WorldWideScience

Sample records for spark discharge pasd

  1. Generation of Nanoparticles by Spark Discharge

    NARCIS (Netherlands)

    Salman Tabrizi, N.

    2009-01-01

    Spark discharge is a method for producing nanoparticles from conductive materials. Besides the general advantages of nanoparticle synthesis in the gas phase, the method offers additional advantages like simplicity, compactness and versatility. The synthesis process is continuous and is performed at

  2. Silicon nanoparticles produced by spark discharge

    International Nuclear Information System (INIS)

    Vons, Vincent A.; Smet, Louis C. P. M. de; Munao, David; Evirgen, Alper; Kelder, Erik M.; Schmidt-Ott, Andreas

    2011-01-01

    On the example of silicon, the production of nanoparticles using spark discharge is shown to be feasible for semiconductors. The discharge circuit is modelled as a damped oscillator circuit. This analysis reveals that the electrode resistance should be kept low enough to limit energy loss by Joule heating and to enable effective nanoparticle production. The use of doped electrodes results in a thousand-fold increase in the mass production rate as compared to intrinsic silicon. Pure and oxidised uniformly sized silicon nanoparticles with a primary particle diameter of 3–5 nm are produced. It is shown that the colour of the particles can be used as a good indicator of the oxidation state. If oxygen and water are banned from the spark generation system by (a) gas purification, (b) outgassing and (c) by initially using the particles produced as getters, unoxidised Si particles are obtained. They exhibit pyrophoric behaviour. This continuous nanoparticle preparation method can be combined with other processing techniques, including surface functionalization or the immediate impaction of freshly prepared nanoparticles onto a substrate for applications in the field of batteries, hydrogen storage or sensors.

  3. Protection of neutral-beam accelerator electrodes from spark discharges

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1977-01-01

    The high-voltage (HV) electrodes of neutral beam sources (NBS's) must be protected from occasional sparks to ground. Spark currents can be limited with special transformers and reactors which introduce time delays that are long enough to quench the spark or to disconnect the energy source. A saturated time delay transformer (STDT) connected in series with the HV power supply detects spark faults and limits the current supplied by the power supply and its capacitance to ground; it also initiates spark quenching. Nonsaturated, longitudinal reactors limit the discharge current supplied by the energy stored in the circuit capacitance of the NBS filament and arc power supplies long enough to discharge this capacitance into a resistor. The design principles of these protective circuits are presented

  4. Protection of neutral-beam-accelerator electrodes from spark discharges

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1977-01-01

    The high-voltage (HV) electrodes of neutral beam sources (NBS's) must be protected from occasional sparks to ground. Spark currents can be limited with special transformers and reactors which introduce time delays that are long enough to quench the spark or to disconnect the energy source. A saturated time delay transformer (STDT) connected in series with the HV power supply detects spark faults and limits the current supplied by the power supply and its capacitance to ground; it also initiates spark quenching. Nonsaturated, longitudinal reactors limit the discharge current supplied by the energy stored in the circuit capacitance of the NBS filament and arc power supplies long enough to discharge this capacitance into a resistor. The design principles of these protective circuits are presented in this paper

  5. Protection of neutral-beam-accelerator electrodes from spark discharges

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1978-01-01

    The high-voltage (HV) electrodes of neutral beam sources (NBS's) must be protected from occasional sparks to ground. Spark currents can be limited with special transformers and reactors which introduce time delays that are long enough to quench the spark or to disconnect the energy source. A saturated time delay transformer (STDT) connected in series with the HV power supply detects spark faults and limits the current supplied by the power supply and its capacitance to ground; it also initiates spark quenching. Nonsaturated, longitudinal reactors limit the discharge current supplied by the energy stored in the circuit capacitance of the NBS filament and arc power supplies long enough to discharge this capacitance into a resistor. The design principles of these protective circuits are presented in this paper

  6. Research on spark discharge of floating roof tank shunt

    International Nuclear Information System (INIS)

    Bi, Xiaolei; Liu, Quanzhen; Liu, Baoquan; Gao, Xin; Hu, Haiyan; Liu, Juan

    2013-01-01

    In order to quantitatively analyze the spark discharge risk of floating roof tank shunts, the breakdown voltage of shunt has been calculated by Townsend theory, the shunt spark discharge experiment is carried out by using 1.2/50 μs impulse voltage wave, and the relationship between breakdown voltage of shunt spark discharge and air gap is analyzed. It has been indicated by theoretical analysis and experimental study that the small gap is more easily cause spark discharge than the big gap when the contact between shunt and tank shell is poor. When air gap distance is equal to 0.1 cm, average breakdown voltage is 5280 V. When the air gap distance is less than 0.3 cm, experiment data agree well with Townsend theory. Therefore, in the condition of small gap, Townsend theory can be used to calculated breakdown voltage of shunt. Finally, based on the above conclusions, improvements for avoiding the spark discharge risk of shunt of floating roof tanks have been proposed.

  7. Gas temperature of capacitance spark discharge in air

    International Nuclear Information System (INIS)

    Ono, Ryo; Nifuku, Masaharu; Fujiwara, Shuzo; Horiguchi, Sadashige; Oda, Tetsuji

    2005-01-01

    Capacitance spark discharge has been widely used for studying the ignition of flammable gas caused by electrostatic discharge. In the present study, the gas temperature of capacitance spark discharge is measured. The gas temperature is an important factor in understanding the electrostatic ignition process because it influences the reaction rate of ignition. Spark discharge is generated in air with a pulse duration shorter than 100 ns. The discharge energy is set to 0.03-1 mJ. The rotational and vibrational temperatures of the N 2 molecule are measured using the emission spectrum of the N 2 second positive system. The rotational and vibrational temperatures are estimated to be 500 and 5000 K, respectively, which are independent of the discharge energy. This result indicates that most of the electron energy is consumed in the excitation of vibrational levels of molecules rather than the heating of the gas. The gas temperature after discharge is also measured by laser-induced fluorescence of OH radicals. It is shown that the gas temperature increases after discharge and reaches approximately 1000 K at 3 μs after discharge. Then the temperature decreases at a rate in the range of 8-35 K/μs depending on the discharge energy

  8. Multi-spark discharge system for preparation of nutritious water

    Science.gov (United States)

    Nakaso, Tetsushi; Harigai, Toru; Kusumawan, Sholihatta Aziz; Shimomura, Tomoya; Tanimoto, Tsuyoshi; Suda, Yoshiyuki; Takikawa, Hirofumi

    2018-01-01

    The nitrogen compound concentration in water is increased by atmospheric-pressure plasma discharge treatment. A rod-to-water electrode discharge treatment system using plasma discharge has been developed by our group to obtain water with a high concentration of nitrogen compounds, and this plasma-treated water improves the growth of chrysanthemum roots. However, it is difficult to apply the system to the agriculture because the amount of treated water obtained by using the system too small. In this study, a multi-spark discharge system (MSDS) equipped multiple spark plugs is presented to obtain a large amount of plasma-treated water. The MSDS consisted of inexpensive parts in order to reduce the system introduction cost for agriculture. To suppress the temperature increase of the spark plugs, the 9 spark plugs were divided into 3 groups, which were discharged in order. The plasma-treated water with a NO3- concentration of 50 mg/L was prepared using the MSDS for 90 min, and the treatment efficiency was about 6 times higher than that of our previous system. It was confirmed that the NO2-, O3, and H2O2 concentrations in the water were also increased by treating the water using the MSDS.

  9. Modeling and optimization of the multichannel spark discharge

    International Nuclear Information System (INIS)

    Zhang Zhi-Bo; Wu Yun; Jia Min; Song Hui-Min; Li Ying-Hong; Sun Zheng-Zhong

    2017-01-01

    This paper reports a novel analytic model of this multichannel spark discharge, considering the delay time in the breakdown process, the electric transforming of the discharge channel from a capacitor to a resistor induced by the air breakdown, and the varying plasma resistance in the discharge process. The good agreement between the experimental and the simulated results validated the accuracy of this model. Based on this model, the influence of the circuit parameters on the maximum discharge channel number (MDCN) is investigated. Both the input voltage amplitude and the breakdown voltage threshold of each discharge channel play a critical role. With the increase of the input voltage and the decrease of the breakdown voltage, the MCDN increases almost linearly. With the increase of the discharge capacitance, the MDCN first rises and then remains almost constant. With the increase of the circuit inductance, the MDCN increases slowly but decreases quickly when the inductance increases over a certain value. There is an optimal value of the capacitor connected to the discharge channel corresponding to the MDCN. Finally, based on these results, to shorten the discharge time, a modified multichannel discharge circuit is developed and validated by the experiment. With only 6-kV input voltage, 31-channels discharge is achieved. The breakdown voltage of each electrode gap is larger than 3 kV. The modified discharge circuit is certain to be widely used in the PSJA flow control field. (paper)

  10. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    International Nuclear Information System (INIS)

    Pai, David Z; Lacoste, Deanna A; Laux, Christophe O

    2010-01-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N 2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 10 15 cm -3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 10 11 cm -3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 10 8 cm -3 .

  11. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime

    Science.gov (United States)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-12-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  12. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    Energy Technology Data Exchange (ETDEWEB)

    Pai, David Z; Lacoste, Deanna A; Laux, Christophe O [Laboratoire EM2C, CNRS UPR288, Ecole Centrale Paris, 92295 Chatenay-Malabry (France)

    2010-12-15

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N{sub 2} (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 10{sup 15} cm{sup -3} towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 10{sup 11} cm{sup -3} produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 10{sup 8} cm{sup -3}.

  13. Apparatus for atmospheric pressure pin-to-hole spark discharge and uses thereof

    Science.gov (United States)

    Dobrynin, Danil V.; Fridman, Alexander; Cho, Young I.; Fridman, Gregory; Friedman, Gennady

    2016-12-06

    Disclosed herein are atmospheric pressure pin-to-hole pulsed spark discharge devices and methods for creating plasma. The devices include a conduit for fluidically communicating a gas, a plasma, or both, therethrough, portion of the conduit capable of being connected to a gas supply, and a second portion of the conduit capable of emitting a plasma; a positive electrode comprising a sharp tip; and a ground plate electrode. Disclosed are methods for treating a skin ulcer using non-thermal plasma include flowing a gas through a cold spark discharge zone simultaneously with the creation of a pulsed spark discharge to give rise to a non-thermal plasma emitted from a conduit, the non-thermal plasma comprising NO; and contacting a skin ulcer with said non-thermal plasma for sufficient time and intensity to give rise to treatment of the skin ulcer.

  14. Development of the discharge (spark) chamber in Japan in the 1950s

    International Nuclear Information System (INIS)

    Fukui, Shuji

    1989-01-01

    The paper, written by its Japanese inventor Shuji Fukui, describes the development of the discharge or spark chamber in Japan in the 1950s. Flash-tubes were used in air-shower cosmic-ray experiments and this led to his design of a neon hodoscope detector. By including the property of neon bulbs glowing the discharge chamber was born, after he observed localized discharges along the trajectories of cosmic-ray particles. (UK)

  15. Characterization of electrical discharges during spark anodization of zirconium in different electrolytes

    International Nuclear Information System (INIS)

    Santos, Janaina S.; Lemos, Sherlan G.; Gonçalves, Wesley N.; Bruno, Odemir M.; Pereira, Ernesto C.

    2014-01-01

    The evolution of the electrical discharges parameters during spark anodization of metallic Zr under galvanostatic regime have been investigated by image analysis in phosphoric and oxalic acid electrolytes. The experiments were recorder using a high-speed video camera during the entire anodization with a resolution of 1.7 ms for determination of discharge lifetime and a standard resolution of 33 ms (real-time imaging) for determination of the average area and discharge population density. The discharge behavior was dependent of the current density, electrolyte composition and anodization time. During breakdown process, sparks discharges are progressively turned to micro-arcs, which can be seen by enlargement of discharge area, gradual increase of lifetime and reduction of discharge population density. A factorial design was used to estimate the effects of experimental conditions on the discharge behavior. The current density and electrolyte composition were the most important factors that affected the discharge population density. The anodization time and the electrolyte composition were the main factor that influenced the discharge area and lifetime. In comparison with the voltage vs. time curve, the results demonstrate important features of the process and the changes of the electrical discharges characteristics during the experiments

  16. Contribution to the study of 'Pseudo-spark' discharges applied to the realisation of latch devices

    International Nuclear Information System (INIS)

    Bauville, Gerard

    1994-01-01

    The objective of this research thesis is to study discharges growing from a hollow geometry of electrodes for pressures on the left side of the Paschen minimum. The study characterises the main conduction phase by experimentally determining the discharge voltage and current. Based on a numerical analysis, the author deduces some macroscopic characteristics such as voltage mean value, dissipated energy, with respect to the variation of various parameters such as gas pressure and nature, discharge duration, and electrode cavity geometries. After a first part on switches (technological applications, switches, pseudo-spark breakers), the author addresses the discharges (presentation of a 'pseudo-spark'-type discharge, involved physical mechanisms, methods of initiation of pseudo-spark discharges, triggering by a magnetic field pulse). The next part describes the test bench in a detailed way (electrodes, triggering system, electric configurations), and the last part reports the experimental study. It addresses the following issues: distribution of magnetic field lines, voltage drop, conjunction phase, discharge footprints on the surfaces, propagation rate, disjunction [fr

  17. Spark discharge formation in an inhomogeneous electric field under conditions of runaway electron generation

    Energy Technology Data Exchange (ETDEWEB)

    Shao Tao; Zhang Cheng; Yan Ping [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Tarasenko, Victor F.; Lomaev, Mikhail I.; Sorokin, Dmitrii A.; Kozyrev, Andrei V.; Baksht, Evgeni Kh. [Institute of High Current Electronics, Russian Academy of Sciences, Tomsk 634055 (Russian Federation)

    2012-01-15

    In this article we report on work where the formation of a spark in nanosecond high-voltage discharges was studied in nitrogen, nitrogen-methane mixtures, and air at increased pressures under the conditions of runaway electron generation. Voltage pulses of amplitude {approx}90 and {approx}250 kV were applied to a point-to-plane gap with a planar anode and a cathode of small curvature radius. Cathode spots appeared early in the discharge, within {approx}200 ps of a corona discharge at high rate of rise of the voltage ({approx}5 x 10{sup 14} V/s) across centimeter point-to-plane gap spacing. The spark leader that bridged the point-to-plane gap propagated from the planar anode with cathode spots and a voltage pulse rise time of less than 1 ns. The discharge from diffuse clouds took the form of diffuse jets with increasing pulse repetition rate, thus achieving the accumulation effect in a repetitively pulsed discharge. Characteristic emission spectra are presented for spark diffuse and corona discharges.

  18. Spark discharge formation in an inhomogeneous electric field under conditions of runaway electron generation

    International Nuclear Information System (INIS)

    Shao Tao; Zhang Cheng; Yan Ping; Tarasenko, Victor F.; Lomaev, Mikhail I.; Sorokin, Dmitrii A.; Kozyrev, Andrei V.; Baksht, Evgeni Kh.

    2012-01-01

    In this article we report on work where the formation of a spark in nanosecond high-voltage discharges was studied in nitrogen, nitrogen-methane mixtures, and air at increased pressures under the conditions of runaway electron generation. Voltage pulses of amplitude ∼90 and ∼250 kV were applied to a point-to-plane gap with a planar anode and a cathode of small curvature radius. Cathode spots appeared early in the discharge, within ∼200 ps of a corona discharge at high rate of rise of the voltage (∼5 x 10 14 V/s) across centimeter point-to-plane gap spacing. The spark leader that bridged the point-to-plane gap propagated from the planar anode with cathode spots and a voltage pulse rise time of less than 1 ns. The discharge from diffuse clouds took the form of diffuse jets with increasing pulse repetition rate, thus achieving the accumulation effect in a repetitively pulsed discharge. Characteristic emission spectra are presented for spark diffuse and corona discharges.

  19. The space-time evolution of an electrical discharge directed by a laser spark

    International Nuclear Information System (INIS)

    Asinovskii, E.I.; Vasilyak, L.M.; Unkovskii, S.Yu.

    1992-01-01

    The study of electrical discharges directed by a laser spark has been made necessary by the creation of new types of switches, plasma antennas, and lightning rods, channels for the transport of charged particle beams in inertial thermonuclear fusion devices, and also for modeling the processes in streak lightning. For the most part, previous studies have explored the feasibility of creating such discharges, depending on experimental conditions, and proposed possible mechanisms for the development of discharges, e.g., the stepwise nature of its propagation. A model was proposed in which the discharge front propagates as an ionization wave. This model was based on measurements of the electric potential along the trajectory of a directed discharge. To construct a model and obtain directed discharges with prescribed parameters, one must know the mechanisms of discharge development. In this work, the authors report the results of an electrooptical study of the origin and motion of luminous fronts of ionization waves in an electrical discharge during its initiation, both for a single breakdown site and for a long laser spark with a large number of laser breakdown sites. Results are presented of our study of the stability of a discharge for a current flow of long duration

  20. Electric field measurements in a xenon discharge using Spark spectroscopy

    NARCIS (Netherlands)

    Wagenaars, E.; Bowden, M.D.; Kroesen, G.M.W.

    2005-01-01

    Measurements of electric field distributions in a low-pressure xenon discharge are presented. The measurement technique is based on Stark spectroscopy, using a 2 + 1 excitation scheme with fluorescence dip detection. Electric fields can be measured by detecting Stark shifts of high-lying Rydberg

  1. Investigation of the Energy Balance in the Spark Discharge Generator for Nanoparticles Synthesis

    Science.gov (United States)

    Mylnikov, D. A.; Efimov, A. A.; Ivanov, V. V.

    2017-07-01

    In this paper we investigate the balance of energy in the discharge circuit of a spark discharge generator (SDG) for nanoparticles synthesis. The released energy consists of several parts: the energy in a discharge gap and the energy dissipated in the other elements of the circuit. In turn, in the gap a one part of the energy releases in preanode and precathode regions and the other part in an arc between electrodes. We measured these parts and proposed ways to optimize energy efficiency of the nanoparticles production.

  2. Specific features of a single-pulse sliding discharge in neon near the threshold for spark breakdown

    Science.gov (United States)

    Trusov, K. K.

    2017-08-01

    Experimental data on the spatial structure of a single-pulse sliding discharge in neon at voltages below, equal to, and above the threshold for spark breakdown are discussed. The experiments were carried at gas pressures of 30 and 100 kPa and different polarities of the discharge voltage. Photographs of the plasma structure in two discharge chambers with different dimensions of the discharge zone and different thicknesses of an alumina dielectric plate on the surface of which the discharge develops are inspected. Common features of the prebreakdown discharge and its specific features depending on the voltage polarity and gas pressure are analyzed. It is shown that, at voltages below the threshold for spark breakdown, a low-current glow discharge with cathode and anode spots develops in the electrode gap. Above the breakdown threshold, regardless of the voltage polarity, spark channels directed from the cathode to the anode develop against the background of a low-current discharge.

  3. Analysis on discharge process of a plasma-jet triggered gas spark switch

    Science.gov (United States)

    Weihao, TIE; Cui, MENG; Yuting, ZHANG; Zirang, YAN; Qiaogen, ZHANG

    2018-01-01

    The plasma-jet triggered gas switch (PJTGS) could operate at a low working coefficient with a low jitter. We observed and analyzed the discharge process of the PJTGS at the lowest working coefficient of 47% with the trigger voltage of 40 kV and the pulse energy of 2 J to evaluate the effect of the plasma jet. The temporal and spatial evolution and the optical emission spectrum of the plasma jet were captured. And the spraying delay time and outlet velocity under different gas pressures were investigated. In addition, the particle in cell with Monte Carlo collision was employed to obtain the particle distribution of the plasma jet varying with time. The results show that, the plasma jet generated by spark discharge is sprayed into a spark gap within tens of nanoseconds, and its outlet velocity could reach 104 m s-1. The plasma jet plays a non-penetrating inducing role in the triggered discharge process of the PJTGS. On the one hand, the plasma jet provides the initial electrons needed by the discharge; on the other hand, a large number of electrons focusing on the head of the plasma jet distort the electric field between the head of the plasma jet and the opposite electrode. Therefore, a fast discharge originated from the plasma jet is induced and quickly bridges two electrodes.

  4. Determination of trace amounts of impurities in molybdenum by spark source and glow discharge mass spectrometry

    International Nuclear Information System (INIS)

    Saito, Morimasa

    1994-01-01

    For the determination of trace and ultra-trace amounts of impurities in high-purity molybdenum, spark source mass spectrometry and glow discharge mass spectrometry were studied. In spark source mass spectrometry using the metal probe method, the liquid-helium cryogenic pump was used in order to protect the surface of the samples from oxidation. The theoretical relative sensitivity factors (Mo=1) calculated from physical properties were used. The analytical results obtained for molybdenum tablet and high-purity molybdenum were in good agreement with those obtained by other methods (atomic absorption spectrometry and others). In glow discharge mass spectrometry, the relative sensitivity factors were calculated by using the results obtained by spark source mass spectrometry and atomic absorption spectrometry, and this method was applied to the determination of ultra-trace amounts of impurities in ultra high-purity molybdenum and gave the satisfactory results. The detection limits (2σ, n=10) in the integration time of 600 s for U and Th were 0.6 ppb and 0.3 ppb, and the values for Al, Si, Cr, Mn and Cu were in the range of 10 ppb to 0.5 ppb. (author)

  5. Generation of mixed metallic nanoparticles from immiscible metals by spark discharge

    International Nuclear Information System (INIS)

    Tabrizi, N. S.; Xu, Q.; Pers, N. M. van der; Schmidt-Ott, A.

    2010-01-01

    Using a spark discharge system, we synthesized Ag-Cu, Pt-Au and Cu-W mixed particles a few nanometers in size. These combinations have miscibility gaps in the bulk form. The microsecond sparks between electrodes consisting of the respective materials, form a vapour cloud. Very fast quenching of the mixed vapour results in the formation of nanoparticles. To investigate the morphology, size, composition and structure of the particles, TEM, XRD analyses and EDS elemental mapping were performed on the samples. The average compositions were measured by ICP and the specific surface areas were determined by the BET. Our method produces Ag-Cu and Au-Pt mixed crystalline phases that do not exist in macroscopic samples. For Cu-W, alloying is not observed, and the metals are mixed on a scale of about 1 nm.

  6. Radiation-MHD simulations for the development of a spark discharge channel.

    Energy Technology Data Exchange (ETDEWEB)

    Niederhaus, John Henry; Jorgenson, Roy E.; Warne, Larry K.; Chen, Kenneth C.

    2017-04-01

    The growth of a cylindrical s park discharge channel in water and Lexan is studied using a series of one - dimensional simulations with the finite - element radiation - magnetohydrodynamics code ALEGRA. Computed solutions are analyzed in order to characterize the rate of growth and dynamics of the spark c hannels during the rising - current phase of the drive pulse. The current ramp rate is varied between 0.2 and 3.0 kA/ns, and values of the mechanical coupling coefficient K p are extracted for each case. The simulations predict spark channel expansion veloc ities primarily in the range of 2000 to 3500 m/s, channel pressures primarily in the range 10 - 40 GPa, and K p values primarily between 1.1 and 1.4. When Lexan is preheated, slightly larger expansion velocities and smaller K p values are predicted , but the o verall behavior is unchanged.

  7. Generating Carbon Tubes and Films from Lead and Cadmium Wires During Underwater Spark Discharges

    International Nuclear Information System (INIS)

    Taka-aki Matsumoto

    2000-01-01

    In general, no nuclear reactions between charged particles would be possible in a low-energy region. However, many experimental data of nuclear transmutation with low energy were recently reported related to so-called cold fusion. This paper describes some kinds of low-energy nuclear reactions (LENRs), which could be induced during an underwater spark discharge (USD) with only(approx)120 V. The mechanisms of the extraordinary nuclear transmutation can be explained by the Nattoh model. The electron bonding of sparks, which was a special state of atomic clusters, was so strong that multibody nuclear reactions such as nuclear collapse[called electro-nuclear collapse (ENC)] could take place in the spark. Because of ENC, completely broken materials could be again regenerated as conventional elements. The film product was considered to be made by a spherical explosion of a small black hole and the tube by a rotational eruption of a small white hole, both of which resulted from ENC

  8. Effects of solution volume on hydrogen production by pulsed spark discharge in ethanol solution

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Y. B.; Sun, B., E-mail: sunb88@dlmu.edu.cn; Zhu, X. M.; Yan, Z. Y.; Liu, H.; Liu, Y. J. [College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026 (China)

    2016-07-15

    Hydrogen production from ethanol solution (ethanol/water) by pulsed spark discharge was optimized by varying the volume of ethanol solution (liquid volume). Hydrogen yield was initially increased and then decreased with the increase in solution volume, which achieved 1.5 l/min with a solution volume of 500 ml. The characteristics of pulsed spark discharge were studied in this work; the results showed that the intensity of peak current, the rate of current rise, and energy efficiency of hydrogen production can be changed by varying the volume of ethanol solution. Meanwhile, the mechanism analysis of hydrogen production was accomplished by monitoring the process of hydrogen production and the state of free radicals. The analysis showed that decreasing the retention time of gas production and properly increasing the volume of ethanol solution can enhance the hydrogen yield. Through this research, a high-yield and large-scale method of hydrogen production can be achieved, which is more suitable for industrial application.

  9. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    OpenAIRE

    Pai , David ,; Lacoste , Deanna ,; Laux , C.

    2010-01-01

    International audience; In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determine...

  10. Influence of the capillary on the ignition of the transient spark discharge

    International Nuclear Information System (INIS)

    Gerling, T; Hoder, T; Brandenburg, R; Bussiahn, R; Weltmann, K-D

    2013-01-01

    A self-pulsing negative dc discharge in argon generated in a needle-to-plane geometry at open atmosphere is investigated. Additionally, the needle electrode can be surrounded by a quartz capillary. It is shown that the relative position of the capillary end to the needle tip strongly influences the discharge inception and its spatio-temporal dynamics. Without the capillary for the selected working parameters a streamer corona is ignited, but when the capillary surrounds the needle, the transient spark (TS) discharge is ignited after a pre-streamer (PS) occurs. The time between PS and TS discharge depends on the relative capillary end position. The existence of the PS is confirmed by electro-optical characterization. Furthermore, spectrally and spatio-temporally resolved cross-correlation spectroscopy is applied to show the most active region of pre-phase emission activity as indicators for high local electric field strength. The results indicate that with a capillary in place, the necessary energy input of the pre-phase into the system is mainly reduced by additional electrical fields at the capillary edge. Even such a small change as a shift of dielectric surface close to the plasma largely changes the energy balance in the system. (paper)

  11. Parameters for Fabricating Nano-Au Colloids through the Electric Spark Discharge Method with Micro-Electrical Discharge Machining.

    Science.gov (United States)

    Tseng, Kuo-Hsiung; Chung, Meng-Yun; Chang, Chaur-Yang

    2017-06-02

    In this study, the Electric Spark Discharge Method (ESDM) was employed with micro-electrical discharge machining (m-EDM) to create an electric arc that melted two electrodes in deionized water (DW) and fabricated nano-Au colloids through pulse discharges with a controlled on-off duration (T ON -T OFF ) and a total fabrication time of 1 min. A total of six on-off settings were tested under normal experimental conditions and without the addition of any chemical substances. Ultraviolet-visible spectroscopy (UV-Vis), Zetasizer Nano measurements, and scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analyses suggested that the nano-Au colloid fabricated at 10-10 µs (10 µs on, 10 µs off) had higher concentration and suspension stability than products made at other T ON -T OFF settings. The surface plasmon resonance (SPR) of the colloid was 549 nm on the first day of fabrication and stabilized at 532 nm on the third day. As the T ON -T OFF period increased, the absorbance (i.e., concentration) of all nano-Au colloids decreased. Absorbance was highest at 10-10 µs. The SPR peaks stabilized at 532 nm across all T ON -T OFF periods. The Zeta potential at 10-10 µs was -36.6 mV, indicating that no nano-Au agglomeration occurred and that the particles had high suspension stability.

  12. Study of aerosol jet printing with dry nanoparticles synthesized by spark discharge

    Science.gov (United States)

    Efimov, A. A.; Arsenov, P. V.; Volkov, I. A.; Urazov, M. N.; Ivanov, V. V.

    2017-11-01

    A new method of aerosol jet printing utilizing dry (solvent-free) airborne nanoparticles generated by spark discharge is proposed. This method was applied to fabricate thin conducting lines (60-160 μm) composed of silver nanoparticles on the surface of glass substrates. It has been demonstrated that the line width is determined by a sheath flow rate, while its thickness and cross-sectional area can be scaled up by a number of printing runs. The resistivity of printed lines after the annealing was found to be five times higher than that of bulk silver that is attributed to the porosity and the interparticle contact resistance. The proposed method holds promise for the application in technologies of printed electronics.

  13. Colloidal silver fabrication using the spark discharge system and its antimicrobial effect on Staphylococcus aureus.

    Science.gov (United States)

    Tien, Der-Chi; Tseng, Kuo-Hsiung; Liao, Chih-Yu; Tsung, Tsing-Tshih

    2008-10-01

    Nanoscale techniques for silver production may assist the resurgence of the medical use of silver, especially given that pathogens are showing increasing resistance to antibiotics. Traditional chemical synthesis methods for colloidal silver (CS) may lead to the presence of toxic chemical species or chemical residues, which may inhibit the effectiveness of CS as an antibacterial agent. To counter these problems a spark discharge system (SDS) was used to fabricate a suspension of colloidal silver in deionized water with no added chemical surfactants. SDS-CS contains both metallic silver nanoparticles (Ag(0)) and ionic silver forms (Ag(+)). The antimicrobial affect of SDS-CS on Staphylococcus aureus was studied. The results show that CS solutions with an ionic silver concentration of 30 ppm or higher are strong enough to destroy S. aureus. In addition, it was found that a solution's antimicrobial potency is directly related to its level of silver ion concentration.

  14. Space and time resolved observations of hot spots dynamics in a vacuum spark discharge

    International Nuclear Information System (INIS)

    Chuaqui, H.; Favre, M.; Saavedra, R.; Wyndham, E.

    1996-01-01

    Experimental observations of the plasma formations in a vacuum spark discharge are presented. A low power Nd:YAG laser pulse incident onto a titanium cathode initiates the discharge. The evolution of the titanium plasma electron density and temperature is followed both in the visible and the soft X-ray part of the spectrum. The former uses a novel micro holographic interferometric technique permitting a spatial resolution better than 20 μm. The probing beam is a 6 ns frequency doubled Nd:YAG laser. The latter emission is resolved using a number of different methods. The spatial information is derived from a 1 ns multi framing camera X-ray camera which projects the plasma image using four different slit wire pinhole images and six pinhole images, each aperture being filtered differently. The temporal evolution of the emission of each discharge is followed using several silicon PIN diodes. The x-ray spectrum is unfolded from the filter and detector response and interpreted using a collisional radiative package. The hot spots are seen to form in a submillimeter pinch stemming from the incident laser focus which has a life time about 20 ns. The hot spots are much shorter events, reaching substantially higher densities, but involve only part of the line density of the pinch column. (author). 4 figs., 8 refs

  15. Space and time resolved observations of hot spots dynamics in a vacuum spark discharge

    Energy Technology Data Exchange (ETDEWEB)

    Chuaqui, H; Favre, M; Saavedra, R; Wyndham, E [Universidad Catolica de Chile, Santiago (Chile). Facultad de Fisica; Choi, P; Dumitrescu-Zoita, C [Ecole Polytechnique, Palaiseau (France). Laboratoire de Physique des Milieux Ionises; Soto, L [Comision Chilena de Energia Nuclear, Santiago (Chile)

    1997-12-31

    Experimental observations of the plasma formations in a vacuum spark discharge are presented. A low power Nd:YAG laser pulse incident onto a titanium cathode initiates the discharge. The evolution of the titanium plasma electron density and temperature is followed both in the visible and the soft X-ray part of the spectrum. The former uses a novel micro holographic interferometric technique permitting a spatial resolution better than 20 {mu}m. The probing beam is a 6 ns frequency doubled Nd:YAG laser. The latter emission is resolved using a number of different methods. The spatial information is derived from a 1 ns multi framing camera X-ray camera which projects the plasma image using four different slit wire pinhole images and six pinhole images, each aperture being filtered differently. The temporal evolution of the emission of each discharge is followed using several silicon PIN diodes. The x-ray spectrum is unfolded from the filter and detector response and interpreted using a collisional radiative package. The hot spots are seen to form in a submillimeter pinch stemming from the incident laser focus which has a life time about 20 ns. The hot spots are much shorter events, reaching substantially higher densities, but involve only part of the line density of the pinch column. (author). 4 figs., 8 refs.

  16. Silver carbonate and stability in colloidal silver: A by-product of the electric spark discharge method

    International Nuclear Information System (INIS)

    Tseng, Kuo-Hsiung; Liao, Chih-Yu; Tien, Der-Chi

    2010-01-01

    Many methods of producing colloidal silver (CS) include the introduction of surfactants to improve the suspensivity of the silver particles. The electric spark discharge method (ESDM) which involves pulses of direct current being passed through a silver electrode submerged in deionized water has been shown to successfully produce colloidal silver in a stable suspension without the use of chemical additives. A by-product of the electric spark discharge method, a silver ion compound (AgX), is shown to be the cause of the high suspensivity of the silver nanoparticles (AgNPs). The silver ion compound has been identified as Ag 2 CO 3 using X-ray diffraction, and it has been determined that the Ag 2 CO 3 is formed during the electric spark discharge process through a reaction with atmospheric CO 2 . It has been shown that an Ag 2 CO 3 concentration of 10 ppm or more is sufficient to generate a stable suspension of silver particles. Because of the occurrence of Ag 2 CO 3 , the electric spark discharge method can produce stable colloidal silver.

  17. Bent paths of a positive streamer and a cathode-directed spark leader in diffuse discharges preionized by runaway electrons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Cheng; Shao, Tao, E-mail: st@mail.iee.ac.cn; Wang, Ruixue; Yan, Ping [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Tarasenko, Viktor F.; Beloplotov, Dmitry V.; Lomaev, Mikhail I.; Sorokin, Dmitry A. [Institute of High Current Electronics, Russian Academy of Science, Tomsk 634055 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk 634050 (Russian Federation)

    2015-03-15

    Diffuse discharges preionized by runaway electrons can produce large-area homogeneous discharges at elevated pressures, which is an intriguing phenomenon in the physics of pulsed discharges. In this paper, runaway-electron-preionized diffuse discharge (REP DD) was obtained in a wide pressure range (0.05–0.25 MPa), and under certain conditions a positive streamer and a cathode-directed spark leader could be observed to propagate at some angles to the applied (background) electric field lines. For a 16-mm gap at an air pressure of 0.08–0.1 MPa, the percentage of pulses in which such propagation is observed is about 5%–50% of their total number, and in the other pulses such bent paths could not be observed because there is even no streamer or cathode-directed spark leader in diffuse discharges. In our opinion, such propagation of the positive streamer and the cathode-directed spark leader at some angle to the background electric field lines owes to different increase rates of the electron density in different regions of the discharge volume under REP DD conditions. Therefore, during the formation of a REP DD, the increase of the electron density is inhomogeneous and nonsimultaneous, resulting in an electron density gradient at the ionization wave front.

  18. Bent paths of a positive streamer and a cathode-directed spark leader in diffuse discharges preionized by runaway electrons

    International Nuclear Information System (INIS)

    Zhang, Cheng; Shao, Tao; Wang, Ruixue; Yan, Ping; Tarasenko, Viktor F.; Beloplotov, Dmitry V.; Lomaev, Mikhail I.; Sorokin, Dmitry A.

    2015-01-01

    Diffuse discharges preionized by runaway electrons can produce large-area homogeneous discharges at elevated pressures, which is an intriguing phenomenon in the physics of pulsed discharges. In this paper, runaway-electron-preionized diffuse discharge (REP DD) was obtained in a wide pressure range (0.05–0.25 MPa), and under certain conditions a positive streamer and a cathode-directed spark leader could be observed to propagate at some angles to the applied (background) electric field lines. For a 16-mm gap at an air pressure of 0.08–0.1 MPa, the percentage of pulses in which such propagation is observed is about 5%–50% of their total number, and in the other pulses such bent paths could not be observed because there is even no streamer or cathode-directed spark leader in diffuse discharges. In our opinion, such propagation of the positive streamer and the cathode-directed spark leader at some angle to the background electric field lines owes to different increase rates of the electron density in different regions of the discharge volume under REP DD conditions. Therefore, during the formation of a REP DD, the increase of the electron density is inhomogeneous and nonsimultaneous, resulting in an electron density gradient at the ionization wave front

  19. Fabricating TiO2 nanocolloids by electric spark discharge method at normal temperature and pressure

    Science.gov (United States)

    Tseng, Kuo-Hsiung; Chang, Chaur-Yang; Chung, Meng-Yun; Cheng, Ting-Shou

    2017-11-01

    In this study, TiO2 nanocolloids were successfully fabricated in deionized water without using suspending agents through using the electric spark discharge method at room temperature and under normal atmospheric pressure. This method was exceptional because it did not create nanoparticle dispersion and the produced colloids contained no derivatives. The proposed method requires only traditional electrical discharge machines (EDMs), self-made magnetic stirrers, and Ti wires (purity, 99.99%). The EDM pulse on time (T on) and pulse off time (T off) were respectively set at 50 and 100 μs, 100 and 100 μs, 150 and 100 μs, and 200 and 100 μs to produce four types of TiO2 nanocolloids. Zetasizer analysis of the nanocolloids showed that a decrease in T on increased the suspension stability, but there were no significant correlations between T on and particle size. Colloids produced from the four production configurations showed a minimum particle size between 29.39 and 52.85 nm and a zeta-potential between -51.2 and -46.8 mV, confirming that the method introduced in this study can be used to produce TiO2 nanocolloids with excellent suspension stability. Scanning electron microscopy with energy dispersive spectroscopy also indicated that the TiO2 colloids did not contain elements other than Ti and oxygen.

  20. Fabricating TiO2 nanocolloids by electric spark discharge method at normal temperature and pressure.

    Science.gov (United States)

    Tseng, Kuo-Hsiung; Chang, Chaur-Yang; Chung, Meng-Yun; Cheng, Ting-Shou

    2017-11-17

    In this study, TiO 2 nanocolloids were successfully fabricated in deionized water without using suspending agents through using the electric spark discharge method at room temperature and under normal atmospheric pressure. This method was exceptional because it did not create nanoparticle dispersion and the produced colloids contained no derivatives. The proposed method requires only traditional electrical discharge machines (EDMs), self-made magnetic stirrers, and Ti wires (purity, 99.99%). The EDM pulse on time (T on ) and pulse off time (T off ) were respectively set at 50 and 100 μs, 100 and 100 μs, 150 and 100 μs, and 200 and 100 μs to produce four types of TiO 2 nanocolloids. Zetasizer analysis of the nanocolloids showed that a decrease in T on increased the suspension stability, but there were no significant correlations between T on and particle size. Colloids produced from the four production configurations showed a minimum particle size between 29.39 and 52.85 nm and a zeta-potential between -51.2 and -46.8 mV, confirming that the method introduced in this study can be used to produce TiO 2 nanocolloids with excellent suspension stability. Scanning electron microscopy with energy dispersive spectroscopy also indicated that the TiO 2 colloids did not contain elements other than Ti and oxygen.

  1. Analysis of the process of raising the temperature in the spark channel at a discharge in gas

    CERN Document Server

    Korytchenko, K V; Chumakov, V I

    2001-01-01

    Analysis of the process of raising the temperature in the spark channel at a discharge in gas is performed. The quantitative evaluation was made in main for the air. The effect of steadying a thermodynamic equilibrium in gas,as well as the influence of power discharge parameters on the process of temperature increasing was analyzed. The quantitative evaluation of time parameters of the processes of rotary, oscillatory relaxation, dissociation and ionization has allowed to reveal the influence of each of them on temperature increasing in the spark channel. The problems arising in the course of practical realization of a spark discharge which influence on the process of temperature raising are detected,and the ways for their solution are determined. The results obtained can be put in a basis of developing the methods to design devices for intensive increase of temperatures in gas media using the electrical discharge,as well as for analysis of a dependence of shock wave intensity on dynamic parameters of the ele...

  2. Primordial Synthesis of Amines and Amino Acids in a 1958 Miller H2S-Rich Spark Discharge Experiment

    Science.gov (United States)

    Parker, Eric T.; Cleaves, Henderson J.; Dworkin, Jason P.; Glavin, Daniel P.; Callahan, Michael; Aubrey, Andrew; Lazcano, Antonio; Bada, Jeffrey L.

