and motion of luminous fronts of ionization waves in an electrical discharge during its initiation, both for a single breakdown site and for a long laser spark with a large number of laser breakdown sites. Results are presented of our study of the stability of a discharge for a current flow of long duration

  19. Modeling and optimization of the multichannel spark discharge

    International Nuclear Information System (INIS)

    Zhang Zhi-Bo; Wu Yun; Jia Min; Song Hui-Min; Li Ying-Hong; Sun Zheng-Zhong

    2017-01-01

    This paper reports a novel analytic model of this multichannel spark discharge, considering the delay time in the breakdown process, the electric transforming of the discharge channel from a capacitor to a resistor induced by the air breakdown, and the varying plasma resistance in the discharge process. The good agreement between the experimental and the simulated results validated the accuracy of this model. Based on this model, the influence of the circuit parameters on the maximum discharge channel number (MDCN) is investigated. Both the input voltage amplitude and the breakdown voltage threshold of each discharge channel play a critical role. With the increase of the input voltage and the decrease of the breakdown voltage, the MCDN increases almost linearly. With the increase of the discharge capacitance, the MDCN first rises and then remains almost constant. With the increase of the circuit inductance, the MDCN increases slowly but decreases quickly when the inductance increases over a certain value. There is an optimal value of the capacitor connected to the discharge channel corresponding to the MDCN. Finally, based on these results, to shorten the discharge time, a modified multichannel discharge circuit is developed and validated by the experiment. With only 6-kV input voltage, 31-channels discharge is achieved. The breakdown voltage of each electrode gap is larger than 3 kV. The modified discharge circuit is certain to be widely used in the PSJA flow control field. (paper)

  20. Generation of Nanoparticles by Spark Discharge

    NARCIS (Netherlands)

    Salman Tabrizi, N.

    2009-01-01

    Spark discharge is a method for producing nanoparticles from conductive materials. Besides the general advantages of nanoparticle synthesis in the gas phase, the method offers additional advantages like simplicity, compactness and versatility. The synthesis process is continuous and is performed at

  1. Direct and controllable nitric oxide delivery into biological media and living cells by a pin-to-hole spark discharge (PHD) plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dobrynin, D; Friedman, G [Electrical and Computer Engineering Department, College of Engineering, Drexel University, Philadelphia, PA (United States); Arjunan, K; Clyne, A Morss [School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA (United States); Fridman, A, E-mail: alisam@coe.drexel.edu [Department of Mechanical Engineering and Mechanics, College of Engineering, Drexel University, Philadelphia, PA (United States)

    2011-02-23

    Nitric oxide has great potential for improving wound healing through both inflammatory and vascularization processes. Nitric oxide can be produced in high concentrations by atmospheric pressure thermal plasmas. We measured the physical characteristics and nitric oxide production of a pin-to-hole spark discharge (PHD) plasma, as well as plasma-produced nitric oxide delivery into liquid and endothelial cells. The plasma temperature was calculated as 9030 {+-} 320 K by the Boltzmann method, which was adequate to produce nitric oxide, although the average gas temperature was near room temperature. The plasma produced significant UV radiation and hydrogen peroxide, but these were prevented from reaching the cells by adding a straight or curved tube extension to the plasma device. Plasma-produced nitric oxide in gas reached 2000 ppm and rapidly diffused into liquid and cells. Cells remained viable following plasma treatment and showed a linear increase in cGMP concentration with plasma treatment, indicating an intracellular functional response to PHD plasma NO. These data suggest that this plasma may provide a novel method for delivering NO locally and directly for enhanced wound healing.

  2. Direct and controllable nitric oxide delivery into biological media and living cells by a pin-to-hole spark discharge (PHD) plasma

    International Nuclear Information System (INIS)

    Dobrynin, D; Friedman, G; Arjunan, K; Clyne, A Morss; Fridman, A

    2011-01-01

    Nitric oxide has great potential for improving wound healing through both inflammatory and vascularization processes. Nitric oxide can be produced in high concentrations by atmospheric pressure thermal plasmas. We measured the physical characteristics and nitric oxide production of a pin-to-hole spark discharge (PHD) plasma, as well as plasma-produced nitric oxide delivery into liquid and endothelial cells. The plasma temperature was calculated as 9030 ± 320 K by the Boltzmann method, which was adequate to produce nitric oxide, although the average gas temperature was near room temperature. The plasma produced significant UV radiation and hydrogen peroxide, but these were prevented from reaching the cells by adding a straight or curved tube extension to the plasma device. Plasma-produced nitric oxide in gas reached 2000 ppm and rapidly diffused into liquid and cells. Cells remained viable following plasma treatment and showed a linear increase in cGMP concentration with plasma treatment, indicating an intracellular functional response to PHD plasma NO. These data suggest that this plasma may provide a novel method for delivering NO locally and directly for enhanced wound healing.

  3. Large-volume excitation of air, argon, nitrogen and combustible mixtures by thermal jets produced by nanosecond spark discharges

    Science.gov (United States)

    Stepanyan, Sergey; Hayashi, Jun; Salmon, Arthur; Stancu, Gabi D.; Laux, Christophe O.

    2017-04-01

    This work presents experimental observations of strong expanding thermal jets following the application of nanosecond spark discharges. These jets propagate in a toroidal shape perpendicular to the interelectrode axis, with high velocities of up to 30 m s-1 and over distances of the order of a cm. Their propagation length is much larger than the thermal expansion region produced by the conventional millisecond sparks used in car engine ignition, thus greatly improving the volumetric excitation of gas mixtures. The shape and velocity of the jets is found to be fairly insensitive to the shape of the electrodes. In addition, their spatial extent is found to increase with the number of nanosecond sparks and with the discharge voltage, and to decrease slightly with the pressure between 1 and 7 atm at constant applied voltage. Finally, this thermal jet phenomenon is observed in experiments conducted with many types of gas mixtures, including air, nitrogen, argon, and combustible CH4/air mixtures. This makes nanosecond repetitively pulsed discharges particularly attractive for aerodynamic flow control or plasma-assisted combustion because of their ability to excite large volumes of gas, typically about 100 times the volume of the discharge.

  4. Characteristics of cold atmospheric plasma source based on low-current pulsed discharge with coaxial electrodes

    Science.gov (United States)

    Bureyev, O. A.; Surkov, Yu S.; Spirina, A. V.

    2017-05-01

    This work investigates the characteristics of the gas discharge system used to create an atmospheric pressure plasma flow. The plasma jet design with a cylindrical graphite cathode and an anode rod located on the axis of the system allows to realize regularly reproducible spark breakdowns mode with a frequency ∼ 5 kHz and a duration ∼ 40 μs. The device generates a cold atmospheric plasma flame with 1 cm in diameter in the flow of various plasma forming gases including nitrogen and air at about 100 mA average discharge current. In the described construction the cathode spots of individual spark channels randomly move along the inner surface of the graphite electrode creating the secondary plasma stream time-average distributed throughout the whole exit aperture area after the decay of numerous filamentary discharge channels. The results of the spectral diagnostics of plasma in the discharge gap and in the stream coming out of the source are presented. Despite the low temperature of atoms and molecules in plasma stream the cathode spots operation with temperature of ∼ 4000 °C at a graphite electrode inside a discharge system enables to saturate the plasma by CN-radicals and atomic carbon in the case of using nitrogen as the working gas.

  5. Observations of dense plasma formation in the vacuum spark

    International Nuclear Information System (INIS)

    Chuaqui, H.; Favre, M.; Wyndham, E.; Aliaga R, R.; Choi, P.; Dumitrescu-Zoita, C.

    1994-01-01

    A series of experimental observations have been performed on the dense plasma formations or Hot Spots generated in the Vacuum Spark. The plasma discharges are driven by a 1.5 Ohm, 120 ns line at currents up to 100 KA. The line may be used to deliver a rectangular current pulse when the line gap is used. Alternatively when the line gap is shorted, the Vacuum Spark itself switches the line. A Nd: Yag Laser, with an energy of 0.5 J in an 8 ns pulse, is used to pre ionizing the discharge. The formation of Hot Spots is studied under a range of different conditions. These include the pre ionizing conditions, as well as the Anode shape and the Anode Cathode separation. The optimization of these parameters permit very reproducible shot to shot behaviour. Of particular interest is the Hot Spot size dependence as a function of its temperature and of time. The use of a new variant on the Pin Hole Camera, the Slit Wire Camera provides a new method of measuring with precision the Hot Spot dimensions in different X-ray emission energy ranges. A quadruple hole Camera is used to measure the temperature of the Hot Spots. The temporal and spatial evolution of the X-ray emission is measured using using a Slit Wire, Scintillator, Fibre Optic, Photomultiplier array. The temporal emission of the X-rays is also observed using an array of PIN X-ray diodes. (author). 5 refs, 6 figs

  6. Pressure dependence of the spark constant

    Energy Technology Data Exchange (ETDEWEB)

    Hess, H; Radtke, R; Deparade, W [Akademie der Wissenschaften der DDR, Berlin. Zentralinstitut fuer Elektronenphysik

    1978-02-21

    The author's theory on the development of LTE plasmas in low-inductance spark discharges has proved to be a useful tool in predicting the electric behaviour of such sparks. Their earlier experimental work was restricted to only one initial pressure, and in this paper they extend the examined pressure range to obtain some general conclusions on the pressure dependence of the spark behaviour.

  7. Silicon nanoparticles produced by spark discharge

    International Nuclear Information System (INIS)

    Vons, Vincent A.; Smet, Louis C. P. M. de; Munao, David; Evirgen, Alper; Kelder, Erik M.; Schmidt-Ott, Andreas

    2011-01-01

    On the example of silicon, the production of nanoparticles using spark discharge is shown to be feasible for semiconductors. The discharge circuit is modelled as a damped oscillator circuit. This analysis reveals that the electrode resistance should be kept low enough to limit energy loss by Joule heating and to enable effective nanoparticle production. The use of doped electrodes results in a thousand-fold increase in the mass production rate as compared to intrinsic silicon. Pure and oxidised uniformly sized silicon nanoparticles with a primary particle diameter of 3–5 nm are produced. It is shown that the colour of the particles can be used as a good indicator of the oxidation state. If oxygen and water are banned from the spark generation system by (a) gas purification, (b) outgassing and (c) by initially using the particles produced as getters, unoxidised Si particles are obtained. They exhibit pyrophoric behaviour. This continuous nanoparticle preparation method can be combined with other processing techniques, including surface functionalization or the immediate impaction of freshly prepared nanoparticles onto a substrate for applications in the field of batteries, hydrogen storage or sensors.

  8. A Simulation of Pre-Arcing Plasma Discharge Processes in Water Purification

    International Nuclear Information System (INIS)

    Rodriguez-Mendez, B. G.; Piedad-Beneitez, A. de la; Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Benitez-Read, J. S.; Pacheco-Sotelo, J. O.; Pena-Eguiluz, R.; Mercado-Cabrera, A.; Valencia-A, R.; Barocio, S. R.

    2006-01-01

    The simulation of a water purification system within a coaxial cylinder reactor operated by 1 kHz frequency plasma discharges in pre-arcing regimes is presented. In contrast with precedent works, this computational model considers three mechanisms of the system operation: (a) the relevant physical characteristics of water (b) the ionisation and expansion processes in the spark channel including the near-breakdown electric current generated by the rate of change of the effective capacitance and resistance in the discharge, and (c) the energy associated with this initial spark in the water. The outcome of the model seems to meet all main requirements to allow the design and construction of specific water purification technology devices

  9. The pressure dependence of the spark constant

    International Nuclear Information System (INIS)

    Hess, H.; Radtke, R.; Deparade, W.

    1978-01-01

    The author's theory on the development of LTE plasmas in low-inductance spark discharges has proved to be a useful tool in predicting the electric behaviour of such sparks. Their earlier experimental work was restricted to only one initial pressure, and in this paper they extend the examined pressure range to obtain some general conclusions on the pressure dependence of the spark behaviour. (author)

  10. Quasi-spherical compression of a spark-channel plasma

    International Nuclear Information System (INIS)

    Panarella, E.

    1980-01-01

    An axial spark channel in deuterium has been used as a target for implosive shock waves created with a conventional cylindrical theta-pinch device. The compression of the channel by the implosive waves raised the plasma electron temperature to approximately 120 eV for approximately 6 kJ of condenser bank energy and 1 Torr initial gas pressure. In order to improve the efficiency of compression of the channel plasma and to reduce the end losses inherent in the cylindrical configuration, the theta-pinch geometry was then converted from cylindrical into spherical. Under identical conditions of gas pressure and condenser bank energy, the electron temperature now peaked at approximately 400 eV. When the bank energy was increased to approximately 10 kJ, neutron production was observed. The total neutron output per shot ranged from 10 5 to 10 6 and increased inversely with the pinch discharge volume

  11. Contribution to the study of 'Pseudo-spark' discharges applied to the realisation of latch devices

    International Nuclear Information System (INIS)

    Bauville, Gerard

    1994-01-01

    The objective of this research thesis is to study discharges growing from a hollow geometry of electrodes for pressures on the left side of the Paschen minimum. The study characterises the main conduction phase by experimentally determining the discharge voltage and current. Based on a numerical analysis, the author deduces some macroscopic characteristics such as voltage mean value, dissipated energy, with respect to the variation of various parameters such as gas pressure and nature, discharge duration, and electrode cavity geometries. After a first part on switches (technological applications, switches, pseudo-spark breakers), the author addresses the discharges (presentation of a 'pseudo-spark'-type discharge, involved physical mechanisms, methods of initiation of pseudo-spark discharges, triggering by a magnetic field pulse). The next part describes the test bench in a detailed way (electrodes, triggering system, electric configurations), and the last part reports the experimental study. It addresses the following issues: distribution of magnetic field lines, voltage drop, conjunction phase, discharge footprints on the surfaces, propagation rate, disjunction [fr

  12. Plasma processes in water under effect of short duration pulse discharges

    Science.gov (United States)

    Gurbanov, Elchin

    2013-09-01

    It is very important to get a clear water without any impurities and bacteria by methods, that don't change the physical and chemical indicators of water now. In this article the plasma processes during the water treatment by strong electric fields and short duration pulse discharges are considered. The crown discharge around an electrode with a small radius of curvature consists of plasma leader channels with a high conductivity, where the thermo ionization processes and UV-radiation are taken place. Simultaneously the partial discharges around potential electrode lead to formation of atomic oxygen and ozone. The spark discharge arises, when plasma leader channels cross the all interelectrode gap, where the temperature and pressure are strongly grown. As a result the shock waves and dispersing liquid streams in all discharge gap are formed. The plasma channels extend, pressure inside it becomes less than hydrostatic one and the collapse and UV-radiation processes are started. The considered physical processes can be successfully used as a basis for development of pilot-industrial installations for conditioning of drinking water and to disinfecting of sewage.

  13. Spark discharge formation in an inhomogeneous electric field under conditions of runaway electron generation

    International Nuclear Information System (INIS)

    Shao Tao; Zhang Cheng; Yan Ping; Tarasenko, Victor F.; Lomaev, Mikhail I.; Sorokin, Dmitrii A.; Kozyrev, Andrei V.; Baksht, Evgeni Kh.

    2012-01-01

    In this article we report on work where the formation of a spark in nanosecond high-voltage discharges was studied in nitrogen, nitrogen-methane mixtures, and air at increased pressures under the conditions of runaway electron generation. Voltage pulses of amplitude ∼90 and ∼250 kV were applied to a point-to-plane gap with a planar anode and a cathode of small curvature radius. Cathode spots appeared early in the discharge, within ∼200 ps of a corona discharge at high rate of rise of the voltage (∼5 x 10 14 V/s) across centimeter point-to-plane gap spacing. The spark leader that bridged the point-to-plane gap propagated from the planar anode with cathode spots and a voltage pulse rise time of less than 1 ns. The discharge from diffuse clouds took the form of diffuse jets with increasing pulse repetition rate, thus achieving the accumulation effect in a repetitively pulsed discharge. Characteristic emission spectra are presented for spark diffuse and corona discharges.

  14. Spark discharge formation in an inhomogeneous electric field under conditions of runaway electron generation

    Energy Technology Data Exchange (ETDEWEB)

    Shao Tao; Zhang Cheng; Yan Ping [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Tarasenko, Victor F.; Lomaev, Mikhail I.; Sorokin, Dmitrii A.; Kozyrev, Andrei V.; Baksht, Evgeni Kh. [Institute of High Current Electronics, Russian Academy of Sciences, Tomsk 634055 (Russian Federation)

    2012-01-15

    In this article we report on work where the formation of a spark in nanosecond high-voltage discharges was studied in nitrogen, nitrogen-methane mixtures, and air at increased pressures under the conditions of runaway electron generation. Voltage pulses of amplitude {approx}90 and {approx}250 kV were applied to a point-to-plane gap with a planar anode and a cathode of small curvature radius. Cathode spots appeared early in the discharge, within {approx}200 ps of a corona discharge at high rate of rise of the voltage ({approx}5 x 10{sup 14} V/s) across centimeter point-to-plane gap spacing. The spark leader that bridged the point-to-plane gap propagated from the planar anode with cathode spots and a voltage pulse rise time of less than 1 ns. The discharge from diffuse clouds took the form of diffuse jets with increasing pulse repetition rate, thus achieving the accumulation effect in a repetitively pulsed discharge. Characteristic emission spectra are presented for spark diffuse and corona discharges.

  15. Characterization of electrical discharges during spark anodization of zirconium in different electrolytes

    International Nuclear Information System (INIS)

    Santos, Janaina S.; Lemos, Sherlan G.; Gonçalves, Wesley N.; Bruno, Odemir M.; Pereira, Ernesto C.

    2014-01-01

    The evolution of the electrical discharges parameters during spark anodization of metallic Zr under galvanostatic regime have been investigated by image analysis in phosphoric and oxalic acid electrolytes. The experiments were recorder using a high-speed video camera during the entire anodization with a resolution of 1.7 ms for determination of discharge lifetime and a standard resolution of 33 ms (real-time imaging) for determination of the average area and discharge population density. The discharge behavior was dependent of the current density, electrolyte composition and anodization time. During breakdown process, sparks discharges are progressively turned to micro-arcs, which can be seen by enlargement of discharge area, gradual increase of lifetime and reduction of discharge population density. A factorial design was used to estimate the effects of experimental conditions on the discharge behavior. The current density and electrolyte composition were the most important factors that affected the discharge population density. The anodization time and the electrolyte composition were the main factor that influenced the discharge area and lifetime. In comparison with the voltage vs. time curve, the results demonstrate important features of the process and the changes of the electrical discharges characteristics during the experiments

  16. Influence of the capillary on the ignition of the transient spark discharge

    International Nuclear Information System (INIS)

    Gerling, T; Hoder, T; Brandenburg, R; Bussiahn, R; Weltmann, K-D

    2013-01-01

    A self-pulsing negative dc discharge in argon generated in a needle-to-plane geometry at open atmosphere is investigated. Additionally, the needle electrode can be surrounded by a quartz capillary. It is shown that the relative position of the capillary end to the needle tip strongly influences the discharge inception and its spatio-temporal dynamics. Without the capillary for the selected working parameters a streamer corona is ignited, but when the capillary surrounds the needle, the transient spark (TS) discharge is ignited after a pre-streamer (PS) occurs. The time between PS and TS discharge depends on the relative capillary end position. The existence of the PS is confirmed by electro-optical characterization. Furthermore, spectrally and spatio-temporally resolved cross-correlation spectroscopy is applied to show the most active region of pre-phase emission activity as indicators for high local electric field strength. The results indicate that with a capillary in place, the necessary energy input of the pre-phase into the system is mainly reduced by additional electrical fields at the capillary edge. Even such a small change as a shift of dielectric surface close to the plasma largely changes the energy balance in the system. (paper)

  17. Space and time resolved observations of hot spots dynamics in a vacuum spark discharge

    International Nuclear Information System (INIS)

    Chuaqui, H.; Favre, M.; Saavedra, R.; Wyndham, E.

    1996-01-01

    Experimental observations of the plasma formations in a vacuum spark discharge are presented. A low power Nd:YAG laser pulse incident onto a titanium cathode initiates the discharge. The evolution of the titanium plasma electron density and temperature is followed both in the visible and the soft X-ray part of the spectrum. The former uses a novel micro holographic interferometric technique permitting a spatial resolution better than 20 μm. The probing beam is a 6 ns frequency doubled Nd:YAG laser. The latter emission is resolved using a number of different methods. The spatial information is derived from a 1 ns multi framing camera X-ray camera which projects the plasma image using four different slit wire pinhole images and six pinhole images, each aperture being filtered differently. The temporal evolution of the emission of each discharge is followed using several silicon PIN diodes. The x-ray spectrum is unfolded from the filter and detector response and interpreted using a collisional radiative package. The hot spots are seen to form in a submillimeter pinch stemming from the incident laser focus which has a life time about 20 ns. The hot spots are much shorter events, reaching substantially higher densities, but involve only part of the line density of the pinch column. (author). 4 figs., 8 refs

  18. Space and time resolved observations of hot spots dynamics in a vacuum spark discharge

    Energy Technology Data Exchange (ETDEWEB)

    Chuaqui, H; Favre, M; Saavedra, R; Wyndham, E [Universidad Catolica de Chile, Santiago (Chile). Facultad de Fisica; Choi, P; Dumitrescu-Zoita, C [Ecole Polytechnique, Palaiseau (France). Laboratoire de Physique des Milieux Ionises; Soto, L [Comision Chilena de Energia Nuclear, Santiago (Chile)

    1997-12-31

    Experimental observations of the plasma formations in a vacuum spark discharge are presented. A low power Nd:YAG laser pulse incident onto a titanium cathode initiates the discharge. The evolution of the titanium plasma electron density and temperature is followed both in the visible and the soft X-ray part of the spectrum. The former uses a novel micro holographic interferometric technique permitting a spatial resolution better than 20 {mu}m. The probing beam is a 6 ns frequency doubled Nd:YAG laser. The latter emission is resolved using a number of different methods. The spatial information is derived from a 1 ns multi framing camera X-ray camera which projects the plasma image using four different slit wire pinhole images and six pinhole images, each aperture being filtered differently. The temporal evolution of the emission of each discharge is followed using several silicon PIN diodes. The x-ray spectrum is unfolded from the filter and detector response and interpreted using a collisional radiative package. The hot spots are seen to form in a submillimeter pinch stemming from the incident laser focus which has a life time about 20 ns. The hot spots are much shorter events, reaching substantially higher densities, but involve only part of the line density of the pinch column. (author). 4 figs., 8 refs.

  19. Discharge plasmas as EUV Sources for Future Micro Lithography

    Science.gov (United States)

    Kruecken, Thomas

    2007-08-01

    Future extreme ultraviolet (EUV) lithography will require very high radiation intensities in a narrow wavelength range around 13.5 nm, which is most efficiently emitted as line radiation by highly ionized heavy particles. Currently the most intense EUV sources are based on xenon or tin gas discharges. After having investigated the limits of a hollow cathode triggered xenon pinch discharge Philips Extreme UV favors a laser triggered tin vacuum spark discharge. Plasma and radiation properties of these highly transient discharges will be compared. Besides simple MHD-models the ADAS software package has been used to generate important atomic and spectral data of the relevant ion stages. To compute excitation and radiation properties, collisional radiative equilibria of individual ion stages are computed. For many lines opacity effects cannot be neglected. In the xenon discharges the optical depths allow for a treatment based on escape factors. Due to the rapid change of plasma parameters the abundancies of the different ionization stages must be computed dynamically. This requires effective ionization and recombination rates, which can also be supplied by ADAS. Due to very steep gradients (up to a couple orders of magnitude per mm) the plasma of tin vacuum spark discharges is very complicated. Therefore we shall describe here only some technological aspects of our tin EUV lamp: The electrode system consists of two rotating which are pulled through baths of molten tin such that a tin film remains on their surfaces. With a laser pulse some tin is ablated from one of the wheels and travels rapidly through vacuum towards the other rotating wheel. When the tin plasma reaches the other electrodes it ignites and the high current phase starts, i.e. the capacitor bank is unloaded, the plasma is pinched and EUV is radiated. Besides the good spectral properties of tin this concept has some other advantages: Erosion of electrodes is no severe problem as the tin film is

  20. Spark gap produced plasma diagnostics

    International Nuclear Information System (INIS)

    Chang, H.Y.

    1990-01-01

    A Spark Gap (Applied voltage : 2-8KV, Capacitor : 4 Micro F. Dia of the tube : 1 inch, Electrode distance : .3 ∼.5 inch) was made to generate a small size dynamic plasma. To measure the plasma density and temperature as a function of time and position, we installed and have been installing four detection systems - Mach-Zehnder type Interferometer for the plasma refractivity, Expansion speed detector using two He-Ne laser beams, Image Processing using Lens and A Optical-Fiber Array for Pointwise Radiation Sensing, Faraday Rotation of a Optical Fiber to measure the azimuthal component of B-field generated by the plasma drift. These systems was used for the wire explosion diagnostics, and can be used for the Laser driven plasma also

  1. Development of 2024 AA-Yttrium composites by Spark Plasma Sintering

    Science.gov (United States)

    Vidyasagar, CH S.; Karunakar, D. B.

    2018-04-01

    The method of fabrication of MMNCs is quite a challenge, which includes advanced processing techniques like Spark Plasma Sintering (SPS), etc. The objective of the present work is to fabricate aluminium based MMNCs with the addition of small amounts of yttrium using Spark Plasma Sintering and to evaluate their mechanical and microstructure properties. Samples of 2024 AA with yttrium ranging from 0.1% to 0.5 wt% are fabricated by Spark Plasma Sintering (SPS). Hardness of the samples is determined using Vickers hardness testing machine. The metallurgical characterization of the samples is evaluated by Optical Microscopy (OM), Field Emission Scanning Electron Microscopy (FE-SEM). Unreinforced 2024 AA sample is also fabricated as a benchmark to compare its properties with those of the composite developed. It is found that the yttrium addition increases the above mentioned properties by altering the precipitation kinetics and intermetallic formation to some extent and then decreases gradually when yttrium wt% increases beyond 0.3 wt%. High density (˂ 99.75) is achieved in the samples and highest hardness achieved is 114 Hv, fabricated by spark plasma sintering and uniform distribution of yttrium is observed.

  2. Silver carbonate and stability in colloidal silver: A by-product of the electric spark discharge method

    International Nuclear Information System (INIS)

    Tseng, Kuo-Hsiung; Liao, Chih-Yu; Tien, Der-Chi

    2010-01-01

    Many methods of producing colloidal silver (CS) include the introduction of surfactants to improve the suspensivity of the silver particles. The electric spark discharge method (ESDM) which involves pulses of direct current being passed through a silver electrode submerged in deionized water has been shown to successfully produce colloidal silver in a stable suspension without the use of chemical additives. A by-product of the electric spark discharge method, a silver ion compound (AgX), is shown to be the cause of the high suspensivity of the silver nanoparticles (AgNPs). The silver ion compound has been identified as Ag 2 CO 3 using X-ray diffraction, and it has been determined that the Ag 2 CO 3 is formed during the electric spark discharge process through a reaction with atmospheric CO 2 . It has been shown that an Ag 2 CO 3 concentration of 10 ppm or more is sufficient to generate a stable suspension of silver particles. Because of the occurrence of Ag 2 CO 3 , the electric spark discharge method can produce stable colloidal silver.

  3. A comparison of electrochemically pre-treated and spark-platinized carbon fiber microelectrode. Measurement of 8-oxo-7,8-dihydro-2′-deoxyguanosine in human urine and plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bartosova, Z.; Riman, D. [Department of Analytical Chemistry, Palacky University, Faculty of Science, 17.listopadu 12, CZ-771 46 Olomouc (Czech Republic); Halouzka, V. [Department of Analytical Chemistry, Palacky University, Faculty of Science, 17.listopadu 12, CZ-771 46 Olomouc (Czech Republic); Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, nam. T.G. Masaryka 275, CZ-76001 Zlin (Czech Republic); Vostalova, J.; Simanek, V. [Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, CZ-775 15 Olomouc (Czech Republic); Hrbac, J., E-mail: jhrbac@atlas.cz [Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno (Czech Republic); Jirovsky, D., E-mail: david.jirovsky@upol.cz [Department of Analytical Chemistry, Palacky University, Faculty of Science, 17.listopadu 12, CZ-771 46 Olomouc (Czech Republic)

    2016-09-07

    A novel method of carbon fiber microelectrode activation using spark discharge was demonstrated and compared to conventional electrochemical pretreatment by potential cycling. The spark discharge was performed at 800 V between the microelectrode connected to positive pole of the power supply and platinum counter electrode. Spark discharge led both to trimming of the fiber tip into conical shape and to the modification of carbon fiber microelectrode with platinum, as proven by scanning electron microscopy and electron dispersive X-ray spectroscopy. After the characterization of electrochemical properties using ferricyanide voltammetry, the activated electrodes were used for electrochemical analysis of 8-oxo-7,8-dihydro-2′-deoxyguanosine, an oxidative stress marker. Subnanomolar detection limits (0.55 nmol L{sup −1}) in high-performance liquid chromatography were achieved for spark platinized electrodes incorporated into the flow detection cell. - Highlights: • Novel method of carbon fiber microelectrode activation and platinization using spark discharge. • The activation procedure is efficient, fast and solvent-free. • Modification of the surface and the shape of the carbon fiber microelectrode during the process. • The spark-etched platinized carbon fiber sensors are highly sensitive. • The sensor was successfully applied to HPLC analysis of 8-oxo-7,8-dihydro-2′-deoxyguanosine in plasma and urine.

  4. Application of Pulse Spark Discharges for Scale Prevention and Continuous Filtration Methods in Coal-Fired Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young; Fridman, Alexander

    2012-06-30

    of heat transfer fouling tests using a condenser heat exchanger in the laboratory cooling tower, from which we confirmed that the plasma water treatment technology could prevent or significantly mitigate mineral foulings in condenser tubes when compared with the no-treatment case. With the completion of the present work, a cooling water treatment technology using pulse spark discharges is currently ready for field-validation tests. The plasma water treatment technology is a true mechanical water softener with almost no maintenance, which continuously converts hard water to soft water spending a relatively small amount of energy. Such a mechanical water softener could find wide-spread applications to solve hard water problems both in industry and at home.

  5. Shock wave interaction with pulsed glow discharge and afterglow plasmas

    International Nuclear Information System (INIS)

    Podder, N.K.; LoCascio, A.C.

    2009-01-01

    Acoustic shock waves are launched by the spark-discharge of a high voltage capacitor in pulsed glow discharge and afterglow plasmas. The glow discharge section of the shock tube is switched on for a period of less than one second at a time, during which a shock wave is launched starting with a large delay between the plasma switch-on and the shock-launch. In the subsequent runs this delay is decremented in equal time intervals up to the plasma switch-on time. A photo acoustic deflection method sensitive to the density gradient of the shock wave is used to study the propagating shock structure and velocity in the igniting plasma. A similar set of measurements are also performed at the plasma switch-off, in which the delay time is incremented in equal time intervals from the plasma switch-off time until the afterglow plasma fully neutralizes itself into the room-temperature gas. Thus, complete time histories of the shock wave propagation in the igniting plasma, as well as in the afterglow plasma, are produced. In the igniting plasma, the changes in the shock-front velocity and dispersion are found to be a strong non-linear function of delay until a saturation point is reached. On the other hand, in the afterglow plasma the trend has been opposite and reversing towards the room temperature values. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas

  6. Development of the discharge (spark) chamber in Japan in the 1950s

    International Nuclear Information System (INIS)

    Fukui, Shuji

    1989-01-01

    The paper, written by its Japanese inventor Shuji Fukui, describes the development of the discharge or spark chamber in Japan in the 1950s. Flash-tubes were used in air-shower cosmic-ray experiments and this led to his design of a neon hodoscope detector. By including the property of neon bulbs glowing the discharge chamber was born, after he observed localized discharges along the trajectories of cosmic-ray particles. (UK)

  7. The energy distribution structure and dynamic characteristics of energy release in electrostatic discharge process

    OpenAIRE

    Liu, Qingming; Shao, Huige; Zhang, Yunming

    2015-01-01

    The detail structure of energy output and the dynamic characteristics of electric spark discharge process have been studied to calculate the energy of electric spark induced plasma under different discharge condition accurately. A series of electric spark discharge experiments were conducted with the capacitor stored energy in the range of 10J 100J and 1000J respectively. And the resistance of wire, switch and plasma between electrodes were evaluated by different methods. An optimized method ...

  8. Plasma actuators for active flow control based on a glow discharge

    International Nuclear Information System (INIS)

    Kühn, M.; Kühn-Kauffeldt, M.; Schein, J.; Belinger, A.

    2017-01-01

    In this work a glow discharge based active flow control for high flow velocities and low Reynolds numbers is presented. Unlike common plasma actuators such as dielectric barrier discharge (DBD) or spark jets, this actuator uses small impulse bits at frequencies. The actuator is optimized for frequencies up to 40 kHz to counter Tollmien Schlichting wave effects and so reduce overall air foil drag. Several measurements to prove the non-eroding effect of the actuator and the electrical properties were performed. It was found that the actuator is capable of operating at high frequencies without measurable erosion. (paper)

  9. Exploratory studies on a passively triggered vacuum spark

    Energy Technology Data Exchange (ETDEWEB)

    Rout, R.K. [High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai (India)]. E-mail: rkrout@apsara.barc.ernet.in; Auluck, S.K.H.; Kulkarni, L.V. [High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai, India (India); Nagpal, J.S. [Radiation Standards and Instrumentation Division, Bhabha Atomic Research Centre, Mumbai (India)

    1999-12-07

    The results of an experimental investigation on a passively triggered vacuum spark device are presented. The diagnostics include the current, x-ray and optical emission measurements. The sharp dips in the current derivative signal indicate the occurrence of pinching at an early stage of the discharge (at current {approx} 5 kA). A well-confined plasma with a central hot region was recorded using a streak camera. The pinched plasma was observed to undergo kink-type oscillations with a time period of 10-15 ns. Repeated plasma fronts were seen to move from the anode to the cathode with an average velocity of {approx}5x10{sup 6} cm s{sup -1}. Soft x-ray emission having a radiation intensity of a few hundred mR per discharge was observed. The x-ray signals obtained using photodiodes showed multiple bursts. A soft x-ray pinhole camera recorded micro-pinches of {approx}100 {mu}m. The x-ray emitting regions were confined to the inter-electrode gap. The x-ray emission characteristics were influenced by the electrolytic resistance, which was connected across the spark gap to initiate discharge. (author)

  10. Synthesis and characterization of aluminium–alumina micro- and nano-composites by spark plasma sintering

    International Nuclear Information System (INIS)

    Dash, K.; Chaira, D.; Ray, B.C.

    2013-01-01

    Graphical abstract: The evolution of microstructure by varying the particle size of reinforcement in the matrix employing spark plasma sintering has been demonstrated here in Al–Al 2 O 3 system. An emphasis has been laid on varying the reinforcement particle size and evaluating the microstructural morphologies and their implications on mechanical performance of the composites. Nanocomposites of 0.5, 1, 3, 5, 7 volume % alumina (average size 2 O 3 micro- and nano-composites fabricated by spark plasma sintering. • Better matrix-reinforcement integrity in nanocomposites than microcomposites. • Spark plasma sintering method results in higher density and hardness values. • High density and hardness values of nanocomposites than microcomposites. • High dislocation density in spark plasma sintered Al–Al 2 O 3 composites. - Abstract: In the present study, an emphasis has been laid on evaluation of the microstructural morphologies and their implications on mechanical performance of the composites by varying the reinforcement particle size. Nanocomposites of 0.5, 1, 3, 5, 7 volume % alumina (average size 2 O 3 nancomposites respectively. Spark plasma sintering imparts enhanced densification and matrix-reinforcement proximity which have been corroborated with the experimental results

  11. Analysis of the process of raising the temperature in the spark channel at a discharge in gas

    CERN Document Server

    Korytchenko, K V; Chumakov, V I

    2001-01-01

    Analysis of the process of raising the temperature in the spark channel at a discharge in gas is performed. The quantitative evaluation was made in main for the air. The effect of steadying a thermodynamic equilibrium in gas,as well as the influence of power discharge parameters on the process of temperature increasing was analyzed. The quantitative evaluation of time parameters of the processes of rotary, oscillatory relaxation, dissociation and ionization has allowed to reveal the influence of each of them on temperature increasing in the spark channel. The problems arising in the course of practical realization of a spark discharge which influence on the process of temperature raising are detected,and the ways for their solution are determined. The results obtained can be put in a basis of developing the methods to design devices for intensive increase of temperatures in gas media using the electrical discharge,as well as for analysis of a dependence of shock wave intensity on dynamic parameters of the ele...

  12. Electric ignition energy evaluation and the energy distribution structure of energy released in electrostatic discharge process

    International Nuclear Information System (INIS)

    Liu Qingming; Huang Jinxiang; Shao Huige; Zhang Yunming

    2017-01-01

    Ignition energy is one of the important parameters of flammable materials, and evaluating ignition energy precisely is essential to the safety of process industry and combustion science and technology. By using electric spark discharge test system, a series of electric spark discharge experiments were conducted with the capacitor-stored energy in the range of 10 J, 100 J, and 1000 J, respectively. The evaluation method for energy consumed by electric spark, wire, and switch during capacitor discharge process has been studied respectively. The resistance of wire, switch, and plasma between electrodes has been evaluated by different methods and an optimized evaluation method has been obtained. The electric energy consumed by wire, electric switch, and electric spark-induced plasma between electrodes were obtained and the energy structure of capacitor-released energy was analyzed. The dynamic process and the characteristic parameters (the maximum power, duration of discharge process) of electric spark discharge process have been analyzed. Experimental results showed that, electric spark-consumed energy only accounts for 8%–14% of the capacitor-released energy. With the increase of capacitor-released energy, the duration of discharge process becomes longer, and the energy of plasma accounts for more in the capacitor-released energy. The power of electric spark varies with time as a damped sinusoids function and the period and the maximum value increase with the capacitor-released energy. (paper)

  13. Phase characterisation in spark plasma sintered TiPt alloy

    CSIR Research Space (South Africa)

    Chikosha, S

    2011-12-01

    Full Text Available stream_source_info chikosha_2011.pdf.txt stream_content_type text/plain stream_size 4354 Content-Encoding UTF-8 stream_name chikosha_2011.pdf.txt Content-Type text/plain; charset=UTF-8 PHASE CHARACTERISATION IN SPARK... to form “necks”  Radiant Joule heat and pressure drives “neck” growth and material transfer © CSIR 2006 www.csir.co.za Page 6 Objective  Produce TiPt alloy compacts by Spark plasma sintering (SPS) of equiatomic...

  14. Graphene-induced strengthening in spark plasma sintered tantalum carbide–nanotube composite

    International Nuclear Information System (INIS)

    Lahiri, Debrupa; Khaleghi, Evan; Bakshi, Srinivasa Rao; Li, Wei; Olevsky, Eugene A.; Agarwal, Arvind

    2013-01-01

    Transverse rupture strength of spark plasma sintered tantalum carbide (TaC) composites reinforced with long and short carbon nanotubes (CNTs) is reported. The rupture strength depends on the transformation behavior of the CNTs during spark plasma sintering, which is dependent on their length. The TaC composite with short nanotubes shows the highest specific rupture strength. Shorter CNTs transform into multi-layered graphene sheets between TaC grains, whereas long ones retain the tubular structure. Two-dimensionsal graphene platelets offer higher resistance to pull-out, resulting in delayed fracture and higher strength.

  15. Exploratory studies on a passively triggered vacuum spark

    Science.gov (United States)

    Rout, R. K.; Auluck, S. K. H.; Nagpal, J. S.; Kulkarni, L. V.

    1999-12-01

    The results of an experimental investigation on a passively triggered vacuum spark device are presented. The diagnostics include the current, x-ray and optical emission measurements. The sharp dips in the current derivative signal indicate the occurrence of pinching at an early stage of the discharge (at current icons/Journals/Common/approx" ALT="approx" ALIGN="TOP"/>5 kA). A well-confined plasma with a central hot region was recorded using a streak camera. The pinched plasma was observed to undergo kink-type oscillations with a time period of 10-15 ns. Repeated plasma fronts were seen to move from the anode to the cathode with an average velocity of icons/Journals/Common/approx" ALT="approx" ALIGN="TOP"/>5 × 106 cm s-1. Soft x-ray emission having a radiation intensity of a few hundred mR per discharge was observed. The x-ray signals obtained using photodiodes showed multiple bursts. A soft x-ray pinhole camera recorded micro-pinches of icons/Journals/Common/approx" ALT="approx" ALIGN="TOP"/>100 µm. The x-ray emitting regions were confined to the inter-electrode gap. The x-ray emission characteristics were influenced by the electrolytic resistance, which was connected across the spark gap to initiate discharge.

  16. Noble Gas Plasmas with Metallic Conductivity: A New Light Source from a New State of Matter

    Science.gov (United States)

    2015-11-01

    triggered by uv lamp Spark Blocking Laser Pulse that is Incident from the Right Laser PulseSpark Discharge High-Power Dense Microplasma Optical Switch...flash width ~35.ps Plasma density ~1022/cc Radius ~ 1.μm • fs laser breakdown In a dense gas Tachibana Spark discharge Electrode spacing=100μm...Demonstration of Opaque Plasma Discharge Blocking Intense Laser Pulse-due to formation of dense plasma condensate b) Intense laser pulse arrested at

  17. Production of organic compounds in plasmas - A comparison among electric sparks, laser-induced plasmas, and UV light

    Science.gov (United States)

    Scattergood, Thomas W.; Mckay, Christopher P.; Borucki, William J.; Giver, Lawrence P.; Van Ghyseghem, Hilde

    1989-01-01

    In order to ascertain the features of organic compound-production in planetary atmospheres under the effects of plasmas and shocks, various mixtures of N2, CH4, and H2 modeling the atmosphere of Titan were subjected to discrete sparks, laser-induced plasmas, and UV radiation. The experimental results obtained suggest that UV photolysis from the plasma is an important organic compound synthesis process, as confirmed by the photolysis of gas samples that were exposed to the light but not to the shock waves emitted by the sparks. The thermodynamic equilibrium theory is therefore incomplete in the absence of photolysis.

  18. Plasma Discharge Process in a Pulsed Diaphragm Discharge System

    Science.gov (United States)

    Duan, Jianjin; Hu, Jue; Zhang, Chao; Wen, Yuanbin; Meng, Yuedong; Zhang, Chengxu

    2014-12-01

    As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.

  19. Ambient fields generated by a laser spark

    Czech Academy of Sciences Publication Activity Database

    Rohlena, Karel; Mašek, Martin

    2016-01-01

    Roč. 61, č. 2 (2016), s. 119-124 ISSN 0029-5922 R&D Projects: GA MŠk(CZ) LD14089; GA MŠk(CZ) LG13031 Institutional support: RVO:68378271 Keywords : laser spark * radiation chemistry * field generation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.760, year: 2016

  20. Investigation of the Energy Balance in the Spark Discharge Generator for Nanoparticles Synthesis

    Science.gov (United States)

    Mylnikov, D. A.; Efimov, A. A.; Ivanov, V. V.

    2017-07-01

    In this paper we investigate the balance of energy in the discharge circuit of a spark discharge generator (SDG) for nanoparticles synthesis. The released energy consists of several parts: the energy in a discharge gap and the energy dissipated in the other elements of the circuit. In turn, in the gap a one part of the energy releases in preanode and precathode regions and the other part in an arc between electrodes. We measured these parts and proposed ways to optimize energy efficiency of the nanoparticles production.

  1. Microstructure and property evolution of isotropic and anisotropic NdFeB magnets fabricated from nanocrystalline ribbons by spark plasma sintering and hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z W; Huang, H Y; Yu, H Y; Zhong, X C; Zeng, D C [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Gao, X X; Zhu, J, E-mail: zwliu@scut.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2011-01-19

    Isotropic and anisotropic NdFeB magnets were synthesized by spark plasma sintering (SPS) and SPS+HD (hot deformation), respectively, using melt-spun ribbons as the starting materials. Spark plasma sintered magnets sintered at low temperatures (<700 {sup 0}C) almost maintained the uniform fine grain structure inherited from rapid quenching. At higher temperatures, due to the local high-temperature field caused by the spark plasma discharge, the grain growth occurred at the initial particle surfaces and the coarse grain zones formed in the vicinity of the particle boundaries. Since the interior of the particles maintained the fine grain structure, a distinct two-zone structure was formed in the spark plasma sintered magnets. The SPS temperature and pressure have important effects on the widths of coarse and fine grain zones, as well as the grain sizes in two zones. The changes in grain structure led to variations in the magnetic properties. By employing low SPS temperature and high pressure, high-density magnets with negligible coarse grain zone and an excellent combination of magnetic properties can be obtained. An anisotropic magnet with a maximum energy product of {approx}30 MG Oe was produced by the SPS+HD process. HD at 750 {sup 0}C did not lead to obvious grain growth and the two-zone structure still existed in the hot deformed magnets. Intergranular exchange coupling was demonstrated in the spark plasma sintered magnets and was enhanced by the HD process, which reduced the coercivity. Good temperature stability was manifested by low temperature coefficients of remanence and coercivity. The results indicated that nanocrystalline NdFeB magnets without significant grain growth and with excellent properties could be obtained by SPS and HD processes.

  2. Formation of small sparks

    International Nuclear Information System (INIS)

    Barreto, E.; Jurenka, H.; Reynolds, S.I.

    1977-01-01

    The formation of a small incendiary spark at atmospheric pressure is identified with the transition from a weakly to a strongly ionized plasma. It is shown that initial gaseous ionization produced by avalanches and/or streamers always creates a high-temperature ideal electron gas that can shield the applied voltage difference and reduce ionization in the volume of the gas. The electron gas is collision dominated but able to maintain its high temperature, for times long compared to discharge events, through long-range Coulomb forces. In fact, electrons in the weakly ionized plasma constitute a collisionless independent fluid with a thermodynamic state that can be affected directly by field or density changes. Accordingly, with metal electrodes, cathode spot emission is always associated with the transition to a strongly ionized plasma. Neutral heating can be accomplished in two different ways. Effective dispersal of the electrons from the cathode leads to electron heating dominated by diffusion effects. Conversely, a fast rate of emission or rapid field changes can produce nonlinear wave propagation. It is shown that solitary waves are possible, and it is suggested that some spark transitions are associated with shock waves in the collisionless electron gas. In either the diffuse or nonlinear regime, neutral gas heating is controlled by collisions of ions with isotropic thermal electrons. This interaction is always subsequent to changes in state of the electron gas population. The basic results obtained should apply to all sparks

  3. The formation of metallic plasmas in transient capillary discharges at high current

    International Nuclear Information System (INIS)

    Wyndham, E S; Favre, M; Aliaga-Rossel, R

    2006-01-01

    We report observations of the formation of a metallic plasma in a high aspect ratio z-pinch confined within a ceramic capillary. A series of experiments on different capillary geometries was undertaken in which titanium metal rings were used to promote the formation of a titanium plasma through preferential ablation. In an initial vacuum a titanium seed plasma is formed in the hollow cathode (HC) volume by a low energy laser spark. This pre-ionizing plasma is assisted in its expansion into the z-pinch volume by the electron beams generated by a pre-ionizing discharge in the capillary, due to the HC effect. Further intense e-beam activity occurs on applying the main driver current to the capillary electrodes before the discharge impedance abruptly drops to give rise to an ensuing high current z-pinch. A segmented titanium ring structure within the capillary promotes metal ablation. The discharges are performed in tubes of 60 to 110 mm length and 3 and 5 mm effective internal diameter. The main discharge current is provided from a small pulsed power switched coaxial line, at up to 150 kA. The generator may be configured to deliver two different rates of current rise and this is found to have a significant effect on the plasma dynamics. The plasma properties are obtained from observations of the axial x-ray emission. The diagnostics used are filtered Si diodes, filtered time-resolved multi-pinhole camera images and the time resolved soft x-ray spectrum from 3 to 20 nm. While a single species metal plasma is not obtained, a very significant proportion of Ti is achieved in the higher rate of current rise configuration. The fraction of Ti diminishes for the longest length discharges and for the larger diameter tube diameter, as does the observed z-pinch uniformity. There is a weak dependance of the electron temperature with tube geometry, but the plasma density falls substantially in the longer discharges. This coincides with diminished effectiveness of the transient HC

  4. Observation of a spark channel generated in water with shock wave assistance in plate-to-plate electrode configuration

    Czech Academy of Sciences Publication Activity Database

    Stelmashuk, Vitaliy

    2014-01-01

    Roč. 21, č. 1 (2014), 010703/1-010703/3 ISSN 1070-664X Institutional support: RVO:61389021 Keywords : discharge * spark * plasma instability Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.142, year: 2014 http://scitation.aip.org/content/aip/journal/pop/21/1/10.1063/1.4861877

  5. Generation of mixed metallic nanoparticles from immiscible metals by spark discharge

    International Nuclear Information System (INIS)

    Tabrizi, N. S.; Xu, Q.; Pers, N. M. van der; Schmidt-Ott, A.

    2010-01-01

    Using a spark discharge system, we synthesized Ag-Cu, Pt-Au and Cu-W mixed particles a few nanometers in size. These combinations have miscibility gaps in the bulk form. The microsecond sparks between electrodes consisting of the respective materials, form a vapour cloud. Very fast quenching of the mixed vapour results in the formation of nanoparticles. To investigate the morphology, size, composition and structure of the particles, TEM, XRD analyses and EDS elemental mapping were performed on the samples. The average compositions were measured by ICP and the specific surface areas were determined by the BET. Our method produces Ag-Cu and Au-Pt mixed crystalline phases that do not exist in macroscopic samples. For Cu-W, alloying is not observed, and the metals are mixed on a scale of about 1 nm.

  6. Structure and characteristics of functional powder composite materials obtained by spark plasma sintering

    Science.gov (United States)

    Oglezneva, S. A.; Kachenyuk, M. N.; Kulmeteva, V. B.; Ogleznev, N. B.

    2017-07-01

    The article describes the results of spark plasma sintering of ceramic materials based on titanium carbide, titanium carbosilicide, ceramic composite materials based on zirconium oxide, strengthened by carbon nanostructures and composite materials of electrotechnical purpose based on copper with addition of carbon structures and titanium carbosilicide. The research shows that the spark plasma sintering can achieve relative density of the material up to 98%. The effect of sintering temperature on the phase composition, density and porosity of the final product has been studied. It was found that with addition of carbon nanostructures the relative density and hardness decrease, but the fracture strength of ZrO2 increases up to times 2. The relative erosion resistance of the electrodes made of composite copper-based powder materials, obtained by spark plasma sintering during electroerosion treatment of tool steel exceeds that parameter of pure copper up to times 15.

  7. Spark plasma sintering of tantalum carbide

    International Nuclear Information System (INIS)

    Khaleghi, Evan; Lin, Yen-Shan; Meyers, Marc A.; Olevsky, Eugene A.

    2010-01-01

    A tantalum carbide powder was consolidated by spark plasma sintering. The specimens were processed under various temperature and pressure conditions and characterized in terms of relative density, grain size, rupture strength and hardness. The results are compared to hot pressing conducted under similar settings. It is shown that high densification is accompanied by substantial grain growth. Carbon nanotubes were added to mitigate grain growth; however, while increasing specimens' rupture strength and final density, they had little effect on grain growth.

  8. Plasma igniter for internal combustion engine

    Science.gov (United States)

    Fitzgerald, D. J.; Breshears, R. R. (Inventor)

    1978-01-01

    An igniter for the air/fuel mixture used in the cylinders of an internal combustion engine is described. A conventional spark is used to initiate the discharge of a large amount of energy stored in a capacitor. A high current discharge of the energy in the capacitor switched on by a spark discharge produces a plasma and a magnetic field. The resultant combined electromagnetic current and magnetic field force accelerates the plasma deep into the combustion chamber thereby providing an improved ignition of the air/fuel mixture in the chamber.

  9. Bent paths of a positive streamer and a cathode-directed spark leader in diffuse discharges preionized by runaway electrons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Cheng; Shao, Tao, E-mail: st@mail.iee.ac.cn; Wang, Ruixue; Yan, Ping [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Tarasenko, Viktor F.; Beloplotov, Dmitry V.; Lomaev, Mikhail I.; Sorokin, Dmitry A. [Institute of High Current Electronics, Russian Academy of Science, Tomsk 634055 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk 634050 (Russian Federation)

    2015-03-15

    Diffuse discharges preionized by runaway electrons can produce large-area homogeneous discharges at elevated pressures, which is an intriguing phenomenon in the physics of pulsed discharges. In this paper, runaway-electron-preionized diffuse discharge (REP DD) was obtained in a wide pressure range (0.05–0.25 MPa), and under certain conditions a positive streamer and a cathode-directed spark leader could be observed to propagate at some angles to the applied (background) electric field lines. For a 16-mm gap at an air pressure of 0.08–0.1 MPa, the percentage of pulses in which such propagation is observed is about 5%–50% of their total number, and in the other pulses such bent paths could not be observed because there is even no streamer or cathode-directed spark leader in diffuse discharges. In our opinion, such propagation of the positive streamer and the cathode-directed spark leader at some angle to the background electric field lines owes to different increase rates of the electron density in different regions of the discharge volume under REP DD conditions. Therefore, during the formation of a REP DD, the increase of the electron density is inhomogeneous and nonsimultaneous, resulting in an electron density gradient at the ionization wave front.

  10. Bent paths of a positive streamer and a cathode-directed spark leader in diffuse discharges preionized by runaway electrons

    International Nuclear Information System (INIS)

    Zhang, Cheng; Shao, Tao; Wang, Ruixue; Yan, Ping; Tarasenko, Viktor F.; Beloplotov, Dmitry V.; Lomaev, Mikhail I.; Sorokin, Dmitry A.

    2015-01-01

    Diffuse discharges preionized by runaway electrons can produce large-area homogeneous discharges at elevated pressures, which is an intriguing phenomenon in the physics of pulsed discharges. In this paper, runaway-electron-preionized diffuse discharge (REP DD) was obtained in a wide pressure range (0.05–0.25 MPa), and under certain conditions a positive streamer and a cathode-directed spark leader could be observed to propagate at some angles to the applied (background) electric field lines. For a 16-mm gap at an air pressure of 0.08–0.1 MPa, the percentage of pulses in which such propagation is observed is about 5%–50% of their total number, and in the other pulses such bent paths could not be observed because there is even no streamer or cathode-directed spark leader in diffuse discharges. In our opinion, such propagation of the positive streamer and the cathode-directed spark leader at some angle to the background electric field lines owes to different increase rates of the electron density in different regions of the discharge volume under REP DD conditions. Therefore, during the formation of a REP DD, the increase of the electron density is inhomogeneous and nonsimultaneous, resulting in an electron density gradient at the ionization wave front

  11. Simulated UO{sub 2} fuel containing CsI by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wangle, T. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, Praha 1, 115 19 (Czech Republic); Tyrpekl, V. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Cologna, M., E-mail: marco.cologna@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany); Somers, J. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, 76125 Karlsruhe (Germany)

    2015-11-15

    Herein, an innovative preparation procedure has been deployed enabling, for the first time, the incorporation of volatile fission product simulant into highly dense nuclear fuel pellets. Highly volatile fission products were embedded in a dense UO{sub 2} matrix in the form of CsI by simply mixing starting materials and consolidation in a Spark Plasma Sintering step at 1000 °C with a 5 min dwell time. CsI particles were evenly distributed throughout the pellet and were located at the grain boundaries. The sintering rate is dependent on the O/U ratio of the powder. Addition of CsI also acts as a sintering aid, reducing the temperature of maximum densification. - Highlights: • A new method was developed to incorporation of volatile fission products simulants into dense nuclear fuel pellets. • CsI doped UO{sub 2} pellets were synthetized for the first time, by Spark Plasma Sintering. • The sintering rate in Spark Plasma Sintering is dependent on the O/U ratio of UO{sub 2+x}.

  12. X-ray spectra of He-like ions of Ga and Ge, excited in the low-inductance spark plasma

    International Nuclear Information System (INIS)

    Aglitsky, E.V.; Antsiferov, P.S.; Panin, A.M.

    1984-01-01

    The spectra of Ga XXX and Ge XXXI ions in the interval 1.2-1.4 A excited in the low-inductance vacuum spark plasma have been obtained for the first time. The resonance line 1s 2 -1s2p of Ga XXX and Ge XXXI and a group of satellites, corresponding to transitions in Ga XXIX and Ge XXX can be seen distinctly in the spectra. The spectra were obtained by an electronic-optical image-intensifier tube for one discharge. (orig.)

  13. Consolidation of W–Ta composites: Hot isostatic pressing and spark and pulse plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Dias, M., E-mail: marta.dias@itn.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Guerreiro, F. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Correia, J.B. [LNEG, Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 1649-038 Lisboa (Portugal); Galatanu, A. [National Institute of Materials Physics, Atomistilor 105 bis Bucharest-Magurele, 077125 Ilfov (Romania); Rosiński, M. [Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland); Monge, M.A.; Munoz, A. [Departamento de Física, Univerdidad Carlos III de Madrid, Avd. de la Universidad 30, 28911 Madrid (Spain); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Carvalho, P.A. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2015-10-15

    Highlights: • Consolidation of W–Ta composites using three techniques: HIP, SPS and PPS. • Comparison of consolidation methods in terms of W–Ta interdiffusion and densification. • Microstructure analysis in terms of oxides formation. - Abstract: Composites consisting of tantalum fiber/powder dispersed in a nanostructured W matrix have been consolidated by spark and pulse plasma sintering as well as by hot isostatic pressing. The microstructural observations revealed that the tungsten–tantalum fiber composites consolidated by hot isostatic pressing and pulse plasma sintering presented a continuous layer of Ta{sub 2}O{sub 5} phase at the W/Ta interfaces, while the samples consolidated by spark plasma sintering evidenced a Ta + Ta{sub 2}O{sub 5} eutectic mixture due to the higher temperature of this consolidation process. Similar results have been obtained for the tungsten–tantalum powder composites. A (W, Ta) solid solution was detected around the prior nanostructured W particles in tungsten–tantalum powder composites consolidated by spark and pulse plasma sintering. Higher densifications were obtained for composites consolidated by hot isostatic pressing and pulse plasma sintering.

  14. Spark plasma sintering and microwave electromagnetic properties of MnFe{sub 2}O{sub 4} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Penchal Reddy, M., E-mail: drlpenchal@gmail.com [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Mohamed, A.M.A. [Center for Advanced Materials, Qatar University, Doha 2713 (Qatar); Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 4372 (Egypt); Venkata Ramana, M. [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Zhou, X.B.; Huang, Q. [Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Ningbo 315201 (China)

    2015-12-01

    MnFe{sub 2}O{sub 4} ferrite powder was synthesized by a facile one-pot hydrothermal route and then consolidated into dense nanostructured compacts by the spark plasma sintering (SPS) technique. The effect of sintering temperature, on densification, morphology, magnetic and microwave absorption properties was examined. Spark plasma sintering resulted in uniform microstructure, as well as maximum relative density of 98%. The magnetic analysis indicated that the MnFe{sub 2}O{sub 4} ferrite nanoparticles showed ferrimagnetic behavior. Moreover, the dielectric loss and magnetic loss properties of MnFe{sub 2}O{sub 4} ferrite nanoparticles were both enhanced due to its better dipole polarization, interfacial polarization and shape anisotropy. It is believed that such spark plasma sintered ceramic material will be applied widely in microwave absorbing area. - Highlights: • Successful synthesis of dense MnFe{sub 2}O{sub 4} ceramics using spark plasma sintering. • Lower temperature and shorter sintering time, compared to conventional methods. • Optimal sintering condition was achieved. • The magnetic properties of the sintered samples are sensitive to the density and microstructure.

  15. Radiation-MHD simulations for the development of a spark discharge channel.

    Energy Technology Data Exchange (ETDEWEB)

    Niederhaus, John Henry; Jorgenson, Roy E.; Warne, Larry K.; Chen, Kenneth C.

    2017-04-01

    The growth of a cylindrical s park discharge channel in water and Lexan is studied using a series of one - dimensional simulations with the finite - element radiation - magnetohydrodynamics code ALEGRA. Computed solutions are analyzed in order to characterize the rate of growth and dynamics of the spark c hannels during the rising - current phase of the drive pulse. The current ramp rate is varied between 0.2 and 3.0 kA/ns, and values of the mechanical coupling coefficient K p are extracted for each case. The simulations predict spark channel expansion veloc ities primarily in the range of 2000 to 3500 m/s, channel pressures primarily in the range 10 - 40 GPa, and K p values primarily between 1.1 and 1.4. When Lexan is preheated, slightly larger expansion velocities and smaller K p values are predicted , but the o verall behavior is unchanged.

  16. Effects of solution volume on hydrogen production by pulsed spark discharge in ethanol solution

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Y. B.; Sun, B., E-mail: sunb88@dlmu.edu.cn; Zhu, X. M.; Yan, Z. Y.; Liu, H.; Liu, Y. J. [College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026 (China)

    2016-07-15

    Hydrogen production from ethanol solution (ethanol/water) by pulsed spark discharge was optimized by varying the volume of ethanol solution (liquid volume). Hydrogen yield was initially increased and then decreased with the increase in solution volume, which achieved 1.5 l/min with a solution volume of 500 ml. The characteristics of pulsed spark discharge were studied in this work; the results showed that the intensity of peak current, the rate of current rise, and energy efficiency of hydrogen production can be changed by varying the volume of ethanol solution. Meanwhile, the mechanism analysis of hydrogen production was accomplished by monitoring the process of hydrogen production and the state of free radicals. The analysis showed that decreasing the retention time of gas production and properly increasing the volume of ethanol solution can enhance the hydrogen yield. Through this research, a high-yield and large-scale method of hydrogen production can be achieved, which is more suitable for industrial application.

  17. Formation and properties of two-phase bulk metallic glasses by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xie Guoqiang, E-mail: xiegq@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Louzguine-Luzgin, D.V. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Inoue, Akihisa [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2011-06-15

    Research highlights: > Two-phase bulk metallic glasses with high strength and good soft magnetic properties as well as satisfying large-size requirements were produced by spark plasma sintering. > Effects of sintering temperature on thermal stability, microstructure, mechanical and magnetic properties were investigated. > Densified samples were obtained by the spark plasma sintering at above 773 K. - Abstract: Using a mixture of the gas-atomized Ni{sub 52.5}Nb{sub 10}Zr{sub 15}Ti{sub 15}Pt{sub 7.5} and Fe{sub 73}Si{sub 7}B{sub 17}Nb{sub 3} glassy alloy powders, we produced the two-phase bulk metallic glass (BMG) with high strength and good soft magnetic properties as well as satisfying large-size requirements by the spark plasma sintering (SPS) process. Two kinds of glassy particulates were homogeneously dispersed each other. With an increase in sintering temperature, density of the produced samples increased, and densified samples were obtained by the SPS process at above 773 K. Good bonding state among the Ni- and Fe-based glassy particulates was achieved.

  18. A comparative study on the activity of TiO2 in pulsed plasma under different discharge conditions

    Science.gov (United States)

    Lijuan, DUAN; Nan, JIANG; Na, LU; Kefeng, SHANG; Jie, LI; Yan, WU

    2018-05-01

    In the present study, a combination of pulsed discharge plasma and TiO2 (plasma/TiO2) has been developed in order to study the activity of TiO2 by varying the discharge conditions of pulsed voltage, discharge mode, air flow rate and solution conductivity. Phenol was used as the chemical probe to characterize the activity of TiO2 in a pulsed discharge system. The experimental results showed that the phenol removal efficiency could be improved by about 10% by increasing the applied voltage. The phenol removal efficiency for three discharge modes in the plasma-discharge-alone system was found to be highest in the spark mode, followed by the spark–streamer mode and finally the streamer mode. In the plasma/TiO2 system, the highest catalytic effect of TiO2 was observed in the spark–streamer discharge mode, which may be attributed to the favorable chemical and physical effects from the spark–streamer discharge mode, such as ultraviolet light, O3, H2O2, pyrolysis, shockwaves and high-energy electrons. Meanwhile, the optimal flow rate and conductivity were 0.05 m3 l‑1 and 10 μS cm‑1, respectively. The main phenolic intermediates were hydroquinone, catechol, and p-benzoquinone during the discharge treatment process. A different phenol degradation pathway was observed in the plasma/TiO2 system as compared to plasma alone. Analysis of the reaction intermediates demonstrated that p-benzoquinone reduction was selectively catalyzed on the TiO2 surface. The effective decomposition of phenol constant (D e) increased from 74.11% to 79.16% when TiO2 was added, indicating that higher phenol mineralization was achieved in the plasma/TiO2 system.

  19. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    OpenAIRE

    Pai , David ,; Lacoste , Deanna ,; Laux , C.

    2010-01-01

    International audience; In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determine...

  20. Determination of trace amounts of impurities in molybdenum by spark source and glow discharge mass spectrometry

    International Nuclear Information System (INIS)

    Saito, Morimasa

    1994-01-01

    For the determination of trace and ultra-trace amounts of impurities in high-purity molybdenum, spark source mass spectrometry and glow discharge mass spectrometry were studied. In spark source mass spectrometry using the metal probe method, the liquid-helium cryogenic pump was used in order to protect the surface of the samples from oxidation. The theoretical relative sensitivity factors (Mo=1) calculated from physical properties were used. The analytical results obtained for molybdenum tablet and high-purity molybdenum were in good agreement with those obtained by other methods (atomic absorption spectrometry and others). In glow discharge mass spectrometry, the relative sensitivity factors were calculated by using the results obtained by spark source mass spectrometry and atomic absorption spectrometry, and this method was applied to the determination of ultra-trace amounts of impurities in ultra high-purity molybdenum and gave the satisfactory results. The detection limits (2σ, n=10) in the integration time of 600 s for U and Th were 0.6 ppb and 0.3 ppb, and the values for Al, Si, Cr, Mn and Cu were in the range of 10 ppb to 0.5 ppb. (author)

  1. Generation of copper, nickel, and CuNi alloy nanoparticles by spark discharge

    International Nuclear Information System (INIS)

    Muntean, Alex; Wagner, Moritz; Meyer, Jörg; Seipenbusch, Martin

    2016-01-01

    The generation of copper, nickel, and copper-nickel alloy nanoparticles by spark discharge was studied, using different bespoke alloy feedstocks. Roughly spherical particles with a primary particle Feret diameter of 2–10 nm were produced and collected in agglomerate form. The copper-to-nickel ratios determined by Inductively coupled plasma mass spectrometry (ICP-MS), and therefore averaged over a large number of particles, matched the nominal copper content quite well. Further investigations showed that the electrode compositions influenced the evaporation rate and the primary particle size. The evaporation rate decreased with increasing copper content, which was found to be in good accordance with the Llewellyn-Jones model. However, the particle diameter was increasing with an increasing copper content, caused by a decrease in melting temperature due to the lower melting point of copper. Furthermore, the alloy compositions on the nanoscale were investigated via EDX. The nanoparticles exhibited almost the same composition as the used alloy feedstock, with a deviation of less than 7 percentage points. Therefore, no segregation could be detected, indicating the presence of a true alloy even on the nanoscale.

  2. Generating Carbon Tubes and Films from Lead and Cadmium Wires During Underwater Spark Discharges

    International Nuclear Information System (INIS)

    Taka-aki Matsumoto

    2000-01-01

    In general, no nuclear reactions between charged particles would be possible in a low-energy region. However, many experimental data of nuclear transmutation with low energy were recently reported related to so-called cold fusion. This paper describes some kinds of low-energy nuclear reactions (LENRs), which could be induced during an underwater spark discharge (USD) with only(approx)120 V. The mechanisms of the extraordinary nuclear transmutation can be explained by the Nattoh model. The electron bonding of sparks, which was a special state of atomic clusters, was so strong that multibody nuclear reactions such as nuclear collapse[called electro-nuclear collapse (ENC)] could take place in the spark. Because of ENC, completely broken materials could be again regenerated as conventional elements. The film product was considered to be made by a spherical explosion of a small black hole and the tube by a rotational eruption of a small white hole, both of which resulted from ENC

  3. Enhanced shock wave generation via pre-breakdown acceleration using water electrolysis in negative streamer pulsed spark discharges

    Science.gov (United States)

    Lee, Kern; Chung, Kyoung-Jae; Hwang, Y. S.

    2018-03-01

    This paper presents a method for enhancement of shock waves generated from underwater pulsed spark discharges with negative (anode-directed) subsonic streamers, for which the pre-breakdown process is accelerated by preconditioning a gap with water electrolysis. Hydrogen microbubbles are produced at the cathode by the electrolysis and move towards the anode during the preconditioning phase. The numbers and spatial distributions of the microbubbles vary with the amplitude and duration of each preconditioning pulse. Under our experimental conditions, the optimum pulse duration is determined to be ˜250 ms at a pulse voltage of 400 V, where the buoyancy force overwhelms the electric force and causes the microbubbles to be swept out from the water gap. When a high-voltage pulse is applied to the gap just after the preconditioning pulse, the pre-breakdown process is significantly accelerated in the presence of the microbubbles. At the optimum preconditioning pulse duration, the average breakdown delay is reduced by 87% and, more importantly, the energy consumed during the pre-breakdown period decreases by 83%. This reduced energy consumption during the pre-breakdown period, when combined with the morphological advantages of negative streamers, such as thicker and longer stalks, leads to a significant improvement in the measured peak pressure (˜40%) generated by the underwater pulsed spark discharge. This acceleration of pre-breakdown using electrolysis overcomes the biggest drawback of negative subsonic discharges, which is slow vapor bubble formation due to screening effects, and thus enhances the efficiency of the shock wave generation process using pulsed spark discharges in water.

  4. Primordial Synthesis of Amines and Amino Acids in a 1958 Miller H2S-Rich Spark Discharge Experiment

    Science.gov (United States)

    Parker, Eric T.; Cleaves, Henderson J.; Dworkin, Jason P.; Glavin, Daniel P.; Callahan, Michael; Aubrey, Andrew; Lazcano, Antonio; Bada, Jeffrey L.

    2011-01-01

    Archived samples from a previously unreported 1958 Stanley Miller electric discharge experiment containing hydrogen sulfide (H2S) were recently discovered and analyzed using high-performance liquid chromatography and time-of-flight mass spectrometry. We report here the detection and quantification of primary amine-containing compounds in the original sample residues, which were produced via spark discharge using a gaseous mixture of H2S, CH4, NH3, and CO2. A total of 23 amino acids and 4 amines, including 7 organosulfur compounds, were detected in these samples. The major amino acids with chiral centers are racemic within the accuracy of the measurements, indicating that they are not contaminants introduced during sample storage. This experiment marks the first synthesis of sulfur amino acids from spark discharge experiments designed to imitate primordia! environments. The relative yield of some amino acids, in particular the isomers of aminobutyric acid, are the highest ever found in a spark discharge experiment. The simulated primordial conditions used by Miller may serve as a model for early volcanic plume chemistry and provide insight to the possible roles such plumes may have played in abiotic organic synthesis. Additionally, the overall abundances of the synthesized amino acids in the presence of H2S are very similar to the abundances found in some carbonaceous meteorites, suggesting that H2S may have played an important role in prebiotic reactions in early solar system environments.

  5. Spark Channels

    Energy Technology Data Exchange (ETDEWEB)

    Haydon, S. C. [Department of Physics, University of New England, Armidale, NSW (Australia)

    1968-04-15

    A brief summary is given of the principal methods used for initiating spark channels and the various highly time-resolved techniques developed recently for studies with nanosecond resolution. The importance of the percentage overvoltage in determining the early history and subsequent development of the various phases of the growth of the spark channel is discussed. An account is then given of the recent photographic, oscillographic and spectroscopic investigations of spark channels initiated by co-axial cable discharges of spark gaps at low [{approx} 1%] overvoltages. The phenomena observed in the development of the immediate post-breakdown phase, the diffuse glow structure, the growth of the luminous filament and the final formation of the spark channel in hydrogen are described. A brief account is also given of the salient features emerging from corresponding studies of highly overvolted spark gaps in which the spark channel develops from single avalanche conditions. The essential differences between the two types of channel formation are summarized and possible explanations of the general features are indicated. (author)

  6. Post-treatment of Plasma-Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering

    Science.gov (United States)

    Chraska, T.; Pala, Z.; Mušálek, R.; Medřický, J.; Vilémová, M.

    2015-04-01

    Alumina-zirconia ceramic material has been plasma sprayed using a water-stabilized plasma torch to produce free standing coatings. The as-sprayed coatings have very low porosity and are mostly amorphous. The amorphous material crystallizes at temperatures above 900 °C. A spark plasma sintering apparatus has been used to heat the as-sprayed samples to temperatures above 900 °C to induce crystallization, while at the same time, a uniaxial pressure of 80 MPa has been applied to their surface. After such post-treatment, the ceramic samples are crystalline and have very low open porosity. The post-treated material exhibits high hardness and significantly increased flexural strength. The post-treated samples have a microstructure that is best described as nanocomposite with the very small crystallites embedded in an amorphous matrix.

  7. Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2017-01-01

    A gliding arc discharge was generated in a turbulent air flow at atmospheric pressure driven by a 35 kHz alternating current (AC) electric power. The spatiotemporally resolved characteristics of the gliding arc discharge, including glow-type discharges, spark-type discharges, short-cutting events...... and transitions among the different types of discharges, were investigated using simultaneously optical and electrical diagnostics. The glow-type discharge shows sinusoidal-like voltage and current waveforms with a peak current of hundreds of milliamperes. The frequency of the emission intensity variation...... of the glow-type discharge is the same as that of the electronic power dissipated in the plasma column. The glow-type discharge can transfer into a spark discharge characterized by a sharp peak current of several amperes and a sudden increase of the brightness in the plasma column. Transitions can also...

  8. Elements of plasma technology

    CERN Document Server

    Wong, Chiow San

    2016-01-01

    This book presents some fundamental aspects of plasma technology that are important for beginners interested to start research in the area of plasma technology . These include the properties of plasma, methods of plasma generation and basic plasma diagnostic techniques. It also discusses several low cost plasma devices, including pulsed plasma sources such as plasma focus, pulsed capillary discharge, vacuum spark and exploding wire; as well as low temperature plasmas such as glow discharge and dielectric barrier discharge which the authors believe may have potential applications in industry. The treatments are experimental rather than theoretical, although some theoretical background is provided where appropriate. The principles of operation of these devices are also reviewed and discussed.

  9. Preparation of Ni-Ti shape memory alloy by spark plasma sintering method

    Czech Academy of Sciences Publication Activity Database

    Salvetr, P.; Kubatík, Tomáš František; Novák, P.

    2016-01-01

    Roč. 16, č. 4 (2016), s. 804-808 ISSN 1213-2489 Institutional support: RVO:61389021 Keywords : Ni-Ti alloy * Powder metallurgy * Reactive sintering * Spark plasma sintering Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  10. Influence of sintering temperature on mechanical properties of spark plasma sintered pre-alloyed Ti-6Al-4 V powder

    Energy Technology Data Exchange (ETDEWEB)

    Muthuchamy, A.; Patel, Paridh; Rajadurai, M. [VIT Univ., Vellore, Tamil Nadu (India); Chaurisiya, Jitendar K. [NIT, Suratkal (India); Annamalai, A. Raja [VIT Univ., Vellore, Tamil Nadu (India). Centre for Innovative Manufacturing Research

    2018-04-01

    Spark plasma sintering provides faster heating that can create fully, or near fully, dense samples without significant grain growth. In this study, pre-alloyed Ti-6Al-4 V powder compact samples produced through field assisted sintering in a spark plasma sintering machine are compared as a function of consolidation temperature. The effect of sintering temperature on the densification mechanism, microstructural evolution and mechanical properties of spark plasma sintered Ti-6Al-4 V alloy compacts was investigated in detail. The compact, sintered at 1100 C, exhibited near net density, highest hardness and strength as compared to the other compacts processed at a temperature lower than 1100 C.

  11. New spark test device for material characterization

    CERN Document Server

    Kildemo, Morten

    2004-01-01

    An automated spark test system based on combining field emission and spark measurements, exploiting a discharging capacitor is investigated. In particular, the remaining charge on the capacitor is analytically solved assuming the field emitted current to follow the Fowler Nordheim expression. The latter allows for field emission measurements from pA to A currents, and spark detection by complete discharge of the capacitor. The measurement theory and experiments on Cu and W are discussed.

  12. Thermoelectric property of fine-grained CoSb3 skutterudite compound fabricated by mechanical alloying and spark plasma sintering

    International Nuclear Information System (INIS)

    Liu Weishu; Zhang Boping; Li Jingfeng; Zhao Lidong

    2007-01-01

    Skutterudite CoSb 3 polycrystalline materials were prepared using a combined process of mechanical alloying (MA) and spark plasma sintering (SPS). The influence of SPS temperature on the thermoelectric properties was focused in this work with a special emphasis on the analysis of the size effects of grains. The average grain sizes decreased from 300 to 50 nm with decreasing SPS temperatures from 600 to 300 deg. C. The electrical resistivities of samples spark plasma sintered at 300-600 deg. C all decreased with increasing temperature, indicating a classic intrinsic conduction behaviour of semiconductors. The samples spark plasma sintered at 300-500 deg. C showed a positive Seebeck coefficient while the sample spark plasma sintered at 600 deg. C showed a negative Seebeck coefficient. The room-temperature thermal conductivities were reduced from 4.30 to 2.92 W m -1 K -1 as the grain sizes were decreased from 300 to 100 nm corresponding to SPS at 600 and 400 deg. C, respectively. The present work indicates that MA and SPS is a good combination for fabricating fine-grained CoSb 3 thermoelectric materials

  13. Powder-metallurgy preparation of NiTi shape-memory alloy using mechanical alloying and spark-plasma sintering.

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Moravec, H.; Vojtěch, V.; Knaislová, A.; Školáková, A.; Kubatík, Tomáš František; Kopeček, Jaromír

    2017-01-01

    Roč. 51, č. 1 (2017), s. 141-144 ISSN 1580-2949 R&D Projects: GA ČR(CZ) GA14-03044S Institutional support: RVO:61389021 ; RVO:68378271 Keywords : mechanical alloying * spark plasma sintering * NiTi * shape memory alloy Subject RIV: JG - Metallurgy; JG - Metallurgy (FZU-D) OBOR OECD: Materials engineering ; Materials engineering (FZU-D) Impact factor: 0.436, year: 2016 https://www.researchgate.net/publication/313900224_Powder-metallurgy_preparation_of_NiTi_shape-memory_alloy_using_mechanical_alloying_and_spark-plasma_sintering

  14. Low temperature spark plasma sintering of YIG powders

    International Nuclear Information System (INIS)

    Fernandez-Garcia, L.; Suarez, M.; Menendez, J.L.

    2010-01-01

    A transition from a low to a high spin state in the magnetization saturation between 1000 and 1100 o C calcination temperature is observed in YIG powders prepared by oxides mixture. Spark plasma sintering of these powders between 900 and 950 o C leads to dense samples with minimal formation of YFeO 3 , opening the way to co-sintering of YIG with metals or metallic alloys. The optical properties depend on the sintering stage: low (high) density samples show poor (bulk) optical absorption.

  15. Optimization of process parameters for spark plasma sintering of nano structured SAF 2205 composite

    Directory of Open Access Journals (Sweden)

    Samuel Ranti Oke

    2018-04-01

    Full Text Available This research optimized spark plasma sintering (SPS process parameters in terms of sintering temperature, holding time and heating rate for the development of a nano-structured duplex stainless steel (SAF 2205 grade reinforced with titanium nitride (TiN. The mixed powders were sintered using an automated spark plasma sintering machine (model HHPD-25, FCT GmbH, Germany. Characterization was performed using X-ray diffraction and scanning electron microscopy. Density and hardness of the composites were investigated. The XRD result showed the formation of FeN0.068. SEM/EDS revealed the presence of nano ranged particles of TiN segregated at the grain boundaries of the duplex matrix. A decrease in hardness and densification was observed when sintering temperature and heating rate were 1200 °C and 150 °C/min respectively. The optimum properties were obtained in composites sintered at 1150 °C for 15 min and 100 °C/min. The composite grades irrespective of the process parameters exhibited similar shrinkage behavior, which is characterized by three distinctive peaks, which is an indication of good densification phenomena. Keywords: Spark plasma sintering, Duplex stainless steel (SAF 2205, Titanium nitride (TiN, Microstructure, Density, Hardness

  16. Compaction of lithium-silicate ceramics using spark plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Kubatík, Tomáš František; Lukáč, František; Mušálek, Radek; Brožek, Vlastimil; Stehlíková, K.; Chráska, Tomáš

    2017-01-01

    Roč. 61, č. 1 (2017), s. 40-44 ISSN 0862-5468 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Li2Si2O5 * Li2SiO3 * Spark plasma sintering (SPS) * Quantitative Rietveld refinement * X-ray diffraction (XRD) Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 0.439, year: 2016 http://www.ceramics-silikaty.cz/index.php?page=cs_detail_doi&id=789

  17. Plasma diagnostics discharge parameters and chemistry

    CERN Document Server

    Auciello, Orlando

    1989-01-01

    Plasma Diagnostics, Volume 1: Discharge Parameters and Chemistry covers seven chapters on the important diagnostic techniques for plasmas and details their use in particular applications. The book discusses optical diagnostic techniques for low pressure plasmas and plasma processing; plasma diagnostics for electrical discharge light sources; as well as Langmuir probes. The text also describes the mass spectroscopy of plasmas, microwave diagnostics, paramagnetic resonance diagnostics, and diagnostics in thermal plasma processing. Electrical engineers, nuclear engineers, microwave engineers, che

  18. Preliminary investigation into the simulation of a laser-induced plasma by means of a floating object in a spark gap

    CSIR Research Space (South Africa)

    West, NJ

    2007-08-01

    Full Text Available In this research, an orthogonally laser-triggered spark gap is investigated. The laser beam is directed in the region of a 30mm spark gap at 90 degrees to the gap and focused on the axis. The influence of plasma position within the spark gap...

  19. Biocompatibility assessment of spark plasma-sintered alumina-titanium cermets.

    Science.gov (United States)

    Guzman, Rodrigo; Fernandez-García, Elisa; Gutierrez-Gonzalez, Carlos F; Fernandez, Adolfo; Lopez-Lacomba, Jose Luis; Lopez-Esteban, Sonia

    2016-01-01

    Alumina-titanium materials (cermets) of enhanced mechanical properties have been lately developed. In this work, physical properties such as electrical conductivity and the crystalline phases in the bulk material are evaluated. As these new cermets manufactured by spark plasma sintering may have potential application for hard tissue replacements, their biocompatibility needs to be evaluated. Thus, this research aims to study the cytocompatibility of a novel alumina-titanium (25 vol. % Ti) cermet compared to its pure counterpart, the spark plasma sintered alumina. The influence of the particular surface properties (chemical composition, roughness and wettability) on the pre-osteoblastic cell response is also analyzed. The material electrical resistance revealed that this cermet may be machined to any shape by electroerosion. The investigated specimens had a slightly undulated topography, with a roughness pattern that had similar morphology in all orientations (isotropic roughness) and a sub-micrometric average roughness. Differences in skewness that implied valley-like structures in the cermet and predominance of peaks in alumina were found. The cermet presented a higher surface hydrophilicity than alumina. Any cytotoxicity risk associated with the new materials or with the innovative manufacturing methodology was rejected. Proliferation and early-differentiation stages of osteoblasts were statistically improved on the composite. Thus, our results suggest that this new multifunctional cermet could improve current alumina-based biomedical devices for applications such as hip joint replacements. © The Author(s) 2015.

  20. Investigation of plasma potential and pulsed discharge characteristics in enhanced glow discharge plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Li Liuhe; Lu Qiuyuan; Fu, Ricky K.Y.; Chu, Paul K.

    2009-01-01

    Enhanced glow discharge plasma immersion ion implantation and deposition (EGD-PII and D) does not require external plasma sources. In this technique, the plasma is produced by self-glow discharge when a high negative voltage is applied to the sample. The small-area, pointed-shape hollow anode and large area tabular cathode form an electron-focused electric field. Using a special electric field design, the electrons from either the plasma or target (secondary electrons) are focused to a special hollow anode. As a result of the special electron-focusing field, the self-glow discharge process can be enhanced to achieve effective ion implantation into the substrate. In this work, the plasma potential distribution is investigated in details and the possible pulse discharge mechanism is discussed. The unique characteristics of the pulsed plasma and plasma extinction are studied.

  1. Welding of titanium and nickel alloy by combination of explosive welding and spark plasma sintering technologies

    Energy Technology Data Exchange (ETDEWEB)

    Malyutina, Yu. N., E-mail: iuliiamaliutina@gmail.com; Bataev, A. A., E-mail: bataev@adm.nstu.ru; Shevtsova, L. I., E-mail: edeliya2010@mail.ru [Novosibirsk State Technical University, Novosibirsk, 630073 (Russian Federation); Mali, V. I., E-mail: vmali@mail.ru; Anisimov, A. G., E-mail: anis@hydro.nsc.ru [Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, 630090 (Russian Federation)

    2015-10-27

    A possibility of titanium and nickel-based alloys composite materials formation using combination of explosive welding and spark plasma sintering technologies was demonstrated in the current research. An employment of interlayer consisting of copper and tantalum thin plates makes possible to eliminate a contact between metallurgical incompatible titanium and nickel that are susceptible to intermetallic compounds formation during their interaction. By the following spark plasma sintering process the bonding has been received between titanium and titanium alloy VT20 through the thin powder layer of pure titanium that is distinguished by low defectiveness and fine dispersive structure.

  2. Spark plasma sintering of SiC and ZrC

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, F.; Galy, J. [CEMES-CNRS, 29 rue Jeanne Marvig BP94347 31055 Toulouse Cx 4 (France); Allemand, A. [CEA Saclay, DRT/DTEN/S3ME/LTMEx, 91191 Gif-sur-Yvette (France)

    2005-07-01

    Spark plasma sintering a relative new technique allows sintering material powders in a reduced time compared to formal process of densification. In order to analyse densification mechanisms and to compare with hot isostatic pressing technique, pellets of silicon carbide and zirconium carbide were sintered by HIP and by SPS from 1750 to 1950 deg. C, with different pressures (50 to 75 MPa) and various holding times (0 to 10 min). Their densities were determined and their microstructures were SEM analysed. (authors)

  3. Spark plasma-sintered Sn-based intermetallic alloys and their Li-storage studies

    CSIR Research Space (South Africa)

    Nithyadharseni, P

    2016-06-01

    Full Text Available In the present study, SnSb, SnSb/Fe, SnSb/Co, and SnSb/Ni alloy powders processed by co-precipitation were subjected to spark plasma-sintering (SPS) at 400 °C for 5 min. The compacts were structurally and morphologically characterized by X...

  4. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    Science.gov (United States)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-05-01

    In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.

  5. Magnetic microstructure and magnetic properties of spark plasma sintered NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.L., E-mail: hyl1019_lin@163.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Wang, Y.; Hou, Y.H.; Wang, Y.L.; Wu, Y.; Ma, S.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Z.W.; Zeng, D.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Tian, Y.; Xia, W.X. [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhong, Z.C., E-mail: zzhong2014@sina.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2016-02-01

    Nanocrystalline NdFeB magnets were prepared by spark plasma sintering (SPS) technique using melt-spun ribbons as starting materials. A distinct two-zone structure with coarse grain zone and fine grain zone was formed in the SPSed magnets. Multi-domain particle in coarse grain zone and exchange interaction domain for fine grain zone were observed. Intergranular non-magnetic phase was favorable to improve the coercivity due to the enhancement of domain wall pinning effects and increased exchange-decouple. The remanent polarization of 0.83 T, coercivity of 1516 kA/m, and maximum energy product of 118 kJ/m{sup 3} are obtained for an isotropic magnet. - Highlights: • Nanocrystalline NdFeB magnets were prepared by spark plasma sintering technique. • Multi-domain particle and exchange interaction domain were observed. • Magnetic microstructure and their relation to the properties were investigated.

  6. Tesla's coherent plasma discharge -and- a plan for megavolts at Megahertz

    International Nuclear Information System (INIS)

    Nichson, J.D.

    1987-01-01

    In his lecture on Experiments With Alternate Currents of High Potential and High Frequency before the Institute of Electrical Engineers in London (1892), Tesla reports a discharge through a partially evacuated air tube of 1 meter length and 1 inch diameter. It is characterized by the following properties: (1) The filamentary discharge may be locally displaced by a nearby dielectric body or a magnet. (2) When the filament is released, it demonstrates behaviour similar to that of a string which suspends a weight, including the formation of standing waves with distinct nodes. (3) Its decay time is on the order of 8 minutes. (4) The vibrating filament may be split with a magnet to produce two vibrating filaments. (5) This effect could only be formed with a dynamo-driven coil at low air pressures in the tube. The disruptive discharge coil (coloquially a Tesla Coil) failed to produce the effect with its superior voltage and frequency range. It is here proposed that this phenomenon is related to positive leader formation. A model for this, consistent for AC and DC discharges, is advanced. Also, a novel method for regulation of a nitrogen-filled spark gap will be proposed. It is hoped that this new device will produce smooth, uniform discharges from the Tesla Coil. This, if theory is correct on many points, will reproduce Tesla's coherent plasma at higher pressures in free-standing form, and will allow other novel effects

  7. Fe-Zn intermetallic phases prepared by diffusion annealing and spark-plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Pokorný, P.; Cinert, Jakub; Pala, Zdeněk

    2016-01-01

    Roč. 50, č. 2 (2016), s. 253-256 ISSN 1580-2949 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Fe-Zn intermetallics * spark-plasma sintering * diffusion annealing * phase composition * hardness Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 0.436, year: 2016

  8. Beam and hot spot formation in a low impedance driven vacuum spark

    International Nuclear Information System (INIS)

    Chuaqui, H.; Favre, M.; Soto, L.; Wyndham, E.

    1990-01-01

    Observations of a vacuum spark discharge plasma when driven by a 1.5 ω, 120 ns switched coaxial line at 60 kV open circuit voltage are made. A comparison of behaviour is made when a Nd: YAG laser over a range of energies is focussed either onto the anode or onto the cathode surface. A significantly different behaviour is seen if the line gap is shorted out allowing the sinusoidal voltage from the Marx to be applied to the electrodes. Hot spot formation with associated anode plasma are seen in this last case. (Author)

  9. Processing of pure titanium containing titanium-based reinforcing ceramics additives using spark plasma sintering

    Directory of Open Access Journals (Sweden)

    Mondiu Olayinka DUROWOJU

    2017-06-01

    Full Text Available The densification behaviour, microstructural changes and hardness characteristics during spark plasma sintering of CP-Ti reinforced with TiC, TiN, TiCN and TiB2 were investigated. Commercially pure Ti powders were dry mixed with varied amounts (2.5 and 5 wt. % of the ceramic additives using a T2F Turbula mixer for 5 h and at a speed of 49 rpm. The blended composite powders were then sintered using spark plasma sintering system (model HHPD-25 from FCT Germany at a heating rate of 100oC min-1, dwell time of 5 min and sintering temperature of 950ºC. The sintering of CP-Ti was used as a base study to select the proper spark plasma sintering temperature for full density. Densification was monitored through analysis of the recorded punch displacement and the measured density of the sintered samples using Archimedes method. High densities ranging from 97.8% for 5% TiB2 addition to 99.6% for 5% TiCN addition were achieved at a relatively low temperature of 950°C. Microstructural analyses show a uniform distribution of the additives and finer structure showing their inhibitive effect on grain growth. An improved hardness was observed in all the cases with highest values obtained with TiCN as a result of the combined effect of TiC and TiN. A change in the fracture mode from trans granular to intergranular was also observed.

  10. The discharge characteristics in nitrogen helicon plasma

    Science.gov (United States)

    Zhao, Gao; Wang, Huihui; Si, Xinlu; Ouyang, Jiting; Chen, Qiang; Tan, Chang

    2017-12-01

    Discharge characteristics of helicon plasma in nitrogen and argon-nitrogen mixtures were investigated experimentally by using a Langmuir probe, a B-dot probe, and an optical emission spectrum. Helicon wave discharge is confirmed by the changes of electron density and electromagnetic signal amplitude with the increasing RF power, which shows three discharge stages in nitrogen, corresponding to E-mode, H-mode, and W-mode discharges in helicon plasma, respectively. Discharge images in the radial cross section at different discharge modes through an intensified charge coupled device (ICCD) show a rapid increase in luminous intensity along with the RF power. When the nitrogen discharge is in the W-mode, the images show that the strongest luminance locates near the plasma boundary and no blue core appears in the axial center of tube, which is always observed in argon W-mode discharge. The "big blue" or blue core is a special character in helicon plasma, but it has not been observed in nitrogen helicon plasma. In nitrogen-argon mixtures, a weak blue core is observed in ICCD images since the nitrogen content is increased. The electric field turns to the periphery in the distribution of the radial field and the electron temperature decreases with the increasing nitrogen content, especially when the blue core disappears. The different behaviors of the electron impact and the energy consumption in nitrogen helicon plasma are suggested to be responsible for the decrease in electron energy and the change in the electric field distribution.

  11. Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber

    KAUST Repository

    Wolk, Benjamin

    2013-07-01

    The enhancement of laminar flame development using microwave-assisted spark ignition has been investigated for methane-air mixtures at a range of initial pressures and equivalence ratios in a 1.45. l constant volume combustion chamber. Microwave enhancement was evaluated on the basis of several parameters including flame development time (FDT) (time for 0-10% of total net heat release), flame rise time (FRT) (time for 10-90% of total net heat release), total net heat release, flame kernel growth rate, flame kernel size, and ignitability limit extension. Compared to a capacitive discharge spark, microwave-assisted spark ignition extended the lean and rich ignition limits at all pressures investigated (1.08-7.22. bar). The addition of microwaves to a capacitive discharge spark reduced FDT and increased the flame kernel size for all equivalence ratios tested and resulted in increases in the spatial flame speed for sufficiently lean flames. Flame enhancement is believed to be caused by (1) a non-thermal chemical kinetic enhancement from energy deposition to free electrons in the flame front and (2) induced flame wrinkling from excitation of flame (plasma) instability. The enhancement of flame development by microwaves diminishes as the initial pressure of the mixture increases, with negligible flame enhancement observed above 3. bar. © 2013 The Combustion Institute.

  12. Comparison of hollow cathode discharge plasma configurations

    International Nuclear Information System (INIS)

    Farnell, Casey C; Farnell, Cody C; Williams, John D

    2011-01-01

    Hollow cathodes used in plasma contactor and electric propulsion devices provide electrons for sustaining plasma discharges and enabling plasma bridge neutralization. Life tests show erosion on hollow cathodes exposed to the plasma environment produced in the region downstream of these devices. To explain the observed erosion, plasma flow field measurements are presented for hollow cathode generated plasmas using both directly immersed probes and remotely located plasma diagnostics. Measurements on two cathode discharge configurations are presented: (1) an open, no magnetic field configuration and (2) a setup simulating the discharge chamber environment of an ion thruster. In the open cathode configuration, large amplitude plasma potential oscillations, ranging from 20 to 85 V within a 34 V discharge, were observed using a fast response emissive probe. These oscillations were observed over a dc potential profile that included a well-defined potential hill structure. A remotely located electrostatic analyzer (ESA) was used to measure the energy of ions produced within the plasma, and energies were detected that met, and in some cases exceeded, the peak oscillatory plasma potentials detected by the emissive probe. In the ion thruster discharge chamber configuration, plasma potentials from the emissive probe again agreed with ion energies recorded by the remotely located ESA; however, much lower ion energies were detected compared with the open configuration. A simplified ion-transit model that uses temporal and spatial plasma property measurements is presented and used to predict far-field plasma streaming properties. Comparisons between the model and remote measurements are presented.

  13. Structural and magnetic studies on spark plasma sintered SmCo{sub 5}/Fe bulk nanocomposite magnets

    Energy Technology Data Exchange (ETDEWEB)

    Rama Rao, N.V. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India); Gopalan, R. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India)]. E-mail: rg_gopy@yahoo.com; Manivel Raja, M. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India); Chandrasekaran, V. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India); Chakravarty, D. [International Advanced Research Centre for Powder Metallurgy and New Materials, Hyderabad 500 005 (India); Sundaresan, R. [International Advanced Research Centre for Powder Metallurgy and New Materials, Hyderabad 500 005 (India); Ranganathan, R. [Saha Institute of Nuclear Physics, Kolkata 700 064 (India); Hono, K. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305 0047 (Japan)

    2007-05-15

    SmCo{sub 5}+xwt% Fe (x=0, 5 and 10) nanocomposite powders were synthesized by mechanical milling and were consolidated into bulk shape by spark plasma sintering (SPS) technique. The evolution of structure and magnetic properties were systematically investigated in milled powders as well as in SPS samples. A maximum coercivity of 8.9kOe was achieved in spark plasma sintered SmCo{sub 5}+5wt% Fe sample. The exchange spring interaction between the hard and soft magnetic phases was evaluated using {delta}M-H measurements and the analysis revealed that the SPS sample containing 5wt% Fe had a stronger exchange coupling between the magnetic phases than that of the sample with10wt% Fe.

  14. Beam-plasma discharge in a Kyoto beam-plasma-ion source

    International Nuclear Information System (INIS)

    Ishikawa, J.; Takagi, T.

    1983-01-01

    A beam-plasma type ion source employing an original operating principle has been developed by the present authors. The ion source consists of an ion extraction region with an electron gun, a thin long drift tube as the plasma production chamber, and a primary electron beam collector. An electron beam is effectively utilized for the dual purpose of high density plasma production as a result of beam-plasma discharge, and high current ion beam extraction with ion space-charge compensation. A high density plasma of the order of 10 11 --10 13 cm -3 was produced by virtue of the beam-plasma discharge which was caused by the interaction between a space-charge wave on the electron beam and a high frequency plasma wave. The plasma density then produced was 10 2 --10 3 times the density produced only by collisional ionization by the electron beam. In order to obtain a stable beam-plasma discharge, a secondary electron beam emitted from the electron collector should be utilized. The mechanism of the beam-plasma discharge was analyzed by use of a linear theory in the case of the small thermal energy of the electron beam, and by use of a quasilinear theory in the case of the large thermal energy. High current ion beams of more than 0.1 A were extracted even at a low extraction voltage of 1--5 kV

  15. Nitrogen Heterocycles in Miller-Urey Spark-Discharge Mixtures: Using Chemical Trends to Elucidate Plausible Pre-RNAs on the Early Earth

    Science.gov (United States)

    Rodriguez, L. E.; House, C. H.; Callahan, M. P.

    2017-07-01

    We incubated 53 nitrogen heterocycles with spark-discharge mixtures and found that they react with only a handful of nitriles to yield adducts that may polymerize. Whether these adducts can form a monomer of Peptide Nucleic Acid was investigated.

  16. Taming Instabilities in Plasma Discharges

    International Nuclear Information System (INIS)

    Klinger, T.; Krahnstover, N. O.; Mausbach, T.; Piel, A.

    2000-01-01

    Recent experimental work on taming instabilities in plasma discharges is discussed. Instead of suppressing instabilities, it is desired to achieve control over their dynamics, done by perturbing appropriately the current flow in the external circuit of the discharge. Different discrete and continuous feedback as well as open-loop control schemes are applied. Chaotic oscillations in plasma diodes are controlled using the OGY discrete feedback scheme. This is demonstrated both in experiment and computer simulation. Weakly developed ionization wave turbulence is tamed by continuous feedback control. Open-loop control of stochastic fluctuations - stochastic resonance - is demonstrated in a thermionic plasma diode. (author)

  17. Spark channel propagation in a microbubble liquid

    Energy Technology Data Exchange (ETDEWEB)

    Panov, V. A.; Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru; Vetchinin, S. P.; Pecherkin, V. Ya.; Son, E. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-11-15

    Experimental study on the development of the spark channel from the anode needle under pulsed electrical breakdown of isopropyl alcohol solution in water with air microbubbles has been performed. The presence of the microbubbles increases the velocity of the spark channel propagation and increases the current in the discharge gap circuit. The observed rate of spark channel propagation in microbubble liquid ranges from 4 to 12 m/s, indicating the thermal mechanism of the spark channel development in a microbubble liquid.

  18. Study of aerosol jet printing with dry nanoparticles synthesized by spark discharge

    Science.gov (United States)

    Efimov, A. A.; Arsenov, P. V.; Volkov, I. A.; Urazov, M. N.; Ivanov, V. V.

    2017-11-01

    A new method of aerosol jet printing utilizing dry (solvent-free) airborne nanoparticles generated by spark discharge is proposed. This method was applied to fabricate thin conducting lines (60-160 μm) composed of silver nanoparticles on the surface of glass substrates. It has been demonstrated that the line width is determined by a sheath flow rate, while its thickness and cross-sectional area can be scaled up by a number of printing runs. The resistivity of printed lines after the annealing was found to be five times higher than that of bulk silver that is attributed to the porosity and the interparticle contact resistance. The proposed method holds promise for the application in technologies of printed electronics.

  19. Basic principles and applications of atmospheric-pressure discharge plasmas

    International Nuclear Information System (INIS)

    Becker, K.H.

    2002-01-01

    The principles that govern the generation and maintenance of atmospheric - pressure discharge plasmas are summarized. The properties and operating parameters of various types such as dielectric barrier discharge plasmas (DBDs), corona discharge plasmas (CDs), microhollow cathode discharge plasmas (MHCDs) , and dielectric capillary electrode discharge plasmas (CDEDs) are introduced. All of them are self sustained, non equilibrium gas discharges that can be operated at atmospheric pressure. CDs and DBDDs represent very similar types of discharges, while DBDs are characterized by insulating layers on one or both electrodes, CDs depend on inhomogeneous electric fields at least in some parts of the electrode configuration to restrict the primary ionization processes to a small fraction of the inter - electrode region. Their application to novel light sources in the ultraviolet (UV) and vacuum ultraviolet (VUV) spectral region is described. (nevyjel)

  20. Parameters for Fabricating Nano-Au Colloids through the Electric Spark Discharge Method with Micro-Electrical Discharge Machining.

    Science.gov (United States)

    Tseng, Kuo-Hsiung; Chung, Meng-Yun; Chang, Chaur-Yang

    2017-06-02

    In this study, the Electric Spark Discharge Method (ESDM) was employed with micro-electrical discharge machining (m-EDM) to create an electric arc that melted two electrodes in deionized water (DW) and fabricated nano-Au colloids through pulse discharges with a controlled on-off duration (T ON -T OFF ) and a total fabrication time of 1 min. A total of six on-off settings were tested under normal experimental conditions and without the addition of any chemical substances. Ultraviolet-visible spectroscopy (UV-Vis), Zetasizer Nano measurements, and scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analyses suggested that the nano-Au colloid fabricated at 10-10 µs (10 µs on, 10 µs off) had higher concentration and suspension stability than products made at other T ON -T OFF settings. The surface plasmon resonance (SPR) of the colloid was 549 nm on the first day of fabrication and stabilized at 532 nm on the third day. As the T ON -T OFF period increased, the absorbance (i.e., concentration) of all nano-Au colloids decreased. Absorbance was highest at 10-10 µs. The SPR peaks stabilized at 532 nm across all T ON -T OFF periods. The Zeta potential at 10-10 µs was -36.6 mV, indicating that no nano-Au agglomeration occurred and that the particles had high suspension stability.

  1. Coaxial discharge plasma parameters and radiation emission

    International Nuclear Information System (INIS)

    Solimen, H.M.

    1993-01-01

    Results are reported for experiments carried out on a Mather type coaxial discharge plasma device. Experimental measurements of the electron temperature and density for the plasma propagated from the coaxial discharge are determined by using a biased double electric probe. The experimental results illustrated that , there are two groups of the plasma in the ejected plasma bulk, at 9 cm from the muzzle axis, the plasma reached the probe at 20 μsec from the start of discharge. The first group has electron temperature and density 27 eV and 3 x 10 14 cm -3 respectively,while The second group has 25 eV and 3 x 10 14 cm -3 respectively. The decay rate of the electron temperature and density of each group is presented. The plasma radiation spectrum is detected by a dielectric filter at 3500 A degree or 6100 A degree . The experimental measurements showed that, without or with dielectric filters, the visible radiation consists from two pulses with different magnitudes within the same half cycle of discharge. The time resolution of the soft x-ray is achieved by means of scintillator detector. The detected x-ray pulse during the first half cycle of discharge had a double peaks with different structures. All the experimental results present in this paper showed that the plasma bulk propagated in the expansion chamber, consists of two-groups. 6 fig

  2. Characterization of transient discharges under atmospheric-pressure conditions applying nitrogen photoemission and current measurements

    International Nuclear Information System (INIS)

    Keller, Sandra; Rajasekaran, Priyadarshini; Bibinov, Nikita; Awakowicz, Peter

    2012-01-01

    The plasma parameters such as electron distribution function and electron density of three atmospheric-pressure transient discharges namely filamentary and homogeneous dielectric barrier discharges in air, and the spark discharge of an argon plasma coagulation (APC) system are determined. A combination of numerical simulation as well as diagnostic methods including current measurement and optical emission spectroscopy (OES) based on nitrogen emissions is used. The applied methods supplement each other and resolve problems, which arise when these methods are used individually. Nitrogen is used as a sensor gas and is admixed in low amount to argon for characterizing the APC discharge. Both direct and stepwise electron-impact excitation of nitrogen emissions are included in the plasma-chemical model applied for characterization of these transient discharges using OES where ambiguity arises in the determination of plasma parameters under specific discharge conditions. It is shown that the measured current solves this problem by providing additional information useful for the determination of discharge-specific plasma parameters. (paper)

  3. The investigation of order–disorder transition process of ZSM-5 induced by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Wang, Lianjun, E-mail: wanglj@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Jiang, Wan [Engineering Research Center of Advanced Glasses Manufacturing Technology, MOE, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Lin, He, E-mail: linhe@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 239 Zhangheng Road, Pudong, Shanghai 200120 (China)

    2014-04-01

    Based on the amorphization of zeolites, an order–disorder transition method was used to prepare silica glass via Spark Plasma Sintering (SPS). In order to get a better understanding about the mechanism of amorphization induced by SPS, the intermediate products in this process were prepared and characterized by different characterization techniques. X-ray diffraction and High-energy synchrotron X-ray scattering show a gradual transformation from ordered crystal to glass. Local structural changes in glass network including Si–O bond length, O–Si–O bond angle, size of rings, coordination were detected by Infrared spectroscopy and {sup 29}Si magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy. Topologically ordered, amorphous material with a different intermediate-range structure can be obtained by precise control of intermediate process which can be expected to optimize and design material. - Graphical abstract: Low-density, ordered zeolites collapse to the rigid amorphous glass through spark plasma sintering. The intermediate-range structure formed in the process of order–disorder transition may give rise to specific property. - Highlights: • Order–disorder transition process of ZSM-5 induced by spark plasma sintering was investigated using several methods including XRD, High-energy synchrotron X-ray scattering, SAXS, IR, NMR, ect. • Order–disorder transition induced by SPS was compared with TIA and PIA. • Three stages has been divided during the whole process. • The collapse temperature range which may give rise to intermediate-range structure has been located.

  4. High Charge State Ions Extracted from Metal Plasmas in the Transition Regime from Vacuum Spark to High Current Vacuum Arc

    International Nuclear Information System (INIS)

    Yushkov, Georgy Yu.; Anders, A.

    2008-01-01

    Metal ions were extracted from pulsed discharge plasmas operating in the transition region between vacuum spark (transient high voltage of kV) and vacuum arc (arc voltage ∼ 20 V). At a peak current of about 4 kA, and with a pulse duration of 8 (micro)s, we observed mean ion charges states of about 6 for several cathode materials. In the case of platinum, the highest average charge state was 6.74 with ions of charge states as high as 10 present. For gold we found traces of charge state 11, with the highest average charge state of 7.25. At currents higher than 5 kA, non-metallic contaminations started to dominate the ion beam, preventing further enhancement of the metal charge states

  5. Miller-Urey spark-discharge experiments in the deuterium world

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Geoffrey J.T.; Surman, Andrew J.; McIver, Jim; Colon-Santos, Stephanie M.; Gromski, Piotr S.; Buchwald, Saskia; Suarez Marina, Irene; Cronin, Leroy [WestCHEM, School of Chemistry, University of Glasgow (United Kingdom)

    2017-07-03

    We designed and conducted a series of primordial-soup Miller-Urey style experiments with deuterated gases and reagents to compare the spark-discharge products of a ''deuterated world'' with the standard reaction in the ''hydrogenated world''. While the deuteration of the system has little effect on the distribution of amino acid products, significant differences are seen in other regions of the product-space. Not only do we observe about 120 new species, we also see significant differences in their distribution if the two hydrogen isotope worlds are compared. Several isotopologue matches can be identified in both, but a large proportion of products have no equivalent in the corresponding isotope world with ca. 43 new species in the D world and ca. 39 new species in the H world. This shows that isotopic exchange (the addition of only one neutron) may lead to significant additional complexity in chemical space under otherwise identical reaction conditions. (copyright 2017 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  6. Synthesis of dense yttrium-stabilised hafnia pellets for nuclear applications by spark plasma sintering

    International Nuclear Information System (INIS)

    Tyrpekl, Vaclav; Holzhäuser, Michael; Hein, Herwin; Vigier, Jean-Francois; Somers, Joseph; Svora, Petr

    2014-01-01

    Graphical abstract: Densification of HfO 2 –Y 2 O 3 micro-beads by Spark Plasma Sintering High density pellets with homogenous distribution of Hf and Y serve as neutron absorbers. - Abstract: Dense yttrium–stabilised hafnia pellets (91.35 wt.% HfO 2 and 8.65 wt.% Y 2 O 3 ) were prepared by spark plasma sintering consolidation of micro-beads synthesised by the “external gelation” sol–gel technique. This technique allows a preparation of HfO 2 –Y 2 O 3 beads with homogenous yttria–hafnia solid solution. A sintering time of 5 min at 1600 °C was sufficient to produce high density pellets (over 90% of the theoretical density) with significant reproducibility. The pellets have been machined in a lathe to the correct dimensions for use as neutron absorbers in an experimental test irradiation in the High Flux Reactor (HFR) in Petten, Holland, in order to investigate the safety of americium based nuclear fuels

  7. Spark plasma sintering of pure and doped tungsten as plasma facing material

    Science.gov (United States)

    Autissier, E.; Richou, M.; Minier, L.; Naimi, F.; Pintsuk, G.; Bernard, F.

    2014-04-01

    In the current water cooled divertor concept, tungsten is an armour material and CuCrZr is a structural material. In this work, a fabrication route via a powder metallurgy process such as spark plasma sintering is proposed to fully control the microstructure of W and W composites. The effect of chemical composition (additives) and the powder grain size was investigated. To reduce the sintering temperature, W powders doped with a nano-oxide dispersion of Y2O3 are used. Consequently, the sintering temperature for W-oxide dispersed strengthened (1800 °C) is lower than for pure W powder. Edge localized mode tests were performed on pure W and compared to other preparation techniques and showed promising results.

  8. Development of Augmented Spark Impinging Igniter System for Methane Engines

    Science.gov (United States)

    Marshall, William M.; Osborne, Robin J.; Greene, Sandra E.

    2017-01-01

    The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. NASA can share technology and expertise under the SAA for the benefit of the CATALYST partners. MSFC seeking to vacuum test Augmented Spark Impinging (ASI) igniter with methane and new exciter units to support CATALYST partners and NASA programs. ASI has previously been used/tested successfully at sea-level, with both O2/CH4 and O2/H2 propellants. Conventional ignition exciter systems historically experienced corona discharge issues in vacuum. Often utilized purging or atmospheric sealing on high voltage lead to remedy. Compact systems developed since PCAD could eliminate the high-voltage lead and directly couple the exciter to the spark igniter. MSFC developed Augmented Spark Impinging (ASI) igniter. Successfully used in several sea-level test programs. Plasma-assisted design. Portion of ox flow is used to generate hot plasma. Impinging flows downstream of plasma. Additional fuel flow down torch tube sleeve for cooling near stoichiometric torch flame. Testing done at NASA GRC Altitude Combustion Stand (ACS) facility 2000-lbf class facility with altitude simulation up to around 100,000 ft. (0.2 psia [10 Torr]) via nitrogen driven ejectors. Propellant conditioning systems can provide temperature control of LOX/CH4 up to test article.

  9. Barium titanate nanometric polycrystalline ceramics fired by spark plasma sintering.

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Sedláček, J.; Ryukhtin, Vasyl; Cinert, Jakub; Lukáč, František

    2016-01-01

    Roč. 42, č. 14 (2016), s. 15989-15993 ISSN 0272-8842 R&D Projects: GA ČR GB14-36566G; GA MŠk LM2015056 Institutional support: RVO:61389021 ; RVO:61389005 Keywords : BaTiO3 * Spark plasma sintering * Electrical properties Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass; JH - Ceramics, Fire-Resistant Materials and Glass (UJF-V) Impact factor: 2.986, year: 2016 http://www.sciencedirect.com/science/article/pii/S0272884216311695

  10. Development of a discharge-heated plasma tube

    International Nuclear Information System (INIS)

    Cha, Byung Heon; Jin, J. T.; Nam, S. M.; Lee, S. M.; Choi, H. L.; Ko, D. K.; Kim, S. H.; Lee, Y. B.; Choi, Y. S.; Lee, J. M.; Lee, C. K.; Lee, H. G.; Lee, H. C.; Jung, S. M.; Kim, Y. J.; Choi, G. S.; Son, N. G.

    1999-12-01

    A discharge-heated type plasma tube was designed and constructed. The structure of the laser plasma tube was designed to be easy in maintenance. The inside plasma tube was made of a high purity alumina and the thermal insulator tube was made of a porous alumina. The electrode made of tungsten was chosen for the endurance of high discharge voltage. AR coated windows were used as laser windows. A proto-type laser plasma tube was tested with a pulse modulator. An average laser output power was 32 W at the discharge voltage of 28 kV, the electric input power of 4.6 kW, and the pulse repetition rates of 10 kHz. (author)

  11. Study of nanosecond discharges in H2-air mixtures at atmospheric pressure for plasma assisted combustion applications

    Science.gov (United States)

    Kobayashi, Sumire; Bonaventura, Zdeněk; Tholin, Fabien; Popov, Nikolay A.; Bourdon, Anne

    2017-07-01

    This paper presents 2D simulations of nanosecond discharges between two point electrodes for four different H2-air mixtures defined by their equivalence ratios ϕ (i.e. φ =0, air, φ =0.3, lean mixture, φ =1, stoichiometric mixture and φ =1.5, rich mixture) at atmospheric pressure and at an initial temperature of 1000 K. In a first step, we have shown that the mixture composition has only a very small influence on the discharge dynamics and structure during the streamer phase and up to the formation of the plasma channel between the two point electrodes in H2-air mixtures with φ \\in [0,1.5]. However, as the plasma channel is formed slightly earlier as the equivalence ratio increases, for a given voltage pulse, the duration of the nanosecond spark phase increases as the equivalence ratio increases. As expected, we have shown that excited states of N2 (and in particular N2(A)) and radicals (and in particular O(D), O(P), H and OH) are very efficiently produced during the voltage pulse after the start of the spark phase. After the voltage pulse, and up to 100 ns, the densities of excited states of N2 and of O(D) decrease. Conversely, most of the O(P), H and OH radicals are produced after the voltage pulse due to the dissociative quenching of electronically excited N2. As for radicals, the gas temperature starts increasing after the start of the spark phase. For all studied mixtures, the density of O(P) atoms and the gas temperature reach their maxima after the end of the voltage pulse and the densities of O(P), H and OH radicals and the maximal gas temperature increase as the equivalence ratio increases. We have shown that the production of radicals is the highest on the discharge axis and the distribution of species after the voltage pulse and up to 100 ns has a larger diameter between the electrodes than close to both electrode tips. As for species, the temperature distribution presents two hot spots close to the point electrode tips. The non

  12. Sb/O nano-composites produced via Spark Discharge Generation for Li-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Simonin, L.; Lafont, U.; Tabrizi, N.; Schmidt-Ott, A.; Kelder, E.M. [TUDelft NanoStructured Matrials DelftChemTech, Julianalaan 136, 2628 BL Delft (Netherlands)

    2007-12-06

    Spark Discharge Generation (SDG) was used to produce powders of 10-20 nm of Sb and antimony oxides. Different composite materials with different textures were obtained either with an amorphous passive layer of antimony oxide or with crystalline cubic Sb{sub 2}O{sub 3}. The composition and shape of the different mixtures, depending on the production and collection conditions, were analysed via XRD and HRTEM coupled with EDX. The effect of the nature and the content of the oxides on the electrode performances were studied using Swagelok cells, cycled galvanostatically with a MACCOR cycler. (author)

  13. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    Science.gov (United States)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro

    2014-12-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.

  14. Effects of Synthesis and Spark Plasma Sintering Conditions on the Thermoelectric Properties of Ca3Co4O9+δ

    DEFF Research Database (Denmark)

    Wu, NingYu; Holgate, Tim; Van Nong, Ngo

    2013-01-01

    Ca3Co4O9+δ samples were synthesized by solid-state (SS) and sol–gel (SG) reactions, followed by spark plasma sintering under different processing conditions. The synthesis process was optimized and the resulting materials characterized with respect to their microstructure, bulk density, and therm......Ca3Co4O9+δ samples were synthesized by solid-state (SS) and sol–gel (SG) reactions, followed by spark plasma sintering under different processing conditions. The synthesis process was optimized and the resulting materials characterized with respect to their microstructure, bulk density...

  15. Method of controlling plasma discharge in a thermonuclear device

    International Nuclear Information System (INIS)

    Kawasaki, Kozo; Ishida, Takayuki; Takemaru, Koichi; Kawasaki, Takahide.

    1982-01-01

    Purpose: To prolong the plasma discharging period by previously increasing the temperature at the thick portion of a vacuum container prior to the plasma discharge to thereby decrease the temperature difference caused by the plasma discharge between the thick portion and the bellows. Method: Temperature values at the outer surface of the thick portion and the bellows of a vacuum container detected by temperature sensors are applied to the input processing section of a temperature control device, and baking control is carried out by way of the output processing section so that each of the portions of the vacuum container may be maintained at the temperature set by the temperature setting section based on the calculation performed in the control processing section. By previously increasing the temperature β at the thick portion higher by about 100 0 C than the temperature α for the bellows in the baking treatment prior to the plasma discharge, the plasma discharge period during which the temperature levels at both of the portions are reversed after the plasma discharge and the temperature difference arrives at a predetermined level i.g., of 100 0 C can significantly be prolonged as compared with the case where the plasma discharge is started at the same temperature for both of the portions. (Yoshino, Y.)

  16. Fabrication of Ni-Ti Alloy by Self-Propagating High-Temperature Synthesis and Spark Plasma Sintering Technique

    Czech Academy of Sciences Publication Activity Database

    Salvetr, P.; Kubatík, Tomáš František; Pignol, D.; Novák, P.

    2017-01-01

    Roč. 48, č. 2 (2017), s. 772-778 ISSN 1073-5615 Institutional support: RVO:61389021 Keywords : powder metallurgy * Spark plasma sintering Subject RIV: JJ - Other Materials OBOR OECD: Materials engineering Impact factor: 1.642, year: 2016

  17. Collector floating potentials in a discharge plasma

    International Nuclear Information System (INIS)

    Cercek, M.; Gyergyek, T.