    2011-01-01

    Archived samples from a previously unreported 1958 Stanley Miller electric discharge experiment containing hydrogen sulfide (H2S) were recently discovered and analyzed using high-performance liquid chromatography and time-of-flight mass spectrometry. We report here the detection and quantification of primary amine-containing compounds in the original sample residues, which were produced via spark discharge using a gaseous mixture of H2S, CH4, NH3, and CO2. A total of 23 amino acids and 4 amines, including 7 organosulfur compounds, were detected in these samples. The major amino acids with chiral centers are racemic within the accuracy of the measurements, indicating that they are not contaminants introduced during sample storage. This experiment marks the first synthesis of sulfur amino acids from spark discharge experiments designed to imitate primordia! environments. The relative yield of some amino acids, in particular the isomers of aminobutyric acid, are the highest ever found in a spark discharge experiment. The simulated primordial conditions used by Miller may serve as a model for early volcanic plume chemistry and provide insight to the possible roles such plumes may have played in abiotic organic synthesis. Additionally, the overall abundances of the synthesized amino acids in the presence of H2S are very similar to the abundances found in some carbonaceous meteorites, suggesting that H2S may have played an important role in prebiotic reactions in early solar system environments.

  3. Large-volume excitation of air, argon, nitrogen and combustible mixtures by thermal jets produced by nanosecond spark discharges

    Science.gov (United States)

    Stepanyan, Sergey; Hayashi, Jun; Salmon, Arthur; Stancu, Gabi D.; Laux, Christophe O.

    2017-04-01

    This work presents experimental observations of strong expanding thermal jets following the application of nanosecond spark discharges. These jets propagate in a toroidal shape perpendicular to the interelectrode axis, with high velocities of up to 30 m s-1 and over distances of the order of a cm. Their propagation length is much larger than the thermal expansion region produced by the conventional millisecond sparks used in car engine ignition, thus greatly improving the volumetric excitation of gas mixtures. The shape and velocity of the jets is found to be fairly insensitive to the shape of the electrodes. In addition, their spatial extent is found to increase with the number of nanosecond sparks and with the discharge voltage, and to decrease slightly with the pressure between 1 and 7 atm at constant applied voltage. Finally, this thermal jet phenomenon is observed in experiments conducted with many types of gas mixtures, including air, nitrogen, argon, and combustible CH4/air mixtures. This makes nanosecond repetitively pulsed discharges particularly attractive for aerodynamic flow control or plasma-assisted combustion because of their ability to excite large volumes of gas, typically about 100 times the volume of the discharge.

  4. Comparison of Nitrogen Incorporation in Tholins Produced by FUV Irradiation and Spark Discharge

    Science.gov (United States)

    Horst, S. M.; DeWitt, H. L.; Trainer, M. G.; Tolbert, M. A.

    2012-01-01

    The discovery of very heavy ions (Coates et al., 2007) in Titan's thermosphere has dramatically altered our understanding of the processes involved in the formation of the complex organic aerosols that comprise Titan's characteristic haze. Before Cassini's arrival, it was believed that aerosol production began in the stratosphere where the chemical processes were predominantly initiated by FUV radiation. This understanding guided the design of Titan atmosphere simulation experiments. However, the energy environment of the thermosphere is significantly different than the stratosphere; in particular there is a greater flux of EUV photons and energetic particles available to initiate chemical reactions, including the destruction of N2. in the upper atmosphere. Using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS), we have obtained in situ composition measurements of aerosol particles (so'called "tholins") produced in CH4/N2 gas mixtures subjected to either FUV radiation (deuterium lamp, 115-400 nm) (Trainer et al., 2012) or a spark discharge. A comparison of the composition of tholins produced using the two different energy sources will be presented, in particular with regard to the variation in nitrogen content of the two types of tholin. Titan's aerosols are known to contain significant amounts of nitrogen (Israel et al., 2005) and therefore understanding the role of nitrogen in the aerosol chemistry is important to further our knowledge of the formation and evolution of aerosols in Titan's atmosphere.

  5. Miller-Urey spark-discharge experiments in the deuterium world

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Geoffrey J.T.; Surman, Andrew J.; McIver, Jim; Colon-Santos, Stephanie M.; Gromski, Piotr S.; Buchwald, Saskia; Suarez Marina, Irene; Cronin, Leroy [WestCHEM, School of Chemistry, University of Glasgow (United Kingdom)

    2017-07-03

    We designed and conducted a series of primordial-soup Miller-Urey style experiments with deuterated gases and reagents to compare the spark-discharge products of a ''deuterated world'' with the standard reaction in the ''hydrogenated world''. While the deuteration of the system has little effect on the distribution of amino acid products, significant differences are seen in other regions of the product-space. Not only do we observe about 120 new species, we also see significant differences in their distribution if the two hydrogen isotope worlds are compared. Several isotopologue matches can be identified in both, but a large proportion of products have no equivalent in the corresponding isotope world with ca. 43 new species in the D world and ca. 39 new species in the H world. This shows that isotopic exchange (the addition of only one neutron) may lead to significant additional complexity in chemical space under otherwise identical reaction conditions. (copyright 2017 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  6. Generation of copper, nickel, and CuNi alloy nanoparticles by spark discharge

    International Nuclear Information System (INIS)

    Muntean, Alex; Wagner, Moritz; Meyer, Jörg; Seipenbusch, Martin

    2016-01-01

    The generation of copper, nickel, and copper-nickel alloy nanoparticles by spark discharge was studied, using different bespoke alloy feedstocks. Roughly spherical particles with a primary particle Feret diameter of 2–10 nm were produced and collected in agglomerate form. The copper-to-nickel ratios determined by Inductively coupled plasma mass spectrometry (ICP-MS), and therefore averaged over a large number of particles, matched the nominal copper content quite well. Further investigations showed that the electrode compositions influenced the evaporation rate and the primary particle size. The evaporation rate decreased with increasing copper content, which was found to be in good accordance with the Llewellyn-Jones model. However, the particle diameter was increasing with an increasing copper content, caused by a decrease in melting temperature due to the lower melting point of copper. Furthermore, the alloy compositions on the nanoscale were investigated via EDX. The nanoparticles exhibited almost the same composition as the used alloy feedstock, with a deviation of less than 7 percentage points. Therefore, no segregation could be detected, indicating the presence of a true alloy even on the nanoscale.

  7. Infrequent Expression of the Cancer-Testis Antigen, PASD1, in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Ghazala Khan

    2015-01-01

    Full Text Available Ovarian cancer is very treatable in the early stages of disease; however, it is usually detected in the later stages, at which time, treatment is no longer as effective. If discovered early (Stage I, there is a 90% chance of five-year survival. Therefore, it is imperative that early-stage biomarkers are identified to enhance the early detection of ovarian cancer. Cancer-testis antigens (CTAs, such as Per ARNT SIM (PAS domain containing 1 (PASD1, are unique in that their expression is restricted to immunologically restricted sites, such as the testis and placenta, which do not express MHC class I, and cancer, making them ideally positioned to act as targets for immunotherapy as well as potential biomarkers for cancer detection where expressed. We examined the expression of PASD1a and b in a number of cell lines, as well as eight healthy ovary samples, eight normal adjacent ovarian tissues, and 191 ovarian cancer tissues, which were predominantly stage I ( n = 164 and stage II ( n = 14 disease. We found that despite the positive staining of skin cancer, only one stage Ic ovarian cancer patient tissue expressed PASD1a and b at detectable levels. This may reflect the predominantly stage I ovarian cancer samples examined. To examine the restriction of PASD1 expression, we examined endometrial tissue arrays and found no expression in 30 malignant tumor tissues, 23 cases of hyperplasia, or 16 normal endometrial tissues. Our study suggests that the search for a single cancer-testes antigen/biomarker that can detect early ovarian cancer must continue.

  8. Nitrogen Heterocycles in Miller-Urey Spark-Discharge Mixtures: Using Chemical Trends to Elucidate Plausible Pre-RNAs on the Early Earth

    Science.gov (United States)

    Rodriguez, L. E.; House, C. H.; Callahan, M. P.

    2017-07-01

    We incubated 53 nitrogen heterocycles with spark-discharge mixtures and found that they react with only a handful of nitriles to yield adducts that may polymerize. Whether these adducts can form a monomer of Peptide Nucleic Acid was investigated.

  9. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    Science.gov (United States)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-05-01

    In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.

  10. Enhanced shock wave generation via pre-breakdown acceleration using water electrolysis in negative streamer pulsed spark discharges

    Science.gov (United States)

    Lee, Kern; Chung, Kyoung-Jae; Hwang, Y. S.

    2018-03-01

    This paper presents a method for enhancement of shock waves generated from underwater pulsed spark discharges with negative (anode-directed) subsonic streamers, for which the pre-breakdown process is accelerated by preconditioning a gap with water electrolysis. Hydrogen microbubbles are produced at the cathode by the electrolysis and move towards the anode during the preconditioning phase. The numbers and spatial distributions of the microbubbles vary with the amplitude and duration of each preconditioning pulse. Under our experimental conditions, the optimum pulse duration is determined to be ˜250 ms at a pulse voltage of 400 V, where the buoyancy force overwhelms the electric force and causes the microbubbles to be swept out from the water gap. When a high-voltage pulse is applied to the gap just after the preconditioning pulse, the pre-breakdown process is significantly accelerated in the presence of the microbubbles. At the optimum preconditioning pulse duration, the average breakdown delay is reduced by 87% and, more importantly, the energy consumed during the pre-breakdown period decreases by 83%. This reduced energy consumption during the pre-breakdown period, when combined with the morphological advantages of negative streamers, such as thicker and longer stalks, leads to a significant improvement in the measured peak pressure (˜40%) generated by the underwater pulsed spark discharge. This acceleration of pre-breakdown using electrolysis overcomes the biggest drawback of negative subsonic discharges, which is slow vapor bubble formation due to screening effects, and thus enhances the efficiency of the shock wave generation process using pulsed spark discharges in water.

  11. Spark Channels

    Energy Technology Data Exchange (ETDEWEB)

    Haydon, S. C. [Department of Physics, University of New England, Armidale, NSW (Australia)

    1968-04-15

    A brief summary is given of the principal methods used for initiating spark channels and the various highly time-resolved techniques developed recently for studies with nanosecond resolution. The importance of the percentage overvoltage in determining the early history and subsequent development of the various phases of the growth of the spark channel is discussed. An account is then given of the recent photographic, oscillographic and spectroscopic investigations of spark channels initiated by co-axial cable discharges of spark gaps at low [{approx} 1%] overvoltages. The phenomena observed in the development of the immediate post-breakdown phase, the diffuse glow structure, the growth of the luminous filament and the final formation of the spark channel in hydrogen are described. A brief account is also given of the salient features emerging from corresponding studies of highly overvolted spark gaps in which the spark channel develops from single avalanche conditions. The essential differences between the two types of channel formation are summarized and possible explanations of the general features are indicated. (author)

  12. Transformation of atmospheric components near a spark discharge at the anode polarization of a metallic electrode hanging over a solution

    Science.gov (United States)

    Orlov, A. M.; Yavtushenko, I. O.; Bodnarskii, D. S.

    2013-03-01

    The variation of the pressure of a gas phase activated by spark discharges between an aqueous electrolyte solution (liquid cathode) and a metallic electrode (anode) hanging over the solution is studied. A mathematical model of the proceeding reaction kinetics is constructed, and the variation of the partial pressures of all initial and produced components in the gas phase is calculated. Both the Faraday and non-Faraday mechanisms of gas component production from water are confirmed. It is found that a large overhanging drop responsible for additional supply of simultaneously produced H2 and O2 molecules forms rapidly at the end face of the anodically polarized electrode.

  13. Application of Pulse Spark Discharges for Scale Prevention and Continuous Filtration Methods in Coal-Fired Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young; Fridman, Alexander

    2012-06-30

    The overall objective of the present work was to develop a new scale-prevention technology by continuously precipitating and removing dissolved mineral ions (such as calcium and magnesium) in cooling water while the COC could be doubled from the present standard value of 3.5. The hypothesis of the present study was that if we could successfully precipitate and remove the excess calcium ions in cooling water, we could prevent condenser-tube fouling and at the same time double the COC. The approach in the study was to utilize pulse spark discharges directly in water to precipitate dissolved mineral ions in recirculating cooling water into relatively large suspended particles, which could be removed by a self-cleaning filter. The present study began with a basic scientific research to better understand the mechanism of pulse spark discharges in water and conducted a series of validation experiments using hard water in a laboratory cooling tower. Task 1 of the present work was to demonstrate if the spark discharge could precipitate the mineral ions in water. Task 2 was to demonstrate if the selfcleaning filter could continuously remove these precipitated calcium particles such that the blowdown could be eliminated or significantly reduced. Task 3 was to demonstrate if the scale could be prevented or minimized at condenser tubes with a COC of 8 or (almost) zero blowdown. In Task 1, we successfully completed the validation study that confirmed the precipitation of dissolved calcium ions in cooling water with the supporting data of calcium hardness over time as measured by a calcium ion probe. In Task 2, we confirmed through experimental tests that the self-cleaning filter could continuously remove precipitated calcium particles in a simulated laboratory cooling tower such that the blowdown could be eliminated or significantly reduced. In addition, chemical water analysis data were obtained which were used to confirm the COC calculation. In Task 3, we conducted a series

  14. Sb/O nano-composites produced via Spark Discharge Generation for Li-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Simonin, L.; Lafont, U.; Tabrizi, N.; Schmidt-Ott, A.; Kelder, E.M. [TUDelft NanoStructured Matrials DelftChemTech, Julianalaan 136, 2628 BL Delft (Netherlands)

    2007-12-06

    Spark Discharge Generation (SDG) was used to produce powders of 10-20 nm of Sb and antimony oxides. Different composite materials with different textures were obtained either with an amorphous passive layer of antimony oxide or with crystalline cubic Sb{sub 2}O{sub 3}. The composition and shape of the different mixtures, depending on the production and collection conditions, were analysed via XRD and HRTEM coupled with EDX. The effect of the nature and the content of the oxides on the electrode performances were studied using Swagelok cells, cycled galvanostatically with a MACCOR cycler. (author)

  15. Spark discharge and flame inception analysis through spectroscopy in a DISI engine fuelled with gasoline and butanol

    Science.gov (United States)

    Irimescu, A.; Merola, S. S.

    2017-10-01

    Extensive application of downsizing, as well as the application of alternative combustion control with respect to well established stoichiometric operation, have determined a continuous increase in the energy that is delivered to the working fluid in order to achieve stable and repeatable ignition. Apart from the complexity of fluid-arc interactions, the extreme thermodynamic conditions of this initial combustion stage make its characterization difficult, both through experimental and numerical techniques. Within this context, the present investigation looks at the analysis of spark discharge and flame kernel formation, through the application of UV-visible spectroscopy. Characterization of the energy transfer from the spark plug’s electrodes to the air-fuel mixture was achieved by the evaluation of vibrational and rotational temperatures during ignition, for stoichiometric and lean fuelling of a direct injection spark ignition engine. Optical accessibility was ensured from below the combustion chamber through an elongated piston design, that allowed the central region of the cylinder to be investigated. Fuel effects were evaluated for gasoline and n-butanol; roughly the same load was investigated in throttled and wide-open throttle conditions for both fuels. A brief thermodynamic analysis confirmed that significant gains in efficiency can be obtained with lean fuelling, mainly due to the reduction of pumping losses. Minimal effect of fuel type was observed, while mixture strength was found to have a stronger influence on calculated temperature values, especially during the initial stage of ignition. In-cylinder pressure was found to directly determine emission intensity during ignition, but the vibrational and rotational temperatures featured reduced dependence on this parameter. As expected, at the end of kernel formation, temperature values converged towards those typically found for adiabatic flames. The results show that indeed only a relatively small part

  16. Studies on discharges in Micro Pattern Gaseous Detectors, towards a spark resistant THGEM detector

    CERN Document Server

    Cantini, Cosimo; De Oliveira, Rui

    The problem afflicting any of MPGDs is the phenomenon of discharging which might be destructive in some highly energetic cases, at least being responsible of a slow aging of the detector. So far one solution has been cascading several gain elements (GEM, THGEM detectors) reducing the gain of each one; this method, spreading the charges along their path, reduce effectively the likelihood of a discharge but introduce more material due to the multiple stages of amplification. Our goal is developing a single stage THGEM detector which could withstand discharges, not reducing the gain, hence being still able to amplify low level ionizing particles while implementing some methodologies to reduce the damages due to discharge induced by high rate of particles’ flux and/or highly ionizing particles. This report describes the test bench set up to study discharges between simple structures, which are actually models of the bigger detector. The idea behind this approach is to reduce the complexity of the whole phenomen...

  17. Energy Efficiency and Scalability of Metallic Nanoparticle Production Using Arc/Spark Discharge

    Directory of Open Access Journals (Sweden)

    Martin Slotte

    2017-10-01

    Full Text Available The increased global demand for metallic nanoparticles for an ever growing number of applications has given rise to a need for larger scale and more efficient nanoparticle (NP production processes. In this paper one such process is evaluated from the viewpoints of scalability and energy efficiency. Multiple setups of different scale of an arc/spark process were evaluated for energy efficiency and scalability using exergy analysis, heat loss evaluation and life cycle impact assessment, based on data collected from EU FP7 project partners. The energy efficiency of the process is quite low, with e.g., a specific electricity consumption (SEC of producing ~80 nm copper NP of 180 kWh/kg while the thermodynamic minimum energy need is 0.03 kWh/kg. This is due to thermal energy use characteristics of the system. During scale-up of the process the SEC remained similar to that of smaller setups. Loss of NP mass in the tubing of larger setups gives a lower material yield. The variation in material yield has a significant impact on the life cycle impact for the produced NP in both the Human Health and Ecosystem Quality categories while the impact is smaller in the Global Warming and Resource Depletion categories.

  18. Preparation of Ag/Cu/Ti Nanofluids by Spark Discharge System and Its Control Parameters Study

    Directory of Open Access Journals (Sweden)

    Kuo-Hsiung Tseng

    2015-01-01

    Full Text Available This study selected silver, copper, and titanium as the research objects to explore the relationship between nanofluids properties and electrical discharge machining (EDM processes. Regarding the products, UV-visible spectroscopy (UV-Vis was applied to measure the concentration distribution of nanofluids; zeta-size analysis is applied for measuring nanometal particles’ Zeta-Potential and the size distribution of metallic particles in the fluid. Finally, various instruments, including scanning electron microscope (SEM, were applied to observe the shape, size, and composition ratio of metal particles after processing. According to the experimental results, the control of the discharge pulse time, in addition to affecting the concentration of metallic liquid and temperature in the process, affects the size of the metal particles after the process. As the resistivity of silver and copper is very low, at about 15×10-9 Ω·m, if TON is set to between 10~50 μs, good preparation efficiency can be obtained. The resistivity of titanium is 420×10-9 Ω·m, which is much larger than that of silver or copper. Hence, TON should be set to approximately 100 μs to achieve a good discharge success rate.

  19. Electrical properties of airborne nanoparticles produced by a commercial spark-discharge generator

    Energy Technology Data Exchange (ETDEWEB)

    Bau, S., E-mail: sebastien.bau@inrs.fr; Witschger, O. [Laboratoire de Metrologie des Aerosols, Institut National de Recherche et de Securite, INRS (France); Gensdarmes, F. [IRSN, Laboratoire de Physique et de Metrologie des Aerosols, Institut de Radioprotection et de Surete Nucleaire (France); Thomas, D. [LSGC/CNRS, Nancy Universite, Laboratoire des Sciences du Genie Chimique (France); Borra, J.-P. [Equipe Decharges Electriques et Procedes Aerosols, Laboratoire de Physique des Gaz et des Plasmas (France)

    2010-08-15

    A nanoparticle generator based on the principle of electrical discharge (PALAS GFG-1000) was used to produce nanoparticles of different chemical natures. The fractions of electrically neutral particles were then measured by means of a Spectrometre de Mobilite Electrique Circulaire (SMEC, i.e. radial-flow mobility analyzer) for different operating conditions. The experimental results were compared with the theoretical values calculated from the Fuchs extended charge equilibrium model for spherical particles and agglomerates. For the smallest particles (below 20 nm), the deviations observed remain below 10%, and tend towards 20% for larger particles (over 35 nm).

  20. Electric spark discharges in water. Low-energy nuclear transmutations and light leptonic magnetic monopoles in an extended standard model

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Harald [Tuebingen Univ. (Germany). Inst. of Theoretical Physics

    2017-11-01

    Light leptonic magnetic monopoles were predicted by Lochak [G. Lochak, Intern. J. Theor. Phys. 24, 1019 (1985).]. Experimental indications based on nuclear transmutations were announced by Urutskoiev et al. [L. I. Urutskoiev, V. I. Liksonov, V. G. Tsinoev, Ann. Fond. L. de Broglie 27, Nr.4, 791 (2002).] and Urutskoev [L. J. Urutskoev, Ann. Fond. L. de Broglie 29, 1149 (2004).]. A theoretical interpretation of these transmutations is proposed under the assumption that light leptonic magnetic monopoles are created during spark discharges in water. The latter should be excited neutrinos according to Lochak. This hypothesis enforces the introduction of an extended Standard Model described in previous papers. The most important results of this study are (i) that multiple proton captures are responsible for the variety of transmutations and that leptonic magnetic monopoles are involved in these processes (ii) that electromagnetic duality can be established for bound states of leptonic monopoles although massive monopoles are in general unstable (iii) that criteria for the emission of leptonic magnetic monopoles and for their catalytic effect on weak decays are set up and elaborated. The study can be considered as a contribution to the efforts of Urutskoiev and Lochak to understand the reasons for accidents in power plants.

  1. Electric Spark Discharges in Water. Low-energy Nuclear Transmutations and Light Leptonic Magnetic Monopoles in an Extended Standard Model

    Science.gov (United States)

    Stumpf, Harald

    2017-08-01

    Light leptonic magnetic monopoles were predicted by Lochak [G. Lochak, Intern. J. Theor. Phys. 24, 1019 (1985).]. Experimental indications based on nuclear transmutations were announced by Urutskoiev et al. [L. I. Urutskoiev, V. I. Liksonov, V. G. Tsinoev, Ann. Fond. L. de Broglie 27, Nr.4, 791 (2002).] and Urutskoev [L. J. Urutskoev, Ann. Fond. L. de Broglie 29, 1149 (2004).]. A theoretical interpretation of these transmutations is proposed under the assumption that light leptonic magnetic monopoles are created during spark discharges in water. The latter should be excited neutrinos according to Lochak. This hypothesis enforces the introduction of an extended Standard Model described in previous papers. The most important results of this study are (i) that multiple proton captures are responsible for the variety of transmutations and that leptonic magnetic monopoles are involved in these processes (ii) that electromagnetic duality can be established for bound states of leptonic monopoles although massive monopoles are in general unstable (iii) that criteria for the emission of leptonic magnetic monopoles and for their catalytic effect on weak decays are set up and elaborated. The study can be considered as a contribution to the efforts of Urutskoiev and Lochak to understand the reasons for accidents in power plants.

  2. Microstructure of the regions on a plane copper electrode surface affected by a spark discharge in air in the point-plane gap

    Science.gov (United States)

    Tren'kin, A. A.; Karelin, V. I.; Shibitov, Yu. M.; Blinova, O. M.; Yasnikov, I. S.

    2017-09-01

    The microstructure of the regions affected by spark discharge on the surface of a plane copper electrode in atmospheric air in the point-plane gap has been studied using a scanning electron microscope for both the positive and negative polarity of the point electrode. It has been found that the affected regions have the shape of round spots or groups of spots with diameters of individual spots varying in the range of 20-200 μm. It has been revealed that the spots have an internal spatial structure in the form of an aggregate of concentric rings. These rings are aggregates of a large number of microscopic craters with diameters of 0.1-1.0 μm.

  3. Pressure dependence of the spark constant

    Energy Technology Data Exchange (ETDEWEB)

    Hess, H; Radtke, R; Deparade, W [Akademie der Wissenschaften der DDR, Berlin. Zentralinstitut fuer Elektronenphysik

    1978-02-21

    The author's theory on the development of LTE plasmas in low-inductance spark discharges has proved to be a useful tool in predicting the electric behaviour of such sparks. Their earlier experimental work was restricted to only one initial pressure, and in this paper they extend the examined pressure range to obtain some general conclusions on the pressure dependence of the spark behaviour.

  4. Spark channel propagation in a microbubble liquid

    Energy Technology Data Exchange (ETDEWEB)

    Panov, V. A.; Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru; Vetchinin, S. P.; Pecherkin, V. Ya.; Son, E. E. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-11-15

    Experimental study on the development of the spark channel from the anode needle under pulsed electrical breakdown of isopropyl alcohol solution in water with air microbubbles has been performed. The presence of the microbubbles increases the velocity of the spark channel propagation and increases the current in the discharge gap circuit. The observed rate of spark channel propagation in microbubble liquid ranges from 4 to 12 m/s, indicating the thermal mechanism of the spark channel development in a microbubble liquid.

  5. New spark test device for material characterization

    CERN Document Server

    Kildemo, Morten

    2004-01-01

    An automated spark test system based on combining field emission and spark measurements, exploiting a discharging capacitor is investigated. In particular, the remaining charge on the capacitor is analytically solved assuming the field emitted current to follow the Fowler Nordheim expression. The latter allows for field emission measurements from pA to A currents, and spark detection by complete discharge of the capacitor. The measurement theory and experiments on Cu and W are discussed.

  6. Formation of ROS and RNS in Water Electro-Sprayed through Transient Spark Discharge in Air and their Bactericidal Effects

    Czech Academy of Sciences Publication Activity Database

    Machala, Z.; Tarabová, B.; Hensel, K.; Doležalová, Eva; Šikurová, L.; Lukeš, Petr

    2013-01-01

    Roč. 10, č. 7 (2013), s. 649-659 ISSN 1612-8850 R&D Projects: GA AV ČR IAAX00430802; GA ČR(CZ) GD104/09/H080; GA MŠk(CZ) MEB0810116 Institutional support: RVO:61389021 Keywords : Plasma electrospray * water * bacteria * hydrogen peroxide * peroxynitrite * cold plasma * water electro-spray Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.964, year: 2013 http://dx.doi.org/10.1002/ppap.201200113

  7. Direct and controllable nitric oxide delivery into biological media and living cells by a pin-to-hole spark discharge (PHD) plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dobrynin, D; Friedman, G [Electrical and Computer Engineering Department, College of Engineering, Drexel University, Philadelphia, PA (United States); Arjunan, K; Clyne, A Morss [School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA (United States); Fridman, A, E-mail: alisam@coe.drexel.edu [Department of Mechanical Engineering and Mechanics, College of Engineering, Drexel University, Philadelphia, PA (United States)

    2011-02-23

    Nitric oxide has great potential for improving wound healing through both inflammatory and vascularization processes. Nitric oxide can be produced in high concentrations by atmospheric pressure thermal plasmas. We measured the physical characteristics and nitric oxide production of a pin-to-hole spark discharge (PHD) plasma, as well as plasma-produced nitric oxide delivery into liquid and endothelial cells. The plasma temperature was calculated as 9030 {+-} 320 K by the Boltzmann method, which was adequate to produce nitric oxide, although the average gas temperature was near room temperature. The plasma produced significant UV radiation and hydrogen peroxide, but these were prevented from reaching the cells by adding a straight or curved tube extension to the plasma device. Plasma-produced nitric oxide in gas reached 2000 ppm and rapidly diffused into liquid and cells. Cells remained viable following plasma treatment and showed a linear increase in cGMP concentration with plasma treatment, indicating an intracellular functional response to PHD plasma NO. These data suggest that this plasma may provide a novel method for delivering NO locally and directly for enhanced wound healing.

  8. Direct and controllable nitric oxide delivery into biological media and living cells by a pin-to-hole spark discharge (PHD) plasma

    International Nuclear Information System (INIS)

    Dobrynin, D; Friedman, G; Arjunan, K; Clyne, A Morss; Fridman, A

    2011-01-01

    Nitric oxide has great potential for improving wound healing through both inflammatory and vascularization processes. Nitric oxide can be produced in high concentrations by atmospheric pressure thermal plasmas. We measured the physical characteristics and nitric oxide production of a pin-to-hole spark discharge (PHD) plasma, as well as plasma-produced nitric oxide delivery into liquid and endothelial cells. The plasma temperature was calculated as 9030 ± 320 K by the Boltzmann method, which was adequate to produce nitric oxide, although the average gas temperature was near room temperature. The plasma produced significant UV radiation and hydrogen peroxide, but these were prevented from reaching the cells by adding a straight or curved tube extension to the plasma device. Plasma-produced nitric oxide in gas reached 2000 ppm and rapidly diffused into liquid and cells. Cells remained viable following plasma treatment and showed a linear increase in cGMP concentration with plasma treatment, indicating an intracellular functional response to PHD plasma NO. These data suggest that this plasma may provide a novel method for delivering NO locally and directly for enhanced wound healing.

  9. Automated error-tolerant macromolecular structure determination from multidimensional nuclear Overhauser enhancement spectra and chemical shift assignments: improved robustness and performance of the PASD algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kuszewski, John J.; Thottungal, Robin Augustine [National Institutes of Health, Imaging Sciences Laboratory, Center for Information Technology (United States); Clore, G. Marius [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)], E-mail: mariusc@mail.nih.gov; Schwieters, Charles D. [National Institutes of Health, Imaging Sciences Laboratory, Center for Information Technology (United States)], E-mail: Charles.Schwieters@nih.gov

    2008-08-15

    We report substantial improvements to the previously introduced automated NOE assignment and structure determination protocol known as PASD (Kuszewski et al. (2004) J Am Chem Soc 26:6258-6273). The improved protocol includes extensive analysis of input spectral data to create a low-resolution contact map of residues expected to be close in space. This map is used to obtain reasonable initial guesses of NOE assignment likelihoods which are refined during subsequent structure calculations. Information in the contact map about which residues are predicted to not be close in space is applied via conservative repulsive distance restraints which are used in early phases of the structure calculations. In comparison with the previous protocol, the new protocol requires significantly less computation time. We show results of running the new PASD protocol on six proteins and demonstrate that useful assignment and structural information is extracted on proteins of more than 220 residues. We show that useful assignment information can be obtained even in the case in which a unique structure cannot be determined.

  10. The pressure dependence of the spark constant

    International Nuclear Information System (INIS)

    Hess, H.; Radtke, R.; Deparade, W.

    1978-01-01

    The author's theory on the development of LTE plasmas in low-inductance spark discharges has proved to be a useful tool in predicting the electric behaviour of such sparks. Their earlier experimental work was restricted to only one initial pressure, and in this paper they extend the examined pressure range to obtain some general conclusions on the pressure dependence of the spark behaviour. (author)

  11. Experimental study of a spark-gap

    International Nuclear Information System (INIS)

    Bruzzone, H.; Moreno, C.; Vieytes, R.

    1990-01-01

    Some experimental results concerning to the resistance of an atmospheric pressure spark-gap, operating in the self breakdown regime are presented. The influence of the energy discharging through the gap on this resistance is discussed. (Author)

  12. Formation of small sparks

    International Nuclear Information System (INIS)

    Barreto, E.; Jurenka, H.; Reynolds, S.I.

    1977-01-01

    The formation of a small incendiary spark at atmospheric pressure is identified with the transition from a weakly to a strongly ionized plasma. It is shown that initial gaseous ionization produced by avalanches and/or streamers always creates a high-temperature ideal electron gas that can shield the applied voltage difference and reduce ionization in the volume of the gas. The electron gas is collision dominated but able to maintain its high temperature, for times long compared to discharge events, through long-range Coulomb forces. In fact, electrons in the weakly ionized plasma constitute a collisionless independent fluid with a thermodynamic state that can be affected directly by field or density changes. Accordingly, with metal electrodes, cathode spot emission is always associated with the transition to a strongly ionized plasma. Neutral heating can be accomplished in two different ways. Effective dispersal of the electrons from the cathode leads to electron heating dominated by diffusion effects. Conversely, a fast rate of emission or rapid field changes can produce nonlinear wave propagation. It is shown that solitary waves are possible, and it is suggested that some spark transitions are associated with shock waves in the collisionless electron gas. In either the diffuse or nonlinear regime, neutral gas heating is controlled by collisions of ions with isotropic thermal electrons. This interaction is always subsequent to changes in state of the electron gas population. The basic results obtained should apply to all sparks

  13. Experimental study of the positive leader velocity as a function of the current in the initial and final-jump phases of a spark discharge

    International Nuclear Information System (INIS)

    Andreev, A. G.; Bazelyan, E. M.; Bulatov, M. U.; Kuzhekin, I. P.; Makalsky, L. M.; Sukharevskij, D. I.; Syssoev, V. S.

    2008-01-01

    A positive leader in air at gap lengths of up to 8 m was studied experimentally on an open experimental stand. The voltage source was a 6-MV pulsed voltage generator or an artificial charged aerosol cloud. The dependence of the leader velocity on the current in the range 0.2-8 A was determined by simultaneously recording the optical picture and electric parameters of the discharge. Particular attention was paid to the final-jump phase of the discharge, when the gap was completely bridged by the streamer zone of the leader. It is shown that the character of the dependence of the leader velocity on the current in this phase remains unchanged; hence, the final-jump phase can be used in experiments in which the current has to be varied within a wide range. For this purpose, one can use a damping resistance, which is inefficient in the initial phase. The parameters of the power-law dependence of the leader velocity on the current at currents of a few amperes are established reliably. It is found that the power-law dependence with constant parameters is inapplicable to calculate the leader velocity at currents of about 0.1 A, which correspond to the lower limit of the leader viability.

  14. Fastdata processing with Spark

    CERN Document Server

    Karau, Holden

    2013-01-01

    This book will be a basic, step-by-step tutorial, which will help readers take advantage of all that Spark has to offer.Fastdata Processing with Spark is for software developers who want to learn how to write distributed programs with Spark. It will help developers who have had problems that were too much to be dealt with on a single computer. No previous experience with distributed programming is necessary. This book assumes knowledge of either Java, Scala, or Python.

  15. Ambient fields generated by a laser spark

    Czech Academy of Sciences Publication Activity Database

    Rohlena, Karel; Mašek, Martin

    2016-01-01

    Roč. 61, č. 2 (2016), s. 119-124 ISSN 0029-5922 R&D Projects: GA MŠk(CZ) LD14089; GA MŠk(CZ) LG13031 Institutional support: RVO:68378271 Keywords : laser spark * radiation chemistry * field generation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.760, year: 2016

  16. Exhaust purification of DI spark ignition engines by means of barrier discharge. Final report; Abgasreinigung von DI-Ottomotoren durch Barrierenentladungen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, P.; Lepperhoff, G.; Baumgarten, H.; Scharr, D.; Neff, W.; Trompeter, F.J.; Seiwert, S.; Kamp, J.; Pochner, K.

    2000-07-01

    Dielectric barrier discharge offers the advantage to excite and dissociate molecules in the exhaust gas stream. Those dissociated and excited species are oxidizing or reducing harmful exhaust gas components. The advantage of a plasma chemical system in comparison to a catalytic converter is the instantaneous activity at ambient temperature from the turn key of the engine. The investigations presented here focus on the plasma chemical oxidation of hydrocarbons in the exhaust gas stream during cold start conditions. The article concerns the design and development of a plasma system in order to decrease the hydrocarbon emissions from engine start till catalyst light off. Vehicle results in the new European driving cycle show a hydrocarbon conversion of more than 43% in the first 11 seconds from engine start. In this period nearly all types of hydrocarbon were reduced. The exhaust back pressure of the sytem is comparable to the conventional muffler. Further system improvement can be achieved by an optimization of the disk electrode design. [German] Um die strengen zukuenftigen Schadstoffemissionsgrenzwerte von Ottomotoren in der EU oder den USA einhalten zu koennen, werden derzeit weltweit auch plasmachemische Methoden zur Abgasnachbehandlung in Betracht gezogen. Insbesondere nichtthermische Atmosphaerendruck-Gasentladungen, wie die Barrierenentladung, zeigen Chancen auf, die Betriebsbedingungen und Grenzen gegenwaertiger katalytischer Techniken zu erweitern. In diesem Vorhaben wurde die Barrierenentladung zur plasmachemischen Umsetzung von Schadstoffen im Abgas eines mager betriebenen Ottomotors im Serienautomobil untersucht, um das Potential zur Abgasreinigung zu bewerten und auszuweiten. (orig.)

  17. Carbon and hydrogen isotopic composition of methane and C2+ alkanes in electrical spark discharge: implications for identifying sources of hydrocarbons in terrestrial and extraterrestrial settings.

    Science.gov (United States)

    Telling, Jon; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara

    2013-05-01

    The low-molecular-weight alkanes--methane, ethane, propane, and butane--are found in a wide range of terrestrial and extraterrestrial settings. The development of robust criteria for distinguishing abiogenic from biogenic alkanes is essential for current investigations of Mars' atmosphere and for future exobiology missions to other planets and moons. Here, we show that alkanes synthesized during gas-phase radical recombination reactions in electrical discharge experiments have values of δ(2)H(methane)>δ(2)H(ethane)>δ(2)H(propane), similar to those of the carbon isotopes. The distribution of hydrogen isotopes in gas-phase radical reactions is likely due to kinetic fractionations either (i) from the preferential incorporation of (1)H into longer-chain alkanes due to the more rapid rate of collisions of the smaller (1)H-containing molecules or (ii) by secondary ion effects. Similar δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns may be expected in a range of extraterrestrial environments where gas-phase radical reactions dominate, including interstellar space, the atmosphere and liquid hydrocarbon lakes of Saturn's moon Titan, and the outer atmospheres of Jupiter, Saturn, Neptune, and Uranus. Radical recombination reactions at high temperatures and pressures may provide an explanation for the combined reversed δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns of terrestrial alkanes documented at a number of high-temperature/pressure crustal sites.

  18. Laser-induced breakdown spectroscopy with multi-kHz fibre laser for mobile metal analysis tasks — A comparison of different analysis methods and with a mobile spark-discharge optical emission spectroscopy apparatus

    International Nuclear Information System (INIS)

    Scharun, Michael; Fricke-Begemann, Cord; Noll, Reinhard

    2013-01-01

    The identification and separation of different alloys are a permanent task of crucial importance in the metal recycling industry. Laser-induced breakdown spectroscopy (LIBS) offers important advantages in comparison to the state-of-the-art techniques for this application. For LIBS measurement no additional sample preparation is necessary. The overall analysis time is much smaller than for the state-of-the-art techniques. The LIBS setup presented in this study enables mobile operation with a handheld probe for the analysis of metallic materials. Excitation source is a fibre laser with a repetition rate of 30 kHz and a pulse energy of 1.33 mJ. The compact optical setup allows measurements at almost every point of a sample within 5 ms. The generated plasma light is analysed using a Multi-CCD spectrometer. The broad spectral coverage and high resolution provide an outstanding amount of spectroscopic information thereby enabling a variety of calibration approaches. Using a set of Al-based and a set of Fe-based samples the analytical performance of uni- and multivariate calibrations is evaluated. The same sample sets are analysed with a commercial state-of-the-art spark-discharge optical emission spectrometer allowing an assessment of the achieved results. Even though the possible analytical correctness of the fibre laser based LIBS measurements is found to similar or even better than that of the conventional technique, advantages of the multivariate data evaluation have not yet been realised in the investigations. However, due to the in situ sample preparation and short measurement times, fibre-laser based LIBS offers superior features. - Highlights: • Mobile, hand-guided LIBS apparatus for metal analysis, even for steel • Comparable results as state-of-the-art SD-OES instrument • New sectioned calibration function resulting in smaller deviations • Comparison of univariate and multivariate analysis methods

  19. Optical spark chamber

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    An optical spark chamber developed for use in the Omega spectrometer. On the left the supporting frame is exceptionally thin to allow low momentum particles to escape and be detected outside the magnetic field.

  20. Energy creation in electrical sparks and discharges

    International Nuclear Information System (INIS)

    Pappas, P.T.

    1991-01-01

    In this paper deficiencies of Lorentz force law, of Maxwell';s displacement current, of poynting vector, and of other explicit or implicit assumptions in E/D are analyzed. The infallible Cardinal law of E/D of Ampere is suggested as the most dominating candidate for the future E/D. Apparent difficulties of the Cardinal law are removed by resuming the ideal inertial frame concept to pragmatical cases. Energy creation is considered as not binding, but as possible, according to the Cardinal law as an alternative principle to the continuous creation hypothesis of Astronomy. Various inherent arc oscillations are presented as direct experimental evidence of energy creation. Several unexplained and exciting phenomena in E/D are readily explained by the Cardinal law. Finally, the unique constructive property of the Cardinal law is presented, suggested to be responsible for the Cosmos' creation and constructive evolution to higher forms of organization

  1. SparkRS - Spark for Remote Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is Spark-RS, an open source software project that enables GPU-accelerated remote sensing workflows in an Apache Spark distributed computing...

  2. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS)

    Energy Technology Data Exchange (ETDEWEB)

    Omori, M. [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    2000-08-15

    The graphite die set in spark plasma system (SPS) is heated by a pulse direct current. Weak plasma, discharge impact, electric field and electric current, which are based on this current, induce good effects on materials in the die. The surface films of aluminum and pure WC powders are ruptured by the spark plasma. Pure AlN powder is sintered without sintering additives in the electric field. The spark plasma leaves discharge patterns on insulators. Organic fibers are etched by the spark plasma. Thermosetting polyimide is consolidated by the spark plasma. Insoluble polymonomethylsilane is rearranged into the soluble one by the spark plasma. A single crystal of CoSb{sub 3} is grown from the compound powders in the electric field by slow heating. Coupled crystals of eutectic powder are connected with each other in the electric field. (orig.)