    1999-01-01

    We present the results of a study on electrode floating potential formation in a hot-cathode discharge plasma. The electron component of the plasma is composed from two populations. The high temperature component develops from primary electrons and the cool component from secondary electrons born by ionisation of cold neutral gas. A static, kinetic plasma-sheath model is use to calculate the pre-sheath potential and the floating potential of the electrode. For hot primary electrons a truncated Maxwellian distribution is assumed. The plasma system is also modelled numerically with a dynamic, electrostatic particle simulation. The plasma source injects temporally equal fluxes of ions and electrons with half-Maxwellian velocities. Again, the hot electron distribution is truncated in the high velocity tail. The plasma parameters, such as ion temperature and mass, electron temperatures, discharge voltages, etc. correspond to experimental values. The experimental measurements of the electrode floating potential are performed in weakly magnetised plasma produced with hot cathode discharge in argon gas. Theoretical, simulation and experimental results are compared and they agree very well.(author)

  18. Experiments on Ion-Ion Plasmas From Discharges

    Science.gov (United States)

    Leonhardt, Darrin; Walton, Scott; Blackwell, David; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Use of both positive and negative ions in plasma processing of materials has been shown to be advantageous[1] in terms of better feature evolution and control. In this presentation, experimental results are given to complement recent theoretical work[2] at NRL on the formation and decay of pulsed ion-ion plasmas in electron beam generated discharges. Temporally resolved Langmuir probe and mass spectrometry are used to investigate electron beam generated discharges during the beam on (active) and off (afterglow) phases in a variety of gas mixtures. Because electron-beam generated discharges inherently[3] have low electron temperatures (<0.5eV in molecular gases), negative ion characteristics are seen in the active as well as afterglow phases since electron detachment increases with low electron temperatures. Analysis of temporally resolved plasma characteristics deduced from these measurements will be presented for pure O_2, N2 and Ar and their mixtures with SF_6. Oxygen discharges show no noticeable negative ion contribution during the active or afterglow phase, presumably due to the higher energy electron attachment threshold, which is well above any electron temperature. In contrast, SF6 discharges demonstrate ion-ion plasma characteristics in the active glow and are completely ion-ion in the afterglow. Comparison between these discharges with published cross sections and production mechanisms will also be presented. [1] T.H. Ahn, K. Nakamura & H. Sugai, Plasma Sources Sci. Technol., 5, 139 (1996); T. Shibyama, H. Shindo & Y. Horiike, Plasma Sources Sci. Technol., 5, 254 (1996). [2] See presentation by R. F. Fernsler, at this conference. [3] D. Leonhardt, et al., 53rd Annual GEC, Houston, TX.

  19. Mechanochemical synthesis and spark plasma sintering of the cerium silicides

    Energy Technology Data Exchange (ETDEWEB)

    Alanko, Gordon A.; Jaques, Brian; Bateman, Allyssa [Department of Materials Science and Engineering, College of Engineering, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Butt, Darryl P., E-mail: darrylbutt@boisestate.edu [Department of Materials Science and Engineering, College of Engineering, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Boulevard, Idaho Falls, ID 83401 (United States)

    2014-12-15

    Highlights: • Ce{sub 5}Si{sub 3}, Ce{sub 3}Si{sub 2}, CeSi, CeSi{sub 2−x} and CeSi{sub 2} were mechanochemically synthesized. • Temperature and pressure were monitored to investigate reaction progress. • All syntheses proceeded through a MSR event followed by rapid solid-state diffusion. • Milling time before MSR correlates well with effective heat of formation. • Some synthesized material was densified by spark plasma sintering. - Abstract: The cerium silicides, Ce{sub 5}Si{sub 3}, Ce{sub 3}Si{sub 2}, CeSi, CeSi{sub 2−y}, and CeSi{sub 2−x}, have been prepared from the elements by mechanochemical processing in a planetary ball mill. Preparation of the cerium silicide Ce{sub 5}Si{sub 4} was unsuccessfully attempted and potential reasons for this are discussed. Temperature and pressure of the milling vial were monitored in situ to gain insight into the mechanochemical reaction kinetics, which include a mechanically-induced self-propagating reaction (MSR). Some prepared powders were consolidated by spark plasma sintering to high density. Starting materials, as-milled powders, and consolidated samples were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The results obtained help elucidate key questions in mechanochemical processing of intermetallics, showing first phase formation similar to thin films, MSR ignition times that are composition- and milling speed-dependent, and sensitivity of stable compound formation on the impact pressure. The results demonstrate mechanochemical synthesis as a viable technique for rare earth silicides.

  20. Plasma-liquid system with rotational gliding discharge with liquid electrode

    International Nuclear Information System (INIS)

    Nedybaliuk, O.A.; Solomenko, O.V; Martysh, E.V.; Fedirchuk, I.I.

    2014-01-01

    Plasma-liquid system based on rotational gliding discharge with one liquid electrode was developed. Emission spectra of plasma of rotational gliding discharge with one liquid electrode were investigated. Discovered effective mechanism of controlling non-isothermal level of plasma in dynamic plasma-liquid systems. Major mechanism of expulsion of metal anode material from plasma-liquid systems with rotational discharges was shown.

  1. Uranium migration in spark plasma sintered W/UO2 CERMETS

    Science.gov (United States)

    Tucker, Dennis S.; Wu, Yaqiao; Burns, Jatuporn

    2018-03-01

    W/UO2 CERMET samples were sintered in a Spark Plasma Sintering (SPS) furnace at various temperature under vacuum and pressure. High Resolution Transmission Electron Microscopy (HRTEM) with Energy Dispersive Spectroscopy (EDS) was performed on the samples to determine interface structures and uranium diffusion from the UO2 particles into the tungsten matrix. Local Electrode Atom Probe (LEAP) was also performed to determine stoichiometry of the UO2 particles. It was seen that uranium diffused approximately 10-15 nm into the tungsten matrix. This is explained in terms of production of oxygen vacancies and Fick's law of diffusion.

  2. Plasma deposition by discharge in powder

    International Nuclear Information System (INIS)

    El-Gamal, H.A.; El-Tayeb, H.A.; Abd El-Moniem, M.; Masoud, M.M.

    2000-01-01

    Different types of material powders have been fed to the breach of a coaxial discharge. The coaxial discharge is powered from a 46.26 mu F, 24 KV capacitor bank. When the discharge takes place at the breach, the powder is heated and ionized to form a sheath of its material. The plasma sheath is ejected from the discharge zone with high velocity. The plasma sheath material is deposited on a glass substrate. It has been found from scanning electron microscope (SEM) analysis that the deposited material is almost homogenous for ceramic and graphite powders. The grain size is estimated to be the order of few microns. To measure the deposited material thickness the microdensitometer and a suitable arrangement of a laser interferometer and an optical microscope are used. It has also been found that deposited material thickness depends on the discharge number of shots and the capacitor bank energy

  3. Preparing Magnetocaloric LaFeSi Uniform Microstructures by Spark Plasma Sintering

    DEFF Research Database (Denmark)

    Vicente, N.; Ocanã, J.; Neves Bez, Henrique

    2014-01-01

    Spark Plasma Sintering (SPS) of LaFeSi alloy powders was conducted to prepare magnetocaloric La-Fe-Si-based uniform microstructures. Two electrically insulating discs made of alumina were interposed between the punches and powder sample inhibiting the flow of electric current across the powder...... from hydrogenated and decrypted casting ingot. The characterizations of sintered samples were performed by Scanning Electron Microscopy (SEM), Archimedes principle, Vicker’s hardness and microhardness. The uniformity of the microstructure was evaluated by checking the evidence of position on the Vicker...

  4. COMPACTION OF LITHIUM-SILICATE CERAMICS USING SPARK PLASMA SINTERING

    Directory of Open Access Journals (Sweden)

    Tomas Frantisek Kubatik

    2016-12-01

    Full Text Available This paper deals with the compaction of ceramics based on lithium-silicate by spark plasma sintering (SPS. The initial powder was prepared by calcination in a resistance furnace at a temperature of 1300 °C with the ratio of Li/Si = 1. Compacting by SPS was carried out at temperatures of 800 - 1000 °C with a maximum pressure of 80 MPa. Samples with open porosity of less than 1 % were prepared at the temperature of 1000 °C. According to the quantitative Rietveld refinement of x-ray diffraction data, the dominant phases in all samples were Li₂Si₂O₅ and Li₂SiO₃, together representing over 80 wt. % of the sintered material.

  5. Polarization spectroscopy on laser-produced plasmas and Z-pinch plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong E. [POSTECH, Kyungbuk (Korea); Baronova, Elena O. [RRC Kurchatov Institute, Nuclear Fusion Institute, Moscow (Russian Federation); Jakubowski, Lech [Soltan Institute for Nuclear Studies, Swierk-Otwock (Poland)

    2002-08-01

    PPS experiments on laser-produced plasmas are reviewed. Polarization is interpreted in terms of the anisotropic velocity distribution of electrons due to non-local transport. The polarization of an x-ray laser, and recent results regarding the recombining plasma are also presented. X-ray polarization spectroscopy experiments on heliumlike ion lines from a vacuum spark and from a plasma focus are presented: in both cases, the resonance line of the heliumlike ions shows polarization in the direction perpendicular to the discharge axis. Two possible interpretations are suggested. (author)

  6. Microstructure and phase stability of W-Cr alloy prepared by spark plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Vilémová, Monika; Illková, Ksenia; Lukáč, František; Matějíček, Jiří; Klečka, Jakub; Leitner, J.

    2018-01-01

    Roč. 127, February (2018), s. 173-178 ISSN 0920-3796 R&D Projects: GA ČR(CZ) GA17-23964S Institutional support: RVO:61389021 Keywords : Tungsten-chromium alloy * Phase stability * Decomposition * Thermal conductivity * Self-passivating alloys * Spark plasma sintering Subject RIV: JJ - Other Materials OBOR OECD: Materials engineering Impact factor: 1.319, year: 2016 https://www.sciencedirect.com/science/article/pii/S092037961830005X

  7. Spark Plasma Sintering of a Gas Atomized Al7075 Alloy: Microstructure and Properties

    Czech Academy of Sciences Publication Activity Database

    Molnárová, O.; Málek, P.; Lukáč, František; Chráska, Tomáš

    2016-01-01

    Roč. 9, č. 12 (2016), č. článku 1004. ISSN 1996-1944 R&D Projects: GA ČR(CZ) GA15-15609S Institutional support: RVO:61389021 Keywords : gas atomized Al7075 alloy * spark plasma sintering * microstructure * microhardness * high temperature stability Subject RIV: JJ - Other Materials Impact factor: 2.654, year: 2016 http://www.mdpi.com/1996-1944/9/12/1004

  8. TRACE ANALYSIS BY LASER-EXCITED ATOMIC FLUORESCENCE WITH ATOMIZATION IN A PULSED PLASMA

    OpenAIRE

    Lunyov , O.; Oshemkov , S.; Petrov , A.

    1991-01-01

    The possibilities of plasma atomization for laser fluorescence trace analysis are discussed. Pulsed hot hollow cathode discharge was used for analysis of solutions and powdered samples. The high voltage spark and laser-induced breakdown (laser spark) were used as atomizers of metal-containing atmospheric aerosols. Detection limits were improved by means of temporal background selection.

  9. River water remediation using pulsed corona, pulsed spark or ozonation

    Energy Technology Data Exchange (ETDEWEB)

    Izdebski, T.; Dors, M. [Polish Academy of Sciences, Szewalski Inst. of Fluid Flow Machiney, Fiszera (Poland). Centre for Plasma and Laser Engineering; Mizeraczyk, J. [Polish Academy of Sciences, Szewalski Inst. of Fluid Flow Machiney, Fiszera (Poland). Centre for Plasma and Laser Engineering; Gdynia Maritime Univ., Morska (Poland). Dept. of Marine Electronics

    2010-07-01

    The most common reason for epidemic formation is the pollution of surface and drinking water by wastewater bacteria. Pathogenic microorganisms that form the largest part of this are fecal bacteria, such as escherichia coli (E. coli). Wastewater treatment plants reduce the amount of the fecal bacteria by 1-3 orders of magnitude, depending on the initial number of bacteria. There is a lack of data on waste and drinking water purification by the electrohydraulic discharges method, which causes the destruction and inactivation of viruses, yeast, and bacteria. This paper investigated river water cleaning from microorganisms using pulsed corona, spark discharge and ozonization. The paper discussed the experimental setup and results. It was concluded that ozonization is the most efficient method of water disinfection as compared with pulsed spark and pulsed corona discharges. The pulsed spark discharge in water was capable of killing all microorganism similarly to ozonization, but with much lower energy efficiency. The pulsed corona discharge was found to be the less effective method of water disinfection. 21 refs., 4 figs.

  10. Operation of Ferroelectric Plasma Sources in a Gas Discharge Mode

    International Nuclear Information System (INIS)

    Dunaevsky, A.; Fisch, N.J.

    2004-01-01

    Ferroelectric plasma sources in vacuum are known as sources of ablative plasma, formed due to surface discharge. In this paper, observations of a gas discharge mode of operation of the ferroelectric plasma sources (FPS) are reported. The gas discharge appears at pressures between approximately 20 and approximately 80 Torr. At pressures of 1-20 Torr, there is a transition from vacuum surface discharge to the gas discharge, when both modes coexist and the surface discharges sustain the gas discharge. At pressures between 20 and 80 Torr, the surface discharges are suppressed, and FPS operate in pure gas discharge mode, with the formation of almost uniform plasma along the entire surface of the ceramics between strips. The density of the expanding plasma is estimated to be about 1013 cm-3 at a distance of 5.5 mm from the surface. The power consumption of the discharge is comparatively low, making it useful for various applications. This paper also presents direct measurements of the yield of secondary electron emission from ferroelectric ceramics, which, at low energies of primary electrons, is high and dependent on the polarization of the ferroelectric material

  11. High-Pressure Spark Plasma Sintering (HP SPS): A Promising and Reliable Method for Preparing Ti-Al-Si Alloys.

    Science.gov (United States)

    Knaislová, Anna; Novák, Pavel; Cygan, Sławomir; Jaworska, Lucyna; Cabibbo, Marcello

    2017-04-27

    Ti-Al-Si alloys are prospective material for high-temperature applications. Due to low density, good mechanical properties, and oxidation resistance, these intermetallic alloys can be used in the aerospace and automobile industries. Ti-Al-Si alloys were prepared by powder metallurgy using reactive sintering, milling, and spark plasma sintering. One of the novel SPS techniques is high-pressure spark plasma sintering (HP SPS), which was tested in this work and applied to a Ti-10Al-20Si intermetallic alloy using a pressure of 6 GPa and temperatures ranging from 1318 K (1045 °C) to 1597 K (1324 °C). The low-porosity consolidated samples consist of Ti₅Si₃ silicides in an aluminide (TiAl) matrix. The hardness varied between 720 and 892 HV 5.

  12. High-strength bulk nano-crystalline silver prepared by selective leaching combined with spark plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Marek, I.; Vojtěch, D.; Michalcová, A.; Kubatík, Tomáš František

    2015-01-01

    Roč. 627, March (2015), s. 326-332 ISSN 0921-5093 Institutional support: RVO:61389021 Keywords : Nano-crystalline material * Selective leaching * Silver * Spark plasma sintering * Strength Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.647, year: 2015 http://dx.doi.org/10.1016/j.msea.2015.01.014

  13. Spark Plasma Sintering of Dielectric Ceramics Zr0.8Sn0.2TiO4

    Czech Academy of Sciences Publication Activity Database

    Ctibor, P.; Kubatík, Tomáš František; Sedláček, J.; Kotlan, Jiří

    2016-01-01

    Roč. 22, č. 3 (2016), s. 435-439 ISSN 1392-1320 Institutional support: RVO:61389021 Keywords : titanates * dielectric ceramics * spark plasma sintering Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 0.393, year: 2016 http://www.matsc.ktu.lt/index.php/MatSc/article/view/8767

  14. Experimental Investigation on the Characteristics of Sliding Discharge Plasma Aerodynamic Actuation

    International Nuclear Information System (INIS)

    Song Huimin; Zhang Qiaogen; Li Yinghong; Jia Min; Wu Yun

    2011-01-01

    A new electrical discharge called sliding discharge was developed to generate plasma aerodynamic actuation for flow control. A microsecond-pulse high voltage with a DC component was used to energize a three-electrode actuator to generate sliding discharge. The characteristics of plasma aerodynamic actuation by sliding discharge were experimentally investigated. Discharge morphology shows that sliding discharge is formed when energized by properly adjusting microsecond-pulse and DC voltage. Compared to dielectric barrier discharge (DBD), the plasma extension of sliding discharge is quasi-diffusive and stable but longer and more intensive. Results from particle image velocimetry (PIV) test indicate that plasma aerodynamic actuation by sliding discharge can induce a ‘starting vortex’ and a quasi-steady ‘near-wall jet’. Body force induced by plasma aerodynamic actuation is about the order of mN, which is stronger than that induced by single DBD. It is inferred that microsecond-pulse sliding discharge may be more effective to generate large-scale plasma aerodynamic actuation, which is very promising for improving aircraft aerodynamic characteristics and propulsion efficiency.

  15. Experimental Investigation on the Characteristics of Sliding Discharge Plasma Aerodynamic Actuation

    Science.gov (United States)

    Song, Huimin; Li, Yinghong; Zhang, Qiaogen; Jia, Min; Wu, Yun

    2011-10-01

    A new electrical discharge called sliding discharge was developed to generate plasma aerodynamic actuation for flow control. A microsecond-pulse high voltage with a DC component was used to energize a three-electrode actuator to generate sliding discharge. The characteristics of plasma aerodynamic actuation by sliding discharge were experimentally investigated. Discharge morphology shows that sliding discharge is formed when energized by properly adjusting microsecond-pulse and DC voltage. Compared to dielectric barrier discharge (DBD), the plasma extension of sliding discharge is quasi-diffusive and stable but longer and more intensive. Results from particle image velocimetry (PIV) test indicate that plasma aerodynamic actuation by sliding discharge can induce a ‘starting vortex’ and a quasi-steady ‘near-wall jet’. Body force induced by plasma aerodynamic actuation is about the order of mN, which is stronger than that induced by single DBD. It is inferred that microsecond-pulse sliding discharge may be more effective to generate large-scale plasma aerodynamic actuation, which is very promising for improving aircraft aerodynamic characteristics and propulsion efficiency.

  16. Fast capillary discharge facility CAPEX-U as a source of the soft X-ray radiation

    Czech Academy of Sciences Publication Activity Database

    Frolov, Oleksandr; Koláček, Karel; Schmidt, Jiří; Štraus, Jaroslav; Prukner, Václav

    2007-01-01

    Roč. 52, č. 16 (2007), s. 295-295 ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics/49th./. Orlando , Florida, 12.11.2007-16.11.2007] R&D Projects: GA ČR GA202/06/1324; GA AV ČR KJB100430702; GA AV ČR KAN300100702; GA MŠk 1P04LA235 Institutional research plan: CEZ:AV0Z20430508 Keywords : Capillary discharge * x-ray * laser * laser-triggered * spark gap * breakdown * plasma Subject RIV: BL - Plasma and Gas Discharge Physics http://meetings.aps.org/Meeting/DPP07/Content/901

  17. Production of organic compounds in plasmas: A comparison among electric sparks, laser-induced plasmas and UV light

    Science.gov (United States)

    Scattergood, T. W.; Mckay, C. P.; Borucki, W. J.; Giver, L. P.; Vanghyseghem, H.; Parris, J. E.; Miller, S. L.

    1991-01-01

    In order to study the production of organic compounds in plasmas (and shocks), various mixtures of N2, CH4, and H2, modeling the atmosphere of Titan, were exposed to discrete sparks, laser-induced plasmas (LIP) and ultraviolet light. The yields of HCN and simple hydrocarbons were measured and compared to those calculated from a simple quenched thermodynamic equilibrium model. The agreement between experiment and theory was fair for HCN and C2H2. However, the yields of C2H6 and other hydrocarbons were much higher than those predicted by the model. Our experiments suggest that photolysis by ultraviolet light from the plasma is an important process in the synthesis. This was confirmed by the photolysis of gas samples exposed to the light, but not to the plasma or shock waves. The results of these experiments demonstrate that, in addition to the well-known efficient synthesis of organic compounds in plasmas, the yields of saturated species, e.g., ethane, may be higher than predicted by theory and that LIP provide a convenient and clean way of simulating planetary lightning and impact plasmas in the laboratory.

  18. Treatment of hazardous wastes by DC thermal plasma arc discharge

    International Nuclear Information System (INIS)

    Toru, Iwao; Yafang, Liu; Furuta, N.; Tsuginori, Inaba

    2001-01-01

    The temperature of the DC thermal plasma arc discharge is discussed, and examples of the waste treatment for the inorganic compounds such as fly ash, asbestos, and for the organic compounds such as the toxic dioxines and TBT by using the DC plasma arc discharge are shown. In addition, the plasma treatment by using a radiant power emitted from the DC plasma arc discharge is also shown as another new kind of ones. (authors)

  19. Osteoblastic cell response to spark plasma-sintered zirconia/titanium cermets.

    Science.gov (United States)

    Fernandez-Garcia, Elisa; Guillem-Marti, Jordi; Gutierrez-Gonzalez, Carlos F; Fernandez, Adolfo; Ginebra, Maria-Pau; Lopez-Esteban, Sonia

    2015-01-01

    Ceramic/metal composites, cermets, arise from the idea to combine the dissimilar properties in the pure materials. This work aims to study the biocompatibility of new micro-nanostructured 3 Y-TZP/Ti materials with 25, 50 and 75 vol.% Ti, which have been successfully obtained by spark slasma sintering technology, as well as to correlate their surface properties (roughness, wettability and chemical composition) with the osteoblastic cell response. All samples had isotropic and slightly waved microstructure, with sub-micrometric average roughness. Composites with 75 vol.% Ti had the highest surface hydrophilicity. Surface chemical composition of the cermets correlated well with the relative amounts used for their fabrication. A cell viability rate over 80% dismissed any cytotoxicity risk due to manufacturing. Cell adhesion and early differentiation were significantly enhanced on materials containing the nanostructured 3 Y-TZP phase. Proliferation and differentiation of SaOS-2 were significantly improved in their late-stage on the composite with 75 vol.% Ti that, from the osseointegration standpoint, is presented as an excellent biomaterial for bone replacement. Thus, spark plasma sintering is consolidated as a suitable technology for manufacturing nanostructured biomaterials with enhanced bioactivity. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. LLE-LLNL progress report on studies in nonlocal heat transport in spherical plasmas using the Fokker-Planck code SPARK

    International Nuclear Information System (INIS)

    Epperlein, E.M.

    1992-01-01

    Preliminary 1-D studies of nonlocal heat transport in spherical plasmas based on the Fokker-Planck code SPARK indicate significant levels of electron preheat and radial heat flux across a spherical heat sink surface kept at fixed temperature. However, the diffusive approximation to the Fokker-Planck equation is shown to be particularly sensitive to the nature of the inner surface boundary condition chosen. A suggested remedy is the inclusion of a target capsule in future simulations studies with SPARK

  1. Beam--plasma instabilities and the beam--plasma discharge

    International Nuclear Information System (INIS)

    Kellogg, P.J.; Boswell, R.W.

    1986-01-01

    Using a new electron gun, a number of measurements bearing on the generation of beam--plasma discharge (BPD) in WOMBAT (waves on magnetized beams and turbulence) [R. W. Boswell and P. J. Kellogg, Geophys. Res. Lett. 10, 565 (1983)] have been made. A beam--plasma discharge is an rf discharge in which the rf fields are provided by instabilities [W. D. Getty and L. D. Smullin, J. Appl. Phys. 34, 3421 (1963)]. The new gun has a narrower divergence angle than the old, and comparison of the BPD thresholds for the two guns verifies that the BPD ignition current is proportional to the cross-sectional area of the plasma. The high-frequency instabilities, precursors to the BPD, are identified with the two Trivelpiece--Gould modes [A. W. Trivelpiece and R. W. Gould, J. Appl. Phys. 30, 1784 (1959)]. Which frequency appears depends on the neutral pressure. The measured frequencies are not consistent with the simple interpretation of the lower frequency as a Cerenkov resonance with the low-Trivelpiece--Gould mode; it must be a cyclotron resonance. As is generally true in such beam--plasma interaction experiments, strong low-frequency waves appear at currents far below those necessary for BPD ignition. These low-frequency waves are shown to control the onset of the high-frequency precursors to the BPD. A mechanism for this control is suggested, which involves the conversion of a convective instability to an absolute one by trapping of the unstable waves in the density perturbations of the low-frequency waves. This process greatly reduces the current necessary for BPD ignition

  2. Thermoelectric transport properties of polycrystalline titanium diselenide co-intercalated with nickel and titanium using spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Holgate, T.C. [Department of Energy Storage and Conversion, Technical University of Denmark, Riso Campus, 4000 Roskilde (Denmark); Zhu, S.; Zhou, M. [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Bangarigadu-Sanasy, S.; Kleinke, H. [Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); He, J. [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Tritt, T.M., E-mail: ttritt@clemson.edu [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States)

    2013-01-15

    Polycrystalline samples of nickel intercalated (0-5%) TiSe{sub 2} were attempted via solid-state reaction in evacuated quartz tubes followed by densification using a spark plasma sintering process. X-ray diffraction data indicated that mixed NiSe{sub 2} and TiSe{sub 2} phases were present after initial synthesis by solid-state reaction, but a pure TiSe{sub 2} phase was present after the spark plasma sintering. While EPMA data reveals the stoichiometry to be near 1:1.8 (Ti:Se) for all samples, comparisons of the measured bulk densities to the theoretical densities suggest that the off stoichiometry is a result of the co-intercalation of both Ni and Ti rather than Se vacancies. Due to the presence of excess Ti (0.085-0.130 per formula) in the van der Waals gap of all the samples, the sensitive electron-hole balance is offset by the additional Ti-3d electrons, leading to an increase in the thermopower (n-type) over pristine, stoichiometric TiSe{sub 2}. The effects of the co-intercalation of both Ni and Ti in TiSe{sub 2} on the structural, thermal, and electrical properties are discussed herein. - Graphical abstract: Co-intercalation of nickel and excess titanium into the van der Waals gap of TiSe{sub 2} via solid state synthesis followed by spark plasma sintering results in a systematic shift in the ratio of hole and electron carrier concentration, which is close to unity for pristine TiSe{sub 2}. This directly affects the electrical transport properties, and as the structural disorder induced by intercalation suppresses the lattice thermal conductivity, co-intercalation is an effective route to enhance the thermoelectric properties of transition metal diselenides. Highlights: Black-Right-Pointing-Pointer Single phase bulk Ni and Ti co-intercalated TiSe{sub 2} samples prepared by spark plasma sintering. Black-Right-Pointing-Pointer Density and X-ray diffraction suggest that the Ni and excess Ti are ordered in the Van der Waals gap. Black-Right-Pointing-Pointer Co

  3. Spark plasma sintering of TiNi nano-powders for biological application

    International Nuclear Information System (INIS)

    Fu, Y Q; Gu, Y W; Shearwood, C; Luo, J K; Flewitt, A J; Milne, W I

    2006-01-01

    Nano-sized TiNi powder with an average size of 50 nm was consolidated using spark plasma sintering (SPS) at 800 deg. C for 5 min. A layer of anatase TiO 2 coating was formed on the sintered TiNi by chemical reaction with a hydrogen peroxide (H 2 O 2 ) solution at 60 deg. C followed by heat treatment at 400 deg. C to enhance the bioactivity of the metal surface. Cell culture using osteoblast cells and a biomimetic test in simulated body fluid proved the biocompatibility of the chemically treated SPS TiNi

  4. Understanding the spark plasma sintering from the view of materials joining

    International Nuclear Information System (INIS)

    Dong, Peng; Wang, Zhe; Wang, Wenxian; Chen, Shaoping; Zhou, Jun

    2016-01-01

    Spark plasma sintering (SPS) is an attractive consolidation process. However, the mechanism behind this process is still an open topic for debate. This paper presents the first attempt to understand the SPS mechanism from perspective of materials joining. For this, TiNi_f/Al composites were fabricated by SPS, and the interfacial microstructures were investigated using field emission scanning electron microscopy and transmission electron microscopy. According to the experimental results, several joining processes were reflected well during SPS, involving micro-arc welding, electric resistance welding and diffusion welding. The proposed understanding of SPS will be helpful to the control of sintering quality.

  5. Dynamics of the plasma current sheath in plasma focus discharges in different gases

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, V. P.; Krauz, V. I., E-mail: krauz-vi@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation); Mokeev, A. N. [Project Center ITER (Russian Federation); Myalton, V. V.; Kharrasov, A. M. [National Research Center Kurchatov Institute (Russian Federation)

    2016-12-15

    The shape of the plasma current sheath (PCS) in the final stage of its radial compression, the dynamics of pinching, and the subsequent pinch decay in plasma focus (PF) discharges in different gases are studied using an improved multichannel system of electron-optical plasma photography and a newly elaborated synchronization system. The PCS structure in discharges in heavy gases (Ne, Ar) is found to differ significantly from that in discharges in hydrogen and deuterium. The influence of a heavy gas (Xe) additive to hydrogen and deuterium on the structure and compression dynamics of the PCS is investigated.

  6. Comparison of macroscopic properties of electrons in plasmas of beam-plasma and glow discharges

    International Nuclear Information System (INIS)

    Winkler, R.; Wilhelm, J.; Starykh, V.V.

    1979-01-01

    The theoretical basis of the comparison are adequate Boltzmann equations for the electron component of the beam discharge plasma and the glow discharge plasma. We included the turbulent field or the direct electric field in the mentioned plasma types and all important binary collision processes as well as the Coulomb interaction between the charged particles. The comparison was performed in hydrogen under the condition of equal power input per volumen unit of both plasmas in dependence of the turbulence energy per one electron U, for the ionization degree (nsub(e)/N)sub(g) = 10 -6 and the pressure p 0 sup(g) = 1 Torr of the glow discharge plasma and for the ionization degrees (nsub(e)/N)sub(b) = 10 -3 , 10 -2 , 10 -1 and the pressure p 0 sup(b) = 10 -2 Torr of the beam discharge plasma which are typical for the existence of both plasma types. Based upon the numerical solutions of the Boltzmann equations under the mentioned additional conditions we compared the energy distribution functions of the electrons, the mean energy and the power losses of the electrons due to the different collision processes with the molecules and the ions. Especially a law for similarity of the electron kinetics of the two collision dominated plasma types was found and the main channels for the transfer of the field energy in both plasmas were determined. The results obtained were applied for assesing the perspectives of the beam discharged plasma as a plasmachemical reactor. (author)

  7. Plasma Beam Interaction with Negative glow discharge

    International Nuclear Information System (INIS)

    El-Tayeb, H.A.; El-Gamal, H.A.

    2000-01-01

    A miniature coaxial gun has been used to study the effect of the energy spectrum of the ejected plasma on the interaction with negative glow region in a normal glow discharge. The peak discharge current flow between the coaxial electrodes was 5.25 K A as a single pulse with pulse duration of 60 MUs. Investigations are carried out with argon gas at pressure 0.4 Torr. The sheath thickness of the ejected plasma from the coaxial discharge was 6 cm with different densities and energies. The spectrum of electron energy varies between 6 eV and 1 eV, while the electron density varies between 5 x 10 12 cm -3 and 4x10 13 cm -3 . The peak velocity of the ejected plasma was 0. 8 x 10 5 cm sec -1 in the neutral argon atoms. Argon negative glow region used as base plasma has an electron temperature of 2.2 eV and electron density of 6.2 x10 7 cm -3 . It had been found that the velocity of the ejected plasma decreased when it moves in the negative glow region and its mean electron temperature decreased. The results are compared with the theory of beam interaction with cold plasma

  8. Investigation of the helicon discharge plasma parameters in a hybrid RF plasma system

    International Nuclear Information System (INIS)

    Aleksandrov, A. F.; Petrov, A. K.; Vavilin, K. V.; Kralkina, E. A.; Neklyudova, P. A.; Nikonov, A. M.; Pavlov, V. B.; Ayrapetov, A. A.; Odinokov, V. V.; Sologub, V. A.; Pavlov, G. Ya.

    2016-01-01

    Results of an experimental study of the helicon discharge plasma parameters in a prototype of a hybrid RF plasma system equipped with a solenoidal antenna are described. It is shown that an increase in the external magnetic field leads to the formation of a plasma column and a shift of the maximum ion current along the discharge axis toward the bottom flange of the system. The shape of the plasma column can be controlled via varying the configuration of the magnetic field.

  9. Investigation of the helicon discharge plasma parameters in a hybrid RF plasma system

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, A. F.; Petrov, A. K., E-mail: alpetrov57@gmail.com; Vavilin, K. V.; Kralkina, E. A.; Neklyudova, P. A.; Nikonov, A. M.; Pavlov, V. B. [Moscow State University, Faculty of Physics (Russian Federation); Ayrapetov, A. A.; Odinokov, V. V.; Sologub, V. A.; Pavlov, G. Ya. [Research Institute of Precision Engineering (Russian Federation)

    2016-03-15

    Results of an experimental study of the helicon discharge plasma parameters in a prototype of a hybrid RF plasma system equipped with a solenoidal antenna are described. It is shown that an increase in the external magnetic field leads to the formation of a plasma column and a shift of the maximum ion current along the discharge axis toward the bottom flange of the system. The shape of the plasma column can be controlled via varying the configuration of the magnetic field.

  10. Stabilizing effect of plasma discharge on bubbling fluidized granular bed

    International Nuclear Information System (INIS)

    Hu Mao-Bin; Dang Sai-Chao; Ma Qiang; Xia Wei-Dong

    2015-01-01

    Fluidized beds have been widely used for processing granular materials. In this paper, we study the effect of plasma on the fluidization behavior of a bubbling fluidized bed with an atmospheric pressure plasma discharger. Experiment results show that the bubbling fluidized bed is stabilized with the discharge of plasma. When the discharge current reaches a minimum stabilization current C ms , air bubbles in the bed will disappear and the surface fluctuation is completely suppressed. A simplified model is proposed to consider the effect of electric Coulomb force generated by the plasma. It is found that the Coulomb force will propel the particles to move towards the void area, so that the bubbling fluidized bed is stabilized with a high enough plasma discharge. (paper)

  11. Discharge current characteristics as an 'electrical method' for glow discharge plasma diagnosis

    International Nuclear Information System (INIS)

    Toma, M.; Paraschivescu, Alina; Morminches, Anisoara

    2001-01-01

    In its simplest form, the glow discharge can be established by passing an electric current through gas between two electrodes. The gas and the electrodes are contained in an insulating envelope. In many technological applications, and not only, the plasma devices are often treated like a black box. There is a series of external parameters or control variables which can be adjusted to obtain a desired effect, namely, the operating voltage, gas pressure, gas nature, gas flow rate, magnetic field strength and magnetic field configuration, electric field geometry, interelectrode distance, and cathode characteristics. The discharge current can be controlled by each of the above control variables. The core idea of this work is the following: a lot of information about the phenomena from the discharge volume, at electrodes or at the discharge bounding wall surface, can be obtained knowing how the change of one of the control parameters influences the discharge current. The following regimes were analyzed: dark discharges (background ionization, saturation regime, Townsend regime, corona regime), glow discharge (the normal and abnormal discharge) and arc discharge (glow to arc transition, non-thermal arcs, thermal arcs). It was concluded that the nonlinearity in the shape of the discharge current characteristics as a function of an external control parameter, can be correlated with the elementary processes and the dynamics of different space charge structures generated in plasma devices. (authors)

  12. Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering

    Institute of Scientific and Technical Information of China (English)

    Wen-ming Tian; Song-mei Li; Bo Wang; Xin Chen; Jian-hua Liu; Mei Yu

    2016-01-01

    Graphene-reinforced 7055 aluminum alloy composites with different contents of graphene were prepared by spark plasma sinter-ing (SPS). The structure and mechanical properties of the composites were investigated. Testing results show that the hardness, compressive strength, and yield strength of the composites are improved with the addition of 1wt% graphene. A clean, strong interface is formed between the metal matrix and graphene via metallurgical bonding on atomic scale. Harmful aluminum carbide (Al4C3) is not formed during SPS processing. Further addition of graphene (above 1wt%) results in the deterioration in mechanical properties of the composites. The agglomeration of graphene plates is exacerbated with increasing graphene content, which is the main reason for this deterioration.

  13. Theory of a wall sheath in a gas-discharge plasma

    International Nuclear Information System (INIS)

    Dvinin, S.A.; Dovzhenko, V.A.; Kuzovnikov, A.A.

    1999-01-01

    An integro-differential equation is proposed that generalizes the plasma-sheath (Langmuir-Tonks) equation to include charge exchange between ions and neutrals in a discharge plasma and makes it possible to correctly analyze how the discharge evolves from the regime of collisionless ion motion to the diffusive regime in pure gases with allowance for the space charge in the sheath at the plasma boundary. The integro-differential equation is solved numerically, and the ionization rate is calculated as a function of the ratio between the ion mean free path and the characteristic discharge dimension. The ion energy distribution function in the positive column of a discharge plasma is computed. The parameter range in which the positive column can exist is examined, and the limits of applicability of different discharge models are analyzed depending on the relations between the ion mean free path, Debye length, and discharge dimension

  14. Statistical dynamics of transient processes in a gas discharge plasma

    International Nuclear Information System (INIS)

    Smirnov, G.I.; Telegin, G.G.

    1991-01-01

    The properties of a gas discharge plasma to a great extent depend on random processes whose study has recently become particularly important. The present work is concerned with analyzing the statistical phenomena that occur during the prebreakdown stage in a gas discharge. Unlike other studies of breakdown in the discharge gap, in which secondary electron effects and photon processes at the electrodes must be considered, here the authors treat the case of an electrodeless rf discharge or a laser photoresonant plasma. The analysis is based on the balance between the rates of electron generation and recombination in the plasma. The fluctuation kinetics for ionization of atoms in the hot plasma may also play an important role when the electron temperature changes abruptly, as occurs during adiabatic pinching of the plasma or during electron cyclotron heating

  15. Basic study of Eu.sup.2+./sup.-doped garnet ceramic scintillator produced by spark plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Sugiyama, K.; Yanagida, T.; Fujimoto, Y.; Yokota, Y.; Ito, A.; Nikl, Martin; Goto, T.; Yoshikawa, A.

    2012-01-01

    Roč. 35, č. 2 (2012), s. 222-226 ISSN 0925-3467 R&D Projects: GA MŠk LH12150 Institutional research plan: CEZ:AV0Z10100521 Keywords : Eu 2+ 5d–4f transition * scintillator * spark plasma sintering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.918, year: 2012

  16. Process Performances of 2 ns Pulsed Discharge Plasma

    Science.gov (United States)

    Matsumoto, Takao; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori

    2011-08-01

    Pulsed discharge plasmas have been used to treat exhaust gases. Since pulse duration and the rise time of applied voltage to the discharge electrode has a strong influence on the energy efficiency of pollutant removal, the development of a short-pulse generator is of paramount importance for practical applications. In this work, it is demonstrated that the non thermal plasma produced by the 2 ns pulsed discharge has a higher energy efficiency than the 5 ns pulsed discharge plasma for NO removal and ozone generation. Typically, the NO removal efficiency was 1.0 mol kW-1 h-1 for 70% NO removal (initial NO concentration = 200 ppm, gas flow = 10 L/min). Meanwhile, the ozone yield was 500 g kW-1 h-1 for 20 g/m3 ozone concentration in the case of oxygen feeding. These energy efficiencies are the highest in the literature.

  17. Electron energy distribution function control in gas discharge plasmas

    International Nuclear Information System (INIS)

    Godyak, V. A.

    2013-01-01

    The formation of the electron energy distribution function (EEDF) and electron temperature in low temperature gas discharge plasmas is analyzed in frames of local and non-local electron kinetics. It is shown, that contrary to the local case, typical for plasma in uniform electric field, there is the possibility for EEDF modification, at the condition of non-local electron kinetics in strongly non-uniform electric fields. Such conditions “naturally” occur in some self-organized steady state dc and rf discharge plasmas, and they suggest the variety of artificial methods for EEDF modification. EEDF modification and electron temperature control in non-equilibrium conditions occurring naturally and those stimulated by different kinds of plasma disturbances are illustrated with numerous experiments. The necessary conditions for EEDF modification in gas discharge plasmas are formulated

  18. Plasma Structure and Behavior of Miniature Ring-Cusp Discharges

    Science.gov (United States)

    Mao, Hann-Shin

    Miniature ring-cusp ion thrusters provide a unique blend of high efficiencies and millinewton level thrust for future spacecraft. These thrusters are attractive as a primary propulsion for small satellites that require a high delta V, and as a secondary propulsion for larger spacecraft that require precision formation flying, disturbance rejection, or attitude control. To ensure desirable performance throughout the life of such missions, an advancement in the understanding of the plasma structure and behavior of miniature ring-cusp discharges is required. A research model was fabricated to provide a simplified experimental test bed for the analysis of the plasma discharge chamber of a miniature ion thruster. The plasma source allowed for spatially resolved measurements with a Langmuir probe along a meridian plane. Probe measurements yielded plasma density, electron temperature, and plasma potential data. The magnetic field strength was varied along with the discharge current to determine the plasma behavior under various conditions. The structure of the plasma properties were found to be independent of the discharge power under the proper scaling. It was concluded that weaker magnetic fields can improve the overall performance for ion thruster operation. To further analyze the experimental measurements, a framework was developed based on the magnetic field. A flux aligned coordinate system was developed to decouple the perpendicular and parallel plasma motion with respect to the magnetic field. This was done using the stream function and magnetic scalar potential. Magnetic formulae provided intuition on the field profiles dependence on magnet dimensions. The flux aligned coordinate system showed that the plasma was isopycnic along constant stream function values. This was used to develop an empirical relation suitable for estimating the spatial behavior and to determine the plasma volume and loss areas. The plasma geometry estimates were applied to a control volume

  19. Dynamics of the spatial structure of pulsed discharges in dense gases in point cathode−plane anode gaps and their erosion effect on the plane electrode surface

    International Nuclear Information System (INIS)

    Baksht, E. Kh.; Blinova, O. M.; Erofeev, M. V.; Karelin, V. I.; Ripenko, V. S.; Tarasenko, V. F.; Trenkin, A. A.; Shibitov, Yu. M.; Shulepov, M. A.

    2016-01-01

    The dynamics of the spatial structure of the plasma of pulsed discharges in air and nitrogen in a nonuniform electric field and their erosion effect on the plane anode surface were studied experimentally. It is established that, at a nanosecond front of the voltage pulse, a diffuse discharge forms in the point cathode–plane anode gap due to the ionization wave propagating from the cathode. As the gap length decreases, the diffuse discharge transforms into a spark. A bright spot on the anode appears during the diffuse discharge, while the spark channel forms in the later discharge stage. The microstructure of autographs of anode spots and spark channels in discharges with durations of several nanoseconds is revealed. The autographs consist of up to 100 and more microcraters 5–100 μm in diameter. It is shown that, due to the short duration of the voltage pulse, a diffuse discharge can be implemented, several pulses of which do not produce appreciable erosion on the plane anode or the soot coating deposited on it.

  20. The effect of spark plasma sintering on lithium disilicate glass-ceramics.

    Science.gov (United States)

    Al Mansour, Fatima; Karpukhina, Natalia; Grasso, Salvatore; Wilson, Rory M; Reece, Mike J; Cattell, Michael J

    2015-10-01

    To evaluate the effects of spark plasma sintering (SPS) on the microstructure of lithium disilicate glass-ceramics. IPS e.max CAD glass-ceramic samples were processed using spark plasma sintering (SPS) and conventionally sintered (CS) as a comparison. Specimens were sintered at varying temperatures (T1: 840°C, T2: 820°C, T3: 800°C), heating rates (HR1: 150°C/min, HR2: 300°C/min, HR3: 500°C/min) and pressures (P1: 15MPa, P2: 50MPa, P3: 70MPa). IPS e.max Press glass powder samples were densified at 750 and 800°C (50 or 200MPa pressure). Samples were characterized using XRD, HTXRD, and SEM and quantitative image analysis. There was a significant increase in median crystal size (MCS) between the CS and the SPS T1 groups. A statistical difference (p>0.05) in MCS between SPS T1 and SPS T2 groups was observed. The SPS HR3 sample produced a smaller MCS than the CS, SPS HR1 and HR2 groups (pglass samples resulted in fine fibrils or graduated lithium disilicate crystals. The effects of SPS were used to refine the microstructure of IPS e.max CAD lithium disilicate glass-ceramics. Densification by SPS of IPS e.max Press glass resulted in textured and fine nano-crystalline microstructures. SPS generated glass-ceramic microstructures may have unique properties and could be useful in the production of CAD/CAM materials for dentistry. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  1. The measurement and analysis of electric fields in glow discharge plasmas

    International Nuclear Information System (INIS)

    Lawler, J.E.; Doughty, D.A.

    1994-01-01

    Interest in glow discharge plasmas has remained high for many decades because of their widespread application as a source of incoherent and coherent light, in plasma processing materials, in pulsed power devices, and in other technologies. Plasma etching of semiconductors and various plasma deposition process emerged as major applications during the 1980s. The technological significance of plasma processing is described in Plasma Processing of Materials. More fundamental work on glow discharges also advanced greatly during the 1980s. For example, substantial progress was made through the use of laser diagnostics to study glow discharges and as a result of the dramatically increased computing power that became available in the 1980s to model glow discharges. Many of the laser diagnostics are described in Radiative Processes in Discharge Plasmas. Kinetic theory models, in particular, became far more sophisticated and realistic during the 1980s. This article is a review of recent work that used optical diagnostics to study electric fields in glow discharge plasmas. Alternative methods for measuring electric electric fields in plasmas include electron beam deflection and electrostatic probes. Optical techniques have important advantages over these methods: They can be used at higher pressures and discharge current densities than electron beam deflection; and they are noninvasive, unlike electrostatic probes. In addition, optical techniques are usually easier to apply in a highly pure system than either of the alternative methods. 46 refs., 23 figs., 1 tab

  2. Ignition Features of Plasma-Beam Discharge in Gas-Discharge Electron Gun Operation

    Directory of Open Access Journals (Sweden)

    Valery A. Tutyk

    2013-01-01

    Full Text Available The current paper presents the results of experimental researches to determine the mode features of plasma-beam discharge (PBD generation by an electron beam injected by a low-vacuum gasdischarge electron gun (LGEG with the cold cathode and hollow anode on the basis of the high-voltage glow discharge and in the range of helium pressure of P ? 10 ÷ 130 Pa. The PBD boundaries and their dependences on parameters of an electron beam are found. The influence of PBD on parameters of low-vacuum gas-discharge electron gun is revealed. It causes an avalanche increase of electron beam current and burning of plasma-beam discharge in the whole space of the vacuum chamber volume and generation of electromagnetic radiation is revealed. Achieved results will be used for implementation of various vacuum technologies in the medium of reaction gas and generated electromagnetic radiation.

  3. Experimental study of a spark-gap

    International Nuclear Information System (INIS)

    Bruzzone, H.; Moreno, C.; Vieytes, R.

    1990-01-01

    Some experimental results concerning to the resistance of an atmospheric pressure spark-gap, operating in the self breakdown regime are presented. The influence of the energy discharging through the gap on this resistance is discussed. (Author)

  4. Study of gliding arc discharge plasma

    International Nuclear Information System (INIS)

    Yang Chi; Lin Lie; Wu Bin

    2006-01-01

    The electric parameters change during discharge is studied and the relationship between non-equilibrium degree and parameters is discussed for gliding arc discharges. Using two-channel model, the rules of arc moving due to effect of the airflow is simulated. The numerical simulation results can help analyzing the generation mechanism of gliding arc non-equilibrium plasma. (authors)

  5. Time-resolved processes in a pulsed electrical discharge in water generated with shock wave assistance in a plate-to-plate configuration

    Czech Academy of Sciences Publication Activity Database

    Stelmashuk, Vitaliy

    2014-01-01

    Roč. 47, č. 49 (2014), s. 495204-495204 ISSN 0022-3727 Institutional support: RVO:61389021 Keywords : underwater discharge * streamers * spark * cavitation bubble * shock wave Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.721, year: 2014 http://iopscience.iop.org/0022-3727/47/49/495204/pdf/0022-3727_47_49_495204.pdf

  6. Quartz crystal reinforced quartz glass by spark plasma sintering

    International Nuclear Information System (INIS)

    Torikai, D.; Barazani, B.; Ono, E.; Santos, M.F.M.; Suzuki, C.K.

    2011-01-01

    The Spark Plasma Sintering presents fast processing time when compared to conventional sintering techniques. This allows to control the grain growth during sintering as well as the diffusion rate of a multi-material compounds, and make possible obtainment of functionally graded materials and nanostructured compounds. Powders of high purity silica glass and crystalline silica were sintered in a SPS equipment at temperatures around 1350° C, i.e., above the softening temperature of silica glass and below the melting temperature of quartz crystal. As a result, glass ceramics with pure silica glass matrix reinforced with crystalline alpha-quartz grains were fabricated at almost any desired range of composition, as well as controlled size of the crystalline reinforcement. X-ray diffraction and density measurements showed the possibility to manufacture a well controlled density and crystallinity glass-ceramic materials. (author)

  7. Mode transition of power dissipation and plasma parameters in an asymmetric capacitive discharge

    International Nuclear Information System (INIS)

    Lee, Soo-Jin; Lee, Hyo-Chang; Bang, Jin-young; Oh, Seung-Ju; Chung, Chin-Wook

    2013-01-01

    Electrical characteristics and plasma parameters were experimentally investigated in asymmetric capacitively coupled plasma with various argon gas pressures. At a low discharge current region, the transferred power to the plasma was proportional to the current, while the transferred power increased proportionally to square of the current at a high discharge current region. The mode transition of power dissipation occurred at the lower discharge current region with the high gas pressure. At the low radio-frequency power or low discharge current, the plasma density increased linearly with the discharge current, while at the high power or high discharge current, the rate of an increase in the plasma density depended on the gas pressures. A transition of the discharge resistance was also found when the mode transition of the power dissipation occurred. These changes in the electrical characteristics and the plasma parameters were mainly caused by the power dissipation mode transition from the plasma bulk to the sheath in the capacitive discharge with the asymmetric electrode, which has extremely high self-bias voltages. - Highlights: • Mode transition of the power dissipation in an asymmetrical capacitive discharge • Evolution of the discharge power, electrode voltage, and discharge impedance • Electron temperature and plasma density on the power dissipation mode transition

  8. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision.

    Science.gov (United States)

    Ho, Chao-Ching; Wu, Dung-Sheng

    2018-03-22

    Spark-assisted chemical engraving (SACE) is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time.

  9. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision

    Directory of Open Access Journals (Sweden)

    Chao-Ching Ho

    2018-03-01

    Full Text Available Spark-assisted chemical engraving (SACE is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time.

  10. Nanocrystalline Al7075+1 wt % Zr Alloy Prepared Using Mechanical Milling and Spark Plasma Sintering.

    Czech Academy of Sciences Publication Activity Database

    Molnárová, O.; Málek, P.; Veselý, J.; Šlapáková, M.; Minárik, P.; Lukáč, František; Chráska, Tomáš; Novák, P.; Průša, F.

    2017-01-01

    Roč. 10, č. 9 (2017), č. článku 1105. ISSN 1996-1944 R&D Projects: GA ČR(CZ) GA15-15609S Institutional support: RVO:61389021 Keywords : gas atomization * mechanical milling * spark plasma sintering * microstructure * microhardness * recrystallization Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 2.654, year: 2016 http://www.readcube.com/articles/10.3390/ma10091105

  11. Ohmic discharges in Tore Supra - Marfes and detached plasmas

    International Nuclear Information System (INIS)

    Vallet, J.C.

    1990-01-01

    The Tore Supra plasma characteristics are given. The observed discharges are either leaning on the graphite inner first wall or limited by movable pump limiters located outboard and at the bottom of the vacuum chamber. The particular plasma conditions which lead to marfes and detached plasmas in ohmically heated He and D2 discharges limited by the inner wall are investigated. The results show that the ratio of radiated power to ohmic power increase linearly with M.g. As M.g rises, attached plasma, marfe and detached plasma are sequentially observed. Detached plasma with an effective radius as small as. 7 times the limiter radius was observed on Tore Supra

  12. Analysis of radiofrequency discharges in plasma

    Science.gov (United States)

    Kumar, D.; McGlynn, S.P.

    1992-08-04

    Separation of laser optogalvanic signals in plasma into two components: (1) an ionization rate change component, and (2) a photoacoustic mediated component. This separation of components may be performed even when the two components overlap in time, by measuring time-resolved laser optogalvanic signals in an rf discharge plasma as the rf frequency is varied near the electrical resonance peak of the plasma and associated driving/detecting circuits. A novel spectrometer may be constructed to make these measurements. Such a spectrometer would be useful in better understanding and controlling such processes as plasma etching and plasma deposition. 15 figs.

  13. Grain growth control and transparency in spark plasma sintered self-doped alumina materials

    International Nuclear Information System (INIS)

    Suarez, M.; Fernandez, A.; Menendez, J.L.; Torrecillas, R.

    2009-01-01

    Doping alumina particles with aluminum alkoxides allows dense spark plasma sintered (SPSed) materials to be obtained that have a refined grain size compared to pure materials, which is critical for their transparency. An optical model considering pore and grain size distributions has been developed to obtain information about porosity in dense materials. This work suggests that the atomic diffusion mechanisms do not depend on the sintering technique. A reduction in the activation energy by a factor of 2 has been found in SPSed materials.

  14. High-frequency underwater plasma discharge application in antibacterial activity

    International Nuclear Information System (INIS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-01-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O_2) injected and hydrogen peroxide (H_2O_2) added discharge in water was achieved. The effect of H_2O_2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H_2O_2 addition with O_2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH"•, H, and O). Interestingly, the results demonstrated that O_2 injected and H_2O_2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  15. Solid density, low temperature plasma formation in a capillary discharge

    International Nuclear Information System (INIS)

    Kania, D.R.; Jones, L.A.; Maestas, M.D.; Shepherd, R.L.

    1987-01-01

    This work discusses the ability of the authors to produce solid density, low temperature plasmas in polyurethane capillary discharges. The initial capillary diameter is 20 μm. The plasma is produced by discharging a one Ohm parallel plate waterline and Marx generator system through the capillary. A peak current of 340 kA in 300 ns heats the inner wall of the capillary, and the plasma expands into the surrounding material. The authors studied the evolution of the discharge using current and voltage probes, axial and radial streak photography, axial x-ray diode array and schlieren photography, and have estimated the peak temperature of the discharge to be approximately 10 eV and the density to be near 10/sup 23/cm/sup -3/. This indicates that the plasma may approach the strongly coupled regime. They discuss their interpretation of the data and compare their results with theoretical models of the plasma dynamics

  16. Improvement of ozone yield by a multi-discharge type ozonizer using superposition of silent discharge plasma

    International Nuclear Information System (INIS)

    Song, Hyun-Jig; Chun, Byung-Joon; Lee, Kwang-Sik

    2004-01-01

    In order to improve ozone generation, we experimentally investigated the silent discharge plasma and ozone generation characteristics of a multi-discharge type ozonizer. Ozone in a multi-discharge type ozonizer is generated by superposition of a silent discharge plasma, which is simultaneously generated in separated discharge spaces. A multi-discharge type ozonizer is composed of three different kinds of superposed silent discharge type ozonizers, depending on the method of applying power to each electrode. We observed that the discharge period of the current pulse for a multi discharge type ozonizer can be longer than that of silent discharge type ozonizer with two electrodes and one gap. Hence, ozone generation is improved up to 17185 ppm and 783 g/kwh in the case of the superposed silent discharge type ozonizer for which an AC high voltages with a 180 .deg. phase difference were applied to the internal electrode and the external electrode, respectively, with the central electrode being grounded.

  17. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    International Nuclear Information System (INIS)

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-01-01

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  18. Parallel 3-D numerical simulation of dielectric barrier discharge plasma actuators

    Science.gov (United States)

    Houba, Tomas

    Dielectric barrier discharge plasma actuators have shown promise in a range of applications including flow control, sterilization and ozone generation. Developing numerical models of plasma actuators is of great importance, because a high-fidelity parallel numerical model allows new design configurations to be tested rapidly. Additionally, it provides a better understanding of the plasma actuator physics which is useful for further innovation. The physics of plasma actuators is studied numerically. A loosely coupled approach is utilized for the coupling of the plasma to the neutral fluid. The state of the art in numerical plasma modeling is advanced by the development of a parallel, three-dimensional, first-principles model with detailed air chemistry. The model incorporates 7 charged species and 18 reactions, along with a solution of the electron energy equation. To the author's knowledge, a parallel three-dimensional model of a gas discharge with a detailed air chemistry model and the solution of electron energy is unique. Three representative geometries are studied using the gas discharge model. The discharge of gas between two parallel electrodes is used to validate the air chemistry model developed for the gas discharge code. The gas discharge model is then applied to the discharge produced by placing a dc powered wire and grounded plate electrodes in a channel. Finally, a three-dimensional simulation of gas discharge produced by electrodes placed inside a riblet is carried out. The body force calculated with the gas discharge model is loosely coupled with a fluid model to predict the induced flow inside the riblet.

  19. Study on the plasma generation characteristics of an induction-triggered coaxial pulsed plasma thruster

    Science.gov (United States)

    Weisheng, CUI; Wenzheng, LIU; Jia, TIAN; Xiuyang, CHEN

    2018-02-01

    At present, spark plugs are used to trigger discharge in pulsed plasma thrusters (PPT), which are known to be life-limiting components due to plasma corrosion and carbon deposition. A strong electric field could be formed in a cathode triple junction (CTJ) to achieve a trigger function under vacuum conditions. We propose an induction-triggered electrode structure on the basis of the CTJ trigger principle. The induction-triggered electrode structure could increase the electric field strength of the CTJ without changing the voltage between electrodes, contributing to a reduction in the electrode breakdown voltage. Additionally, it can maintain the plasma generation effect when the breakdown voltage is reduced in the discharge experiments. The induction-triggered electrode structure could ensure an effective trigger when the ablation distance of Teflon increases, and the magnetic field produced by the discharge current could further improve the plasma density and propagation velocity. The induction-triggered coaxial PPT we propose has a simplified trigger structure, and it is an effective attempt to optimize the micro-satellite thruster.

  20. Microstructure and thermoelectric properties of β-FeSi2 ceramics fabricated by hot-pressing and spark plasma sintering

    International Nuclear Information System (INIS)

    Qu Xiurong; Lue Shuchen; Hu Jianmin; Meng Qingyu

    2011-01-01

    Highlights: → With increasing hot-pressing (HP) temperature, the thermoelectric figure of merit of β-FeSi 2 ceramics is improved slightly. → The grain size of the sample sintered by the spark plasma sintering (SPS) process is smaller than that by the HP process. → The SPS sample shows excellent thermoelectric performance attributed to low thermal conductivity. - Abstract: The microstructure and thermoelectric properties of β-FeSi 2 ceramics by hot pressing (HP) and spark plasma sintering (SPS) are investigated. With increasing hot-pressing temperature, the density, electronic conductivity and thermal conductivity of the samples increase significantly, the thermoelectric figure of merit is improved slightly. The microstructure study indicates that the sizes of the β-FeSi 2 and ε-FeSi phases in the sample sintered by the SPS process are smaller than that by the HP process. The SPS sample shows excellent thermoelectric performance due to the low thermal conductivity.

  1. ZrB₂-CNTs Nanocomposites Fabricated by Spark Plasma Sintering.

    Science.gov (United States)

    Jin, Hua; Meng, Songhe; Xie, Weihua; Xu, Chenghai; Niu, Jiahong

    2016-11-29

    ZrB₂-based nanocomposites with and without carbon nanotubes (CNTs) as reinforcement were prepared at 1600 °C by spark plasma sintering. The effects of CNTs on the microstructure and mechanical properties of nano-ZrB₂ matrix composites were studied. The results indicated that adding CNTs can inhibit the abnormal grain growth of ZrB₂ grains and improve the fracture toughness of the composites. The toughness mechanisms were crack deflection, crack bridging, debonding, and pull-out of CNTs. The experimental results of the nanograined ZrB₂-CNTs composites were compared with those of the micro-grained ZrB₂-CNTs composites. Due to the small size and surface effects, the nanograined ZrB₂-CNTs composites exhibited stronger mechanical properties: the hardness, flexural strength and fracture toughness were 18.7 ± 0.2 GPa, 1016 ± 75 MPa, and 8.5 ± 0.4 MPa·m 1/2 , respectively.

  2. Gas Temperature Measurement in a Glow Discharge Plasma

    Science.gov (United States)

    Sloneker, Kenneth; Podder, Nirmol; McCurdy, William E.; Shi, Shi

    2009-10-01

    In this study a relatively inexpensive quartz protected thermocouple is used to measure the gas temperature in the positive column of a glow discharge plasma. For simplicity a K-type thermocouple is used to interpret the gas temperature from the sensor voltage at pressures from 0.5 Torr to 15 Torr and discharge currents from 5 mA to 120 mA. Gas temperature is investigated as a function of the gas pressure at fixed discharge currents and as a function of discharge current at fixed gas pressures in three different gas species (Ar, N2, and He). An infinite cylinder model is used to compute the average gas temperature of the discharge from joule heating and gas thermal conductivity. The model and measurement data agree within 1% to 10% depending on plasma parameters. Data for all three gases have a similar quasi-linear increasing error as compared to the model.

  3. Characterization of a dielectric barrier plasma gun discharging at atmospheric pressure

    International Nuclear Information System (INIS)

    Zhang Guangqiu; Ge Yuanjing; Zhang Yuefei; Chen Guangliang

    2004-01-01

    The authors develop a plasma gun based on dielectric barrier discharge and working at atmospheric pressure. A theoretical model to predict the gun discharge voltage is built, which is in agreement with the experimental results. After investigating the characterization of discharging gun and utilizing it for polymerization, authors find that the gun can be used as a source to generate a stable uniform plasma for different plasma-processing technologies. (author)

  4. High-frequency underwater plasma discharge application in antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U. [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of); Mongre, R. K.; Jeong, D. K. [Jeju National University, Faculty of Biotechnology (Korea, Republic of); Suresh, R.; Lee, H. J., E-mail: hjlee@jejunu.ac.kr [Jeju National University, Department of Nuclear and Energy Engineering (Korea, Republic of)

    2017-03-15

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O{sub 2}) injected and hydrogen peroxide (H{sub 2}O{sub 2}) added discharge in water was achieved. The effect of H{sub 2}O{sub 2} dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H{sub 2}O{sub 2} addition with O{sub 2} injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH{sup •}, H, and O). Interestingly, the results demonstrated that O{sub 2} injected and H{sub 2}O{sub 2} added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  5. Rydberg gas theory of a glow discharge plasma: I. Application to the electrical behaviour of a fast flowing glow discharge plasma.

    Science.gov (United States)

    Mason, Rod S; Mitchell, David J; Dickinson, Paul M

    2010-04-21

    Current-voltage (I-V) curves have been measured, independent of the main discharge, for electricity passing through the steady state fast flowing 'afterglow' plasma of a low power dc glow discharge in Ar. Voltage profiles along the axial line of conduction have been mapped using fixed probes and potentiometry, and the mass spectra of cations emerging from the downstream sampling Cone, also acting as a probe anode, were recorded simultaneously. Floating double probe experiments were also carried out. The electrical behavior is consistent with the well established I-V characteristics of such discharges, but does not comply with classical plasma theory predictions. The plasma decays along the line of conduction, with a lifetime of approximately 1 ms, despite carrying a steady state current, and its potential is below that of the large surface area anode voltage; a situation which cannot exist in the presence of a conventional free ion-electron plasma, unless the electron temperature is super cold. Currents, large by comparison with the main discharge current, and independent of it, are induced to flow through the downstream plasma, from the Anode (acting as a cathode) to the anodic ion exit Cone, induced by electron impact ionisation at the anode, but without necessarily increasing the plasma density. It appears to be conducted by direct charge transfer between a part of the anode surface (acting as cathode to the auxiliary circuit) and the plasma, without secondary electron emission or heating, which suggests the direct involvement of Rydberg atom intermediates. The reaction energy defect (= the work function of the electrode surface) fits with the plasma potential threshold observed for the cathodic reaction to occur. A true free ion-electron plasma is readily detected by the observation of cations at the anode surface, when induced at the downstream anode, at high bias voltages, by the electron impact ionisation in the boundary region. In contrast to the classical

  6. Preparation and soft magnetic properties of spark plasma sintered compacts based on Fe–Si–B glassy powder

    Energy Technology Data Exchange (ETDEWEB)

    Neamţu, B.V., E-mail: bogdan.neamtu@stm.utcluj.ro [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Marinca, T.F.; Chicinaş, I. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Isnard, O. [Institut Néel, CNRS/University Joseph Fourier, BP 166, 38042 Grenoble Cédex 9 (France); Popa, F. [Materials Science and Engineering Department, Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania); Păşcuţă, P. [Physics and Chemistry Department Technical University of Cluj-Napoca, 400614 Cluj-Napoca (Romania)

    2014-07-05

    Highlights: • Amorphous powder of Fe{sub 75}Si{sub 20}B{sub 5} (at.%) was prepared by wet mechanical alloying. • Spark plasma sintering was used for compaction of amorphous Fe{sub 75}Si{sub 20}B{sub 5} powder. • Increasing SPS time/temperature leads to improvement of AC/DC compacts properties. - Abstract: Amorphous powder of Fe{sub 75}Si{sub 20}B{sub 5} (at.%) was prepared by wet mechanical alloying route using benzene as surfactant. The amorphous phase is obtained after 60 h of milling. Structural, morphological, and thermal characteristics were investigated. The as-milled powder consists in micrometric particles with a mean diameter of 10.4 μm which are formed by the agglomeration of smaller particles. The amorphous powder is thermally stable up to the temperature of 490 °C. Spark plasma sintered compacts were prepared from the amorphous powders at sintering temperatures of 800, 850 and 900 °C. The phases formation and their evolution was investigated by X-ray diffraction technique showing that Fe{sub 3}Si and Fe{sub 2}B are the main phases formed during the spark plasma sintering process. Fe{sub 75}Si{sub 20}B{sub 5} (at.%) samples in the form of a ring were investigated in DC and AC magnetization regime. It was found that the boride phase formation (during sintering) and the low density of the compacts affect the magnetic properties of the compacts. In addition, a superficial contamination of the compacts with carbon (a layer of 2–3 μm) was evidenced, contributing thus to their soft magnetic deterioration. Increasing of the saturation induction, maximum relative permeability and initial relative permeability was observed by increasing both sintering temperature and time. It was generally observed that the compacts with high density have higher total core losses at high frequency.

  7. Vacuum-spark metal ion source based on a modified Marx generator

    International Nuclear Information System (INIS)

    Anders, A.; Brown, I.G.; MacGill, R.A.; Dickinson, M.R.

    1996-04-01

    The plasma generating parts of ion sources including their power supplies are usually floated to high potential (ion extraction voltage), thus requiring great insulation efforts and high costs for high-energy ion beams. A new concept for pulsed ion sources is presented in which a single power supply is used to simultaneously produce the plasma and high extractor voltage via a modified Marx generator. Proof-of-principle experiments have been performed with high-current spark discharges in vacuum where multiply charged ions are produced with this Marx-generator based ion source (Magis). Using Magis, it has been demonstrated that pulsed ion beams of very high energies can be obtained with relatively low voltage. For copper, ion of charge states up to 7+ have been found whose energy was 112 keV for a charging voltage of only 10 kV

  8. Discharge Characteristics of DC Arc Water Plasma for Environmental Applications

    International Nuclear Information System (INIS)

    Choi, Sooseok; Watanabe, Takayuki; Li Tianming

    2012-01-01

    A water plasma was generated by DC arc discharge with a hafnium embedded rod-type cathode and a nozzle-type anode. The discharge characteristics were examined by changing the operation parameter of the arc current. The dynamic behavior of the arc discharge led to significant fluctuations in the arc voltage and its frequency. Analyses of the high speed image and the arc voltage waveform showed that the arc discharge was in the restrike mode and its frequency varied within several tens of kilohertz according to the operating conditions. The larger thermal plasma volume was generated by the higher flow from the forming steam with a higher restrike frequency in the higher arc current conditions. In addition, the characteristics of the water plasma jet were investigated by means of optical emission spectroscopy to identify the abundant radicals required in an efficient waste treatment process. (plasma technology)

  9. Mode transition of a Hall thruster discharge plasma

    International Nuclear Information System (INIS)

    Hara, Kentaro; Sekerak, Michael J.; Boyd, Iain D.; Gallimore, Alec D.

    2014-01-01

    A Hall thruster is a cross-field plasma device used for spacecraft propulsion. An important unresolved issue in the development of Hall thrusters concerns the effect of discharge oscillations in the range of 10–30 kHz on their performance. The use of a high speed Langmuir probe system and ultra-fast imaging of the discharge plasma of a Hall thruster suggests that the discharge oscillation mode, often called the breathing mode, is strongly correlated to an axial global ionization mode. Stabilization of the global oscillation mode is achieved as the magnetic field is increased and azimuthally rotating spokes are observed. A hybrid-direct kinetic simulation that takes into account the transport of electronically excited atoms is used to model the discharge plasma of a Hall thruster. The predicted mode transition agrees with experiments in terms of the mean discharge current, the amplitude of discharge current oscillation, and the breathing mode frequency. It is observed that the stabilization of the global oscillation mode is associated with reduced electron transport that suppresses the ionization process inside the channel. As the Joule heating balances the other loss terms including the effects of wall loss and inelastic collisions, the ionization oscillation is damped, and the discharge oscillation stabilizes. A wide range of the stable operation is supported by the formation of a space charge saturated sheath that stabilizes the electron axial drift and balances the Joule heating as the magnetic field increases. Finally, it is indicated from the numerical results that there is a strong correlation between the emitted light intensity and the discharge current.

  10. Bulk plasma properties in the pulsed glow discharge

    International Nuclear Information System (INIS)

    Jackson, Glen P.; King, Fred L.

    2003-01-01

    This work focuses on the spatial and temporal characteristics of a glow discharge plasma operated with power pulses of 5 ms in duration at 25% duty cycle. Interpretation of emission data provides insight into the nature of the plasma at each instant of a typical pulse cycle and at each position in space. Because the bulk plasma properties affect the distribution of excited energy levels of the sputtered atoms, an improved understanding of the plasma affords the ability to select conditions that enhance analytically important emission lines. Optical emission spectroscopy was used to determine the relative populations of excited states for atoms and ions during the initial breakdown, the steady state and the recombining periods of the discharge pulse cycle. The plasma is highly ionizing in nature at the time of breakdown--with lower excited states being overpopulated--before reaching the steady state, or plateau, period, also ionizing in nature. These behaviors arise from a loss of charged particles and photons to the surroundings that shifts the plasma away from Saha and Boltzmann balances during these periods. The post-pulse period typically displays recombining behavior, characterized by population inversion for selected species--except for regions close to the cathode, where electrons and ions are lost by diffusion and are not available for recombination. The sputtered analyte atom emissions closely mimic those of the plasma bath gas, except that their emissions persevere for longer in the recombining after-peak period than do the discharge gas species

  11. Structure and strength of aluminum with sub-micrometer/micrometer grain size prepared by spark plasma sintering

    DEFF Research Database (Denmark)

    Le, G.M.; Godfrey, A.; Hansen, Niels

    2013-01-01

    A spark plasma sintering (SPS) technique has been applied to prepare fully dense Al samples from Al powder. By applying a sintering temperature of 600°C and a loading pressure of 50MPa, fully recrystallized samples of nearly 100% density with average grain sizes of 5.2μm, 1.3μm and 0.8μm have bee...... strengthening. © 2013 Elsevier Ltd....

  12. Experimental Results from a Laser-Triggered, Gas-Insulated, Spark-Gap Switch

    Science.gov (United States)

    Camacho, J. F.; Ruden, E. L.; Domonkos, M. T.

    2017-10-01

    We are performing experiments on a laser-triggered spark-gap switch with the goal of studying the transition from photoionization to current conduction. The discharge of current through the switch is triggered by a focused 532-nm wavelength beam from a Q-switched Nd:YAG laser with a pulse duration of about 10 ns. The trigger pulse is delivered along the longitudinal axis of the switch, and the focal spot can be placed anywhere along the axis of the 5-mm, gas-insulated gap between the switch electrodes. The switch test bed is designed to support a variety of working gases (e.g., Ar, N2) over a range of pressures. Electrical and optical diagnostics are used to measure switch performance as a function of parameters such as charge voltage, trigger pulse energy, insulating gas pressure, and gas species. A Mach-Zehnder imaging interferometer system operating at 532 nm is being used to obtain interferograms of the discharge plasma in the switch. We are also developing a 1064-nm interferometry diagnostic in an attempt to measure plasma free electron and neutral gas density profiles simultaneously within the switch gap. Results from our most recent experiments will be presented.

  13. Railgun system using a laser-induced plasma armature

    International Nuclear Information System (INIS)

    Onozuka, M.; Oda, Y.; Azuma, K.

    1996-01-01

    Development of an electromagnetic railgun system that utilizes a laser-induced plasma armature formation has been conducted to investigate the application of the railgun system for high-speed pellet injection into fusion plasmas. Using the laser-induced plasma formation technique, the required breakdown voltage was reduced by one-tenth compared with that for the spark-discharged plasma. The railgun system successfully accelerated the laser-induced plasma armature by an electromagnetic force that accelerated the pellet. The highest velocity of the solid hydrogen pellets, obtained so far, was 2.6 km/sec using a 2m-long railgun. copyright 1996 American Institute of Physics

  14. Railgun system using a laser-induced plasma armature

    Science.gov (United States)

    Onozuka, Masanori; Oda, Yasushi; Azuma, Kingo

    1996-05-01

    Development of an electromagnetic railgun system that utilizes a laser-induced plasma armature formation has been conducted to investigate the application of the railgun system for high-speed pellet injection into fusion plasmas. Using the laser-induced plasma formation technique, the required breakdown voltage was reduced by one-tenth compared with that for the spark-discharged plasma. The railgun system successfully accelerated the laser-induced plasma armature by an electromagnetic force that accelerated the pellet. The highest velocity of the solid hydrogen pellets, obtained so far, was 2.6 km/sec using a 2m-long railgun.

  15. Energy efficiency in nanoscale synthesis using nanosecond plasmas.

    Science.gov (United States)

    Pai, David Z; Ken Ostrikov, Kostya; Kumar, Shailesh; Lacoste, Deanna A; Levchenko, Igor; Laux, Christophe O

    2013-01-01

    We report a nanoscale synthesis technique using nanosecond-duration plasma discharges. Voltage pulses 12.5 kV in amplitude and 40 ns in duration were applied repetitively at 30 kHz across molybdenum electrodes in open ambient air, generating a nanosecond spark discharge that synthesized well-defined MoO₃ nanoscale architectures (i.e. flakes, dots, walls, porous networks) upon polyamide and copper substrates. No nitrides were formed. The energy cost was as low as 75 eV per atom incorporated into a nanostructure, suggesting a dramatic reduction compared to other techniques using atmospheric pressure plasmas. These findings show that highly efficient synthesis at atmospheric pressure without catalysts or external substrate heating can be achieved in a simple fashion using nanosecond discharges.

  16. Energy conversion and concentration in a high-current gaseous discharge: Dense plasma spheromak in plasma focus experiments

    International Nuclear Information System (INIS)

    Kukushkin, A.B.; Rantsev-Kartinov, V.A.; Terentiev, A.R.

    1995-01-01

    Experimental results are presented which verify the possibility of the self-generated transformation of the magnetic field in plasma focus discharges to give a closed, spheromak-like magnetic configuration (SLMC). The energy conversion mechanism suggests a possibility of further concentrating the plasma power density by means of natural compressing the SLMC-trapped plasma by the residual magnetic field of the plasma focus discharge

  17. Time and space-correlated plasma potential measurements in the near field of a coaxial Hall plasma discharge

    International Nuclear Information System (INIS)

    Smith, A. W.; Cappelli, M. A.

    2009-01-01

    Space- and time-correlated measurements of floating and plasma potential are made in the near field, external flow cathode region of a coaxial Hall plasma discharge using an emissive probe synchronized to quasicoherent fluctuations in discharge current. The luminous axial feature frequently observed in the near field of operating plasma accelerators is found to be concomitant with a spike in the plasma potential (and electron temperature). The structure of the plasma potential allows for multiple avenues for back-streaming ions to accelerate toward the discharge front pole and may pull some classes of ions toward the central axis. The fluctuations in plasma properties exhibit a complex structure at frequencies on the order of the so-called 'breathing mode' ionization instability often seen in these types of discharges. Most notably, the plasma potential appears to fluctuate in a helical fashion, resembling tilted drift waves rotating about the central axis. A simple analysis of these waves draws attention to the possible role that they may play in driving anomalous cross-field electron transport in the near field region.

  18. The influence of milling and spark plasma sintering on the microstructure and properties of the Al7075 alloy

    Czech Academy of Sciences Publication Activity Database

    Molnárová, O.; Málek, P.; Veselý, J.; Minárik, P.; Lukáč, František; Chráska, Tomáš; Novák, P.; Průša, F.

    2018-01-01

    Roč. 11, č. 4 (2018), č. článku 547. ISSN 1996-1944 R&D Projects: GA ČR(CZ) GA15-15609S Institutional support: RVO:61389021 Keywords : gas atomized Al7075 alloy * mechanical milling * spark plasma sintering * microstructure * microhardness Subject RIV: JG - Metallurgy Impact factor: 2.654, year: 2016

  19. Structure and mechanical properties of Al-Si-Fe alloys prepared by short-term mechanical alloying and Spark Plasma Sintering

    Czech Academy of Sciences Publication Activity Database

    Průša, J.; Vojtěch, D.; Bláhová, M.; Michalcová, A.; Kubatík, Tomáš František; Čížek, J.

    2015-01-01

    Roč. 75, June (2015), s. 65-75 ISSN 0261-3069 Institutional support: RVO:61389021 Keywords : Aluminium alloy s * Mechanical Properties * Microstructure * Mechanical alloy ing * Spark-Plasma Sintering Subject RIV: JG - Metallurgy Impact factor: 3.997, year: 2015 http://www.sciencedirect.com/science/article/pii/S0261306915000990#

  20. Effect of low-melting point phases on the microstructure and properties of spark plasma sintered and hot deformed Nd-Fe-B alloys

    Science.gov (United States)

    Zhang, Li; Wang, Meiyu; Yan, Xueliang; Lin, Ye; Shield, Jeffrey

    2018-04-01

    The effect of adding a low melting point Pr-Cu-Al alloy during spark plasma sintering of melt-spun Nd-Fe-B ribbons is investigated. Regions of coarse grains were reduced and overall grain refinement was observed after the addition of Pr68Cu25Al7, leading to an enhancement of coercivity from 12.7 kOe to 20.4 kOe. Hot deformation of the samples in the spark plasma sintering system resulted in the formation of platelet-like grains, producing crystallographic alignment and magnetic anisotropy. The hot deformation process improved the remanence and energy product but reduced the coercivity. The decrease of coercivity resulted from grain growth and aggregation of Pr and Nd elements at triple-junction phases.

  1. Characteristics of 2-heptanone decomposition using nanosecond pulsed discharge plasma

    Science.gov (United States)

    Nakase, Yuki; Fukuchi, Yuichi; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori; Kumamoto University Collaboration

    2015-09-01

    Volatile organic compounds (VOC) evaporate at room temperature. VOCs typically consist of toluene, benzene and ethyl acetate, which are used in cosmetics, dry cleaning products and paints. Exposure to elevated levels of VOCs may cause headaches, dizziness and irritation to the eyes, nose, and throat; they may also cause environmental problems such as air pollution, acid rain and photochemical smog. As such, they require prompt removal. Nanosecond pulsed discharge is a kind of non-thermal plasma consisting of a streamer discharge. Several advantages of nanosecond pulsed discharge plasma have been demonstrated by studies of our research group, including low heat loss, highly energetic electron generation, and the production of highly active radicals. These advantages have shown ns pulsed discharge plasma capable of higher energy efficiency for processes, such as air purification, wastewater treatment and ozone generation. In this research, nanosecond pulsed discharge plasma was employed to treat 2-heptanone, which is a volatile organic compound type and presents several harmful effects. Characteristics of treatment dependent on applied voltage, gas flow rate and input energy density were investigated. Furthermore, byproducts generated by treatment were also investigated.

  2. Technological plasma source equipped with combined system of vacuum-arc discharge initiation

    International Nuclear Information System (INIS)

    Sysoev, Yu.O.

    2013-01-01

    The construction and the operation principle of erosion plasma source with a three-stage system of vacuum-arc discharge excitation is described. As first two step was used the modified contactless start system with plasma injector, which was widely used in standard plasma sources of the ''Bulat'' systems. The operation principle of the third stage was based on the transition of glow discharge to arc discharge. Coordinated operation of three stages during various stages of coating deposition provided significant increasing of service life and reliability of the system of vacuum-arc discharge initiation and extended the functionality of the plasma source

  3. Effect of cryogenic milling on Al7075 prepared by spark plasma sintering method.

    Czech Academy of Sciences Publication Activity Database

    Lukáč, František; Chráska, Tomáš; Molnárová, O.; Málek, P.; Cinert, Jakub

    2017-01-01

    Roč. 32, S1 (2017), S221-S224 ISSN 0885-7156. [European Powder Diffraction Conference (EPDIC) /15./. Bari, 12.06.2016-15.06.2016] R&D Projects: GA ČR(CZ) GA15-15609S Institutional support: RVO:61389021 Keywords : Intermetallic precipitates * cryogenic milling * powder metallurgy * ultrafine-grained materials * Al7075 alloy Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 0.674, year: 2016 https://www.cambridge.org/core/journals/powder-diffraction/ article /effect-of-cryogenic-milling-on-al7075-prepared-by-spark-plasma-sintering-method/17E9F722BAFD428BA7310194FEE551C6

  4. Plasma Sheath Behavior in a Coaxial Discharge Device

    International Nuclear Information System (INIS)

    EL-Aragi, G.; Soliman, H.M.; Masoud, M.M.

    2001-01-01

    The behavior of the plasma sheath has been studied experimentally and theoretically for 3 kJ coaxial discharge device. The discharge takes place in argon gas with pressure of 0.8 mbar. The experiments are conducted with a 10 kV bank charging voltage, which corresponds to 110 kA peak discharge current with time period of 34 μs. The experimental investigations have been studied using a magnetic probes and a miniature Rogowsky coil. A snowplough model is used to drive an analytical solution of the plasma sheath behavior in axial direction. Measurements of radial distribution of plasma sheath current density J r at the muzzle, show that J r has the following relation, J r is proportional to r -1.1 . From the experimental results and theoretical calculations of axial distribution of azimuthal magnetic field induction and plasma sheath velocity, the inclination angle between the normal of the plasma sheath with the axial distance at any axial position is evaluated and it has approximately a constant value for most axial distances. Also, the axial motion of plasma sheath acceleration is estimated experimentally a max = 0.13 x 10 12 ' cm / s 2 at z = 11 cm and from theoretical calculations a max = 0.15 x 10 12 cm/ s 2 at max z = 1.6 cm. A comparison of the experimental results with the theoretical calculations, under the assumption of the snowplough model are not in agreement. (author)

  5. Master Sintering Surface: A practical approach to its construction and utilization for Spark Plasma Sintering prediction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2012-01-01

    Full Text Available The sintering is a complex thermally activated process, thus any prediction of sintering behaviour is very welcome not only for industrial purposes. Presented paper shows the possibility of densification prediction based on concept of Master Sintering Surface (MSS for pressure assisted Spark Plasma Sintering (SPS. User friendly software for evaluation of the MSS is presented. The concept was used for densification prediction of alumina ceramics sintered by SPS.

  6. Influence of graphite contamination on the optical properties of transparent spinel obtained by spark plasma sintering

    International Nuclear Information System (INIS)

    Bernard-Granger, G.; Benameur, N.; Guizard, C.; Nygren, M.

    2009-01-01

    The optical properties of transparent spinel sintered by spark plasma sintering have been investigated for incident electromagnetic radiations with wavelengths in the range 0.2-2 μm. It is shown that residual porosities and second-phase graphite particles have a strong influence on the in-line transmittance. Because of the graphite particles, the in-line transmittance measured does not approach that of monocrystalline spinel for wavelengths above 1 μm

  7. Experimental study of plume induced by nanosecond repetitively pulsed spark microdischarges in air at atmospheric pressure

    Science.gov (United States)

    Orriere, Thomas; Benard, Nicolas; Moreau, Eric; Pai, David

    2016-09-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been widely studied due to their high chemical reactivity, low gas temperature, and high ionization efficiency. They are useful in many research areas: nanomaterials synthesis, combustion, and aerodynamic flow control. In all of these fields, particular attention has been devoted to chemical species transport and/or hydrodynamic and thermal effects for applications. The aim of this study is to generate an electro-thermal plume by combining an NRP spark microdischarge in a pin-to-pin configuration with a third DC-biased electrode placed a few centimeters away. First, electrical characterization and optical emission spectroscopy were performed to reveal important plasma processes. Second, particle image velocimetry was combined with schlieren photography to investigate the main characteristics of the generated flow. Heating processes are measured by using the N2(C ->B) (0,2) and (1,3) vibrational bands, and effects due to the confinement of the discharge are described. Moreover, the presence of atomic ions N+ and O+ is discussed. Finally, the electro-thermal plume structure is characterized by a flow velocity around 1.8 m.s-1, and the thermal kernel has a spheroidal shape.

  8. Electrohydraulic Discharges and Nonthermal Plasma for Water Treatment

    Czech Academy of Sciences Publication Activity Database

    Locke, B.R.; Sato, M.; Hoffman, M.R.; Chang, J.S.; Šunka, Pavel

    2006-01-01

    Roč. 45, č. 1 (2006), s. 882-905 ISSN 0888-5885 Institutional research plan: CEZ:AV0Z20430508 Keywords : Electrical discharges * water cleaning * environmental applications * liquid phase reactor Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.518, year: 2006

  9. Discharge Characteristics of DC Arc Water Plasma for Environmental Applications

    Science.gov (United States)

    Li, Tianming; Sooseok, Choi; Takayuki, Watanabe

    2012-12-01

    A water plasma was generated by DC arc discharge with a hafnium embedded rod-type cathode and a nozzle-type anode. The discharge characteristics were examined by changing the operation parameter of the arc current. The dynamic behavior of the arc discharge led to significant fluctuations in the arc voltage and its frequency. Analyses of the high speed image and the arc voltage waveform showed that the arc discharge was in the restrike mode and its frequency varied within several tens of kilohertz according to the operating conditions. The larger thermal plasma volume was generated by the higher flow from the forming steam with a higher restrike frequency in the higher arc current conditions. In addition, the characteristics of the water plasma jet were investigated by means of optical emission spectroscopy to identify the abundant radicals required in an efficient waste treatment process.

  10. Thermo-structural modelling of a plasma discharge tube for electric propulsion

    International Nuclear Information System (INIS)

    Faoite, D. de; Browne, D.J.; Del Valle Gamboa, J.I.; Stanton, K.T.

    2016-01-01

    Highlights: • Thermo-structural analyses were performed for an electric propulsion space thruster. • Thermal stresses arise primarily from mismatches in thermal expansion coefficients. • Aluminium nitride is a suitable material for a plasma containment tube. • A design is presented allowing a thruster to operate at a power of at least 250 kW. - Abstract: Potential thermal management strategies for the plasma generation section of a VASIMR"® high-power electric propulsion space thruster are assessed. The plasma is generated in a discharge tube using helicon waves. The plasma generation process causes a significant thermal load on the plasma discharge tube and on neighbouring components, caused by cross-field particle diffusion and UV radiation. Four potential cooling system design strategies are assessed to deal with this thermal load. Four polycrystalline ceramics are evaluated for use as the plasma discharge tube material: alumina, aluminium nitride, beryllia, and silicon nitride. A finite element analysis (FEA) method was used to model the steady-state temperature and stress fields resulting from the plasma heat flux. Of the four materials assessed, aluminium nitride would result in the lowest plasma discharge tube temperatures and stresses. It was found that a design consisting of a monolithic ceramic plasma containment tube fabricated from aluminium nitride would be capable of operating up to a power level of at least 250 kW.

  11. Microstructure, magnetic and Moessbauer studies on spark-plasma sintered Sm-Co-Fe/Fe(Co) nanocomposite magnets

    Energy Technology Data Exchange (ETDEWEB)

    Rao, N V Rama; Saravanan, P; Gopalan, R; Raja, M Manivel; Rao, D V Sreedhara; Chandrasekaran, V [Defence Metallurgical Research Laboratory, Hyderabad-500 058 (India); Sivaprahasam, D [International Advanced Research Centre for Powder Metallurgy and New Materials Hyderabad-500 005 (India); Ranganathan, R [Saha Institute of Nuclear Physics, Kolkata-700 064 (India)], E-mail: rg_gopy@yahoo.com

    2008-03-21

    Nanocomposite powders comprising Sm-Co-Fe intermetallic phases and Fe(Co) were synthesized by high-energy ball milling and were consolidated into bulk magnets by the spark-plasma sintering (SPS) technique. While the microstructure of the SPS samples was characterized by transmission electron microscopy (TEM), the solubility of Fe in different phases was investigated using Moessbauer spectroscopy. TEM studies revealed that the spark-plasma sintered sample has Sm(Co,Fe){sub 5} as a major phase with Sm{sub 2}(Co,Fe){sub 17}, Sm(Co,Fe){sub 2} and Fe(Co) as secondary phases. The size of the nanocrystalline grains of all these phases was found to be in the range 50-100 nm. The Moessbauer spectra of the as-milled powders exhibited two different subspectra: a sextet corresponding to the Fe phase and a broad sextet associated with the Fe(Co) phase; while that of the SPS sample showed four different subspectra: a sextet corresponding to Fe and other three sextets corresponding to the Fe(Co), Sm(Co,Fe){sub 5} and Sm{sub 2}(Co,Fe){sub 17} phases; these results are in accordance with the TEM observation. Recoil magnetization and reversible susceptibility measurements revealed magnetically single phase behaviour of the SPS magnets.

  12. STUDENT AWARD FINALIST: Oxygen Pathways in Streamer Discharge for Transient Plasma Ignition

    Science.gov (United States)

    Pendleton, S. J.; Bowman, S.; Singleton, D.; Watrous, J.; Carter, C.; Lempert, W.; Gundersen, M. A.

    2011-10-01

    The use of streamers for the ignition of fuels, also known as transient plasma ignition (TPI), has been shown in a variety of engines to improve combustion through decreased ignition delay, increased lean burn capability and increased energy release relative to conventional spark ignition. The mechanisms behind these improvements, however, remain poorly understood. Temperature measurements by optical emission spectroscopy demonstrate that ignition by TPI is a nonthermal process, and thus is almost entirely dependent on the production and presence of electron impact-created active species in the discharge afterglow. Of particular interest are active oxygen species due to their relatively long lifetimes at high pressures and the pivotal role they play in combustion reactions. In order to elucidate the oxygen pathways, here we report the investigation of the temporal evolution of the populations of atomic oxygen and ozone by use of two-photon absorption laser induced fluorescence (TALIF) and UV absorption, respectively. Experimental results are presented and compared to kinetic modeling of the streamers. Future experiments are proposed to better understand the physics behind TPI. Supported by NSF, AFOSR, NumerEx-ONR, AFRL-WPAFB.

  13. Sterilization and decontamination of surfaces using atmospheric pressure plasma discharges

    Energy Technology Data Exchange (ETDEWEB)

    Garate, E.; Gornostaeva, O.; Alexeff, I.; Kang, W.L.

    1999-07-01

    The goal of the program is to demonstrate that an atmospheric pressure plasma discharge can rapidly and effectively sterilize or decontaminate surfaces that are contaminated with model biological and chemical warfare agents. The plasma is produced by corona discharge from an array of pins and a ground plane. The array is constructed so that various gases, like argon or helium, can be flowed past the pins where the discharge is initiated. The pin array can be biased using either DC. AC or pulsed discharges. the work done to date has focused on the sterilization of aluminum, polished steel and tantalum foil metal coupons, about 2 cm on a side and 2 mm thick, which have been inoculated with up to 10{sup 6} spores per coupon of Bacillus subtilis var niger or Bascillus stearothermorphilus. Results indicate that 5 minute exposures to the atmospheric pressure plasma discharge can reduce the viable spore count by 4 orders of magnitude. The atmospheric pressure discharge is also effective in decomposing organic phosphate compounds that are stimulants for chemical warfare agents. Details of the decomposition chemistry, by-product formation, and electrical energy consumption of the system will be discussed.

  14. Densification of silicon and zirconium carbides by a new process: spark plasma sintering; Densification des carbures de silicium et de zirconium par un procede innovant: le spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, F

    2006-12-15

    Materials research for suitable utilization in 4. generation nuclear plants needs new ways to densify testing components. Two carbides, silicon and zirconium carbide seems to be the most suitable choice due to their mechanical, thermal and neutron-transparency properties against next nuclear plant specifications. Nevertheless one main difficulty remains, which is densifying them even at high temperature. Spark Plasma Sintering a new metal-, ceramic- and composite-sintering process has been used to densify both SiC and ZrC. Understanding bases of mass transport mechanisms in SPS have been studied. Composites and interfaces have been processed and analyzed. This manuscript reports original results on SiC and ZrC ceramics sintered with commercial powder started, without additives. (author)

  15. Plasma rotation by electric and magnetic fields in a discharge cylinder

    Science.gov (United States)

    Wilhelm, H. E.; Hong, S. H.

    1977-01-01

    A theoretical model for an electric discharge consisting of a spatially diverging plasma sustained electrically between a small ring cathode and a larger ring anode in a cylindrical chamber with an axial magnetic field is developed to study the rotation of the discharge plasma in the crossed electric and magnetic fields. The associated boundary-value problem for the coupled partial differential equations which describe the electric potential and the plasma velocity fields is solved in closed form. The electric field, current density, and velocity distributions are discussed in terms of the Hartmann number and the Hall coefficient. As a result of Lorentz forces, the plasma rotates with speeds as high as 1 million cm/sec around its axis of symmetry at typical conditions. As an application, it is noted that rotating discharges of this type could be used to develop a high-density plasma-ultracentrifuge driven by j x B forces, in which the lighter (heavier) ion and atom components would be enriched in (off) the center of the discharge cylinder.

  16. Feasibility of arc-discharge and plasma-sputtering methods in cleaning plasma-facing and diagnostics components of fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hakola, Antti, E-mail: antti.hakola@vtt.fi [VTT Technical Research Centre of Finland, VTT (Finland); Likonen, Jari [VTT Technical Research Centre of Finland, VTT (Finland); Karhunen, Juuso; Korhonen, Juuso T. [Department of Applied Physics, Aalto University (Finland); Aints, Märt; Laan, Matti; Paris, Peeter [Department of Physics, University of Tartu (Estonia); Kolehmainen, Jukka; Koskinen, Mika; Tervakangas, Sanna [DIARC-Technology Oy, Espoo (Finland)

    2015-10-15

    Highlights: • Feasibility of the arc-discharge and plasma-sputtering techniques in removing deposited layers from ITER-relevant samples demonstrated. • Samples with the size of an A4 paper can be cleaned from 1-μm thick deposited layers in 10–20 minutes by the arc-discharge method. • The plasma-sputtering method is 5–10 times slower but the resulting surfaces are very smooth. • Arc-discharge method could be used for rapid cleaning of plasma-facing components during maintenance shutdowns of ITER, plasma sputtering is preferred for diagnostics mirrors. - Abstract: We have studied the feasibility of arc-discharge and plasma-sputtering methods in removing deposited layers from ITER-relevant test samples. Prototype devices have been designed and constructed for the experiments and the cleaning process is monitored by a spectral detection system. The present version of the arc-discharge device is capable of removing 1-μm thick layers from 350-mm{sup 2} areas in 4–8 s, but due to the increased roughness of the cleaned surfaces and signs of local melting, mirror-like surfaces cannot be treated by this technique. The plasma-sputtering approach, for its part, is some 5–10 times slower in removing the deposited layers but no changes in surface roughness or morphology of the samples could be observed after the cleaning phase. The arc-discharge technique could therefore be used for rapid cleaning of plasma-facing components during maintenance shutdowns of ITER while in the case of diagnostics mirrors plasma sputtering is preferred.

  17. Luminescent Characteristics of a Pulsed Discharge Plasma in Xe-KBr Mixture

    Science.gov (United States)

    Heneral, A. A.; Zhmenyak, Y. V.

    2018-03-01

    A mixture of xenon with a nontoxic halogen carrier Xe-KBr is used to create a plasma radiation source at the 282-nm transition of the XeBr* molecule excited by a high-voltage pulsed-periodic discharge. The luminescence spectra of the plasma of a longitudinal pulsed-periodic discharge in the Xe-KBr mixture at low pressures are studied experimentally. The most intense UV bands of exciplex XeBr* molecules are recorded in the spectral range of 250-350 nm. The spectral, temporal, and energetic characteristics of the radiation source are presented, as well as the dependence of the XeBr* exciplex molecule formation efficiency on the discharge excitation conditions. The optimal conditions for the excitation of UV radiation in the pulsed-periodic discharge plasma are determined.

  18. Railgun system using a laser-induced plasma armature

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Oda, Y.; Azuma, K. [Mitsubishi Heavy Industries, Ltd., 3-3-1, Minatomirai, Nishi-ku, Yokohama 220-84 (Japan)

    1996-05-01

    Development of an electromagnetic railgun system that utilizes a laser-induced plasma armature formation has been conducted to investigate the application of the railgun system for high-speed pellet injection into fusion plasmas. Using the laser-induced plasma formation technique, the required breakdown voltage was reduced by one-tenth compared with that for the spark-discharged plasma. The railgun system successfully accelerated the laser-induced plasma armature by an electromagnetic force that accelerated the pellet. The highest velocity of the solid hydrogen pellets, obtained so far, was 2.6 km/sec using a 2m-long railgun. {copyright} {ital 1996 American Institute of Physics.}

  19. Vacuum spark breakdown model based on exploding metal wire phenomena

    International Nuclear Information System (INIS)

    Haaland, J.

    1984-06-01

    Spark source mass spectra (SSMS) indicates that ions are extracted from an expanding and decaying plasma. The intensity distribution shows no dependance on vaporization properties of individual elements which indicates explosive vapour formation. This seems further to be a requirement for bridging a vacuum gap. A model including plasma ejection from a superheated anode spot by a process similar to that of an exploding metal wire is proposed. The appearance of hot plasma points in low inductance vacuum sparks can then be explained as exploding micro particles ejected from a final central anode spot. The phenomenological model is compared with available experimental results from literature, but no extensive quantification is attempted

  20. Synthesis and properties of nanostructured dense LaB6 cathodes by arc plasma and reactive spark plasma sintering

    International Nuclear Information System (INIS)

    Zhou Shenlin; Zhang Jiuxing; Liu Danmin; Lin Zulun; Huang Qingzhen; Bao Lihong; Ma Ruguang; Wei Yongfeng

    2010-01-01

    Nanostructured polycrystalline LaB 6 ceramics were prepared by the reactive spark plasma sintering method, using boron nanopowders and LaH 2 powders with a particle size of about 30 nm synthesized by hydrogen dc arc plasma. The reaction mechanism of sintering, crystal structure, microstructure, grain orientations and properties of the materials were investigated using differential scanning calorimetry, X-ray diffraction, Neutron powder diffraction, Raman spectroscopy, transmission electron microscopy and electron backscattered diffraction. It is shown that nanostructured dense LaB 6 with a fibrous texture can be fabricated by SPS at a pressure of 80 MPa and temperature of 1300 deg. C for 5 min. Compared with the coarse polycrystalline LaB 6 prepared by traditional methods, the nanostructured LaB 6 bulk possesses both higher mechanical and higher thermionic emission properties. The Vickers hardness was 22.3 GPa, the flexural strength was 271.2 MPa and the maximum emission current density was 56.81 A cm -2 at a cathode temperature of 1600 deg. C.

  1. Determination of plasma spot current and arc discharge plasma current on the system of plasma cathode electron sources using Rogowski coil technique

    International Nuclear Information System (INIS)

    Wirjoadi; Bambang Siswanto; Lely Susita RM; Agus Purwadi; Sudjatmoko

    2015-01-01

    It has been done the function test experiments of ignitor electrode system and the plasma generator electrode system to determine the current spot plasma and arc discharge plasma current with Rogowski coil technique. Ignitor electrode system that gets power supply from IDPS system can generate the plasma spot current of 11.68 ampere to the pulse width of about 33 μs, this value is greater than the design probably because of electronic components used in the IDPS system was not as planned. For the plasma generator electrode system that gets power from ADPS system capable of producing an arc discharge plasma current around 103.15 amperes with a pulse width of about 96 μs, and this value as planned. Based on the value of the arc discharge plasma current can be determined plasma electron density, which is about 10.12 10"1"9 electrons/m"3, and with this electron density value, an ignitor electrode system and a plasma generator system is quite good if used as a plasma cathode electron source system. (author)

  2. Microstructural stability of spark-plasma-sintered W f /W composite with zirconia interface coating under high-heat-flux hydrogen beam irradiation.

    Czech Academy of Sciences Publication Activity Database

    Avello de Lama, M.; Balden, M.; Greuner, H.; Höschen, T.; Matějíček, Jiří; You, J.H.

    2017-01-01

    Roč. 13, December (2017), s. 74-80 ISSN 2352-1791 R&D Projects: GA ČR GB14-36566G EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : tungsten-fibre/tungsten composites * plasma-facing components * spark plasma sintering Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics https://www.sciencedirect.com/science/article/pii/S2352179117300273

  3. The Influence of Spark Plasma Sintering Temperature on the Microstructure and the Thermoelectric Properties of Al, Ga dually-doped ZnO

    DEFF Research Database (Denmark)

    Han, Li; Le, Thanh Hung; Van Nong, Ngo

    2012-01-01

    Al, Ga dually-doped ZnO was prepared by spark plasma sintering with different sintering temperatures. The microstructural evolution and thermoelectric properties of the samples were investigated in detail. The samples with a sintering temperature above 1223K obtained higher relative densities...

  4. Research on the Plasma Anemometer Based on AC Glow Discharge

    Directory of Open Access Journals (Sweden)

    Bing Yu

    2017-01-01

    Full Text Available A new plasma anemometer based on AC glow discharge is designed in this article. Firstly, theoretical analysis of plasma anemometer working principle is introduced to prove the feasibility of the experimental measurement method. Then the experiments are carried out to study the effects of different parameters on the static discharge characteristics of the plasma anemometer system, by which the system optimization methods are obtained. Finally, several groups of appropriate parameters are selected to build the plasma anemometer system based on resistance capacitance coupling negative feedback AC glow discharge, and different airflow speeds are applied to obtain the achievable velocity measurement range. The results show that there is a linear relationship between airflow velocity and discharge current in an allowable error range, which can be applied for airflow velocity measurement. Negative feedback coupling module, which is composed of the coupling resistance and the coupling capacitance, has good effects on improving the system stability. The measurement range of the airflow velocity is significantly increased when the electrode gap is 3 mm, coupling resistance is 470 Ω, and coupling capacitance is 220 pF.

  5. Conductivity study of dense BaZr0.9Y0.1O(3 − δ) obtained by spark plasma sintering

    DEFF Research Database (Denmark)

    Ricote, Sandrine; Bonanos, Nikolaos; Wang, Hsiang-Jen

    2012-01-01

    10% yttrium doped barium zirconate (BZY10) was synthesized by solid state reaction and a 99.8% dense and transparent sample was prepared by spark plasma sintering (SPS) at 1700 °C for 5 minutes. A single phase compound was obtained, with no evaporation of barium. High-Resolution Transmission...

  6. Material machining with pseudo-spark electron beams

    International Nuclear Information System (INIS)

    Benker, W.; Christiansen, J.; Frank, K.; Gundel, H.; Redel, T.; Stetter, M.

    1989-01-01

    The authors give a brief description of the production of pseudo-spark (low pressure gas discharge) electron beams. They illustrate the use of these electron beams for machining not only conducting, semiconducting and insulating materials, but also thin layers of such materials as high temperature superconducting ceramics

  7. Water Treatment Using Plasma Discharge with Variation of Electrode Materials

    Science.gov (United States)

    Chanan, N.; Kusumandari; Saraswati, T. E.

    2018-03-01

    This research studied water treatment using plasma discharge. Plasma generated in this study produced active species that played a role in organic compound decomposition. The plasma reactor consisted of two needle electrodes made from stainless steel, tungsten, aluminium and grafit. It placed approximately 2 mm above the solution and connected with high-AC voltage. A solution of methylene blue used as an organic solution model. Plasma treatment times were 2, 4, 6, 8 and 10 min. The absorbance, temperature and pH of the solution were measured before and after treatment using various electrodes. The best electrode used in plasma discharging for methylene blue absorbance reduction was the graphite electrode, which provided the highest degradation efficiency of 98% at 6 min of treatment time.

  8. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    Science.gov (United States)

    Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas'yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.

    2016-06-01

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.

  9. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    International Nuclear Information System (INIS)

    Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas’yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.

    2016-01-01

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.

  10. Identification of microstructural mechanisms during densification of a TiAl alloy by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Jabbar, Houria; Couret, Alain; Durand, Lise [CNRS, CEMES-UPR 8011, Centre d' Elaboration de Materiaux et d' Etudes Structurales, BP 94347, 29 rue J. Marvig, F-31055 Toulouse (France); Universite de Toulouse, UPS, F-31055 Toulouse (France); Monchoux, Jean-Philippe, E-mail: monchoux@cemes.fr [CNRS, CEMES-UPR 8011, Centre d' Elaboration de Materiaux et d' Etudes Structurales, BP 94347, 29 rue J. Marvig, F-31055 Toulouse (France); Universite de Toulouse, UPS, F-31055 Toulouse (France)

    2011-10-13

    Graphical abstract: Highlights: > Mechanisms of a TiAl alloy powder densified by spark plasma sintering are identified. > Microstructure evolution of the powder is followed during the sintering cycle. > As-atomized supersaturated powder comes back to equilibrium. > Densification occurs by plastification of the particles at high temperature. > No mechanisms related to electric current are observed. - Abstract: This work aims at identifying, by coupled scanning and transmission electron microscopy (SEM and TEM) observations, the densification mechanisms occurring when an atomized Ti-47Al-1W-1Re-0.2Si powder is densified by spark plasma sintering (SPS). For this purpose, interruptions of the SPS cycle have been performed to follow the evolution of the microstructure step by step. The powder particles exhibit a classical dendritic microstructure containing a large amount of out-of-equilibrium {alpha} phase. During heating-up, the microstructure undergoes successive transformations. At T = 525-875 deg. C the {alpha} phase transforms into {gamma}. The {gamma} phase formed is supersaturated in W and Re. It de-saturates for T above 875 deg. C by discontinuous precipitation of W and Re-rich B2 phase. Densification takes place for T between 900 deg. C and 1150 deg. C by plastic deformation of the powder particles. TEM observations show that the repartition of the plastic deformation is correlated to the dendritic microstructure, and that dynamic recrystallization mechanisms occur. Microstructural phenomena directly resulting from the high currents involved in the SPS process have not been observed.

  11. Consolidation of copper and aluminium powders by spark plasma sintering

    Science.gov (United States)

    Saiprasad, M.; Atchayakumar, R.; Thiruppathi, K.; Raghuraman, S.

    2016-09-01

    Processing in the powder metallurgy route has emerged as an economical process for the production of near net shaped components with a wide range of desired mechanical properties suitable for various applications of industrial needs. This research work was conducted with an objective of studying the improvisation of density and hardness of Copper-Aluminium alloy prepared by spark plasma sintering. Cu-Al alloy with a composition of 95% copper and 5% aluminium was prepared by SPS process. SPS is a low voltage, DC pulse current activated, pressure-assisted sintering, which enables sintering at lower temperatures and shorter durations. The combination offered by Cu-Al alloy of high strength and high corrosion resistance results their applications under a wide variety of conditions. The density and hardness of the prepared sample were measured by conducting appropriate tests. Apparently, the values of hardness and density of the specimen prepared by SPS seemed to be better than that of conventional sintering. The experimental procedure, testing methodologies and analysis are presented.

  12. Modification of surface properties of LLDPE by water plasma discharge

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Hill, D.J.T.; Firas Rasoul; Whittaker, A.K.; Imelda Keen

    2007-01-01

    Linear low density polyethylene (LLDPE) surface was modified by water plasma treatment. The LLDPE surface was treated at 10 and 20 W discharge power at various exposure times. A laboratory scale Megatherm radio frequency (RF) plasma apparatus that operates at 27 MHz was used to generate the water plasmas. The changes in chemical structure of the LLDPE polymeric chain upon plasma treatment were characterized by FTIR and XPS techniques. The selectivity of trifluoroacetic anhydride (TFAA) toward hydroxyl groups is used to quantify the hydroxyl groups formed on the polymer surface upon plasma treatment. After exposition to the plasma discharge a decline in water contact angle were observed. FTIR and XPS measurements indicate an oxidation of degraded polymeric chains and creation of hydroxyl, carbonyl, ether, ester and carboxyl groups. Chemical derivatization with TFAA of water plasma treated polymer surfaces has shown that under the conditions employed, a very small (less than 5%) of the oxygen introduced by the water plasma treatment was present as hydroxyl group. (Author)

  13. Temperature and Nitric Oxide Generation in a Pulsed Arc Discharge Plasma

    International Nuclear Information System (INIS)

    Namihira, T.; Sakai, S.; Matsuda, M.; Wang, D.; Kiyan, T.; Akiyama, H.; Okamoto, K.; Toda, K.

    2007-01-01

    Nitric oxide (NO) is increasingly being used in medical treatments of high blood pressure, acute respiratory distress syndrome and other illnesses related to the lungs. Currently a NO inhalation system consists of a gas cylinder of N 2 mixed with a high concentration of NO. This arrangement is potentially risky due to the possibility of an accidental leak of NO from the cylinder. The presence of NO in the air leads to the formation of nitric dioxide (NO 2 ), which is toxic to the lungs. Therefore, an on-site generator of NO would be highly desirable for medical doctors to use with patients with lung disease. To develop the NO inhalation system without a gas cylinder, which would include a high concentration of NO, NAMIHIRA et al have recently reported on the production of NO from room air using a pulsed arc discharge. In the present work, the temperature of the pulsed arc discharge plasma used to generate NO was measured to optimize the discharge condition. The results of the temperature measurements showed the temperature of the pulsed arc discharge plasma reached about 10,000 K immediately after discharge initiation and gradually decreased over tens of microseconds. In addition, it was found that NO was formed in a discharge plasma having temperatures higher than 9,000 K and a smaller input energy into the discharge plasma generates NO more efficiently than a larger one

  14. Abrupt changes in neon discharge plasma detected via the optogalvanic effect

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xianming L., E-mail: xhan@butler.edu [Dept. of Physics and Astronomy, Butler University, Indianapolis, IN 46208 (United States); Blosser, Michael C. [Dept. of Physics and Astronomy, Butler University, Indianapolis, IN 46208 (United States); Misra, Prabhakar [Dept. of Physics and Astronomy, Howard University, Washington DC 20059 (United States); Chandran, Haridass [Dept. of Physical Science, Belfry School, Belfry, KY 41514 (United States)

    2012-10-30

    When a laser is tuned between two excited energy levels of a gas in a Direct Current discharge lamp, the discharge current will experience a temporary disturbance lasting tens or hundreds of microseconds known as the optogalvanic effect. We have carried out extensive studies of optogalvanic effects in neon discharge plasmas for transitions at 621.7 nm, 630.5 nm, 638.3 nm, 650.7 nm and 659.9 nm. A nonlinear least-squares Monte Carlo technique has been used to determine the relevant amplitude coefficients, decay rates and the instrumental time constant. We discovered an abrupt change in the neon discharge plasma at a discharge current of about 6 mA.

  15. Laser pulse guiding and electron acceleration in the ablative capillary discharge plasma

    International Nuclear Information System (INIS)

    Kameshima, T.; Kotaki, H.; Kando, M.; Daito, I.; Kawase, K.; Fukuda, Y.; Homma, T.; Esirkepov, T. Zh.; Chen, L. M.; Kondo, S.; Bobrova, N. A.; Sasorov, P. V.; Bulanov, S. V.

    2009-01-01

    The results of experiments are presented for the laser electron acceleration in the ablative capillary discharge plasma. The plasma channel is formed by the discharge inside the ablative capillary. The intense short laser pulse is guided over a 4 cm length. The generated relativistic electrons show both the quasimonoenergetic and quasi-Maxwellian energy spectra, depending on laser and plasma parameters. The analysis of the inner walls of the capillaries that underwent several tens of shots shows that the wall deformation and blistering resulted from the discharge and laser pulse effects.

  16. Surprising synthesis of nanodiamond from single-walled carbon nanotubes by the spark plasma sintering process

    Science.gov (United States)

    Mirzaei, Ali; Ham, Heon; Na, Han Gil; Kwon, Yong Jung; Kang, Sung Yong; Choi, Myung Sik; Bang, Jae Hoon; Park, No-Hyung; Kang, Inpil; Kim, Hyoun Woo

    2016-10-01

    Nanodiamond (ND) was successfully synthesized using single-walled carbon nanotubes (SWCNTs) as a pure solid carbon source by means of a spark plasma sintering process. Raman spectra and X-ray diffraction patterns revealed the generation of the cubic diamond phase by means of the SPS process. Lattice-resolved TEM images confirmed that diamond nanoparticles with a diameter of about ˜10 nm existed in the products. The NDs were generated mainly through the gas-phase nucleation of carbon atoms evaporated from the SWCNTs. [Figure not available: see fulltext.

  17. Colloidal silver fabrication using the spark discharge system and its antimicrobial effect on Staphylococcus aureus.

    Science.gov (United States)

    Tien, Der-Chi; Tseng, Kuo-Hsiung; Liao, Chih-Yu; Tsung, Tsing-Tshih

    2008-10-01

    Nanoscale techniques for silver production may assist the resurgence of the medical use of silver, especially given that pathogens are showing increasing resistance to antibiotics. Traditional chemical synthesis methods for colloidal silver (CS) may lead to the presence of toxic chemical species or chemical residues, which may inhibit the effectiveness of CS as an antibacterial agent. To counter these problems a spark discharge system (SDS) was used to fabricate a suspension of colloidal silver in deionized water with no added chemical surfactants. SDS-CS contains both metallic silver nanoparticles (Ag(0)) and ionic silver forms (Ag(+)). The antimicrobial affect of SDS-CS on Staphylococcus aureus was studied. The results show that CS solutions with an ionic silver concentration of 30 ppm or higher are strong enough to destroy S. aureus. In addition, it was found that a solution's antimicrobial potency is directly related to its level of silver ion concentration.

  18. Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.

    2011-01-01

    Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

  19. Spark plasma sintering of hydrothermally derived ultrafine Ca doped lanthanum chromite powders

    Directory of Open Access Journals (Sweden)

    Rendón-Angeles, J. C.

    2006-08-01

    Full Text Available Lanthanum chromite nano-particles, with a composition of La0.9Ca0.1CrO3 and La0.8Ca0.2CrO3, were produced by 1 h of hydrothermal reaction at 400 and 425°C respectively. The sintering of the powders was conducted using a spark plasma apparatus over the temperature range 1300-1550ºC for 1 min with a constant loading pressure of 45 MPa. Additional sintering experiments using conventional firing were carried out for comparison. Fully densified (98 % r.d. lanthanum chromite pellets with fine equiaxial grains 2.3 μm in size were obtained using the SPS (spark plasma sintering method. In contrast, a maximum relative density of 97 % was produced using La0.8Ca0.2CrO3 sintered conventionally at 1400ºC for 300 min, and the average grain size of the resulting sintered sample was 6 μm.

    Partículas ultrafinas de cromita de lantano, con una composición de La0.9Ca0.1CrO3 y La0.8Ca0.2CrO3, se obtuvieron después de 1 hora de síntesis hidrotermal a las temperaturas de 400 y 425°C respectivamente. Los compuestos obtenidos, con un tamaño de partícula de ~ 200 nm, se caracterizaron utilizando las técnicas de DRX, MEB y MET. La sinterización de estos polvos se efectuó en un equipo de chispa de plasma en el rango de temperatura de 1300-1500°C durante 1 min, y a una presión de compactación de 45 MPa. Ambos polvos también se sinterizaron siguiendo un tratamiento térmico convencional, en aire, con el propósito de comparar ambos métodos de sinterización. Las muestras de cromita de lantano sinterizadas por plasma presentaban una densidad relativa del 98 % (/t; y una microestructura monofásica con granos equaxiales con un tamaño medio de grano menor de 2.3 μm. En contraste, la composición La0.8Ca0.2CrO3, sinterizada a 1400°C/300 min, por métodos convencionales alcanzó una densidad relativa máxima del 97 % y su microestructura estaba formada por una sola fase con un tamaño medio de grano de 6 μm.

  20. The effect of ethanol gas impurity on the discharge mode and discharge products of argon plasma jet at atmospheric pressure

    Science.gov (United States)

    Xia, Wenjie; Liu, Dingxin; Xu, Han; Wang, Xiaohua; Liu, Zhijie; Rong, Mingzhe; Kong, Michael G.

    2018-05-01

    Argon is a widely used working gas of plasmas, which is much cheaper than helium but on the other hand much more difficult to generate diffuse discharge at atmospheric pressure. In order to meet the application requirements, plenty of researches have been reported to facilitate the diffuse discharge happening for argon plasmas, and in this paper an approach of using ethanol gas (EtOH) impurity is investigated. The discharge characteristics of Ar + EtOH plasma jet are studied as a function of the applied voltage and the concentration of EtOH, from which the concentration of EtOH between ∼200 and ∼3300 parts per million (ppm) is determined necessary for the generation of diffuse discharge. Compared with the helium plasma jet in literature, it is deduced that the diffuse discharge is probably caused by the Penning ionization happening between the metastable argon and EtOH. The discharge products of Ar + EtOH (672 ppm) plasma jet are measured and the corresponding chemistry pathways are analyzed. About 20% of EtOH is decomposed via complex chemical reactions to form more than a dozen of neutral species, such as CH3CHO, CH3COOH, CO, H2O, and C n H2n+2 (n ≥ 3), and various kinds of ionic species, including C+, CH+, ArH+, {{{{O}}}2}-, CH3CH2O‑, etc.

  1. A study of the air-shower response of current-limited spark chambers

    International Nuclear Information System (INIS)

    Porter, M.R.; Hodson, A.L.; Bull, R.M.

    1982-01-01

    The efficiency of current-limited spark chambers (discharge chambers) and their relative response to shower electrons and photons are investigated. A stack of six horizontal 1m x 10 cm discharge chambers, above one another, is triggered by air showers falling on an adjacent discharge-chamber array. Particular combinations of discharges show that the efficiency of the chambers is very high and that a significant fraction of the discharges is due to incident photons

  2. Densification of silicon and zirconium carbides by a new process: spark plasma sintering

    International Nuclear Information System (INIS)

    Guillard, F.

    2006-12-01

    Materials research for suitable utilization in 4. generation nuclear plants needs new ways to densify testing components. Two carbides, silicon and zirconium carbide seems to be the most suitable choice due to their mechanical, thermal and neutron-transparency properties against next nuclear plant specifications. Nevertheless one main difficulty remains, which is densifying them even at high temperature. Spark Plasma Sintering a new metal-, ceramic- and composite-sintering process has been used to densify both SiC and ZrC. Understanding bases of mass transport mechanisms in SPS have been studied. Composites and interfaces have been processed and analyzed. This manuscript reports original results on SiC and ZrC ceramics sintered with commercial powder started, without additives. (author)

  3. On the distribution of plasma parameters in RF glow discharge

    International Nuclear Information System (INIS)

    Ning Cheng; Liu Zuli; Liu Donghui; Han Caiyuan.