  3. Evolution of Spark plasma using nitrogen laser shadowgraphy system

    International Nuclear Information System (INIS)

    Ishiekwene, G.C.

    1994-07-01

    A simple, low cost, home built high power nitrogen laser is used as the light source for a shadowgraphy system. A series of shadowgrams depicting the temporal growth of a spark plasma discharge is obtained. The results could be useful in plasma diagnostic studies. (author). 5 refs, 6 figs

  4. Material machining with pseudo-spark electron beams

    International Nuclear Information System (INIS)

    Benker, W.; Christiansen, J.; Frank, K.; Gundel, H.; Redel, T.; Stetter, M.

    1989-01-01

    The authors give a brief description of the production of pseudo-spark (low pressure gas discharge) electron beams. They illustrate the use of these electron beams for machining not only conducting, semiconducting and insulating materials, but also thin layers of such materials as high temperature superconducting ceramics

  5. Saffman-Taylor streamers: Mutual finger interaction in spark formation

    NARCIS (Netherlands)

    Luque, A.; Brau, F.; Ebert, U.

    2008-01-01

    Bunches of streamers form the early stages of sparks and lightning but theory presently concentrates on single streamers or on coarse approximations of whole breakdown trees. Here a periodic array of interacting streamer discharges in a strong homogeneous electric field is studied in density or

  6. Neutron bursts from long laboratory sparks

    Science.gov (United States)

    Kochkin, P.; Lehtinen, N. G.; Montanya, J.; Van Deursen, A.; Ostgaard, N.

    2016-12-01

    Neutron emission in association with thunderstorms and lightning discharges was reported by different investigators from ground-based observation platforms. In both cases such emission is explained by photonuclear reaction, since high-energy gamma-rays in sufficient fluxes are routinely detected from both, lightning and thunderclouds. The required gamma-rays are presumably generated by high-energy electrons in Bremsstrahlung process after their acceleration via cold and/or relativistic runaway mechanisms. This phenomenon attracted moderate scientific attention until fast neutron bursts (up to 10 MeV) from long 1 MV laboratory sparks have been reported. Clearly, with such relatively low applied voltage the electrons are unable to accelerate to the energies required for photo/electro disintegration. Moreover, all known elementary neutron generation processes are not capable to explain this emission right away. We performed an independent laboratory experiment on long sparks with the aim to confirm or disprove the neutron emission from them. The experimental setup was assembled at High-Voltage Laboratory in Barcelona and contained a Marx generator in a cone-cone spark gap configuration. The applied voltage was as low as 800 kV and the gap distance was only 60 cm. Two ns-fast cameras were located near the gap capturing short-exposure images of the pre-breakdown phenomenon at the expected neutron generation time. A plastic scintillation detector sensitive to neutrons was covered in 11 cm of lead and placed near the spark gap. The detector was calibrated and showed good performance in neutron detection. Apart of it, voltage, currents through both electrodes, and three X-ray detectors were also monitored in sophisticated measuring system. We will give an overview of the previous experimental and theoretical work in this topic, and present the results of our new experimental campaign. The conclusions are based on good signal-to-noise ratio measurements and are

  7. Fast data processing with Spark

    CERN Document Server

    Sankar, Krishna

    2015-01-01

    Fast Data Processing with Spark - Second Edition is for software developers who want to learn how to write distributed programs with Spark. It will help developers who have had problems that were too big to be dealt with on a single computer. No previous experience with distributed programming is necessary. This book assumes knowledge of either Java, Scala, or Python.

  8. Tool grinding and spark testing

    Science.gov (United States)

    Widener, Edward L.

    1993-01-01

    The objectives were the following: (1) to revive the neglected art of metal-sparking; (2) to promote quality-assurance in the workplace; (3) to avoid spark-ignited explosions of dusts or volatiles; (4) to facilitate the salvage of scrap metals; and (5) to summarize important references.

  9. Primary Science Interview: Science Sparks

    Science.gov (United States)

    Bianchi, Lynne

    2016-01-01

    In this "Primary Science" interview, Lynne Bianchi talks with Emma Vanstone about "Science Sparks," which is a website full of creative, fun, and exciting science activity ideas for children of primary-school age. "Science Sparks" started with the aim of inspiring more parents to do science at home with their…

  10. A study of the air-shower response of current-limited spark chambers

    International Nuclear Information System (INIS)

    Porter, M.R.; Hodson, A.L.; Bull, R.M.

    1982-01-01

    The efficiency of current-limited spark chambers (discharge chambers) and their relative response to shower electrons and photons are investigated. A stack of six horizontal 1m x 10 cm discharge chambers, above one another, is triggered by air showers falling on an adjacent discharge-chamber array. Particular combinations of discharges show that the efficiency of the chambers is very high and that a significant fraction of the discharges is due to incident photons

  11. River water remediation using pulsed corona, pulsed spark or ozonation

    Energy Technology Data Exchange (ETDEWEB)

    Izdebski, T.; Dors, M. [Polish Academy of Sciences, Szewalski Inst. of Fluid Flow Machiney, Fiszera (Poland). Centre for Plasma and Laser Engineering; Mizeraczyk, J. [Polish Academy of Sciences, Szewalski Inst. of Fluid Flow Machiney, Fiszera (Poland). Centre for Plasma and Laser Engineering; Gdynia Maritime Univ., Morska (Poland). Dept. of Marine Electronics

    2010-07-01

    The most common reason for epidemic formation is the pollution of surface and drinking water by wastewater bacteria. Pathogenic microorganisms that form the largest part of this are fecal bacteria, such as escherichia coli (E. coli). Wastewater treatment plants reduce the amount of the fecal bacteria by 1-3 orders of magnitude, depending on the initial number of bacteria. There is a lack of data on waste and drinking water purification by the electrohydraulic discharges method, which causes the destruction and inactivation of viruses, yeast, and bacteria. This paper investigated river water cleaning from microorganisms using pulsed corona, spark discharge and ozonization. The paper discussed the experimental setup and results. It was concluded that ozonization is the most efficient method of water disinfection as compared with pulsed spark and pulsed corona discharges. The pulsed spark discharge in water was capable of killing all microorganism similarly to ozonization, but with much lower energy efficiency. The pulsed corona discharge was found to be the less effective method of water disinfection. 21 refs., 4 figs.

  12. Angina - discharge

    Science.gov (United States)

    Chest pain - discharge; Stable angina - discharge; Chronic angina - discharge; Variant angina - discharge; Angina pectoris - discharge; Accelerating angina - discharge; New-onset angina - discharge; Angina-unstable - discharge; ...

  13. Sparking protection for MFTF-B Neutral Beam Power Supplies

    International Nuclear Information System (INIS)

    Cummings, D.B.

    1983-01-01

    This paper describes the upgrade of MFTF-B Neutral Beam Power Supplies for sparking protection. High performance ion sources spark repeatedly so ion source power supplies must be insensitive to sparking. The hot deck houses the series tetrode, arc and filament supplies, and controls. Hot deck shielding has been upgraded and a continuous shield around the arc, filament, gradient grid, and control cables now extends from the hot deck, through the core snubber, to the source. The shield carries accelerating current and connects only to the source. Shielded source cables go through an outer duct which now connects to a ground plane under the hot deck. This hybrid transmission line is a low inductance path for sparks discharging the stray capacitance of the hot deck and isolation transformers, reducing coupling to building steel. Parallel DC current return cables inside the duct lower inductance to reduce inductive turn-off transients. MOVs to ground further limit surges in the remote power supply return. Single point grounding is at the source. No control or rectifier components have been damaged nor are there any known malfunctions due to sparking up to 80 kV output

  14. Sparking protection for MFTF-B neutral beam power supplies

    International Nuclear Information System (INIS)

    Cummings, D.B.

    1983-01-01

    This paper describes the upgrade of MFTF-B Neutral Beam Power Supplies for sparking protection. High performance ion sources spark repeatedly so ion source power supplies must be insensitive to sparking. The hot deck houses the series tetrode, arc and filament supplies, and controls. Hot deck shielding has been upgraded and a continuous shield around the arc, filament, gradient grid, and control cables now extends from the hot deck, through the core snubber, to the source. The shield carries accelerating current and connects only to the source. Shielded source cables go through an outer duct which now connects to a ground plane under the hot deck. This hybrid transmission line is a low inductance path for sparks discharging the stray capacitance of the hot deck and isolation transformers, reducing coupling to building steel. Parallel dc current return cables inside the duct lower inductance to reduce inductive turn-off transients. MOVs to ground further limit surges in the remote power supply return. Single point grounding is at the source. No control or rectifier components have been damaged nor are there any known malfunctions due to sparking up to 80 kV output

  15. Dicarboxylic acids from electric discharge

    Science.gov (United States)

    Zeitman, B.; Chang, S.; Lawless, J. G.

    1974-01-01

    An investigation was conducted concerning the possible synthesis of a suite of dicarboxylic acids similar to that found in the Murchison meteorite. The investigation included the conduction of a chemical evolution experiment which simulated electric discharge through the primitive atmosphere of the earth. The suite of dicarboxylic acids obtained in the electric discharge experiment is similar to that of the Murchison meteorite, except for the fact that 2-chlorosuccinic acid is present in the spark discharge.

  16. The energy distribution structure and dynamic characteristics of energy release in electrostatic discharge process

    OpenAIRE

    Liu, Qingming; Shao, Huige; Zhang, Yunming

    2015-01-01

    The detail structure of energy output and the dynamic characteristics of electric spark discharge process have been studied to calculate the energy of electric spark induced plasma under different discharge condition accurately. A series of electric spark discharge experiments were conducted with the capacitor stored energy in the range of 10J 100J and 1000J respectively. And the resistance of wire, switch and plasma between electrodes were evaluated by different methods. An optimized method ...

  17. Are Crab nanoshots Schwinger sparks?

    Energy Technology Data Exchange (ETDEWEB)

    Stebbins, Albert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yoo, Hojin [Univ. of Wisconsin, Madison, WI (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)

    2015-05-21

    The highest brightness temperature ever observed are from "nanoshots" from the Crab pulsar which we argue could be the signature of bursts of vacuum e± pair production. If so this would be the first time the astronomical Schwinger effect has been observed. These "Schwinger sparks" would be an intermittent but extremely powerful, ~103 L, 10 PeV e± accelerator in the heart of the Crab. These nanosecond duration sparks are generated in a volume less than 1 m3 and the existence of such sparks has implications for the small scale structure of the magnetic field of young pulsars such as the Crab. As a result, this mechanism may also play a role in producing other enigmatic bright short radio transients such as fast radio bursts.

  18. Bright Sparks of Our Future!

    Science.gov (United States)

    Riordan, Naoimh

    2016-04-01

    My name is Naoimh Riordan and I am the Vice Principal of Rockboro Primary School in Cork City, South of Ireland. I am a full time class primary teacher and I teach 4th class, my students are aged between 9-10 years. My passion for education has developed over the years and grown towards STEM (Science, Technology, Engineering and Mathematics) subjects. I believe these subjects are the way forward for our future. My passion and beliefs are driven by the unique after school programme that I have developed. It is titled "Sparks" coming from the term Bright Sparks. "Sparks" is an after school programme with a difference where the STEM subjects are concentrated on through lessons such as Science, Veterinary Science Computer Animation /Coding, Eco engineering, Robotics, Magical Maths, Chess and Creative Writing. All these subjects are taught through activity based learning and are one-hour long each week for a ten-week term. "Sparks" is fully inclusive and non-selective which gives all students of any level of ability an opportunity to engage into these subjects. "Sparks" is open to all primary students in County Cork. The "Sparks" after school programme is taught by tutors from the different Universities and Colleges in Cork City. It works very well because the tutor brings their knowledge, skills and specialised equipment from their respective universities and in turn the tutor gains invaluable teaching practise, can trial a pilot programme in a chosen STEM subject and gain an insight into what works in the physical classroom.

  19. MV controlled spark gap

    International Nuclear Information System (INIS)

    Evdokimovich, V.M.; Evlampiev, S.B.; Korshunov, G.S.; Nikolaev, V.A.; Sviridov, Yu.F.; Khmyrov, V.V.

    1980-01-01

    A megavolt gas-filled trigatron gap with a sectional gas-discharge chamber having a more than three-fold range of operating voltages is described. The discharge chamber consists of ten sections, each 70 mm thick, made of organic glass. The sections are separated one from another by aluminium gradient rings to which ohmic voltage divider is connected. Insulational sections and gradient rings are braced between themselves by means of metal flanges through gaskets made of oil-resistant rubber with the help of fiberglass-laminate pins. The gap has two electrodes 110 mm in diameter. The trigatron ignition assembly uses a dielectric bushing projecting over the main electrode plane. Use has been made of a gas mixture containing 10% of SF 6 and 90% of air making possible to ensure stable gap operation without readjusting in the voltage range from 0.4 to 1.35 MV. The operation time lag in this range is equal to 10 μs at a spread of [ru

  20. Fiber coupled optical spark delivery system

    Science.gov (United States)

    Yalin, Azer; Willson, Bryan; Defoort, Morgan

    2008-08-12

    A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

  1. Capacitor Discharge - A Capacitor Tutorial [video

    OpenAIRE

    Naval Postgraduate School Physics

    2014-01-01

    NPS Physics Physics Demonstrations Here's a capacitor discharge demonstrated by physicist Dr. Dernardo. Dr. D gives a nice capacitor lesson along with some fireworks. Charging and Discharging a Capacitor is dangerous. Do not try this at home. Dr. Bruce Denardo uses eleven 9V batteries, connected in series for a total of 99 creating a pretty large spark.

  2. Overvoltage protection by point-plane spark gaps

    International Nuclear Information System (INIS)

    Scarlett, W.R.; Riepe, K.B.

    1979-01-01

    In electron-beam-controlled discharge CO 2 lasers, such as those used in the Antares and Helios laser-fusion drivers at the Los Alamos Scientific Laboratory (LASL), protection needs to be provided against possible damage due to overvoltage. A passive (self-breakdown) point-plane spark gap has been developed and successfully used in the Helios power amplifiers which operate at voltages up to 300 kV. A gap of similar design is planned for use in the Antares power amplifiers which operate at 550 kV. These gaps must reliably hold off the normal discharge voltage, but break down with short delay if overvoltaged, diverting the discharge energy to a resistor. A prototype of the Antares gap has been built and is undergoing tests. Parameters being investigated include voltage polarity, gap spacing, gas composition, and gas pressure. Results of these measurements and the operational experience of the Helios gaps will be presented

  3. Sample preparations for spark source mass spectrography

    International Nuclear Information System (INIS)

    Catlett, C.W.; Rollins, M.B.; Griffin, E.B.; Dorsey, J.G.

    1977-10-01

    Methods have been developed for the preparation of various materials for spark source mass spectrography. The essential features of these preparations (all which can provide adequate precision in a cost-effective manner) consist in obtaining spark-stable electrode sample pieces, a common matrix, a reduction of anomolous effects in the spark, the incorporation of a suitable internal standard for plate response normalization, and a reduction in time

  4. Observation of a spark channel generated in water with shock wave assistance in plate-to-plate electrode configuration

    Czech Academy of Sciences Publication Activity Database

    Stelmashuk, Vitaliy

    2014-01-01

    Roč. 21, č. 1 (2014), 010703/1-010703/3 ISSN 1070-664X Institutional support: RVO:61389021 Keywords : discharge * spark * plasma instability Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.142, year: 2014 http://scitation.aip.org/content/aip/journal/pop/21/1/10.1063/1.4861877

  5. Exploratory studies on a passively triggered vacuum spark

    Energy Technology Data Exchange (ETDEWEB)

    Rout, R.K. [High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai (India)]. E-mail: rkrout@apsara.barc.ernet.in; Auluck, S.K.H.; Kulkarni, L.V. [High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai, India (India); Nagpal, J.S. [Radiation Standards and Instrumentation Division, Bhabha Atomic Research Centre, Mumbai (India)

    1999-12-07

    The results of an experimental investigation on a passively triggered vacuum spark device are presented. The diagnostics include the current, x-ray and optical emission measurements. The sharp dips in the current derivative signal indicate the occurrence of pinching at an early stage of the discharge (at current {approx} 5 kA). A well-confined plasma with a central hot region was recorded using a streak camera. The pinched plasma was observed to undergo kink-type oscillations with a time period of 10-15 ns. Repeated plasma fronts were seen to move from the anode to the cathode with an average velocity of {approx}5x10{sup 6} cm s{sup -1}. Soft x-ray emission having a radiation intensity of a few hundred mR per discharge was observed. The x-ray signals obtained using photodiodes showed multiple bursts. A soft x-ray pinhole camera recorded micro-pinches of {approx}100 {mu}m. The x-ray emitting regions were confined to the inter-electrode gap. The x-ray emission characteristics were influenced by the electrolytic resistance, which was connected across the spark gap to initiate discharge. (author)

  6. Exploratory studies on a passively triggered vacuum spark

    Science.gov (United States)

    Rout, R. K.; Auluck, S. K. H.; Nagpal, J. S.; Kulkarni, L. V.

    1999-12-01

    The results of an experimental investigation on a passively triggered vacuum spark device are presented. The diagnostics include the current, x-ray and optical emission measurements. The sharp dips in the current derivative signal indicate the occurrence of pinching at an early stage of the discharge (at current icons/Journals/Common/approx" ALT="approx" ALIGN="TOP"/>5 kA). A well-confined plasma with a central hot region was recorded using a streak camera. The pinched plasma was observed to undergo kink-type oscillations with a time period of 10-15 ns. Repeated plasma fronts were seen to move from the anode to the cathode with an average velocity of icons/Journals/Common/approx" ALT="approx" ALIGN="TOP"/>5 × 106 cm s-1. Soft x-ray emission having a radiation intensity of a few hundred mR per discharge was observed. The x-ray signals obtained using photodiodes showed multiple bursts. A soft x-ray pinhole camera recorded micro-pinches of icons/Journals/Common/approx" ALT="approx" ALIGN="TOP"/>100 µm. The x-ray emitting regions were confined to the inter-electrode gap. The x-ray emission characteristics were influenced by the electrolytic resistance, which was connected across the spark gap to initiate discharge.

  7. Towards the Industrial Application of Spark Ablation for Nanostructured Functional Materials

    NARCIS (Netherlands)

    Pfeiffer, T.V.

    2014-01-01

    Nanostructuring of functional materials is an essential part in the design of energy related devices – but the industrial tools we have to make these materials are lacking. This dissertation explores the green, flexible, and scalable spark discharge process for the fabrication of complex

  8. Spark Discharge Generated Nanoparticles for Hydrogen Storage Applications

    NARCIS (Netherlands)

    Vons, V.A.

    2010-01-01

    One of the largest obstacles to the large scale application of hydrogen powered fuel cell vehicles is the absence of hydrogen storage methods suitable for application on-board of these vehicles. Metal hydrides are materials in which hydrogen is reversibly absorbed by one or more metals or

  9. Spark igniter having precious metal ground electrode inserts

    International Nuclear Information System (INIS)

    Ryan, N.A.

    1988-01-01

    This patent describes an igniter comprising a shell of a shell metal alloy which is resistant to spark erosion and corrosion, the shell having a firing end which terminates at its lower end in an annular ring, an insulator sealed within the metal shell and having a central bore and a surface extending inwardly toward the bore from the annular ring, a center electrode sealed within the bore of the insulator and having a firing end which is in spark gap relation with the annular ring of the shell and so positioned that a spark discharge between the firing end and the annular ring occurs along the inwardly extending surface of the insulator, and a plurality of oxidation and erosion resistant inserts, each of the inserts comprising a body of a metal selected from the group consisting of iridium, osmium, ruthenium, rhodium, platinum, and tungsten or an alloy or a ductile alloy of one of the foregoing metals, each of the bodies being embedded within a matching opening which extends from the exterior of the shell through the annular ring, being bonded to the shell

  10. Spark chamber used for the visualization of the 125I labeled thyroid

    International Nuclear Information System (INIS)

    Morucci, Jean-Pierre; Seigneur, Alain; Lansiart, Alain

    1971-03-01

    This spark chamber is a stationary detector used for the visualization of the 125 I labeled thyroid; it is sensitive to X and low energy gamma rays. This device is filled mainly with pressurized xenon (1.5 kg/cm 2 ) and behaves as an X-ray image intensifier: the incident radiation is detected and initiates a spark. The energy dissipated by the spark is reduced and controlled by a double coated anode, while an electronic circuit triggered by the initiation of the spark discharges the detector capacitance. The sparks are recorded on a photographic plate during the examination. X ray optics are used for collimation between the thyroid and the detector. A modulation transfer function was measured for 125 I. Communication theory was used to determine the best way of combining the collimator and spark chamber. This device is being used in the Service Hospitalier Frederic Joliot at Orsay. Its performance is superior to that of conventional scintigraphs. Further applications are envisaged [fr

  11. Programmable spark counter of tracks

    International Nuclear Information System (INIS)

    Denisov, A.E.; Nikolaev, V.A.; Vorobjev, I.B.

    2005-01-01

    For the purpose, a new set-the programmable all-automatic spark counter AIST-4-has been developed and manufactured. Compared to our previous automated spark counter ISTRA, which was operated by the integrated fixed program, the new set is operated completely by a personal computer. The mechanism for pressing and pulling the aluminized foil is put into action by a step motor operated by a microcontroller. The step motor turns an axle. The axle has two eccentrics. One of them moves a pressing plate up and down. The second eccentric moves the aluminized foil by steps of ∼15mm after the end of each pulse counting. One turnover of the axle corresponds to one pulse count cycle. The step motor, the high-voltage block and the pulse count block are operated by the microcontroller PIC 16C84 (Microstar). The set can be operated either manually by keys on the front panel or by a PC using dialogue windows for radon or neutron measurements (for counting of alpha or fission fragment tracks). A number of algorithms are developed: the general procedures, the automatic stopping of the pulse counting, the calibration curve, determination of the count characteristics and elimination of the short circuit in a track

  12. SparkJet characterizations in quiescent and supersonic flowfields

    Science.gov (United States)

    Emerick, T.; Ali, M. Y.; Foster, C.; Alvi, F. S.; Popkin, S.

    2014-12-01

    The aerodynamic community has studied active flow control actuators for some time, and developments have led to a wide variety of devices with various features and operating mechanisms. The design requirements for a practical actuator used for active flow control include reliable operation, requisite frequency and amplitude modulation capabilities, and a reasonable lifespan while maintaining minimal cost and design complexity. An active flow control device called the SparkJet actuator has been developed for high-speed flight control and incorporates no mechanical/moving parts, zero net mass flux capabilities and the ability to tune the operating frequency and momentum throughput. This actuator utilizes electrical power to deliver high-momentum flow with a very fast response time. The SparkJet actuator was characterized on the benchtop using a laser-based microschlieren visualization technique and maximum blast wave and jet front velocities of ~400 and ~310 m/s were, respectively, measured in the flowfield. An increase in jet front velocity from 240 to 310 m/s during subatmospheric (60 kPa) testing reveals that the actuator may have greater control authority at lower ambient pressures, which correspond to high-altitude flight conditions for air vehicles. A SparkJet array was integrated into a flat plate and tested in a Mach 1.5 crossflow. Phase-conditioned shadowgraph results revealed a maximum flow deflection angle of 5° created by the SparkJet 275 µs after the actuator was triggered in single-shot mode. Burst mode operation of frequencies up to 700 Hz revealed similar results during wind tunnel testing. Following these tests, the actuator trigger mechanism was improved and the ability of the actuator to be discharged in burst mode at a frequency of 1 kHz was achieved.

  13. Fundamental Study on Electrical Discharge Machining

    OpenAIRE

    Uno, Yoshiyuki; Nakajima, Toshikatsu; Endo, Osamu

    1989-01-01

    The generation mechanism of crater in electrical discharge machining is analyzed with a single pulse discharge device for alloy tool steel, black alumina ceramics, cermet and cemented carbide, investigating the gap voltage, the discharge current, the shape of crater, the wear of electrode and so on. The experimental analysis makes it clear that the shape of crater has a characteristic feature for the kind of workpiece. The shape of electrode, which changes with the wear by an electric spark, ...

  14. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    Science.gov (United States)

    Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas'yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.

    2016-06-01

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.

  15. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    International Nuclear Information System (INIS)

    Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas’yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.

    2016-01-01

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.

  16. Spark gap produced plasma diagnostics

    International Nuclear Information System (INIS)

    Chang, H.Y.

    1990-01-01

    A Spark Gap (Applied voltage : 2-8KV, Capacitor : 4 Micro F. Dia of the tube : 1 inch, Electrode distance : .3 ∼.5 inch) was made to generate a small size dynamic plasma. To measure the plasma density and temperature as a function of time and position, we installed and have been installing four detection systems - Mach-Zehnder type Interferometer for the plasma refractivity, Expansion speed detector using two He-Ne laser beams, Image Processing using Lens and A Optical-Fiber Array for Pointwise Radiation Sensing, Faraday Rotation of a Optical Fiber to measure the azimuthal component of B-field generated by the plasma drift. These systems was used for the wire explosion diagnostics, and can be used for the Laser driven plasma also

  17. Spark-safe power source

    Energy Technology Data Exchange (ETDEWEB)

    Mester, I M; Konushkin, N A; Nevozinskiy, A K; Rubinshteyn, B Sh; Serov, V I; Vasnev, M A

    1981-01-01

    A shortcoming of the known power sources is their low reliability. The purpose of the invention is to improve the reliability of the device. This is achieved because the spark-safe power source is equipped with a by-passing transistor and potentiometer, and also a generator of control interruptions in the circuit, an I-element, first separating transformer, control block, second separating transformer whose secondary winding has a relay winding whose contacts are connected to the load circuit are connected in series. The generator of control separations of the circuit is connected to the base of the by-passing transistor and to the power source outlet, the potentiometer is connected in series to the main thyristor. The middle point of the potentiometer is connected to the second inlet of the I-element.

  18. Observations of dense plasma formation in the vacuum spark

    International Nuclear Information System (INIS)

    Chuaqui, H.; Favre, M.; Wyndham, E.; Aliaga R, R.; Choi, P.; Dumitrescu-Zoita, C.

    1994-01-01

    A series of experimental observations have been performed on the dense plasma formations or Hot Spots generated in the Vacuum Spark. The plasma discharges are driven by a 1.5 Ohm, 120 ns line at currents up to 100 KA. The line may be used to deliver a rectangular current pulse when the line gap is used. Alternatively when the line gap is shorted, the Vacuum Spark itself switches the line. A Nd: Yag Laser, with an energy of 0.5 J in an 8 ns pulse, is used to pre ionizing the discharge. The formation of Hot Spots is studied under a range of different conditions. These include the pre ionizing conditions, as well as the Anode shape and the Anode Cathode separation. The optimization of these parameters permit very reproducible shot to shot behaviour. Of particular interest is the Hot Spot size dependence as a function of its temperature and of time. The use of a new variant on the Pin Hole Camera, the Slit Wire Camera provides a new method of measuring with precision the Hot Spot dimensions in different X-ray emission energy ranges. A quadruple hole Camera is used to measure the temperature of the Hot Spots. The temporal and spatial evolution of the X-ray emission is measured using using a Slit Wire, Scintillator, Fibre Optic, Photomultiplier array. The temporal emission of the X-rays is also observed using an array of PIN X-ray diodes. (author). 5 refs, 6 figs

  19. Air spark-like plasma source for antimicrobial NOx generation

    International Nuclear Information System (INIS)

    Pavlovich, M J; Galleher, C; Curtis, B; Clark, D S; Graves, D B; Ono, T; Machala, Z

    2014-01-01

    We demonstrate and analyse the generation of nitrogen oxides and their antimicrobial efficacy using atmospheric air spark-like plasmas. Spark-like discharges in air in a 1 L confined volume are shown to generate NO x at an initial rate of about 1.5  ×  10 16 NO x molecules/J dissipated in the plasma. Such a discharge operating in this confined volume generates on the order of 6000 ppm NO x in 10 min. Around 90% of the NO x is in the form of NO 2 after several minutes of operation in the confined volume, suggesting that NO 2 is the dominant antimicrobial component. The strong antimicrobial action of the NO x mixture after several minutes of plasma operation is demonstrated by measuring rates of E. coli disinfection on surfaces and in water exposed to the NO x mixture. Some possible applications of plasma generation of NO x (perhaps followed by dissolution in water) include disinfection of surfaces, skin or wound antisepsis, and sterilization of medical instruments at or near room temperature. (paper)

  20. GeoSpark SQL: An Effective Framework Enabling Spatial Queries on Spark

    Directory of Open Access Journals (Sweden)

    Zhou Huang

    2017-09-01

    Full Text Available In the era of big data, Internet-based geospatial information services such as various LBS apps are deployed everywhere, followed by an increasing number of queries against the massive spatial data. As a result, the traditional relational spatial database (e.g., PostgreSQL with PostGIS and Oracle Spatial cannot adapt well to the needs of large-scale spatial query processing. Spark is an emerging outstanding distributed computing framework in the Hadoop ecosystem. This paper aims to address the increasingly large-scale spatial query-processing requirement in the era of big data, and proposes an effective framework GeoSpark SQL, which enables spatial queries on Spark. On the one hand, GeoSpark SQL provides a convenient SQL interface; on the other hand, GeoSpark SQL achieves both efficient storage management and high-performance parallel computing through integrating Hive and Spark. In this study, the following key issues are discussed and addressed: (1 storage management methods under the GeoSpark SQL framework, (2 the spatial operator implementation approach in the Spark environment, and (3 spatial query optimization methods under Spark. Experimental evaluation is also performed and the results show that GeoSpark SQL is able to achieve real-time query processing. It should be noted that Spark is not a panacea. It is observed that the traditional spatial database PostGIS/PostgreSQL performs better than GeoSpark SQL in some query scenarios, especially for the spatial queries with high selectivity, such as the point query and the window query. In general, GeoSpark SQL performs better when dealing with compute-intensive spatial queries such as the kNN query and the spatial join query.

  1. Bubbles, sparks, and the postwar laboratory

    International Nuclear Information System (INIS)

    Galison, P.

    1989-01-01

    The development and use of bubble chambers and spark chambers in the 1950s form the main thrust of this article, the bubble chamber as an example of ''image-producing'' instruments and the spark chamber as a ''logic'' device. Work on a cloud chamber by Glaser led to the development of the bubble chamber detector using liquid hydrogen, which was later linked to a computer for accurate automatic track analysis. It made possible demonstrations of the existence of a particle or interaction. Spark chambers were easier to build and so soon became common, various types being developed across the world. The development of spark chambers originated in the need for timing devices for the Manhattan Project, but work on their design occurred in a number of units worldwide. (UK)

  2. SPARK: Adapting Keyword Query to Semantic Search

    Science.gov (United States)

    Zhou, Qi; Wang, Chong; Xiong, Miao; Wang, Haofen; Yu, Yong

    Semantic search promises to provide more accurate result than present-day keyword search. However, progress with semantic search has been delayed due to the complexity of its query languages. In this paper, we explore a novel approach of adapting keywords to querying the semantic web: the approach automatically translates keyword queries into formal logic queries so that end users can use familiar keywords to perform semantic search. A prototype system named 'SPARK' has been implemented in light of this approach. Given a keyword query, SPARK outputs a ranked list of SPARQL queries as the translation result. The translation in SPARK consists of three major steps: term mapping, query graph construction and query ranking. Specifically, a probabilistic query ranking model is proposed to select the most likely SPARQL query. In the experiment, SPARK achieved an encouraging translation result.

  3. Glucose sensing on graphite screen-printed electrode modified by sparking of copper nickel alloys.

    Science.gov (United States)

    Riman, Daniel; Spyrou, Konstantinos; Karantzalis, Alexandros E; Hrbac, Jan; Prodromidis, Mamas I

    2017-04-01

    Electric spark discharge was employed as a green, fast and extremely facile method to modify disposable graphite screen-printed electrodes (SPEs) with copper, nickel and mixed copper/nickel nanoparticles (NPs) in order to be used as nonenzymatic glucose sensors. Direct SPEs-to-metal (copper, nickel or copper/nickel alloys with 25/75, 50/50 and 75/25wt% compositions) sparking at 1.2kV was conducted in the absence of any solutions under ambient conditions. Morphological characterization of the sparked surfaces was performed by scanning electron microscopy, while the chemical composition of the sparked NPs was evaluated with energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The performance of the various sparked SPEs towards the electro oxidation of glucose in alkaline media and the critical role of hydroxyl ions were evaluated with cyclic voltammetry and kinetic studies. Results indicated a mixed charge transfer- and hyroxyl ion transport-limited process. Best performing sensors fabricated by Cu/Ni 50/50wt% alloy showed linear response over the concentration range 2-400μM glucose and they were successfully applied to the amperometric determination of glucose in blood. The detection limit (S/N 3) and the relative standard deviation of the method were 0.6µM and green methods in sensor's development. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Electro-spark deposition technology

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.N. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-12-01

    Electro-Spark Deposition (ESD) is a micro-welding process that uses short duration, high-current electrical pulses to deposit or alloy a consumable electrode material onto a metallic substrate. The ESD process was developed to produce coatings for use in severe environments where most other coatings fail. Because of the exceptional damage resistance of these coatings, and the versatility of the process to apply a wide variety of alloys, intermetallics, and cermets to metal surfaces, the ESD process has been designated critical to the life and economy of the advanced fossil energy systems as the higher temperatures and corrosive environments exceed the limits of known structural materials to accommodate the service conditions. Developments include producing iron aluminide-based coatings with triple the corrosion resistance of the best previous Fe{sub 3}Al coatings, coatings with refractory metal diffusion barriers and multi layer coatings for achieving functionally gradient properties between the substrate and the surface. A new development is the demonstration of advanced aluminide-based ESD coatings for erosion and wear applications. One of the most significant breakthroughs to occur in the last dozen years is the discovery of a process regime that yields an order of magnitude increase in deposition rates and achievable coating thicknesses. Achieving this regime has required the development of advanced ESD electronic capabilities. Development is now focused on further improvements in deposition rates, system reliability when operating at process extremes, and economic competitiveness.

  5. Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber

    KAUST Repository

    Wolk, Benjamin

    2013-07-01

    The enhancement of laminar flame development using microwave-assisted spark ignition has been investigated for methane-air mixtures at a range of initial pressures and equivalence ratios in a 1.45. l constant volume combustion chamber. Microwave enhancement was evaluated on the basis of several parameters including flame development time (FDT) (time for 0-10% of total net heat release), flame rise time (FRT) (time for 10-90% of total net heat release), total net heat release, flame kernel growth rate, flame kernel size, and ignitability limit extension. Compared to a capacitive discharge spark, microwave-assisted spark ignition extended the lean and rich ignition limits at all pressures investigated (1.08-7.22. bar). The addition of microwaves to a capacitive discharge spark reduced FDT and increased the flame kernel size for all equivalence ratios tested and resulted in increases in the spatial flame speed for sufficiently lean flames. Flame enhancement is believed to be caused by (1) a non-thermal chemical kinetic enhancement from energy deposition to free electrons in the flame front and (2) induced flame wrinkling from excitation of flame (plasma) instability. The enhancement of flame development by microwaves diminishes as the initial pressure of the mixture increases, with negligible flame enhancement observed above 3. bar. © 2013 The Combustion Institute.

  6. A Experimental Study of the Growth of Laser Spark and Electric Spark Ignited Flame Kernels.

    Science.gov (United States)

    Ho, Chi Ming

    1995-01-01

    Better ignition sources are constantly in demand for enhancing the spark ignition in practical applications such as automotive and liquid rocket engines. In response to this practical challenge, the present experimental study was conducted with the major objective to obtain a better understanding on how spark formation and hence spark characteristics affect the flame kernel growth. Two laser sparks and one electric spark were studied in air, propane-air, propane -air-nitrogen, methane-air, and methane-oxygen mixtures that were initially at ambient pressure and temperature. The growth of the kernels was monitored by imaging the kernels with shadowgraph systems, and by imaging the planar laser -induced fluorescence of the hydroxyl radicals inside the kernels. Characteristic dimensions and kernel structures were obtained from these images. Since different energy transfer mechanisms are involved in the formation of a laser spark as compared to that of an electric spark; a laser spark is insensitive to changes in mixture ratio and mixture type, while an electric spark is sensitive to changes in both. The detailed structures of the kernels in air and propane-air mixtures primarily depend on the spark characteristics. But the combustion heat released rapidly in methane-oxygen mixtures significantly modifies the kernel structure. Uneven spark energy distribution causes remarkably asymmetric kernel structure. The breakdown energy of a spark creates a blast wave that shows good agreement with the numerical point blast solution, and a succeeding complex spark-induced flow that agrees reasonably well with a simple puff model. The transient growth rates of the propane-air, propane-air -nitrogen, and methane-air flame kernels can be interpreted in terms of spark effects, flame stretch, and preferential diffusion. For a given mixture, a spark with higher breakdown energy produces a greater and longer-lasting enhancing effect on the kernel growth rate. By comparing the growth

  7. Development of Augmented Spark Impinging Igniter System for Methane Engines

    Science.gov (United States)

    Marshall, William M.; Osborne, Robin J.; Greene, Sandra E.

    2017-01-01

    The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. NASA can share technology and expertise under the SAA for the benefit of the CATALYST partners. MSFC seeking to vacuum test Augmented Spark Impinging (ASI) igniter with methane and new exciter units to support CATALYST partners and NASA programs. ASI has previously been used/tested successfully at sea-level, with both O2/CH4 and O2/H2 propellants. Conventional ignition exciter systems historically experienced corona discharge issues in vacuum. Often utilized purging or atmospheric sealing on high voltage lead to remedy. Compact systems developed since PCAD could eliminate the high-voltage lead and directly couple the exciter to the spark igniter. MSFC developed Augmented Spark Impinging (ASI) igniter. Successfully used in several sea-level test programs. Plasma-assisted design. Portion of ox flow is used to generate hot plasma. Impinging flows downstream of plasma. Additional fuel flow down torch tube sleeve for cooling near stoichiometric torch flame. Testing done at NASA GRC Altitude Combustion Stand (ACS) facility 2000-lbf class facility with altitude simulation up to around 100,000 ft. (0.2 psia [10 Torr]) via nitrogen driven ejectors. Propellant conditioning systems can provide temperature control of LOX/CH4 up to test article.

  8. Pancreatitis - discharge

    Science.gov (United States)

    Chronic pancreatitis - discharge; Pancreatitis - chronic - discharge; Pancreatic insufficiency - discharge; Acute pancreatitis - discharge ... You were in the hospital because you have pancreatitis. This is a swelling of the pancreas. You ...

  9. Electric ignition energy evaluation and the energy distribution structure of energy released in electrostatic discharge process

    International Nuclear Information System (INIS)

    Liu Qingming; Huang Jinxiang; Shao Huige; Zhang Yunming

    2017-01-01

    Ignition energy is one of the important parameters of flammable materials, and evaluating ignition energy precisely is essential to the safety of process industry and combustion science and technology. By using electric spark discharge test system, a series of electric spark discharge experiments were conducted with the capacitor-stored energy in the range of 10 J, 100 J, and 1000 J, respectively. The evaluation method for energy consumed by electric spark, wire, and switch during capacitor discharge process has been studied respectively. The resistance of wire, switch, and plasma between electrodes has been evaluated by different methods and an optimized evaluation method has been obtained. The electric energy consumed by wire, electric switch, and electric spark-induced plasma between electrodes were obtained and the energy structure of capacitor-released energy was analyzed. The dynamic process and the characteristic parameters (the maximum power, duration of discharge process) of electric spark discharge process have been analyzed. Experimental results showed that, electric spark-consumed energy only accounts for 8%–14% of the capacitor-released energy. With the increase of capacitor-released energy, the duration of discharge process becomes longer, and the energy of plasma accounts for more in the capacitor-released energy. The power of electric spark varies with time as a damped sinusoids function and the period and the maximum value increase with the capacitor-released energy. (paper)

  10. Heart pacemaker - discharge

    Science.gov (United States)

    Cardiac pacemaker implantation - discharge; Artificial pacemaker - discharge; Permanent pacemaker - discharge; Internal pacemaker - discharge; Cardiac resynchronization therapy - discharge; CRT - discharge; ...