    1993-01-01

    A self-consistent numerical model based on the two-fluid equations for describing the transport of charged particles in the RF glow discharge is presented. For a plasma generator filled with low-pressure air and parallel-plate electrodes, the model is numerical solved. The space-time distribution of parameters and the spatial distribution of some time-averaged parameters in plasma, which show the physical picture of the RF glow discharge, are obtained

  4. Ion irradiation effects on ionic liquids interfaced with rf discharge plasmas

    International Nuclear Information System (INIS)

    Baba, K.; Kaneko, T.; Hatakeyama, R.

    2007-01-01

    The availability of plasma ion irradiation toward a gas-liquid interface is investigated in a rf discharge system incorporating an ionic liquid. The introduction of the ionic liquid to the plasma causes the formation of a sheath electric field on the ionic liquid surface, resulting in the acceleration of the ions to the ionic liquid and the generation of secondary electrons from the ionic liquid by the ion irradiation. These effects are found to advance the discharge process and enhance the plasma production

  5. Numerical study on discharge process of microcavity plasma

    International Nuclear Information System (INIS)

    Xia Guangqing; Xue Weihua; Wang Dongxue; Zhu Guoqiang; Zhu Yu

    2012-01-01

    The evolution of plasma parameters during high pressure discharge in the microcavity with a hollow anode was numerically studied, with a two-dimensional self-consistent fluid model. The simulations were performed with argon at 13.3 kPa. The numerical results show that during the discharge the electric field around the cathode transforms from an axial field to a radial field, the plasma density gets the maximum value on the central line of the cavity and the location of the maximum density moves from the region near anode at the initial stage to the cathode vicinity at the stable stage, and the maximum electron temperature occurs in the ring sheath of cathode. (authors)

  6. Kinetics, Stability, and Thermal Contact Resistance of Nickel–Ca3Co4O9 Interfaces Formed by Spark Plasma Sintering

    DEFF Research Database (Denmark)

    Holgate, Tim; Wu, NingYu; Søndergaard, M.

    2013-01-01

    3Co4O9) have been formed directly by spark plasma sintering (SPS). An intermediate NiO phase is formed during the SPS processes, which grows during post-heating with Co entering from the cobaltate side to form a graded Ni1xCoxO interfacial layer. The electrical and thermal transport across...

  7. Effect of Electric Discharge on Properties of Nano-Particulate Catalyst for Plasma-Catalysis.

    Science.gov (United States)

    Lee, Chung Jun; Kim, Jip; Kim, Taegyu

    2016-02-01

    Heterogeneous catalytic processes have been used to produce hydrogen from hydrocarbons. However, high reforming temperature caused serious catalyst deteriorations and low energy efficiency. Recently, a plasma-catalyst hybrid process was used to reduce the reforming temperature and to improve the stability and durability of reforming catalysts. Effect of electric discharges on properties of nanoparticulate catalysts for plasma-catalysis was investigated in the present study. Catalyst-bed porosity was varied by packing catalyst beads with the different size in a reactor. Discharge power and onset voltage of the plasma were measured as the catalyst-bed porosity was varied. The effect of discharge voltage, frequency and voltage waveforms such as the sine, pulse and square was investigated. We found that the optimal porosity of the catalyst-bed exists to maximize the electric discharge. At a low porosity, the electric discharge was unstable to be sustained because the space between catalysts got narrow nearly close to the sheath region. On the other hand, at a high porosity, the electric discharge became weak because the plasma was not sufficient to interact with the surface of catalysts. The discharge power increased as the discharge voltage and frequency increased. The square waveform was more efficient than the sine and pulse one. At a high porosity, however, the effect of the voltage waveform was not considerable because the space between catalysts was too large for plasma to interact with the surface of catalysts.

  8. Fabricating TiO2 nanocolloids by electric spark discharge method at normal temperature and pressure.

    Science.gov (United States)

    Tseng, Kuo-Hsiung; Chang, Chaur-Yang; Chung, Meng-Yun; Cheng, Ting-Shou

    2017-11-17

    In this study, TiO 2 nanocolloids were successfully fabricated in deionized water without using suspending agents through using the electric spark discharge method at room temperature and under normal atmospheric pressure. This method was exceptional because it did not create nanoparticle dispersion and the produced colloids contained no derivatives. The proposed method requires only traditional electrical discharge machines (EDMs), self-made magnetic stirrers, and Ti wires (purity, 99.99%). The EDM pulse on time (T on ) and pulse off time (T off ) were respectively set at 50 and 100 μs, 100 and 100 μs, 150 and 100 μs, and 200 and 100 μs to produce four types of TiO 2 nanocolloids. Zetasizer analysis of the nanocolloids showed that a decrease in T on increased the suspension stability, but there were no significant correlations between T on and particle size. Colloids produced from the four production configurations showed a minimum particle size between 29.39 and 52.85 nm and a zeta-potential between -51.2 and -46.8 mV, confirming that the method introduced in this study can be used to produce TiO 2 nanocolloids with excellent suspension stability. Scanning electron microscopy with energy dispersive spectroscopy also indicated that the TiO 2 colloids did not contain elements other than Ti and oxygen.

  9. Fabricating TiO2 nanocolloids by electric spark discharge method at normal temperature and pressure

    Science.gov (United States)

    Tseng, Kuo-Hsiung; Chang, Chaur-Yang; Chung, Meng-Yun; Cheng, Ting-Shou

    2017-11-01

    In this study, TiO2 nanocolloids were successfully fabricated in deionized water without using suspending agents through using the electric spark discharge method at room temperature and under normal atmospheric pressure. This method was exceptional because it did not create nanoparticle dispersion and the produced colloids contained no derivatives. The proposed method requires only traditional electrical discharge machines (EDMs), self-made magnetic stirrers, and Ti wires (purity, 99.99%). The EDM pulse on time (T on) and pulse off time (T off) were respectively set at 50 and 100 μs, 100 and 100 μs, 150 and 100 μs, and 200 and 100 μs to produce four types of TiO2 nanocolloids. Zetasizer analysis of the nanocolloids showed that a decrease in T on increased the suspension stability, but there were no significant correlations between T on and particle size. Colloids produced from the four production configurations showed a minimum particle size between 29.39 and 52.85 nm and a zeta-potential between -51.2 and -46.8 mV, confirming that the method introduced in this study can be used to produce TiO2 nanocolloids with excellent suspension stability. Scanning electron microscopy with energy dispersive spectroscopy also indicated that the TiO2 colloids did not contain elements other than Ti and oxygen.

  10. Spark chamber used for the visualization of the 125I labeled thyroid

    International Nuclear Information System (INIS)

    Morucci, Jean-Pierre; Seigneur, Alain; Lansiart, Alain

    1971-03-01

    This spark chamber is a stationary detector used for the visualization of the 125 I labeled thyroid; it is sensitive to X and low energy gamma rays. This device is filled mainly with pressurized xenon (1.5 kg/cm 2 ) and behaves as an X-ray image intensifier: the incident radiation is detected and initiates a spark. The energy dissipated by the spark is reduced and controlled by a double coated anode, while an electronic circuit triggered by the initiation of the spark discharges the detector capacitance. The sparks are recorded on a photographic plate during the examination. X ray optics are used for collimation between the thyroid and the detector. A modulation transfer function was measured for 125 I. Communication theory was used to determine the best way of combining the collimator and spark chamber. This device is being used in the Service Hospitalier Frederic Joliot at Orsay. Its performance is superior to that of conventional scintigraphs. Further applications are envisaged [fr

  11. Characterization of the plasma in magnetic multidipole discharges

    International Nuclear Information System (INIS)

    Ferreira, J.G.

    1988-09-01

    In this work, a caracterization of the discharge of the quiescent plasma machine of INPE, and an identification of the most relevant processes in the definition of its plasma properties, were achieved. Measurements of plasma potential, the floating potential, the temperature of the electrons, and the density of the plasma, for pressures ranging from 10 -3 to 10 -1 Pa and for discharge potentials for 45V to 120V were acomplished. These measurements were made with a Langmuir spherical probe with 1mm in diameter. In the whole range of operation the presence of two populations of electrons with distinct temperatures in the energy range from 1 to 10eV was observed, although for pressures approaching 10 -1 Pa the plasma tended to a single population of electrons with temperature of 1eV. The difference between plasma and floating potentials was observed to become smaller as the pressure raised, and the potential difference between plasma and anode reached a value around 2V when pressure raised above 10 -2 Pa. The plasma density increases approximately linearly with pressure, for values below 10 -2 Paa, but above 10 -1 Pa its increase with pressure is quite reduced. A study on the collision processes in the plasma volume and on loss processes to surfaces allowed to interpret qualitatively the observed plasma behavior and to estimate, by means of simple expressions, some of the plasma parameters. The loss areas for ions and primary electrons were estimated from experimental results. A simple quantitative model which allows the calculation of plasma density in the whole range of operation, reproduced the correct order of magnitude of experimental values. However, an additional work, both theoretical and experimental, is required to obtain better agreement between experimental and theoretical values. (author) [pt

  12. Measurements and Simulations of Surface Dielectric Barrier Discharges Used as Plasma Actuators

    Science.gov (United States)

    Hoskinson, Alan R.

    2012-01-01

    This report is a Ph.D. dissertation performed under NRA cooperative agreement and submitted as part of the final report. Asymmetric surface dielectric barrier discharges (DBDs) have shown promise for use as aerodynamic actuators for active flow control. In this project we studied DBD actuators experimentally and numerically. Our DBDs used a symmetric triangular high voltage waveform to generate plasma in atmospheric pressure air. Time-averaged measurements indicated that the induced force of a single barrier actuator design (one electrode insulated from the plasma) can be increased exponentially above the results of previous studies by decreasing both the length and thickness of the electrode exposed to the plasma. This increased force may allow these devices to control flow separation in a wider range of flow environments. Experiments using an intensified digital camera to examine the plasma on time scales of a few nanoseconds showed that, in addition to the previously-observed filamentary and jet-like plasma structures, discharges with very thin exposed electrodes exhibited a weak but constant plasma immediately adjacent to those electrodes. In double-barrier actuators (both electrodes insulated), decreasing the diameter of the narrower electrode lead to increasing forces, and recorded images showed the simultaneous existence of both filamentary and jet-like plasma structures. The development and application of a time-dependent, two-dimensional computational fluid plasma model has aided in understanding the detailed physics of surface DBDs at all-time scales. For simulated single-barrier discharges, the model qualitatively reproduced the filamentary and jet-like micro-discharge structures. The model was somewhat successful in reproducing the observed characteristics of double-barrier actuators. For both actuator geometries, the model indicated that the majority of the forces induced on the neutral gas occur in between micro-discharges as the plasmas decay.

  13. Electric discharge plasmas influence attachment of cultured CHO k1 cells

    NARCIS (Netherlands)

    Kieft, I.E.; Broers, J.L.V.; Caubet-Hilloutou, V.; Slaaf, D.W.; Ramaekers, F.C.S.; Stoffels - Adamowicz, E.

    2004-01-01

    Non-thermal plasmas can be generated by electric discharges in gases. These plasmas are reactive media, capable of superficial treatment of various materials. A novel non-thermal atmospheric plasma source (plasma needle) has been developed and tested. Plasma appears at the end of a metal pin as a

  14. Magnetized whirls in plasma focus discharges

    International Nuclear Information System (INIS)

    Witalis, E.

    1979-05-01

    The plasma focus is briefly described with emphasis on its capabilities as a neutron source. The filamentary whirl structures observed in the discharge plasma are described. Starting with a simple, early and particularly well established case of vorticity imparted by a rotational electric field to the plasma in MHD generators, a general derivation is then outlined proving that such magnetically induced rotation is a general feature for the normally Hall-conducting magnetized plasma. Physical interpretations of the effect are given and objections to it are critically reviewed as is also a theory proposing radiation cooling as the cause of plasma filamentation. A more detailed derivation based essentially on the consistent description of the motion and the field generation of the charged plasma particles yields a theoretical model where the specific features of magnetically compressed plasmas are found. In particular, the ion collisionless skin depth is obtained as the key length parameter. This length is identified as roughly the whirl radius. In conjunction with a generalized Bennett relation theoretical whirl properties are predicted and found to agree with observations. Mechanisms that relate the whirls to nuclear fusion reaction conditions are tentatively indicated. (author)

  15. Note: Design and investigation of a multichannel plasma-jet triggered gas switch.

    Science.gov (United States)

    Tie, Weihao; Liu, Xuandong; Zhang, Qiaogen; Liu, Shanhong

    2014-07-01

    We described the fabrication and testing of a multichannel plasma-jet triggered gas switch (MPJTGS). A novel six-channel annular micro-plasma-gun was embedded in the trigger electrode to generate multichannel plasma jets as a nanosecond trigger pulse arrived. The gas breakdown in multiple sites of the spark gap was induced and fixed around jet orifices by the plasma jets. We tested the multichannel discharge characteristics of the MPJTGS in two working modes with charge voltage of 50 kV, trigger voltage of +40 kV (25 ns rise time), and trigger energy of 240 J, 32 J, and 2 J, respectively, at different working coefficients. Results show that the average number of discharge channels increased as the trigger energy increased, and decreased as the working coefficient decreased. At a working coefficient of 87.1% and trigger energy of 240 J, the average number of discharge channels in Mode II could reach 4.1.

  16. Dynamic behavior of polydisperse dust system in cryogenic gas discharge complex plasmas

    NARCIS (Netherlands)

    Antipov, S.N.; Schepers, L.P.T.; Vasiliev, M.M.; Petrov, O.F.

    2016-01-01

    Complex (dusty) plasmas of micron-sized CeO2 polydisperse particles in dc glow discharges at 77 and ∼ 10 K were experimentally investigated. It was obtained that dust structure in cryogenic gas discharge plasma can be a mixture of two fractions (components) with completely different dust ordering

  17. Study of ultrasound-assisted radio-frequency plasma discharges in n-dodecane

    Science.gov (United States)

    Camerotto, Elisabeth; De Schepper, Peter; Nikiforov, Anton Y.; Brems, Steven; Shamiryan, Denis; Boullart, Werner; Leys, Christophe; De Gendt, Stefan

    2012-10-01

    This paper investigates the generation of a stable plasma phase in a liquid hydrocarbon (n-dodecane) by means of ultrasound (US) and radio-frequency (RF) or electromagnetic radiation. It is demonstrated for the first time that ultrasonic aided RF plasma discharges can be generated in a liquid. Plasma discharges are obtained for different gas mixtures at a pressure of 12 kPa and at low ignition powers (100 W for RF and 2.4 W cm-2 for US). Direct carbon deposition from the liquid precursor on Cu, Ni, SiO2 and Si substrates has been obtained and no apparent compositional or structural difference among the substrate materials was observed. Characterization of the deposited solid phase revealed an amorphous structure. In addition, structural changes in the liquid precursor after plasma treatment have been analysed. Optical emission spectroscopy (OES) allowed the estimation of several plasma characteristic temperatures. The plasma excitation temperature was estimated to be about 2.3-2.4 eV. The rotational and vibrational temperatures of the discharge in n-dodecane with Ar as a feed gas were 1400 K and 6500 K, respectively. In Ar/O2 plasma, an increased rotational (1630 K) and vibrational temperature (7200 K) were obtained.

  18. Review of plasma physics research in Malaysia

    International Nuclear Information System (INIS)

    Lee, S.

    1982-01-01

    The energy trends of Malaysia projected for the next few decades are briefly discussed as a background to the rationale for Malaysian research into new forms of energy including plasma fusion. The planning of this research started nearly two decades ago. Today research facilities at PLUM centre on two capacitor banks, one rated at 40 kV, 48 kJ, 2 MA short circuit current and the other at 60 kV, 40 kJ, 2 MA. Other equipment includes several smaller capacitor banks, vacuum systems, oscilloscopes, diagnostic systems, a screened room, a transient digitizer, an Imacon camera and a 100 MW pulsed ruby laser for discharge initiation and diagnostics. The research devices include two plasma focus machines, one vacuum fusion spark, a shock tube and minor experiments like the glow discharge. The main focus facility, the UMDPF1, was designed and built entirely by indigenous effort, using 40 kV capacitors donated by Britain under the Colombo Plan. Difficulties were encountered especially in the need to adapt what is locally available or readily importable to all phases of the design, construction, testing and measurement. Nevertheless, the focus group has achieved the following results: measurement, in 1973, of neutrons produced in the deuterium focus; current, voltage, magnetic field and pressure measurements to interpret plasma dynamics and focus mechanism and to compare with computer simulation of plasma trajectory and configuration; soft X-ray measurements to determine electron temperature; study of the effect on the focus of rotation and multiple ionization up to Argon XVIII; and optimization of focus performance as judged from neutron yield. In 1977 PLUM acquired the Juelich DPF1 which was reassembled as a fast focus, the UMDPF2. This device has been converted to operate as a vacuum spark with the aim of demonstrating the spark as a neutron source when using a deuterided anode. We have measured temperatures of 8 keV in the dense plasma spots. Plasma research work here has

  19. Microstructures and mechanical properties of 9Cr oxide dispersion strengthened steel produced by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Rui [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); School of Metallurgy, Northeastern University, Shenyang 110819 (China); Lu, Zheng, E-mail: luz@atm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Lu, Chenyang; Li, Zhengyuan [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China); Ding, Xueyong [School of Metallurgy, Northeastern University, Shenyang 110819 (China); Liu, Chunming [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819 (China)

    2017-02-15

    Highlights: • A 9Cr-ODS steel was produced by mechanical alloying and spark plasma sintering. • Bimodal grain size distribution was observed. • Formation mechanism of bimodal grain size distribution was discussed. • The size and number density of nanoscale particles were obtained by SAXS and HRTEM. • The contribution of nano-sized particles to yield strength is dominating. - Abstract: 9Cr oxide dispersion strengthened (ODS) steel was fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). The nano-sized particles, grain size distribution and mechanical properties of 9Cr-ODS steel sintered at 950 °C were studied by synchrotron radiation small angle X-ray scattering (SAXS), high-resolution transmission electron microscopy (HRTEM), electron backscatter diffraction (EBSD) and tensile experiment. The results showed that bimodal grain size distribution in the matrix is observed, which is attributed to the heterogeneous recrystallization process during the SPS. High-density nano-sized Y{sub 2}Ti{sub 2}O{sub 7} and some large oxides of Cr{sub 2}Mn(Ti)O{sub 4} are formed in 9Cr-ODS steel. The number density and average size of Y{sub 2}Ti{sub 2}O{sub 7} obtained from SAXS are 4.72 × 10{sup 22}/m{sup 3} and 4.4 nm, respectively. The yield strengths of 9Cr-ODS steel fabricated by SPS are compared with the typical 9Cr-ODS steel produced by HIP.

  20. Research of plasma-electrolyte discharge in the processes of obtaining metallic powders

    Science.gov (United States)

    Kashapov, R. N.; Kashapov, L. N.; Kashapov, N. F.

    2017-11-01

    The use of the plasma electrolyte process has never been considered as a simple, cheap and fast method of obtaining powders used in selective laser melting processes. Therefore, the adaptation of the plasma-electrolyte process to the production of metal powders used in additive production is an urgent task. The paper presents the results of studies of gas discharge parameters between a metal and liquid electrode in the processes of obtaining metallic iron powders. The discharge combustion conditions necessary for the formation of metal powders of micron size are determined. A possible mechanism for the formation of powder particles in a discharge plasma is proposed.

  1. Sparking protection for MFTF-B Neutral Beam Power Supplies

    International Nuclear Information System (INIS)

    Cummings, D.B.

    1983-01-01

    This paper describes the upgrade of MFTF-B Neutral Beam Power Supplies for sparking protection. High performance ion sources spark repeatedly so ion source power supplies must be insensitive to sparking. The hot deck houses the series tetrode, arc and filament supplies, and controls. Hot deck shielding has been upgraded and a continuous shield around the arc, filament, gradient grid, and control cables now extends from the hot deck, through the core snubber, to the source. The shield carries accelerating current and connects only to the source. Shielded source cables go through an outer duct which now connects to a ground plane under the hot deck. This hybrid transmission line is a low inductance path for sparks discharging the stray capacitance of the hot deck and isolation transformers, reducing coupling to building steel. Parallel DC current return cables inside the duct lower inductance to reduce inductive turn-off transients. MOVs to ground further limit surges in the remote power supply return. Single point grounding is at the source. No control or rectifier components have been damaged nor are there any known malfunctions due to sparking up to 80 kV output

  2. Sparking protection for MFTF-B neutral beam power supplies

    International Nuclear Information System (INIS)

    Cummings, D.B.

    1983-01-01

    This paper describes the upgrade of MFTF-B Neutral Beam Power Supplies for sparking protection. High performance ion sources spark repeatedly so ion source power supplies must be insensitive to sparking. The hot deck houses the series tetrode, arc and filament supplies, and controls. Hot deck shielding has been upgraded and a continuous shield around the arc, filament, gradient grid, and control cables now extends from the hot deck, through the core snubber, to the source. The shield carries accelerating current and connects only to the source. Shielded source cables go through an outer duct which now connects to a ground plane under the hot deck. This hybrid transmission line is a low inductance path for sparks discharging the stray capacitance of the hot deck and isolation transformers, reducing coupling to building steel. Parallel dc current return cables inside the duct lower inductance to reduce inductive turn-off transients. MOVs to ground further limit surges in the remote power supply return. Single point grounding is at the source. No control or rectifier components have been damaged nor are there any known malfunctions due to sparking up to 80 kV output

  3. Effect of applied voltage and inter-pulse delay in spark-assisted LIBS

    Science.gov (United States)

    Robledo-Martinez, A.; Sobral, H.; Garcia-Villarreal, A.

    2018-06-01

    We report the results obtained in an investigation on the effect of the time delay between the laser and electrical pulses in a spark-assisted laser-induced breakdown spectroscopy (LIBS) experiment. The electrical discharge is produced by the discharge of a charged coaxial cable. This arrangement produces a fast unipolar current pulse (500 ns) that applies high power ( 600 kW) to the laser ablation plasma. The delay between the laser pulse and the electric pulse can be controlled at will in order to find the optimal time in terms of enhancement of the emitted lines. It was found that the application of the high voltage pulse enhances the ionic lines emitted by up to two orders of magnitude. An additional enhancement by a factor of 2-4 can be obtained delaying the application of the electric pulse by a time of 0.6-20 μs. In the tests it was noticed that the ionic lines were found to be clearly responsive to increments in the applied electric energy while the neutral lines did so marginally. Our results show that the intensification of the lines is mainly due to reheating of the ablation plasma as the application of the electrical pulse increments the temperature of the ablation plasma by about 50%. It is demonstrated that the present technique is an efficient way of intensifying the lines emitted without incurring in additional damage to the sample.

  4. Plasma remediation of trichloroethylene in silent discharge plasmas

    International Nuclear Information System (INIS)

    Evans, D.; Rosocha, L.A.; Anderson, G.K.; Coogan, J.J.; Kushner, M.J.

    1993-01-01

    Plasma destruction of toxins, and volatile organic compounds in particular, from gas streams is receiving increased attention as an energy efficient means to remediate those compounds. In this regard, remediation of trichloroethylene (TCE) in silent discharge plasmas has been experimentally and theoretically investigated. We found that TCE can be removed from Ar/O 2 gas streams at atmospheric pressure with an energy efficiency of 15--20 ppm/(mJ/cm 3 ), or 2--3 kW h kg -1 . The majority of the Cl from TCE is converted to HCl, Cl 2 , and COCl 2 , which can be removed from the gas stream by a water bubbler. The destruction efficiency of TCE is smaller in humid mixtures compared to dry mixtures due to interception of reactive intermediates by OH radicals

  5. Spark discharge and flame inception analysis through spectroscopy in a DISI engine fuelled with gasoline and butanol

    Science.gov (United States)

    Irimescu, A.; Merola, S. S.

    2017-10-01

    Extensive application of downsizing, as well as the application of alternative combustion control with respect to well established stoichiometric operation, have determined a continuous increase in the energy that is delivered to the working fluid in order to achieve stable and repeatable ignition. Apart from the complexity of fluid-arc interactions, the extreme thermodynamic conditions of this initial combustion stage make its characterization difficult, both through experimental and numerical techniques. Within this context, the present investigation looks at the analysis of spark discharge and flame kernel formation, through the application of UV-visible spectroscopy. Characterization of the energy transfer from the spark plug’s electrodes to the air-fuel mixture was achieved by the evaluation of vibrational and rotational temperatures during ignition, for stoichiometric and lean fuelling of a direct injection spark ignition engine. Optical accessibility was ensured from below the combustion chamber through an elongated piston design, that allowed the central region of the cylinder to be investigated. Fuel effects were evaluated for gasoline and n-butanol; roughly the same load was investigated in throttled and wide-open throttle conditions for both fuels. A brief thermodynamic analysis confirmed that significant gains in efficiency can be obtained with lean fuelling, mainly due to the reduction of pumping losses. Minimal effect of fuel type was observed, while mixture strength was found to have a stronger influence on calculated temperature values, especially during the initial stage of ignition. In-cylinder pressure was found to directly determine emission intensity during ignition, but the vibrational and rotational temperatures featured reduced dependence on this parameter. As expected, at the end of kernel formation, temperature values converged towards those typically found for adiabatic flames. The results show that indeed only a relatively small part

  6. Machinability of nickel based alloys using electrical discharge machining process

    Science.gov (United States)

    Khan, M. Adam; Gokul, A. K.; Bharani Dharan, M. P.; Jeevakarthikeyan, R. V. S.; Uthayakumar, M.; Thirumalai Kumaran, S.; Duraiselvam, M.

    2018-04-01

    The high temperature materials such as nickel based alloys and austenitic steel are frequently used for manufacturing critical aero engine turbine components. Literature on conventional and unconventional machining of steel materials is abundant over the past three decades. However the machining studies on superalloy is still a challenging task due to its inherent property and quality. Thus this material is difficult to be cut in conventional processes. Study on unconventional machining process for nickel alloys is focused in this proposed research. Inconel718 and Monel 400 are the two different candidate materials used for electrical discharge machining (EDM) process. Investigation is to prepare a blind hole using copper electrode of 6mm diameter. Electrical parameters are varied to produce plasma spark for diffusion process and machining time is made constant to calculate the experimental results of both the material. Influence of process parameters on tool wear mechanism and material removal are considered from the proposed experimental design. While machining the tool has prone to discharge more materials due to production of high energy plasma spark and eddy current effect. The surface morphology of the machined surface were observed with high resolution FE SEM. Fused electrode found to be a spherical structure over the machined surface as clumps. Surface roughness were also measured with surface profile using profilometer. It is confirmed that there is no deviation and precise roundness of drilling is maintained.

  7. Ceramic-intermetallic composites produced by mechanical alloying and spark plasma sintering

    CERN Document Server

    Cabanas-Moreno, J G; Martínez-Sanchez, R; Delgado-Gutierrez, O; Palacios-Gomez, J; Umemoto, M

    1998-01-01

    Nano-and microcomposites of intermetallic (Co/sub 3/Ti, AlCo/sub 2 /Ti) and ceramic (TiN, Ti(C, N), Al/sub 2/O/sub 3/) phases have been produced by spark plasma sintering (SPS) of powders resulting from mechanical alloying of Al-Co-Ti elemental powder mixtures. The mechanically alloyed powders consisted of mixtures of nanocrystalline and amorphous phases which, on sintering, transformed into complex microstructures of the intermetallic and ceramic phases. For Al contents lower than about 30 at% in the original powder mixtures, the use of SPS led to porosities of 1-2% in the sintered compacts and hardness values as high as ~1700 kg/mm/sup 2/; in these cases, the composite matrix was TiN and Ti(C, N), with the Al/sub 2/O/sub 3/ phase found as finely dispersed particles in the matrix and the Co /sub 3/Ti and AlCo/sub 2/Ti phases as interdispersed grains. (19 refs).

  8. Pulsed hollow cathode discharge: intense electron beam and filamentary plasma

    International Nuclear Information System (INIS)

    Modreanu, Gabriel

    1998-01-01

    This work deals with a transient hollow cathode discharge optimised by a preionization one and providing intense electron beams. It exists a preionization current value for which the pulsed discharge becomes a very straight and bright filament, well collimated on the discharge tube axis for some tenths of centimeters. A remarkable feature of this discharge is that, without internal metallic electrodes very pure plasma could be produced. Using self-biasing by the beam of a Faraday cup placed only few millimeters behind the anode, we deduced the beam electron's distribution function and its temporal behavior for two radial positions, on the axis and 1 millimeter off-axis, respectively. The real advantage of this measurement technique is the transient polarization character, which allows analysis very closely from the electron beam extraction hole. On the other side, using the emission spectroscopy, we have studied the plasma produced in electron beam - gas interaction and deduced the temporal evolution of the electron temperature. The temporal behavior of the filamentary plasma diameter shows a constriction at the last moments of the beam existence, followed by diffusion controlled expansion. The ambipolar diffusion coefficient corresponding to the estimated electron temperature describes quite well this expansion and allows a quantitative interpretation of the measured temperature diminution, with taking into account the preferential fast electrons escape. The analysis of both beam and post-beam plasma phases suggests potential applications of this robust, very reproducible and not expensive discharge also susceptible to be external monitored. The beam - target interaction could be used for PVD, elementary analysis and filamentary or point-like X-ray emission. (author) [fr

  9. Design and preliminary results of the IMA plasma focus experiment

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, H M; Masoud, M M [Arab Republic of Egypt, Atomic Energy Authority Plasma physics and Nuclear Fusion department, Cairo (Egypt)

    1994-12-31

    The present paper describes the design, operation and characteristics of aton 1MA plasma focus device, which built in egypt at the plasma physics department, N.R.C., atomic energy authority. The main parts of the system are: the coaxial electrodes of mather type, the expansion chamber, the condenser bank of 75 kJ stored energy, the pressurized spark gap switches and Blumlein trigger system. Measurement of the breakdown voltage between plasma focus electrodes and discharge current, using half of the condenser bank, showed that, for U{sub c} h = 32 kV, the discharge current was 0.5 Ma. In the discharge current and voltage traces a sharp drop in discharge current correspondingly to a sudden rise in voltage have been observed, which characterize the focus regime. Time structure of the x-ray emission measurements have been performed by means of scintillation detectors. by using a hydrogen gas the results showed that, the x-ray intensity is increased with increasing the hydrogen gas pressure. plasma sheath current density, J-Z distribution in axial direction during the acceleration phase of the discharge is studied, using a miniature Rogovsky coil. The results cleared that J{sub z} is increased with the axial distance from breech to muzzle at different hydrogen gas pressures. 12 figs.

  10. Design and preliminary results of the IMA plasma focus experiment

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.

    1993-01-01

    The present paper describes the design, operation and characteristics of aton 1MA plasma focus device, which built in egypt at the plasma physics department, N.R.C., atomic energy authority. The main parts of the system are: the coaxial electrodes of mather type, the expansion chamber, the condenser bank of 75 kJ stored energy, the pressurized spark gap switches and Blumlein trigger system. Measurement of the breakdown voltage between plasma focus electrodes and discharge current, using half of the condenser bank, showed that, for U c h = 32 kV, the discharge current was 0.5 Ma. In the discharge current and voltage traces a sharp drop in discharge current correspondingly to a sudden rise in voltage have been observed, which characterize the focus regime. Time structure of the x-ray emission measurements have been performed by means of scintillation detectors. by using a hydrogen gas the results showed that, the x-ray intensity is increased with increasing the hydrogen gas pressure. plasma sheath current density, J-Z distribution in axial direction during the acceleration phase of the discharge is studied, using a miniature Rogovsky coil. The results cleared that J z is increased with the axial distance from breech to muzzle at different hydrogen gas pressures. 12 figs

  11. Analysis of x-ray spectra emitted from highly ionized atoms in the vacuum spark and laser-produced high power plasma sources

    International Nuclear Information System (INIS)

    Mandelbaum, P.

    1987-05-01

    The interest in atomic spectroscopy has greatly been reinforced in the last ten years. This gain of interest is directly related to the developments in different fields of research where hot plasmas are created. These fields include in particular controlled thermonuclear fusion research by means of inertial or magnetic confinement approaches and also the most recent efforts to achieve lasers in the XUV region. The present work is based on the specific contribution of the atomic spectroscopy group at the Hebrew University. The recent development of both theoretical and experimental tools allowed us to progress in the understanding of the highly ionized states of heavy elements. In this work the low-inductance vacuum-spark developed at the Hebrew University was used as the hot plasma source. The spectra were recorded in the 7-300 A range by means of a high-resolution extreme-grazing-incidence spectrometer developed at the Racah Institute by Profs. J.L. Schwob and B.S. Fraenkel. To the extend the spectroscopic studies to higher-Z atoms, the laser-produced plasma facility at Soreq Nuclear Center was used. In this work the spectra of the sixth row elements were recorded in the x-rays by means of a crystal spectrometer. All these experimental systems are briefly described in chapter one. Chapter two deals with the theoretical methods used in the present work for the atomic calculations. Chapter three deals with the spectra of elements of the fifth row emitted from the vacuum-spark in the 30-150 A range. These spectra as experimental data were used in order to test ab-initio computations along the NiI sequence 3d-nl transitions. The results of this work are presented in chapter four. Chapter five is devoted to the measurement and analysis of spectra emitted from the vacuum-spark by rare-earth elements. (author)

  12. Transformation of atmospheric components near a spark discharge at the anode polarization of a metallic electrode hanging over a solution

    Science.gov (United States)

    Orlov, A. M.; Yavtushenko, I. O.; Bodnarskii, D. S.

    2013-03-01

    The variation of the pressure of a gas phase activated by spark discharges between an aqueous electrolyte solution (liquid cathode) and a metallic electrode (anode) hanging over the solution is studied. A mathematical model of the proceeding reaction kinetics is constructed, and the variation of the partial pressures of all initial and produced components in the gas phase is calculated. Both the Faraday and non-Faraday mechanisms of gas component production from water are confirmed. It is found that a large overhanging drop responsible for additional supply of simultaneously produced H2 and O2 molecules forms rapidly at the end face of the anodically polarized electrode.

  13. Note on the formation of the fireball plasma

    International Nuclear Information System (INIS)

    Silberg, P.A.

    1978-01-01

    A model for the formation of the fireball arc or spark discharge, sometimes called a fireball plasma, is developed based on the nonlinearity of the voltage-current characteristics of a high-current arc discharge. A nonlinear transmission line equation for the discharge current is obtained which is solved in terms of the Jacobi elliptic functions. Under certain prescribed conditions the current field collapses into a small region. This collapse of the current field is taken to be the fireball. It is additionally pointed out that nonlinearities other than the voltage-current characteristics of the high-current arc could produce similar results. Finally, it is suggested that Ball Lightning may have the same origin

  14. PEO-like Plasma Polymers Prepared by Atmospheric Pressure Surface Dielectric Barrier Discharge

    Czech Academy of Sciences Publication Activity Database

    Gordeev, I.; Choukourov, A.; Šimek, Milan; Prukner, Václav; Biederman, H.

    2012-01-01

    Roč. 9, č. 8 (2012), s. 782-791 ISSN 1612-8850 R&D Projects: GA ČR(CZ) GD104/09/H080 Institutional research plan: CEZ:AV0Z20430508 Keywords : fibrinogen * non-fouling properties * PEO * plasma polymerization * surface dielectric barrier discharge Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.730, year: 2012

  15. Transmission characteristics of microwave in a glow-discharge dusty plasma

    Science.gov (United States)

    Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Liu, Sha; Yue, Feng; Wang, Ying; Zhou, Zhong-Xiang; Wu, Jian; Li, Hui

    2016-07-01

    In this study, the propagation characteristics of electromagnetic wave in a glow discharge plasma with dust particles are experimentally investigated. A helium alternating current glow discharge plasmas have been successfully generated. Measurements of the plasma parameters using Langmuir probes, in the absence of dust particles, provide plasma densities (ne) of 1017 m-3 and electron temperatures (Te) ranging from 2 to 4 eV. Dusty plasmas are made by adding 30 nm radius aluminum oxide (Al2O3) particles into the helium plasma. The density of the dust particle (nd) in the device is about 1011-1012 m-3. The propagation characteristics of electromagnetic waves are determined by a vector network analyzer with 4-6 GHz antennas. An apparent attenuation by the dust is observed, and the measured attenuation data are approximately in accordance with the theoretical calculations. The effects of gas pressure and input power on the propagation are also investigated. Results show that the transmission attenuation increases with the gas pressure and input power, the charged dust particles play a significant role in the microwave attenuation.

  16. An investigation of an underwater steam plasma discharge as alternative to air plasmas for water purification

    International Nuclear Information System (INIS)

    Gucker, Sarah N; Foster, John E; Garcia, Maria C

    2015-01-01

    An underwater steam plasma discharge, in which water itself is the ionizing media, is investigated as a means to introduce advanced oxidation species into contaminated water for the purpose of water purification. The steam discharge avoids the acidification observed with air discharges and also avoids the need for a feed gas, simplifying the system. Steam discharge operation did not result in a pH changes in the processing of water or simulated wastewater, with the actual pH remaining roughly constant during processing. Simulated wastewater has been shown to continue to decompose significantly after steam treatment, suggesting the presence of long-lived plasma produced radicals. During steam discharge operation, nitrate production is limited, and nitrite production was found to be below the detection threshold of (roughly 0.2 mg L −1 ). The discharge was operated over a broad range of deposited power levels, ranging from approximately 30 W to 300 W. Hydrogen peroxide production was found to scale with increasing power. Additionally, the hydrogen peroxide production efficiency of the discharge was found to be higher than many of the rates reported in the literature to date. (paper)

  17. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    International Nuclear Information System (INIS)

    Ahmed, Shahid; Mammosser, John D.

    2015-01-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar–O 2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM 010 -mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper

  18. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Shahid, E-mail: shahid.ahmed@ieee.org [BML Munjal University, Gurgaon, Haryana 123413 (India); Mammosser, John D. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-07-15

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar–O{sub 2} (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM{sub 010}-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  19. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity

    Science.gov (United States)

    Ahmed, Shahid; Mammosser, John D.

    2015-07-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar-O2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM010-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  20. Interaction of Plasma Discharges with a Flame: Experimental and Numerical Study

    International Nuclear Information System (INIS)

    Vincent-Randonnier, Axel; Teixeira, David

    2010-01-01

    This paper presents experimental results and numerical simulations of methane/air non-premixed flame under plasma assistance. Without plasma assistance, the flame blows off at a 28-30 m·s -1 bulk velocity (power around 3 kW). When the discharge is on, the flame can be maintained up to a bulk velocity of 53 m·s -1 (power around 6 kW), corresponding to +90% gain in power with only a few watt of plasma power. The plasma discharges present short duration current pulses (between 100 ns and 200 ns) and occur non-monotonically (delay between two pulses from 6x10 -5 s to 0.1 s). The probability density function of this occurrence is significantly influenced by the mass flow rate or the absence of flame, revealing the strong coupling of the plasma with hydrodynamic and combustion. For the numerical section of this work, we simulated the flame using a Computational Fluid Dynamics code based on Direct Numerical Simulation (direct solving of Navier-Stokes equations), and investigated the thermal and/or chemical effects of discharges on the flame stability.

  1. Microwave induced plasma discharge in multi-cell superconducting radio-frequency cavity.

    Science.gov (United States)

    Ahmed, Shahid; Mammosser, John D

    2015-07-01

    A R&D effort for in situ cleaning of 1.5 GHz Superconducting Radio Frequency (SRF) cavities at room temperature using the plasma processing technique has been initiated at Jefferson Lab. This is a step toward the cleaning of cryomodules installed in the Continuous Electron Beam Accelerator Facility (CEBAF). For this purpose, we have developed an understanding of plasma discharge in a 5-cell CEBAF-type SRF cavity having configurations similar to those in the main accelerator. The focus of this study involves the detailed investigations of developing a plasma discharge inside the cavity volume and avoids the breakdown condition in the vicinity of the ceramic RF window. A plasma discharge of the gas mixture Ar-O2 (90%:10%) can be established inside the cavity volume by the excitation of a resonant 4π/5 TM010-mode driven by a klystron. The absence of any external magnetic field for generating the plasma is suitable for cleaning cavities installed in a complex cryomodule assembly. The procedures developed in these experimental investigations can be applied to any complex cavity structure. Details of these experimental measurements and the observations are discussed in the paper.

  2. Saffman-Taylor streamers: Mutual finger interaction in spark formation

    NARCIS (Netherlands)

    Luque, A.; Brau, F.; Ebert, U.

    2008-01-01

    Bunches of streamers form the early stages of sparks and lightning but theory presently concentrates on single streamers or on coarse approximations of whole breakdown trees. Here a periodic array of interacting streamer discharges in a strong homogeneous electric field is studied in density or

  3. Investigation of gas discharge by schlieren method and interferometry with automated processing of schlieren photographs and interferograms

    International Nuclear Information System (INIS)

    Gerasimova, V.I.; Dushin, L.A.; Privezentsev, V.S.; Taran, V.S.

    1974-01-01

    The principles are clarified of two optical plasma diagnostics techniques, viz., the interferometric method permitting the determination of electron density and the schlieren method determining the gradient of electron density. Both techniques in combination were used in investigating the plasma in a hydrogen hollow-cathode spark discharge. In the schlieren technique, a pulsed xenon laser, in the interference technique a helium-neon laser were used as the light sources. Schlieren photographs were processed automatically using an electronic computer. A detailed description is presented of the equipment for the automatic photograph evaluation. (A.K.)

  4. Fabrication of lanthanum-doped thorium dioxide by high-energy ball milling and spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Spencer M.; Yao, Tiankai [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Lu, Fengyuan [Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Xin, Guoqing; Zhu, Weiguang [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States); Lian, Jie, E-mail: lianj@rpi.edu [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States)

    2017-03-15

    Abstract: High-energy ball milling was used to synthesize Th{sub 1-x}La{sub x}O{sub 2-0.5x} (x = 0.09, 0.23) solid solutions, as well as improve the sinterability of ThO{sub 2} powders. Dense La-doped ThO{sub 2} pellets with theoretical density above 94% were consolidated by spark plasma sintering at temperatures above 1400 °C for 20 min, and the densification behavior and the non-equilibrium effects on phase and structure were investigated. A lattice contraction of the SPS-densified pellets occurred with increasing ball milling duration, and a secondary phase with increased La-content was observed in La-doped pellets. A dependence on the La-content and sintering duration for the onset of localized phase segregation has been proposed. The effects of high-energy ball milling, La-content, and phase formation on the thermal diffusivity were also studied for La-doped ThO{sub 2} pellets by laser flash measurement. Increasing La-content and high energy ball milling time decreases thermal diffusivity; while the sintering peak temperature and holding time beyond 1600 °C dramatically altered the temperature dependence of the thermal diffusivity beyond 600 °C. - Highlights: • Lanthanum incorporation into ThO{sub 2} by high energy ball milling and rapid consolidation by spark plasma sintering. • Elucidation of phase behavior of the La-doped ThO{sub 2} and the contributions of La incorporation and SPS sintering conditions. • Investigation of the effects of La incorporation and high energy ball milling on the thermal behavior of La-doped ThO{sub 2}.

  5. Deterministic dynamics of plasma focus discharges

    International Nuclear Information System (INIS)

    Gratton, J.; Alabraba, M.A.; Warmate, A.G.; Giudice, G.

    1992-04-01

    The performance (neutron yield, X-ray production, etc.) of plasma focus discharges fluctuates strongly in series performed with fixed experimental conditions. Previous work suggests that these fluctuations are due to a deterministic ''internal'' dynamics involving degrees of freedom not controlled by the operator, possibly related to adsorption and desorption of impurities from the electrodes. According to these dynamics the yield of a discharge depends on the outcome of the previous ones. We study 8 series of discharges in three different facilities, with various electrode materials and operating conditions. More evidence of a deterministic internal dynamics is found. The fluctuation pattern depends on the electrode materials and other characteristics of the experiment. A heuristic mathematical model that describes adsorption and desorption of impurities from the electrodes and their consequences on the yield is presented. The model predicts steady yield or periodic and chaotic fluctuations, depending on parameters related to the experimental conditions. (author). 27 refs, 7 figs, 4 tabs

  6. Effects of electrode geometry on transient plasma induced ignition

    International Nuclear Information System (INIS)

    Shukla, B; Gururajan, V; Eisazadeh-Far, K; Windom, B; Egolfopoulos, F N; Singleton, D; Gundersen, M A

    2013-01-01

    Achieving effective ignition of reacting mixtures using nanosecond pulsed discharge non-equilibrium transient plasma (TP), requires that the effects of several experimental parameters be quantified and understood. Among them are the electrode geometry, the discharge location especially in non-premixed systems, and the relative ignition performance by spark and TP under the same experimental conditions. In the present investigation, such issues were addressed experimentally using a cylindrical constant volume combustion chamber and a counterflow flame configuration coupled with optical shadowgraph that enables observation of how and where the ignition process starts. Results were obtained under atmospheric pressure and showed that the electrode geometry has a notable influence on ignition, with the needle-to-semicircle exhibiting the best ignition performance. Furthermore, it was determined that under non-premixed conditions discharging TP in the reactants mixing layer was most effective in achieving ignition. It was also determined that in the cases considered, the TP induced ignition initiates from the needle head where the electric field and electron densities are the highest. In the case of a spark, however, ignition was found to initiate always from the hot region between the two electrodes. Comparison of spark and TP discharges in only air (i.e. without fuel) and ignition phenomena induced by them also suggest that in the case of TP ignition is at least partly non-thermal and instead driven by the production of active species. Finally, it was determined that single pulsed TP discharges are sufficient to ignite both premixed and non-premixed flames of a variety of fuels ranging from hydrogen to heavy fuels including F-76 diesel and IFO380 bunker fuel even at room temperature. (paper)

  7. Utilization of ultraviolet radiation of cold hollow cathode discharge plasma for water disinfection

    International Nuclear Information System (INIS)

    Soloshenko, I.O.; Bazhenov, V.Yu.; Khomych, V.O.; Tsiolko, V.V.; Potapchenko, N.G.; Goncharuk, V.V.

    2006-01-01

    We study the possibility to use the ultraviolet radiation of a hollow cathode discharge plasma for water disinfection. We have performed the comparative experiments on the influence of ultraviolet radiation of the mentioned discharge plasma, as well as that of a standard low pressure mercury lamp

  8. Plasma diagnosis of RF discharge by using impedance measurement

    International Nuclear Information System (INIS)

    Huang Jianjun; Teuner, D.

    2001-01-01

    It is presented that the method known from network analysis with home-made probe and experimental setup to measure current, voltage and phase angle of RF discharge in He gas more accurately. The sheath thickness and the real and imaginary parts of the plasma impedance were obtained by using the equivalent circuit model and taking account stray capacitances of the set-up. In addition, making use of Godyak's RF discharge simple model, the electron density in the discharge was calculated at different pressure and current density

  9. Dynamic Fracture Toughness of TaC/CNTs/SiC CMCs Prepared by Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Qiaoyun Xie

    2015-01-01

    Full Text Available This study focuses on the fracture toughness of TaC and carbon nanotubes (CNTs reinforced SiC ceramic matrix composites (CMCs, prepared by spark plasma sintering (SPS technique. A high densification of 98.4% was achieved under the sintering parameter of 133°C/min, 1800°C, and 90 MPa pressure. Vickers indentation was employed to measure the indentation toughness on the polished surface of ceramic samples, SEM was applied to directly observe the crack propagation after indentation, and split Hopkinson pressure bar (SHPB was developed to determine the dynamic fracture toughness within the ceramic samples subjected to an impact in a three-point bending configuration.

  10. Gas-discharge sources with charged particle emission from the plasma of glow discharge with a hollow cathode

    CERN Document Server

    Semenov, A P

    2001-01-01

    One studied properties of a magnetron discharge with a cold hollow and uncooled rod cathodes. One demonstrated the dominant effect of thermoelectron emission of a rod cathode heated in a discharge on characteristics of discharge and on emission properties of a gas-discharge plasma and the possibility pf a smooth transition of glow discharge to diffusion mode of arc discharge combustion. Paper describes sources of ions and electrons with improved physical and generalized design and engineering parameters. One shows the promise of the electrode structure of a hollow cathode magnetron discharge to be used as a source, in particular, of the atomic hydrogen and of atom flow of a working rod cathode

  11. Microstructural development and mechanical properties of iron based cermets processed by pressureless and spark plasma sintering

    International Nuclear Information System (INIS)

    Alvaredo, P.; Gordo, E.; Van der Biest, O.; Vanmeensel, K.

    2012-01-01

    Highlights: ► Processing of Fe-based cermets by pressureless sintering and spark plasma sintering. ► Influence of carbon content on the sintering mechanism and hardness. ► The cermet phase diagram was calculated and permits to explain the microstructure. ► SPS provides ferritic matrix and different carbide distribution than CPS samples. ► Pressureless sintered samples contain retained austenite at room temperature. - Abstract: Iron-based cermets are an interesting class of metal-ceramic composites in which properties and the factors influencing them are to be explored. In this work the metal matrix contains Cr, W, Mo and V as alloying elements, and the hard phase is constituted by 50 vol% of titanium carbonitride (TiCN) particles. The work studies the influence of the C content and the processing method on the sinterability, microstructure and hardness of the developed cermet materials. For that purpose, cermet samples with different C content in the matrix (0 wt%, 0.25 wt%, 0.5 wt%, 1.0 wt%) were prepared by conventional pressureless sintering (CPS) and, in order to achieve finer microstructures and to reduce the sintering time, by spark plasma sintering (SPS). The density and hardness (HV30) of the processed materials was evaluated, while their phase composition and microstructure was characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The equilibrium phase diagram of the composite material was calculated by ThermoCalc software in order to elucidate the influence of the carbon content on the obtained phases and developed microstructures.

  12. Plasma pressure in the discharge column of the Novillo Tokamak

    International Nuclear Information System (INIS)

    Gaytan G, E.

    1995-01-01

    The design and construction of an acquisition system for the measurement of the plasma pressure in the Novillo Tokamak is described in detail. The system includes a high voltage ramp generator, a hardware and a software interface with a personal computer. It is used to determine experimentally the variations of the pressure in the plasma column in the cleaning and main discharges. The measurement of the pressure is made with a Pirani sensor adapted to the acquisition hardware and synchronized with the discharge in the plasma. The software is made in object oriented programming as a graphic interface designed to be used easily. It controls the acquisition, records the data, displays in graphic form the results and save the measurements. The graphic interface is a building block that can be used in different acquisition tasks. The ramp generator can deliver a signal of 200 V peak to peak with a current of 200 m A and offset control. The acquisition time is 2.5 μ s for every measurement, 8192 measurements can be stored in the acquisition board for every discharge. (Author)

  13. Microstructure and mechanical behavior of ODS and non-ODS Fe–14Cr model alloys produced by spark plasma sintering

    International Nuclear Information System (INIS)

    Auger, M.A.; Castro, V. de; Leguey, T.; Muñoz, A.; Pareja, R.

    2013-01-01

    In this work the spark plasma sintering (SPS) technique has been explored as an alternative consolidation route for producing ultra-fine grained Fe–14Cr model alloys containing a dispersion of oxide nanoparticles. Elemental powders of Fe and Cr, and nanosized Y 2 O 3 powder have been mechanically alloyed in a planetary ball mill and rapidly sintered in a spark plasma furnace. Two alloys, with nominal compositions Fe–14%Cr and Fe–14%Cr–0.3%Y 2 O 3 (wt.%), have been fabricated and their microstructure and mechanical properties investigated. The results have been compared with those obtained for other powder metallurgy processed alloys of the same composition but consolidated by hot isostatic pressing. The SPS technique under the present conditions has produced Fe–14Cr materials that apparently exhibit different microstructures yielding inferior mechanical properties than the counterpart material consolidated by hot isostatic pressing. Although the presence of a dispersion of Y-rich particles is evident, the oxide dispersion strengthened (ODS) Fe–14Cr alloy consolidated by SPS exhibits poor tensile properties. The extensive decoration of the powder particle surfaces with Cr-rich precipitates and the residual porosity appear to be responsible for the impaired properties of this ODS alloy consolidated by SPS

  14. Microstructure and mechanical behavior of ODS and non-ODS Fe–14Cr model alloys produced by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.A.; Castro, V. de [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Leguey, T., E-mail: leguey@fis.uc3m.es [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Muñoz, A.; Pareja, R. [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain)

    2013-05-15

    In this work the spark plasma sintering (SPS) technique has been explored as an alternative consolidation route for producing ultra-fine grained Fe–14Cr model alloys containing a dispersion of oxide nanoparticles. Elemental powders of Fe and Cr, and nanosized Y{sub 2}O{sub 3} powder have been mechanically alloyed in a planetary ball mill and rapidly sintered in a spark plasma furnace. Two alloys, with nominal compositions Fe–14%Cr and Fe–14%Cr–0.3%Y{sub 2}O{sub 3} (wt.%), have been fabricated and their microstructure and mechanical properties investigated. The results have been compared with those obtained for other powder metallurgy processed alloys of the same composition but consolidated by hot isostatic pressing. The SPS technique under the present conditions has produced Fe–14Cr materials that apparently exhibit different microstructures yielding inferior mechanical properties than the counterpart material consolidated by hot isostatic pressing. Although the presence of a dispersion of Y-rich particles is evident, the oxide dispersion strengthened (ODS) Fe–14Cr alloy consolidated by SPS exhibits poor tensile properties. The extensive decoration of the powder particle surfaces with Cr-rich precipitates and the residual porosity appear to be responsible for the impaired properties of this ODS alloy consolidated by SPS.

  15. Is the negative glow plasma of a direct current glow discharge negatively charged?

    International Nuclear Information System (INIS)

    Bogdanov, E. A.; Saifutdinov, A. I.; Demidov, V. I.; Kudryavtsev, A. A.

    2015-01-01

    A classic problem in gas discharge physics is discussed: what is the sign of charge density in the negative glow region of a glow discharge? It is shown that traditional interpretations in text-books on gas discharge physics that states a negative charge of the negative glow plasma are based on analogies with a simple one-dimensional model of discharge. Because the real glow discharges with a positive column are always two-dimensional, the transversal (radial) term in divergence with the electric field can provide a non-monotonic axial profile of charge density in the plasma, while maintaining a positive sign. The numerical calculation of glow discharge is presented, showing a positive space charge in the negative glow under conditions, where a one-dimensional model of the discharge would predict a negative space charge

  16. Modulation of ionization in the plasma column of an optical discharge

    International Nuclear Information System (INIS)

    Nastoyashchii, A.F.

    1981-01-01

    Stability of the ionization in the plasma column of an optical discharge is discussed. It is shown that a plasma filament formed by a long laser spike under optical discharge conditions may break up into a chain of bright luminous layers oriented in the direction of propagation of a laser beam and characterized by a higher gas ionization (''optical striations''). A nonlinear formulation of the problem is used to find the depth of modulation of the gas ionization

  17. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    International Nuclear Information System (INIS)

    Biagioni, A.; Anania, M.P.; Bellaveglia, M.; Chiadroni, E.; Giovenale, D. Di; Pirro, G. Di; Ferrario, M.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Cianchi, A.; Filippi, F.; Mostacci, A.; Zigler, A.

    2016-01-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  18. Influence of air flow parameters on nanosecond repetitively pulsed discharges in a pin-annular electrode configuration

    KAUST Repository

    Heitz, Sylvain A

    2016-03-16

    The effect of various air flow parameters on the plasma regimes of nanosecond repetitively pulsed (NRP) discharges is investigated at atmospheric pressure. The two electrodes are in a pin-annular configuration, transverse to the mean flow. The voltage pulses have amplitudes up to 15 kV, a duration of 10 ns and a repetition frequency ranging from 15 to 30 kHz. The NRP corona to NRP spark (C-S) regime transition and the NRP spark to NRP corona (S-C) regime transition are investigated for different steady and harmonically oscillating flows. First, the strong effect of a transverse flow on the C-S and S-C transitions, as reported in previous studies, is verified. Second, it is shown that the azimuthal flow imparted by a swirler does not affect the regime transition voltages. Finally, the influence of low frequency harmonic oscillations of the air flow, generated by a loudspeaker, is studied. A strong effect of frequency and amplitude of the incoming flow modulation on the NRP plasma regime is observed. Results are interpreted based on the cumulative effect of the NRP discharges and an analysis of the residence times of fluid particles in the inter-electrode region. © 2016 IOP Publishing Ltd.

  19. Influence of air flow parameters on nanosecond repetitively pulsed discharges in a pin-annular electrode configuration

    KAUST Repository

    Heitz, Sylvain A; Moeck, Jonas P; Schuller, Thierry; Veynante, Denis; Lacoste, Deanna

    2016-01-01

    The effect of various air flow parameters on the plasma regimes of nanosecond repetitively pulsed (NRP) discharges is investigated at atmospheric pressure. The two electrodes are in a pin-annular configuration, transverse to the mean flow. The voltage pulses have amplitudes up to 15 kV, a duration of 10 ns and a repetition frequency ranging from 15 to 30 kHz. The NRP corona to NRP spark (C-S) regime transition and the NRP spark to NRP corona (S-C) regime transition are investigated for different steady and harmonically oscillating flows. First, the strong effect of a transverse flow on the C-S and S-C transitions, as reported in previous studies, is verified. Second, it is shown that the azimuthal flow imparted by a swirler does not affect the regime transition voltages. Finally, the influence of low frequency harmonic oscillations of the air flow, generated by a loudspeaker, is studied. A strong effect of frequency and amplitude of the incoming flow modulation on the NRP plasma regime is observed. Results are interpreted based on the cumulative effect of the NRP discharges and an analysis of the residence times of fluid particles in the inter-electrode region. © 2016 IOP Publishing Ltd.

  20. Matrix Structure Evolution and Nanoreinforcement Distribution in Mechanically Milled and Spark Plasma Sintered Al-SiC Nanocomposites.

    Science.gov (United States)

    Saheb, Nouari; Aliyu, Ismaila Kayode; Hassan, Syed Fida; Al-Aqeeli, Nasser

    2014-09-19

    Development of homogenous metal matrix nanocomposites with uniform distribution of nanoreinforcement, preserved matrix nanostructure features, and improved properties, was possible by means of innovative processing techniques. In this work, Al-SiC nanocomposites were synthesized by mechanical milling and consolidated through spark plasma sintering. Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X-ray Spectroscopy (EDS) facility was used for the characterization of the extent of SiC particles' distribution in the mechanically milled powders and spark plasma sintered samples. The change of the matrix crystallite size and lattice strain during milling and sintering was followed through X-ray diffraction (XRD). The density and hardness of the developed materials were evaluated as function of SiC content at fixed sintering conditions using a densimeter and a digital microhardness tester, respectively. It was found that milling for 24 h led to uniform distribution of SiC nanoreinforcement, reduced particle size and crystallite size of the aluminum matrix, and increased lattice strain. The presence and amount of SiC reinforcement enhanced the milling effect. The uniform distribution of SiC achieved by mechanical milling was maintained in sintered samples. Sintering led to the increase in the crystallite size of the aluminum matrix; however, it remained less than 100 nm in the composite containing 10 wt.% SiC. Density and hardness of sintered nanocomposites were reported and compared with those published in the literature.

  1. The Influence of Milling and Spark Plasma Sintering on the Microstructure and Properties of the Al7075 Alloy

    Science.gov (United States)

    Málek, Přemysl; Minárik, Peter; Novák, Pavel; Průša, Filip

    2018-01-01

    The compact samples of an Al7075 alloy were prepared by a combination of gas atomization, high energy milling, and spark plasma sintering. The predominantly cellular morphology observed in gas atomized powder particles was completely changed by mechanical milling. The continuous-like intermetallic phases present along intercellular boundaries were destroyed; nevertheless, a small amount of Mg(Zn,Cu,Al)2 phase was observed also in the milled powder. Milling resulted in a severe plastic deformation of the material and led to a reduction of grain size from several µm into the nanocrystalline region. The combination of these microstructural characteristics resulted in abnormally high microhardness values exceeding 300 HV. Consolidation through spark plasma sintering (SPS) resulted in bulk samples with negligible porosity. The heat exposition during SPS led to precipitation of intermetallic phases from the non-equilibrium microstructure of both gas atomized and milled powders. SPS of the milled powder resulted in a recrystallization of the severely deformed structure. An ultra-fine grained structure (grain size close to 500 nm) with grains divided primarily by high-angle boundaries was formed. A simultaneous release of stored deformation energy and an increase in the grain size caused a drop of microhardness to values close to 150 HV. This value was retained even after annealing at 425 °C. PMID:29614046

  2. The Influence of Milling and Spark Plasma Sintering on the Microstructure and Properties of the Al7075 Alloy

    Directory of Open Access Journals (Sweden)

    Orsolya Molnárová

    2018-04-01

    Full Text Available The compact samples of an Al7075 alloy were prepared by a combination of gas atomization, high energy milling, and spark plasma sintering. The predominantly cellular morphology observed in gas atomized powder particles was completely changed by mechanical milling. The continuous-like intermetallic phases present along intercellular boundaries were destroyed; nevertheless, a small amount of Mg(Zn,Cu,Al2 phase was observed also in the milled powder. Milling resulted in a severe plastic deformation of the material and led to a reduction of grain size from several µm into the nanocrystalline region. The combination of these microstructural characteristics resulted in abnormally high microhardness values exceeding 300 HV. Consolidation through spark plasma sintering (SPS resulted in bulk samples with negligible porosity. The heat exposition during SPS led to precipitation of intermetallic phases from the non-equilibrium microstructure of both gas atomized and milled powders. SPS of the milled powder resulted in a recrystallization of the severely deformed structure. An ultra-fine grained structure (grain size close to 500 nm with grains divided primarily by high-angle boundaries was formed. A simultaneous release of stored deformation energy and an increase in the grain size caused a drop of microhardness to values close to 150 HV. This value was retained even after annealing at 425 °C.

  3. Thrust performance, propellant ionization, and thruster erosion of an external discharge plasma thruster

    Science.gov (United States)

    Karadag, Burak; Cho, Shinatora; Funaki, Ikkoh

    2018-04-01

    It is quite a challenge to design low power Hall thrusters with a long lifetime and high efficiency because of the large surface area to volume ratio and physical limits to the magnetic circuit miniaturization. As a potential solution to this problem, we experimentally investigated the external discharge plasma thruster (XPT). The XPT produces and sustains a plasma discharge completely in the open space outside of the thruster structure through a magnetic mirror configuration. It eliminates the very fundamental component of Hall thrusters, discharge channel side walls, and its magnetic circuit consists solely of a pair of hollow cylindrical permanent magnets. Thrust, low frequency discharge current oscillation, ion beam current, and plasma property measurements were conducted to characterize the manufactured prototype thruster for the proof of concept. The thrust performance, propellant ionization, and thruster erosion were discussed. Thrust generated by the XPT was on par with conventional Hall thrusters [stationary plasma thruster (SPT) or thruster with anode layer] at the same power level (˜11 mN at 250 W with 25% anode efficiency without any optimization), and discharge current had SPT-level stability (Δ design and provide a successful proof of concept experiment of the XPT.

  4. Axial magnetic field restriction of plasma sheath in a coaxial discharge

    International Nuclear Information System (INIS)

    Masoud, M. M.; Soliman, H. M.; Ibrahim, F. A.

    1999-01-01

    The study deals with the effect of an applied axial magnetic field on the dynamics and parameters of the plasma sheath and the expanded plasma in a coaxial discharge. Experimental investigations were carried out with a 3 kJ coaxial discharge device of a Mather geometry. The discharge takes place in Hydrogen gas with base pressure of 1 torr. The experiments were conducted with a 10 kV bank voltage, which corresponds to 100 kA discharge currents. The investigations have shown that the maximum axial plasma sheath velocity is decreased by 20% when applying the external axial magnetic field along the coaxial electrodes of intensity 2.6 kG. The experimental results of axial magnetic field intensity B z along the coaxial electrodes indicated that the application of external axial magnetic field causes an increases of B z ∼ 40% at a mid-distance between the breech and the muzzle and a decrease by 75% at the muzzle. The experimental results of expanded plasma electron temperature T e and density n e cleared that when the axial magnetic field is applied the maximum T e is decreased by 2.6 and 3 times, while the maximum n e is increased by 2.8 and 2 times for the first and second half cycles respectively. (author)

  5. Mechanical characterization of cemented carbide WC-6Co (%wt) manufactured by SPS (Spark Plasma Sintering; Caracterizacao mecanica de metal duro WC-6Co (%massa) sinterizado via SPS (Spark Plasma Sintering)

    Energy Technology Data Exchange (ETDEWEB)

    Boidi, G.; Tertuliano, A.J.; Machado, I.F., E-mail: guido.boidi@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Departamento de Engenharia Mecatronica e Sistemas Mecanicos; Rodrigues, D. [BRATS- Filtros Sinterizados e Pos Metalicos, Cajamar, SP (Brazil)

    2016-07-01

    This work aimed to manufacture cemented carbide (WC-6%wtCo) obtained by SPS (Spark Plasma Sintering) process and to carry out the mechanical characterization by hardness and fracture toughness. The material was consolidated at 1100 deg C for different holding times (1 min, 5 min, 10 min), in order to evaluate the densification. A reference sample was also used to be compared to SPS. Optical and scanning electron microscopy were carried out to characterize the microstructural features of the samples and mechanical properties were obtained by hardness measurements (micro and macro) and instrumented indentation. The fracture toughness was calculated with the method of Palmqvist. Best results were found in the material sintered by SPS for 10 minutes of holding time, in which 97% of relative density and about 1600 HV{sub 10} was reached. (author)

  6. Capillary-discharge sodium plasma for pulsed-power X-ray laser experiments

    International Nuclear Information System (INIS)

    Young, F.C.; Commisso, R.J.; Cooperstein, G.

    1986-01-01

    A capillary discharge plasma is being studied as a source of sodium plasma for Na/Ne x-ray laser experiments. The objective is to develop an intense x-ray pump of He-α emission from Na for matched-line photopumping of Ne. A uniform Na-bearing plasma (≅2-cm dia and ≅4-cm long) is to be injected into the anode-cathode gap of the Gamble II pulsed-power generator and imploded by MA-level currents to produce the intense sodium K-line radiation. Implosions of neon gas puffs have produced up to 50 GW of 0.92-keV He-α line emission, and similar x-ray power is expected from sodium implosions. Plasma from the capillary is produced by discharging current through an evacuated small hole in a plastic dielectric (≤ 3-mm dia and 1 to 2.5-cm long). A Na-bearing plasma is generated by forming the hole in NaF. Discharges of 30-kA (60-kA) peak current and 2-μs (2.6-μs) period are provided by a 0.6-μF (1.8-μF) capacitor bank charged to 25 kV. Diagnostics to evaluate plasma characteristics include witness plates, Faraday cups, photodiodes, open-shutter photographs, framing images, and visible light and near UV spectrographs. This plasma source emits visible light for 5-10 μs over a region extending - 1.5 cm from the capillary. Emission is more intense for capillary dia ≤ 0.8 mm. Spectroscopic measurements indicate that both positive ions and neutrals are present, including neutral Na from NaF capillaries. Velocities of≅2 cm/μs are deduced from Faraday cup measurements. For a 0.3-mm dia plastic capillary and 30-kA discharge current, ≅100 μg of capillary material is removed, which corresponds to≅10 μg/cm in the plasma

  7. Overcurrent protection for the TFTR neutral beam sources during spark down

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1979-01-01

    The accelerating grid of a neutral beam source (NBS) of the Tokamak Fusion Test Reactor (TFTR) operates at 120 kV and 65 A. The capacitance to ground between the switch tube (ST) and the NBS is C 1 approx. 5 nF (approx. 36 J). The arc and filament power supplies for the NBS float at 120 kV and have a capacitance to ground of C 2 approx. 2 nF (approx. 14 J). When the NBS sparks to ground, C 2 begins to discharge immediately. The ST impedance limits the fault current from the high voltage (HV) power supply to approx. 100 A until it disconnects the power source 1 begins to discharge. During spark down, fault currents are limited with a saturated time-delay transformer (STDT) connected between the ST and the NBS and with a snubber, which is in the arc and filament power leads, in connection with a spark gap. Alternatively, STDT's can be used for the HV and for the arc and filament power leads. This paper presents design details and experimental results of the overcurrent protection circuits

  8. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter.

    Science.gov (United States)

    Vizir, A V; Tyunkov, A V; Shandrikov, M V; Oks, E M

    2010-02-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10(9) cm(-3) at an operating gas pressure in the vacuum chamber of less than 2x10(-2) Pa. The device features high power efficiency, design simplicity, and compactness.

  9. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter

    International Nuclear Information System (INIS)

    Vizir, A. V.; Tyunkov, A. V.; Shandrikov, M. V.; Oks, E. M.

    2010-01-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10 9 cm -3 at an operating gas pressure in the vacuum chamber of less than 2x10 -2 Pa. The device features high power efficiency, design simplicity, and compactness.

  10. Breakdown transient study of plasma distributions in a 2.45 GHz hydrogen discharge

    Energy Technology Data Exchange (ETDEWEB)

    Cortázar, O.D., E-mail: daniel.cortazar@uclm.es [Universidad de Castilla-La Mancha, ETSII-INEI, Applied Mechanics and Projects Department, C.J. Cela s/n, 13170 Ciudad Real (Spain); Megía-Macías, A. [ESS Bilbao Consortium, Polígono Ugaldeguren-III Pol. A 7B, 48170-Zamudio, Vizcaya (Spain); Tarvainen, O.; Koivisto, H. [University of Jyväskylä, Department of Physics, PO Box 35 (YFL), 40500 Jyväskylä (Finland)

    2015-05-01

    Plasma distribution transients associated with the breakdown of a 2.45 GHz hydrogen discharge similar to high current microwave ion sources are studied by means of an ultra-fast frame image acquisition system in visible light range. Eight different plasma distributions have been studied by photographing the 2D projections of the discharge through a transparent plasma electrode. The temporal evolution of images in Balmer-alpha and Fulcher band wavelengths have been recorded associated to atomic and molecular excitation and ionization processes. Some unexpected plasma distributions transient behaviors during breakdown are reported.

  11. Microstructure and mechanical strength of near- and sub-micrometre grain size copper prepared by spark plasma sintering

    DEFF Research Database (Denmark)

    Zhu, K. N.; Godfrey, A.; Hansen, Niels

    2017-01-01

    Spark plasma sintering (SPS) has been used to prepare fully dense samples of copper in a fully recrystallized condition with grain sizes in the near- and sub-micrometre regime. Two synthesis routes have been investigated to achieve grain size control: (i) SPS at different temperatures from 800...... transmission electron microscope, and on electron back-scatter diffraction studies, confirms the samples are in a nearly fully recrystallized condition, with grains that are dislocation-free, and have a random texture, with a high fraction of high angle boundaries. The mechanical strength of the samples has...

  12. Dielectric barrier discharge plasma actuator for flow control

    Science.gov (United States)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low

  13. Surface modification by preparation of buffer zone in glow-discharge plasma

    International Nuclear Information System (INIS)

    Cho, D.L.

    1986-01-01

    Reactive species, energetic particles, and uv radiation in the plasma created by a glow discharge strongly interact with solid surfaces under the influence of the plasma. As a result of the strong interaction, various physical and chemical reactions, unique and advantageous for the surface modification of solid materials, occur on the solid surfaces. The surface modification is carried out through formation of a thin buffering layer on the solid surface. The preparation of a buffer zone on solid surfaces for surface modification is described. Two kinds of a buffer zone are prepared by plasma polymerization, or simultaneous sputter deposition of electrode material with plasma polymerization: a transitional buffer zone and a graded buffer zone. Important factors for preparation of the buffer zone (pre-conditioning of a substrate surface, thin-film deposition, post-treatment of the film, magnetron discharge, energy input, geometry of a substrate and a plasma) are discussed

  14. Equilibrium and stability of a toroidal-sector plasma discharge in an EXTRAP configuration

    International Nuclear Information System (INIS)

    Drake, J.R.

    1982-02-01

    Experimental studies of the equilibrium and stability of a sector of a toroidal EXTRAP plasma discharge have been studied. The high β plasma discharge, which had an Alfven transit time about 0.5 μsec, could be positioned in a stable equilibrium for the 300μsec time scale of the experiment. (author)

  15. Collisional and radiative processes in high-pressure discharge plasmas

    Science.gov (United States)

    Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.

    2002-05-01

    Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.

  16. Polymerization of phenol by using discharged plasma under hydrothermal state

    Energy Technology Data Exchange (ETDEWEB)

    Mitsugi, M; Yoshida, A; Watanabe, H; Kiyan, T; Takade, M; Miyaji, K; Kuwahara, Y; Akiyama, H; Hara, M; Sasaki, M [Graduate School of Science and Technology, Kumamoto University (Japan); Namihira, T; Goto, M, E-mail: mgoto@kumamoto-u.ac.j [Bioelectrics Research Center, Kumamoto University 2-39-1 Kurokami, Kumamoto 865-8555 Japan (Japan)

    2010-03-01

    Supercritical fluid with plasma is a type of green processing media because this technique does not use catalyst and toxic solvents. In this study, we carried out experiments of organic materials in the presence of discharged plasma in sub- and supercritical water to evaluate the possibility for new reactions. For this purpose, we used SUS316 reactor that generates plasma at temperature and pressure up to 573K and 30MPa, respectively. 100 mmol/L aqueous phenol solution was used as starting material. The reactions were carried out at temperature of 523K and under pressure of 25MPa. After a series of reactions, water-soluble, water-insoluble (oily products), solid residue and gaseous product were obtained. For the analysis of these products, HPLC, GC-MS, TOC, GC-TCD and TOF-MS were used. The highest phenol conversion was 16.96% obtained at 523K, 25MPa and with 4000 times discharged plasma. Polymerized phenol was obtained as a product.

  17. Polymerization of phenol by using discharged plasma under hydrothermal state

    International Nuclear Information System (INIS)

    Mitsugi, M; Yoshida, A; Watanabe, H; Kiyan, T; Takade, M; Miyaji, K; Kuwahara, Y; Akiyama, H; Hara, M; Sasaki, M; Namihira, T; Goto, M

    2010-01-01

    Supercritical fluid with plasma is a type of green processing media because this technique does not use catalyst and toxic solvents. In this study, we carried out experiments of organic materials in the presence of discharged plasma in sub- and supercritical water to evaluate the possibility for new reactions. For this purpose, we used SUS316 reactor that generates plasma at temperature and pressure up to 573K and 30MPa, respectively. 100 mmol/L aqueous phenol solution was used as starting material. The reactions were carried out at temperature of 523K and under pressure of 25MPa. After a series of reactions, water-soluble, water-insoluble (oily products), solid residue and gaseous product were obtained. For the analysis of these products, HPLC, GC-MS, TOC, GC-TCD and TOF-MS were used. The highest phenol conversion was 16.96% obtained at 523K, 25MPa and with 4000 times discharged plasma. Polymerized phenol was obtained as a product.

  18. Discharge cleaning on KSTAR 1st plasma events

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, J. G.; Wang, J. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, J. S.; Yang, H. L.; Kim, K. P.; Kim, K. M. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    A discharge cleaning of a vacuum vessel was conducted with a GDC (Glow discharge cleaning) and a ICRF-DC(ICRF assisted discharge cleaning) for the KSTAR first plasma event period. The base pressure of the vessel was kept below 10-7 mbar via a cool down of the cryo-vessel, a 100C baking, and a GDC. (Partial pressure of hydrogen and nitrogen is below 10-8 mbar). The diagnostics for a discharge cleaning is a differential pumped RGA attached to a pumping duct and a cold cathode and a hot cathode gauge attached to the vessel and the pumping duct respectively. To analyze the discharge characteristics, a microwave interferometer, Bremsstahlung, H-alphas and a TV camera were used. Two straps among the four straps of the ICRF antenna are used for the ICRF-DC and ICRF heating experiments. The phase difference between the adjacent straps was 0 degree and the operating frequency was 30-33MHz.

  19. Second derivative Langmuir probe diagnostics of gas discharge plasma at intermediate pressures (review article)

    International Nuclear Information System (INIS)

    Popov, Tsv K; Dimitrova, M; Dias, F M; Tsaneva, V N; Stelmashenko, N A; Blamire, M G; Barber, Z H

    2006-01-01

    The second-derivative Langmuir probe method for precise determination of the plasma potential, the electron energy distribution function (respectively the electron temperature,) and the electron density of gas discharge plasma at intermediate pressures (100-1000 Pa) is reviewed. Results of applying the procedure proposed to different kinds of gas discharges are presented. Factors affecting the accuracy of the plasma characteristics evaluated are discussed

  20. Study of discharge in quiescent plasma machine of the INPE

    International Nuclear Information System (INIS)

    Ferreira, J.G.; Ferreira, J.L.; Ludwig, G.O.; Maciel, H.S.

    1988-12-01

    Measurements of principal plasma parameters produced by quiescent plasma machine of the Instituto de Pesquisas Espaciais (INPE) for current of 500 mA and several values of pressure and discharge power are presented. A qualitative interpretation for obtained results is done and a simple model for plasma density is compared with experimental values. The conditions of cathode operation are also investigated. (M.C.K.)

  1. Control of Reactive Species Generated by Low-frequency Biased Nanosecond Pulse Discharge in Atmospheric Pressure Plasma Effluent

    Science.gov (United States)

    Takashima, Keisuke; Kaneko, Toshiro

    2016-09-01

    The control of hydroxyl radical and the other gas phase species generation in the ejected gas through air plasma (air plasma effluent) has been experimentally studied, which is a key to extend the range of plasma treatment. Nanosecond pulse discharge is known to produce high reduced electric field (E/N) discharge that leads to efficient generation of the reactive species than conventional low frequency discharge, while the charge-voltage cycle in the low frequency discharge is known to be well-controlled. In this study, the nanosecond pulse discharge biased with AC low frequency high voltage is used to take advantages of these discharges, which allows us to modulate the reactive species composition in the air plasma effluent. The utilization of the gas-liquid interface and the liquid phase chemical reactions between the modulated long-lived reactive species delivered from the air plasma effluent could realize efficient liquid phase chemical reactions leading to short-lived reactive species production far from the air plasma, which is crucial for some plasma agricultural applications.

  2. Development of a TiAl Alloy by Spark Plasma Sintering

    Science.gov (United States)

    Couret, Alain; Voisin, Thomas; Thomas, Marc; Monchoux, Jean-Philippe

    2017-12-01

    Spark plasma sintering (SPS) is a consolidated powder metallurgy process for which the powder sintering is achieved through an applied electric current. The present article aims to describe the method we employed to develop a TiAl-based alloy adjusted for this SPS process. Owing to its enhanced mechanical properties, this alloy was found to fully match the industrial specifications for the aeronautic and automotive industries, which require a high strength at high temperature and a reasonably good ductility at room temperature. A step-by-step method was followed for this alloy development. Starting from a basic study on the as-SPSed GE alloy (Ti-48Al-2Cr-2Nb) in which the influence of the microstructure was studied, the microstructure-alloy composition relationships were then investigated to increase the mechanical properties. As a result of this study, we concluded that tungsten had to be the major alloying element to improve the resistance at high temperature and a careful addition of boron would serve the properties at room temperature. Thus, we developed the IRIS alloy (Ti-48Al-2W-0.08B). Its microstructure and mechanical properties are described here.

  3. Low pressure plasma discharges for the sterilization and decontamination of surfaces

    International Nuclear Information System (INIS)

    Rossi, F; Rauscher, H; Hasiwa, M; Gilliland, D; Kylian, O

    2009-01-01

    The mechanisms of sterilization and decontamination of surfaces are compared in direct and post discharge plasma treatments in two low-pressure reactors, microwave and inductively coupled plasma. It is shown that the removal of various biomolecules, such as proteins, pyrogens or peptides, can be obtained at high rates and low temperatures in the inductively coupled plasma (ICP) by using Ar/O 2 mixtures. Similar efficiency is obtained for bacterial spores. Analysis of the discharge conditions illustrates the role of ion bombardment associated with O radicals, leading to a fast etching of organic matter. By contrast, the conditions obtained in the post discharge lead to much lower etching rates but also to a chemical modification of pyrogens, leading to their de-activation. The advantages of the two processes are discussed for the application to the practical case of decontamination of medical devices and reduction of hospital infections, illustrating the advantages and drawbacks of the two approaches.

  4. Low pressure plasma discharges for the sterilization and decontamination of surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, F; Rauscher, H; Hasiwa, M; Gilliland, D [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Via E. Fermi 2749, 21027 Ispra (Vatican City State, Holy See) (Italy); Kylian, O [Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, Prague 8, 180 00 (Czech Republic)], E-mail: francois.rossi@jrc.ec.europa.eu

    2009-11-15

    The mechanisms of sterilization and decontamination of surfaces are compared in direct and post discharge plasma treatments in two low-pressure reactors, microwave and inductively coupled plasma. It is shown that the removal of various biomolecules, such as proteins, pyrogens or peptides, can be obtained at high rates and low temperatures in the inductively coupled plasma (ICP) by using Ar/O{sub 2} mixtures. Similar efficiency is obtained for bacterial spores. Analysis of the discharge conditions illustrates the role of ion bombardment associated with O radicals, leading to a fast etching of organic matter. By contrast, the conditions obtained in the post discharge lead to much lower etching rates but also to a chemical modification of pyrogens, leading to their de-activation. The advantages of the two processes are discussed for the application to the practical case of decontamination of medical devices and reduction of hospital infections, illustrating the advantages and drawbacks of the two approaches.

  5. The Influence of Spark Plasma Sintering Temperature on the Microstructure and Thermoelectric Properties of Al,Ga Dual-Doped ZnO

    DEFF Research Database (Denmark)

    Han, Li; Le, Thanh Hung; Van Nong, Ngo

    2013-01-01

    ZnO dual-doped with Al and Ga was prepared by spark plasma sintering using different sintering temperatures. The microstructural evolution and thermoelectric properties of the samples were investigated in detail. The samples obtained with sintering temperature above 1223 K had higher relative...... of ZnO particles and microstructure evolution at different sintering temperatures were investigated by simulation of the self-Joule-heating effect of the individual particles....

  6. EUV emission from Kr and Xe capillary discharge plasmas

    International Nuclear Information System (INIS)

    Juschkin, L.; Ellwi, S.; Kunze, H-J.; Chuvatin, A.; Zakharov, S.V.

    2002-01-01

    Kr and Xe plasmas are very intensive emitters in the spectral range of 100-150 A, which is relevant for a number of applications (for example microlithography). We present investigations of the extreme utraviolet (EUV) emission from a slow capillary discharge with Kr and Xe fillings. The emission of Kr ions (Kr VIII to Kr XI) within the range of 70-150 A consists of three bands of lines of about 10 A width with maxima at 116, 103 and 86 A. Xe emission bands of about 15 A width have their maxima at 136 and 115 A (Xe IX to Xe XII). The radiation duration in this spectral range is ∼150 ns for both elements. At the optimum conditions, the Kr emission at 103 A is 2-3 times more intense than the Xe emission at 136 A. The measured spectral energy of Kr radiation is about 0.1 J sr -1 A -1 . Experimental results are compared with numerical modellings of the dynamics and emission of the capillary discharge plasma, which enables the determination of plasma parameters and the future use of the codes as additional instruments for plasma diagnostics. (author)

  7. Parallel simulation of radio-frequency plasma discharges

    International Nuclear Information System (INIS)

    Fivaz, M.; Howling, A.; Ruegsegger, L.; Schwarzenbach, W.; Baeumle, B.

    1994-01-01

    The 1D Particle-In-Cell and Monte Carlo collision code XPDP1 is used to model radio-frequency argon plasma discharges. The code runs faster on a single-user parallel system called MUSIC than on a CRAY-YMP. The low cost of the MUSIC system allows a 24-hours-per-day use and the simulation results are available one to two orders of magnitude quicker than with a super computer shared with other users. The parallelization strategy and its implementation are discussed. Very good agreement is found between simulation results and measurements done in an experimental argon discharge. (author) 2 figs., 3 refs

  8. An analytical theory of corona discharge plasmas

    International Nuclear Information System (INIS)

    Uhm, H.S.; Lee, W.M.

    1997-01-01

    In this paper we describe an analytical investigation of corona discharge systems. Electrical charge and the energy transfer mechanism are investigated based on the circuit analysis. Efficient delivery of electrical energy from the external circuit to the reactor chamber is a major issue in design studies. The optimum condition obtained in this paper ensures 100% energy transfer. Second-order coupled differential equations are numerically solved. All the analytical results agree remarkably well with numerical data. The reactor capacitor plays a pivotal role in circuit performance. The voltage profile is dominated by the reactor capacitor. Corona discharge properties in the reactor chamber are also investigated, assuming that a specified voltage profile V(t) is fed through the inner conductor. The analytical description is based on the electron moment equation. Defining the plasma breakdown parameter u=V/R c p, plasma is generated for a high-voltage pulse satisfying u>u c , where u c is the critical breakdown parameter defined by geometrical configuration. Here, u is in units of a million volts per m per atm, and R c is the outer conductor radius. It is found that the plasma density profile generated inside the reactor chamber depends very sensitively on the system parameters. A small change of a physical parameter can easily lead to a density change in one order of magnitude

  9. Phase Evolution and Mechanical Properties of AlCoCrFeNiSi x High-Entropy Alloys Synthesized by Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Kumar, Anil; Swarnakar, Akhilesh Kumar; Chopkar, Manoj

    2018-05-01

    In the current investigation, AlCoCrFeNiSi x (x = 0, 0.3, 0.6 and 0.9 in atomic ratio) high-entropy alloy systems are prepared by mechanical alloying and subsequently consolidated by spark plasma sintering. The microstructural and mechanical properties were analyzed to understand the effect of Si addition in AlCoCrFeNi alloy. The x-ray diffraction analysis reveals the supersaturated solid solution of the body-centered cubic structure after 20 h of ball milling. However, the consolidation promotes the transformation of body-centered phases partially into the face-centered cubic structure and sigma phases. A recently proposed geometric model based on the atomic stress theory has been extended for the first time to classify single phase and multi-phases on the high-entropy alloys prepared by mechanical alloying and spark plasma sintering process. Improved microhardness and better wear resistance were achieved as the Si content increased from 0 to 0.9 in the present high-entropy alloy.

  10. Sintering Behavior of Spark Plasma Sintered SiC with Si-SiC Composite Nanoparticles Prepared by Thermal DC Plasma Process

    Science.gov (United States)

    Yu, Yeon-Tae; Naik, Gautam Kumar; Lim, Young-Bin; Yoon, Jeong-Mo

    2017-11-01

    The Si-coated SiC (Si-SiC) composite nanoparticle was prepared by non-transferred arc thermal plasma processing of solid-state synthesized SiC powder and was used as a sintering additive for SiC ceramic formation. Sintered SiC pellet was prepared by spark plasma sintering (SPS) process, and the effect of nano-sized Si-SiC composite particles on the sintering behavior of micron-sized SiC powder was investigated. The mixing ratio of Si-SiC composite nanoparticle to micron-sized SiC was optimized to 10 wt%. Vicker's hardness and relative density was increased with increasing sintering temperature and holding time. The relative density and Vicker's hardness was further increased by reaction bonding using additional activated carbon to the mixture of micron-sized SiC and nano-sized Si-SiC. The maximum relative density (97.1%) and Vicker's hardness (31.4 GPa) were recorded at 1800 °C sintering temperature for 1 min holding time, when 0.2 wt% additional activated carbon was added to the mixture of SiC/Si-SiC.

  11. Caractérisation théorique du plasma lors de l'application d'un courant impulsionnel : application à l'allumage des moteurs

    OpenAIRE

    Benmouffok , Malyk

    2016-01-01

    The economic/ecological context and the CO2 regulation by the "euro" standards lead the automotive industry to improve the spark ignited engines. A way of improvement is the admission of a lean mixture or of a diluted mixture by recirculation of exhaust gases in the combustion chamber. The main difficulty in these conditions is to start the combustion. To overcome this problem, the ignition systems are studied and more particularly the spark. This discharge leads to the apparition of plasma a...

  12. Simulation of the Plasma Afterglow in the Discharge Gap of a Subnanosecond Switch Based on an Open Discharge in Helium

    Science.gov (United States)

    Alexandrov, A. L.; Schweigert, I. V.

    2018-05-01

    The phenomenon of subnanosecond electrical breakdown in a strong electric field observed in an open discharge in helium at pressures of 6-20 Torr can be used to create ultrafast plasma switches triggering into a conducting state for a time shorter than 1 ns. To evaluate the possible repetition rate of such a subnanosecond switch, it is interesting to study the decay dynamics of the plasma remaining in the discharge gap after ultrafast breakdown. In this paper, a kinetic model based on the particle-in-cell Monte Carlo collision method is used to study the dynamics of the plasma afterglow in the discharge gap of a subnanosecond switch operating with helium at a pressure of 6 Torr. The simulation results show that the radiative, collisional-radiative, and three-body collision recombination mechanisms significantly contribute to the afterglow decay only while the plasma density remains higher than 1012 cm-3; the main mechanism of the further plasma decay is diffusion of plasma particles onto the wall. Therefore, the effect of recombination in the plasma bulk is observed only during the first 10-20 μs of the afterglow. Over nearly the same time, plasma electrons become thermalized. The afterglow time can be substantially reduced by applying a positive voltage U c to the cathode. Since diffusive losses are limited by the ion mobility, the additional ion drift toward the wall significantly accelerates plasma decay. As U c increases from 0 to +500 V, the characteristic time of plasma decay is reduced from 35 to 10 μs.

  13. Preparation of Ti3Al intermetallic compound by spark plasma sintering

    Science.gov (United States)

    Ito, Tsutomu; Fukui, Takahiro

    2018-04-01

    Sintered compacts of single phase Ti3Al intermetallic compound, which have excellent potential as refractory materials, were prepared by spark plasma sintering (SPS). A raw powder of Ti3Al intermetallic compound with an average powder diameter of 176 ± 56 μm was used in this study; this large powder diameter is disadvantageous for sintering because of the small surface area. The samples were prepared at sintering temperatures (Ts) of 1088, 1203, and 1323 K, sintering stresses (σs) of 16, 32, and 48 MPa, and a sintering time (ts) of 10 min. The calculated relative densities based on the apparent density of Ti3Al provided by the supplier were approximately 100% under all sintering conditions. From the experimental results, it was evident that SPS is an effective technique for dense sintering of Ti3Al intermetallic compounds in a short time interval. In this report, the sintering characteristics of Ti3Al intermetallic compacts are briefly discussed and compared with those of pure titanium compacts.

  14. Plasma Perturbations in High-Speed Probing of Hall Thruster Discharge Chambers: Quantification and Mitigation

    Science.gov (United States)

    Jorns, Benjamin A.; Goebel, Dan M.; Hofer, Richard R.

    2015-01-01

    An experimental investigation is presented to quantify the effect of high-speed probing on the plasma parameters inside the discharge chamber of a 6-kW Hall thruster. Understanding the nature of these perturbations is of significant interest given the importance of accurate plasma measurements for characterizing thruster operation. An array of diagnostics including a high-speed camera and embedded wall probes is employed to examine in real time the changes in electron temperature and plasma potential induced by inserting a high-speed reciprocating Langmuir probe into the discharge chamber. It is found that the perturbations onset when the scanning probe is downstream of the electron temperature peak, and that along channel centerline, the perturbations are best characterized as a downstream shift of plasma parameters by 15-20% the length of the discharge chamber. A parametric study is performed to investigate techniques to mitigate the observed probe perturbations including varying probe speed, probe location, and operating conditions. It is found that the perturbations largely disappear when the thruster is operated at low power and low discharge voltage. The results of this mitigation study are discussed in the context of recommended methods for generating unperturbed measurements of the discharge chamber plasma.

  15. Theoretical investigation of phase-controlled bias effect in capacitively coupled plasma discharges

    International Nuclear Information System (INIS)

    Kwon, Deuk-Chul; Yoon, Jung-Sik

    2011-01-01

    We theoretically investigated the effect of phase difference between powered electrodes in capacitively coupled plasma (CCP) discharges. Previous experimental result has shown that the plasma potential could be controlled by using a phase-shift controller in CCP discharges. In this work, based on the previously developed radio frequency sheath models, we developed a circuit model to self-consistently determine the bias voltage from the plasma parameters. Results show that the present theoretical model explains the experimental results quite well and there is an optimum value of the phase difference for which the V dc /V pp ratio becomes a minimum.

  16. Mechanical and magnetic properties of semi-Heusler/light-metal composites consolidated by spark plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Koller, M.; Chráska, Tomáš; Cinert, Jakub; Heczko, Oleg; Kopeček, Jaromír; Landa, Michal; Mušálek, Radek; Rameš, Michal; Seiner, Hanuš; Stráský, J.; Janeček, M.

    2017-01-01

    Roč. 126, July (2017), s. 351-357 ISSN 0264-1275 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 ; RVO:68378271 ; RVO:61388998 Keywords : Metal–metal composites * Spark plasma sintering * Light metals * Ferromagnetic alloys * Mechanical properties Subject RIV: JI - Composite Materials; JI - Composite Materials (FZU-D); JI - Composite Materials (UT-L) OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics (FZU-D); Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics (UT-L) Impact factor: 4.364, year: 2016 https://www.sciencedirect.com/science/ article /pii/S0264127517303842?via%3Dih

  17. GeoSpark SQL: An Effective Framework Enabling Spatial Queries on Spark

    Directory of Open Access Journals (Sweden)

    Zhou Huang

    2017-09-01

    Full Text Available In the era of big data, Internet-based geospatial information services such as various LBS apps are deployed everywhere, followed by an increasing number of queries against the massive spatial data. As a result, the traditional relational spatial database (e.g., PostgreSQL with PostGIS and Oracle Spatial cannot adapt well to the needs of large-scale spatial query processing. Spark is an emerging outstanding distributed computing framework in the Hadoop ecosystem. This paper aims to address the increasingly large-scale spatial query-processing requirement in the era of big data, and proposes an effective framework GeoSpark SQL, which enables spatial queries on Spark. On the one hand, GeoSpark SQL provides a convenient SQL interface; on the other hand, GeoSpark SQL achieves both efficient storage management and high-performance parallel computing through integrating Hive and Spark. In this study, the following key issues are discussed and addressed: (1 storage management methods under the GeoSpark SQL framework, (2 the spatial operator implementation approach in the Spark environment, and (3 spatial query optimization methods under Spark. Experimental evaluation is also performed and the results show that GeoSpark SQL is able to achieve real-time query processing. It should be noted that Spark is not a panacea. It is observed that the traditional spatial database PostGIS/PostgreSQL performs better than GeoSpark SQL in some query scenarios, especially for the spatial queries with high selectivity, such as the point query and the window query. In general, GeoSpark SQL performs better when dealing with compute-intensive spatial queries such as the kNN query and the spatial join query.

  18. Time-dependent simulation of plasma and electrodes in high-intensity discharge lamps with different electrode shapes

    CERN Document Server

    Flesch, P

    2003-01-01

    The subject of this paper is the modelling of d.c. and a.c. high-intensity Hg-discharge lamps with differently shaped electrodes. Different arc attachments on the electrodes are studied and insight for the development of new electrodes is gained. The model includes the entire discharge plasma (plasma column, hot plasma spots in front of electrodes, near-electrode non-LTE-plasma) as well as anode and cathode. No subdivision of the discharge space into different regions is necessary (like space charge layer, ionization zone, plasma column). This is achieved by using a differential equation for a non-LTE electrical conductivity which is applicable for local thermal equilibrium (LTE-)regions as well as for non-LTE plasma regions close to the electrodes in a high pressure plasma. Modelling results for a 0.6 MPa mercury discharge considering six different electrode shapes (anode and cathode) are presented and compared with experimental results. The electrodes have different diameters and different electrode tips, s...

  19. Spark Plasma Sintering and Densification Mechanisms of Antimony-Doped Tin Oxide Nanoceramics

    Directory of Open Access Journals (Sweden)

    Junyan Wu

    2013-01-01

    Full Text Available Densification of antimony-doped tin oxide (ATO ceramics without sintering aids is very difficult, due to the volatilization of SnO2, formation of deleterious phases above 1000°C, and poor sintering ability of ATO particles. In this paper, monodispersed ATO nanoparticles were synthesized via sol-gel method, and then ATO nanoceramics with high density were prepared by spark plasma sintering (SPS technology using the as-synthesized ATO nanoparticles without the addition of sintering aids. The effect of Sb doping content on the densification was investigated, and the densification mechanisms were explored. The results suggest that ATO nanoparticles derived from sol-gel method show good crystallinity with a crystal size of 5–20 nm and Sb is incorporated into the SnO2 crystal structure. When the SPS sintering temperature is 1000°C and the Sb doping content is 5 at.%, the density of ATO nanoceramics reaches a maximum value of 99.2%. Densification mechanisms are explored in detail.

  20. Impedance-stabilized positive corona discharge and its decontamination properties

    Energy Technology Data Exchange (ETDEWEB)

    Horak, P; Khun, J, E-mail: pavel.horak@vscht.c [Department of Physics and Measurements, Faculty of Chemical Engineering, Institute of Chemical Technology, Technicka 5, 166 28 Praha 6 (Czech Republic)

    2010-04-01

    The point-to-plane DC corona discharge in air at atmospheric pressure was stabilized by a serially connected ballast impedance. The ballast impedance was implemented by a resistor-capacitor group connected in parallel. In the case of connecting the serial impedance into the electric circuit of a negative corona, the transition into a spark takes place at parameters similar to those of a non-stabilized discharge. In contrast, in the case of a positive corona, the discharge does not undergo a transition into a spark, but rather into a mode of periodic streamers. We measured the bactericidal effect of the stabilized discharge. The experiments showed that after a 2-minute exposure the quantity of surviving bacteria decreased from 95% for a non-stabilized discharge down to 5% for a stabilized one.

  1. Impedance-stabilized positive corona discharge and its decontamination properties

    International Nuclear Information System (INIS)

    Horak, P; Khun, J

    2010-01-01

    The point-to-plane DC corona discharge in air at atmospheric pressure was stabilized by a serially connected ballast impedance. The ballast impedance was implemented by a resistor-capacitor group connected in parallel. In the case of connecting the serial impedance into the electric circuit of a negative corona, the transition into a spark takes place at parameters similar to those of a non-stabilized discharge. In contrast, in the case of a positive corona, the discharge does not undergo a transition into a spark, but rather into a mode of periodic streamers. We measured the bactericidal effect of the stabilized discharge. The experiments showed that after a 2-minute exposure the quantity of surviving bacteria decreased from 95% for a non-stabilized discharge down to 5% for a stabilized one.

  2. Effect of actuating voltage and discharge gap on plasma assisted detonation initiation process

    Science.gov (United States)

    Siyin, ZHOU; Xueke, CHE; Wansheng, NIE; Di, WANG

    2018-06-01

    The influence of actuating voltage and discharge gap on plasma assisted detonation initiation by alternating current dielectric barrier discharge was studied in detail. A loose coupling method was used to simulate the detonation initiation process of a hydrogen–oxygen mixture in a detonation tube under different actuating voltage amplitudes and discharge gap sizes. Both the discharge products and the detonation forming process assisted by the plasma were analyzed. It was found that the patterns of the temporal and spatial distributions of discharge products in one cycle keep unchanged as changing the two discharge operating parameters. However, the adoption of a higher actuating voltage leads to a higher active species concentration within the discharge zone, and atom H is the most sensitive to the variations of the actuating voltage amplitude among the given species. Adopting a larger discharge gap results in a lower concentration of the active species, and all species have the same sensitivity to the variations of the gap. With respect to the reaction flow of the detonation tube, the corresponding deflagration to detonation transition (DDT) time and distance become slightly longer when a higher actuating voltage is chosen. The acceleration effect of plasma is more prominent with a smaller discharge gap, and the benefit builds gradually throughout the DDT process. Generally, these two control parameters have little effect on the amplitude of the flow field parameters, and they do not alter the combustion degree within the reaction zone.

  3. Cleaning of niobium surface by plasma of diffuse discharge at atmospheric pressure

    Science.gov (United States)

    Tarasenko, V. F.; Erofeev, M. V.; Shulepov, M. A.; Ripenko, V. S.

    2017-07-01

    Elements composition of niobium surface before and after plasma treatment by runaway electron preionized diffuse discharge was investigated in atmospheric pressure nitrogen flow by means of an Auger electron spectroscopy. Surface characterizations obtained from Auger spectra show that plasma treatment by diffuse discharge after exposure of 120000 pulses provides ultrafine surface cleaning from carbon contamination. Moreover, the surface free energy of the treated specimens increased up to 3 times, that improve its adhesion property.

  4. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Wang, G.P.; Liu, W.Q.; Huang, Y.L.; Ma, S.C.; Zhong, Z.C.

    2014-01-01

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively

  5. Effects of sintering temperature on the mechanical properties of sintered NdFeB permanent magnets prepared by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.P., E-mail: wgp@jxnu.edu.cn [College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022 (China); Liu, W.Q. [Key Laboratory of Advanced Functional Materials Science and Engineering, Ministry of Education, Beijing University of Technology, Beijing 100022 (China); Huang, Y.L.; Ma, S.C.; Zhong, Z.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2014-01-15

    Sintered NdFeB-based permanent magnets were fabricated by spark plasma sintering (SPS) and a conventional method to investigate the mechanical and magnetic properties. The experimental results showed that sintered NdFeB magnet prepared by the spark plasma sintering (SPS NdFeB) possesses a better mechanical properties compared to the conventionally sintered one, of which the maximum value of bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively. The effects of sintering temperature on bending strength and Vickers hardness were investigated. It was shown that the bending strength firstly increases to the maximum value and then decreases with the increase of sintering temperature in a certain range. The investigations of microstructures and mechanical properties indicated that the unique sintering mechanism in the SPS process is responsible for the improvement of mechanical properties of SPS NdFeB. Furthermore, the relations between the mechanical properties and relevant microstructure have been analyzed based on the experimental fact. - Highlights: • Studied the sintering temperature effect on strengthening mechanism of NdFeB magnet firstly. • It showed that sintering temperature may effectively affect the mechanical properties. • The maximum bending strength and Vickers hardness was 402.3 MPa and 778.1 MPa, respectively.

  6. Formation of ROS and RNS in Water Electro-Sprayed through Transient Spark Discharge in Air and their Bactericidal Effects

    Czech Academy of Sciences Publication Activity Database

    Machala, Z.; Tarabová, B.; Hensel, K.; Doležalová, Eva; Šikurová, L.; Lukeš, Petr

    2013-01-01

    Roč. 10, č. 7 (2013), s. 649-659 ISSN 1612-8850 R&D Projects: GA AV ČR IAAX00430802; GA ČR(CZ) GD104/09/H080; GA MŠk(CZ) MEB0810116 Institutional support: RVO:61389021 Keywords : Plasma electrospray * water * bacteria * hydrogen peroxide * peroxynitrite * cold plasma * water electro-spray Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.964, year: 2013 http://dx.doi.org/10.1002/ppap.201200113

  7. Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge

    DEFF Research Database (Denmark)

    Fateev, A.; Leipold, F.; Kusano, Y.

    2005-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) in Ar/NH3 (0.1 - 10%) mixtures with a parallel plate electrode geometry was studied. The plasma was investigated by emission and absorption spectroscopy in the UV spectral range. Discharge current and voltage were measured as well. UV...... of an atmospheric pressure Ar/NH3 DBD are H-2, N-2 and N2H4. The hydrazine (N2H4) concentration in the plasma and in the exhaust gases at various ammonia concentrations and different discharge powers was measured. Thermal N2H4 decomposition into NH2 radicals may be used for NOx reduction processes....

  8. Development and Testing of Dispersion-Strengthened Tungsten Alloys via Spark Plasma Sinterin

    Science.gov (United States)

    Lang, Eric; Madden, Nathan; Smith, Charles; Krogstad, Jessica; Allain, Jean Paul

    2017-10-01

    Tungsten (W) is a common plasma-facing component (PFC) material in the divertor region of tokamak fusion devices due to its high melting point and high sputter threshold. However, W is intrinsically brittle and is further embrittled under neutron irradiation, and the low recrystallization temperature pose complications in fusion environments. More ductile W alloys, such as dispersion-strengthened tungsten are being developed. In this work, W samples are processed via spark plasma sintering (SPS) with TiC, ZrC, and TaC dispersoids alloyed from 0.5 to 10 weight %. SPS is a powder compaction technique that provides high pressure and heating rates via electrical current, allowing for a lower final temperature and hold time for compaction. Initial testing of material properties, smicrostructure, and composition of specimens will be presented. Deuterium and helium irradiations have been performed in IGNIS, a multi-functional, in-situ irradiation and characterization facility at the University of Illinois. High-flux, low-energy exposures at the Magnum-PSI facility at DIFFER exposed samples to a D fluence of 1×1026 cm-2 and He fluence of 1x1025-1x1026 cm-2 at temperatures of 300-1000 C. In-situ chemistry changes via XPS and ex-situ morphology changes via SEM will be studied. Work supported by US DOE Contract DE-SC0014267.

  9. On the potential of CARS spectroscopy in low-temperature plasma diagnostics

    International Nuclear Information System (INIS)

    Ambrazyavichyus, A.B.; Gladkov, S.M.; Grigajtis, Yu.P.; Koroteev, N.I.

    1989-01-01

    The principles of coherent anti-Stokes Raman spectroscopy (CARS) and its application to the diagnostics of technological plasmas are briefly discussed. THe CARS spectrometer is described, developed in IPTPE, Caunas for investigations of a nitrogen plasma stream generated by an industrial plasmatron, and several CARS spectra of nitrogen molecules are presented. As the CARS signal from vibrational-rotational energy levels decreases substantially at plasma temperatures above 2000 K, an alternative scheme using electronlevels of atoms or ions has to be used. To test the method, CARS signals from the lines of the first nitrogen ion were studied in a low-voltage spark discharge. (J.U.)

  10. Dust acoustic waves in a dc glow-discharge plasma

    International Nuclear Information System (INIS)

    Molotkov, V.I.; Nefedov, A.P.; Torchinskii, V.M.; Fortov, V.E.; Khrapak, A.G.

    1999-01-01

    The spontaneous excitation of low-frequency oscillations of the macroparticle density in ordered dust structures levitating in standing striations of a dc glow discharge is discovered. It is concluded on the basis of a simplified linear model of an ideal collisionless plasma that the observed instability is caused by the drift motion of ions relative to the dust, which leads to the excitation of dust acoustic oscillations of the plasma

  11. Effect of Dielectric Barrier Discharge Plasma Actuators on Non-equilibrium Hypersonic Flows

    Science.gov (United States)

    2014-10-28

    results for MIG with the US3D code devel- oped at the University of Minnesota.61 US3D is an unstruc- tured CFD code for hypersonic flow solution used...Effect of dielectric barrier discharge plasma actuators on non-equilibrium hypersonic flows Ankush Bhatia,1 Subrata Roy,1 and Ryan Gosse2 1Applied...a cylindrical body in Mach 17 hypersonic flow is presented. This application focuses on using sinusoidal dielectric barrier discharge plasma actuators

  12. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr,Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering

    Czech Academy of Sciences Publication Activity Database

    Průša, F.; Bláhová, M.; Vojtěch, D.; Kučera, V.; Bernatiková, A.; Kubatík, Tomáš František; Michalcová, A.

    2016-01-01

    Roč. 9, č. 12 (2016), č. článku 973. ISSN 1996-1944 Institutional support: RVO:61389021 Keywords : mechanical alloying * spark plasma sintering * microstructure * mechanical properties Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.654, year: 2016 http://www.mdpi.com/1996-1944/9/12/973

  13. The Structure and Mechanical Properties of High-Strength Bulk Ultrafine-Grained Cobalt Prepared Using High-Energy Ball Milling in Combination with Spark Plasma Sintering

    Czech Academy of Sciences Publication Activity Database

    Marek, I.; Vojtěch, D.; Michalcová, A.; Kubatík, Tomáš František

    2016-01-01

    Roč. 9, č. 5 (2016), č. článku 391. ISSN 1996-1944 Institutional support: RVO:61389021 Keywords : ultrafine-grained material * cobalt * ball milling * spark plasma sintering * mechanical properties Subject RIV: JG - Metallurgy Impact factor: 2.654, year: 2016 www.mdpi.com/1996-1944/9/5/391/pdf

  14. Microstructure and Mechanical Properties of Highly Alloyed FeCrMoVC Steel Fabricated by Spark Plasma Sintering

    Science.gov (United States)

    Oh, Seung-Jin; Jun, Joong-Hwan; Lee, Min-Ha; Shon, In-Jin; Lee, Seok-Jae

    2018-05-01

    In this study, we successfully fabricated highly alloyed FeCrMoVC specimens within 2 min by using the spark plasma sintering (SPS) method. The densities of the sintered specimens were almost identical to their theoretical values. Fine (Mo, V)-rich carbides with lamellar structure were precipitated along the grain boundaries of the as-sintered specimen, whereas relatively large carbides were formed additionally in the transgranular region during the tempering treatment. Compared with the specimen produced by a conventional casting method, the FeCrMoVC specimens from SPS showed smaller grain size with finer carbides and higher hardness values.

  15. Orientation distribution in Bi2Te3-based compound prepared by spark plasma sintering

    International Nuclear Information System (INIS)

    Kim, K.T.; Kim, Y.H.; Lim, C.H.; Cho, D.C.; Lee, Y.S.; Lee, C.H.

    2005-01-01

    P-type Bi 0.5 Sb 1.5 Te 3 compounds doped with 3wt.% Te were fabricated by spark plasma sintering after mixing large powders(P L ) and small powders(P S ). We could obtained the highest figure of merit(Z C ) of 2.89 x 10 -3 /K in sintered compound mixed to P L :P S =80:20. This resulted from the increase of orientation by large powders(P S ) and the reduce of pores by small powders. The figure of merit(Z C ) of the sintered compound using only small powders(P S ) showed lower value of 2.67 x 10 -3 /K compared with that of sintered compound mixed to P L :P S =80:20 due to the increase of electrical resistivity. (orig.)

  16. Fabrication, spark plasma consolidation, and thermoelectric evaluation of nanostructured CoSb3

    DEFF Research Database (Denmark)

    Khan, A.; Saleemi, M.; Johnsson, M.

    2014-01-01

    Nanostructured powders of thermoelectric (TE) CoSb3 compounds were synthesized using a chemical alloying method. This method involved co-precipitation of oxalate precursors in aqueous solution with controlled pH, followed by thermochemical treatments including calcination and reduction to produce...... stoichiometric nanostructured CoSb3. Moreover, CoSb 3 nanoparticles were consolidated by spark plasma sintering (SPS) with a very brief processing time. Very high compaction densities (>95%) were achieved and the grain growth was almost negligible during consolidation. An iterative procedure was developed...... to minimize the grain growth while achieving sufficient densification. Grain sizes in the range of 500 nm to 1 μm, with compaction density of 95-98% were obtained. Preliminary measurements of thermal diffusivity and conductivity showed the dependence on grain size as well as on porosity. TE transport...

  17. Interaction of plasma with magnetic fields in coaxial discharge

    International Nuclear Information System (INIS)

    Soliman, H.M.; Masoud, M.M.

    1991-01-01

    Previous experiments have shown that, in normal mode of focus operation (67 KJ-20 KV) i.e. without external magnetic fields, the focus exhibits instability growths as revealed by the time integrated X-ray pinhole photographs. A magnetic field which is trapped ahead of the current sheath will reduce the high ejection rate of plasma which occurs during the (r,z) collapse stage. This reduction should lead to a more uniform plasma of larger dimension. If an externally excited axial magnetic field of (10 2 -10 3 G) is introduced at the end of the central electrode of coaxial discharge with 45 μf capacitor bank, U ch =13-17 KV, peak current ∼0.5 MA, the decay rate of the current sheath is slowed down and the minimum radius of the column remains large enough. Experiment investigation of the X-ray emission in axial direction from a (12 KJ/20 KV, 480 KA), Mather type focus, showed that the X-ray intensity changes drastically, by superimposing an axial magnetic field of 55 G on the focus. By introducing an external axial magnetic field of intensity 2.4 KG along the coaxial electrodes, this magnetic field has a radial component at distances approach to muzzle of coaxial discharge with charging voltage 10 KV and peak discharge current 100 KA. Presence of these magnetic fields, will cause an increase in intensity of soft X-ray emission. The main purpose of this work is to study the interactions of axial and transverse magnetic fields with plasma sheath during the axial interelectrode propagation, and its effects on the X-ray emission from plasma focus. (author) 4 refs., 7 figs

  18. Treatment of hazardous organic wastes using silent discharge plasmas

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Anderson, G.K.; Bechtold, L.A.; Coogan, J.J.; Heck, H.G.; Kang, M.; McCulla, W.H.; Tennant, R.A.; Wantuck, P.J.

    1992-01-01

    During the past two decades, interest in applying non-equilibrium plasmas to the removal of hazardous chemicals from gaseous media has been growing, in particular from heightened concerns over the pollution of our environment and a growing body of environmental regulations. At the Los Alamos National Laboratory, we are currently engaged in a project to develop non-equilibrium plasma technology for hazardous waste treatment. Our present focus is on dielectric-barrier discharges, which are historically called silent electrical discharges. This type of plasma is also named a silent discharge plasma (SDP). We have chosen this method due to its potential for high energy efficiency, its scientific and technological maturity, and its scalability. The SDP process has been demonstrated to be reliable and economical for the industrial-scale synthesis of ozone, where municipal water treatment plants frequently require the on-site generation of thousands of kilograins per day (Eliasson ampersand Kogelschatz). The related methods of corona processing are presently the focus of work at other institutions, particularly for flue gas processing. Both SDP and corona processes are characterized by the production of large quantities of highly reactive free radicals, especially atomic oxygen O(3P) and the hydroxyl OH, in the gaseous medium and their subsequent reaction with contaminants. Our primary objective is to convert hazardous or toxic chemicals into non-hazardous compounds or into materials which are more amenable to treatment. In the ideal case, the hazardous wastes are destructively oxidized to simpler, non-hazardous compounds plus CO2 and H2O. Sometimes the reaction products are still potentially hazardous, but are easily treated by conventional methods to yield non-hazardous products

  19. DC Glow Discharge Plasma, Containing Dust Particles: Self Organization and Peculiarities of Behavior

    International Nuclear Information System (INIS)

    Molotkov, V.I.; Pustyl'nik, M.Y.; Torchinskij, V.M.; Fortov, V.E.

    2003-01-01

    Dust particles, immersed in a plasma, acquire charge due to which they may be electrostatically trapped in a plasma. The energy of the interaction of the dust particles may be enough to transfer the dust component to nonideal and even crystalline state. This phenomenon is observed in various plasmas. In the present work a review of the investigations of strongly nonideal dusty plasma of the dc glow discharge striations is given. The formation of plasma crystals, liquids and plasma liquid crystals is considered. Typical phenomenon a for the dc discharge dusty plasma, such as coexistence of different phases in a single structure, convective motions, dust acoustic instability, are underlined. Results of the experiments on different external influences on dusty plasma structures are stated. It is shown that external influences may be used for measuring of the particle charge and field of forces acting on a dust grain levitating in a plasma. (author)

  20. Spectroscopic Diagnostics of Barrier Discharge Plasmas in Mixtures of Zinc Diiodide with Inert Gases

    International Nuclear Information System (INIS)

    Guivan, N.N.; Malinin, A.N.

    2005-01-01

    The spectral characteristics of the emission of gas discharge atmospheric pressure plasmas in mixtures of zinc diiodide vapor with inert gases (He, Ne, Ar, Kr, and Xe) are investigated. The formation of a gas discharge plasma and the excitation of the components of a working mixture were performed in a high-frequency (with a repetition frequency of sinusoidal voltage pulses of 100 kHz) barrier discharge. The gas discharge emission was analyzed in the spectral range 200-900 nm with a resolution of 0.05 nm. Emission bands of ZnI(B-X) exciplex molecules and I* 2 excimer molecules, lines of inert gases, and emission bands of XeI* exciplex molecules (in Xe-containing mixtures) were revealed. It is ascertained that the strongest emission of ZnI* molecules is observed in ZnI 2 /He(Ne) mixtures. The regularities in the spectral characteristics of the gas discharge plasma emission are considered

  1. Assessment of consolidation of oxide dispersion strengthened ferritic steels by spark plasma sintering: from laboratory scale to industrial products

    International Nuclear Information System (INIS)

    Boulnat, X.; Fabregue, D.; Perez, M.; Urvoy, S.; Hamon, D.; Carlan, Y. de

    2014-01-01

    Oxide dispersion strengthened steels are new generation alloys that are usually processed by hot isostatic pressing (HIP). In this study, spark plasma sintering (SPS) was studied as an alternative consolidation technique. The influence of the processing parameters on the microstructure was quantified. The homogeneity of the SPSed materials was characterised by electron microprobe and microhardness. A combination of limited grain growth and minimised porosity can be achieved on semi-industrial compact. Excellent tensile properties were obtained compared to the literature. (authors)

  2. Production of low-density plasma by coaxially segmented rf discharge for void-free dusty cloud in microgravity experiments

    International Nuclear Information System (INIS)

    Suzukawa, Wataru; Ikada, Reijiro; Tanaka, Yasuhiro; Iizuka, Satoru

    2006-01-01

    A technique is presented for producing a low density plasma by introducing a coaxially segmented parallel-plate radio-frequency discharge for void-free dusty-cloud formation. Main plasma for the dusty plasma experiment is produced in a central core part of the parallel-plate discharge, while a plasma for igniting the core plasma discharge is produced in the periphery region surrounding the core plasma. The core plasma density can be markedly decreased to reduce the ion drag force, which is important for a formation of void-free dusty cloud under microgravity

  3. Three-fluid magnetohydrodynamical simulation of plasma focus discharges

    International Nuclear Information System (INIS)

    Behler, K.; Bruhns, H.

    1987-01-01

    A two-dimensional, three-fluid code based on the two-fluid Potter code [Methods in Computational Physics (Academic, New York, 1970), Vol. 9, p. 340] was developed for simulating the plasma focus discharge. With this code it is possible to treat the neutral gas in addition to the plasma components and to model the ionization and recombination phenomena. Thus the sheet dynamics in a plasma focus can be studied and effects investigated such as the occurrence of residual gas (or plasma) density behind the current sheet in the run-down phase. This is a prerequisite to the occurrence of leak currents, which are one of the causes limiting the performance of large plasma focus devices. It is shown that fast operating foci with small dimensions behave favorably compared with the ''classical'' Mather focus [Methods of Experimental Physics (Academic, New York, 1971), Vol. 9B, p. 187] with long coaxial electrodes

  4. The electrical Discharge Characteristics of the 3.5 KJ Electrothermal Plasma Gun Experiment

    International Nuclear Information System (INIS)

    Diab, F.; El-Aragi, G.M.; El-Kashef, G.M.; Saudy, A.H.