  11. Scattering profiles of sparks and combustibility of filter against hot sparks

    International Nuclear Information System (INIS)

    Asazuma, Shinichiro; Okada, Takashi; Kashiro, Kashio

    2004-01-01

    The glove-box dismantling facility in the Plutonium Fuel Production Facility is developed to dismantle after-service glove-boxes with remote-controlled devices such as an arm-type manipulator. An abrasive wheel cutter, which is used to size reduce the gloveboxes, generates sparks during operation. This dispersing spark was a problem from the fire prevention point of view. A suitable spark control measures for this operation were required. We developed panels to minimize spark dispersion, shields to prevent the income of sparks to the pre-filter, and incombustible pre-filters. The equipment was tested and effectiveness was confirmed. This report provides the results of these tests. (author)

  12. Gas spark switches with increased operating life for Marx generator of lightning test complex

    Energy Technology Data Exchange (ETDEWEB)

    Bykov, Yu. A.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru [Russian Academy of Sciences, Joint Institute for High Temperature (Russian Federation)

    2016-12-15

    A new design of gas spark switches with an increased operating life and stable dynamic characteristics for the Marx generator of the lightning test complex has been developed. The switches are characterized by the following parameters in the mode of operation: voltage up to 80 kV, discharge current up to 50 kA, flowing charge up to 3.5 C/pulse. An increased operating life is achieved by using torus-shaped electrodes with increased working surface area and a trigger electrode in the form of a thick disk with a hole located between them. Low breakdown delay time and high stability of breakdown voltage under dynamic conditions are provided by gas preionization in the spark gap using UV radiation of an additional corona discharge in the axial region.

  13. Laser spark distribution and ignition system

    Science.gov (United States)

    Woodruff, Steven [Morgantown, WV; McIntyre, Dustin L [Morgantown, WV

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  14. Modeling and evaluation of the influence of micro-EDM sparking state settings on the tool electrode wear behavior

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2017-01-01

    materials characterized by considerable wear ofthe tool used for material removal. This paper presents an investigation involving modeling and estimation of the effect of settings for generation of discharges in stable conditions of micro-EDM on the phenomenon of tool electrode wear. A stable sparking...... a condition for the minimum tool wear for this micro-EDM process configuration....

  15. Quasi-spherical compression of a spark-channel plasma

    International Nuclear Information System (INIS)

    Panarella, E.

    1980-01-01

    An axial spark channel in deuterium has been used as a target for implosive shock waves created with a conventional cylindrical theta-pinch device. The compression of the channel by the implosive waves raised the plasma electron temperature to approximately 120 eV for approximately 6 kJ of condenser bank energy and 1 Torr initial gas pressure. In order to improve the efficiency of compression of the channel plasma and to reduce the end losses inherent in the cylindrical configuration, the theta-pinch geometry was then converted from cylindrical into spherical. Under identical conditions of gas pressure and condenser bank energy, the electron temperature now peaked at approximately 400 eV. When the bank energy was increased to approximately 10 kJ, neutron production was observed. The total neutron output per shot ranged from 10 5 to 10 6 and increased inversely with the pinch discharge volume

  16. Spark - a modern approach for distributed analytics

    CERN Multimedia

    CERN. Geneva; Kothuri, Prasanth

    2016-01-01

    The Hadoop ecosystem is the leading opensource platform for distributed storing and processing big data. It is a very popular system for implementing data warehouses and data lakes. Spark has also emerged to be one of the leading engines for data analytics. The Hadoop platform is available at CERN as a central service provided by the IT department. By attending the session, a participant will acquire knowledge of the essential concepts need to benefit from the parallel data processing offered by Spark framework. The session is structured around practical examples and tutorials. Main topics: Architecture overview - work distribution, concepts of a worker and a driver Computing concepts of transformations and actions Data processing APIs - RDD, DataFrame, and SparkSQL

  17. Using SPARK as a Solver for Modelica

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael; Wetter, Michael; Haves, Philip; Moshier, Michael A.; Sowell, Edward F.

    2008-06-30

    Modelica is an object-oriented acausal modeling language that is well positioned to become a de-facto standard for expressing models of complex physical systems. To simulate a model expressed in Modelica, it needs to be translated into executable code. For generating run-time efficient code, such a translation needs to employ algebraic formula manipulations. As the SPARK solver has been shown to be competitive for generating such code but currently cannot be used with the Modelica language, we report in this paper how SPARK's symbolic and numerical algorithms can be implemented in OpenModelica, an open-source implementation of a Modelica modeling and simulation environment. We also report benchmark results that show that for our air flow network simulation benchmark, the SPARK solver is competitive with Dymola, which is believed to provide the best solver for Modelica.

  18. High performance Spark best practices for scaling and optimizing Apache Spark

    CERN Document Server

    Karau, Holden

    2017-01-01

    Apache Spark is amazing when everything clicks. But if you haven’t seen the performance improvements you expected, or still don’t feel confident enough to use Spark in production, this practical book is for you. Authors Holden Karau and Rachel Warren demonstrate performance optimizations to help your Spark queries run faster and handle larger data sizes, while using fewer resources. Ideal for software engineers, data engineers, developers, and system administrators working with large-scale data applications, this book describes techniques that can reduce data infrastructure costs and developer hours. Not only will you gain a more comprehensive understanding of Spark, you’ll also learn how to make it sing. With this book, you’ll explore: How Spark SQL’s new interfaces improve performance over SQL’s RDD data structure The choice between data joins in Core Spark and Spark SQL Techniques for getting the most out of standard RDD transformations How to work around performance issues i...

  19. Chaotic combustion in spark ignition engines

    International Nuclear Information System (INIS)

    Wendeker, Miroslaw; Czarnigowski, Jacek; Litak, Grzegorz; Szabelski, Kazimierz

    2003-01-01

    We analyse the combustion process in a spark ignition engine using the experimental data of an internal pressure during the combustion process and show that the system can be driven to chaotic behaviour. Our conclusion is based on the observation of unperiodicity in the time series, suitable stroboscopic maps and a complex structure of a reconstructed strange attractor. This analysis can explain that in some circumstances the level of noise in spark ignition engines increases considerably due to nonlinear dynamics of a combustion process

  20. Nipple Discharge

    Science.gov (United States)

    ... any unexpected nipple discharge evaluated by a doctor. Nipple discharge in men under any circumstances could be a problem and needs further evaluation. One or both breasts may produce a nipple discharge, either spontaneously or when you squeeze your ...

  1. The suppression of destructive sparks in parallel plate proportional counters

    Energy Technology Data Exchange (ETDEWEB)

    Cockshott, R.A.; Mason, I.M.

    1984-02-01

    The authors find that high energy background events produce localised sparks in parallel plate counters when operated in the proportional mode. These sparks increase dead-time and lead to degradation ranging from electrode damage to spurious pulsing and continuous breakdown. The problem is particularly serious in low energy photon detectors for X-ray astronomy which are required to have lifetimes of several years in the high radiation environment of space. For the parallel plate imaging detector developed for the European X-ray Observatory Satellite (EXOSAT) they investigate quantitatively the spark thresholds, spark rates and degradation processes. They discuss the spark mechanism, pointing out differences from the situation in spark chambers and counters. They show that the time profile of the sparks allows them to devise a spark suppression system which reduces the degradation rate by a factor of ''200.

  2. Modelling Spark Integration in Science Classroom

    Directory of Open Access Journals (Sweden)

    Marie Paz E. Morales

    2014-02-01

    Full Text Available The study critically explored how a PASCO-designed technology (SPARK ScienceLearning System is meaningfully integrated into the teaching of selected topics in Earth and Environmental Science. It highlights on modelling the effectiveness of using the SPARK Learning System as a primary tool in learning science that leads to learning and achievement of the students. Data and observation gathered and correlation of the ability of the technology to develop high intrinsic motivation to student achievement were used to design framework on how to meaningfully integrate SPARK ScienceLearning System in teaching Earth and Environmental Science. Research instruments used in this study were adopted from standardized questionnaires available from literature. Achievement test and evaluation form were developed and validated for the purpose of deducing data needed for the study. Interviews were done to delve into the deeper thoughts and emotions of the respondents. Data from the interviews served to validate all numerical data culled from this study. Cross-case analysis of the data was done to reveal some recurring themes, problems and benefits derived by the students in using the SPARK Science Learning System to further establish its effectiveness in the curriculum as a forerunner to the shift towards the 21st Century Learning.

  3. Electro-spark machining of cadmium antimonide

    International Nuclear Information System (INIS)

    Ivanovskij, V.N.; Stepakhina, K.A.

    1975-01-01

    Experimental data on electrical erosion of the semiconductor material (cadmium antimonide) alloyed with tellurium are given. The potentialisies and expediency of using the electric-spark method of cutting cadmium antimonide ingots with the resistivity of 1 ohm is discussed. Cutting has been carried out in distilled water and in the air

  4. Efficiency calibration of solid track spark auto counter

    International Nuclear Information System (INIS)

    Wang Mei; Wen Zhongwei; Lin Jufang; Liu Rong; Jiang Li; Lu Xinxin; Zhu Tonghua

    2008-01-01

    The factors influencing detection efficiency of solid track spark auto counter were analyzed, and the best etch condition and parameters of charge were also reconfirmed. With small plate fission ionization chamber, the efficiency of solid track spark auto counter at various experiment assemblies was re-calibrated. The efficiency of solid track spark auto counter at various experimental conditions was obtained. (authors)

  5. DeepSpark: A Spark-Based Distributed Deep Learning Framework for Commodity Clusters

    OpenAIRE

    Kim, Hanjoo; Park, Jaehong; Jang, Jaehee; Yoon, Sungroh

    2016-01-01

    The increasing complexity of deep neural networks (DNNs) has made it challenging to exploit existing large-scale data processing pipelines for handling massive data and parameters involved in DNN training. Distributed computing platforms and GPGPU-based acceleration provide a mainstream solution to this computational challenge. In this paper, we propose DeepSpark, a distributed and parallel deep learning framework that exploits Apache Spark on commodity clusters. To support parallel operation...

  6. Spark Plasma Sintering of Ultracapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Curtis W. [CK Technologies, Camirillo, CA (United States); Boatner, Lynn A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tucker, Dennis [NASA Johnson Space Center, Houston, TX (United States); Kolopus, James A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cheng, Zhongyang [Auburn Univ., AL (United States)

    2016-01-01

    A solid-state ultracapacitor module to replace standard electrochemical batteries would achieve major performance gains and mass/volume reduction. This report summarizes a project to evaluate an alternative sintering process to produce a solid-state ultracapacitor to overcome the limitations of both the electrochemical batteries presently in use on spacecraft and of currently available electrochemical ultracapacitors. It will provide a robust energy storage device with higher reliability, wider working temperature range, longer lifetime, and less weight and volume than electrochemical batteries. As modern electronics decrease in size, more efficient and robust remote power is needed. Current state-of-the-art rechargeable batteries cannot be rapidly charged, contain harmful chemicals, and suffer from early wear-out mechanisms. Solid-state ultracapacitors are recyclable energy storage devices that offer the promise of higher power and a greater number of charge/discharge cycles than current rechargeable batteries. In addition, the theoretical energy density when compared to current electrochemical batteries indicates that a significant weight savings is possible. This is a project to develop a very high density solid-state ultracapacitor with giant permittivity and acceptable dielectric loss to overcome the energy-density barrier such that it will be a suitable replacement for batteries.

  7. On the occurrence of ‘bead lightning’ phenomena in long laboratory sparks

    Energy Technology Data Exchange (ETDEWEB)

    Vayanganie, S.P.A., E-mail: amilavayanganie@gmail.com [Atmospheric Physics and Lightning Research Group, University of Colombo, Colombo 03 (Sri Lanka); Cooray, V.; Rahman, Mahbubur; Hettiarachchi, Pasan; Diaz, Oscar [Lightning Research Group, The Ångström Laboratory Division of Electricity, Department of Engineering Sciences, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Fernando, M. [Atmospheric Physics and Lightning Research Group, University of Colombo, Colombo 03 (Sri Lanka)

    2016-02-22

    The formation of bead lightning, where the lightning channel appears to break up into luminous fragments, is still an object of speculation. Here we report similar observations in laboratory discharges. Analysis of time resolved photographs shows that the discharge channel exhibits a ‘bead pattern’ in the decaying stage of the discharge and the occurrence of loops in the channel sections where the bead pattern is observed. This result presents the first evidence that the rapid cooling of non-uniform channel sections could lead to the formation of beads. It is suggested that periodically occurring non-uniform channel sections could explain the bead pattern of lightning discharges. - Highlights: • For the first time, the occurrence of bead patterns in the channel of laboratory sparks was reported. • Depending on the geometry some regions of the channel decays faster than the other sections. • A possible mechanism for the occurrence of beads in decaying states of lightning flashes is proposed.

  8. Overcurrent protection for the TFTR neutral beam sources during spark down

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1979-01-01

    The accelerating grid of a neutral beam source (NBS) of the Tokamak Fusion Test Reactor (TFTR) operates at 120 kV and 65 A. The capacitance to ground between the switch tube (ST) and the NBS is C 1 approx. 5 nF (approx. 36 J). The arc and filament power supplies for the NBS float at 120 kV and have a capacitance to ground of C 2 approx. 2 nF (approx. 14 J). When the NBS sparks to ground, C 2 begins to discharge immediately. The ST impedance limits the fault current from the high voltage (HV) power supply to approx. 100 A until it disconnects the power source 1 begins to discharge. During spark down, fault currents are limited with a saturated time-delay transformer (STDT) connected between the ST and the NBS and with a snubber, which is in the arc and filament power leads, in connection with a spark gap. Alternatively, STDT's can be used for the HV and for the arc and filament power leads. This paper presents design details and experimental results of the overcurrent protection circuits

  9. Choice of optimal conditions for layer-by-layer analysis of semiconductor structures on spark mass spectrometer

    International Nuclear Information System (INIS)

    Gerasimov, V.A.; Saprykin, A.I.; Shelpakova, I.R.; Yudelevich, I.G.

    1978-01-01

    Criteria of choosing counter-electrode-configuration, size and material have been determined. A tantalum counter-electrode with rectangular cross-section (3.5-4.5) mmx(0.05-0.08) mm 2 is proposed for layer-by-layer analysis of Si, Ge, GaAs, InSb. A scanning velocity has been chosen and spark generator operating conditions have been optimized which ensure the surface roughness of 0.5-0.8 μ after sparking. A systematic study has been made of the effect of ballast elements in the discharge circuit on the basic characteristics of the layer-by-layer analysis: ionic current intensity, counter-electrode contribution to the total ionic current, intensity of dicharged ions and surface roughness. A ballast ohmic resistance inside the ion source decreases a correction for the blank by one order of magnitude and the sparked surface roughness by 2-3 times

  10. Spatiotemporally resolved characteristics of a gliding arc discharge in a turbulent air flow at atmospheric pressure

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Gao, Jinlong; Ehn, Andreas

    2017-01-01

    A gliding arc discharge was generated in a turbulent air flow at atmospheric pressure driven by a 35 kHz alternating current (AC) electric power. The spatiotemporally resolved characteristics of the gliding arc discharge, including glow-type discharges, spark-type discharges, short-cutting events...... and transitions among the different types of discharges, were investigated using simultaneously optical and electrical diagnostics. The glow-type discharge shows sinusoidal-like voltage and current waveforms with a peak current of hundreds of milliamperes. The frequency of the emission intensity variation...... of the glow-type discharge is the same as that of the electronic power dissipated in the plasma column. The glow-type discharge can transfer into a spark discharge characterized by a sharp peak current of several amperes and a sudden increase of the brightness in the plasma column. Transitions can also...

  11. Non-sparking anodization process of AZ91D magnesium alloy under low AC voltage

    International Nuclear Information System (INIS)

    Li, Weiping; Li, Wen; Zhu, Liqun; Liu, Huicong; Wang, Xiaofang

    2013-01-01

    Highlights: ► Four different processes appear on magnesium alloys with applied voltage increase. ► Non-sparking film formation process occurred in the range of 6–10 V AC. ► The film was composed of Mg 2 SiO 4 with a stable growth rate in 30 min. ► Film growth was a balance of electrochemical dissolution and chemical deposition. -- Abstract: Anodization is widely recognized as one of the most important surface treatments for magnesium alloys. However, since high voltage oxidation films are limited in some applications due to porosity and brittleness, it is worthwhile to explore the non-sparking oxidizing process. In this work, AZ91D was electrochemically anodized at different AC voltages in an electrolyte containing 120 g/L NaOH and 80 g/L Na 2 SiO 3 ·9H 2 O. The effects of voltage on the surface morphology, composition and reaction process, especially the non-sparking discharge anodic film formation process, were investigated. The results showed that four different processes would appear according to the applied voltage variation from 6 V to 40 V, and that the non-sparking film formation process occurred in the range of 6–10 V. The film formed on the AZ91D surface under 10 V AC was mainly composed of Mg 2 SiO 4 with a lamellar structure. The horizontal and vertical expansion of the lamellar structure resulted in the formation of a multi-layered structure with a stable, linear growth rate for 30 min. The non-sparking film formation process can be considered to be the result of a balance of electrochemical dissolution and chemical deposition reaction

  12. Non-sparking anodization process of AZ91D magnesium alloy under low AC voltage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weiping, E-mail: liweiping@buaa.edu.cn [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Li, Wen [AVIC Beijing Aeronautical Manufacturing Technology Research Institue, Beijing 100024 (China); Zhu, Liqun; Liu, Huicong; Wang, Xiaofang [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2013-04-20

    Highlights: ► Four different processes appear on magnesium alloys with applied voltage increase. ► Non-sparking film formation process occurred in the range of 6–10 V AC. ► The film was composed of Mg{sub 2}SiO{sub 4} with a stable growth rate in 30 min. ► Film growth was a balance of electrochemical dissolution and chemical deposition. -- Abstract: Anodization is widely recognized as one of the most important surface treatments for magnesium alloys. However, since high voltage oxidation films are limited in some applications due to porosity and brittleness, it is worthwhile to explore the non-sparking oxidizing process. In this work, AZ91D was electrochemically anodized at different AC voltages in an electrolyte containing 120 g/L NaOH and 80 g/L Na{sub 2}SiO{sub 3}·9H{sub 2}O. The effects of voltage on the surface morphology, composition and reaction process, especially the non-sparking discharge anodic film formation process, were investigated. The results showed that four different processes would appear according to the applied voltage variation from 6 V to 40 V, and that the non-sparking film formation process occurred in the range of 6–10 V. The film formed on the AZ91D surface under 10 V AC was mainly composed of Mg{sub 2}SiO{sub 4} with a lamellar structure. The horizontal and vertical expansion of the lamellar structure resulted in the formation of a multi-layered structure with a stable, linear growth rate for 30 min. The non-sparking film formation process can be considered to be the result of a balance of electrochemical dissolution and chemical deposition reaction.

  13. Impedance-stabilized positive corona discharge and its decontamination properties

    Energy Technology Data Exchange (ETDEWEB)

    Horak, P; Khun, J, E-mail: pavel.horak@vscht.c [Department of Physics and Measurements, Faculty of Chemical Engineering, Institute of Chemical Technology, Technicka 5, 166 28 Praha 6 (Czech Republic)

    2010-04-01

    The point-to-plane DC corona discharge in air at atmospheric pressure was stabilized by a serially connected ballast impedance. The ballast impedance was implemented by a resistor-capacitor group connected in parallel. In the case of connecting the serial impedance into the electric circuit of a negative corona, the transition into a spark takes place at parameters similar to those of a non-stabilized discharge. In contrast, in the case of a positive corona, the discharge does not undergo a transition into a spark, but rather into a mode of periodic streamers. We measured the bactericidal effect of the stabilized discharge. The experiments showed that after a 2-minute exposure the quantity of surviving bacteria decreased from 95% for a non-stabilized discharge down to 5% for a stabilized one.

  14. Impedance-stabilized positive corona discharge and its decontamination properties

    International Nuclear Information System (INIS)

    Horak, P; Khun, J

    2010-01-01

    The point-to-plane DC corona discharge in air at atmospheric pressure was stabilized by a serially connected ballast impedance. The ballast impedance was implemented by a resistor-capacitor group connected in parallel. In the case of connecting the serial impedance into the electric circuit of a negative corona, the transition into a spark takes place at parameters similar to those of a non-stabilized discharge. In contrast, in the case of a positive corona, the discharge does not undergo a transition into a spark, but rather into a mode of periodic streamers. We measured the bactericidal effect of the stabilized discharge. The experiments showed that after a 2-minute exposure the quantity of surviving bacteria decreased from 95% for a non-stabilized discharge down to 5% for a stabilized one.

  15. submitter Triggering of a pressurized spark gap by a laser beam

    CERN Document Server

    Deutsch, F

    1968-01-01

    A delay line was discharged into a terminating resistor by a spark gap of coaxial design. The spark gap was triggered by a focused laser beam, introduced along the axis; a Q-switched ruby laser giving pulses of 20 ns duration and up to 50 MW power was used. The range of operation of the gap, formative time of the breakdown and jitter were investigated for different gases at pressures above atmospheric, gap widths of 4-10 mm and voltages of up to 120 kv. Mixtures of argon and nitrogen were found to have certain advantages, such as a low threshold for ionization by the laser beam, sufficient dielectric strength, low values of the formative-time jitter and chemical inertness. Formative times of down to about 1 ns and jitters below 1 ns were found. The laser power can be relatively low (0centerdot5-5 MW). An explanation for the breakdown mechanism is proposed.

  16. Trace amount analysis using spark mass spectrometry

    International Nuclear Information System (INIS)

    Stefani, Rene

    1975-01-01

    Characteristics of spark mass spectrometers (ion source, properties of the ion beam, ion optics, and performance) and their use in qualitative and quantitative analysis are described. This technique is very interesting for the semi-quantitative analysis of trace amounts, down to 10 -8 atoms. Examples of applications such as the analysis of high purity materials and non-conducting mineral samples, and determination of carbon and gas trace amounts are presented. (50 references) [fr

  17. SPARK Version 1.1 user manual

    International Nuclear Information System (INIS)

    Weissenburger, D.W.

    1988-01-01

    This manual describes the input required to use Version 1.1 of the SPARK computer code. SPARK 1.1 is a library of FORTRAN main programs and subprograms designed to calculate eddy currents on conducting surfaces where current flow is assumed zero in the direction normal to the surface. Surfaces are modeled with triangular and/or quadrilateral elements. Lorentz forces produced by the interaction of eddy currents with background magnetic fields can be output at element nodes in a form compatible with most structural analysis codes. In addition, magnetic fields due to eddy currents can be determined at points off the surface. Version 1.1 features eddy current streamline plotting with optional hidden-surface-removal graphics and topological enhancements that allow essentially any orientable surface to be modeled. SPARK also has extensive symmetry specification options. In order to make the manual as self-contained as possible, six appendices are included that present summaries of the symmetry options, topological options, coil options and code algorithms, with input and output examples. An edition of SPARK 1.1 is available on the Cray computers at the National Magnetic Fusion Energy Computer Center at Livermore, California. Another more generic edition is operational on the VAX computers at the Princeton Plasma Physics Laboratory and is available on magnetic tape by request. The generic edition requires either the GKS or PLOT10 graphics package and the IMSL or NAG mathematical package. Requests from outside the United States will be subject to applicable federal regulations regarding dissemination of computer programs. 22 refs

  18. SPARK Version 1. 1 user manual

    Energy Technology Data Exchange (ETDEWEB)

    Weissenburger, D.W.

    1988-01-01

    This manual describes the input required to use Version 1.1 of the SPARK computer code. SPARK 1.1 is a library of FORTRAN main programs and subprograms designed to calculate eddy currents on conducting surfaces where current flow is assumed zero in the direction normal to the surface. Surfaces are modeled with triangular and/or quadrilateral elements. Lorentz forces produced by the interaction of eddy currents with background magnetic fields can be output at element nodes in a form compatible with most structural analysis codes. In addition, magnetic fields due to eddy currents can be determined at points off the surface. Version 1.1 features eddy current streamline plotting with optional hidden-surface-removal graphics and topological enhancements that allow essentially any orientable surface to be modeled. SPARK also has extensive symmetry specification options. In order to make the manual as self-contained as possible, six appendices are included that present summaries of the symmetry options, topological options, coil options and code algorithms, with input and output examples. An edition of SPARK 1.1 is available on the Cray computers at the National Magnetic Fusion Energy Computer Center at Livermore, California. Another more generic edition is operational on the VAX computers at the Princeton Plasma Physics Laboratory and is available on magnetic tape by request. The generic edition requires either the GKS or PLOT10 graphics package and the IMSL or NAG mathematical package. Requests from outside the United States will be subject to applicable federal regulations regarding dissemination of computer programs. 22 refs.

  19. Spark plasma sintering of tantalum carbide

    International Nuclear Information System (INIS)

    Khaleghi, Evan; Lin, Yen-Shan; Meyers, Marc A.; Olevsky, Eugene A.

    2010-01-01

    A tantalum carbide powder was consolidated by spark plasma sintering. The specimens were processed under various temperature and pressure conditions and characterized in terms of relative density, grain size, rupture strength and hardness. The results are compared to hot pressing conducted under similar settings. It is shown that high densification is accompanied by substantial grain growth. Carbon nanotubes were added to mitigate grain growth; however, while increasing specimens' rupture strength and final density, they had little effect on grain growth.

  20. Shoulder replacement - discharge

    Science.gov (United States)

    Total shoulder arthroplasty - discharge; Endoprosthetic shoulder replacement - discharge; Partial shoulder replacement - discharge; Partial shoulder arthroplasty - discharge; Replacement - shoulder - discharge; Arthroplasty - shoulder - discharge

  1. Effects of spark plug configuration on combustion and emission characteristics of a LPG fuelled lean burn SI engine

    Science.gov (United States)

    Ravi, K.; Khan, Manazir Ahmed; Pradeep Bhasker, J.; Porpatham, E.

    2017-11-01

    Introduction of technological innovation in automotive engines in reducing pollution and increasing efficiency have been under contemplation. Gaseous fuels have proved to be a promising way to reduce emissions in Spark Ignition (SI) engines. In particular, LPG settled to be a favourable fuel for SI engines because of their higher hydrogen to carbon ratio, octane rating and lower emissions. Wide ignition limits and efficient combustion characteristics make LPG suitable for lean burn operation. But lean combustion technology has certain drawbacks like poor flame propagation, cyclic variations etc. Based on copious research it was found that location, types and number of spark plug significantly influence in reducing cyclic variations. In this work the influence of single and dual spark plugs of conventional and surface discharge electrode type were analysed. Dual surface discharge electrode spark plug enhanced the brake thermal efficiency and greatly reduced the cyclic variations. The experimental results show that rate of heat release and pressure rise was more and combustion duration was shortened in this configuration. On the emissions front, the NOx emission has increased whereas HC and CO emissions were reduced under lean condition.

  2. Dissociation dynamics of CH3I in electric spark induced breakdown revealed by time-resolved laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Wang, Yang; Liu, Wei-long; Song, Yun-fei; Duo, Li-ping; Liu, Yu-qiang; Yang, Yan-qiang

    2015-01-01

    Highlights: • Emission of electric spark dissociation of CH 3 I is similar to its fs LIBS. • We use fs laser induced breakdown as a simulation for electric spark dissociation. • The I 2 molecule formation is directly observed in the time-resolved LIBS. • Bimolecular collision of I ∗ and CH 3 I is responsible for the formation of I 2 . - Abstract: The electric discharge spark dissociation of gas CH 3 I is found to be similar to its femtosecond laser photodissociation. The almost identical spectra of the two processes show that their initial ionization conditions are very similar. The initial ionization followed by molecular fragmentation is proposed as the dissociation mechanism, in which the characteristic emissions of I + , CH 3 , CH 2 , CH, H, and I 2 are identified as the dissociation products. The emission band of 505 nm I 2 is clearly observed in the time-resolved laser induced breakdown spectroscopy (LIBS). The dynamic curve indicates that I 2 ∗ molecules are formed after the delay time of ∼4.7 ns. The formation of I 2 ∗ molecule results from the bimolecular collision of the highly excited iodine atom I ∗ ( 4 P) and CH 3 I molecule. This dynamical information can help understand the process of electric discharge spark dissociation of CH 3 I

  3. A comparison of electrochemically pre-treated and spark-platinized carbon fiber microelectrode. Measurement of 8-oxo-7,8-dihydro-2′-deoxyguanosine in human urine and plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bartosova, Z.; Riman, D. [Department of Analytical Chemistry, Palacky University, Faculty of Science, 17.listopadu 12, CZ-771 46 Olomouc (Czech Republic); Halouzka, V. [Department of Analytical Chemistry, Palacky University, Faculty of Science, 17.listopadu 12, CZ-771 46 Olomouc (Czech Republic); Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlin, nam. T.G. Masaryka 275, CZ-76001 Zlin (Czech Republic); Vostalova, J.; Simanek, V. [Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, CZ-775 15 Olomouc (Czech Republic); Hrbac, J., E-mail: jhrbac@atlas.cz [Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno (Czech Republic); Jirovsky, D., E-mail: david.jirovsky@upol.cz [Department of Analytical Chemistry, Palacky University, Faculty of Science, 17.listopadu 12, CZ-771 46 Olomouc (Czech Republic)

    2016-09-07

    A novel method of carbon fiber microelectrode activation using spark discharge was demonstrated and compared to conventional electrochemical pretreatment by potential cycling. The spark discharge was performed at 800 V between the microelectrode connected to positive pole of the power supply and platinum counter electrode. Spark discharge led both to trimming of the fiber tip into conical shape and to the modification of carbon fiber microelectrode with platinum, as proven by scanning electron microscopy and electron dispersive X-ray spectroscopy. After the characterization of electrochemical properties using ferricyanide voltammetry, the activated electrodes were used for electrochemical analysis of 8-oxo-7,8-dihydro-2′-deoxyguanosine, an oxidative stress marker. Subnanomolar detection limits (0.55 nmol L{sup −1}) in high-performance liquid chromatography were achieved for spark platinized electrodes incorporated into the flow detection cell. - Highlights: • Novel method of carbon fiber microelectrode activation and platinization using spark discharge. • The activation procedure is efficient, fast and solvent-free. • Modification of the surface and the shape of the carbon fiber microelectrode during the process. • The spark-etched platinized carbon fiber sensors are highly sensitive. • The sensor was successfully applied to HPLC analysis of 8-oxo-7,8-dihydro-2′-deoxyguanosine in plasma and urine.

  4. Big Data Analytics with Datalog Queries on Spark.

    Science.gov (United States)

    Shkapsky, Alexander; Yang, Mohan; Interlandi, Matteo; Chiu, Hsuan; Condie, Tyson; Zaniolo, Carlo

    2016-01-01

    There is great interest in exploiting the opportunity provided by cloud computing platforms for large-scale analytics. Among these platforms, Apache Spark is growing in popularity for machine learning and graph analytics. Developing efficient complex analytics in Spark requires deep understanding of both the algorithm at hand and the Spark API or subsystem APIs (e.g., Spark SQL, GraphX). Our BigDatalog system addresses the problem by providing concise declarative specification of complex queries amenable to efficient evaluation. Towards this goal, we propose compilation and optimization techniques that tackle the important problem of efficiently supporting recursion in Spark. We perform an experimental comparison with other state-of-the-art large-scale Datalog systems and verify the efficacy of our techniques and effectiveness of Spark in supporting Datalog-based analytics.

  5. Liquid-Arc/Spark-Excitation Atomic-Emission Spectroscopy

    Science.gov (United States)

    Schlagen, Kenneth J.

    1992-01-01

    Constituents of solutions identified in situ. Liquid-arc/spark-excitation atomic-emission spectroscopy (LAES) is experimental variant of atomic-emission spectroscopy in which electric arc or spark established in liquid and spectrum of light from arc or spark analyzed to identify chemical elements in liquid. Observations encourage development of LAES equipment for online monitoring of process streams in such industries as metal plating, electronics, and steel, and for online monitoring of streams affecting environment.

  6. Development of a SPARK Training Dataset

    International Nuclear Information System (INIS)

    Sayre, Amanda M.; Olson, Jarrod R.

    2015-01-01

    In its first five years, the National Nuclear Security Administration's (NNSA) Next Generation Safeguards Initiative (NGSI) sponsored more than 400 undergraduate, graduate, and post-doctoral students in internships and research positions (Wyse 2012). In the past seven years, the NGSI program has, and continues to produce a large body of scientific, technical, and policy work in targeted core safeguards capabilities and human capital development activities. Not only does the NGSI program carry out activities across multiple disciplines, but also across all U.S. Department of Energy (DOE)/NNSA locations in the United States. However, products are not readily shared among disciplines and across locations, nor are they archived in a comprehensive library. Rather, knowledge of NGSI-produced literature is localized to the researchers, clients, and internal laboratory/facility publication systems such as the Electronic Records and Information Capture Architecture (ERICA) at the Pacific Northwest National Laboratory (PNNL). There is also no incorporated way of analyzing existing NGSI literature to determine whether the larger NGSI program is achieving its core safeguards capabilities and activities. A complete library of NGSI literature could prove beneficial to a cohesive, sustainable, and more economical NGSI program. The Safeguards Platform for Automated Retrieval of Knowledge (SPARK) has been developed to be a knowledge storage, retrieval, and analysis capability to capture safeguards knowledge to exist beyond the lifespan of NGSI. During the development process, it was necessary to build a SPARK training dataset (a corpus of documents) for initial entry into the system and for demonstration purposes. We manipulated these data to gain new information about the breadth of NGSI publications, and they evaluated the science-policy interface at PNNL as a practical demonstration of SPARK's intended analysis capability. The analysis demonstration sought to answer

  7. Discharge behaviors during plasma electrolytic oxidation on aluminum alloy

    International Nuclear Information System (INIS)

    Liu, Run; Wu, Jie; Xue, Wenbin; Qu, Yao; Yang, Chaolin; Wang, Bin; Wu, Xianying

    2014-01-01

    A plasma electrolytic oxidation (PEO) process was performed on the 2024 aluminum alloy in silicate electrolyte to fabricate ceramic coatings under a constant voltage. Optical emission spectroscopy (OES) was employed to evaluate the characteristics of plasma discharge during PEO process. The plasma electron temperature and density were obtained by analyzing the spectral lines of OES, and the atomic ionization degree in discharge zone was calculated in terms of Saha thermal ionization equation. The illumination intensity of plasma discharge and the temperature in the interior of alloy were measured. Combining the surface morphology and cross-sectional microstructure with the optical emission spectra and illumination at different discharge stage, a discharge model in the growth of PEO ceramic coatings was proposed. It is found that there are two discharge modes of type A with small spark size and type B with large spark size, and the latter only appears in the intermediate stage of PEO process. The illumination intensity has a maximum value in the initial stage of oxidation with many sparks of discharge type A. The electron temperature in plasma discharge zone is about 3000 K–7000 K and atomic ionization degree of Al is about 2.0 × 10 −5 –7.2 × 10 −3 , which depend on discharge stage. The discharge type B plays a key role on the electron temperature and atomic ionization degree. The electron density keeps stable in the range of about 8.5 × 10 21  m −3 –2.6 × 10 22  m −3 . - Highlights: • The characteristics of PEO plasma discharge was evaluated by OES. • Electron temperature, concentration, atomic ionization degree were calculated. • Discharge model for the growth of PEO coatings was proposed. • Temperature in the interior of alloy during PEO process was measured

  8. Hybrid employment recommendation algorithm based on Spark

    Science.gov (United States)

    Li, Zuoquan; Lin, Yubei; Zhang, Xingming

    2017-08-01

    Aiming at the real-time application of collaborative filtering employment recommendation algorithm (CF), a clustering collaborative filtering recommendation algorithm (CCF) is developed, which applies hierarchical clustering to CF and narrows the query range of neighbour items. In addition, to solve the cold-start problem of content-based recommendation algorithm (CB), a content-based algorithm with users’ information (CBUI) is introduced for job recommendation. Furthermore, a hybrid recommendation algorithm (HRA) which combines CCF and CBUI algorithms is proposed, and implemented on Spark platform. The experimental results show that HRA can overcome the problems of cold start and data sparsity, and achieve good recommendation accuracy and scalability for employment recommendation.

  9. Sparking investment in Ontario's power generation industry

    International Nuclear Information System (INIS)

    Allen, J.

    2004-01-01

    This paper discusses the business strategy needed to spark investment in Ontario's power generation industry. It examines the process of decision making and investing in an uncertain environment. The paper suggests that any strategy based on one view of the future courts trouble and that strategic flexibility can prepare for what cannot be predicted. Finally the paper suggests that Ontario needs to create a stable policy and regulatory environment that allows investors to fulfill reasonable expectations and investors need to place bets that provide the flexibility to respond quickly to changing market conditions

  10. Anticipating Change, Sparking Innovation: Framing the Future

    Science.gov (United States)

    Finnegan, John R.; Spencer, Harrison C.

    2015-01-01

    As the 100th anniversary of the 1915 Welch-Rose report approaches, the Association of Schools and Programs of Public Health (ASPPH) has been pursuing two initiatives to spark innovation in academic partnerships for enhancing population health: (1) Framing the Future: The Second 100 Years of Education for Public Health and (2) Reconnecting Public Health and Care Delivery to Improve the Health of Populations. We describe how ASPPH-member schools and programs accredited by the Council on Education for Public Health, along with their extraordinarily diverse array of partners, are working to improve education that better prepares health professionals to meet 21st-century population health needs. PMID:25706017

  11. Beam and hot spot formation in a low impedance driven vacuum spark

    International Nuclear Information System (INIS)

    Chuaqui, H.; Favre, M.; Soto, L.; Wyndham, E.

    1990-01-01

    Observations of a vacuum spark discharge plasma when driven by a 1.5 ω, 120 ns switched coaxial line at 60 kV open circuit voltage are made. A comparison of behaviour is made when a Nd: YAG laser over a range of energies is focussed either onto the anode or onto the cathode surface. A significantly different behaviour is seen if the line gap is shorted out allowing the sinusoidal voltage from the Marx to be applied to the electrodes. Hot spot formation with associated anode plasma are seen in this last case. (Author)

  12. Collision experiment on highly ionized ions using vacuum spark source

    International Nuclear Information System (INIS)

    Takagi, S.; Ohtani, S.; Kadota, K.; Fujita, J.

    1982-03-01

    Cross sections for one-electron capture by Fe 6 + in H 2 are measured below 10 keV by using a vacuum spark ion source. It is found that the cross sections show little dependence on the collision energy and this value is about 6 x 10 - 15 cm 2 . This ion source, which has no electrode for ion extraction, can produce ions from several hundreds eV to several tens of keV and the maximum charge state of 16 in Fe at 125J discharge energy. With ion selection system of 2.7 m time-of-flight and an electrostatic analyzer of 1% resolving power, 10 2 - 10 3 ions/pulse are obtained. Because of poor reproducibility of ion beam, charge-transferred ions and unreacted ions are measured simultaneously with a microchannel plate which has two anodes behind. By utilizing the feature of pulsed ion beam and this ion selection system, it is possible to obtain cross sections for various charge states of ions simultaneously. (author)

  13. Electrical and spectroscopic characterization of a surgical argon plasma discharge

    International Nuclear Information System (INIS)

    Keller, Sandra; Neugebauer, Alexander; Bibinov, Nikita; Awakowicz, Peter

    2013-01-01

    For electrosurgical procedures, the argon plasma coagulation (APC) discharge is a well-established atmospheric-pressure plasma tool for thermal haemostasis and devitalization of biological tissue. To characterize this plasma source, voltage-current measurements, microphotography, optical emission spectroscopy and numerical simulation are applied. Two discharge modes are established during the operation of the APC plasma source. A short transient spark discharge is ignited within the positive half period of the applied high voltage after a streamer channel connects the APC probe and the counter-electrode. During the second phase, which continues under negative high voltage, a glow discharge is stabilized in the plasma channel.

  14. Power source with spark-safe outlet

    Energy Technology Data Exchange (ETDEWEB)

    Tsesarenko, N P; Alekhin, A V

    1982-01-01

    The invention refers to the technique of electrical monitoring and control in systems operating in a spark-safe medium (for example, in coal mines). A more accurate area of application is mobile objects with autonomous source of electricity (mine diesel locomotives, battery electric locomotives etc.). The purpose of the invention is to simplify and to improve the reliability of the planned device, and also to expand the area of application for conditions when it is powered from an autonomous generator of direct voltage. This goal is achieved because the power source with spark-safe outlet (the source contains a thyristor of advance disconnection, connected by anode to the delimiting throttle, one outlet of which is connected to the capacitor included between the controlling electrode and the anode of the thyristor, and the capacitor is connected through the resistor parallel to the outlet clamps of the source, while the thyristor of emergency protection connected parallel to the inlet clamps of the power source) is additionally equipped with a current sensor, hercon, transistor key (included in series in the power circuit) and optron, whose emitter is connected parallel to the current sensor connected in series to the inlet of the power source, while the receiver of the optron is connected in a circuit for controlling the thyristor of emergency protection. Hercon is built into the core of the delimiting throttle and is connected to the circuit for controlling the transistor key.

  15. Micro Electro Discharge Machining for Nonconductive Ceramic Materials

    Directory of Open Access Journals (Sweden)

    Mohammad Yeakub Ali

    2018-03-01

    Full Text Available In micro-electro discharge machining (micro-EDM of nonconductive ceramics, material is removed mainly by spalling due to the dominance of alternating thermal load. The established micro-EDM models established for single spark erosion are not applicable for nonconductive ceramics because of random spalling. Moreover, it is difficult to create single spark on a nonconductive ceramic workpiece when the spark is initiated by the assisting electrode. In this paper, theoretical model of material removal rate (MRR as the function of capacitance and voltage is developed for micro-EDM of nonconductive zirconium oxide (ZrO2. It is shown that the charging and discharging duration depend on the capacitance and resistances of the circuit. The number of sparks per unit time is estimated from the single spark duration s derived from heat transfer fundamentals. The model showed that both the capacitance and voltage are significant process parameters where any increase of capacitance and voltage increases the MRR. However, capacitance was found to be the dominating parameter over voltage. As in case of higher capacitances, the creation of a conductive carbonic layer on the machined surface was not stable; the effective window of machining 101 - 103 pF capacitance and 80 - 100 V gap voltage or 10 - 470 pF capacitance and 80 - 110 V gap voltage. This fact was confirmed EDX analysis where the presence of high carbon content was evident. Conversely, the spark was found to be inconsistent using parameters beyond these ranges and consequently insignificant MRR. Nevertheless, the effective number of sparks per second were close to the predicted numbers when machining conductive copper material. In addition, higher percentage of ineffective pulses was observed during the machining which eventually reduced the MRR. In case of validation, average deviations between the predicted and experimental values were found to be around 10%. Finally, micro-channels were machined on

  16. Development of a SPARK Training Dataset

    Energy Technology Data Exchange (ETDEWEB)

    Sayre, Amanda M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Olson, Jarrod R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-01

    In its first five years, the National Nuclear Security Administration’s (NNSA) Next Generation Safeguards Initiative (NGSI) sponsored more than 400 undergraduate, graduate, and post-doctoral students in internships and research positions (Wyse 2012). In the past seven years, the NGSI program has, and continues to produce a large body of scientific, technical, and policy work in targeted core safeguards capabilities and human capital development activities. Not only does the NGSI program carry out activities across multiple disciplines, but also across all U.S. Department of Energy (DOE)/NNSA locations in the United States. However, products are not readily shared among disciplines and across locations, nor are they archived in a comprehensive library. Rather, knowledge of NGSI-produced literature is localized to the researchers, clients, and internal laboratory/facility publication systems such as the Electronic Records and Information Capture Architecture (ERICA) at the Pacific Northwest National Laboratory (PNNL). There is also no incorporated way of analyzing existing NGSI literature to determine whether the larger NGSI program is achieving its core safeguards capabilities and activities. A complete library of NGSI literature could prove beneficial to a cohesive, sustainable, and more economical NGSI program. The Safeguards Platform for Automated Retrieval of Knowledge (SPARK) has been developed to be a knowledge storage, retrieval, and analysis capability to capture safeguards knowledge to exist beyond the lifespan of NGSI. During the development process, it was necessary to build a SPARK training dataset (a corpus of documents) for initial entry into the system and for demonstration purposes. We manipulated these data to gain new information about the breadth of NGSI publications, and they evaluated the science-policy interface at PNNL as a practical demonstration of SPARK’s intended analysis capability. The analysis demonstration sought to answer the

  17. NIPPLE DISCHARGE

    Directory of Open Access Journals (Sweden)

    T. N. Bukharova

    2008-01-01

    Full Text Available According to the data available in the literature, as high as 50% of women have benign breast tumors frequently accompanied by nip- ple discharge. Nipple discharge may be serous, bloody, purulent, and colostric. The most common causes are breast abscess, injury, drugs, prolactinoma, intraductal pappiloma, ductal ectasia, intraductal cancer (not more than 10%.

  18. Detector for recoil nuclei stopping in the spark chamber gas

    International Nuclear Information System (INIS)

    Aleksanyan, A.S.; Asatiani, T.L.; Ivanov, V.I.; Mkrtchyan, G.G.; Pikhtelev, R.N.

    1974-01-01

    A detector consisting of the combination of a drift and a wide gap spark chambers and designed to detect recoil nuclei stopping in the spark chamber gas is described. It is shown, that by using an appropriate discrimination the detector allows to detect reliably the recoil nuclei in the presence of intensive electron and γ-quanta beams

  19. Combustion and operating characteristics of spark-ignition engines

    Science.gov (United States)

    Heywood, J. B.; Keck, J. C.; Beretta, G. P.; Watts, P. A.

    1980-01-01

    The spark-ignition engine turbulent flame propagation process was investigated. Then, using a spark-ignition engine cycle simulation and combustion model, the impact of turbocharging and heat transfer variations or engine power, efficiency, and NO sub x emissions was examined.

  20. Dual Spark Plugs For Stratified-Charge Rotary Engine

    Science.gov (United States)

    Abraham, John; Bracco, Frediano V.

    1996-01-01

    Fuel efficiency of stratified-charge, rotary, internal-combustion engine increased by improved design featuring dual spark plugs. Second spark plug ignites fuel on upstream side of main fuel injector; enabling faster burning and more nearly complete utilization of fuel.

  1. Generation of a pulsed low-energy electron beam using the channel spark device

    Energy Technology Data Exchange (ETDEWEB)

    Elgarhy, M. A. I., E-mail: elgarhy@azhar.edu.eg; Hassaballa, S. E.; Rashed, U. M.; ElSabbagh, M. M.; Saudy, A. H. [Physics Department, Faculty of Science, Al-Azhar University, Cairo (Egypt); Soliman, H. M. [Plasma and Nuclear Fusion Department, Atomic Energy Authority, Enshas (Egypt)

    2015-12-15

    For the generation of low-energy electron beam, the design and characteristics of channel spark discharge (CSD) operating at a low voltage are presented in this paper. The discharge voltage, discharge current, X-ray emissions, and electron beam current were experimentally determined. The effects of the applied voltage, working gas pressure, and external capacitance on the CSD and beam parameters were measured. At an applied voltage of 11 kV, an oxygen gas pressure of 25 mTorr, and an external capacitance of 16.45 nF, the maximum measured current was 900 A. The discharge current increased with the increase in the pressure and capacitance, while its periodic time decreased with the increase in the pressure. Two types of the discharge were identified and recorded: the hollow cathode discharge and the conduction discharge. A Faraday cup was used to measure the beam current. The maximum measured beam current was 120 A, and the beam signal exhibited two peaks. The increase in both the external capacitance and the applied discharge voltage increased the maximum electron beam current. The electron-beam pulse time decreased with the increase in the gas pressure at a constant voltage and increased with the decrease in the applied discharge voltage. At an applied voltage of 11 kV and an oxygen gas pressure of 15 mTorr, the maximum beam energy was 2.8 keV. The X-ray signal intensity decreased with the increase in the gas pressure and increased with the increase in the capacitance.

  2. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision.

    Science.gov (United States)

    Ho, Chao-Ching; Wu, Dung-Sheng

    2018-03-22

    Spark-assisted chemical engraving (SACE) is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time.

  3. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision

    Directory of Open Access Journals (Sweden)

    Chao-Ching Ho

    2018-03-01

    Full Text Available Spark-assisted chemical engraving (SACE is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was pre-pressured on the quartz glass surface to feed the electrode that was in contact with the machining surface of the quartz glass. In situ image acquisition and analysis of the SACE drilling processes were used to analyze the captured image of the state of the spark discharge at the tip and sidewall of the electrode. The results indicated an association between the accumulative size of the SACE-induced spark area and deepness of the hole. The results indicated that the evaluated depths of the SACE-machined holes were a proportional function of the accumulative spark size with a high degree of correlation. The study proposes an innovative computer vision-based method to estimate the deepness and status of SACE-drilled holes in real time.

  4. Nonlinear control of a spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Bidan, P [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Boverie, S; Chaumerliac, V [Siemens AutomotiveSA, MIRGAS Laboratory, 31 - Toulouse (France)

    1994-12-31

    This paper describes the improvements which can be made to spark ignition engine by extensive use of automatic control. Particular emphasis is placed on fast transient phases produced by simultaneous action on the throttle and the electronic fuel injection device. The aim is to achieve better performance for the fuel/air ratio regulation system, thereby improving engine efficiency and exhaust emission during these transient phases. The authors begin by presenting an average dynamic model of the intake manifold validated on an engine test bench and goes on to develop a closed-loop system controlling average pressure in the intake manifold using the reference tracking model method. The air supply control system is combined with a predictor to compensate for delays in the injection procedure. The paper concludes with a comparison between the results obtained using simulation and those obtained experimentally from the engine. (author) 10 refs.

  5. Spark-safe mechanical fluctuation sensor

    Energy Technology Data Exchange (ETDEWEB)

    Retek, S; Galisz, T

    1979-04-20

    The subject of the invention is a mechanical fluctuation sensor in a spark-safe design for use at mines which are dangerous for gas, as an element of different systems for remote control information transfer. The patented sensor of mechanical fluctuations contains: magnetic-induction transformer characterized by the fact that its inert mass consists of a plane permanent magnet placed in the suspended state on springs between 2 coils, which together with their cores are rigidly fixed to the walls of the ferromagnetic vessels. The ends of the coil windings are interconnected, while the beginnings of the windings are lead out with connection to the outlet of the electronic amplifier with binary outlet signal. The electronic amplifier is placed between the transformer in the common ferromagnetic housing which is a screen for protection from the effect of external magnetic fields.

  6. Spark formation as a moving boundary process

    Science.gov (United States)

    Ebert, Ute

    2006-03-01

    The growth process of spark channels recently becomes accessible through complementary methods. First, I will review experiments with nanosecond photographic resolution and with fast and well defined power supplies that appropriately resolve the dynamics of electric breakdown [1]. Second, I will discuss the elementary physical processes as well as present computations of spark growth and branching with adaptive grid refinement [2]. These computations resolve three well separated scales of the process that emerge dynamically. Third, this scale separation motivates a hierarchy of models on different length scales. In particular, I will discuss a moving boundary approximation for the ionization fronts that generate the conducting channel. The resulting moving boundary problem shows strong similarities with classical viscous fingering. For viscous fingering, it is known that the simplest model forms unphysical cusps within finite time that are suppressed by a regularizing condition on the moving boundary. For ionization fronts, we derive a new condition on the moving boundary of mixed Dirichlet-Neumann type (φ=ɛnφ) that indeed regularizes all structures investigated so far. In particular, we present compact analytical solutions with regularization, both for uniformly translating shapes and for their linear perturbations [3]. These solutions are so simple that they may acquire a paradigmatic role in the future. Within linear perturbation theory, they explicitly show the convective stabilization of a curved front while planar fronts are linearly unstable against perturbations of arbitrary wave length. [1] T.M.P. Briels, E.M. van Veldhuizen, U. Ebert, TU Eindhoven. [2] C. Montijn, J. Wackers, W. Hundsdorfer, U. Ebert, CWI Amsterdam. [3] B. Meulenbroek, U. Ebert, L. Schäfer, Phys. Rev. Lett. 95, 195004 (2005).

  7. Optical signatures of discharges in parallel coupled DC accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, Rehim N.; Banerjee, Srutarshi; Acharya, S.N., E-mail: rehim@barc.gov.in [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Mumbai (India); and others

    2014-07-01

    Parallel coupled voltage multiplier based accelerator topologies offer advantages of better regulation and ripple compared to their series coupled counterparts for Industrial electron beam accelerators. During conditioning and operation these systems undergoes various types of electrical discharges. The discharge can be a direct spark over from the high voltage terminal to ground through SF{sub 6} insulation, vacuum breakdown in the accelerating tube maintained in the order of 10{sup -7} mbar pressure, or local discharge between corona guards which are used to couple RF power to the multiplier. There could be discharges in between dynodes of the accelerating tube. As the inter electrode discharges do not reflect in load current, detection of these conditions becomes very difficult. Optical discharge detection methods can be used effectively in this situation. Photo multiplier based optical discharge detection has been deployed in a 3 MeV DC accelerator. Characteristics of the optical signal received during conditioning phase have been presented in this paper. (author)

  8. Experimental study of plume induced by nanosecond repetitively pulsed spark microdischarges in air at atmospheric pressure

    Science.gov (United States)

    Orriere, Thomas; Benard, Nicolas; Moreau, Eric; Pai, David

    2016-09-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been widely studied due to their high chemical reactivity, low gas temperature, and high ionization efficiency. They are useful in many research areas: nanomaterials synthesis, combustion, and aerodynamic flow control. In all of these fields, particular attention has been devoted to chemical species transport and/or hydrodynamic and thermal effects for applications. The aim of this study is to generate an electro-thermal plume by combining an NRP spark microdischarge in a pin-to-pin configuration with a third DC-biased electrode placed a few centimeters away. First, electrical characterization and optical emission spectroscopy were performed to reveal important plasma processes. Second, particle image velocimetry was combined with schlieren photography to investigate the main characteristics of the generated flow. Heating processes are measured by using the N2(C ->B) (0,2) and (1,3) vibrational bands, and effects due to the confinement of the discharge are described. Moreover, the presence of atomic ions N+ and O+ is discussed. Finally, the electro-thermal plume structure is characterized by a flow velocity around 1.8 m.s-1, and the thermal kernel has a spheroidal shape.

  9. Ileostomy - discharge

    Science.gov (United States)

    ... dried fruits (such as raisins), mushrooms, chunky relishes, coconut, and some Chinese vegetables. Tips for when no ... ask your doctor Living with your ileostomy Low-fiber diet Small bowel resection - discharge Total colectomy or ...

  10. Target fabrication using laser and spark erosion machining

    International Nuclear Information System (INIS)

    Clement, X.; Coudeville, A.; Eyharts, P.; Perrine, J.P.; Rouillard, R.

    1982-01-01

    Fabrication of laser fusion targets requires a number of special techniques. We have developed both laser and spark erosion machining to produce minute parts of complex targets. A high repetition rate YAG laser at double frequency is used to etch various materials. For example, marks or patterns are often necessary on structured or advanced targets. The laser is also used to thin down plastic coated stalks. A spark erosion system has proved to be a versatile tool and we describe current fabrication processes like cutting, drilling, and ultra precise machining. Spark erosion has interesting features for target fabrication: it is a highly controllable and reproducible technique as well as relatively inexpensive

  11. Hazard of electrostatic generation in a pneumatic conveying system: electrostatic effects on the accuracy of electrical capacitance tomography measurements and generation of spark

    International Nuclear Information System (INIS)

    Zhang, Yan; Wang, Chi-Hwa; Liang, Yung Chii

    2008-01-01

    The study of the hazard of electrostatic generation in pneumatic conveying systems was attempted by examining the sensitivity of electrical capacitance tomography (ECT) and the phenomena of spark generation due to strong electrostatics. The influence on ECT measurement accuracy of an electrostatic charge was analysed with reference to a switch capacitor configuration model. Consequently, it was found that the electrostatic charge introduced at the bend with sharp angles influenced the ECT results most significantly in pneumatic conveying systems, especially for the cases where a spark was generated. The investigation of spark generation indicated that a strong electrostatic charge can cause major discharges inside or outside the pipeline to damage the experimental instrument in severe cases

  12. The influence of electric discharge on the properties of high-temperature superconductors

    International Nuclear Information System (INIS)

    Parashchuk, V.V.

    1990-01-01

    The influence is studied of pulse voltage with amplitude 100 kV and duration 100 to 200 ns on the temperature dependence of diamagnetic susceptibility of yttrium ceramics. As a result of the action of spark discharge on the ceramics, the superconducting transition parameters change. As the number of voltage pulses is increased, the diamagnetic susceptibility and the critical temperature determined by it first increase rapidly, then drop slowly. At the same time the transition in the optimum becomes more sharp. In the case of treatment in the air, Tc increases by 15 K and at discharge in liquid nitrogen by 25 K. It is found that the atmospheric air under certain conditions affects the temperature dependence of the diamagnetic susceptibility of HTSC ceramics. Treatment by a high-voltage spark decreases the susceptibility of the ceramics due to atmospheric effects. The highest efficiency of spark treatment is achieved at discharge in liquid nitrogen. (orig.)

  13. High pressure gas-filled cermet spark gaps

    International Nuclear Information System (INIS)

    Avilov, Eh.A.; Yur'ev, A.L.

    2000-01-01

    The results of modernization of the R-48 and R-49 spark gaps making it possible to improve their electrical characteristics are presented. The design is described and characteristics of gas-filled cermet spark gaps are presented. By the voltage rise time of 5-6 μs in the Marx generator scheme they provide for the pulse break-through voltage of 120 and 150 kV. By the voltage rise time of 0.5-1 μs the break-through voltage of these spark gaps may be increased up to 130 and 220 kV. The proper commutation time is equal to ≤ 0.5 ns. Practical recommendations relative to designing cermet spark gaps are given [ru

  14. Exploring the Performance of Spark for a Scientific Use Case

    Energy Technology Data Exchange (ETDEWEB)

    Sehrish, Saba [Fermilab; Kowalkowski, Jim [Fermilab; Paterno, Marc [Fermilab

    2016-01-01

    We present an evaluation of the performance of a Spark implementation of a classification algorithm in the domain of High Energy Physics (HEP). Spark is a general engine for in-memory, large-scale data processing, and is designed for applications where similar repeated analysis is performed on the same large data sets. Classification problems are one of the most common and critical data processing tasks across many domains. Many of these data processing tasks are both computation- and data-intensive, involving complex numerical computations employing extremely large data sets. We evaluated the performance of the Spark implementation on Cori, a NERSC resource, and compared the results to an untuned MPI implementation of the same algorithm. While the Spark implementation scaled well, it is not competitive in speed to our MPI implementation, even when using significantly greater computational resources.

  15. Discharge Dialogue

    DEFF Research Database (Denmark)

    Horsbøl, Anders

    2012-01-01

    For several years, efforts have been made to strengthen collaboration between health professionals with different specializations and to improve patient transition from hospital to home (care). In the Danish health care system, these efforts have concentrated on cancer and heart diseases, whereas...... coordinator, employed at the hospital, is supposed to anticipate discharge and serve as mediator between the hospital and the municipal home care system. Drawing on methods from discourse and interaction analysis, the paper studies the practice of the discharge coordinator in two encounters between patients...... how the home context provides different resources for identification of patient needs and mutual decision making....

  16. Ultra Fast, High Rep Rate, High Voltage Spark Gap Pulser

    Science.gov (United States)

    1995-07-01

    current rise time. The spark gap was designed to have a coaxial geometry reducing its inductance. Provisions were made to pass flowing gas between the...ULTRA FAST, HIGH REP RATE, HIGH VOLTAGE SPARK GAP PULSER Robert A. Pastore Jr., Lawrence E. Kingsley, Kevin Fonda, Erik Lenzing Electrophysics and...Modeling Branch AMSRL-PS-EA Tel.: (908)-532-0271 FAX: (908)-542-3348 U.S. Army Research Laboratory Physical Sciences Directorate Ft. Monmouth

  17. Radiofrequency spark chambers and delay line resonators

    International Nuclear Information System (INIS)

    Sayag, Jacques

    1971-01-01

    According to a suggestion of A. Kastler, a spark chamber was excited by an undamped radiofrequency pulse and tracks about 1 mm wide obtained; the result was interpreted by computation of the coefficients of electronic amplification and partial ambipolar diffusion. This work led us to the construction of a new fast triggering undamped wave-train generator of very high tension (patent taken out by the C.E.A. under the no.: EN 7 134 650 the 27.9.1971). Since this apparatus uses a resonant storage line, its design implied a precise knowledge of high impedance delay lines. The experimental radiofrequency spectra of the input impedance of opened or short-circuited lines were plotted completely and analysed by the circuits theory, new measuring methods were established, dispersion relations accurately checked and the equivalence of the formulas, within the third order, with theses of Debye's Dipolar Absorption demonstrated. General properties of Hilbert's transform were also investigated. From the experimental point of view, the electromagnetic energy storage process was extended to the case of a liquid nitrogen-immersed resonant delay line. The good behavior of the cryogenic experiment, where the main difficulty of icing was overcame by the construction of special electrodes, offers great promise for extrapolation to superconductivity. (author) [fr

  18. Sparks Will Fly: engineering creative script conflicts

    Science.gov (United States)

    Veale, Tony; Valitutti, Alessandro

    2017-10-01

    Scripts are often dismissed as the stuff of good movies and bad politics. They codify cultural experience so rigidly that they remove our freedom of choice and become the very antithesis of creativity. Yet, mental scripts have an important role to play in our understanding of creative behaviour, since a deliberate departure from an established script can produce results that are simultaneously novel and familiar, especially when others stick to the conventional script. Indeed, creative opportunities often arise at the overlapping boundaries of two scripts that antagonistically compete to mentally organise the same situation. This work explores the computational integration of competing scripts to generate creative friction in short texts that are surprising but meaningful. Our exploration considers conventional macro-scripts - ordered sequences of actions - and the less obvious micro-scripts that operate at even the lowest levels of language. For the former, we generate plots that squeeze two scripts into a single mini-narrative; for the latter, we generate ironic descriptions that use conflicting scripts to highlight the speaker's pragmatic insincerity. We show experimentally that verbal irony requires both kinds of scripts - macro and micro - to work together to reliably generate creative sparks from a speaker's subversive intent.

  19. Automatic spark counting of alpha-tracks in plastic foils

    International Nuclear Information System (INIS)

    Somogyi, G.; Medveczky, L.; Hunyadi, I.; Nyako, B.

    1976-01-01

    The possibility of alpha-track counting by jumping spark counter in cellulose acetate and polycarbonate nuclear track detectors was studied. A theoretical treatment is presented which predicts the optimum residual thickness of the etched foils in which completely through-etched tracks (i.e. holes) can be obtained for alpha-particles of various energies and angles of incidence. In agreement with the theoretical prediction it is shown that a successful spark counting of alpha-tracks can be performed even in polycarbonate foils. Some counting characteristics, such as counting efficiency vs particle energy at various etched foil thicknesses, surface spark density produced by electric breakdowns in unexposed foils vs foil thickness, etc. have been determined. Special attention was given to the spark counting of alpha-tracks entering thin detectors at right angle. The applicability of the spark counting technique is demonstrated in angular distribution measurements of the 27 Al(p,α 0 ) 24 Mg nuclear reaction at Ep = 1899 keV resonance energy. For this study 15 μm thick Makrofol-G foils and a jumping spark counter of improved construction were used. (orig.) [de

  20. Scattering profiles of sparks and combustibility of filter against hot sparks

    International Nuclear Information System (INIS)

    Tobita, Noriyuki; Okada, Takashi; Kashiro, Kashio

    2004-12-01

    An event that a pre-filter burned on fire took place in the glove box dismantlement facility of Plutonium Production Facility, on April 21, 2003. The direct cause of this event was considered to be sparks generated by an abrasive wheel cutter, some of which reached the pre-filter and eventually burned the pre-filter. Further investigation revealed that there exist other deficiencies those of which formed indirect causes of the event, i.e., the wheel cutter was used without protective cover and adequate shield against sparks was not installed during the operation. To prevent similar event in the future, following corrective actions were introduced. Wheel cutter will not be used without protective cover; Incombustible pre-filter will be used; Shield will be place at the front of the pre-filter. We have conducted series of experimental tests in order to evaluate and confirm the validity of these corrective actions as well as determine the cause of the fire. This report present the results of these tests. (author)

  1. Angioplasty and stent - heart - discharge

    Science.gov (United States)

    Drug-eluting stents - discharge; PCI - discharge; Percutaneous coronary intervention - discharge; Balloon angioplasty - discharge; Coronary angioplasty - discharge; Coronary artery angioplasty - discharge; Cardiac ...

  2. Radiological discharges

    International Nuclear Information System (INIS)

    Woodliffe, J.

    1990-01-01

    Current practice of North Sea States on the discharge and disposal of liquid radioactive wastes to the North Sea are based on the declaration issued at the Second International Conference on the Protection of the North Sea, known as the London Declaration. This has three main points the first of which emphasises the application of the Best Available Technology to protect the North Sea, the second provides a framework on which future controls on radioactive discharges should be based. The third identifies two parts of the framework; to take into account the recommendations of international organizations and that any repositories of radioactive waste which are built should not pollute the North Sea. This chapter looks at how the concensus based on the London Declaration is working, gauges the progress made in the implementation of the policy goal, identifies existing and future areas for concern and proposes ways of strengthening the control of radioactive discharges. The emphasis is on the United Kingdom practice and regulations for liquid wastes, most of which comes from the Sellafield Reprocessing Plant. (author)

  3. Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte

    International Nuclear Information System (INIS)

    Han, Min-Seop; Min, Byung-Kwon; Lee, Sang Jo

    2009-01-01

    Electrochemical discharge machining (ECDM) is a spark-based micromachining method especially suitable for the fabrication of various microstructures on nonconductive materials, such as glass and some engineering ceramics. However, since the spark discharge frequency is drastically reduced as the machining depth increases ECDM microhole drilling has confronted difficulty in achieving uniform geometry for machined holes. One of the primary reasons for this is the difficulty of sustaining an adequate electrolyte flow in the narrow gap between the tool and the workpiece, which results in a widened taper at the hole entrance, as well as a significant reduction of the machining depth. In this paper, ultrasonic electrolyte vibration was used to enhance the machining depth of the ECDM drilling process by assuring an adequate electrolyte flow, thus helping to maintain consistent spark generation. Moreover, the stability of the gas film formation, as well as the surface quality of the hole entrance, was improved with the aid of a side-insulated electrode and a pulse-power generator. The side-insulated electrode prevented stray electrolysis and concentrated the spark discharge at the tool tip, while the pulse voltage reduced thermal damage to the workpiece surface by introducing a periodic pulse-off time. Microholes were fabricated in order to investigate the effects of ultrasonic assistance on the overcut and machining depth of the holes. The experimental results demonstrated that the possibility of consistent spark generation and the machinability of microholes were simultaneously enhanced

  4. Simultaneous emissions of X-rays and microwaves from long laboratory sparks and downward lightning leaders

    Science.gov (United States)

    Montanya, J.; Oscar, V. D. V.; Tapia, F. F.

    2017-12-01

    Since the discovery of the Terrestrial Gamma-ray Flashes more than 20 years ago, investigations on high energy emissions from natural lightning and high voltage laboratory sparks gained significant interest. X-ray emissions from lightning as well from high voltage laboratory sparks have in common the role played by negative leaders/streamers. On the other hand, negative leaders are well known to produce much more VHF and microwave radiation than positive leaders. Moreover, in previous works, microwave emissions from lightning leaders have been attributed to Bremsstrahlung process. The object of this work is to investigate if X-rays and RF microwave emissions share the same origin. We present simultaneous measurements of X-rays and microwaves in high voltage sparks and natural lightning. The instrumentation consists on a NaI(Tl) and LaBr3 scintillation detectors and two different receivers. One is fix tuned at 2.4 GHz with a bandwidth of 5.5 MHz. The second can be tuned at any frequency up to 18 GHz with different selectable bandwidths of 10 MHz, 40 MHz and 100 MHz. In the laboratory, results have shown that all the sparks presented microwave radiation before the breakdown of the gap, either X-rays were detected or not. In the cases where X-rays were identified, microwave emissions peaked at the same time (in the microsecond scale). We found that the power amplitudes of the microwave emissions are related to the applied voltage to the gap. In the same configuration, those cases where X-rays were detected microwave emissions presented higher power levels. The results suggest that in some part of the discharge electrons are very fast accelerated allowing, in some cases, to reach enought energy to produce X-rays. In the field, we have found similar results. On 13th of June of 2015 a bipolar cloud-to-ground flash struck 200 m close to the Eagle Nest instrumented tower (Spanish Pyrenees, 2536 m ASL). The flash presented four strokes and, in all of them, microwave

  5. A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion

    International Nuclear Information System (INIS)

    Pastor, J.V.; García-Oliver, J.M.; García, A.; Micó, C.; Durrett, R.

    2013-01-01

    Highlights: ► PPC combustion combined with spark assistance and gasoline fuel on a CI engine. ► Chemiluminescence of different chemical species describes the progress of combustion reaction. ► Spectra of a novel combustion mode under SACI conditions is described. ► UV–Visible spectrometry, high speed imaging and pressure diagnostic were employed for analysis. - Abstract: Nowadays many research efforts are focused on the study and development of new combustion modes, mainly based on the use of locally lean air–fuel mixtures. This characteristic, combined with exhaust gas recirculation, provides low combustion temperatures that reduces pollutant formation and increases efficiency. However these combustion concepts have some drawbacks, related to combustion phasing control, which must be overcome. In this way, the use of a spark plug has shown to be a good solution to improve phasing control in combination with lean low temperature combustion. Its performance is well reported on bibliography, however phenomena involving the combustion process are not completely described. The aim of the present work is to develop a detailed description of the spark assisted compression ignition mode by means of application of UV–Visible spectrometry, in order to improve insight on the combustion process. Tests have been performed in an optical engine by means of broadband radiation imaging and emission spectrometry. The engine hardware is typical of a compression ignition passenger car application. Gasoline was used as the fuel due to its low reactivity. Combining broadband luminosity images with pressure-derived heat-release rate and UV–Visible spectra, it was possible to identify different stages of the combustion reaction. After the spark discharge, a first flame kernel appears and starts growing as a premixed flame front, characterized by a low and constant heat-release rate in combination with the presence of remarkable OH radical radiation. Heat release increases

  6. Spark counting technique with an aluminium oxide film

    International Nuclear Information System (INIS)

    Kawai, H.; Koga, T.; Morishima, H.; Niwa, T.; Nishiwaki, Y.

    1980-01-01

    Automatic spark counting of etch-pits on a polycarbonate film produced by nuclear fission fragments is now used for neutron monitoring in several countries. A method was developed using an aluminium oxide film instead of a polycarbonate as the neutron detector. Aluminium oxide films were prepared as follows: A cleaned aluminium plate as an anode and a nickel plate as a cathode were immersed in dilute sulfuric acid solution and electric current flowed between the electrodes at 12degC for 10-30 minutes. Electric current density was about 10 mA/cm 2 . The aluminium plate was then kept in boiling water for 10-30 minutes for sealing. The thickness of the aluminium oxide layer formed was about 1μm. The aluminium plate attached to a plate of suitable fissionable material, such as uranium or thorium, was irradiated with neutrons and set in a usual spark counter for fission track counting. One electrode was the aluminium plate and the other was an aluminized polyester sheet. Sparked pulses were counted with a usual scaler. The advantage of using spark counting with an aluminium oxide film for neutron monitoring is rapid measurement of neutron exposure, since chemical etching which is indispensable for spark counting with a polycarbonate detector film, is not needed. (H.K.)

  7. On dynamics of electric spark machining of pieces with the system of non-fixed electrod-tools

    International Nuclear Information System (INIS)

    Timoshenko, B.I.; Morozenko, V.N.

    1976-01-01

    Processing of bodies of revolution by a system of loose electrode-instruments freely resting upon the detail was considered. In this dynamic system correlations were found between the electrode-instrument mass, the angular velocity of the detail, the interelectrode space and the mechanic pulse value which agitated the oscillations of the electrode providing for the most efficient electro-spark treatment. A scheme of the forces acting on the electrode-instrument during the process was presented. An expression was obtained describing the optimum dependence between the oscillation system parametres, and an expression for the maximum number of discharges during an oscillation period of the electrode-inctrument [ru

  8. Vacuum-spark metal ion source based on a modified Marx generator

    International Nuclear Information System (INIS)

    Anders, A.; Brown, I.G.; MacGill, R.A.; Dickinson, M.R.

    1996-04-01

    The plasma generating parts of ion sources including their power supplies are usually floated to high potential (ion extraction voltage), thus requiring great insulation efforts and high costs for high-energy ion beams. A new concept for pulsed ion sources is presented in which a single power supply is used to simultaneously produce the plasma and high extractor voltage via a modified Marx generator. Proof-of-principle experiments have been performed with high-current spark discharges in vacuum where multiply charged ions are produced with this Marx-generator based ion source (Magis). Using Magis, it has been demonstrated that pulsed ion beams of very high energies can be obtained with relatively low voltage. For copper, ion of charge states up to 7+ have been found whose energy was 112 keV for a charging voltage of only 10 kV

  9. Study of transient phenomena in the Vivitron during an electric discharge

    International Nuclear Information System (INIS)

    Roumie, M.

    1994-04-01

    The Vivitron is a new Van der Graaff Tandem type accelerator, which is designed to reach 35 millions volts. The major problem which limits the voltage is the electrical discharge in insulating gas. This discharge leads to a spark short-circuiting two discrete electrodes, or column, and creates a transient developing a high electric field. Damage is observed on the column insulators. The aim of this work is to study the time evolution of the phenomena when the first spark is established. The use of computer simulations, with the PSpice code and physical models based on 'transmission lines' is first justified. Simulations of the real spark by a short-circuit are then carried out, using this model, to explain the progress of transients and to show the voltage modification. Several solutions for this problem are then proposed. (from author) 67 figs., 23 refs

  10. Hysterectomy - vaginal - discharge

    Science.gov (United States)

    Vaginal hysterectomy - discharge; Laparoscopically assisted vaginal hysterectomy - discharge; LAVH - discharge ... you were in the hospital, you had a vaginal hysterectomy. Your surgeon made a cut in your ...

  11. High-performance Electrochemical Energy Storage Electrodes Based on Nickel Oxide-coated Nickel Foam Prepared by Sparking Method

    International Nuclear Information System (INIS)

    Chuminjak, Yaowamarn; Daothong, Suphaporn; Kuntarug, Aekapong; Phokharatkul, Ditsayut; Horprathum, Mati; Wisitsoraat, Anurat; Tuantranont, Adisorn; Jakmunee, Jaroon; Singjai, Pisith

    2017-01-01

    Highlights: • NiO particles (3-10 nm) were sparked on Ni foams with varying times (45-180 min). • Larger NiO nanoparticles were aggregated to foam-like structure at a longer time. • The optimal time of 45 min led to a high specific capacity of 920 C/g at 1 A/g. • The specific capacity remained as high as 699 (76% of 920) C/g at 20 A/g. • The optimal electrode exhibited 96% capacity retention after 1000 cycles at 4 A/g. - Abstract: In this work, high-performance electrochemical energy storage electrodes were developed based on nickel oxide (NiO)-coated nickel (Ni) foams prepared by a sparking method. NiO nanoparticles deposited on Ni foams with varying sparking times from 45 to 180 min were structurally characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. In addition, the electrochemical energy storage characteristics of the electrodes were evaluated by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. It was found that NiO nanoparticles sparked on Ni foam with a longer time would be agglomerated and formed a foam-like network with large pore sizes and a lower surface area, leading to inferior charge storage behaviors. The NiO/Ni foam electrode prepared with the shortest sparking of 45 min displayed high specific capacities of 920 C g"-"1 (1840 F g"-"1) at 1 A g"-"1 and 699 (76% of 920) C g"-"1 at 20 A g"-"1 in a potential window of 0-0.5 V vs. Ag/AgCl as well as a good cycling performance with 96% capacity retention at 4 A g"-"1 after 1000 cycles and a low equivalent series resistance of 0.4 Ω. Therefore, NiO/Ni foam electrodes prepared by the sparking method are highly promising for high-capacity energy storage applications.

  12. Measurements of Radon Concentration in Yemen Using Spark Counter

    International Nuclear Information System (INIS)

    Arafa, W.; Abou-Leila, M.; Hafiz, M.E.; Al-Glal, N.

    2011-01-01

    Spark counter has been designed and realized and the optimum applied voltage was found to be 600 V. Excellent consistent agreements was observed between counted number of tracks by spark counter and reading by optical microscope. Radon concentration in some houses in Sana'a and Hodeidah cities in Yemen had been performed using LR-115 SSNTD and spark counter system. The average radon concentration in both cities was far lower the alert value. The results showed that radon concentration in the metropolitan area Sana'a was higher than that in Hodeidah city. Also, it was observed that old residential houses had higher levels of radon concentrations have compared to newly built houses in the metropolitan area Sana'a

  13. A miniature spark counter for public communication and education

    International Nuclear Information System (INIS)

    Mao, C.H.; Weng, P.S.

    1987-01-01

    The fabrication of a miniature spark counter for public communication and education using naturally occurring radon as a radioactive source without involving any man-made radioactivity is described. The battery-powered miniature spark counter weighs 2.07 kg with a volume of 4.844 x 10/sup -4/ m/sup 3/. The circuitry consists of seven major components: timer, high-voltage power supply, attenuator, noninverting amplifier, low-pass filter, one-shot generator, and counter. Cellulose nitrate films irradiated with alpha particles from radon emanating from soil were etched and counted. The visible sparks during counting are rather heuristic, which can be used to demonstrate naturally occurring radioactivity in classrooms or showplaces

  14. Analysis of Plant Breeding on Hadoop and Spark

    Directory of Open Access Journals (Sweden)

    Shuangxi Chen

    2016-01-01

    Full Text Available Analysis of crop breeding technology is one of the important means of computer-assisted breeding techniques which have huge data, high dimensions, and a lot of unstructured data. We propose a crop breeding data analysis platform on Spark. The platform consists of Hadoop distributed file system (HDFS and cluster based on memory iterative components. With this cluster, we achieve crop breeding large data analysis tasks in parallel through API provided by Spark. By experiments and tests of Indica and Japonica rice traits, plant breeding analysis platform can significantly improve the breeding of big data analysis speed, reducing the workload of concurrent programming.

  15. Vacuum spark breakdown model based on exploding metal wire phenomena

    International Nuclear Information System (INIS)

    Haaland, J.

    1984-06-01

    Spark source mass spectra (SSMS) indicates that ions are extracted from an expanding and decaying plasma. The intensity distribution shows no dependance on vaporization properties of individual elements which indicates explosive vapour formation. This seems further to be a requirement for bridging a vacuum gap. A model including plasma ejection from a superheated anode spot by a process similar to that of an exploding metal wire is proposed. The appearance of hot plasma points in low inductance vacuum sparks can then be explained as exploding micro particles ejected from a final central anode spot. The phenomenological model is compared with available experimental results from literature, but no extensive quantification is attempted

  16. A note on preserving the spark of a matrix

    Directory of Open Access Journals (Sweden)

    Marcin Skrzynski

    2015-05-01

    Full Text Available Let Mm× n(F be the vector space of all m× n matrices over a field F. In the case where m ≥ n, char (F ≠ 2 and F has at least five elements, we give a complete characterization of linear maps Φ : Mm× n(F → Mm× n(F such that spark(Φ (A = spark(A for any A ∈ Mm× n(F.

  17. Phase characterisation in spark plasma sintered TiPt alloy

    CSIR Research Space (South Africa)

    Chikosha, S

    2011-12-01

    Full Text Available stream_source_info chikosha_2011.pdf.txt stream_content_type text/plain stream_size 4354 Content-Encoding UTF-8 stream_name chikosha_2011.pdf.txt Content-Type text/plain; charset=UTF-8 PHASE CHARACTERISATION IN SPARK... to form “necks”  Radiant Joule heat and pressure drives “neck” growth and material transfer © CSIR 2006 www.csir.co.za Page 6 Objective  Produce TiPt alloy compacts by Spark plasma sintering (SPS) of equiatomic...

  18. Lung surgery - discharge

    Science.gov (United States)

    ... Lung biopsy - discharge; Thoracoscopy - discharge; Video-assisted thoracoscopic surgery - discharge; VATS - discharge ... milk) for 2 weeks after video-assisted thoracoscopic surgery and 6 to 8 weeks after open surgery. ...

  19. Pediatric heart surgery - discharge

    Science.gov (United States)

    ... discharge; Heart valve surgery - children - discharge; Heart surgery - pediatric - discharge; Heart transplant - pediatric - discharge ... Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; 2016:chap 434. ...

  20. Practice and Exploration of New Rural Construction in West Bank of Taiwan Strait Led by Spark Science and Technology

    OpenAIRE

    Li, Chaocan

    2013-01-01

    According to practice and exploration of spark program for 26 years in Quanzhou, the main model and their effects of new rural construction in west bank of Taiwan Strait led by spark science and technology were expounded. Six spark program systems were established, consisting of policy support guide, science and technology project lead, experts’ intelligence support, spark science and technology training, sci-tech information service and spark program demonstration. Five spark projects were...

  1. Experimental study of hard X-rays emitted from meter-scale positive discharges in air

    NARCIS (Netherlands)

    P.O. Kochkin (Pavlo); C.V. Nguyen; A. van Deursen (Arie); U. M. Ebert (Ute)

    2012-01-01

    textabstractWe investigate structure and evolution of long positive spark breakdown; and we study at which stage pulses of hard x-rays are emitted. Positive high-voltage pulses of standardized lightning impulse wave form of about 1 MV were applied to about 1 m of ambient air. The discharge evolution

  2. Breakdown of methylene blue and methyl orange by pulsed corona discharge

    NARCIS (Netherlands)

    Grabowski, L.R.; Veldhuizen, van E.M.; Pemen, A.J.M.; Rutgers, W.R.