    2013-01-01

    In order to better understand the operating characteristics of an electrothermal plasma gun and its design, a variety of operation characteristics including ( the length of the capillary, applied voltage, diameter of the capillary tube, circuit inductance) were investigated to determine performance effects and viability in a real system. An Electrothermal Plasma Gun (ETG) is composed of a capillary discharge tube made of Teflon operated with simple RLC circuit. The device called Electrothermal Gun (ETG) which is composed of 4 capacitors (70 μF, 10 kV, 1.3 μH) connected in parallel to a plasma source by means of one high power plane transmission line by mean of a switch triggered by negative pulse 360/385 V. For the present studies a simple RLC was chosen, which allowed the circuit parameters to be easily measure d. The electrothermal discharge characteristics of the plasma gun operated in open air, So that at atmospheric pressure the main parameters were measured. The gun voltage and discharge current are measured with voltage divider and Rogowiski coil respectively. From the results recorded we found that, the current lagged the voltage i-e the plasma source has an inductive reactivity. Moreover, the current value was changed by changing the circuit parameters, including the discharge voltage and circuit inductance, and the wire properties such as the length and diameter. The maximum gun current ranged between (5 - 50 KA) according to the charging voltage of capacitors between (1-7 KV), a typical discharge times are on the order r of 125 μS.

  5. Penetration of a dielectric barrier discharge plasma into textile structures at medium pressure

    International Nuclear Information System (INIS)

    Geyter, N De; Morent, R; Leys, C

    2006-01-01

    Plasma treatment of textiles is becoming more and more popular as a surface modification technique. Plasma treatment changes the outermost layer of a material without interfering with the bulk properties. However, textiles are several millimetres thick and need to be treated homogeneously throughout the entire thickness. To control the penetration depth of the plasma effect, it is necessary to study the influence of operating parameters. Three layers of a 100% polyester non-woven are treated in the medium pressure range (0.3-7 kPa) with a dielectric barrier discharge to study the influence of pressure and treatment time. Current and voltage waveforms and Lichtenberg figures are used to characterize the discharge. Process pressure proved to have an important effect on the penetration of the plasma through the textile layers. This is caused not only by the pressure dependence of diffusive transport of textile modifying particles but also by a different behaviour of the barrier discharge

  6. Lanthanide (Nd, Gd) compounds with garnet and monazite structures. Powders synthesis by “wet” chemistry to sintering ceramics by Spark Plasma Sintering

    Energy Technology Data Exchange (ETDEWEB)

    Potanina, Ekaterina, E-mail: ekaterina.potanina@list.ru [Department of Solid State Chemistry, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 2, 603950 Nizhny Novgorod (Russian Federation); Golovkina, Ludmila, E-mail: golovkina_lyudmila@mail.ru [Department of Solid State Chemistry, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 2, 603950 Nizhny Novgorod (Russian Federation); Orlova, Albina, E-mail: albina.orlova@inbox.ru [Department of Solid State Chemistry, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 2, 603950 Nizhny Novgorod (Russian Federation); Nokhrin, Aleksey, E-mail: nokhrin@nifti.unn.ru [Research Institute of Physics and Technology, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 3, 603950 Nizhny Novgorod (Russian Federation); Boldin, Maksim, E-mail: boldin@nifti.unn.ru [Research Institute of Physics and Technology, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 3, 603950 Nizhny Novgorod (Russian Federation); Sakharov, Nikita, E-mail: nvsaharov@nifti.unn.ru [Research Institute of Physics and Technology, Lobachevsky State University of Nizhni Novgorod, National Research University, 23 Prospekt Gagarina, BLDG 3, 603950 Nizhny Novgorod (Russian Federation)

    2016-05-15

    Complex oxide Y{sub 2.5}Nd{sub 0.5}Al{sub 5}O{sub 12} with garnet structure and phosphates NdPO{sub 4} and GdPO{sub 4} with monazite structure were obtained by using precipitation methods. Ceramics Y{sub 2.5}Nd{sub 0.5}Al{sub 5}O{sub 12} and NdPO{sub 4} were processed by Spark Plasma Sintering (SPS). Relative density more 98%, sintering time did not exceed 8 min, sintering temperature 1330–1390 °C. Leaching rates of elements from ceramics were 10{sup −6}–10{sup −7} g/(cm{sup 2} d). The process of ceramics sintering has two-stage character: the first step of sintering-compaction process is related to the plastic flow of the material, the second step–to the process of grain boundary diffusion and grain growth. - Highlights: • Powders were obtained by precipitation (sol–gel) method. • Ceramics were sintering by Spark Plasma Sintering method (ρ{sub rel} > 98%); shrinkage time does not exceed 8 min. • The process of ceramics sintering has two-stage character.

  7. Diode with plasma cathode on the basis of a sliding discharge

    International Nuclear Information System (INIS)

    Korenev, S.A.

    1982-01-01

    The operative regime of a diode with plasma cathode on the basis of a discharge sliding over the surface of dielectric without an additional switching - on discharge generator at the glance of capacity couplings of anode and cathode assemblies is described. It is experimentally shown that at the voltage at the diode of about 150-300 kV electron beams with the 400-1000 A/cm current density can be formed. The velocity of cathode plasma motion in the direction of anode for different materials of dielctric insertion in a cathode assembly amounts to (1.5-10)x10 5 cm/s

  8. The influence of exothermic reactions on the nonequilibrium level of discharge plasma

    International Nuclear Information System (INIS)

    Chernyak, V.Ya.; Iukhymenko, V.V.; Prysiazhnevych, I.V.; Martysh, Eu.V.

    2013-01-01

    The comparative analysis of plasma parameters of transverse arc and discharge in the gas channel with liquid wall was made for different working gas and liquids (for air, distilled water and for its mixtures with ethanol). Electronic excitation temperatures Te of atoms, vibrational Tv and rotational Tr temperatures of molecules in the generated plasma were determined by optical emission spectroscopy. It was shown that both discharges generate nonequilibrium plasma in the case of working gas air and working liquid-distilled water. Adding a fuel (ethanol) into the plasma system with O 2 leads to the increasing of rotational and vibrational temperatures of molecules, which became equal to each other within the errors. This may indicate that the exothermic reactions reduce the level of nonthermality of the generated plasma as a result of additional energy supply for heavy components in the process of complete combustion of hydrocarbons.

  9. Influence of spark plasma sintering conditions on the sintering and functional properties of an ultra-fine grained 316L stainless steel obtained from ball-milled powder

    Energy Technology Data Exchange (ETDEWEB)

    Keller, C., E-mail: clement.keller@insa-rouen.fr [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Tabalaiev, K.; Marnier, G. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Noudem, J. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France); Sauvage, X. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Hug, E. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France)

    2016-05-17

    In this work, 316L samples with submicrometric grain size were sintered by spark plasma sintering. To this aim, 316L powder was first ball-milled with different conditions to obtain nanostructured powder. The process control agent quantity and milling time were varied to check their influence on the crystallite size of milled powder. Samples were then sintered by spark plasma sintering using different sets of sintering parameters (temperature, dwell time and pressure). For each sample, grain size and density were systematically measured in order to investigate the influence of the sintering process on these two key microstructure parameters. Results show that suitable ball-milling and subsequent sintering can be employed to obtain austenitic stainless steel samples with grain sizes in the nanometer range with porosity lower than 3%. However, ball-milling and subsequent sintering enhance chromium carbides formation at the sample surface in addition to intragranular and intergranular oxides in the sample as revealed by X-ray diffraction and transmission electron microscopy. It has been shown that using Boron nitride together with graphite foils to protect the mold from powder welding prevent such carbide formation. For mechanical properties, results show that the grain size refinement strongly increases the hardness of the samples without deviation from Hall-Petch relationship despite the oxides formation. For corrosion resistance, grain sizes lower than a few micrometers involve a strong decrease in the pitting potential and a strong increase in passivation current. As a consequence, spark plasma sintering can be considered as a promising tool for ultra-fine grained austenitic stainless steel.

  10. Towards the Industrial Application of Spark Ablation for Nanostructured Functional Materials

    NARCIS (Netherlands)

    Pfeiffer, T.V.

    2014-01-01

    Nanostructuring of functional materials is an essential part in the design of energy related devices – but the industrial tools we have to make these materials are lacking. This dissertation explores the green, flexible, and scalable spark discharge process for the fabrication of complex

  11. SparkRS - Spark for Remote Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is Spark-RS, an open source software project that enables GPU-accelerated remote sensing workflows in an Apache Spark distributed computing...

  12. Plasma parameters in the channel of a long leader in air

    International Nuclear Information System (INIS)

    Aleksandrov, N.L.; Konchakov, A. M.; Bazelyan, E.M.

    2001-01-01

    The time evolution of the electric field in the leader channel and other characteristics of the leader plasma in long air gaps are simulated. Calculations are performed in the one-dimensional time-dependent model with allowance for the time-varying energy deposition in the channel, the channel expansion, and the nonequilibrium ionization kinetics in the leader plasma. The calculations show that, at a gas temperature of 4500-6000 K, associative ionization becomes a dominant ionization mechanism in the leader channel; as a result, the electric field decreases to 100-200 V/cm in 10 -4 -10 -3 s under the conditions typical of the leader discharge. The calculated electric field agrees well with the data from the experimental modeling of long leaders by a spark discharge in short gaps

  13. The measurement of argon metastable atoms in the barrier discharge plasma

    Science.gov (United States)

    Ghildina, Anna R.; Mikheyev, Pavel Anatolyevich; Chernyshov, Aleksandr Konstantinovich; Lunev, Nikolai Nikolaevich; Azyazov, Valeriy Nikolaevich

    2018-04-01

    The mandatory condition for efficient operation of an optically-pumped all-rare-gas laser (OPRGL) is the presence of rare gas metastable atoms in the discharge plasma with number density of the order of 1012-1013 cm-3. This requirement mainly depends on the choice of a discharge system. In this study the number density values of argon metastable atoms were obtained in the condition of the dielectric-barrier discharge (DBD) at an atmospheric pressure.

  14. Rocket borne electron accelerator results pertaining to the beam plasma discharge

    International Nuclear Information System (INIS)

    Kellogg, P.J.; Monson, S.J.

    1981-01-01

    The beam plasma discharge (BPD) is a state in which plasma instabilities accelerate electrons sufficiently to ionize a neutral background. A description is given of a number of ionospheric experiments which fall into two classes based on gun perveance. In the first class, an electron gun of high perveance has been operated at comparatively low potentials in the range from 2 to 8 kV and beam currents up to approximately 100 mA. The second group, the Electron Echo experiments, have used beam voltages in the range from 10 to 40 kV, and perveance guns with beam currents on the order of 100 mA and 1 A. Evidence is presented that the beam plasma discharge is excited by gun pulses of the lower voltage and higher perveance type

  15. Dielectric barrier discharge plasma treatment of cellulose nanofibre surfaces

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Madsen, Bo; Berglund, Linn

    2017-01-01

    on the nanofibre surface. Ultrasonic irradiation further enhanced the wetting and oxidation of the nanofibre coating. Scanning electron microscopic observations showed skeleton-like features on the plasma-treated surface, indicating preferential etching of weaker domains, such as low-molecular weight domains......Dielectric barrier discharge plasma treatment was applied to modify cellulose nanofibre (CNF) surfaces with and without ultrasonic irradiation. The plasma treatment improved the wetting by deionised water and glycerol, and increased the contents of oxygen, carbonyl group, and carboxyl group...... and amorphous phases. Ultrasonic irradiation also improved the uniformity of the treatment. Altogether, it is demonstrated that atmospheric pressure plasma treatment is a promising technique to modify the CNF surface before composite processing....

  16. Discharge regimes and density jumps in a helicon plasma source

    International Nuclear Information System (INIS)

    Shinohara, S.; Yonekura, K.

    1999-01-01

    A high density plasma source using a helicon wave is becoming very attractive in plasma processing and confinement devices. In the previous work, the characteristics of this wave and plasma performance with diameters of 5 and 45 cm have been studied, and the helicon wave was only observed after the density jump. Recently, density jumps from the low to high electron densities with a level of 10 13 cm -3 were investigated by changing the antenna wavenumber spectrum, and the obtained results were compared with the inductively coupled plasma (ICP). However, the mechanisms of density jumps and plasma production are still open questions to be answered. Here, the authors try to investigate the discharge regimes and density jumps in a helicon plasma source, by changing the antenna wavenumber spectrum. For he case of the parallel current directions in the antenna, where the low wavenumber spectrum part is large, the density jump was observed with the low RF input power of P in < 300 W regardless of the magnetic field. On the other hand, for the case of the opposite directions, where the low wavenumber spectrum part is small, the threshold power to obtain the jump became high with the increase in the magnetic field. This can be understood from the dispersion relation of the helicon wave. The wave structures and the dispersion relations in the discharge modes will be also shown

  17. High performance Spark best practices for scaling and optimizing Apache Spark

    CERN Document Server

    Karau, Holden

    2017-01-01

    Apache Spark is amazing when everything clicks. But if you haven’t seen the performance improvements you expected, or still don’t feel confident enough to use Spark in production, this practical book is for you. Authors Holden Karau and Rachel Warren demonstrate performance optimizations to help your Spark queries run faster and handle larger data sizes, while using fewer resources. Ideal for software engineers, data engineers, developers, and system administrators working with large-scale data applications, this book describes techniques that can reduce data infrastructure costs and developer hours. Not only will you gain a more comprehensive understanding of Spark, you’ll also learn how to make it sing. With this book, you’ll explore: How Spark SQL’s new interfaces improve performance over SQL’s RDD data structure The choice between data joins in Core Spark and Spark SQL Techniques for getting the most out of standard RDD transformations How to work around performance issues i...

  18. Effect of SiC Nanowhisker on the Microstructure and Mechanical Properties of WC-Ni Cemented Carbide Prepared by Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Xiaoyong Ren

    2014-01-01

    Full Text Available Ultrafine tungsten carbide-nickel (WC-Ni cemented carbides with varied fractions of silicon carbide (SiC nanowhisker (0–3.75 wt.% were fabricated by spark plasma sintering at 1350°C under a uniaxial pressure of 50 MPa with the assistance of vanadium carbide (VC and tantalum carbide (TaC as WC grain growth inhibitors. The effects of SiC nanowhisker on the microstructure and mechanical properties of the as-prepared WC-Ni cemented carbides were investigated. X-ray diffraction analysis revealed that during spark plasma sintering (SPS Ni may react with the applied SiC nanowhisker, forming Ni2Si and graphite. Scanning electron microscopy examination indicated that, with the addition of SiC nanowhisker, the average WC grain size decreased from 400 to 350 nm. However, with the additional fractions of SiC nanowhisker, more and more Si-rich aggregates appeared. With the increase in the added fraction of SiC nanowhisker, the Vickers hardness of the samples initially increased and then decreased, reaching its maximum of about 24.9 GPa when 0.75 wt.% SiC nanowhisker was added. However, the flexural strength of the sample gradually decreased with increasing addition fraction of SiC nanowhisker.

  19. Plasma-assisted ignition and combustion: nanosecond discharges and development of kinetic mechanisms

    Science.gov (United States)

    Starikovskaia, S. M.

    2014-09-01

    This review covers the results obtained in the period 2006-2014 in the field of plasma-assisted combustion, and in particular the results on ignition and combustion triggered or sustained by pulsed nanosecond discharges in different geometries. Some benefits of pulsed high voltage discharges for kinetic study and for applications are demonstrated. The necessity of and the possibility of building a particular kinetic mechanism of plasma-assisted ignition and combustion are discussed. The most sensitive regions of parameters for plasma-combustion kinetic mechanisms are selected. A map of the pressure and temperature parameters (P-T diagram) is suggested, to unify the available data on ignition delay times, ignition lengths and densities of intermediate species reported by different authors.

  20. Interaction of plasma with magnetic fields in coaxial discharge

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, H.M.; Masoud, M.M. (National Research Centre, Cairo (Egypt))

    1991-01-01

    Previous experiments have shown that, in normal mode of focus operation (67 KJ-20 KV) i.e. without external magnetic fields, the focus exhibits instability growths as revealed by the time integrated X-ray pinhole photographs. A magnetic field which is trapped ahead of the current sheath will reduce the high ejection rate of plasma which occurs during the (r,z) collapse stage. This reduction should lead to a more uniform plasma of larger dimension. If an externally excited axial magnetic field of (10[sup 2]-10[sup 3] G) is introduced at the end of the central electrode of coaxial discharge with 45 [mu]f capacitor bank, U[sub ch]=13-17 KV, peak current [approx]0.5 MA, the decay rate of the current sheath is slowed down and the minimum radius of the column remains large enough. Experiment investigation of the X-ray emission in axial direction from a (12 KJ/20 KV, 480 KA), Mather type focus, showed that the X-ray intensity changes drastically, by superimposing an axial magnetic field of 55 G on the focus. By introducing an external axial magnetic field of intensity 2.4 KG along the coaxial electrodes, this magnetic field has a radial component at distances approach to muzzle of coaxial discharge with charging voltage 10 KV and peak discharge current 100 KA. Presence of these magnetic fields, will cause an increase in intensity of soft X-ray emission. The main purpose of this work is to study the interactions of axial and transverse magnetic fields with plasma sheath during the axial interelectrode propagation, and its effects on the X-ray emission from plasma focus. (author) 4 refs., 7 figs.

  1. Sintering Behavior of Spark Plasma Sintered SiC with Si-SiC Composite Nanoparticles Prepared by Thermal DC Plasma Process.

    Science.gov (United States)

    Yu, Yeon-Tae; Naik, Gautam Kumar; Lim, Young-Bin; Yoon, Jeong-Mo

    2017-11-25

    The Si-coated SiC (Si-SiC) composite nanoparticle was prepared by non-transferred arc thermal plasma processing of solid-state synthesized SiC powder and was used as a sintering additive for SiC ceramic formation. Sintered SiC pellet was prepared by spark plasma sintering (SPS) process, and the effect of nano-sized Si-SiC composite particles on the sintering behavior of micron-sized SiC powder was investigated. The mixing ratio of Si-SiC composite nanoparticle to micron-sized SiC was optimized to 10 wt%. Vicker's hardness and relative density was increased with increasing sintering temperature and holding time. The relative density and Vicker's hardness was further increased by reaction bonding using additional activated carbon to the mixture of micron-sized SiC and nano-sized Si-SiC. The maximum relative density (97.1%) and Vicker's hardness (31.4 GPa) were recorded at 1800 °C sintering temperature for 1 min holding time, when 0.2 wt% additional activated carbon was added to the mixture of SiC/Si-SiC.

  2. Analysis of the Plasma Properties Affected by Magnetic Confinement with Special Emphasis on Helicon Discharges

    International Nuclear Information System (INIS)

    Cheng Yuguo; Cheng Mousen; Wang Moge; Yang Xiong; Li Xiaokang

    2014-01-01

    A one-dimensional radial non-uniform fluid model is employed to study plasma behaviors with special emphasis laid on helicon discharges. The plasma density n e , electron temperature T e , electron azimuthal and radial drift velocities are investigated in terms of the plasma radius r p , magnetic field intensity B 0 and gas pressure p 0 , by assuming radial ambipolar diffusion and negligible ion cyclotron movement. The results show that the magnetic confinement plays an important role in the discharge equilibrium, especially at low pressure, which significantly reduces T e compared with the case of a negligible magnetic field effect, and higher B 0 leads to a greater average plasma density. T e shows little variations in the plasma density range of 10 11 cm −3 –10 13 cm −3 for p 0 < 3.0 mTorr. Comparison of the simulation results with experiments suggests that the model can make reasonable predictions of T e in low pressure helicon discharges. (low temperature plasma)

  3. Reactive spark plasma synthesis of CaZrTi2O7 zirconolite ceramics for plutonium disposition

    Science.gov (United States)

    Sun, Shi-Kuan; Stennett, Martin C.; Corkhill, Claire L.; Hyatt, Neil C.

    2018-03-01

    Near single phase zirconolite ceramics, prototypically CaZrTi2O7, were fabricated by reactive spark plasma sintering (RSPS), from commercially available CaTiO3, ZrO2 and TiO2 reagents, after processing at 1200 °C for only 1 h. Ceramics were of theoretical density and formed with a controlled mean grain size of 1.9 ± 0.6 μm. The reducing conditions of RSPS afforded the presence of paramagnetic Ti3+, as demonstrated by EPR spectroscopy. Overall, this study demonstrates the potential for RSPS to be a disruptive technology for disposition of surplus separated plutonium stockpiles in ceramic wasteforms, given its inherent advantage of near net shape products and rapid throughput.

  4. High density low-q discharges with D-shaped plasmas in Doublet III

    International Nuclear Information System (INIS)

    Nagami, Masayuki; Yoshida, Hidetoshi; Shinya, Kichiro; Yokomizo, Hideaki; Shimada, Michiya; Ioki, Kimihiro; Izumi, Shigeru; Kitsunezaki, Masao; Jahns, G.

    1981-07-01

    The maximum plasma current in Doublet III is found to be limited by disruptions when the limiter safety factor is approximately 2. However, due to the strong toroidal and shaping field effect on rotational transform at the outer plasma edge associated with a D-shape formation having a vertical elongation of 1.5, the safety factor q sub(a) * estimated from simple geometric considerations for D-shaped plasmas corresponds to values as low as 1.5. These discharges operate stably with considerably higher plasma current than most reactor design studies assume. These low-q discharges show excellent plasma performance: very flat spatial electron temperature progiles, high density operation with anti n sub(e)R/B sub(T) up to 7.8, and good energy confinement producing a volume average β of up to 1% with ohmic heating only. This operational regime appears to be applicable to future high β tokamaks with D-shaped cross section. (author)

  5. Dicarboxylic acids from electric discharge

    Science.gov (United States)

    Zeitman, B.; Chang, S.; Lawless, J. G.

    1974-01-01

    An investigation was conducted concerning the possible synthesis of a suite of dicarboxylic acids similar to that found in the Murchison meteorite. The investigation included the conduction of a chemical evolution experiment which simulated electric discharge through the primitive atmosphere of the earth. The suite of dicarboxylic acids obtained in the electric discharge experiment is similar to that of the Murchison meteorite, except for the fact that 2-chlorosuccinic acid is present in the spark discharge.

  6. Microstructural designs of spark-plasma sintered silicon carbide ceramic scaffolds

    Directory of Open Access Journals (Sweden)

    Román-Manso, B.

    2014-04-01

    Full Text Available Concentrated ceramic inks based on β-SiC powders, with different amounts of Y2O3 and Al2O3 as sintering aids, are developed for the adequate production of SiC scaffolds, with different patterned morphologies, by the Robocasting technique. The densifi cation of the as-produced 3D structures, previously heat treated in air at 600 ºC for the organics burn-out, is achieved with a Spark Plasma Sintering (SPS furnace. The effects of the amount of sintering additives (7 - 20 wt. % and the size of the SiC powders (50 nm and 0.5 μm on the processing of the inks, microstructure, hardness and elastic modulus of the sintered scaffolds, are studied. The use of nano-sized β-SiC powders significantly restricts the attainable maximum solids volume fraction of the ink (0.32 compared to 0.44 of the submicron-sized powders-based ink, involving a much larger porosity of the green ceramic bodies. Furthermore, reduced amounts of additives improve the mechanical properties of the ceramic skeleton; particularly, the stiffness. The grain size and specific surface area of the starting powders, the ink solids content, green porosity, amount of sintering additives and SPS temperatures are the main parameters to be taken into account for the production of these SiC cellular ceramics.Se han fabricado andamiajes de carburo de silicio (SiC usando la técnica de “Robocasting”, a partir de tintas cerámicas conteniendo β-SiC y distintas cantidades de Y2O3 and Al2O3, como aditivos de sinterización. La densificación de las estructuras tridimensionales, previamente calcinadas a 600 ºC para eliminar los aditivos orgánicos, se realizó en un horno de “Spark Plasma Sintering” (SPS. Se analizó el efecto de la cantidad de aditivos de sinterización (7-20 % en peso y del tamaño de partícula inicial del polvo de SiC (50 nm y 0.5 μm en el procesado de las tintas, en la microestructura, la dureza y el módulo elástico de las estructuras sinterizadas. El uso de polvo

  7. Interface evolution and shear strength of Al/Ti bi-metals processed by a spark plasma sintering (SPS) apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Miriyev, Aslan, E-mail: aslan.miriyev@columbia.edu [Department of Mechanical Engineering, Columbia University in the City of New York, 500 W. 120th St., Mudd 220, New York, NY 10027 (United States); Levy, Asaf; Kalabukhov, Sergey; Frage, Nachum [Department of Materials Engineering, Ben-Gurion University of the Negev, P.O.B. 653, Beer Sheva 8410501 (Israel)

    2016-09-05

    Microstructural evolution of the Al/Ti bi-metal interface during heat treatment in a spark plasma sintering (SPS) apparatus was investigated under various conditions for the first time. A mechanism of interfacial layer growth was suggested based on the results of SEM, TEM and X-ray diffraction analysis. A continuous TiAl{sub 3} intermetallic layer was formed at the Al/Ti interface even after a processing time as short as about a minute. The TiAl{sub 3} layer grew mainly into the Ti part, while only a few individual grains grew into the Al part. Evolution of the interlayer was determined by Al diffusion through the (TiAl{sub 3}/TiAl{sub 3}) grain boundary. The activation energy of the process was 140 kJ/mol. The shear strength of the interface in the Al/Ti bi-metal was determined after various heat treatments. The shear strength of the bi-metal was limited by the properties of aluminum, with no effect of interlayer thickness or current mode and pulse pattern of the SPS treatment being detected. - Highlights: • Spark plasma sintering apparatus was used for heat treatment of Al/Ti bi-metals. • Microstructural evolution of Al/Ti interface during SPS treatment was investigated. • A continuous TiAl{sub 3} intermetallic layer was formed at the Al/Ti interface. • The bi-metal shear strength was limited by the properties of pure aluminum. • No effect of TiAl{sub 3} thickness or SPS current mode and pulse pattern was detected.

  8. Direct multielement trace analyses of silicon carbide powders by spark ablation simultaneous inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Kiera, Arne F.; Schmidt-Lehr, Sebastian; Song, Ming; Bings, Nicolas H.; Broekaert, Jose A.C.

    2008-01-01

    A procedure for the direct analysis of silicon carbide powders (SiC) by simultaneous detection inductively coupled plasma optical emission spectrometry using a Spectro-CIROS TM spectrometer (CCD-ICP-OES) and a novel spark ablation system Spectro-SASSy (SA) as sample introduction technique is described. The sample preparation procedure for SA of non-conducting material is based on mixing the sample powders with a conducting matrix, in this case copper and briquetting pellets. Pressing time, pressure and mixing ratio are shown to be important parameters of the pelleting technique with respect to their mechanical stability for the reliability of the analysis results. A mixing ratio of 0.2 g +0.6 g for SiC and Cu, a pressure of 10 t cm -2 and a pressing time of 8 min have been found optimum. It has also been shown that the spark parameters selected are crucial for uniform volatilization. Electron probe micrographs of the burning spots and the analytical signal magnitude showed that a rather hard spark at 100 Hz was optimum. The determination of trace elements in silicon carbide powders is demonstrated using a calibration based on the addition of standard solutions. For Al, Ti, V, Mn and Fe detection limits in the lower μg g -1 range can be achieved. Internal standardization with Y in combination with the addition of standard solutions allows relative standard deviations in the range of 4 to 24% for concentration levels of the order of 3 to 350 μg g -1

  9. Direct multielement trace analyses of silicon carbide powders by spark ablation simultaneous inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kiera, Arne F.; Schmidt-Lehr, Sebastian; Song, Ming [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany); Bings, Nicolas H. [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)], E-mail: bings@chemie.uni-hamburg.de; Broekaert, Jose A.C. [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)

    2008-02-15

    A procedure for the direct analysis of silicon carbide powders (SiC) by simultaneous detection inductively coupled plasma optical emission spectrometry using a Spectro-CIROS{sup TM} spectrometer (CCD-ICP-OES) and a novel spark ablation system Spectro-SASSy (SA) as sample introduction technique is described. The sample preparation procedure for SA of non-conducting material is based on mixing the sample powders with a conducting matrix, in this case copper and briquetting pellets. Pressing time, pressure and mixing ratio are shown to be important parameters of the pelleting technique with respect to their mechanical stability for the reliability of the analysis results. A mixing ratio of 0.2 g +0.6 g for SiC and Cu, a pressure of 10 t cm{sup -2} and a pressing time of 8 min have been found optimum. It has also been shown that the spark parameters selected are crucial for uniform volatilization. Electron probe micrographs of the burning spots and the analytical signal magnitude showed that a rather hard spark at 100 Hz was optimum. The determination of trace elements in silicon carbide powders is demonstrated using a calibration based on the addition of standard solutions. For Al, Ti, V, Mn and Fe detection limits in the lower {mu}g g{sup -1} range can be achieved. Internal standardization with Y in combination with the addition of standard solutions allows relative standard deviations in the range of 4 to 24% for concentration levels of the order of 3 to 350 {mu}g g{sup -1}.

  10. Direct measurements of particle transport in dc glow discharge dusty plasmas

    International Nuclear Information System (INIS)

    Thomas, E. Jr.

    2001-01-01

    Many recent experiments in dc glow discharge plasmas have shown that clouds of dust particles can be suspended near the biased electrodes. Once formed, the dust clouds have well defined boundaries while particle motion within the clouds can be quite complex. Because the dust particles in the cloud can remain suspended in the plasma for tens of minutes, it implies that the particles have a low diffusive loss rate and follow closed trajectories within the cloud. In the experiments discussed in this paper, direct measurements of the dust particle velocities are made using particle image velocimetry (PIV) techniques. From the velocity measurements, a reconstruction of the three-dimensional transport of the dust particles is performed. A qualitative model is developed for the closed motion of the dust particles in a dc glow discharge dusty plasma. (orig.)

  11. Observation of radio frequency ring-shaped hollow cathode discharge plasma with MgO and Al electrodes for plasma processing

    International Nuclear Information System (INIS)

    Ohtsu, Yasunori; Matsumoto, Naoki

    2014-01-01

    Various high-density plasma sources have been proposed for plasma processing. Especially, the hollow cathode discharge is one of the powerful ones. In this work, radio-frequency (RF) driven ring-shaped hollow cathode discharges with high secondary-electron emission have been investigated, using an aluminum (Al) cathode, coated or not with magnesium oxide (MgO). The thickness of MgO thin film is approximately 200 nm. The RF discharge voltage for the coated cathode is almost the same as that for the uncoated one, in a wide range of Ar gas pressure, from 5.3 to 53.2 Pa. The results reveal that the plasma density has a peak at an Ar gas pressure of 10.6 Pa for both cathodes. The plasma density for the coated cathode is about 1.5–3 times higher than that for the uncoated one, at various gas pressures. To the contrary, the electron temperature for the coated cathode is lower than temperature obtained with the uncoated cathode, at various gas pressures. Radial profiles of electron saturation current, which is proportional to plasma flux, are also examined for a wide range of gas pressure. Radial profiles of electron temperature at various axial positions are almost uniform for both cathodes so that the diffusion process due to density gradient is dominant for plasma transport. The secondary electrons emitted from the coated cathode contribute to the improvement of the plasma flux radial profile obtained using the uncoated cathode

  12. Experimental Study on Indoor Air Cleaning Technique of Nano-Titania Catalysis Under Plasma Discharge

    International Nuclear Information System (INIS)

    Gao Deli; Yang Xuechang; Zhou Fei; Wu Yuhuang

    2008-01-01

    In this study, a new technique of air cleaning by plasma combined with catalyst was proposed, which consisted of electrostatic precipitation, volatile organic compounds (VOCs) decomposition and sterilization. A novel indoor air purifier based on this technique was adopted. The experimental results showed that formaldehyde decomposition by the plasma-catalyst hybrid system was more efficient than that by plasma only. Positive discharge was better than negative discharge in formaldehyde removal. Meanwhile, the outlet concentration of ozone byproduct was effectively reduced by the nano-titania catalyst.

  13. Chemically produced nanostructured ODS-lanthanum oxide-tungsten composites sintered by spark plasma

    International Nuclear Information System (INIS)

    Yar, Mazher Ahmed; Wahlberg, Sverker; Bergqvist, Hans; Salem, Hanadi G.; Johnsson, Mats; Muhammed, Mamoun

    2011-01-01

    High purity W and W-0.9La 2 O 3 (wt.%) nanopowders were produced by a wet chemical route. The precursor was prepared by the reaction of ammonium paratungstate (APT) with lanthanum salt in aqueous solutions. High resolution electron microscopy investigations revealed that the tungstate particles were coated with oxide precipitates. The precursor powder was reduced to tungsten metal with dispersed lanthanum oxide. Powders were consolidated by spark plasma sintering (SPS) at 1300 and 1400 o C to suppress grain growth during sintering. The final grain size relates to the SPS conditions, i.e. temperature and heating rate, regardless of the starting powder particle size. Scanning electron microscopy revealed that oxide phases were mainly accumulated at grain boundaries while the tungsten matrix constituted of nanosized sub-grains. The transmission electron microscopy revealed that the tungsten grains consist of micron-scale grains and finer sub-grains. EDX analysis confirmed the presence of W in dispersed oxide phases with varying chemical composition, which evidenced the presence of complex oxide phases (W-O-La) in the sintered metals.

  14. Comparison of Nitrogen Incorporation in Tholins Produced by FUV Irradiation and Spark Discharge

    Science.gov (United States)

    Horst, S. M.; DeWitt, H. L.; Trainer, M. G.; Tolbert, M. A.

    2012-01-01

    The discovery of very heavy ions (Coates et al., 2007) in Titan's thermosphere has dramatically altered our understanding of the processes involved in the formation of the complex organic aerosols that comprise Titan's characteristic haze. Before Cassini's arrival, it was believed that aerosol production began in the stratosphere where the chemical processes were predominantly initiated by FUV radiation. This understanding guided the design of Titan atmosphere simulation experiments. However, the energy environment of the thermosphere is significantly different than the stratosphere; in particular there is a greater flux of EUV photons and energetic particles available to initiate chemical reactions, including the destruction of N2. in the upper atmosphere. Using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS), we have obtained in situ composition measurements of aerosol particles (so'called "tholins") produced in CH4/N2 gas mixtures subjected to either FUV radiation (deuterium lamp, 115-400 nm) (Trainer et al., 2012) or a spark discharge. A comparison of the composition of tholins produced using the two different energy sources will be presented, in particular with regard to the variation in nitrogen content of the two types of tholin. Titan's aerosols are known to contain significant amounts of nitrogen (Israel et al., 2005) and therefore understanding the role of nitrogen in the aerosol chemistry is important to further our knowledge of the formation and evolution of aerosols in Titan's atmosphere.

  15. Scattering profiles of sparks and combustibility of filter against hot sparks

    International Nuclear Information System (INIS)

    Asazuma, Shinichiro; Okada, Takashi; Kashiro, Kashio

    2004-01-01

    The glove-box dismantling facility in the Plutonium Fuel Production Facility is developed to dismantle after-service glove-boxes with remote-controlled devices such as an arm-type manipulator. An abrasive wheel cutter, which is used to size reduce the gloveboxes, generates sparks during operation. This dispersing spark was a problem from the fire prevention point of view. A suitable spark control measures for this operation were required. We developed panels to minimize spark dispersion, shields to prevent the income of sparks to the pre-filter, and incombustible pre-filters. The equipment was tested and effectiveness was confirmed. This report provides the results of these tests. (author)

  16. Study of plasma discharge evolution and edge turbulence with fast visible imaging in the Aditya tokamak

    International Nuclear Information System (INIS)

    Banerjee, Santanu; Manchanda, R.; Chowdhuri, M.B.

    2015-01-01

    Study of discharge evolution through the different phases of a tokamak plasma shot viz., the discharge initiation, current ramp-up, current flat-top and discharge termination, is essential to address many inherent issues of the operation of a Tokamak. Fast visible imaging of the tokamak plasma can provide valuable insight in this regard. Further, edge turbulence is considered to be one of the quintessential areas of tokamak research as the edge plasma is at the immediate vicinity of the plasma core and plays vital role in the core plasma confinement. The edge plasma also bridges the core and the scrape off layer (SOL) of the tokamak and hence has a bearing on the particle and heat flux escaping the plasma column. Two fast visible imaging systems are installed on the Aditya tokamak. One of the system is for imaging the plasma evolution with a wide angle lens covering a major portion of the vacuum vessel. The imaging fiber bundle along with the objective lens is installed inside a radial re-entrant viewport, specially designed for the purpose. Another system is intended for tangential imaging of the plasma column. Formation of the plasma column and its evolution are studied with the fast visible imaging in Aditya. Features of the ECRH and LHCD operations on Aditya will be discussed. 3D filaments can, be seen at the plasma edge all along the discharge and they get amplified in intensity at the plasma termination phase. Statistical analysis of these filaments, which are essentially plasma blobs will be presented. (author)

  17. Microstructure of the regions on a plane copper electrode surface affected by a spark discharge in air in the point-plane gap

    Science.gov (United States)

    Tren'kin, A. A.; Karelin, V. I.; Shibitov, Yu. M.; Blinova, O. M.; Yasnikov, I. S.

    2017-09-01

    The microstructure of the regions affected by spark discharge on the surface of a plane copper electrode in atmospheric air in the point-plane gap has been studied using a scanning electron microscope for both the positive and negative polarity of the point electrode. It has been found that the affected regions have the shape of round spots or groups of spots with diameters of individual spots varying in the range of 20-200 μm. It has been revealed that the spots have an internal spatial structure in the form of an aggregate of concentric rings. These rings are aggregates of a large number of microscopic craters with diameters of 0.1-1.0 μm.

  18. Experimental observation of the inductive electric field and related plasma nonuniformity in high frequency capacitive discharge

    International Nuclear Information System (INIS)

    Ahn, S. K.; Chang, H. Y.

    2008-01-01

    To elucidate plasma nonuniformity in high frequency capacitive discharges, Langmuir probe and B-dot probe measurements were carried out in the radial direction in a cylindrical capacitive discharge driven at 90 MHz with argon pressures of 50 and 400 mTorr. Through the measurements, a significant inductive electric field (i.e., time-varying magnetic field) was observed at the radial edge, and it was found that the inductive electric field creates strong plasma nonuniformity at high pressure operation. The plasma nonuniformity at high pressure operation is physically similar to the E-H mode transition typically observed in inductive discharges. This result agrees well with the theories of electromagnetic effects in large area and/or high frequency capacitive discharges

  19. Spark plasma sintering and mechanical properties of $ZrO_{2} (Y_{2}O_{3})-Al_{2}O_{3}$ composites

    CERN Document Server

    Jin Sheng H; Dalla Torre, S; Miyamoto, H; Miyamoto, K

    2000-01-01

    Spark plasma sintering (SPS) was conducted on nanocrystalline ZrO/sub 2/(Y/sub 2/O/sub 3/)-20 mol% Al/sub 2/O/sub 3/ powder at a heat rate of 600 degrees C/min with a short holding time. Full density was obtained at sintering temperatures >1300 degrees C. Considerable grain growth occurred relative to the initial powder particles, but smaller grain size and higher density can be obtained as compared to hot-pressing. High flexural strength and fracture toughness were also achieved for the SPS-resulted composite. (8 refs).

  20. Study of distribution of Carbon nanotube in Al-CNT nanocomposite synthesized via Spark-Plasma sintering

    Science.gov (United States)

    Maiti, A.; Laha, T.

    2018-03-01

    In the present study, first ever attempt has been made to develop physically functionalized multiwalled carbon nanotube (MWCNT) reinforced Al-11 5Si alloy nanocomposites synthesized via novel consolidation technique viz spark plasma sintering (SPS). There is a recent trend in employing carbon nanotubes (CNTs), an allotrope of carbon, as reinforcement for high strength structural metallic composite materials, as these cylindrical nano-fibers poses extremely unique mechanical properties such as very high elastic modulus (~ 300 GPa to 1.5 TPa) as well as tensile strength (~150 GPa). However, it has remained as an ever-existing problem to achieve a porosity-free nanocrystalline matrix with homogenously dispersed CNTs, owing to the very high coagulation tendency of CNTs. The gas-atomized, spherical Al-11.5Si alloy powders (1-8 μm) were subjected to high energy ball milling for the purpose of achieving nanocrystallinity in the powders. The improvement in MWCNT dispersion was effort by treating the MWCNTs with a physical surfactant, sodium dodecyl sulfate (SDS). The nano-grained ball-milled Al-Si powders with varying MWCNT content (0.5 and 1 wt%) were consolidated via spark plasma sintering in order to retain the nano-sized grains in the Al-Si matrix, attributed to the faster and highly effective sintering kinetics of the sintering techniques. FESEM study shows problem of MWCNT agglomeration persists by addition of non-SDS treated as pristine MWCNT in the composite. After treated with SDS, MWCNTs are well separated out from each other and as a result of that good morphological and mechanical property such as high hardness value obtained after analysis. Detailed TEM study of the 0.5wt% MWCNT reinforced SPS nanocomposite revealed that the distribution of CNTs in the matrix. Mechanical analysis study of the nanocomposite attributes higher hardness in case of SDS treated CNT reinforced nanocomposite owing to less agglomeration problem of the CNT in the matrix. Nano

  1. Electron energy distribution function in SSM-discharge plasma

    International Nuclear Information System (INIS)

    Chernyak, V.Ya.; Olszewski, S.V.; Lebedev, D.O.; Evstigneev, M.A.

    1996-01-01

    The results of investigation in mass composition of positive component SSM-discharge plasma. All measurements were performed in H 2 and D 2 using the monopole mass-spectrometer MX 7301 and the probe technique. From the experimental dependences the value of H 3 + dissociation constant rate (k = 4 x 10 -11 cm -3 s -1 ) was estimated

  2. Formation of Plasma Structures in Stimulated High-Pressure Microwave Discharge

    National Research Council Canada - National Science Library

    Popov, N. A; Vedenin, P. V

    2003-01-01

    In other papers, the possibility is observed of a jumplike propagation of an stimulated MW discharge toward the radiation source in the form of dipole plasma channels oriented along the electric field vector...

  3. A Green Process for High-Concentration Ethylene and Hydrogen Production from Methane in a Plasma-Followed-by-Catalyst Reactor

    International Nuclear Information System (INIS)

    Wang Kangjun; Li Xiaosong; Zhu Aimin

    2011-01-01

    A green process for the oxygen-free conversion of methane to high-concentration ethylene and hydrogen in a plasma-followed-by-catalyst (PFC) reactor is presented. Without any catalysts and with pure methane used as the feed gas, a stable kilohertz spark discharge leads to an acetylene yield of 64.1%, ethylene yield of 2.5% and hydrogen yield of 59.0% with 80.0% of methane conversion at a methane flow rate of 50 cm 3 /min and a specific input energy of 38.4 kJ/L. In the effluent gas from a stable kilohertz spark discharge reactor, the concentrations of acetylene, ethylene and hydrogen were 18.1%, 0.7% and 66.9%, respectively. When catalysts Pd-Ag/SiO 2 were employed in the second stage with discharge conditions same as in the case of plasma alone, the PFC reactor provides an ethylene yield of 52.1% and hydrogen yield of 43.4%. The concentrations of ethylene and hydrogen in the effluent gas from the PFC reactor were found to be as high as 17.1% and 62.6%, respectively. Moreover, no acetylene was detected in the effluent gas. This means that a high concentration of ethylene and oxygen-free hydrogen can be co-produced directly from methane in the PFC reactor.

  4. Spark igniter having precious metal ground electrode inserts

    International Nuclear Information System (INIS)

    Ryan, N.A.

    1988-01-01

    This patent describes an igniter comprising a shell of a shell metal alloy which is resistant to spark erosion and corrosion, the shell having a firing end which terminates at its lower end in an annular ring, an insulator sealed within the metal shell and having a central bore and a surface extending inwardly toward the bore from the annular ring, a center electrode sealed within the bore of the insulator and having a firing end which is in spark gap relation with the annular ring of the shell and so positioned that a spark discharge between the firing end and the annular ring occurs along the inwardly extending surface of the insulator, and a plurality of oxidation and erosion resistant inserts, each of the inserts comprising a body of a metal selected from the group consisting of iridium, osmium, ruthenium, rhodium, platinum, and tungsten or an alloy or a ductile alloy of one of the foregoing metals, each of the bodies being embedded within a matching opening which extends from the exterior of the shell through the annular ring, being bonded to the shell

  5. Evaluation and Optimization of Electrode Configuration of Multi-Channel Corona Discharge Plasma for Dye-Containing Wastewater Treatment

    International Nuclear Information System (INIS)

    Ren Jingyu; Qu Guangzhou; Liang Dongli; Hu Shibin; Wang Tiecheng

    2015-01-01

    A discharge plasma reactor with a point-to-plane structure was widely studied experimentally in wastewater treatment. In order to improve the utilization efficiency of active species and the energy efficiency of this kind of discharge plasma reactor during wastewater treatment, the electrode configuration of the point-to-plane corona discharge reactor was studied by evaluating the effects of discharge spacing and adjacent point distance on discharge power and discharge energy density, and then dye-containing wastewater decoloration experiments were conducted on the basis of the optimum electrode configuration. The experimental results of the discharge characteristics showed that high discharge power and discharge energy density were achieved when the ratio of discharge spacing to adjacent point distance (d/s) was 0.5. Reactive Brilliant Blue (RBB) wastewater treatment experiments presented that the highest RBB decoloration efficiency was observed at d/s of 0.5, which was consistent with the result obtained in the discharge characteristics experiments. In addition, the biodegradability of RBB wastewater was enhanced greatly after discharge plasma treatment under the optimum electrode configuration. RBB degradation processes were analyzed by GC-MS and IC, and the possible mechanism for RBB decoloration was also discussed. (paper)

  6. A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition

    International Nuclear Information System (INIS)

    Shiraishi, Taisuke; Urushihara, Tomonori; Gundersen, Martin

    2009-01-01

    Application of nanosecond pulsed low temperature plasma as an ignition technique for automotive gasoline engines, which require a discharge under conditions of high back pressure, has been studied experimentally using a single-cylinder engine. The nanosecond pulsed plasma refers to the transient (non-equilibrated) phase of a plasma before the formation of an arc discharge; it was obtained by applying a high voltage with a nanosecond pulse (FWHM of approximately 80 or 25 ns) between coaxial cylindrical electrodes. It was confirmed that nanosecond pulsed plasma can form a volumetric multi-channel streamer discharge at an energy consumption of 60 mJ cycle -1 under a high back pressure of 1400 kPa. It was found that the initial combustion period was shortened compared with the conventional spark ignition. The initial flame visualization suggested that the nanosecond pulsed plasma ignition results in the formation of a spatially dispersed initial flame kernel at a position of high electric field strength around the central electrode. It was observed that the electric field strength in the air gap between the coaxial cylindrical electrodes was increased further by applying a shorter pulse. It was also clarified that the shorter pulse improved ignitability even further.

  7. A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition

    Science.gov (United States)

    Shiraishi, Taisuke; Urushihara, Tomonori; Gundersen, Martin

    2009-07-01

    Application of nanosecond pulsed low temperature plasma as an ignition technique for automotive gasoline engines, which require a discharge under conditions of high back pressure, has been studied experimentally using a single-cylinder engine. The nanosecond pulsed plasma refers to the transient (non-equilibrated) phase of a plasma before the formation of an arc discharge; it was obtained by applying a high voltage with a nanosecond pulse (FWHM of approximately 80 or 25 ns) between coaxial cylindrical electrodes. It was confirmed that nanosecond pulsed plasma can form a volumetric multi-channel streamer discharge at an energy consumption of 60 mJ cycle-1 under a high back pressure of 1400 kPa. It was found that the initial combustion period was shortened compared with the conventional spark ignition. The initial flame visualization suggested that the nanosecond pulsed plasma ignition results in the formation of a spatially dispersed initial flame kernel at a position of high electric field strength around the central electrode. It was observed that the electric field strength in the air gap between the coaxial cylindrical electrodes was increased further by applying a shorter pulse. It was also clarified that the shorter pulse improved ignitability even further.

  8. Capacitor Discharge - A Capacitor Tutorial [video

    OpenAIRE

    Naval Postgraduate School Physics

    2014-01-01

    NPS Physics Physics Demonstrations Here's a capacitor discharge demonstrated by physicist Dr. Dernardo. Dr. D gives a nice capacitor lesson along with some fireworks. Charging and Discharging a Capacitor is dangerous. Do not try this at home. Dr. Bruce Denardo uses eleven 9V batteries, connected in series for a total of 99 creating a pretty large spark.

  9. Modelling of spark to ignition transition in gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Akram, M.

    1996-10-01

    This thesis pertains to the models for studying sparking in chemically inert gases. The processes taking place in a spark to flame transition can be segregated into physical and chemical processes, and this study is focused on physical processes. The plasma is regarded as a single-substance material. One and two-dimensional models are developed. The transfer of electrical energy into thermal energy of the gas and its redistribution in space and time along with the evolution of a plasma kernel is studied in the time domain ranging from 10 ns to 40 micros. In the case of ultra-fast sparks, the propagation of the shock and its reflection from a rigid wall is presented. The influence of electrode shape and the gap size on the flow structure development is found to be a dominating factor. It is observed that the flow structure that has developed in the early stage more or less prevails at later stages and strongly influences the shape and evolution of the hot kernel. The electrode geometry and configuration are responsible for the development of the flow structure. The strength of the vortices generated in the flow field is influenced by the power input to the gap and their location of emergence is dictated by the electrode shape and configuration. The heat transfer after 2 micros in the case of ultra-fast sparks is dominated by convection and diffusion. The strong mixing produced by hydrodynamic effects and the electrode geometry give the indication that the magnetic pinch effect might be negligible. Finally, a model for a multicomponent gas mixture is presented. The chemical kinetics mechanism for dissociation and ionization is introduced. 56 refs

  10. Gas spark switches with increased operating life for Marx generator of lightning test complex

    Energy Technology Data Exchange (ETDEWEB)

    Bykov, Yu. A.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru [Russian Academy of Sciences, Joint Institute for High Temperature (Russian Federation)

    2016-12-15

    A new design of gas spark switches with an increased operating life and stable dynamic characteristics for the Marx generator of the lightning test complex has been developed. The switches are characterized by the following parameters in the mode of operation: voltage up to 80 kV, discharge current up to 50 kA, flowing charge up to 3.5 C/pulse. An increased operating life is achieved by using torus-shaped electrodes with increased working surface area and a trigger electrode in the form of a thick disk with a hole located between them. Low breakdown delay time and high stability of breakdown voltage under dynamic conditions are provided by gas preionization in the spark gap using UV radiation of an additional corona discharge in the axial region.

  11. Coercivity of Nd-Fe-B hot-deformed magnets produced by the spark plasma sintering method

    Directory of Open Access Journals (Sweden)

    Tetsuji Saito

    2017-05-01

    Full Text Available The effects of Nd-Cu alloy powder addition on the microstructures and magnetic properties of Nd-Fe-B hot-deformed magnets produced by the spark plasma sintering (SPS method were investigated. The addition of a small amount of Nd-Cu alloy powder, up to 2%, significantly increased the coercivity of the Nd-Fe-B hot-deformed magnets without deteriorating the crystallographic alignment of the Nd2Fe14B phase. The Nd-Fe-B hot-deformed magnet with 2% Nd-Cu alloy powder had the same remanence value as the Nd-Fe-B hot-deformed magnet without Nd-Cu alloy powder addition, but the magnet with 2% Nd-Cu alloy powder exhibited higher coercivity and a higher maximum energy product than the magnet without Nd-Cu alloy powder addition.

  12. Dry Sliding Wear Behavior of Spark Plasma Sintered Fe-Based Bulk Metallic Glass/Graphite Composites

    Directory of Open Access Journals (Sweden)

    Xiulin Ji

    2016-09-01

    Full Text Available Bulk metallic glass (BMG and BMG-graphite composites were fabricated using spark plasma sintering at the sintering temperature of 575 °C and holding time of 15 min. The sintered composites exhibited partial crystallization and the presence of distributed porosity and graphite particles. The effect of graphite reinforcement on the tribological properties of the BMG/graphite composites was investigated using dry ball-on-disc sliding wear tests. The reinforcement of graphite resulted in a reduction in both the wear rate and the coefficient of friction as compared to monolithic BMG samples. The wear surfaces of BMG/graphite composites showed regions of localized wear loss due to microcracking and fracture, as was also the case with the regions covered with graphite-rich protective film due to smearing of pulled off graphite particles.

  13. Plasma sheath dynamics in pinch discharge

    International Nuclear Information System (INIS)

    Mansour, A.A.Abd-Fattah

    1995-01-01

    The main interest of the study was to understand the dynamic and to determine the plasma parameters in the 3.5 meter θ-pinch discharge. The 3.5 meter thetatron plasma device has been reconstructed and developed which consist of four capacitor banks: a) Main pinch capacitor bank, (θ-pinch bank) consists of 40 capacitors connected in parallel each of 1.5 μ F., with maximum energy equal to 48 k Joule. b) Preionization capacitor bank (z-pinch) consists of capacitors connected in series each of 1.5μ F., with maximum energy to 0.94 k Joule. c) Bias field bank consists of 4 capacitors connected in parallel each of 38μ F., with maximum energy equal to 4.46 k Joule. d) Screw pinch capacitor bank consists of 5 capacitors connected in parallel each of 1.5μ F., with maximum energy equal to 6 k Joule

  14. Two-dimensional plasma photonic crystals in dielectric barrier discharge

    International Nuclear Information System (INIS)

    Fan Weili; Dong Lifang; Zhang Xinchun

    2010-01-01

    A series of two-dimensional plasma photonic crystals have been obtained by filaments' self-organization in atmospheric dielectric barrier discharge with two water electrodes, which undergo the transition from square to square superlattice and finally to the hexagon. The spatio-temporal behaviors of the plasma photonic crystals in nanosecond scale have been studied by optical method, which show that the plasma photonic crystal is actually an integration of different transient sublattices. The photonic band diagrams of the transverse electric (TE) mode and transverse magnetic mode for each sublattice of these plasma photonic crystals have been investigated theoretically. A wide complete band gap is formed in the hexagonal plasma photonic crystal with the TE mode. The changes of the band edge frequencies and the band gap widths in the evolvement of different structures are studied. A kind of tunable plasma photonic crystal which can be controlled both in space and time is suggested.

  15. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Kushner, Mark Jay [University of Michigan

    2014-07-10

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  16. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  17. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.

    Science.gov (United States)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  18. SPARK Version 1.1 user manual

    International Nuclear Information System (INIS)

    Weissenburger, D.W.

    1988-01-01

    This manual describes the input required to use Version 1.1 of the SPARK computer code. SPARK 1.1 is a library of FORTRAN main programs and subprograms designed to calculate eddy currents on conducting surfaces where current flow is assumed zero in the direction normal to the surface. Surfaces are modeled with triangular and/or quadrilateral elements. Lorentz forces produced by the interaction of eddy currents with background magnetic fields can be output at element nodes in a form compatible with most structural analysis codes. In addition, magnetic fields due to eddy currents can be determined at points off the surface. Version 1.1 features eddy current streamline plotting with optional hidden-surface-removal graphics and topological enhancements that allow essentially any orientable surface to be modeled. SPARK also has extensive symmetry specification options. In order to make the manual as self-contained as possible, six appendices are included that present summaries of the symmetry options, topological options, coil options and code algorithms, with input and output examples. An edition of SPARK 1.1 is available on the Cray computers at the National Magnetic Fusion Energy Computer Center at Livermore, California. Another more generic edition is operational on the VAX computers at the Princeton Plasma Physics Laboratory and is available on magnetic tape by request. The generic edition requires either the GKS or PLOT10 graphics package and the IMSL or NAG mathematical package. Requests from outside the United States will be subject to applicable federal regulations regarding dissemination of computer programs. 22 refs

  19. SPARK Version 1. 1 user manual

    Energy Technology Data Exchange (ETDEWEB)

    Weissenburger, D.W.

    1988-01-01

    This manual describes the input required to use Version 1.1 of the SPARK computer code. SPARK 1.1 is a library of FORTRAN main programs and subprograms designed to calculate eddy currents on conducting surfaces where current flow is assumed zero in the direction normal to the surface. Surfaces are modeled with triangular and/or quadrilateral elements. Lorentz forces produced by the interaction of eddy currents with background magnetic fields can be output at element nodes in a form compatible with most structural analysis codes. In addition, magnetic fields due to eddy currents can be determined at points off the surface. Version 1.1 features eddy current streamline plotting with optional hidden-surface-removal graphics and topological enhancements that allow essentially any orientable surface to be modeled. SPARK also has extensive symmetry specification options. In order to make the manual as self-contained as possible, six appendices are included that present summaries of the symmetry options, topological options, coil options and code algorithms, with input and output examples. An edition of SPARK 1.1 is available on the Cray computers at the National Magnetic Fusion Energy Computer Center at Livermore, California. Another more generic edition is operational on the VAX computers at the Princeton Plasma Physics Laboratory and is available on magnetic tape by request. The generic edition requires either the GKS or PLOT10 graphics package and the IMSL or NAG mathematical package. Requests from outside the United States will be subject to applicable federal regulations regarding dissemination of computer programs. 22 refs.

  20. Effects of gas temperature in the plasma layer on RONS generation in array-type dielectric barrier discharge at atmospheric pressure

    Science.gov (United States)

    Yoon, Sung-Young; Yi, Changho; Eom, Sangheum; Park, Seungil; Kim, Seong Bong; Ryu, Seungmin; Yoo, Suk Jae

    2017-12-01

    In this work, we studied the control of plasma-produced species under a fixed gas composition (i.e., ambient air) in a 10 kHz-driven array-type dielectric barrier atmospheric-pressure plasma discharge. Instead of the gas composition, only the gas velocity was controlled. Thus, the plasma-maintenance cost was considerably lower than methods such as external N2 or O2 injection. The plasma-produced species were monitored using Fourier transformed infrared spectroscopy. The discharge properties were measured using a voltage probe, current probe, infrared camera, and optical emission spectroscopy. The results showed that the major plasma products largely depend on the gas temperature in the plasma discharge layer. The gas temperature in the plasma discharge layer was significantly different to the temperature of the ceramic adjacent to the plasma discharge layer, even in the small discharge power density of ˜15 W/cm2 or ˜100 W/cm3. Because the vibrational excitation of N2 was suppressed by the higher gas flow, the major plasma-produced species shifted from NOx in low flow to O3 in high flow.

  1. Measurements of plasma termination in ICRF heated long pulse discharges with fast framing cameras in the Large Helical Device

    International Nuclear Information System (INIS)

    Shoji, Mamoru; Kasahara, Hiroshi; Tanaka, Hirohiko

    2015-01-01

    The termination process of long pulse plasma discharges in the Large Helical Device (LHD) have been observed with fast framing cameras, which shows that the reason for the termination of the discharged has been changed with increased plasma heating power, improvements of plasma heating systems and change of the divertor configuration, etc. For long pulse discharges in FYs2010-2012, the main reason triggering the plasma termination was reduction of ICRF heating power with rise of iron ion emission due to electric breakdown in an ICRF antenna. In the experimental campaign in FY2013, the duration time of ICRF heated long pulse plasma discharges has been extended to about 48 minutes with a plasma heating power of ∼1.2 MW and a line-averaged electron density of ∼1.2 × 10"1"9 m"-"3. The termination of the discharges was triggered by release of large amounts of carbon dusts from closed divertor regions, indicating that the control of dust formation in the divertor regions is indispensable for extending the duration time of long pulse discharges. (author)

  2. Characterization of a dielectric barrier discharge in contact with liquid and producing a plasma activated water

    Science.gov (United States)

    Neretti, G.; Taglioli, M.; Colonna, G.; Borghi, C. A.