    2007-01-01

    The recently developed corona above water technique is applied to water containing 10 mg l-1 methylene blue (MB) or methyl orange (MO). The corona discharge pulses are created with a spark gap switched capacitor followed by a transmission line transformer. The pulse amplitude is 40 kV; its duration

  3. The effect of thermal conductivity of the tool electrode in spark-assisted chemical engraving gravity-feed micro-drilling

    International Nuclear Information System (INIS)

    Mousa, M; Allagui, A; Ng, H D; Wüthrich, R

    2009-01-01

    Spark-assisted chemical engraving (SACE) is a non-traditional micro-machining technology based on electrochemical discharge phenomena. In SACE gravity-feed micro-drilling, various parameters including the thermal properties of the tool electrode play a significant role in the process. Based on a series of experiments using tool electrodes with different thermal properties, the effect in SACE gravity-feed micro-drilling is discussed. It is demonstrated that machining with higher thermal conductivity tool electrodes results in faster machining during the discharge regime and slower machining during the hydrodynamic regime of SACE gravity-feed micro-drilling

  4. Photoionization in a Numerical Simulation of a Spark Discharge in Air

    Science.gov (United States)

    2016-09-01

    tested. By using the mean value theorem and testing for equality, an acceptable range for the temperature can be found in which there is equality. A...vector ℎ�⃗ = −∇, and the expression in the brackets is the radial component of the divergence of the heat flux. This suggests a way to

  5. SparkText: Biomedical Text Mining on Big Data Framework

    Science.gov (United States)

    He, Karen Y.; Wang, Kai

    2016-01-01

    Background Many new biomedical research articles are published every day, accumulating rich information, such as genetic variants, genes, diseases, and treatments. Rapid yet accurate text mining on large-scale scientific literature can discover novel knowledge to better understand human diseases and to improve the quality of disease diagnosis, prevention, and treatment. Results In this study, we designed and developed an efficient text mining framework called SparkText on a Big Data infrastructure, which is composed of Apache Spark data streaming and machine learning methods, combined with a Cassandra NoSQL database. To demonstrate its performance for classifying cancer types, we extracted information (e.g., breast, prostate, and lung cancers) from tens of thousands of articles downloaded from PubMed, and then employed Naïve Bayes, Support Vector Machine (SVM), and Logistic Regression to build prediction models to mine the articles. The accuracy of predicting a cancer type by SVM using the 29,437 full-text articles was 93.81%. While competing text-mining tools took more than 11 hours, SparkText mined the dataset in approximately 6 minutes. Conclusions This study demonstrates the potential for mining large-scale scientific articles on a Big Data infrastructure, with real-time update from new articles published daily. SparkText can be extended to other areas of biomedical research. PMID:27685652

  6. Stopping particles in the Mont Blanc spark chamber telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Bergamasco, L; Bilokon, H; Piazzoli, B E; Mannocchi, G; Picchi, P [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica Generale)

    1982-02-01

    We present the final results on the ratio of stopping to traversing muons as measured by two spark chamber telescopes in the Mont Blanc Station, Italy, at 4300 hg/cm/sup 2/. The experimental results are in agreement with the theoretical values within the limits of the error.

  7. knock characteristics analysis of a supercharged spark ignition

    African Journals Online (AJOL)

    user

    The power output of a spark ignition engine could be improved by boosting the ... that the presence of aromatics was responsible for the better anti-knock ..... System, a Master's Thesis in the Institutionen för ... Maintenance and Reliability, Vol.

  8. SPARK RttT: Year One Fidelity and Implementation

    Science.gov (United States)

    Rochford, Joseph A.; O'Neill, Adrienne; Gelb, Adele; Ross, Kimberly

    2014-01-01

    Developed in 2003 by the Sisters of Charity Foundation of Canton with a grant from the Kellogg Foundation, "Supporting Partnerships to Assure Ready Kids" ("SPARK Ohio") is a family-centered kindergarten readiness program that works with families, schools, and the community. From its initial sites in Stark County, "SPARK…

  9. Towards constrained optimal control of spark-ignition engines

    NARCIS (Netherlands)

    Feru, E.; Luo, X.

    2015-01-01

    In this paper, the torque control problem for spark-ignition engines is considered. The objective is to provide good output torque tracking with minimum fuel consumption, while avoiding engine knock and misre. To this end, three control strategies are proposed: a feed-forward controller with

  10. Utilization of Alcohol Fuel in Spark Ignition and Diesel Engines.

    Science.gov (United States)

    Berndt, Don; Stengel, Ron

    These five units comprise a course intended to prepare and train students to conduct alcohol fuel utilization seminars in spark ignition and diesel engines. Introductory materials include objectives and a list of instructor requirements. The first four units cover these topics: ethanol as an alternative fuel (technical and economic advantages,…

  11. SparkText: Biomedical Text Mining on Big Data Framework.

    Directory of Open Access Journals (Sweden)

    Zhan Ye

    Full Text Available Many new biomedical research articles are published every day, accumulating rich information, such as genetic variants, genes, diseases, and treatments. Rapid yet accurate text mining on large-scale scientific literature can discover novel knowledge to better understand human diseases and to improve the quality of disease diagnosis, prevention, and treatment.In this study, we designed and developed an efficient text mining framework called SparkText on a Big Data infrastructure, which is composed of Apache Spark data streaming and machine learning methods, combined with a Cassandra NoSQL database. To demonstrate its performance for classifying cancer types, we extracted information (e.g., breast, prostate, and lung cancers from tens of thousands of articles downloaded from PubMed, and then employed Naïve Bayes, Support Vector Machine (SVM, and Logistic Regression to build prediction models to mine the articles. The accuracy of predicting a cancer type by SVM using the 29,437 full-text articles was 93.81%. While competing text-mining tools took more than 11 hours, SparkText mined the dataset in approximately 6 minutes.This study demonstrates the potential for mining large-scale scientific articles on a Big Data infrastructure, with real-time update from new articles published daily. SparkText can be extended to other areas of biomedical research.

  12. SparkText: Biomedical Text Mining on Big Data Framework.

    Science.gov (United States)

    Ye, Zhan; Tafti, Ahmad P; He, Karen Y; Wang, Kai; He, Max M

    Many new biomedical research articles are published every day, accumulating rich information, such as genetic variants, genes, diseases, and treatments. Rapid yet accurate text mining on large-scale scientific literature can discover novel knowledge to better understand human diseases and to improve the quality of disease diagnosis, prevention, and treatment. In this study, we designed and developed an efficient text mining framework called SparkText on a Big Data infrastructure, which is composed of Apache Spark data streaming and machine learning methods, combined with a Cassandra NoSQL database. To demonstrate its performance for classifying cancer types, we extracted information (e.g., breast, prostate, and lung cancers) from tens of thousands of articles downloaded from PubMed, and then employed Naïve Bayes, Support Vector Machine (SVM), and Logistic Regression to build prediction models to mine the articles. The accuracy of predicting a cancer type by SVM using the 29,437 full-text articles was 93.81%. While competing text-mining tools took more than 11 hours, SparkText mined the dataset in approximately 6 minutes. This study demonstrates the potential for mining large-scale scientific articles on a Big Data infrastructure, with real-time update from new articles published daily. SparkText can be extended to other areas of biomedical research.

  13. The physics of photoconductive spark gap switching : pushing the frontiers

    NARCIS (Netherlands)

    Hendriks, J.

    2006-01-01

    Photoconductive switching of an atmospheric, air-¯lled spark gap by a high-power fem- tosecond laser is a novel approach for switching high voltages into pulses with a very fast rise time (order ps) and almost no shot-to-shot time variation (jitter). Such a switch makes it possible to synchronize

  14. Simulation of muon transport through the aragats spark chamber calorimeter

    International Nuclear Information System (INIS)

    Asatiani, T.L.; Ter-Antonyan, S.V.

    1981-01-01

    The algorithm is presented of the program on simulation of muon transport through Aragats spark calorimeter. Statistic test method with account of fluctuations and angular distributions of cascade showers is used. The program is worked out on the Fortran algorithm language for EVM BESM-6 and is calibrated by experimental data of Aragats complex installation [ru

  15. Theoretical investigation of a photoconductively switched high-voltage spark gap

    NARCIS (Netherlands)

    Broks, B.H.P.; Hendriks, J.; Brok, W.J.M.; Brussaard, G.J.H.; Mullen, van der J.J.A.M.

    2006-01-01

    In this contribution, a photoconductively switched high-voltage spark gap with an emphasis on theswitching behavior is modeled. It is known experimentally that not all of the voltage that is present at the input of the spark gap is switched, but rather a fraction of it drops across the spark gap.

  16. The Results of a Randomized Control Trial Evaluation of the SPARK Literacy Program

    Science.gov (United States)

    Jones, Curtis J.; Christian, Michael; Rice, Andrew

    2016-01-01

    The purpose of this report is to present the results of a two-year randomized control trial evaluation of the SPARK literacy program. SPARK is an early grade literacy program developed by Boys & Girls Clubs of Greater Milwaukee. In 2010, SPARK was awarded an Investing in Innovation (i3) Department of Education grant to further develop the…

  17. INFLUENCE OF ELECTRIC SPARK ON HARDNESS OF CARBON STEEL

    Directory of Open Access Journals (Sweden)

    I. O. Vakulenko

    2014-03-01

    Full Text Available Purpose. The purpose of work is an estimation of influence of an electric spark treatment on the state of mouldable superficial coverage of carbon steel. Methodology. The steel of fragment of railway wheel rim served as material for research with chemical composition 0.65% С, 0.67% Mn, 0.3% Si, 0.027% P, 0.028% S. Structural researches were conducted with the use of light microscopy and methods of quantitative metallography. The structural state of the probed steel corresponded to the state after hot plastic deformation. The analysis of hardness distribution in the micro volumes of cathode metal was carried out with the use of microhardness tester of type of PMT-3. An electric spark treatment of carbon steel surface was executed with the use of equipment type of EFI-25M. Findings. After electric spark treatment of specimen surface from carbon steel the forming of multi-layered coverage was observed. The analysis of microstructure found out the existence of high-quality distinctions in the internal structure of coverage metal, depending on the probed area. The results obtained in the process are confirmed by the well-known theses, that forming of superficial coverage according to technology of electric spark is determined by the terms of transfer and crystallization of metal. The gradient of structures on the coverage thickness largely depends on development of structural transformation processes similar to the thermal character influence. Originality. As a result of electric spark treatment on the condition of identical metal of anode and cathode, the first formed layer of coverage corresponds to the monophase state according to external signs. In the volume of coverage metal, the appearance of carbide phase particles is accompanied by the decrease of microhardness values. Practical value. Forming of multi-layered superficial coverage during electric spark treatment is accompanied by the origin of structure gradient on a thickness. The effect

  18. Time-resolved processes in a pulsed electrical discharge in water generated with shock wave assistance in a plate-to-plate configuration

    Czech Academy of Sciences Publication Activity Database

    Stelmashuk, Vitaliy

    2014-01-01

    Roč. 47, č. 49 (2014), s. 495204-495204 ISSN 0022-3727 Institutional support: RVO:61389021 Keywords : underwater discharge * streamers * spark * cavitation bubble * shock wave Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.721, year: 2014 http://iopscience.iop.org/0022-3727/47/49/495204/pdf/0022-3727_47_49_495204.pdf

  19. Erosion on spark plug electrodes; Funkenerosion an Zuendkerzenelektroden

    Energy Technology Data Exchange (ETDEWEB)

    Rager, J.

    2006-07-01

    Durability of spark plugs is mainly determined by spark gap widening, caused by electrode wear. Knowledge about the erosion mechanisms of spark plug materials is of fundamental interest for the development of materials with a high resistance against electrode erosion. It is therefore crucial to identify those parameters which significantly influence the erosion behaviour of a material. In this work, a reliable and reproducible testing method is presented which produces and characterizes electrode wear under well-defined conditions and which is capable of altering parameters specifically. Endurance tests were carried out to study the dependence of the wear behaviour of pure nickel and platinum on the electrode temperature, gas, electrode gap, electrode diameter, atmospheric pressure, and partial pressure of oxygen. It was shown that erosion under nitrogen is negligible, irrespective of the material. This disproves all common mechanism discussed in the literature explaining material loss of spark plug electrodes. Based on this observation and the variation of the mentioned parameters a new erosion model was deduced. This relies on an oxidation of the electrode material and describes the erosion of nickel and platinum separately. For nickel, electrode wear is caused by the removal of an oxide layer by the spark. In the case of platinum, material loss occurs due to the plasma-assisted formation and subsequent evaporation of volatile oxides in the cathode spot. On the basis of this mechanism a new composite material was developed whose erosion resistance is superior to pure platinum. Oxidation resistant metal oxide particles were added to a platinum matrix, thus leading to a higher erosion resistance of the composite. However, this can be decreased by a side reaction, the separation of oxygen from the metal oxides, which effectively assists the oxidation of the matrix. This reaction can be suppressed by using highly stable oxides, characterized by a large negative Gibbs

  20. The Effect of a Corona Discharge on a Lightning Attachment

    International Nuclear Information System (INIS)

    Aleksandrov, N.L.; Bazelyan, E.M.; Raizer, Yu.P.

    2005-01-01

    The interaction between the lightning leader and the space charge accumulated near the top of a ground object in the atmospheric electric field is considered using analytical and numerical models developed earlier to describe spark discharges in long laboratory gaps. The specific features of a nonstationary corona discharge that develops in the electric field of a thundercloud and a downward lightning leader are analyzed. Conditions for the development of an upward lightning discharge from a ground object and for the propagation of an upward-connecting leader from the object toward a downward lightning leader (the process determining the point of strike to the ground) are investigated. Possible mechanisms for the interaction of the corona space charge with an upward leader and prospects of using it to control downward lightning discharges are analyzed

  1. Effect of applied voltage and inter-pulse delay in spark-assisted LIBS

    Science.gov (United States)

    Robledo-Martinez, A.; Sobral, H.; Garcia-Villarreal, A.

    2018-06-01

    We report the results obtained in an investigation on the effect of the time delay between the laser and electrical pulses in a spark-assisted laser-induced breakdown spectroscopy (LIBS) experiment. The electrical discharge is produced by the discharge of a charged coaxial cable. This arrangement produces a fast unipolar current pulse (500 ns) that applies high power ( 600 kW) to the laser ablation plasma. The delay between the laser pulse and the electric pulse can be controlled at will in order to find the optimal time in terms of enhancement of the emitted lines. It was found that the application of the high voltage pulse enhances the ionic lines emitted by up to two orders of magnitude. An additional enhancement by a factor of 2-4 can be obtained delaying the application of the electric pulse by a time of 0.6-20 μs. In the tests it was noticed that the ionic lines were found to be clearly responsive to increments in the applied electric energy while the neutral lines did so marginally. Our results show that the intensification of the lines is mainly due to reheating of the ablation plasma as the application of the electrical pulse increments the temperature of the ablation plasma by about 50%. It is demonstrated that the present technique is an efficient way of intensifying the lines emitted without incurring in additional damage to the sample.

  2. Experimental Results from a Laser-Triggered, Gas-Insulated, Spark-Gap Switch

    Science.gov (United States)

    Camacho, J. F.; Ruden, E. L.; Domonkos, M. T.

    2017-10-01

    We are performing experiments on a laser-triggered spark-gap switch with the goal of studying the transition from photoionization to current conduction. The discharge of current through the switch is triggered by a focused 532-nm wavelength beam from a Q-switched Nd:YAG laser with a pulse duration of about 10 ns. The trigger pulse is delivered along the longitudinal axis of the switch, and the focal spot can be placed anywhere along the axis of the 5-mm, gas-insulated gap between the switch electrodes. The switch test bed is designed to support a variety of working gases (e.g., Ar, N2) over a range of pressures. Electrical and optical diagnostics are used to measure switch performance as a function of parameters such as charge voltage, trigger pulse energy, insulating gas pressure, and gas species. A Mach-Zehnder imaging interferometer system operating at 532 nm is being used to obtain interferograms of the discharge plasma in the switch. We are also developing a 1064-nm interferometry diagnostic in an attempt to measure plasma free electron and neutral gas density profiles simultaneously within the switch gap. Results from our most recent experiments will be presented.

  3. Electrode erosion properties of gas spark switches for fast linear transformer drivers

    Science.gov (United States)

    Li, Xiaoang; Pei, Zhehao; Zhang, Yuzhao; Liu, Xuandong; Li, Yongdong; Zhang, Qiaogen

    2017-12-01

    Fast linear transformer drivers (FLTDs) are a popular and potential route for high-power devices employing multiple "bricks" in series and parallel, but they put extremely stringent demands on gas switches. Electrode erosion of FLTD gas switches is a restrictive and unavoidable factor that degrades performance and limits stability. In this paper, we systematically investigated the electrode erosion characteristics of a three-electrode field distortion gas switch under the typical working conditions of FLTD switches, and the discharge current was 7-46 kA with 46-300 ns rise time. A high speed frame camera and a spectrograph were used to capture the expansion process and the spectral emission of the spark channel was used to estimate the current density and the spark temperature, and then the energy fluxes and the external forces on the electrode surface were calculated. A tens of kilo-ampere nanosecond pulse could generate a 1011 W/m2 energy flux injection and 1.3-3.5 MPa external pressure on the electrode surface, resulting in a millimeter-sized erosion crater with the maximum peak height Rz reaching 100 μm magnitude. According to the morphological images by a laser scanning confocal microscope, the erosion crater of a FLTD switch contained three kinds of local morphologies, namely a center boiling region, an overflow region and a sputtering region. In addition, the crater size, the surface roughness, and the mass loss were highly dependent on the current amplitude and the transferred charge. We also observed Morphology Type I and Type II, respectively, with different pulse parameters, which had an obvious influence on surface roughness and mass loss. Finally, the quantitative relationship between the electrode mass loss and the pulse parameter was clarified. The transferred charge and the current amplitude were proved to be the main factors determining the electrode mass loss of a FLTD switch, and a least squares fitting expression for mass loss was also obtained.

  4. Microstructure and property evolution of isotropic and anisotropic NdFeB magnets fabricated from nanocrystalline ribbons by spark plasma sintering and hot deformation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z W; Huang, H Y; Yu, H Y; Zhong, X C; Zeng, D C [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Gao, X X; Zhu, J, E-mail: zwliu@scut.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2011-01-19

    Isotropic and anisotropic NdFeB magnets were synthesized by spark plasma sintering (SPS) and SPS+HD (hot deformation), respectively, using melt-spun ribbons as the starting materials. Spark plasma sintered magnets sintered at low temperatures (<700 {sup 0}C) almost maintained the uniform fine grain structure inherited from rapid quenching. At higher temperatures, due to the local high-temperature field caused by the spark plasma discharge, the grain growth occurred at the initial particle surfaces and the coarse grain zones formed in the vicinity of the particle boundaries. Since the interior of the particles maintained the fine grain structure, a distinct two-zone structure was formed in the spark plasma sintered magnets. The SPS temperature and pressure have important effects on the widths of coarse and fine grain zones, as well as the grain sizes in two zones. The changes in grain structure led to variations in the magnetic properties. By employing low SPS temperature and high pressure, high-density magnets with negligible coarse grain zone and an excellent combination of magnetic properties can be obtained. An anisotropic magnet with a maximum energy product of {approx}30 MG Oe was produced by the SPS+HD process. HD at 750 {sup 0}C did not lead to obvious grain growth and the two-zone structure still existed in the hot deformed magnets. Intergranular exchange coupling was demonstrated in the spark plasma sintered magnets and was enhanced by the HD process, which reduced the coercivity. Good temperature stability was manifested by low temperature coefficients of remanence and coercivity. The results indicated that nanocrystalline NdFeB magnets without significant grain growth and with excellent properties could be obtained by SPS and HD processes.

  5. Ignition of dust clouds by sparks and heated surfaces; Inflammation des nuages de poussieres par des etincelles et des surfaces chauffees

    Energy Technology Data Exchange (ETDEWEB)

    Proust, C.; Boudalaa, M. [Institut National de l' Environnement Industriel et des Risques, 60 - Verneuil en Halatte (INERIS) (France)

    2001-07-01

    The three types of ignition sources described in this article are the sources of mechanical origin, the heated surfaces and the sparks of electrostatic origin. These 3 categories should be at the origin of 75% of the referenced dust explosions. The approach retained is mainly experimental. Hot spots are produced by the impact of a laser beam (Nd-YAG) on a target located inside the cloud. For relatively long delays of ignition (1 to 2 mn), the characteristic ignition parameter is the thermal power supplied by the target to the mixture, at least when the hot-spot size is small enough (less than 2 or 3 mm). Above this size, the ignition parameter would rather be a critical temperature of the hot spot which can be linked to the 'standard' ignition temperature of the cloud. For electrostatic sparks, measurements of current-voltage characteristics have been performed with some measurements of dimensions. Most possible types have been examined, like the discharges between conductive materials (A), between a conductive material and an insulating material (B), and between a conductive material and an insulating material lined with a conductor connected to the ground (C). It appears that the most powerful sparks (several joules) encountered in the industrial environment are those of type A and C. Measurements have shown that the efficiency of the conversion of the energy stored on the surface of the material into electrical energy inside the spark is very high. Finally, a first approach of the examination of the ignition risk has been tempted with a hot spot created during a lapse of time compatible with a mechanical impact. This leads to an ignition criterion in the form of energy. This energy remains at least two scales of size greater than the minimum spark ignition energy. This difference should come from the absorption of heat by solid materials. (J.S.)

  6. High-speed micro-electro-discharge machining.

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekar, Srinivasan Dr. (.School of Industrial Engineering, West Lafayette, IN); Moylan, Shawn P. (School of Industrial Engineering, West Lafayette, IN); Benavides, Gilbert Lawrence

    2005-09-01

    When two electrodes are in close proximity in a dielectric liquid, application of a voltage pulse can produce a spark discharge between them, resulting in a small amount of material removal from both electrodes. Pulsed application of the voltage at discharge energies in the range of micro-Joules results in the continuous material removal process known as micro-electro-discharge machining (micro-EDM). Spark erosion by micro-EDM provides significant opportunities for producing small features and micro-components such as nozzle holes, slots, shafts and gears in virtually any conductive material. If the speed and precision of micro-EDM processes can be significantly enhanced, then they have the potential to be used for a wide variety of micro-machining applications including fabrication of microelectromechanical system (MEMS) components. Toward this end, a better understanding of the impacts the various machining parameters have on material removal has been established through a single discharge study of micro-EDM and a parametric study of small hole making by micro-EDM. The main avenues for improving the speed and efficiency of the micro-EDM process are in the areas of more controlled pulse generation in the power supply and more controlled positioning of the tool electrode during the machining process. Further investigation of the micro-EDM process in three dimensions leads to important design rules, specifically the smallest feature size attainable by the process.

  7. Supression of laser breakdown by pulsed nonequilibrium ns discharge

    Science.gov (United States)

    Starikovskiy, A. Y.; Semenov, I. E.; Shneider, M. N.

    2016-10-01

    The avalanche ionization induced by infrared laser pulses was investigated in a pre-ionized argon gas. Pre-ionization was created by a high-voltage pulsed nanosecond discharge developed in the form of a fast ionization wave. Then, behind the front of ionization wave additional avalanche ionization was initiated by the focused Nd-YAG laser pulse. It was shown that the gas pre-ionization inhibits the laser spark generation. It was demonstrated that the suppression of laser spark development in the case of strong gas pre-ionization is because of fast electron energy transfer from the laser beam focal region. The main mechanism of this energy transfer is free electrons diffusion.

  8. Tennis elbow surgery - discharge

    Science.gov (United States)

    ... epicondylitis surgery - discharge; Lateral tendinosis surgery - discharge; Lateral tennis elbow surgery - discharge ... long as you are told. This helps ensure tennis elbow will not return. You may be prescribed a ...

  9. Ankle replacement - discharge

    Science.gov (United States)

    ... total - discharge; Total ankle arthroplasty - discharge; Endoprosthetic ankle replacement - discharge; Osteoarthritis - ankle ... You had an ankle replacement. Your surgeon removed and reshaped ... an artificial ankle joint. You received pain medicine and were ...

  10. Hip fracture - discharge

    Science.gov (United States)

    ... neck fracture repair - discharge; Trochanteric fracture repair - discharge; Hip pinning surgery - discharge ... in the hospital for surgery to repair a hip fracture, a break in the upper part of ...

  11. Asthma - child - discharge

    Science.gov (United States)

    Pediatric asthma - discharge; Wheezing - discharge; Reactive airway disease - discharge ... Your child has asthma , which causes the airways of the lungs to swell and narrow. In the hospital, the doctors and nurses helped ...

  12. Magnetic field influence on substructure formed by electric spark treatment

    International Nuclear Information System (INIS)

    Reza Rahbari, G.; Ivanov, A.N.

    1996-01-01

    The substructure of surface layer (about 10 microns thick) has been studied by x-ray line broadening technique in the samples of plain carbon steel (0.45%C) after electric spark doping with and without magnetic field (MF). The applied spark pulse energy was 0.12 J and MF induction varied from 0 to 0.08 T. The electrode material was the same as that of the treated sample. It has been observed that the MF reduces the tensile residual surface stresses from 660 ± 15MPa (no MF) to 260 ± 15MPa (B=0.053 T). The analysis of x-ray line broadening has revealed only the existence of microstrains, which are dependent of the MF magnitude. The microstrains have been related to the randomly distributed dislocation with the density of about 3x10 sup 11 cm sup -2

  13. 100 kV reliable accurately-synchronized spark gap

    International Nuclear Information System (INIS)

    Bosamykin, V.S.; Gerasimov, A.I.; Zenkov, D.I.

    1987-01-01

    100 kV three-electrode spark gap filled with 40% SF 6 +60% N 2 mixture under the pressure of ∼ 1 MPa, which has spread Δt ≤ ± 5 ns of operating time delay in the range of 10 4 triggerings and commutation energy of 2.5 kJ, providing electric strength is 100%, is described; at 10 kJ Δt is less than ± 10 ns for 10 3 triggerings. Parallel connection of 16 groups, each consisting of 5 spark gaps with series connection, electric strength being 100%, in the pulse charging unit of Arkadiev-Marx generator being in operation for several years manifested their high efficiency; mutual group spread is ≤ ± 15 ns

  14. Striated filamentary sparks produced by a CO2 TEA laser

    International Nuclear Information System (INIS)

    Schmieder, R.W.

    1979-01-01

    Sparks in the form of long, thin filaments having quasi-periodic longitudinal light and dark regions (striations) in time-integrated images have been ovserved in various gases using a CO 2 TEA laser. Typically, a 50-mJ pulse will produce a filament 1 cm long and 130 μm in diameter, with more than 150 striations spaced 50 μm apart in atmospheric air. Each striation is associated with the formation of a plasma region by one pulse in train of pulses from the mode-locked laser, and the filament results from the formation of successive (nearly identical) region, each displaced from the previous one toward the laser. The possible use of these sparks as a light source in diagnostics is noted

  15. Large area spark counters with fine time and position resolution

    International Nuclear Information System (INIS)

    Ogawa, A.; Atwood, W.B.; Fujiwara, N.; Pestov, Yu.N.; Sugahara, R.

    1983-10-01

    Spark counters trace their history back over three decades but have been used in only a limited number of experiments. The key properties of these devices include their capability of precision timing (at the sub 100 ps level) and of measuring the position of the charged particle to high accuracy. At SLAC we have undertaken a program to develop these devices for use in high energy physics experiments involving large detectors. A spark counter of size 1.2 m x 0.1 m has been constructed and has been operating continuously in our test setup for several months. In this talk I will discuss some details of its construction and its properties as a particle detector. 14 references

  16. CMS Analysis and Data Reduction with Apache Spark

    Energy Technology Data Exchange (ETDEWEB)

    Gutsche, Oliver [Fermilab; Canali, Luca [CERN; Cremer, Illia [Magnetic Corp., Waltham; Cremonesi, Matteo [Fermilab; Elmer, Peter [Princeton U.; Fisk, Ian [Flatiron Inst., New York; Girone, Maria [CERN; Jayatilaka, Bo [Fermilab; Kowalkowski, Jim [Fermilab; Khristenko, Viktor [CERN; Motesnitsalis, Evangelos [CERN; Pivarski, Jim [Princeton U.; Sehrish, Saba [Fermilab; Surdy, Kacper [CERN; Svyatkovskiy, Alexey [Princeton U.

    2017-10-31

    Experimental Particle Physics has been at the forefront of analyzing the world's largest datasets for decades. The HEP community was among the first to develop suitable software and computing tools for this task. In recent times, new toolkits and systems for distributed data processing, collectively called "Big Data" technologies have emerged from industry and open source projects to support the analysis of Petabyte and Exabyte datasets in industry. While the principles of data analysis in HEP have not changed (filtering and transforming experiment-specific data formats), these new technologies use different approaches and tools, promising a fresh look at analysis of very large datasets that could potentially reduce the time-to-physics with increased interactivity. Moreover these new tools are typically actively developed by large communities, often profiting of industry resources, and under open source licensing. These factors result in a boost for adoption and maturity of the tools and for the communities supporting them, at the same time helping in reducing the cost of ownership for the end-users. In this talk, we are presenting studies of using Apache Spark for end user data analysis. We are studying the HEP analysis workflow separated into two thrusts: the reduction of centrally produced experiment datasets and the end-analysis up to the publication plot. Studying the first thrust, CMS is working together with CERN openlab and Intel on the CMS Big Data Reduction Facility. The goal is to reduce 1 PB of official CMS data to 1 TB of ntuple output for analysis. We are presenting the progress of this 2-year project with first results of scaling up Spark-based HEP analysis. Studying the second thrust, we are presenting studies on using Apache Spark for a CMS Dark Matter physics search, comparing Spark's feasibility, usability and performance to the ROOT-based analysis.

  17. Loits skandaalitses gaalal. Sparks Rabarockil. Pärimusmuusika Ait

    Index Scriptorium Estoniae

    2008-01-01

    Pärnu Kontserdimajas Eesti muusikaauhindade galal üle astunud rockansambel Loits röövis koostöös kultuskirjaniku Sven Kivisildnikuga aasta metal/punk-artisti auhinna, mis pidi minema industrial-metal-artistile Finish Me Off. Ameerika bänd Sparks 14. juunil Järvakandis Rabarockil. Viljandis Tasuja pst.6 avati Eesti Pärimusmuusika Keskuse uus kodu - Pärimusmuusika Ait

  18. effect of gasket of varying thickness on spark ignition engines

    African Journals Online (AJOL)

    DJFLEX

    In the study of Toyota, In-line, 4 cylinders, spark ignition engine using gaskets of varying thicknesses. (1.75mm, 3.5mm, 5.25mm, 7mm and 8.75mm) between the cylinder head and the engine block, the performance characteristics of the engine was investigated via the effect of engine speed on brake power, brake thermal ...

  19. High repetition rate burst-mode spark gap

    International Nuclear Information System (INIS)

    Faltens, A.; Reginato, L.; Hester, R.; Chesterman, A.; Cook, E.; Yokota, T.; Dexter, W.

    1978-01-01

    Results are presented on the design and testing of a pressurized gas blown spark gap switch capable of high repetition rates in a burst mode of operation. The switch parameters which have been achieved are as follows: 220-kV, 42-kA, a five pulse burst at 1-kHz, 12-ns risetime, 2-ns jitter at a pulse width of 50-ns

  20. Modeling of the Inductance of a Blumlein Circuit Spark Gap

    International Nuclear Information System (INIS)

    Aboites, V; Rendón, L; Hernández, A I; Valdés, E

    2015-01-01

    In this paper we present an analysis of the time-varying inductance in the spark gap of a Blumlein circuit. We assume several mathematical expressions to describe the inductance and compare theoretical and computational calculations with experimental results. The time-varying inductance is approximated by a constant, a straight line and two parables which differ in their concavity. This is the first time to our knowledge, in which the time-varying ignition inductance of a nitrogen laser is modeled

  1. The time response function of spark counters and RPCs

    International Nuclear Information System (INIS)

    Gobbi, A.; Mangiarotti, A.

    2003-01-01

    The fluctuation theory for the avalanche growth with and without space charge effects is briefly summarized and compared to a broad field of applications. These include spark counters as well as timing and trigger RPCs operated in avalanche mode. A large domain in electrical field strength, pressure, gap size and gas mixture type is covered. A reasonable agreement with the experiment is observed, giving confidence on the validity of both assumptions and treatment of the theory

  2. Production of uranium-molybdenum particles by spark-erosion

    International Nuclear Information System (INIS)

    Cabanillas, E.D.; Lopez, M.; Pasqualini, E.E.; Cirilo Lombardo, D.J.

    2004-01-01

    With the spark-erosion method we have produced spheroidal particles of an uranium-molybdenum alloy using pure water as dielectric. The particles were characterized by optical metallography, scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. Mostly spherical particles of UO 2 with a distinctive size distribution with peaks centered at 70 and 10 μm were obtained. The particles have central inclusions of U and Mo compounds

  3. Production of uranium-molybdenum particles by spark-erosion

    Energy Technology Data Exchange (ETDEWEB)

    Cabanillas, E.D. E-mail: cabanill@cnea.gov.ar; Lopez, M.; Pasqualini, E.E.; Cirilo Lombardo, D.J

    2004-01-01

    With the spark-erosion method we have produced spheroidal particles of an uranium-molybdenum alloy using pure water as dielectric. The particles were characterized by optical metallography, scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. Mostly spherical particles of UO{sub 2} with a distinctive size distribution with peaks centered at 70 and 10 {mu}m were obtained. The particles have central inclusions of U and Mo compounds.

  4. Particular bi-fuel application of spark ignition engines

    Science.gov (United States)

    Raţiu, S.; Alexa, V.; Kiss, I.

    2016-02-01

    This paper presents a comparative test concerning the operation of a spark-ignition engine, make: Dacia 1300, model: 810.99, fuelled alternatively with gasoline and LPG (Liquefied Petroleum Gas). The tests carried out show, on the one hand, the maintenance of power and torque performances in both engine fuelling cases, for all the engine operation regimes, and, on the other hand, a considerable decrease in CO and HC emissions when using poor mixtures related to LPG fuelling.

  5. Modelling of spark to ignition transition in gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Akram, M.

    1996-10-01

    This thesis pertains to the models for studying sparking in chemically inert gases. The processes taking place in a spark to flame transition can be segregated into physical and chemical processes, and this study is focused on physical processes. The plasma is regarded as a single-substance material. One and two-dimensional models are developed. The transfer of electrical energy into thermal energy of the gas and its redistribution in space and time along with the evolution of a plasma kernel is studied in the time domain ranging from 10 ns to 40 micros. In the case of ultra-fast sparks, the propagation of the shock and its reflection from a rigid wall is presented. The influence of electrode shape and the gap size on the flow structure development is found to be a dominating factor. It is observed that the flow structure that has developed in the early stage more or less prevails at later stages and strongly influences the shape and evolution of the hot kernel. The electrode geometry and configuration are responsible for the development of the flow structure. The strength of the vortices generated in the flow field is influenced by the power input to the gap and their location of emergence is dictated by the electrode shape and configuration. The heat transfer after 2 micros in the case of ultra-fast sparks is dominated by convection and diffusion. The strong mixing produced by hydrodynamic effects and the electrode geometry give the indication that the magnetic pinch effect might be negligible. Finally, a model for a multicomponent gas mixture is presented. The chemical kinetics mechanism for dissociation and ionization is introduced. 56 refs

  6. Research on retailer data clustering algorithm based on Spark

    Science.gov (United States)

    Huang, Qiuman; Zhou, Feng

    2017-03-01

    Big data analysis is a hot topic in the IT field now. Spark is a high-reliability and high-performance distributed parallel computing framework for big data sets. K-means algorithm is one of the classical partition methods in clustering algorithm. In this paper, we study the k-means clustering algorithm on Spark. Firstly, the principle of the algorithm is analyzed, and then the clustering analysis is carried out on the supermarket customers through the experiment to find out the different shopping patterns. At the same time, this paper proposes the parallelization of k-means algorithm and the distributed computing framework of Spark, and gives the concrete design scheme and implementation scheme. This paper uses the two-year sales data of a supermarket to validate the proposed clustering algorithm and achieve the goal of subdividing customers, and then analyze the clustering results to help enterprises to take different marketing strategies for different customer groups to improve sales performance.

  7. Prostate brachytherapy - discharge

    Science.gov (United States)

    Implant therapy - prostate cancer - discharge; Radioactive seed placement - discharge ... You had a procedure called brachytherapy to treat prostate cancer. Your treatment lasted 30 minutes or more, ...

  8. Higher pressure periodic CO/sub 2/ laser with non-self-sustaining discharge and UV ionization

    Energy Technology Data Exchange (ETDEWEB)

    Muratov, E A; Pismennyi, V D; Rakhimov, A T

    1979-02-01

    Stimulated emission was achieved in a CO/sub 2/ laser operating at 250 torr excited by a periodic non-self-sustaining discharge controlled by a spark source of UV radiation. Use of a UV source operating in periodic pulse regime is shown to permit quasicontinuous operation of the laser with characteristic radiating times up to several hundred microseconds.

  9. Spark Ignition Characteristics of a L02/LCH4 Engine at Altitude Conditions

    Science.gov (United States)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine s augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  10. Spark Ignition Characteristics of a LO2/LCH4 Engine at Altitude Conditions

    Science.gov (United States)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine's augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter.s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  11. Spark Ignition LPG for Hydrogen Gas Combustion the Reduction Furnace ME-11 Process

    International Nuclear Information System (INIS)

    Achmad Suntoro

    2007-01-01

    Reverse engineering method for automatic spark-ignition system of LPG to burn hydrogen gaseous in the reducing process of ME-11 furnace has been successfully implemented using local materials. A qualitative study to the initial behaviour of the LPG flame system has created an idea by modification to install an automatic spark-ignition of the LPG on the reducing furnace ME-11. The automatic spark-ignition system has been tested and proved working well. (author)

  12. Measurements of some parameters of thermal sparks with respect to their ability to ignite aviation fuel/air mixtures

    Science.gov (United States)

    Haigh, S. J.; Hardwick, C. J.; Baldwin, R. E.

    1991-01-01

    A method used to generate thermal sparks for experimental purposes and methods by which parameters of the sparks, such as speed, size, and temperature, were measured are described. Values are given of the range of such parameters within these spark showers. Titanium sparks were used almost exclusively, since it is particles of this metal which are found to be ejected during simulation tests to carbon fiber composite (CFC) joints. Tests were then carried out in which titanium sparks and spark showers were injected into JP4/(AVTAG F40) mixtures with air. Single large sparks and dense showers of small sparks were found to be capable of causing ignition. Tests were then repeated using ethylene/air mixtures, which were found to be more easily ignited by thermal sparks than the JP4/ air mixtures.

  13. Low temperature spark plasma sintering of YIG powders

    International Nuclear Information System (INIS)

    Fernandez-Garcia, L.; Suarez, M.; Menendez, J.L.

    2010-01-01

    A transition from a low to a high spin state in the magnetization saturation between 1000 and 1100 o C calcination temperature is observed in YIG powders prepared by oxides mixture. Spark plasma sintering of these powders between 900 and 950 o C leads to dense samples with minimal formation of YFeO 3 , opening the way to co-sintering of YIG with metals or metallic alloys. The optical properties depend on the sintering stage: low (high) density samples show poor (bulk) optical absorption.

  14. Spark gap overpressures in the transfer capacitor device

    International Nuclear Information System (INIS)

    Burkhardt, L.C.; Dike, R.S.

    1977-01-01

    A designer of spark gaps is often faced with two gas pressure problems, one static and one dynamic. The former is easy to obtain data on which to base intelligent design specifications; about the latter, less is known. It is the total internal pressure environment we have attempted to measure, in an un-time-resolved way, in order to give the designer some rationale in designing gaps of this category. We measure overpressures of approximately 400 PSI in a 13 cubic inch gap passing currents of approximately 200 kA

  15. Search for an optimum time response of spark counters

    International Nuclear Information System (INIS)

    Devismes, A.; Finck, Ch.; Kress, T.; Gobbi, A.; Eschke, J.; Herrmann, N.; Hildenbrand, K.D.; Koczon, P.; Petrovici, M.

    2002-01-01

    A spark counter of the type developed by Pestov has been tested with the aim of searching for an optimum time response function, changing voltage, content of noble and quencher gases, pressure and energy-loss. Replacing the usual argon by neon has brought an improvement of the resolution and a significant reduction of tails in the time response function. It has been proven that a counter as long as 90 cm can deliver, using neon gas mixture, a time resolution σ<60 ps with about 1% absolute tail and an efficiency of about 90%

  16. Compaction of lithium-silicate ceramics using spark plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Kubatík, Tomáš František; Lukáč, František; Mušálek, Radek; Brožek, Vlastimil; Stehlíková, K.; Chráska, Tomáš

    2017-01-01

    Roč. 61, č. 1 (2017), s. 40-44 ISSN 0862-5468 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Li2Si2O5 * Li2SiO3 * Spark plasma sintering (SPS) * Quantitative Rietveld refinement * X-ray diffraction (XRD) Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 0.439, year: 2016 http://www.ceramics-silikaty.cz/index.php?page=cs_detail_doi&id=789

  17. Electric Pulse Discharge Activated Carbon Supercapacitors for Transportation Application

    Science.gov (United States)

    Nayak, Subhadarshi; Agrawal, Jyoti

    2012-03-01

    ScienceTomorrow is developing a high-speed, low-cost process for synthesizing high-porosity electrodes for electrochemical double-layer capacitors. Four types of coal (lignite, subbituminous, bituminous, and anthracite) were used as precursor materials for spark discharge activation with multiscale porous structure. The final porosity and pore distribution depended, among other factors, on precursor type. The high gas content in low-grade carbon resulted in mechanical disintegration, whereas high capacitance was attained in higher-grade coal. The properties, including capacitance, mechanical robustness, and internal conductivity, were excellent when the cost is taken into consideration.

  18. X-ray spectra of He-like ions of Ga and Ge, excited in the low-inductance spark plasma

    International Nuclear Information System (INIS)

    Aglitsky, E.V.; Antsiferov, P.S.; Panin, A.M.

    1984-01-01

    The spectra of Ga XXX and Ge XXXI ions in the interval 1.2-1.4 A excited in the low-inductance vacuum spark plasma have been obtained for the first time. The resonance line 1s 2 -1s2p of Ga XXX and Ge XXXI and a group of satellites, corresponding to transitions in Ga XXIX and Ge XXX can be seen distinctly in the spectra. The spectra were obtained by an electronic-optical image-intensifier tube for one discharge. (orig.)

  19. Characterization and modeling of 2D-glass micro-machining by spark-assisted chemical engraving (SACE) with constant velocity

    International Nuclear Information System (INIS)

    Didar, Tohid Fatanat; Dolatabadi, Ali; Wüthrich, Rolf

    2008-01-01

    Spark-assisted chemical engraving (SACE) is an unconventional micro-machining technology based on electrochemical discharge used for micro-machining nonconductive materials. SACE 2D micro-machining with constant speed was used to machine micro-channels in glass. Parameters affecting the quality and geometry of the micro-channels machined by SACE technology with constant velocity were presented and the effect of each of the parameters was assessed. The effect of chemical etching on the geometry of micro-channels under different machining conditions has been studied, and a model is proposed for characterization of the micro-channels as a function of machining voltage and applied speed

  20. High Charge State Ions Extracted from Metal Plasmas in the Transition Regime from Vacuum Spark to High Current Vacuum Arc

    International Nuclear Information System (INIS)

    Yushkov, Georgy Yu.; Anders, A.

    2008-01-01

    Metal ions were extracted from pulsed discharge plasmas operating in the transition region between vacuum spark (transient high voltage of kV) and vacuum arc (arc voltage ∼ 20 V). At a peak current of about 4 kA, and with a pulse duration of 8 (micro)s, we observed mean ion charges states of about 6 for several cathode materials. In the case of platinum, the highest average charge state was 6.74 with ions of charge states as high as 10 present. For gold we found traces of charge state 11, with the highest average charge state of 7.25. At currents higher than 5 kA, non-metallic contaminations started to dominate the ion beam, preventing further enhancement of the metal charge states

  1. The μ-RWELL: A compact, spark protected, single amplification-stage MPGD

    Science.gov (United States)

    Poli Lener, M.; Bencivenni, G.; de Olivera, R.; Felici, G.; Franchino, S.; Gatta, M.; Maggi, M.; Morello, G.; Sharma, A.

    2016-07-01

    In this work we present two innovative architectures of resistive MPGDs based on the WELL-amplification concept: - the micro-Resistive WELL (μ-RWELL) is a compact spark-protected single amplification-stage Micro-Pattern Gas Detector (MPGD). The amplification stage, realized with a structure very similar to a GEM foil (called WELL), is embedded through a resistive layer in the readout board. A cathode electrode, defining the gas conversion/drift gap, completes the detector mechanics. The new architecture, showing an excellent space resolution, 50 μm, is a very compact device, robust against discharges and exhibiting a large gain (>104), simple to construct and easy for engineering and then suitable for large area tracking devices as well as digital calorimeters. - the Fast Timing Micro-pattern (FTM): a new device with an architecture based on a stack of several coupled full-resistive layers where drift and multiplication stages (WELL type) alternate in the structure. The signals from each multiplication stage can be read out from any external readout boards through the capacitive couplings, providing a signal with a gain of 104-105. The main advantage of this new device is the improvement of the timing provided by the competition of the ionization processes in the different drift regions, which can be exploited for fast timing at the high luminosity accelerators (e.g. HL-LHC upgrade) as well as for applications like medical imaging.

  2. Experimental study on surface properties of the PMMA used in high power spark gaps

    Science.gov (United States)

    Han, Ruoyu; Wu, Jiawei; Ding, Weidong; Liu, Yunfei; Gou, Yang

    2017-10-01

    This paper studies the surface properties of the Polymethylmethacrylate (PMMA) insulator samples used in high power spark gaps. Experiments on surface morphology, surface profile, surface chemical composition and surface leakage current were performed. Metal particles ejected in tangent direction of discharge spots were researched on the sample surface. Three kinds of distinct bands were found on the surface after 1500 shots: colorless and transparent sinking band, black band, and grey powdered coating band. The thickness of the coating band was tens of microns and the maximum radial erosion rate was about 10 μm/C. Surface content analysis indicated that the powdered coating was a mixture of decomposed insulator material and electrode material oxides. In addition, leakage current significantly depended on water content in the chamber and presented an U-shape curve distribution along the insulator surface, in keeping with the amount of powdered coating due to shock waves. Possible reasons of the surface property changes were discussed. Electroconductive oxides of low valence states of Cu and W produced by the reactions between electrode materials and arc plasmas were considered to be the cause of dielectric performance degradation.

  3. Breakover mechanism of GaAs photoconductive switch triggering spark gap for high power applications

    Science.gov (United States)

    Tian, Liqiang; Shi, Wei; Feng, Qingqing

    2011-11-01

    A spark gap (SG) triggered by a semi-insulating GaAs photoconductive semiconductor switch (PCSS) is presented. Currents as high as 5.6 kA have been generated using the combined switch, which is excited by a laser pulse with energy of 1.8 mJ and under a bias of 4 kV. Based on the transferred-electron effect and gas streamer theory, the breakover characteristics of the combined switch are analyzed. The photoexcited carrier density in the PCSS is calculated. The calculation and analysis indicate that the PCSS breakover is caused by nucleation of the photoactivated avalanching charge domain. It is shown that the high output current is generated by the discharge of a high-energy gas streamer induced by the strong local electric field distortion or by overvoltage of the SG resulting from quenching of the avalanching domain, and periodic oscillation of the current is caused by interaction between the gas streamer and the charge domain. The cycle of the current oscillation is determined by the rise time of the triggering electric pulse generated by the PCSS, the pulse transmission time between the PCSS and the SG, and the streamer transit time in the SG.

  4. Excellent electrochemical performance of graphene-silver nanoparticle hybrids prepared using a microwave spark assistance process

    International Nuclear Information System (INIS)

    Shanmugharaj, A.M.; Ryu, Sung Hun

    2012-01-01

    Highlights: ► A simple synthesis route is explored in preparing graphene-metal nanoparticle hybrids using cost effective microwave radiation process. ► Electrochemical performance of the synthesized graphene-silver nanoparticle hybrids have been compared with graphite and silver nanoparticle based anode materials. ► Graphene-silver nanoparticle hybrid exhibits stable charge/discharge characteristics of 714 mAh g −1 and it is significantly higher compared to natural graphite and silver based electrodes. - Abstract: A simple method is described for the synthesis of graphene-silver nanoparticle hybrids from graphite and silver precursors using microwave spark ignition process. Adding ecofriendly free radical initiators, in the presence of hydrogen peroxide solution leads to the expansion of graphite to graphene nanosheets. Simultaneously, silver ions intercalated between the graphene layers are reduced to silver nanocrystals leading to the development of graphene-silver nanoparticle hybrids. Transmission electron microscopic (TEM) studies reveal the successful formation of graphene-silver nanoparticle hybrids. X-ray diffraction (XRD) shows that the silver nanoparticles formed on the graphene surfaces are face centered cubic crystals. The surface composition and functional groups present on the graphene-silver nanoparticle hybrids are corroborated using X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FT-IR). The lithium storage capacity of the synthesized material, when used as an anode material for rechargeable lithium secondary batteries is investigated. Its first specific discharge capacity is observed to be 580 mAh g −1 and this has been increased to 827 mAh g −1 , by incorporating the silver nanoparticles between the graphene platelets. The reversible capacity of the graphene-silver nanoparticle hybrids is observed to be 714 mAh g −1 , which is significantly higher compared to that of graphene (420 mAh g −1

  5. Effects of tetracaine on voltage-activated calcium sparks in frog intact skeletal muscle fibers.

    Science.gov (United States)

    Hollingworth, Stephen; Chandler, W Knox; Baylor, Stephen M

    2006-03-01

    The properties of Ca(2+) sparks in frog intact skeletal muscle fibers depolarized with 13 mM [K(+)] Ringer's are well described by a computational model with a Ca(2+) source flux of amplitude 2.5 pA (units of current) and duration 4.6 ms (18 degrees C; Model 2 of Baylor et al., 2002). This result, in combination with the values of single-channel Ca(2+) current reported for ryanodine receptors (RyRs) in bilayers under physiological ion conditions, 0.5 pA (Kettlun et al., 2003) to 2 pA (Tinker et al., 1993), suggests that 1-5 RyR Ca(2+) release channels open during a voltage-activated Ca(2+) spark in an intact fiber. To distinguish between one and greater than one channel per spark, sparks were measured in 8 mM [K(+)] Ringer's in the absence and presence of tetracaine, an inhibitor of RyR channel openings in bilayers. The most prominent effect of 75-100 microM tetracaine was an approximately sixfold reduction in spark frequency. The remaining sparks showed significant reductions in the mean values of peak amplitude, decay time constant, full duration at half maximum (FDHM), full width at half maximum (FWHM), and mass, but not in the mean value of rise time. Spark properties in tetracaine were simulated with an updated spark model that differed in minor ways from our previous model. The simulations show that (a) the properties of sparks in tetracaine are those expected if tetracaine reduces the number of active RyR Ca(2+) channels per spark, and (b) the single-channel Ca(2+) current of an RyR channel is normal voltage-activated sparks (i.e., in the absence of tetracaine) are produced by two or more active RyR Ca(2+) channels. The question of how the activation of multiple RyRs is coordinated is discussed.

  6. Advances in the electro-spark deposition coating process

    International Nuclear Information System (INIS)

    Johnson, R.N.; Sheldon, G.L.

    1986-04-01

    Electro-spark deposition (ESD) is a pulsed-arc micro-welding process using short-duration, high-current electrical pulses to deposit an electrode material on a metallic substrate. It is one of the few methods available by which a fused, metallurgically bonded coating can be applied with such a low total heat input that the bulk substrate material remains at or near ambient temperatures. The short duration of the electrical pulse allows an extremely rapid solidification of the deposited material and results in an exceptionally fine-grained, homogenous coating that approaches (and with some materials, actually is) an amorphous structure. This structure is believed to contribute to the good tribological and corrosion performance observed for hardsurfacing materials used in the demanding environments of high temperatures, liquid metals, and neutron irradiation. A brief historical review of the process is provided, followed by descriptions of the present state-of-the-art and of the performance and applications of electro-spark deposition coatings in liquid-metal-cooled nuclear reactors

  7. Influence of hydrox on spark ignition engine performance

    International Nuclear Information System (INIS)

    Naude, A.F.

    2003-01-01

    An experimental investigation was performed on the influence of the addition of small quantities of Hydrox (hydrogen and oxygen) as generated through electrolysis of water on the performance of a spark ignition engine. A Mazda 1600 cc fuel injected engine connected to a Superflow SF901 dynamometer system was used in this project. The engine was also equipped with a Unichip engine management system in order to enable changes in the spark timing and the amount of fuel injected. Hydrox was generated by an electrolysis process that could either be powered by the engine's alternator or from a separate power source. This hydrox gas produced from the electrolyzer was introduced into the engine's intake manifold and the influence of this was measured on the engine's performance, emissions and fuel consumption. For these tests a typical load condition as experienced for a light passenger car vehicle driven at 100 km/h on the open road was simulated. Typical results for the change in emissions with the hydrox introduction showed a significant reduction in hydrocarbons at lean air-fuel ratio operation of the engine. Additionally with the electrolysis process being driven by the engine a small improvement in fuel consumption was experienced. (author)

  8. A new and efficient mechanism for spark ignition engines

    International Nuclear Information System (INIS)

    Shadloo, M.S.; Poultangari, R.; Abdollahzadeh Jamalabadi, M.Y.; Rashidi, M.M.

    2015-01-01

    Highlights: • A new slider–crank mechanism, with superior performance is presented. • Thermodynamic processes as well as vibration and internal forces have been modeled. • Comparison with the conventional four-stroke spark ignition engines is made. • Advantages and disadvantages of the proposed mechanism are discussed. - Abstract: In this paper a new symmetrical crank and slider mechanism is proposed and a zero dimensional model is utilized to study its combustion performance enhancement in a four-stroke spark ignition (SI) engine. The main features of this new mechanism are superior thermodynamic efficiency, lower internal frictions, and lower pollutants. Comparison is made between its performance and that of the conventional four-stroke SI engines. Presented mechanism is designed to provide better fuel consumption of internal combustion engines. These advantages over standard engine are achieved through synthesis of new mechanism. Numerical calculation have been performed for several cases of different mechanism parameters, compression ratio and engine speed. A comprehensive comparison between their thermodynamic processes as well as vibration and internal forces has been done. Calculated efficiency and power diagrams are plotted and compared with performance of a conventional SI engine. Advantages and disadvantages of the proposed mechanism are discussed in details

  9. Turbulent spark-jet ignition in SI gas fuelled engine

    Directory of Open Access Journals (Sweden)

    Pielecha Ireneusz

    2017-01-01

    Full Text Available The article contains a thermodynamic analysis of a new combustion system that allows the combustion of stratified gas mixtures with mean air excess coefficient in the range 1.4-1.8. Spark ignition was used in the pre-chamber that has been mounted in the engine cylinder head and contained a rich mixture out of which a turbulent flow of ignited mixture is ejected. It allows spark-jet ignition and the turbulent combustion of the lean mixture in the main combustion chamber. This resulted in a two-stage combustion system for lean mixtures. The experimental study has been conducted using a single-cylinder test engine with a geometric compression ratio ε = 15.5 adapted for natural gas supply. The tests were performed at engine speed n = 2000 rpm under stationary engine load when the engine operating parameters and toxic compounds emissions have been recorded. Analysis of the results allowed to conclude that the evaluated combustion system offers large flexibility in the initiation of charge ignition through an appropriate control of the fuel quantities supplied into the pre-chamber and into the main combustion chamber. The research concluded with determining the charge ignition criterion for a suitably divided total fuel dose fed to the cylinder.

  10. Spark and HPC for High Energy Physics Data Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Sehrish, Saba; Kowalkowski, Jim; Paterno, Marc

    2017-05-01

    A full High Energy Physics (HEP) data analysis is divided into multiple data reduction phases. Processing within these phases is extremely time consuming, therefore intermediate results are stored in files held in mass storage systems and referenced as part of large datasets. This processing model limits what can be done with interactive data analytics. Growth in size and complexity of experimental datasets, along with emerging big data tools are beginning to cause changes to the traditional ways of doing data analyses. Use of big data tools for HEP analysis looks promising, mainly because extremely large HEP datasets can be represented and held in memory across a system, and accessed interactively by encoding an analysis using highlevel programming abstractions. The mainstream tools, however, are not designed for scientific computing or for exploiting the available HPC platform features. We use an example from the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) in Geneva, Switzerland. The LHC is the highest energy particle collider in the world. Our use case focuses on searching for new types of elementary particles explaining Dark Matter in the universe. We use HDF5 as our input data format, and Spark to implement the use case. We show the benefits and limitations of using Spark with HDF5 on Edison at NERSC.

  11. Laser ignition - Spark plug development and application in reciprocating engines

    Science.gov (United States)

    Pavel, Nicolaie; Bärwinkel, Mark; Heinz, Peter; Brüggemann, Dieter; Dearden, Geoff; Croitoru, Gabriela; Grigore, Oana Valeria

    2018-03-01

    Combustion is one of the most dominant energy conversion processes used in all areas of human life, but global concerns over exhaust gas pollution and greenhouse gas emission have stimulated further development of the process. Lean combustion and exhaust gas recirculation are approaches to improve the efficiency and to reduce pollutant emissions; however, such measures impede reliable ignition when applied to conventional ignition systems. Therefore, alternative ignition systems are a focus of scientific research. Amongst others, laser induced ignition seems an attractive method to improve the combustion process. In comparison with conventional ignition by electric spark plugs, laser ignition offers a number of potential benefits. Those most often discussed are: no quenching of the combustion flame kernel; the ability to deliver (laser) energy to any location of interest in the combustion chamber; the possibility of delivering the beam simultaneously to different positions, and the temporal control of ignition. If these advantages can be exploited in practice, the engine efficiency may be improved and reliable operation at lean air-fuel mixtures can be achieved, making feasible savings in fuel consumption and reduction in emission of exhaust gasses. Therefore, laser ignition can enable important new approaches to address global concerns about the environmental impact of continued use of reciprocating engines in vehicles and power plants, with the aim of diminishing pollutant levels in the atmosphere. The technology can also support increased use of electrification in powered transport, through its application to ignition of hybrid (electric-gas) engines, and the efficient combustion of advanced fuels. In this work, we review the progress made over the last years in laser ignition research, in particular that aimed towards realizing laser sources (or laser spark plugs) with dimensions and properties suitable for operating directly on an engine. The main envisaged

  12. A Simulation of Pre-Arcing Plasma Discharge Processes in Water Purification

    International Nuclear Information System (INIS)

    Rodriguez-Mendez, B. G.; Piedad-Beneitez, A. de la; Lopez-Callejas, R.; Godoy-Cabrera, O. G.; Benitez-Read, J. S.; Pacheco-Sotelo, J. O.; Pena-Eguiluz, R.; Mercado-Cabrera, A.; Valencia-A, R.; Barocio, S. R.

    2006-01-01

    The simulation of a water purification system within a coaxial cylinder reactor operated by 1 kHz frequency plasma discharges in pre-arcing regimes is presented. In contrast with precedent works, this computational model considers three mechanisms of the system operation: (a) the relevant physical characteristics of water (b) the ionisation and expansion processes in the spark channel including the near-breakdown electric current generated by the rate of change of the effective capacitance and resistance in the discharge, and (c) the energy associated with this initial spark in the water. The outcome of the model seems to meet all main requirements to allow the design and construction of specific water purification technology devices

  13. Vessel Sewage Discharges

    Science.gov (United States)

    Vessel sewage discharges are regulated under Section 312 of the Clean Water Act, which is jointly implemented by the EPA and Coast Guard. This homepage links to information on marine sanitation devices and no discharge zones.

  14. Early discharge following birth

    DEFF Research Database (Denmark)

    Nilsson, Ingrid M. S.; Kronborg, Hanne; Knight, Christopher H.

    2017-01-01

    .26–0.48) and primiparous compared to multiparous had an OR of 0.22 (CI 0.17–0.29) for early discharge. Other predictors for early discharge were: no induction of labour, no epidural painkiller, bleeding less than 500 ml during delivery, higher gestational age, early expected discharge and positive breastfeeding experience...

  15. Heart attack - discharge

    Science.gov (United States)

    ... and lifestyle Cholesterol - drug treatment Controlling your high blood pressure Deep vein thrombosis - discharge Dietary fats explained Fast food tips Heart attack - discharge Heart attack - what to ask your doctor Heart bypass ... pacemaker - discharge High blood pressure - what to ask your doctor How to read ...

  16. The optimization of some of the conditions for analysis by spark-source mass spectrometry

    International Nuclear Information System (INIS)

    Pearton, D.C.P.; Sobiecki, A.

    1980-01-01

    The need for improved precision in spark-source mass spectrometry is highlighted. Several parameters, such as photoplate-development technique, instrumental stability and focus, and sparking conditions, were optimized. Measurements made under these optimum conditions attained precisions of more than 12 per cent

  17. Development of spark cathode E-guns. Draft final reprt, Phase I, July--October 1978

    International Nuclear Information System (INIS)

    Loda, G.; Lindstrand, R.

    1979-01-01

    A 12 sided spark cathode is designed and constructed to replace the bladed, cold cathode structure in the electron gun of the Los Alamos Scientific Laboratory Antares prototype power amplifier. Design work includes computer modeling and full scale low voltage modeling. Life testing to 100,000 pulses is documented. The spark cathode offers precise control of emission site location and a high reliability

  18. 2-Methylfuran: A bio-derived octane booster for spark-ignition engines

    KAUST Repository

    Sarathy, Mani; Shankar, Vijai; Tripathi, Rupali; Pitsch, Heinz; Sarathy, Mani

    2018-01-01

    The efficiency of spark-ignition engines is limited by the phenomenon of knock, which is caused by auto-ignition of the fuel-air mixture ahead of the spark-initiated flame front. The resistance of a fuel to knock is quantified by its octane index

  19. Automated qualification and analysis of protective spark gaps for DC accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Srutarshi; Rajan, Rehim N.; Dewangan, S.; Sharma, D.K.; Patel, Rupesh; Bakhtsingh, R.I.; Gond, Seema; Waghmare, Abhay; Thakur, Nitin; Mittal, K.C. [Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Protective spark gaps are used in the high voltage multiplier column of a 3 MeV DC Accelerator to prevent excessive voltage build-ups. Precise gap of 5 mm is maintained between the electrodes in these spark gaps for obtaining 120 kV± 5 kV in 6 kg/cm{sup 2} SF{sub 6} environment which is the dielectric medium. There are 74 such spark gaps used in the multiplier. Each spark gap has to be qualified for electrical performance before fitting in the accelerator to ensure reliable operation. As the breakdown voltage stabilizes after a large number of sparks between the electrodes, the qualification process becomes time consuming and cumbersome. For qualifying large number of spark gaps an automatic breakdown analysis setup has been developed. This setup operates in air, a dielectric medium. The setup consists of a flyback topology based high voltage power supply with maximum rating of 25 kV. This setup works in conjunction with spark detection and automated shutdown circuit. The breakdown voltage is sensed using a peak detector circuit. The voltage breakdown data is recorded and statistical distribution of the breakdown voltage has been analyzed. This paper describes details of the diagnostics and the spark gap qualification process based on the experimental data. (author)

  20. Number density measurements on analytical discharge systems: application of ''hook'' spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, V.; Hsu, W.; Coleman, D.M.

    1988-01-01

    Various methods for determining atomic, ionic and electron number densities are reviewed. Time- and spatially-resolved number densities of sodium atoms in the post discharge environment of a high voltage spark are then quantitatively determined using the anomalous dispersion hook method. Number densities are calculated from hook separation near the Na D-lines. Lateral profiles are subsequently transformed to the radial domain using a derivative free Abel inversion process. Advantages, limitations, and practical ramification of the hook method are discussed.

  1. Number density measurements on analytical discharge systems: application of ''hook'' spectroscopy

    International Nuclear Information System (INIS)

    Majidi, V.; Hsu, W.; Coleman, D.M.

    1988-01-01

    Various methods for determining atomic, ionic and electron number densities are reviewed. Time- and spatially-resolved number densities of sodium atoms in the post discharge environment of a high voltage spark are then quantitatively determined using the anomalous dispersion hook method. Number densities are calculated from hook separation near the Na D-lines. Lateral profiles are subsequently transformed to the radial domain using a derivative free Abel inversion process. Advantages, limitations, and practical ramification of the hook method are discussed. (author)

  2. Electro-Static Discharge (ESD) Sensitivity of Reactive Powders and its Mitigation

    Science.gov (United States)

    2016-03-16

    Al+CuO and Al+Bi2O3 by combining them with Viton A and guar gum , respectively [70, 71]. Similarly reduced ESD sensitivity resulted for the thermite...SECURITY CLASSIFICATION OF: This work followed our previous study characterizing ignition of pure metal powders by electrostatic discharge. Here, the...that ignition event for all materials can be described using two stages. First, a fraction of the powder struck by the spark is ignited directly

  3. Ignition of turbulent swirling n-heptane spray flames using single and multiple sparks

    Energy Technology Data Exchange (ETDEWEB)

    Marchionea, T.; Ahmeda, S.F.; Mastorakos, E. [Department of Engineering, University of Cambridge (United Kingdom)

    2009-01-15

    This paper examines ignition processes of an n-heptane spray in a flow typical of a liquid-fuelled burner. The spray is created by a hollow-cone pressure atomiser placed in the centre of a bluff body, around which swirling air induces a strong recirculation zone. Ignition was achieved by single small sparks of short duration (2 mm; 0.5 ms), located at various places inside the flow so as to identify the most ignitable regions, or larger sparks of longer duration (5 mm; 8 ms) repeated at 100 Hz, located close to the combustion chamber enclosure so as to mimic the placement and characteristics of a gas turbine combustor surface igniter. The air and droplet velocities, the droplet diameter, and the total (i.e. liquid plus vapour) equivalence ratio were measured in inert flow by phase Doppler anemometry and sampling respectively. Fast camera imaging suggested that successful ignition events were associated with flamelets that propagated back towards the spray nozzle. Measurements of ignition probability with the single spark showed that localised ignition inside the spray is more likely to result in successful flame establishment when the spark is located in a region of negative velocity, relatively small droplet Sauter mean diameter, and mean equivalence ratio within the flammability limits. Ignition with the single spark was not possible at the location where the multiple spark experiments were performed. For those, the multiple spark sequence lasted approximately 1 to 5 s. It was found that a long spark sequence increases the ignition efficiency, which reached a maximum of 100% at the axial distance where the recirculation zone had maximum width. Ignition was not feasible with the spark downstream of about two burner diameters. Visualisation showed that small flame kernels emanate very often from the spark, which can be stretched as far as 20 mm from the electrodes by the turbulent velocity fluctuations. These kernels survive very little time. Successful overall

  4. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    Science.gov (United States)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro

    2014-12-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.

  5. SciSpark: Highly Interactive and Scalable Model Evaluation and Climate Metrics for Scientific Data and Analysis

    Data.gov (United States)

    National Aeronautics and Space Administration — We will construct SciSpark, a scalable system for interactive model evaluation and for the rapid development of climate metrics and analyses. SciSpark directly...

  6. A new spark detection system for the electrostatic septa of the SPS North (experimental) Area

    CERN Multimedia

    Barlow, R A; Borburgh, J; Carlier, E; Chanavat, C; Pinget, B

    2013-01-01

    Electrostatic septa (ZS) are used in the extraction of the particle beams from the CERN SPS to the North Area experimental zone. These septa employ high electric fields, generated from a 300 kV power supply, and are particularly prone to internal sparking around the cathode structure. This sparking degrades the electric field quality, consequently affecting the extracted beam, vacuum and equipment performance. To mitigate these effects, a Spark Detection System (SDS) has been realised, which is based on an industrial SIEMENS S7-400 programmable logic controller and deported Boolean processors modules interfaced through a PROFINET fieldbus. The SDS interlock logic uses a moving average spark rate count to determine if the ZS performance is acceptable. Below a certain spark rate it is probable that the ZS septa tank vacuum can recover, thus avoiding transition into a\

  7. Controlling spark timing for consecutive cycles to reduce the cyclic variations of SI engines

    International Nuclear Information System (INIS)

    Kaleli, Alirıza; Ceviz, Mehmet Akif; Erenturk, Köksal

    2015-01-01

    Minimization of the cyclic variations is one of the most important design goal for spark-ignited engines. Primary motivation of this study is to reduce the cyclic variations in spark ignition engines by controlling the spark timing for consecutive cycles. A stochastic model was performed between spark timing and in–cylinder maximum pressure by using the system identification techniques. The incylinder maximum pressure of the next cycle was predicted with this model. Minimum variance and generalized minimum variance controllers were designed to regulate the in–cylinder maximum pressure by changing the spark timing for consecutive cycles of the test engine. The produced control algorithms were built in LabView environment and installed to the Field Programmable Gate Arrays (FPGA) chassis. According to the test results, the in–cylinder maximum pressure of the next pressure cycle can be predicted fairly well, and the spark timing can be regulated to keep the in–cylinder maximum pressure in a desired band to reduce the cyclic variations. At fixed spark timing experiments, the COV Pmax and COV imep were 3.764 and 0.677%, whereas they decreased to 3.208 and 0.533% when GMV controller was applied, respectively. - Highlights: • Cycle per cycle spark timing control was carried out. • A stochastic process model was described between P max and the spark timing. • The cyclic variations in P max was decreased by keeping it in a desired band. • Different controllers were used to adjust spark timing signal of the next cycle. • COV Pmax was decreased by about 15% by using GMV controller

  8. Dynamics of the spatial structure of pulsed discharges in dense gases in point cathode−plane anode gaps and their erosion effect on the plane electrode surface

    International Nuclear Information System (INIS)

    Baksht, E. Kh.; Blinova, O. M.; Erofeev, M. V.; Karelin, V. I.; Ripenko, V. S.; Tarasenko, V. F.; Trenkin, A. A.; Shibitov, Yu. M.; Shulepov, M. A.

    2016-01-01

    The dynamics of the spatial structure of the plasma of pulsed discharges in air and nitrogen in a nonuniform electric field and their erosion effect on the plane anode surface were studied experimentally. It is established that, at a nanosecond front of the voltage pulse, a diffuse discharge forms in the point cathode–plane anode gap due to the ionization wave propagating from the cathode. As the gap length decreases, the diffuse discharge transforms into a spark. A bright spot on the anode appears during the diffuse discharge, while the spark channel forms in the later discharge stage. The microstructure of autographs of anode spots and spark channels in discharges with durations of several nanoseconds is revealed. The autographs consist of up to 100 and more microcraters 5–100 μm in diameter. It is shown that, due to the short duration of the voltage pulse, a diffuse discharge can be implemented, several pulses of which do not produce appreciable erosion on the plane anode or the soot coating deposited on it.

  9. Reconstruction of data for an experiment using multi-gap spark chambers with six-camera optics

    International Nuclear Information System (INIS)

    Maybury, R.; Daley, H.M.

    1983-06-01

    A program has been developed to reconstruct spark positions in a pair of multi-gap optical spark chambers viewed by six cameras, which were used by a Rutherford Laboratory experiment. The procedure for correlating camera views to calculate spark positions is described. Calibration of the apparatus, and the application of time- and intensity-dependent corrections are discussed. (author)

  10. Development of microwave-enhanced spark-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Ikeda, Yuji; Moon, Ahsa; Kaneko, Masashi

    2010-01-01

    We propose microwave-enhanced spark-induced breakdown spectroscopy with the same measurement and analysis processes as in laser-induced breakdown spectroscopy, but with a different plasma generation mechanism. The size and lifetime of the plasma generated can contribute to increased measurement accuracy and expand its applicability to industrial measurement, such as an exhaust gas analyzer for automobile engine development and its regulation, which has been hard to operate by laser at an engineering evaluation site. The use of microwaves in this application helps lower the cost, reduce the system size, and increase the ease of operation to make it commercially viable. A microwave frequency of 2.45 GHz was used to enhance the volume and lifetime of the plasma at atmospheric condition even at elevated pressure.

  11. The Spark of Life: Darwin and the Primeval Soup

    Science.gov (United States)

    Zimmer, Carl

    It's possible that within a decade, a space probe may swing into orbit around Europa and hurl a drill-tipped robot into its icy crust. If that turns out to be the case, no one will watch its performance more anxiously than Christopher Wills and Jeffrey Bada, the coauthors of The Spark of Life. As Europa orbits around Jupiter, the giant planet's gravity exerts enormous tidal forces on the moon with clock-like regularity-forces that Wills and Bada predict should create an environment favorable to the origin of life. If the probe does uncover some kind of indigenous life on Europa, it may bolster the central claim of this intriguing book: that similar processes made life possible on our own planet.

  12. A prediction study of a spark ignition supercharged hydrogen engine

    International Nuclear Information System (INIS)

    Al-Baghdadi, Maher A.R. Sadiq.; Al-Janabi, Haroun A.K. Shahad

    2003-01-01

    Hydrogen is found to be a suitable alternative fuel for spark ignition engines with certain drawbacks, such as high NO x emission and small power output. However, supercharging may solve such problems. In this study, the effects of equivalence ratio, compression ratio and inlet pressure on the performance and NO x emission of a four stroke supercharged hydrogen engine have been analyzed using a specially developed computer program. The results are verified and compared with experimental data obtained from tests on a Ricardo E6/US engine. A chart specifying the safe operation zone of the hydrogen engine has been produced. The safe operation zone means no pre-ignition, acceptable NO x emission, high engine efficiency and lower specific fuel consumption in comparison with the gasoline engine. The study also shows that supercharging is a more effective method to increase the output of a hydrogen engine rather than increasing the compression ratio of the engine at the knock limited equivalence ratio

  13. Parallel combinations of pre-ionized low jitter spark gaps

    International Nuclear Information System (INIS)

    Fitzsimmons, W.A.; Rosocha, L.A.

    1979-01-01

    The properties of 10 to 30 kV four electrode field emission pre-ionized triggered spark gaps have been studied. A mid-plane off-axis trigger electrode is biased at +V 0 /2, and a field emission point is located adjacent to and biased at the grounded cathode potential. Simultaneous application of a -V 0 trigger rapid pulse to both the electrodes results in the rapid sequential closing of the anode-trigger and trigger-cathode gaps. The observed jitter is about 1.5 ns. Parallel operation of these gaps (up to 10 so far) connected to a common capacitive load has been studied. A simple theory that predicts the number of gaps that may be expected to operate in parallel is discussed

  14. Research on personalized recommendation algorithm based on spark

    Science.gov (United States)

    Li, Zeng; Liu, Yu

    2018-04-01

    With the increasing amount of data in the past years, the traditional recommendation algorithm has been unable to meet people's needs. Therefore, how to better recommend their products to users of interest, become the opportunities and challenges of the era of big data development. At present, each platform enterprise has its own recommendation algorithm, but how to make efficient and accurate push information is still an urgent problem for personalized recommendation system. In this paper, a hybrid algorithm based on user collaborative filtering and content-based recommendation algorithm is proposed on Spark to improve the efficiency and accuracy of recommendation by weighted processing. The experiment shows that the recommendation under this scheme is more efficient and accurate.

  15. Distributed Parallel Endmember Extraction of Hyperspectral Data Based on Spark

    Directory of Open Access Journals (Sweden)

    Zebin Wu

    2016-01-01

    Full Text Available Due to the increasing dimensionality and volume of remotely sensed hyperspectral data, the development of acceleration techniques for massive hyperspectral image analysis approaches is a very important challenge. Cloud computing offers many possibilities of distributed processing of hyperspectral datasets. This paper proposes a novel distributed parallel endmember extraction method based on iterative error analysis that utilizes cloud computing principles to efficiently process massive hyperspectral data. The proposed method takes advantage of technologies including MapReduce programming model, Hadoop Distributed File System (HDFS, and Apache Spark to realize distributed parallel implementation for hyperspectral endmember extraction, which significantly accelerates the computation of hyperspectral processing and provides high throughput access to large hyperspectral data. The experimental results, which are obtained by extracting endmembers of hyperspectral datasets on a cloud computing platform built on a cluster, demonstrate the effectiveness and computational efficiency of the proposed method.

  16. COMPACTION OF LITHIUM-SILICATE CERAMICS USING SPARK PLASMA SINTERING

    Directory of Open Access Journals (Sweden)

    Tomas Frantisek Kubatik

    2016-12-01

    Full Text Available This paper deals with the compaction of ceramics based on lithium-silicate by spark plasma sintering (SPS. The initial powder was prepared by calcination in a resistance furnace at a temperature of 1300 °C with the ratio of Li/Si = 1. Compacting by SPS was carried out at temperatures of 800 - 1000 °C with a maximum pressure of 80 MPa. Samples with open porosity of less than 1 % were prepared at the temperature of 1000 °C. According to the quantitative Rietveld refinement of x-ray diffraction data, the dominant phases in all samples were Li₂Si₂O₅ and Li₂SiO₃, together representing over 80 wt. % of the sintered material.

  17. ZrB₂-CNTs Nanocomposites Fabricated by Spark Plasma Sintering.

    Science.gov (United States)

    Jin, Hua; Meng, Songhe; Xie, Weihua; Xu, Chenghai; Niu, Jiahong

    2016-11-29

    ZrB₂-based nanocomposites with and without carbon nanotubes (CNTs) as reinforcement were prepared at 1600 °C by spark plasma sintering. The effects of CNTs on the microstructure and mechanical properties of nano-ZrB₂ matrix composites were studied. The results indicated that adding CNTs can inhibit the abnormal grain growth of ZrB₂ grains and improve the fracture toughness of the composites. The toughness mechanisms were crack deflection, crack bridging, debonding, and pull-out of CNTs. The experimental results of the nanograined ZrB₂-CNTs composites were compared with those of the micro-grained ZrB₂-CNTs composites. Due to the small size and surface effects, the nanograined ZrB₂-CNTs composites exhibited stronger mechanical properties: the hardness, flexural strength and fracture toughness were 18.7 ± 0.2 GPa, 1016 ± 75 MPa, and 8.5 ± 0.4 MPa·m 1/2 , respectively.

  18. Quartz crystal reinforced quartz glass by spark plasma sintering

    International Nuclear Information System (INIS)

    Torikai, D.; Barazani, B.; Ono, E.; Santos, M.F.M.; Suzuki, C.K.

    2011-01-01

    The Spark Plasma Sintering presents fast processing time when compared to conventional sintering techniques. This allows to control the grain growth during sintering as well as the diffusion rate of a multi-material compounds, and make possible obtainment of functionally graded materials and nanostructured compounds. Powders of high purity silica glass and crystalline silica were sintered in a SPS equipment at temperatures around 1350° C, i.e., above the softening temperature of silica glass and below the melting temperature of quartz crystal. As a result, glass ceramics with pure silica glass matrix reinforced with crystalline alpha-quartz grains were fabricated at almost any desired range of composition, as well as controlled size of the crystalline reinforcement. X-ray diffraction and density measurements showed the possibility to manufacture a well controlled density and crystallinity glass-ceramic materials. (author)

  19. Human resource recommendation algorithm based on ensemble learning and Spark

    Science.gov (United States)

    Cong, Zihan; Zhang, Xingming; Wang, Haoxiang; Xu, Hongjie

    2017-08-01

    Aiming at the problem of “information overload” in the human resources industry, this paper proposes a human resource recommendation algorithm based on Ensemble Learning. The algorithm considers the characteristics and behaviours of both job seeker and job features in the real business circumstance. Firstly, the algorithm uses two ensemble learning methods-Bagging and Boosting. The outputs from both learning methods are then merged to form user interest model. Based on user interest model, job recommendation can be extracted for users. The algorithm is implemented as a parallelized recommendation system on Spark. A set of experiments have been done and analysed. The proposed algorithm achieves significant improvement in accuracy, recall rate and coverage, compared with recommendation algorithms such as UserCF and ItemCF.

  20. Machinability of nickel based alloys using electrical discharge machining process

    Science.gov (United States)

    Khan, M. Adam; Gokul, A. K.; Bharani Dharan, M. P.; Jeevakarthikeyan, R. V. S.; Uthayakumar, M.; Thirumalai Kumaran, S.; Duraiselvam, M.

    2018-04-01

    The high temperature materials such as nickel based alloys and austenitic steel are frequently used for manufacturing critical aero engine turbine components. Literature on conventional and unconventional machining of steel materials is abundant over the past three decades. However the machining studies on superalloy is still a challenging task due to its inherent property and quality. Thus this material is difficult to be cut in conventional processes. Study on unconventional machining process for nickel alloys is focused in this proposed research. Inconel718 and Monel 400 are the two different candidate materials used for electrical discharge machining (EDM) process. Investigation is to prepare a blind hole using copper electrode of 6mm diameter. Electrical parameters are varied to produce plasma spark for diffusion process and machining time is made constant to calculate the experimental results of both the material. Influence of process parameters on tool wear mechanism and material removal are considered from the proposed experimental design. While machining the tool has prone to discharge more materials due to production of high energy plasma spark and eddy current effect. The surface morphology of the machined surface were observed with high resolution FE SEM. Fused electrode found to be a spherical structure over the machined surface as clumps. Surface roughness were also measured with surface profile using profilometer. It is confirmed that there is no deviation and precise roundness of drilling is maintained.