    2017-01-01

    In this work a low-temperature plasma source for the generation of plasma activated water (PAW) is developed and characterized. The plasma reactor was operated by means of an atmospheric-pressure air dielectric barrier discharge (DBD). The plasma generated is in contact with the water surface and is able to chemically activate the liquid medium. Electrodes were supplied by both sinusoidal and nanosecond-pulsed voltage waveforms. Treatment times were varied from 2 to 12 min to increase the energy dose released to the water by the DBD plasma. The physics of the discharge was studied by means of electrical, spectroscopic and imaging diagnostics. The interaction between the plasma and the liquid was investigated as well. Temperature and composition of the treated water were detected. Images of the discharges showed a filamentary behaviour in the sinusoidal case and a more homogeneous behaviour in the nanosecond-pulsed one. The images and the electrical measurements allowed to evaluate an average electron number density of about 4  ×  1019 and 6  ×  1017 m-3 for the sinusoidal and nanosecond-pulsed discharges respectively. Electron temperatures in the range of 2.1÷2.6 eV were measured by using spectroscopic diagnostics. Rotational temperatures in the range of 318-475 K were estimated by fitting synthetic spectra with the measured ones. Water temperature and pH level did not change significantly after the exposure to the DBD plasma. The production of ozone and hydrogen peroxide within the water was enhanced by increasing the plasma treatment time and the energy dose. Numerical simulations of the nanosecond-pulsed discharge were performed by using a self-consistent coupling of state-to-state kinetics of the air mixture with the Boltzmann equation of free electron kinetics. Temporal evolution of the electron energy distribution function shows departure from the Maxwellian distribution especially during the afterglow phase of the discharge. When

  3. Microstructural designs of spark-plasma sintered silicon carbide ceramic scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Roman-Manso, B.; Pablos, A. de; Belmonte, M.; Osendi, M. I.; Miranzo, P.

    2014-04-01

    Concentrated ceramic inks based on (SiC) powders, with different amounts of Y{sub 2}O{sub 3} and Al{sub 2}O{sub 3} as sintering aids, are developed for the adequate production of SiC scaffolds, with different patterned morphologies, by the Robocasting technique. The densification of the as-produced 3D structures, previously heat treated in air at 600 degree centigrade for the organics burn-out, is achieved with a Spark Plasma Sintering (SPS) furnace. The effects of the amount of sintering additives (7 - 20 wt. %) and the size of the SiC powders (50 nm and 0.5 {mu}m) on the processing of the inks, microstructure, hardness and elastic modulus of the sintered scaffolds, are studied. The use of nano-sized (SiC) powders significantly restricts the attainable maximum solids volume fraction of the ink (0.32 compared to 0.44 of the submicron-sized powders-based ink), involving a much larger porosity of the green ceramic bodies. Furthermore, reduced amounts of additives improve the mechanical properties of the ceramic skeleton; particularly, the stiffness. The grain size and specific surface area of the starting powders, the ink solids content, green porosity, amount of sintering additives and SPS temperatures are the main parameters to be taken into account for the production of these SiC cellular ceramics. (Author)

  4. Discharge physics and chemistry of a novel atmospheric pressure plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.; Henins, I.; Hermann, J.W.; Selwyn, G.S.; Jeong, J.Y.; Hickis, R.

    1999-07-01

    The atmospheric pressure plasma jet (APPJ) is a unique plasma source operating at atmospheric pressure. The APPJ operates with RF power and produces a stable non-thermal discharge in capacitively-coupled configuration. The discharge is spatially and temporally homogeneous and provides a unique gas phase chemistry that is well suited for various applications including etching, film deposition, surface treatment and decontamination of chemical and biological warfare (CBW) agents. A theoretical model shows electron densities of 0.2--2 x 10{sup 11} cm{sup {minus}3} for a helium discharge at a power level of 3--30 W cm{sup {minus}3}. The APPJ also produces a large flux, equivalent of up to 10,000 monolayer s{sup {minus}1}, of chemically-active, atomic and metastable molecular species which can impinge surfaces several cm downstream of the confined source. In addition, the efforts are in progress to measure the electron density using microwave diagnostics and to benchmark the gas phase chemical model by using LIF and titration.

  5. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water

    Science.gov (United States)

    Locke, Bruce R.; Shih, Kai-Yuan

    2011-06-01

    This paper presents a review of the literature dealing with the formation of hydrogen peroxide from plasma processes. Energy yields for hydrogen peroxide generation by plasma from water span approximately three orders of magnitude from 4 × 10-2 to 80 g kWh-1. A wide range of plasma processes from rf to pulsed, ac, and dc discharges directly in the liquid phase have similar energy yields and may thus be limited by radical quenching processes at the plasma-liquid interface. Reactor modification using discharges in bubbles and discharges over the liquid phase can provide modest improvements in energy yield over direct discharge in the liquid, but the interpretation is complicated by additional chemical reactions of gas phase components such as ozone and nitrogen oxides. The highest efficiency plasma process utilizes liquid water droplets that may enhance efficiency by sequestering hydrogen peroxide in the liquid and by suppressing decomposition reactions by radicals from the gas and at the interface. Kinetic simulations of water vapor reported in the literature suggest that plasma generation of hydrogen peroxide should approach 45% of the thermodynamics limit, and this fact coupled with experimental studies demonstrating improvements with the presence of the condensed liquid phase suggest that further improvements in energy yield may be possible. Plasma generation of hydrogen peroxide directly from water compares favorably with a number of other methods including electron beam, ultrasound, electrochemical and photochemical methods, and other chemical processes.

  6. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Locke, Bruce R; Shih, Kai-Yuan [Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310 (United States)

    2011-06-15

    This paper presents a review of the literature dealing with the formation of hydrogen peroxide from plasma processes. Energy yields for hydrogen peroxide generation by plasma from water span approximately three orders of magnitude from 4 x 10{sup -2} to 80 g kWh{sup -1}. A wide range of plasma processes from rf to pulsed, ac, and dc discharges directly in the liquid phase have similar energy yields and may thus be limited by radical quenching processes at the plasma-liquid interface. Reactor modification using discharges in bubbles and discharges over the liquid phase can provide modest improvements in energy yield over direct discharge in the liquid, but the interpretation is complicated by additional chemical reactions of gas phase components such as ozone and nitrogen oxides. The highest efficiency plasma process utilizes liquid water droplets that may enhance efficiency by sequestering hydrogen peroxide in the liquid and by suppressing decomposition reactions by radicals from the gas and at the interface. Kinetic simulations of water vapor reported in the literature suggest that plasma generation of hydrogen peroxide should approach 45% of the thermodynamics limit, and this fact coupled with experimental studies demonstrating improvements with the presence of the condensed liquid phase suggest that further improvements in energy yield may be possible. Plasma generation of hydrogen peroxide directly from water compares favorably with a number of other methods including electron beam, ultrasound, electrochemical and photochemical methods, and other chemical processes.

  7. Plasma flow discharge researches at the PIRIT-2000 facility

    International Nuclear Information System (INIS)

    Popkov, N.F.; Ryaslov, E.A.; Kargin, V.I.; Pikar', A.S.; Vorontsov, V.I.; Kotel'nikov, D.V.; Melkozerov, A.V.

    1996-01-01

    Investigation of a plasma flow switch at the PIRIT-2000 fast operating capacitor bank is reported. The maximum current of the plasma flow discharge (PFD) reaches 5 MA, the current rise time being as low as 100 ns. The magnetic field strength of the plasma flow switch (0.15 T) is about 15 times higher than that of the plasma erosion switch used earlier. Both magnetic probe and optical methods were used in the experiments. From the magnetic probes data the propagating velocity of a current carrying shell (205 cm/s) has been derived, while the optical method is used for determining the velocity of a glowing plasma layer. At varying the operation delay in the range 2-10 s the PFD load current rise time increases up to 150-200 ns, the prepulse increment reaching its maximum at the delays higher than 6 s. (J.U.). 5 figs., 5 refs

  8. Plasma flow discharge researches at the PIRIT-2000 facility

    Energy Technology Data Exchange (ETDEWEB)

    Popkov, N F; Ryaslov, E A; Kargin, V I; Pikar` , A S; Vorontsov, V I; Kotel` nikov, D V; Melkozerov, A V [All-Russian Scientific Research Inst. of Experimental Physics, Sarov (Russian Federation)

    1997-12-31

    Investigation of a plasma flow switch at the PIRIT-2000 fast operating capacitor bank is reported. The maximum current of the plasma flow discharge (PFD) reaches 5 MA, the current rise time being as low as 100 ns. The magnetic field strength of the plasma flow switch (0.15 T) is about 15 times higher than that of the plasma erosion switch used earlier. Both magnetic probe and optical methods were used in the experiments. From the magnetic probes data the propagating velocity of a current carrying shell (205 cm/s) has been derived, while the optical method is used for determining the velocity of a glowing plasma layer. At varying the operation delay in the range 2-10 s the PFD load current rise time increases up to 150-200 ns, the prepulse increment reaching its maximum at the delays higher than 6 s. (J.U.). 5 figs., 5 refs.

  9. Spatial and temporal variation of repetitive plasma discharges in saline solutions

    International Nuclear Information System (INIS)

    Stalder, K R; Nersisyan, G; Graham, W G

    2006-01-01

    Repetitive plasma discharges developed in saline solutions have been investigated using fast, intensified charge coupled detector imaging techniques. The images show that synchronously pulsed multielectrode configurations tend to develop intense, transient plasma regions somewhat randomly in both space and time on short (10 μs) time scales, even though they appear to be stationary on longer (tens of milliseconds) time scales. Evidence for the production of both strongly ionized and weakly ionized plasmas is also presented

  10. Temperature dependence of magnetic behaviour in very fine grained, spark plasma sintered NiCuZn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Behzad; Zehani, Karim; LoBue, Martino; Loyau, Vincent; Mazaleyrat, Frederic [SATIE, ENS Cachan, CNRS, UniverSud 61, avenue du President Wilson, F-94230 Cachan (France)

    2012-04-01

    Recently, using spark plasma sintering technique, a family of very fine grained, fully dense NiCuZn ferrites have been produced, which show constant permeability up to several 10 MHz. These ferrites can be used for filtering purposes in high frequency applications where a wide frequency band is required. In this paper, we study the magnetization processes taking place in these nano grained materials, in the frequency interval of 100 kHz to 5 MHz. Using a fluxmetric hysteresis graph, permeability, loss, and BH loops are measured at different temperatures, from -5 deg. C to 110 deg. C. Results are compared to the behavior of micrometric grain size ferrites, which are commonly used for power electronic and high frequency applications.

  11. Temperature dependence of magnetic behaviour in very fine grained, spark plasma sintered NiCuZn ferrites

    International Nuclear Information System (INIS)

    Ahmadi, Behzad; Zehani, Karim; LoBue, Martino; Loyau, Vincent; Mazaleyrat, Frederic

    2012-01-01

    Recently, using spark plasma sintering technique, a family of very fine grained, fully dense NiCuZn ferrites have been produced, which show constant permeability up to several 10 MHz. These ferrites can be used for filtering purposes in high frequency applications where a wide frequency band is required. In this paper, we study the magnetization processes taking place in these nano grained materials, in the frequency interval of 100 kHz to 5 MHz. Using a fluxmetric hysteresis graph, permeability, loss, and BH loops are measured at different temperatures, from -5 deg. C to 110 deg. C. Results are compared to the behavior of micrometric grain size ferrites, which are commonly used for power electronic and high frequency applications.

  12. Neutron bursts from long laboratory sparks

    Science.gov (United States)

    Kochkin, P.; Lehtinen, N. G.; Montanya, J.; Van Deursen, A.; Ostgaard, N.

    2016-12-01

    Neutron emission in association with thunderstorms and lightning discharges was reported by different investigators from ground-based observation platforms. In both cases such emission is explained by photonuclear reaction, since high-energy gamma-rays in sufficient fluxes are routinely detected from both, lightning and thunderclouds. The required gamma-rays are presumably generated by high-energy electrons in Bremsstrahlung process after their acceleration via cold and/or relativistic runaway mechanisms. This phenomenon attracted moderate scientific attention until fast neutron bursts (up to 10 MeV) from long 1 MV laboratory sparks have been reported. Clearly, with such relatively low applied voltage the electrons are unable to accelerate to the energies required for photo/electro disintegration. Moreover, all known elementary neutron generation processes are not capable to explain this emission right away. We performed an independent laboratory experiment on long sparks with the aim to confirm or disprove the neutron emission from them. The experimental setup was assembled at High-Voltage Laboratory in Barcelona and contained a Marx generator in a cone-cone spark gap configuration. The applied voltage was as low as 800 kV and the gap distance was only 60 cm. Two ns-fast cameras were located near the gap capturing short-exposure images of the pre-breakdown phenomenon at the expected neutron generation time. A plastic scintillation detector sensitive to neutrons was covered in 11 cm of lead and placed near the spark gap. The detector was calibrated and showed good performance in neutron detection. Apart of it, voltage, currents through both electrodes, and three X-ray detectors were also monitored in sophisticated measuring system. We will give an overview of the previous experimental and theoretical work in this topic, and present the results of our new experimental campaign. The conclusions are based on good signal-to-noise ratio measurements and are

  13. Wall ablation of heated compound-materials into non-equilibrium discharge plasmas

    Science.gov (United States)

    Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing

    2017-02-01

    The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results

  14. Coherent structures induced by dielectric barrier discharge plasma actuator

    Science.gov (United States)

    Zhang, Xin; Li, Huaxing; Choi, Kwing So; Song, Longfei

    2017-11-01

    The structures of a flow field induced by a plasma actuator were investigated experimentally in quiescent air using high-speed Particle Image Velocimetry (PIV) technology. The motivation behind was to figure out the flow control mechanism of the plasma technique. A symmetrical Dielectric Barrier Discharge (DBD) plasma actuator was mounted on the suction side of the SC (2)-0714 supercritical airfoil. The results demonstrated that the plasma jet had some coherent structures in the separated shear layer and these structures were linked to a dominant frequency of f0 = 39 Hz when the peak-to-peak voltage of plasma actuator was 9.8 kV. The high speed PIV measurement of the induced airflow suggested that the plasma actuator could excite the flow instabilities which lead to production of the roll-up vortex. Analysis of transient results indicated that the roll-up vortices had the process of formation, movement, merging and breakdown. This could promote the entrainment effect of plasma actuator between the outside airflow and boundary layer flow, which is very important for flow control applications.

  15. Inversion defects in MgAl2O4 elaborated by pressureless sintering, pressureless sintering plus hot isostatic pressing, and spark plasma sintering

    International Nuclear Information System (INIS)

    Mussi, A.; Granger, G. Bernard; Addad, A.; Benameur, N.; Beclin, F.; Bataille, A.

    2009-01-01

    The distribution of inversion defects of Al was investigated in dense magnesium-aluminate spinel elaborated by pressureless sintering, pressureless sintering plus hot isostatic pressing, and spark plasma sintering. This study was conducted by energy electron loss spectroscopy analyses and more particularly by energy loss near edge structure investigations of the Al-L 2,3 edge. Several aspects are discussed with the purpose of understanding why charged defects dispersal reveals a special configuration.

  16. Surface modification of polyethylene by diffuse barrier discharge plasma

    Czech Academy of Sciences Publication Activity Database

    Novák, I.; Števiar, M.; Popelka, A.; Chodák, I.; Mosnáček, J.; Špírková, Milena; Janigová, I.; Kleinová, A.; Sedliačik, J.; Šlouf, Miroslav

    2013-01-01

    Roč. 53, č. 3 (2013), s. 516-523 ISSN 0032-3888 R&D Projects: GA AV ČR(CZ) IAAX08240901 Institutional research plan: CEZ:AV0Z40500505 Keywords : low-density polyethylene * plasma discharge * surface modification Subject RIV: JI - Composite Materials Impact factor: 1.441, year: 2013

  17. Nanostructured cobalt powders synthesised by polyol process and consolidated by Spark Plasma Sintering: Microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Fellah, F.; Schoenstein, F.; Dakhlaoui-Omrani, A.; Cherif, S.M.; Dirras, G.; Jouini, N., E-mail: jouini@univ-paris13.fr

    2012-07-15

    Bulk nanostructured cobalt was processed using a bottom-up strategy. Nanostructured particle agglomerates of about 50 and 240 nm in diameter were synthesised using a polyol route and subsequently consolidated by Spark Plasma Sintering (SPS). The microstructure of the starting powders and of the processed bulk samples was studied and characterised by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the as-prepared powders showed predominantly a face centred cubic (fcc) crystalline phase, whereas both fcc and hexagonal close packed (hcp) phases were found within the consolidated samples. A sample with the highest relative mass density (94.5%) was obtained from the small powder particles. TEM observations revealed a lamellar substructure with a high density of nanotwins and stacking faults in every grain in the sample with the highest density. Brillouin light scattering (BLS) and quasistatic compression tests were used to investigate the mechanical properties of the consolidated samples. The two techniques yielded Young modulus values of 168 GPa and 130 GPa, respectively, in the sample with the highest density. This sample also exhibited a yield stress higher than 1 GPa after the compression test, which is mainly attributed to the lamellar-like structure occurring in almost every grain of the polycrystalline aggregate. - Highlights: Black-Right-Pointing-Pointer Cobalt nanoparticles produced by the polyol process present mainly the fcc metastable phase. Black-Right-Pointing-Pointer Bulk nanostructured cobalt is obtained from the nano-particles by Spark Plasma Sintering consolidation. Black-Right-Pointing-Pointer Nanotwins and stacking faults are present in every grain of the more dense sample. Black-Right-Pointing-Pointer Yield strength and plastic domain may be varied depending on the nanoparticle size and the porosity of the consolidated material.

  18. Time-dependent plasma behavior triggered by a pulsed electron gun under conditions of beam-plasma-discharge

    International Nuclear Information System (INIS)

    Szuszczewicz, E.P.; Lin, C.S.

    1982-01-01

    This chapter reports on experiments whose purpose was to simulate spaceborne applications of energetic electron guns while exploring the ''in situ'' diagnostics of time-dependent beam-plasma behavior under pulsed electron gun conditions. Beam-plasma-discharge (BPD), the BPD afterglow that exists after gun-pulse termination, and the plasma decay process are considered. It is concluded that there is a rapid enhancement in plasma density as the gas turns on; that during the pulse-ON time a quasi-steady-state BPD can be maintained with characteristics identical with its dc counterpart; that in the period immediately following gun-pulse termination the plasma loss process is dominated by cross-field radial diffusion; and that the afterglow plasma is within + or -10% of being an isodensity contour

  19. Electron dynamics and plasma jet formation in a helium atmospheric pressure dielectric barrier discharge jet

    Energy Technology Data Exchange (ETDEWEB)

    Algwari, Q. Th. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, University Road, Belfast, Northern Ireland BT7 1NN (United Kingdom); Electronic Department, College of Electronics Engineering, Mosul University, Mosul 41002 (Iraq); O' Connell, D. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, University Road, Belfast, Northern Ireland BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2011-09-19

    The excitation dynamics within the main plasma production region and the plasma jets of a kHz atmospheric pressure dielectric barrier discharge (DBD) jet operated in helium was investigated. Within the dielectric tube, the plasma ignites as a streamer-type discharge. Plasma jets are emitted from both the powered and grounded electrode end; their dynamics are compared and contrasted. Ignition of these jets are quite different; the jet emitted from the powered electrode is ignited with a slight time delay to plasma ignition inside the dielectric tube, while breakdown of the jet at the grounded electrode end is from charging of the dielectric and is therefore dependent on plasma production and transport within the dielectric tube. Present streamer theories can explain these dynamics.

  20. Effects of spark plug configuration on combustion and emission characteristics of a LPG fuelled lean burn SI engine

    Science.gov (United States)

    Ravi, K.; Khan, Manazir Ahmed; Pradeep Bhasker, J.; Porpatham, E.

    2017-11-01

    Introduction of technological innovation in automotive engines in reducing pollution and increasing efficiency have been under contemplation. Gaseous fuels have proved to be a promising way to reduce emissions in Spark Ignition (SI) engines. In particular, LPG settled to be a favourable fuel for SI engines because of their higher hydrogen to carbon ratio, octane rating and lower emissions. Wide ignition limits and efficient combustion characteristics make LPG suitable for lean burn operation. But lean combustion technology has certain drawbacks like poor flame propagation, cyclic variations etc. Based on copious research it was found that location, types and number of spark plug significantly influence in reducing cyclic variations. In this work the influence of single and dual spark plugs of conventional and surface discharge electrode type were analysed. Dual surface discharge electrode spark plug enhanced the brake thermal efficiency and greatly reduced the cyclic variations. The experimental results show that rate of heat release and pressure rise was more and combustion duration was shortened in this configuration. On the emissions front, the NOx emission has increased whereas HC and CO emissions were reduced under lean condition.

  1. Lanthana-bearing nanostructured ferritic steels via spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Pasebani, Somayeh [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Charit, Indrajit, E-mail: icharit@uidaho.edu [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Wu, Yaqiao; Burns, Jatuporn; Allahar, Kerry N.; Butt, Darryl P. [Department of Materials Science and Engineering, Boise State University, Boise, ID 83725 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Cole, James I. [Idaho National Laboratory, Idaho Falls, ID 83401 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Alsagabi, Sultan F. [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States)

    2016-03-15

    A lanthana-containing nanostructured ferritic steel (NFS) was processed via mechanical alloying (MA) of Fe-14Cr-1Ti-0.3Mo-0.5La{sub 2}O{sub 3} (wt.%) and consolidated via spark plasma sintering (SPS). In order to study the consolidation behavior via SPS, sintering temperature and dwell time were correlated with microstructure, density, microhardness and shear yield strength of the sintered specimens. A bimodal grain size distribution including both micron-sized and nano-sized grains was observed in the microstructure of specimens sintered at 850, 950 and1050 °C for 45 min. Significant densification occurred at temperatures greater than 950 °C with a relative density higher than 98%. A variety of nanoparticles, some enriched in Fe and Cr oxides and copious nanoparticles smaller than 10 nm with faceted morphology and enriched in La and Ti oxides were observed. After SPS at 950 °C, the number density of Cr–Ti–La–O-enriched nanoclusters with an average radius of 1.5 nm was estimated to be 1.2 × 10{sup 24} m{sup −3}. The La + Ti:O ratio was close to 1 after SPS at 950 and 1050 °C; however, the number density of nanoclusters decreased at 1050 °C. With SPS above 950 °C, the density improved but the microhardness and shear yield strength decreased due to partial coarsening of the grains and nanoparticles.

  2. Ferritic oxide dispersion strengthened alloys by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Allahar, Kerry N., E-mail: KerryAllahar@boisestate.edu [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Burns, Jatuporn [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Jaques, Brian [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Wu, Y.Q. [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Charit, Indrajit [Department of Chemical and Materials Engineering, University of Idaho, McClure Hall Room 405D, Moscow, ID 83844 (United States); Cole, James [Idaho National Laboratory, Idaho Falls, ID 83401 (United States); Butt, Darryl P. [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States)

    2013-11-15

    Spark plasma sintering (SPS) was used to consolidate a Fe–16Cr–3Al (wt.%) powder that was mechanically alloyed with Y{sub 2}O{sub 3} and Ti powders to produce 0.5 Y{sub 2}O{sub 3} and 0.5 Y{sub 2}O{sub 3}–1Ti powders. The effects of mechanical alloying and sintering conditions on the microstructure, relative density and hardness of the sintered oxide dispersion strengthened (ODS) alloys are presented. Scanning electron microscopy indicated a mixed fine-grain and coarse-grain microstructure that was attributed to recrystallization and grain growth during sintering. Analysis of the transmission electron microscopy (TEM) and atom probe tomography (APT) data identified Y–O and Y–O–Ti nanoclusters. Elemental ratios of these nanoclusters were consistent with that observed in hot-extruded ODS alloys. The influence of Ti was to refine the grains as well as the nanoclusters with there being greater number density and smaller sizes of the Y–O–Ti nanoclusters as compared to the Y–O nanoclusters. This resulted in the Ti-containing samples being harder than the Ti-free alloys. The hardness of the alloys with the Y–O–Ti nanoclusters was insensitive to sintering time while smaller hardness values were associated with longer sintering times for the alloys with the Y–O nanoclusters. Pressures greater than 80 MPa are recommended for improved densification as higher sintering temperatures and longer sintering times at 80 MPa did not improve the relative density beyond 97.5%.

  3. Fundamental Study on Electrical Discharge Machining

    OpenAIRE

    Uno, Yoshiyuki; Nakajima, Toshikatsu; Endo, Osamu

    1989-01-01

    The generation mechanism of crater in electrical discharge machining is analyzed with a single pulse discharge device for alloy tool steel, black alumina ceramics, cermet and cemented carbide, investigating the gap voltage, the discharge current, the shape of crater, the wear of electrode and so on. The experimental analysis makes it clear that the shape of crater has a characteristic feature for the kind of workpiece. The shape of electrode, which changes with the wear by an electric spark, ...

  4. Microstructure and mechanical properties of thermoelectric nanostructured n-type silicon-germanium alloys synthesized employing spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Bathula, Sivaiah [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Department of Applied Physics, Delhi Technological University, Delhi (India); Gahtori, Bhasker; Tripathy, S. K.; Tyagi, Kriti; Srivastava, A. K.; Dhar, Ajay, E-mail: adhar@nplindia.org [CSIR-Network of Institutes for Solar Energy, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Jayasimhadri, M. [Department of Applied Physics, Delhi Technological University, Delhi (India)

    2014-08-11

    Owing to their high thermoelectric (TE) figure-of-merit, nanostructured Si{sub 80}Ge{sub 20} alloys are evolving as a potential replacement for their bulk counterparts in designing efficient radio-isotope TE generators. However, as the mechanical properties of these alloys are equally important in order to avoid in-service catastrophic failure of their TE modules, we report the strength, hardness, fracture toughness, and thermal shock resistance of nanostructured n-type Si{sub 80}Ge{sub 20} alloys synthesized employing spark plasma sintering of mechanically alloyed nanopowders of its constituent elements. These mechanical properties show a significant enhancement, which has been correlated with the microstructural features at nano-scale, delineated by transmission electron microscopy.

  5. Beam-plasma interaction in a cold-cathodes penning discharge

    International Nuclear Information System (INIS)

    Bliman, S.L.

    1966-06-01

    The H.F. emissions from a cold-cathode reflex discharge are studied. An experimental law for the frequency variation shows that fαV 1/2 discharged if B 0 and p are constant. If B 0 is made to increase, the frequencies change such that f ce - f emitted / f ce decreases. With each emitted frequency there is associated a stationary wave system making it possible to measure the phase velocity Vφ of the waves. This phase velocity is always close to that of the fast electrons accelerated by a potential V discharge. A non-quasistatic formalism for the propagation of waves in a beam-plasma system is then established. The Maxwell equations are solved taking into account boundary conditions. Comparison of these experiments with the theory shows a satisfactory agreement. (author) [fr

  6. Dielectric barrier discharge plasma pretreatment on hydrolysis of microcrystalline cellulose

    Science.gov (United States)

    Huang, Fangmin; Long, Zhouyang; Liu, Sa; Qin, Zhenglong

    2017-04-01

    Dielectric barrier discharge (DBD) plasma was used as a pretreatment method for downstream hydrolysis of microcrystalline cellulose (MCC). The degree of polymerization (DP) of MCC decreased after it was pretreated by DBD plasma under a carrier gas of air/argon. The effectiveness of depolymerization was found to be influenced by the crystallinity of MCC when under the pretreatment of DBD plasma. With the addition of tert-butyl alcohol in the treated MCC water suspension solution, depolymerization effectiveness of MCC was inhibited. When MCC was pretreated by DBD plasma for 30 min, the total reducing sugar concentration (TRSC) and liquefaction yield (LY) of pretreated-MCC (PMCC) increased by 82.98% and 34.18% respectively compared with those for raw MCC.

  7. Overvoltage protection by point-plane spark gaps

    International Nuclear Information System (INIS)

    Scarlett, W.R.; Riepe, K.B.

    1979-01-01

    In electron-beam-controlled discharge CO 2 lasers, such as those used in the Antares and Helios laser-fusion drivers at the Los Alamos Scientific Laboratory (LASL), protection needs to be provided against possible damage due to overvoltage. A passive (self-breakdown) point-plane spark gap has been developed and successfully used in the Helios power amplifiers which operate at voltages up to 300 kV. A gap of similar design is planned for use in the Antares power amplifiers which operate at 550 kV. These gaps must reliably hold off the normal discharge voltage, but break down with short delay if overvoltaged, diverting the discharge energy to a resistor. A prototype of the Antares gap has been built and is undergoing tests. Parameters being investigated include voltage polarity, gap spacing, gas composition, and gas pressure. Results of these measurements and the operational experience of the Helios gaps will be presented

  8. Microstructural stability of spark-plasma-sintered Wf/W composite with zirconia interface coating under high-heat-flux hydrogen beam irradiation

    Directory of Open Access Journals (Sweden)

    M. Avello de Lama

    2017-12-01

    In this paper, the durability and chemical stability of Wf/W composite specimens under cyclic heat-flux loads up to 20 MW/m² (surface temperature: 1260 °C was investigated using hydrogen neutral beam. The bulk material was fabricated by means of spark-plasma-sintering (SPS method using fine tungsten powder and a stack of tungsten wire meshes as reinforcement where the surface of the wire was coated with zirconia thin film to produce an engineered interface. The impact of plasma beam irradiation on microstructure was examined for two kinds of specimens produced at different sintering temperatures, 1400 °C and 1700 °C. Results of microscopic (SEM and chemical (EDX analysis are presented comparing the microstructure and element distribution maps obtained before and after heat flux loading. Effects of different sintering temperatures on damage behaviour are discussed. The present composite materials are shown to be applicable as plasma-facing material for high-heat-flux components.

  9. Degradation of nitride coatings in low-pressure gas discharge plasma

    Science.gov (United States)

    Ivanov, Yurii; Shugurov, Vladimir; Krysina, Olga; Petrikova, Elizaveta; Tolkachev, Oleg

    2017-12-01

    The paper provides research data on the defect structure, mechanical characteristics, and tribological properties of commercially pure VT1-0 titanium exposed to surface modification on a COMPLEX laboratory electron-ion plasma setup which allows nitriding, coating deposition, and etching in low-pressure gas discharge plasma in a single vacuum cycle. It is shown that preliminary plasma nitriding forms a columnar Ti2N phase in VT1-0 titanium and that subsequent TiN deposition results in a thin nanocrystalline TiN layer. When the coating-substrate system is etched, the coating fails and the tribological properties of the material degrade greatly.

  10. Selective excitation of singly-ionized silver emission lines by Grimm glow discharge plasmas using several different plasma gases

    International Nuclear Information System (INIS)

    Wagatsuma, K.

    1996-01-01

    The relative intensities of silver emission lines from Grimm glow discharge plasmas were investigated in the wavelength range from 160 to 600 nm when using different plasma gases. It was characteristic of the plasma excitation that the spectral patterns were strongly dependent on the nature of the plasma gas employed. Intense emission lines of silver ion were observed when argon-helium mixed gases were employed as the plasma gas. Selective excitation of the ionic lines could be principally attributed to the charge transfer collisions between silver atoms and helium ions. (orig.)

  11. Plasma Methods of Obtainment of Multifunctional Composite Materials, Dispersion-Hardened by Nanoparticles

    Science.gov (United States)

    Sizonenko, O. N.; Grigoryev, E. G.; Pristash, N. S.; Zaichenko, A. D.; Torpakov, A. S.; Lypian, Ye. V.; Tregub, V. A.; Zholnin, A. G.; Yudin, A. V.; Kovalenko, A. A.

    2017-09-01

    High voltage electric discharge (HVED) in disperse system "hydrocarbon liquid - powder" due to impact of plasma discharge channel, electromagnetic fields, shock waves mechanical impact, hydro flows and volume microcavitation leads to synthesis of nanocarbon, metal powders dispersion and synthesis of micro- (from 10-6 to 10-7 m) and nanosized (from 10-7 to 10-9 m) composite powders of hardening phases. Spark plasma sintering (SPS) of powder mixtures allows targeted control of grain growth rate and thus allows obtainment of multifunctional composite materials dispersion hardened by nanoparticles. Processes of HVED synthesis of micro- and nanosized powders of new compositions from elemental metal powders and their mixtures with the subsequent application of high-speed SPS of obtained powders create conditions for increase of strength (by 10-20 %), hardness and wear-resistance (by 30-60 %) of obtained materials.

  12. Properties Influencing Plasma Discharges in Packed Bed Reactors

    Science.gov (United States)

    Kruszelnicki, Juliusz; Engeling, Kenneth W.; Foster, John E.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure dielectric barrier discharges (DBDs) sustained in packed bed reactors (PBRs) are being investigated for CO2 removal and conversion of waste gases into higher value compounds. We report on results of a computational investigation of PBR-DBD properties using the plasma hydrodynamics simulator nonPDPSIM with a comparison to experiments. Dielectric beads (rods in 2D) were inserted between two coplanar electrodes, 1 cm apart filled by humid air. A step-pulse of -30 kV was applied to the top electrode. Material properties of the beads (dielectric constant, secondary emission coefficient) and gas properties (photoionization and photo-absorption cross-sections, temperature) were varied. We found that photoionization plays a critical role in the propagation of the discharge through the PBR, as it serves to seed charges in regions of high electric field. Increasing rates of photo-ionization enable increases in the discharge propagation velocity, ionization rates and production of radicals. A transition between DBD-like and arc-like discharges occurs as the radiation mean free path decreases. Increasing the dielectric constant of the beads increased electric fields in the gas, which translated to increased discharge propagation velocity and charge density until ɛ/ɛ0 100. Secondary electron emission coefficient and gas temperature have minimal impacts on the discharge propagation though the latter did affect the production of reactive species. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  13. Data on the influence of cold isostatic pre-compaction on mechanical properties of polycrystalline nickel sintered using Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Guy-Daniel Dutel

    2017-04-01

    Full Text Available Data regarding bulk polycrystalline nickel samples obtained by powder metallurgy using Spark Plasma Sintering (SPS are presented, with a special emphasis on the influence of a cold isostatic pre-compaction on the resulting morphologies and subsequent mechanical properties. Three types of initial powders are used, nanometric powders, micrometric powders and a mixture of the formers. For each type of powder, the SPS cycle has been optimized for the powders without pre-compaction and the same cycle has been used to also sinter pre-compacted powders.

  14. Mechanical characterization of cemented carbide WC-6Co (%wt) manufactured by SPS (Spark Plasma Sintering

    International Nuclear Information System (INIS)

    Boidi, G.; Tertuliano, A.J.; Machado, I.F.

    2016-01-01

    This work aimed to manufacture cemented carbide (WC-6%wtCo) obtained by SPS (Spark Plasma Sintering) process and to carry out the mechanical characterization by hardness and fracture toughness. The material was consolidated at 1100 deg C for different holding times (1 min, 5 min, 10 min), in order to evaluate the densification. A reference sample was also used to be compared to SPS. Optical and scanning electron microscopy were carried out to characterize the microstructural features of the samples and mechanical properties were obtained by hardness measurements (micro and macro) and instrumented indentation. The fracture toughness was calculated with the method of Palmqvist. Best results were found in the material sintered by SPS for 10 minutes of holding time, in which 97% of relative density and about 1600 HV_1_0 was reached. (author)

  15. Production of dispersed nanometer sized YAG powders from alkoxide, nitrate and chloride precursors and spark plasma sintering to transparency

    International Nuclear Information System (INIS)

    Suarez, M.; Fernandez, A.; Menendez, J.L.; Torrecillas, R.

    2010-01-01

    Yttrium aluminum garnet (YAG) was synthesized from different starting materials, i.e., alkoxide, nitrate and chloride precursors. The conversion steps from the precursors to crystalline YAG were studied by Raman spectroscopy. Dispersed YAG powders were formed at a relatively low temperature, around 800 o C by the chlorides route, whereas alkoxide precursors needed firing over 900 o C and nitrates even over 1100 o C. Lyophilized YAG gel was sintered to transparency by the spark plasma sintering method at 1500 o C with in-line transmittances close to 60% at 680 nm and over 80% in the infrared range.

  16. Decomposition mechanism of trichloroethylene based on by-product distribution in the hybrid barrier discharge plasma process

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang-Bo [Industry Applications Research Laboratory, Korea Electrotechnology Research Institute, Changwon, Kyeongnam (Korea, Republic of); Oda, Tetsuji [Department of Electrical Engineering, The University of Tokyo, Tokyo 113-8656 (Japan)

    2007-05-15

    The hybrid barrier discharge plasma process combined with ozone decomposition catalysts was studied experimentally for decomposing dilute trichloroethylene (TCE). Based on the fundamental experiment for catalytic activities on ozone decomposition, MnO{sub 2} was selected for application in the main experiments for its higher catalytic abilities than other metal oxides. A lower initial TCE concentration existed in the working gas; the larger ozone concentration was generated from the barrier discharge plasma treatment. Near complete decomposition of dichloro-acetylchloride (DCAC) into Cl{sub 2} and CO{sub x} was observed for an initial TCE concentration of less than 250 ppm. C=C {pi} bond cleavage in TCE gave a carbon single bond of DCAC through oxidation reaction during the barrier discharge plasma treatment. Those DCAC were easily broken in the subsequent catalytic reaction. While changing oxygen concentration in working gas, oxygen radicals in the plasma space strongly reacted with precursors of DCAC compared with those of trichloro-acetaldehyde. A chlorine radical chain reaction is considered as a plausible decomposition mechanism in the barrier discharge plasma treatment. The potential energy of oxygen radicals at the surface of the catalyst is considered as an important factor in causing reactive chemical reactions.

  17. Irradiation of silver and agar/silver nanoparticles with argon, oxygen glow discharge plasma, and mercury lamp.

    Science.gov (United States)

    Ahmad, Mahmoud M; Abdel-Wahab, Essam A; El-Maaref, A A; Rawway, Mohammed; Shaaban, Essam R

    2014-01-01

    The irradiation effect of argon, oxygen glow discharge plasma, and mercury lamp on silver and agar/silver nanoparticle samples is studied. The irradiation time dependence of the synthesized silver and agar/silver nanoparticle absorption spectra and their antibacterial effect are studied and compared. In the agar/silver nanoparticle sample, as the irradiation time of argon glow discharge plasma or mercury lamp increases, the peak intensity and the full width at half maximum, FWHM, of the surface plasmon resonance absorption band is increased, however a decrease of the peak intensity with oxygen glow plasma has been observed. In the silver nanoparticle sample, as the irradiation time of argon, oxygen glow discharge plasma or mercury lamp increases, the peak intensity of the surface plasmon resonance absorption band is increased, however, there is no significant change in the FWHM of the surface plasmon resonance absorption band. The SEM results for both samples showed nanoparticle formation with mean size about 50 nm and 40 nm respectively. Throughout the irradiation time with the argon, oxygen glow discharge plasma or mercury lamp, the antibacterial activity of several kinds of Gram-positive and Gram-negative bacteria has been examined.

  18. Full Tokamak discharge simulation and kinetic plasma profile control for ITER

    International Nuclear Information System (INIS)

    Hee Kim, S.

    2009-10-01

    Understanding non-linearly coupled physics between plasma transport and free-boundary equilibrium evolution is essential to operating future tokamak devices, such as ITER and DEMO, in the advanced tokamak operation regimes. To study the non-linearly coupled physics, we need a simulation tool which can self-consistently calculate all the main plasma physics, taking the operational constraints into account. As the main part of this thesis work, we have developed a full tokamak discharge simulator by combining a non-linear free-boundary plasma equilibrium evolution code, DINA-CH, and an advanced transport modelling code, CRONOS. This tokamak discharge simulator has been used to study the feasibility of ITER operation scenarios and several specific issues related to ITER operation. In parallel, DINA-CH has been used to study free-boundary physics questions, such as the magnetic triggering of edge localized modes (ELMs) and plasma dynamic response to disturbances. One of the very challenging tasks in ITER, the active control of kinetic plasma profiles, has also been studied. In the part devoted to free-boundary tokamak discharge simulations, we have studied dynamic responses of the free-boundary plasma equilibrium to either external voltage perturbations or internal plasma disturbances using DINA-CH. Firstly, the opposite plasma behaviour observed in the magnetic triggering of ELMs between TCV and ASDEX Upgrade has been investigated. Both plasmas experience similar local flux surface expansions near the upper G-coil set and passive stabilization loop (PSL) when the ELMs are triggered, due to the presence of the PSLs located inside the vacuum vessel of ASDEX Upgrade. Secondly, plasma dynamic responses to strong disturbances anticipated in ITER are examined to study the capability of the feedback control system in rejecting the disturbances. Specified uncontrolled ELMs were controllable with the feedback control systems. However, the specifications for fast H-L mode

  19. The influence of electric discharge on the properties of high-temperature superconductors

    International Nuclear Information System (INIS)

    Parashchuk, V.V.

    1990-01-01

    The influence is studied of pulse voltage with amplitude 100 kV and duration 100 to 200 ns on the temperature dependence of diamagnetic susceptibility of yttrium ceramics. As a result of the action of spark discharge on the ceramics, the superconducting transition parameters change. As the number of voltage pulses is increased, the diamagnetic susceptibility and the critical temperature determined by it first increase rapidly, then drop slowly. At the same time the transition in the optimum becomes more sharp. In the case of treatment in the air, Tc increases by 15 K and at discharge in liquid nitrogen by 25 K. It is found that the atmospheric air under certain conditions affects the temperature dependence of the diamagnetic susceptibility of HTSC ceramics. Treatment by a high-voltage spark decreases the susceptibility of the ceramics due to atmospheric effects. The highest efficiency of spark treatment is achieved at discharge in liquid nitrogen. (orig.)

  20. Low pressure arc discharges with hollow cathodes and their using in plasma generators and charged particle sources

    CERN Document Server

    Vintizenko, L G; Koval, N N; Tolkachev, V S; Lopatin, I V; Shchanin, P M

    2001-01-01

    Paper presents the results of investigation into arc discharges with a hollow cathode generating 10 sup 1 sup 0 -10 sup 1 sup 2 concentration gas-discharge plasma in essential (approx 1 m sup 3) volumes at low (10 sup - sup 2 -1 Pa) pressures and up to 200 A discharge currents. One studied design of discharge systems with heated and cold cathodes their peculiar features, presented the parameters of plasma generators and of charged particle sources based on arc discharges and discussed, as well, the problems of more rational application of those systems in the processes for surface modification of solids

  1. Dust-acoustic instability in an inductive gas-discharge plasma

    International Nuclear Information System (INIS)

    Zobnin, A.V.; Usachev, A.D.; Petrov, O.F.; Fortov, V.E.

    2002-01-01

    Spontaneous excitation of a dust-particle density wave is observed in a dust cloud levitating in the region of the diffused edge of an rf inductive low-pressure gas-discharge plasma. The main physical parameters of this wave and of the background plasma are measured. The analytic model proposed for the observed phenomenon is based on the theory of dust sound and successfully correlates with experimental data in a wide range of experimental conditions. The effect of variable charge of dust particles on the evolution of the observed dust-plasma instability is studied analytically. It is shown that the necessary condition for the development of the dust-acoustic instability is the presence of a dc electric field in the dust cloud region

  2. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders.

    Science.gov (United States)

    Pellizzari, Massimo; Fedrizzi, Anna; Zadra, Mario

    2016-06-16

    Hot work tool steel (AISI H13) and high speed steel (AISI M3:2) powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM). Near full density samples (>99.5%) showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS). The density of the blends (20, 40, 60, 80 wt % H13) was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.

  3. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders

    Directory of Open Access Journals (Sweden)

    Massimo Pellizzari

    2016-06-01

    Full Text Available Hot work tool steel (AISI H13 and high speed steel (AISI M3:2 powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM. Near full density samples (>99.5% showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS. The density of the blends (20, 40, 60, 80 wt % H13 was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.

  4. UO2 fuel pellets fabrication via Spark Plasma Sintering using non-standard molybdenum die

    Science.gov (United States)

    Papynov, E. K.; Shichalin, O. O.; Mironenko, A. Yu; Tananaev, I. G.; Avramenko, V. A.; Sergienko, V. I.

    2018-02-01

    The article investigates spark plasma sintering (SPS) of commercial uranium dioxide (UO2) powder of ceramic origin into highly dense fuel pellets using non-standard die instead of usual graphite die. An alternative and formerly unknown method has been suggested to fabricate UO2 fuel pellets by SPS for excluding of typical problems related to undesirable carbon diffusion. Influence of SPS parameters on chemical composition and quality of UO2 pellets has been studied. Also main advantages and drawbacks have been revealed for SPS consolidation of UO2 in non-standard molybdenum die. The method is very promising due to high quality of the final product (density 97.5-98.4% from theoretical, absence of carbon traces, mean grain size below 3 μm) and mild sintering conditions (temperature 1100 ºC, pressure 141.5 MPa, sintering time 25 min). The results are interesting for development and probable application of SPS in large-scale production of nuclear ceramic fuel.

  5. Effect of electronegative additives on physical properties and chemical activity of gas discharge plasma

    Science.gov (United States)

    Kuznetsov, D. L.; Filatov, I. E.; Uvarin, V. V.

    2018-01-01

    Effect of electronegative additives (oxygen O2, sulfur dioxide SO2, carbon disulfide CS2, and carbon tetrachloride CCl4) on physical properties and chemical activity of plasma formed by pulsed corona discharge and by non-self-sustained discharge supported by pulsed electron beam in atmospheric pressure gas mixtures was investigated. It is shown that a decrease in discharge current depends on a sort of the additive and on its concentration. The reason is the difference in rate constants of electron attachment processes for the above molecules. In experiments on volatile organic compounds (VOCs) conversion in air by streamer corona it is obtained that an addition of CCl4 both decreases the discharge current amplitude and increases the VOCs conversion degree. An installation for investigation of electron attachment processes and for study of toxic impurities conversion in plasma formed by non-self-sustained discharge initiated by pulsed nanosecond electron beam is created.

  6. Integrated discharge scenario for high-temperature helical plasma on LHD

    International Nuclear Information System (INIS)

    Nagaoka, K.; Takahashi, H.; Murakami, S.

    2014-10-01

    Discharge scenario of high temperature plasma with helical configuration has been significantly progressed. The increase of central ion temperature due to reduction of wall recycling was clearly observed. The neutral particle profile was measured with a high-dynamic range of Balmer-α spectroscopy, and the reduction of neutral density was identified after helium conditioning main discharges. The peaking of ion heating profile and the reduction of charge exchange loss of energetic ions play an important role for improvement of ion heat transport in the core. The ion ITB and electron ITB have been successfully integrated due to superposition of centrally focused electron cyclotron heating to the ion ITB plasma, and the high temperature regime of T i ∼T e has been significantly extended. The normalized temperature gradient of ion and electron (R/L T ) were observed to exceed 10, indicating the significant improvement of both ion and electron heat transports at the barrier position. The positive radial electric field was observed by heavy ion beam probe, while the negative radial electric field was observed in ion ITB plasmas. The ion temperature gradient was observed to decrease with the increase of temperature ratio (T e /T i ). This experiment demonstrated that the profile control is a key to combine ion ITB and electron ITB and have a potential to improve the performance of helical plasmas. (author)

  7. Experimental observation of nonlinear behaviour in a helium plasma discharge in the presence of a nonuniform magnetic field

    International Nuclear Information System (INIS)

    Toma, M.; Sanduloviciu, M.

    1994-01-01

    The nonlinear behaviour in an electrical discharge plasma due to the action of an external nonuniform magnetic field is presented. The discharge geometry and the magnetic field configuration ('inverse' cylindrical magnetron discharge) were so chosen that there is a possibility to control the net electron flux in a certain region of a positive electrode. The plasma discharge nonlinearity manifested in the profile of the current-voltage, current-magnetic field and current-gas pressure characteristics by the appearance of the anomalous negative resistance, in the bistability and hysteresis and also in the periodical and chaotic variation of the discharge current. The profile of the current variation vs control discharge parameters was related to the appearance of a space charge structure in the shape of nearly spherical bulges, delimited from the surrounding plasma by a double layer. (Author)

  8. A study on improvement of discharge characteristic by using a transformer in a capacitively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Cheol [Department of Nanoscale Semiconductor Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Hyun-Jun; Lee, Hyo-Chang; Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr [Department of Electrical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2015-12-15

    In a plasma discharge system, the power loss at powered line, matching network, and other transmission line can affect the discharge characteristics such as the power transfer efficiency, voltage and current at powered electrode, and plasma density. In this paper, we propose a method to reduce power loss by using a step down transformer mounted between the matching network and the powered electrode in a capacitively coupled argon plasma. This step down transformer decreases the power loss by reducing the current flowing through the matching network and transmission line. As a result, the power transfer efficiency was increased about 5%–10% by using a step down transformer. However, the plasma density was dramatically increased compared to no transformer. This can be understood by the increase in ohmic heating and the decrease in dc-self bias. By simply mounting a transformer, improvement of discharge efficiency can be achieved in capacitively coupled plasmas.

  9. plasma modes behaviors and electron injection influence in an audio-ultrasonic air gas discharge

    International Nuclear Information System (INIS)

    Ragheb, M.S.; Haleem, N.A.

    2010-01-01

    the main purpose of this study is to investigate the favorable conditions for the production of plasma particle acceleration in an audio-ultrasonic air gas discharge of 20 cm long and 34 mm diameter.it is found that according to the applied conditions the formed plasma changes its behavior and overtakes diverse modes of different characteristics. the pressure, the voltage, and the frequency applied to the plasma determine its proper state. both experimental data collection and optical observations are introduced to clarify and to put in evidence the present plasma facts. the distribution of the electrons density along the plasma tube draws in average the electric field distribution of the ionization waves. in addition, the plasma is studied with and without electrons injection in order to investigate its influence . it is found that the electron injection decreases the plasma intensity and the plasma temperature, while it increases the discharge current. in turn, the decrease of the plasma temperature decreases the plasma oscillations and enhances the plasma instability. on the other hand,the enhancement of the plasma instability performs good conditions for electron acceleration. as a result, the qualified mode for particles acceleration is attained and its conditions are retrieved and defined for that purpose.

  10. Time resolved EUV spectra from Zpinching capillary discharge plasma

    Science.gov (United States)

    Jancarek, Alexandr; Nevrkla, Michal; Nawaz, Fahad

    2015-09-01

    We developed symmetrically charged driver to obtain high voltage, high current Z-pinching capillary discharge. Plasma is created by up to 70 kA, 29 ns risetime current pulse passing through a 5 mm inner diameter, 224 mm long capillary filled with gas to initial pressure in the range of 1 kPa. Due to the low inductance design of the driver, the pinch is observable directly from the measured current curve. Time-integrated and time-resolved spectra of discharge plasma radiation are recorded together with the capillary current and analyzed. The most encouraging spectra were captured in the wavelength range 8.3 ÷ 14 nm. This spectral region contains nitrogen Balmer series lines including potentially lasing NVII 2 - 3 transition. Spectral lines are identified in the NIST database using the FLY kinetic code. The line of 13.38 nm wavelength, transition NVII 2 - 3, was observed in gated, and also in time-integrated spectra for currents >60 kA. This work has been supported by the Ministry of Education, Youth and Sports of the Czech Republic grants LG13029.

  11. Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation

    International Nuclear Information System (INIS)

    Jiang, Nan; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-01-01

    Highlights: • Benzene was successfully degraded by dielectric barrier/packed-bed discharge plasmas. • Different electrode geometry has distinct effect on plasmas oxidation performance. • Benzene degradation and energy performance were enhanced when using the coil electrode. • The reaction products were well determined by online FTIR analysis. -- Abstract: In this study, the effects of electrode geometry on benzene degradation in a dielectric barrier/packed-bed discharge plasma reactor with different electrodes were systematically investigated. Three electrodes were employed in the experiments, these were coil, bolt, and rod geometries. The reactor using the coil electrode showed better performance in reducing the dielectric loss in the barrier compared to that using the bolt or rod electrodes. In the case of the coil electrode, both the benzene degradation efficiency and energy yield were higher than those for the other electrodes, which can be attributed to the increased role of surface mediated reactions. Irrespective of the electrode geometry, the packed-bed discharge plasma was superior to the dielectric barrier discharge plasma in benzene degradation at any specific applied voltage. The main gaseous products of benzene degradation were CO, CO 2 , H 2 O, and formic acid. Discharge products such as O 3 , N 2 O, N 2 O 5 , and HNO 3 were also detected in the outlet gas. Moreover, the presence of benzene inhibited the formation of ozone because of the competing reaction of oxygen atoms with benzene. This study is expected to offer an optimized approach combining dielectric barrier discharge and packed-bed discharge to improve the degradation of gaseous pollutants

  12. The model of beam-plasma discharge in the rocket environment during an electron beam injection in the ionosphere

    International Nuclear Information System (INIS)

    Mishin, E.V.; Ruzhin, Yu.Ya.

    1980-01-01

    The model of beam-plasma discharge in the rocket environment during electron beam injection in the ionosphere is constructed. The discharge plasma density dependence on the neutral gas concentration and the beam parameters is found

  13. Observation of a spark channel generated in water with shock wave assistance in plate-to-plate electrode configuration

    Energy Technology Data Exchange (ETDEWEB)

    Stelmashuk, V., E-mail: vitalij@ipp.cas.cz [Institute of Plasma Physics, Za Slovankou 3, 182 00 Prague 8 (Czech Republic)

    2014-01-15

    When a high voltage pulse with an amplitude of 30 kV is applied to a pair of disk electrodes at a time when a shock wave is passing between them, an electrical spark is generated. The dynamic changes in the spark morphology are studied here using a high-speed framing camera. The primary result of this work is the provision of experimental evidence of plasma instability that was observed in the channel of the electric spark.

  14. Treatment of Dye Wastewater by Using a Hybrid Gas/Liquid Pulsed Discharge Plasma Reactor

    International Nuclear Information System (INIS)

    Lu Na; Li Jie; Wu Yan; Masayuki, Sato

    2012-01-01

    A hybrid gas/liquid pulsed discharge plasma reactor using a porous ceramic tube is proposed for dye wastewater treatment. High voltage pulsed discharge plasma was generated in the gas phase and simultaneously the plasma channel was permeated through the tiny holes of the ceramic tube into the water phase accompanied by gas bubbles. The porous ceramic tube not only separated the gas phase and liquid phase but also offered an effective plasma spreading channel. The effects of the peak pulse voltage, additive gas varieties, gas bubbling rate, solution conductivity and TiO 2 addition were investigated. The results showed that this reactor was effective for dye wastewater treatment. The decoloration efficiency of Acid Orange II was enhanced with an increase in the power supplied. Under the studied conditions, 97% of Acid Orange II in aqueous solution was effectively decolored with additive oxygen gas, which was 51% higher than that with argon gas, and the increasing O 2 bubbling rate also benefited the decoloration of dye wastewater. Water conductivity had a small effect on the level of decoloration. Catalysis of TiO 2 could be induced by the pulsed discharge plasma and addition of TiO 2 aided the decoloration of Acid Orange II.

  15. Spark plasma sintering of titanium aluminide intermetallics and its composites

    Science.gov (United States)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  16. Vehicle exhaust treatment using electrical discharge and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Tonkyn, R.G.; Balmer, M.L.; Barlow, S.E.; Orlando, T.M. [Pacific Northwest National Lab., Richland, WA (United States); Goulette, D.; Hoard, J. [Ford Motor Co., Dearborn, MI (United States). Scientific Research Lab.

    1997-12-31

    Current 3-way catalytic converters have proven quite effective at removing NO{sub x} from the exhaust of spark ignition vehicles operating near stoichiometric air-to-fuel ratios. However, diesel engines typically operate at very high air-to-fuel ratios. Under such lean burn conditions current catalytic converters are ineffective for NO{sub x} removal. As a result, considerable effort has been made to develop a viable lean NO{sub x} catalyst. Although some materials have been shown to reduce NO{sub x} under lean burn conditions, none exhibit the necessary activity and stability at the high temperatures and humidities found in typical engine exhaust,. As a result, alternative technologies are being explored in an effort to solve the so-called lean NO{sub x} problem. Packed-bed barrier discharge systems are well suited to take advantage of plasma-surface interactions due to the large number of contaminant surface collisions in the bed. The close proximity of the active surface to transient species produced by the plasma may lead to favorable chemistry at considerably lower temperatures than required by thermal catalysts. The authors present data in this paper illustrating that the identity and surface properties of the packing material can alter the discharge-driven chemistry in synthetic leanburn exhaust mixtures. Results using non-porous glass beads as the packing material suggest the limits of NO{sub x} reduction using purely gas phase discharge chemistry. By comparison, encouraging results are reported for several alternative packing materials.

  17. TVA - Thermionic Vacuum Arc - A new type of discharge generating pure metal vapor plasma

    International Nuclear Information System (INIS)

    Musa, G.; Popescu, A.; Mustata, I.; Borcoman, I.; Cretu, M.; Leu, G.F.; Salambas, A.; Ehrich, H.; Schumann, I.

    1996-01-01

    In this paper it is presented a new type of discharge in vacuum conditions generating pure metal vapor plasma with energetic metal ions content. The peculiarities of this heated cathode discharge are described and the dependence of the measured ion energy of the working parameters are established. The ion energy value can be easily and smoothly changed. A nearly linear dependence between energy of ions and arc voltage drop has been observed. The ion energy can be increased by the increase of the interelectrode distance, decrease of cathode temperature, change of the relative position of the electrodes and by the decrease of the arc discharge current. A special configuration with cylindrical geometry has been used to develop a small size and compact metal vapour plasma gun. Due to the mentioned peculiarities, this discharge offers new openings for important applications. (author)

  18. Core-SOL simulations of L-mode tokamak plasma discharges using BALDUR code

    Directory of Open Access Journals (Sweden)

    Yutthapong Pinanroj

    2014-04-01

    Full Text Available Core-SOL simulations were carried out of plasma in tokamak reactors operating in a low confinement mode (L-mode, for various conditions that match available experimental data. The simulation results were quantitatively compared against experimental data, showing that the average RMS errors for electron temperature, ion temperature, and electron density were lower than 16% or less for 14 L-mode discharges from two tokamaks named DIII-D and TFTR. In the simulations, the core plasma transport was described using a combination of neoclassical transport calculated by NCLASS module and anomalous transport by Multi-Mode-Model version 2001 (MMM2001. The scrape-off-layer (SOL is the small amount of residual plasma that interacts with the tokamak vessel, and was simulated by integrating the fluid equations, including sources, along open field lines. The SOL solution provided the boundary conditions of core plasma region on low confinement mode (L-mode. The experimental data were for 14 L-mode discharges and from two tokamaks, named DIII-D and TFTR.

  19. Electromagnetic effects in high-frequency capacitive discharges used for plasma processing

    International Nuclear Information System (INIS)

    Chabert, P

    2007-01-01

    In plasma processing, capacitive discharges have classically been operated in the electrostatic regime, for which the excitation wavelength λ is much greater than the electrode radius, and the plasma skin depth δ is much greater than the electrode spacing. However, contemporary reactors are larger and excited at higher frequencies which leads to strong electromagnetic effects. This paper gives a review of the work that has recently been carried out to carefully model and diagnose these effects, which cause major uniformity problems in plasma processing for microelectronics and flat panel displays industries. (topical review)

  20. Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte

    International Nuclear Information System (INIS)

    Han, Min-Seop; Min, Byung-Kwon; Lee, Sang Jo

    2009-01-01

    Electrochemical discharge machining (ECDM) is a spark-based micromachining method especially suitable for the fabrication of various microstructures on nonconductive materials, such as glass and some engineering ceramics. However, since the spark discharge frequency is drastically reduced as the machining depth increases ECDM microhole drilling has confronted difficulty in achieving uniform geometry for machined holes. One of the primary reasons for this is the difficulty of sustaining an adequate electrolyte flow in the narrow gap between the tool and the workpiece, which results in a widened taper at the hole entrance, as well as a significant reduction of the machining depth. In this paper, ultrasonic electrolyte vibration was used to enhance the machining depth of the ECDM drilling process by assuring an adequate electrolyte flow, thus helping to maintain consistent spark generation. Moreover, the stability of the gas film formation, as well as the surface quality of the hole entrance, was improved with the aid of a side-insulated electrode and a pulse-power generator. The side-insulated electrode prevented stray electrolysis and concentrated the spark discharge at the tool tip, while the pulse voltage reduced thermal damage to the workpiece surface by introducing a periodic pulse-off time. Microholes were fabricated in order to investigate the effects of ultrasonic assistance on the overcut and machining depth of the holes. The experimental results demonstrated that the possibility of consistent spark generation and the machinability of microholes were simultaneously enhanced