  1. What sparks interest in science? A naturalistic inquiry

    Science.gov (United States)

    Jackson, Julie Kay Cropper

    This study examined how career scientists became interested in science. Eight practicing scientists were asked a focus question, "What sparked your interest in science?" Their responses recorded during personal interviews and reported in correspondence frame this qualitative study. Analysis of the data revealed a variety of influences. The influences were coded, arranged into lists, and grouped by theme. A total of 18 themes emerged from the data. Five of the emerging themes were common across all of the participants. They were the influence of a family member, the influence of a teacher, being naturally curious, being interested in science, and reading books, magazines, and/or encyclopedias. Five themes were common among 5 to 7 participants. These themes included visiting museums, having broad exposure, enjoyment of mathematics, enjoying being outside, and freedom to play and explore. Eight themes were common among 2 to 4 of the participants. They were financial incentive, influence of religion, participation in science fairs, influence of the manned space program, having a scientist in the family, having the opportunity to teach others, not seeing self as a scientist, and first generation college graduate. The emerging themes were compared and contrasted with historical and contemporary literature. Vocational psychology's leading career choice and development literature was also aligned with the emerging themes. Data from this study supports tenets of Trait and Factor Theory, Developmental Theory, and Social Learning Theory. Reported data also supports the proposed movement toward a unified theory of career choice and development. A combination of personality traits, developmental stages, self-efficacy, and learning experiences influenced the vocational decisions of the scientists who participated in this study. The study concludes with suggestions for sparking and sustaining interest in science that people responsible for preparing future scientists may find

  2. Mechanochemical synthesis and spark plasma sintering of the cerium silicides

    Energy Technology Data Exchange (ETDEWEB)

    Alanko, Gordon A.; Jaques, Brian; Bateman, Allyssa [Department of Materials Science and Engineering, College of Engineering, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Butt, Darryl P., E-mail: darrylbutt@boisestate.edu [Department of Materials Science and Engineering, College of Engineering, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Boulevard, Idaho Falls, ID 83401 (United States)

    2014-12-15

    Highlights: • Ce{sub 5}Si{sub 3}, Ce{sub 3}Si{sub 2}, CeSi, CeSi{sub 2−x} and CeSi{sub 2} were mechanochemically synthesized. • Temperature and pressure were monitored to investigate reaction progress. • All syntheses proceeded through a MSR event followed by rapid solid-state diffusion. • Milling time before MSR correlates well with effective heat of formation. • Some synthesized material was densified by spark plasma sintering. - Abstract: The cerium silicides, Ce{sub 5}Si{sub 3}, Ce{sub 3}Si{sub 2}, CeSi, CeSi{sub 2−y}, and CeSi{sub 2−x}, have been prepared from the elements by mechanochemical processing in a planetary ball mill. Preparation of the cerium silicide Ce{sub 5}Si{sub 4} was unsuccessfully attempted and potential reasons for this are discussed. Temperature and pressure of the milling vial were monitored in situ to gain insight into the mechanochemical reaction kinetics, which include a mechanically-induced self-propagating reaction (MSR). Some prepared powders were consolidated by spark plasma sintering to high density. Starting materials, as-milled powders, and consolidated samples were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The results obtained help elucidate key questions in mechanochemical processing of intermetallics, showing first phase formation similar to thin films, MSR ignition times that are composition- and milling speed-dependent, and sensitivity of stable compound formation on the impact pressure. The results demonstrate mechanochemical synthesis as a viable technique for rare earth silicides.

  3. The formation of ozone and UV radiation from high-power pulsed electric discharges

    Science.gov (United States)

    Piskarev, I. M.; Ushkanov, V. A.; Selemir, V. D.; Spirov, G. M.; Malevannaya Pikar', I. A.; Zuimach, E. A.

    2008-09-01

    High-power electric discharges with pulse energies of from 0.15 J to 4 kJ were studied. The yields of UV photons and ozone were found to be approximately equal, which led us to conclude that discharge conditions under which UV radiation and ozone fully destroyed each other were possible. If ozone formation was suppressed, as when a negative volume charge was created in the spark gap region, the flux of UV photons reached 3 × 1023 photons/(cm2 s).

  4. Plasma actuators for active flow control based on a glow discharge

    International Nuclear Information System (INIS)

    Kühn, M.; Kühn-Kauffeldt, M.; Schein, J.; Belinger, A.

    2017-01-01

    In this work a glow discharge based active flow control for high flow velocities and low Reynolds numbers is presented. Unlike common plasma actuators such as dielectric barrier discharge (DBD) or spark jets, this actuator uses small impulse bits at frequencies. The actuator is optimized for frequencies up to 40 kHz to counter Tollmien Schlichting wave effects and so reduce overall air foil drag. Several measurements to prove the non-eroding effect of the actuator and the electrical properties were performed. It was found that the actuator is capable of operating at high frequencies without measurable erosion. (paper)

  5. Magnetic field-assisted electrochemical discharge machining

    International Nuclear Information System (INIS)

    Cheng, Chih-Ping; Mai, Chao-Chuang; Wu, Kun-Ling; Hsu, Yu-Shan; Yan, Biing-Hwa

    2010-01-01

    Electrochemical discharge machining (ECDM) is an effective unconventional method for micromachining in non-conducting materials, such as glass, quartz and some ceramics. However, since the spark discharge performance becomes unpredictable as the machining depth increases, it is hard to achieve precision geometry and efficient machining rate in ECDM drilling. One of the main factors for this is the lack of sufficient electrolyte flow in the narrow gap between the tool and the workpiece. In this study a magnetohydrodynamic (MHD) convection, which enhances electrolyte circulation has been applied to the ECDM process in order to upgrade the machining accuracy and efficiency. During electrolysis in the presence of a magnetic field, the Lorenz force induces the charged ions to form a MHD convection. The MHD convection then forces the electrolyte into movement, thus enhancing circulation of electrolyte. Experimental results show that the MHD convection induced by the magnetic field can effectively enhance electrolyte circulation in the micro-hole, which contributes to higher machining efficiency. Micro-holes in glass with a depth of 450 µm are drilled in less than 20 s. At the same time, better electrolyte circulation can prevent deterioration of gas film quality with increasing machining depth, while ensuring stable electrochemical discharge. The improvement in the entrance diameter thus achieved was 23.8% while that in machining time reached 57.4%. The magnetic field-assisted approach proposed in the research does not require changes in the machining setup or electrolyte but has proved to achieve significant enhancement in both accuracy and efficiency of ECDM.

  6. Characteristics of cold atmospheric plasma source based on low-current pulsed discharge with coaxial electrodes

    Science.gov (United States)

    Bureyev, O. A.; Surkov, Yu S.; Spirina, A. V.

    2017-05-01

    This work investigates the characteristics of the gas discharge system used to create an atmospheric pressure plasma flow. The plasma jet design with a cylindrical graphite cathode and an anode rod located on the axis of the system allows to realize regularly reproducible spark breakdowns mode with a frequency ∼ 5 kHz and a duration ∼ 40 μs. The device generates a cold atmospheric plasma flame with 1 cm in diameter in the flow of various plasma forming gases including nitrogen and air at about 100 mA average discharge current. In the described construction the cathode spots of individual spark channels randomly move along the inner surface of the graphite electrode creating the secondary plasma stream time-average distributed throughout the whole exit aperture area after the decay of numerous filamentary discharge channels. The results of the spectral diagnostics of plasma in the discharge gap and in the stream coming out of the source are presented. Despite the low temperature of atoms and molecules in plasma stream the cathode spots operation with temperature of ∼ 4000 °C at a graphite electrode inside a discharge system enables to saturate the plasma by CN-radicals and atomic carbon in the case of using nitrogen as the working gas.

  7. [Significance of various implantate localizations of Sparks prostheses, experimental studies in rats].

    Science.gov (United States)

    Brieler, H S; Parwaresch, R; Thiede, A

    1976-01-01

    Our investigations show that Sparks prostheses after subcutaneous implantation are suitable for vascular grafting. At the end of the organization period the connective tissue becomes strong, and after the third and fourth weeks collagenous and elastic fibers can be seen. Ten weeks after s.c. implantation, collagenous fibers predominate. After this the Sparks prostheses can be used as a vascular graft. Intraperitoneal implantation, however, shows a histologically different picture with characteristic findings: only fat cells can be observed, a strong granulation tissue with elastic and collagenous fibers is not present. After intraperitoneal implantation Sparks prostheses are therefore unsuitable for vascular grafts.

  8. The secular and the supernatural: madness and psychiatry in the short stories of Muriel Spark.

    Science.gov (United States)

    Beveridge, A W

    2015-01-01

    Edinburgh-born Muriel Spark is one of modern Scotland's greatest writers. Examination of her work reveals that the subjects of madness and psychiatry are recurrent themes in her writing. She herself had a mental breakdown when she was a young woman and she took an interest in the world of psychiatry and psychoanalysis. In her short stories, Spark approaches the subject of madness in a variety of ways: she relates it to the supernatural; to writing fiction; and to religion. She frequently juxtaposes secular and supernatural explanations of mental disturbance. Spark adopts a sceptical and, at times, mocking view of psychiatrists and psychiatric treatment. Both psychoanalysis and pills are seen as problematic.

  9. Experimental evaluation of a spark-ignited engine using biogas as fuel

    Directory of Open Access Journals (Sweden)

    Juan Miguel Mantilla González

    2008-05-01

    Full Text Available Different CH4 and CO2 mixtures were used as fuel in this work; they were fed into a spark-ignited engine equipped with devices allowing spark advance, gas delivery and gas consumption to be measured. Engine bench-tests re-vealed changes in the main operation parameters and emissions. The results showed that increasing CO2 percen-tage in the mixture increased the spark angle, reduced maximum power and torque and reduced exhaust emissions (by 90% in some cases when DAMA resolution 1015/2005 was applied. The main components to be considered when an engine of this type operates with gas fuel were also recognised.

  10. Improving the Tribological Properties of Spark-Anodized Titanium by Magnetron Sputtered Diamond-Like Carbon

    OpenAIRE

    Zhaoxiang Chen; Xipeng Ren; Limei Ren; Tengchao Wang; Xiaowen Qi; Yulin Yang

    2018-01-01

    Spark-anodization of titanium can produce adherent and wear-resistant TiO2 film on the surface, but the spark-anodized titanium has lots of surface micro-pores, resulting in an unstable and high friction coefficient against many counterparts. In this study, the diamond-like carbon (DLC) was introduced into the micro-pores of spark-anodized titanium by the magnetron sputtering technique and a TiO2/DLC composite coating was fabricated. The microstructure and tribological properties of TiO2/DLC ...

  11. Damping Resonant Current in a Spark-Gap Trigger Circuit to Reduce Noise

    Science.gov (United States)

    2009-06-01

    DAMPING RESONANT CURRENT IN A SPARK- GAP TRIGGER CIRCUIT TO REDUCE NOISE E. L. Ruden Air Force Research Laboratory, Directed Energy Directorate, AFRL...REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Damping Resonant Current In A Spark- Gap Trigger Circuit To Reduce Noise 5a...thereby triggering 2 after delay 0, is 1. Each of the two rail- gaps (represented by 2) is trig- gered to close after the spark- gap (1) in the

  12. Glow discharging device

    International Nuclear Information System (INIS)

    Maeno, Katsuki; Kawasaki, Kozo; Hiratsuka, Hajime; Kawashima, Shuichi.

    1989-01-01

    In a thermonuclear device, etc. impurities adsorbed to inner walls of a vacuum vessel by glow discharge are released to clean the vacuum vessel for preventing intrusion of the impurities into plasmas. The object of the present invention is to minimize the capacity of a power source equipment for the glow discharge device to the least extent. That is, a stabilization resistance is connected in series between each of a plurality of anodes which are inserted and arranged at the inside of a vacuum vessel as a cathode and a power source respectively. The resistance value R is selected so as to satisfy the relation: R < (Vi - Vm)/Ii, in which Vi: glow discharge starting voltage, Vm: glow discharge keeping voltage, Ii: glow discharge starting current. Accordingly, if a voltage is applied from a power source to a plurality of anodes, scattering of electric discharge between the anodes can be suppressed and the effect of voltage drop during discharge by the stabilization resistance can be eliminated. As a result, it is possible to provide an economically advantageous glow discharge device with the capacity for the power source facility being to the least extent. (K.M.)

  13. CO-AXIAL DISCHARGES

    Science.gov (United States)

    Luce, J.S.; Smith, L.P.

    1960-11-22

    A method and apparatus are given for producing coaxial arc discharges in an evacuated enclosure and within a strong, confining magnetic field. The arcs are maintained at a high potential difference. Electrons will diffuse to the more positive arc from the negative arc, and positive ions will diffuse from the more positive arc to the negative arc. Coaxial arc discharges have the advantage that ions which return to strike the positive arc discharge will lose no energy since they do not strike a solid wall or electrode. Those discharges are useful in confining an ionized plasma between the discharges, and have the advantage of preventing impurities from the walls of the enclosure from entering ihe plasma area because of the arc barrier set up bv the cylindrical outer arc.

  14. Modelling electric discharge chemistry

    International Nuclear Information System (INIS)

    McFarlane, J.; Wren, J.C.

    1991-07-01

    The chemistry occurring in a electric discharge was modelled to predict how it would be influenced by discharge conditions. The discharge was characterized by a calculated Boltzmann electron-energy distribution, from which rate constants for electron-molecule processes in air were determined. These rate constants were used in a chemical kinetics calculation that also included reactions between neutral molecules, ions, free radicals and electronically excited species. The model describes how the discharge chemistry was influenced by humidity, electric field, electron number density, and concentrations of key reagents identified in the study. The use of an electric discharge to destroy airborne contaminant molecules was appraised, the targeted contaminants being CF 2 Cl 2 , HCN, and SO 2 . The modelling results indicate that an electric discharge should be able to remove HCN and CF 2 Cl 2 effectively, especially if the discharge conditions have been optimized. Effective destruction is achieved with a moderate electric field (over 1 x 10 -15 V.cm 2 ), a substantial electron number density (over 1 x 10 12 cm -3 ), and the presence of H 2 0 in the process air. The residence time in the discharge was also shown to be important in contaminant destruction. An attempt was made to explain the results of the electric discharge abatement of SO 2 , a component of a simulated flue-gas mixture. Results from the model indicate that the discharge parameters that increase the concentration of hydroxyl radical also increase the rate of decomposition of SO 2 . An objective of the study was to explain the apparent enhancement of SO 2 destruction by the presence of a small amount of NO 2 . It was thought that a likely explanation would be the stabilization of HOSO 2 , an important intermediate in the oxidation of SO 2 by NO 2 . (49 figs., 14 tabs., 75 refs.)

  15. An image scanner for real time analysis of spark chamber images

    International Nuclear Information System (INIS)

    Cesaroni, F.; Penso, G.; Locci, A.M.; Spano, M.A.

    1975-01-01

    The notes describes the semiautomatic scanning system at LNF for the analysis of spark chamber images. From the projection of the images on the scanner table, the trajectory in the real space is reconstructed

  16. Spark PRM: Using RRTs within PRMs to efficiently explore narrow passages

    KAUST Repository

    Shi, Kensen

    2014-05-01

    © 2014 IEEE. Probabilistic RoadMaps (PRMs) have been successful for many high-dimensional motion planning problems. However, they encounter difficulties when mapping narrow passages. While many PRM sampling methods have been proposed to increase the proportion of samples within narrow passages, such difficult planning areas still pose many challenges. We introduce a novel algorithm, Spark PRM, that sparks the growth of Rapidly-expanding Random Trees (RRTs) from narrow passage samples generated by a PRM. The RRT rapidly generates further narrow passage samples, ideally until the passage is fully mapped. After reaching a terminating condition, the tree stops growing and is added to the roadmap. Spark PRM is a general method that can be applied to all PRM variants. We study the benefits of Spark PRM with a variety of sampling strategies in a wide array of environments. We show significant speedups in computation time over RRT, Sampling-based Roadmap of Trees (SRT), and various PRM variants.

  17. Passenger Car Spark Ignition Data Base : Volume 3. Miscellaneous Data. Part 2.

    Science.gov (United States)

    1979-12-01

    Test data was obtained from spark ignition production and preproduction engines at the engine and vehicle level. The engines were applicable for vehicles 2000 to 3000 pounds in weight. The data obtained provided trade-offs between fuel economy, power...

  18. Passenger Car Spark Ignition Data Base : Volume 3. Miscellaneous Data. Part 1.

    Science.gov (United States)

    1979-12-01

    Test data was obtained from spark ignition production and preproduction engines at the engine and vehicle level. The engines were applicable for vehicles 2000 to 3000 pounds in weight. The data obtained provided trade-offs between fuel economy, power...

  19. Quantitative determination of minor and trace elements in rocks and soils by spark source mass spectrometry

    International Nuclear Information System (INIS)

    Ure, A.M.; Bacon, J.R.

    1978-01-01

    Experimental details are given of the quantitative determination of minor and trace elements in rocks and soils by spark source mass spectrometry. The effects of interfering species, and corrections that can be applied, are discussed. (U.K.)

  20. Spark PRM: Using RRTs within PRMs to efficiently explore narrow passages

    KAUST Repository

    Shi, Kensen; Denny, Jory; Amato, Nancy M.

    2014-01-01

    © 2014 IEEE. Probabilistic RoadMaps (PRMs) have been successful for many high-dimensional motion planning problems. However, they encounter difficulties when mapping narrow passages. While many PRM sampling methods have been proposed to increase the proportion of samples within narrow passages, such difficult planning areas still pose many challenges. We introduce a novel algorithm, Spark PRM, that sparks the growth of Rapidly-expanding Random Trees (RRTs) from narrow passage samples generated by a PRM. The RRT rapidly generates further narrow passage samples, ideally until the passage is fully mapped. After reaching a terminating condition, the tree stops growing and is added to the roadmap. Spark PRM is a general method that can be applied to all PRM variants. We study the benefits of Spark PRM with a variety of sampling strategies in a wide array of environments. We show significant speedups in computation time over RRT, Sampling-based Roadmap of Trees (SRT), and various PRM variants.

  1. Preparation of Ni-Ti shape memory alloy by spark plasma sintering method

    Czech Academy of Sciences Publication Activity Database

    Salvetr, P.; Kubatík, Tomáš František; Novák, P.

    2016-01-01

    Roč. 16, č. 4 (2016), s. 804-808 ISSN 1213-2489 Institutional support: RVO:61389021 Keywords : Ni-Ti alloy * Powder metallurgy * Reactive sintering * Spark plasma sintering Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  2. High speed streak techniques for measuring the growth of spark channels

    International Nuclear Information System (INIS)

    Suleebka, P.

    1975-01-01

    The manner of expansion of an electric spark channel is of interest in the understanding of such phenomena as lightning. The development of a camera suitable for photography of this expansion is described, with some results for hydrogen. (author)

  3. A 4π scintillation counter-optical spark chamber system for neutral particles

    International Nuclear Information System (INIS)

    Demarzo, C.; Distante, A.; Guerriero, L.; Niccolini, C.; Posa, F.; Walder, F.; Chen, G.T.Y.; Fletcher, C.R.; Lanou, R.E. Jr.; Thornton, R.K.; Barton, D.S.; Lyons, T.; Marx, M.; Rosenson, L.; Thern, R.

    1975-01-01

    The authors describe a scintillation counter-optical spark chamber system developed for the detection of high energy gamma rays and neutrons. They describe the system components and their use in two completed experiments. (Auth.)

  4. Apparatus and method for the spectrochemical analysis of liquids using the laser spark

    Science.gov (United States)

    Cremers, David A.; Radziemski, Leon J.; Loree, Thomas R.

    1990-01-01

    A method and apparatus for the qualitative and quantitative spectroscopic investigation of elements present in a liquid sample using the laser spark. A series of temporally closely spaced spark pairs is induced in the liquid sample utilizing pulsed electromagnetic radiation from a pair of lasers. The light pulses are not significantly absorbed by the sample so that the sparks occur inside of the liquid. The emitted light from the breakdown events is spectrally and temporally resolved, and the time period between the two laser pulses in each spark pair is adjusted to maximize the signal-to-noise ratio of the emitted signals. In comparison with the single pulse technique, a substantial reduction in the limits of detectability for many elements has been demonstrated. Narrowing of spectral features results in improved discrimination against interfering species.

  5. Preliminary study on the modelling of negative leader discharges

    International Nuclear Information System (INIS)

    Arevalo, L; Cooray, V

    2011-01-01

    Nowadays, there is considerable interest in understanding the physics underlying positive and negative discharges because of the importance of improving lightning protection systems and of coordinating the insulation for high voltages. Numerical simulations of positive switching impulses made in long spark gaps in a laboratory are achievable because the physics of the process is reasonably well understood and because of the availability of powerful computational methods. However, the existing work on the simulation of negative switching discharges has been held up by a lack of experimental data and the absence of a full understanding of the physics involved. In the scientific community, it is well known that most of the lightning discharges that occur in nature are of negative polarity, and because of their complexity, the only way to understand them is to generate the discharges in laboratories under controlled conditions. The voltage impulse waveshape used in laboratories is a negative switching impulse. With the aim of applying the available information to a self-consistent physical method, an electrostatic approximation of the negative leader discharge process is presented here. The simulation procedure takes into consideration the physics of positive and negative discharges, considering that the negative leader propagates towards a grounded electrode and the positive leader towards a rod electrode. The simulation considers the leader channel to be thermodynamic, and assumes that the conditions required to generate a thermal channel are the same for positive and negative leaders. However, the magnitude of the electrical charge necessary to reproduce their propagation and thermalization is different, and both values are based on experimental data. The positive and negative streamer development is based on the constant electric field characteristics of these discharges, as found during experimental measurements made by different authors. As a computational tool

  6. Breakdown characteristics in DC spark experiments of copper focusing on purity and hardness

    CERN Document Server

    Yokoyama, Kazue; Higashi, Yasuo; Higo, Toshi; Matsumoto, Shuji; Santiago-Kern, Ana Rocia; Pasquino, Chiara; Calatroni, Sergio; Wuensch, Walter

    2010-01-01

    The breakdown characteristics related to the differences in purity and hardness were investigated for several types of copper using a DC spark test system. Three types of oxygen-free copper (OFC) materials, usual class 1 OFC 7-nine large-grain copper and 6-nine hot-isotropic-pressed (HIP) copper with/without diamond finish, were tested with the DC spark test system. The measurements of the beta, breakdown fields, and breakdown probability are presented and discussed in this paper.

  7. Meter of dynamics of restoring the electrical strength of spark gaps

    International Nuclear Information System (INIS)

    Kuznetsov, E.A.; Kravchenko, S.A.; Yagnov, V.A.; Shipuk, I.Ya.

    1997-01-01

    Method for diagnostics of the dynamics spark gap electric strength restoration and an electric device for its realization are described. The electric strength measurement error, conditioned by the breakdown current through electric probes or the contacts of a spark gap under investigation, is reduced to minimum due to fast switching off the probe voltage if the breakdown current exceeds some established value (1 mA). 1 ref

  8. Analyzing large data sets from XGC1 magnetic fusion simulations using apache spark

    Energy Technology Data Exchange (ETDEWEB)

    Churchill, R. Michael [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-11-21

    Apache Spark is explored as a tool for analyzing large data sets from the magnetic fusion simulation code XGCI. Implementation details of Apache Spark on the NERSC Edison supercomputer are discussed, including binary file reading, and parameter setup. Here, an unsupervised machine learning algorithm, k-means clustering, is applied to XGCI particle distribution function data, showing that highly turbulent spatial regions do not have common coherent structures, but rather broad, ring-like structures in velocity space.

  9. A prediction study of a spark ignition supercharged hydrogen engine

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, M.A.R.S.; Al-Janabi, H.A.K.S. [University of Babylon (Iraq). Dept. of Mechanical Engineering

    2003-12-01

    Hydrogen is found to be a suitable alternative fuel for spark ignition engines with certain drawbacks, such as high NO{sub x} emission and small power output. However, supercharging may solve such problems. In this study, the effects of equivalence ratio, compression ratio and inlet pressure on the performance and NO{sub x} emission of a four stroke supercharged hydrogen engine have been analyzed using a specially developed computer program. The results are verified and compared with experimental data obtained from tests on a Ricardo E6/US engine. A chart specifying the safe operation zone of the hydrogen engine has been produced. The safe operation zone means no pre-ignition, acceptable NO{sub x} emission, high engine efficiency and lower specific fuel consumption in comparison with the gasoline engine. The study also shows that supercharging is a more effective method to increase the output of a hydrogen engine rather than increasing the compression ratio of the engine at the knock limited equivalence ratio. (author)

  10. Spark plasma sintering of titanium aluminide intermetallics and its composites

    Science.gov (United States)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  11. Social Interactions Sparked by Pictorial Warnings on Cigarette Packs

    Directory of Open Access Journals (Sweden)

    Marissa G. Hall

    2015-10-01

    Full Text Available The Message Impact Framework suggests that social interactions may offer smokers the opportunity to process pictorial warnings on cigarette packs more deeply. We aimed to describe adult smokers’ social interactions about pictorial cigarette pack warnings in two longitudinal pilot studies. In Pilot Study 1, 30 smokers used cigarette packs with one of nine pictorial warnings for two weeks. In Pilot Study 2, 46 smokers used cigarette packs with one of five pictorial warnings for four weeks. Nearly all smokers (97%/96% in Pilot Study 1/2 talked about the warnings with other people, with the most common people being friends (67%/87% and spouses/significant others (34%/42%. Pilot Study 2 found that 26% of smokers talked about the warnings with strangers. Discussions about the health effects of smoking and quitting smoking were more frequent during the first week of exposure to pictorial warnings than in the week prior to beginning the study (both p < 0.05. Pictorial warnings sparked social interactions about the warnings, the health effects of smoking, and quitting smoking, indicating that pictorial warnings may act as a social intervention reaching beyond the individual. Future research should examine social interactions as a potential mediator of the impact of pictorial warnings on smoking behavior.

  12. Consolidation of copper and aluminium powders by spark plasma sintering

    Science.gov (United States)

    Saiprasad, M.; Atchayakumar, R.; Thiruppathi, K.; Raghuraman, S.

    2016-09-01

    Processing in the powder metallurgy route has emerged as an economical process for the production of near net shaped components with a wide range of desired mechanical properties suitable for various applications of industrial needs. This research work was conducted with an objective of studying the improvisation of density and hardness of Copper-Aluminium alloy prepared by spark plasma sintering. Cu-Al alloy with a composition of 95% copper and 5% aluminium was prepared by SPS process. SPS is a low voltage, DC pulse current activated, pressure-assisted sintering, which enables sintering at lower temperatures and shorter durations. The combination offered by Cu-Al alloy of high strength and high corrosion resistance results their applications under a wide variety of conditions. The density and hardness of the prepared sample were measured by conducting appropriate tests. Apparently, the values of hardness and density of the specimen prepared by SPS seemed to be better than that of conventional sintering. The experimental procedure, testing methodologies and analysis are presented.

  13. A new spark detection system for the electrostatic septa of the SPS North (experimental) Area

    CERN Document Server

    Barlow, R A; Borburgh, J; Carlier, E; Chanavat, C; Fowler, T; Pinget, B

    2014-01-01

    Electrostatic septa (ZS) are used in the extraction of the particle beams from the CERN SPS to the North Area experimental zone. These septa employ high electric fields, generated from a 300 kV power supply, and are particularly prone to internal sparking around the cathode structure. This sparking degrades the electric field quality, consequently affecting the extracted beam, vacuum and equipment performance. To mitigate these effects, a Spark Detection System (SDS) has been realised, which is based on an industrial SIEMENS S7-400 programmable logic controller and deported Boolean processor modules interfaced through a PROFINET fieldbus. The SDS interlock logic uses a moving average spark rate count to determine if the ZS performance is acceptable. Below a certain spark rate it is probable that the ZS septa tank vacuum can recover, thus avoiding transition into a state where rapid degradation would occur. Above this level an interlock is raised and the high voltage is switched off. Additionally, all spark si...

  14. Ca2+ sparks act as potent regulators of excitation-contraction coupling in airway smooth muscle.

    Science.gov (United States)

    Zhuge, Ronghua; Bao, Rongfeng; Fogarty, Kevin E; Lifshitz, Lawrence M

    2010-01-15

    Ca2+ sparks are short lived and localized Ca2+ transients resulting from the opening of ryanodine receptors in sarcoplasmic reticulum. These events relax certain types of smooth muscle by activating big conductance Ca2+-activated K+ channels to produce spontaneous transient outward currents (STOCs) and the resultant closure of voltage-dependent Ca2+ channels. But in many smooth muscles from a variety of organs, Ca2+ sparks can additionally activate Ca2+-activated Cl(-) channels to generate spontaneous transient inward current (STICs). To date, the physiological roles of Ca2+ sparks in this latter group of smooth muscle remain elusive. Here, we show that in airway smooth muscle, Ca2+ sparks under physiological conditions, activating STOCs and STICs, induce biphasic membrane potential transients (BiMPTs), leading to membrane potential oscillations. Paradoxically, BiMPTs stabilize the membrane potential by clamping it within a negative range and prevent the generation of action potentials. Moreover, blocking either Ca2+ sparks or hyperpolarization components of BiMPTs activates voltage-dependent Ca2+ channels, resulting in an increase in global [Ca2+](i) and cell contraction. Therefore, Ca2+ sparks in smooth muscle presenting both STICs and STOCs act as a stabilizer of membrane potential, and altering the balance can profoundly alter the status of excitability and contractility. These results reveal a novel mechanism underlying the control of excitability and contractility in smooth muscle.

  15. Discharge lamp technologies

    Science.gov (United States)

    Dakin, James

    1994-01-01

    This talk is an overview of discharge lamp technology commonly employed in general lighting, with emphasis on issues pertinent to lighting for plant growth. Since the audience is primarily from the plant growth community, and this begins the light source part of the program, we will start with a brief description of the discharge lamps. Challenges of economics and of thermal management make lamp efficiency a prime concern in controlled environment agriculture, so we will emphasize science considerations relating to discharge lamp efficiency. We will then look at the spectra and ratings of some representative lighting products, and conclude with a discussion of technological advances.

  16. Capacitor discharge engineering

    CERN Document Server

    Früngel, Frank B A

    1976-01-01

    High Speed Pulse Technology, Volume III: Capacitor Discharge Engineering covers the production and practical application of capacitor dischargers for the generation and utilization of high speed pulsed of energy in different forms. This nine-chapter volume discusses the principles of electric current, voltage, X-rays, gamma rays, heat, beams of electrons, neutrons and ions, magnetic fields, sound, and shock waves in gases and liquids. Considerable chapters consider the applications of capacitor discharges, such as impulse hardening of steel, ultrapulse welding of precision parts, X-ray flash t

  17. Predicting tile drainage discharge

    DEFF Research Database (Denmark)

    Iversen, Bo Vangsø; Kjærgaard, Charlotte; Petersen, Rasmus Jes

    used in the analysis. For the dynamic modelling, a simple linear reservoir model was used where different outlets in the model represented tile drain as well as groundwater discharge outputs. This modelling was based on daily measured tile drain discharge values. The statistical predictive model...... was based on a polynomial regression predicting yearly tile drain discharge values using site specific parameters such as soil type, catchment topography, etc. as predictors. Values of calibrated model parameters from the dynamic modelling were compared to the same site specific parameter as used...

  18. Experimental Investigation of Augmented Spark Ignition of a LO2/LCH4 Reaction Control Engine at Altitude Conditions

    Science.gov (United States)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of nontoxic propellants in future exploration vehicles would enable safer, more cost-effective mission scenarios. One promising green alternative to existing hypergols is liquid methane (LCH4) with liquid oxygen (LO2). A 100 lbf LO2/LCH4 engine was developed under the NASA Propulsion and Cryogenic Advanced Development project and tested at the NASA Glenn Research Center Altitude Combustion Stand in a low pressure environment. High ignition energy is a perceived drawback of this propellant combination; so this ignition margin test program examined ignition performance versus delivered spark energy. Sensitivity of ignition to spark timing and repetition rate was also explored. Three different exciter units were used with the engine s augmented (torch) igniter. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks. This suggests that rising pressure and flow rate increase spark impedance and may at some point compromise an exciter s ability to complete each spark. The reduced spark energies of such quenched deliveries resulted in more erratic ignitions, decreasing ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1 to 6 mJ, though multiple, similarly timed sparks of 55 to 75 mJ were required for reliable ignition. Delayed spark application and reduced spark repetition rate both correlated with late and occasional failed ignitions. An optimum time interval for spark application and ignition therefore coincides with propellant introduction to the igniter.

  19. Discharge plasmas as EUV Sources for Future Micro Lithography

    Science.gov (United States)

    Kruecken, Thomas

    2007-08-01

    Future extreme ultraviolet (EUV) lithography will require very high radiation intensities in a narrow wavelength range around 13.5 nm, which is most efficiently emitted as line radiation by highly ionized heavy particles. Currently the most intense EUV sources are based on xenon or tin gas discharges. After having investigated the limits of a hollow cathode triggered xenon pinch discharge Philips Extreme UV favors a laser triggered tin vacuum spark discharge. Plasma and radiation properties of these highly transient discharges will be compared. Besides simple MHD-models the ADAS software package has been used to generate important atomic and spectral data of the relevant ion stages. To compute excitation and radiation properties, collisional radiative equilibria of individual ion stages are computed. For many lines opacity effects cannot be neglected. In the xenon discharges the optical depths allow for a treatment based on escape factors. Due to the rapid change of plasma parameters the abundancies of the different ionization stages must be computed dynamically. This requires effective ionization and recombination rates, which can also be supplied by ADAS. Due to very steep gradients (up to a couple orders of magnitude per mm) the plasma of tin vacuum spark discharges is very complicated. Therefore we shall describe here only some technological aspects of our tin EUV lamp: The electrode system consists of two rotating which are pulled through baths of molten tin such that a tin film remains on their surfaces. With a laser pulse some tin is ablated from one of the wheels and travels rapidly through vacuum towards the other rotating wheel. When the tin plasma reaches the other electrodes it ignites and the high current phase starts, i.e. the capacitor bank is unloaded, the plasma is pinched and EUV is radiated. Besides the good spectral properties of tin this concept has some other advantages: Erosion of electrodes is no severe problem as the tin film is

  20. A study on the electrical characteristics of corona discharges for flue gas treatment

    International Nuclear Information System (INIS)

    Jung, Suk Won

    2000-02-01

    A wire- cylinder reactor and wire- plate reactor were designed and constructed for generating the corona discharges to be applied to the dissociation of NOx and SOx in the flue gases of combustion engines and power plants. Experiments for the characterization of the corona discharges in air were carried out. To obtain the pulsed voltage shape, a rotary spark gap switch was formed with a DC motor. A discharge circuit was constructed with a resistor (50kΩ ), DC high voltage power supply, a rotary spark gap switch. Two electric probes and voltage probe were installed in order to measure the total current, displacement current, conduction current and applied voltage. The charges, power, and energy in the two reactors were calculated from the measured voltage and current. Also, to find the frequency dependence of the corona discharge, the high frequency (20kHz) and high voltage power supply was used in the wire- cylinder reactor. The each obtained and calculated value from the probes in both reactor cases (high frequency, low frequency ) were compared each other

  1. The effect of the configuration of a single electrode corona discharge on its acoustic characteristics

    Science.gov (United States)

    Zhu, Xinlei; Zhang, Liancheng; Huang, Yifan; Wang, Jin; Liu, Zhen; Yan, Keping

    2017-07-01

    A new sparker system based on pulsed spark discharge with a single electrode has already been utilized for oceanic seismic exploration. However, the electro-acoustic energy efficiency of this system is lower than that of arc discharge based systems. A simple electrode structure was investigated in order to improve the electro-acoustic energy efficiency of the spark discharge. Experiments were carried out on an experimental setup with discharge in water driven by a pulsed power source. The voltage-current waveform, acoustic signal and bubble oscillation were recorded when the relative position of the electrode varied. The electro-acoustic energy efficiency was also calculated. The load voltage had a saltation for the invaginated electrode tip, namely an obvious voltage remnant. The more the electrode tip was invaginated, the larger the pressure peaks and first period became. The results show that electrode recessing into the insulating layer is a simple and effective way to improve the electro-acoustic energy efficiency from 2% to about 4%.

  2. Electric discharge during electrosurgery.

    Science.gov (United States)

    Shashurin, Alexey; Scott, David; Zhuang, Taisen; Canady, Jerome; Beilis, Isak I; Keidar, Michael

    2015-04-16

    Electric discharge utilized for electrosurgery is studied by means of a recently developed method for the diagnostics of small-size atmospheric plasma objects based on Rayleigh scattering of microwaves on the plasma volume. Evolution of the plasma parameters in the near-electrode sheaths and in the positive column is measured and analyzed. It is found that the electrosurgical system produces a glow discharge of alternating current with strongly contracted positive column with current densities reaching 10(3) A/cm(2). The plasma electron density and electrical conductivities in the channel were found be 10(16) cm(-3) and (1-2) Ohm(-1) cm(-1), respectively. The discharge interrupts every instance when the discharge-driving AC voltage crosses zero and re-ignites again every next half-wave at the moment when the instant voltage exceeds the breakdown threshold.

  3. Vaginal delivery - discharge

    Science.gov (United States)

    Pregnancy - discharge after vaginal delivery ... You may have bleeding from your vagina for up to 6 weeks. Early on, you may pass some small clots when you first get up. Bleeding will slowly become ...

  4. Prostate radiation - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000399.htm Prostate radiation - discharge To use the sharing features on ... keeping or getting an erection may occur after prostate radiation therapy. You may not notice this problem ...

  5. Brain injury - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000163.htm Brain injury - discharge To use the sharing features on ... know was in the hospital for a serious brain injury. At home, it will take time for ...

  6. Brain aneurysm repair - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000123.htm Brain aneurysm repair - discharge To use the sharing features ... this page, please enable JavaScript. You had a brain aneurysm . An aneurysm is a weak area in ...

  7. Brain radiation - discharge

    Science.gov (United States)

    Radiation - brain - discharge; Cancer - brain radiation; Lymphoma - brain radiation; Leukemia - brain radiation ... Decadron) while you are getting radiation to the brain. It may make you hungrier, cause leg swelling ...

  8. Atrial fibrillation - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000237.htm Atrial fibrillation - discharge To use the sharing features on this ... have been in the hospital because you have atrial fibrillation . This condition occurs when your heart beats faster ...

  9. Pneumonia - adults - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000017.htm Pneumonia in adults - discharge To use the sharing features on this page, please enable JavaScript. You have pneumonia, which is an infection in your lungs. In ...

  10. Knee arthroscopy - discharge

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000199.htm Knee arthroscopy - discharge To use the sharing features on this ... surgery to treat problems in your knee (knee arthroscopy). You may have been checked for: Torn meniscus. ...

  11. Cosmetic breast surgery - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000273.htm Cosmetic breast surgery - discharge To use the sharing features on this page, please enable JavaScript. You had cosmetic breast surgery to change the size or shape ...

  12. Shoulder surgery - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000179.htm Shoulder surgery - discharge To use the sharing features on this page, please enable JavaScript. You had shoulder surgery to repair the tissues inside or around your ...

  13. SciSpark's SRDD : A Scientific Resilient Distributed Dataset for Multidimensional Data

    Science.gov (United States)

    Palamuttam, R. S.; Wilson, B. D.; Mogrovejo, R. M.; Whitehall, K. D.; Mattmann, C. A.; McGibbney, L. J.; Ramirez, P.

    2015-12-01

    Remote sensing data and climate model output are multi-dimensional arrays of massive sizes locked away in heterogeneous file formats (HDF5/4, NetCDF 3/4) and metadata models (HDF-EOS, CF) making it difficult to perform multi-stage, iterative science processing since each stage requires writing and reading data to and from disk. We have developed SciSpark, a robust Big Data framework, that extends ApacheTM Spark for scaling scientific computations. Apache Spark improves the map-reduce implementation in ApacheTM Hadoop for parallel computing on a cluster, by emphasizing in-memory computation, "spilling" to disk only as needed, and relying on lazy evaluation. Central to Spark is the Resilient Distributed Dataset (RDD), an in-memory distributed data structure that extends the functional paradigm provided by the Scala programming language. However, RDDs are ideal for tabular or unstructured data, and not for highly dimensional data. The SciSpark project introduces the Scientific Resilient Distributed Dataset (sRDD), a distributed-computing array structure which supports iterative scientific algorithms for multidimensional data. SciSpark processes data stored in NetCDF and HDF files by partitioning them across time or space and distributing the partitions among a cluster of compute nodes. We show usability and extensibility of SciSpark by implementing distributed algorithms for geospatial operations on large collections of multi-dimensional grids. In particular we address the problem of scaling an automated method for finding Mesoscale Convective Complexes. SciSpark provides a tensor interface to support the pluggability of different matrix libraries. We evaluate performance of the various matrix libraries in distributed pipelines, such as Nd4jTM and BreezeTM. We detail the architecture and design of SciSpark, our efforts to integrate climate science algorithms, parallel ingest and partitioning (sharding) of A-Train satellite observations from model grids. These

  14. Discharges for lighting

    International Nuclear Information System (INIS)

    Stoffels, W W; Nimalasuriya, T; Flikweert, A J; Mulders, H C J

    2007-01-01

    The most common man-made discharge is a lamp. Even though lamps are often considered a mature technology, the discharge physics is often poorly understood. Two recent initiatives discussed here show that plasma research can help to make significant improvements. First we discuss color separation in metal halide lamps, which is a problem that prevents these highly efficient lamps from being used in more applications. Secondly a novel lamp concept is presented that may replace the current mercury based fluorescent lamps

  15. Discharge lamp technologies

    Energy Technology Data Exchange (ETDEWEB)

    Dakin, J. [GE Lighting, Cleveland, OH (United States)

    1994-12-31

    This talk is an overview of discharge lamp technology commonly employed in general lighting, with emphasis on issues pertinent to lighting for plant growth. Since the audience is primarily from the plant growth community, and this begins the light source part of the program, we will start with a brief description of the discharge lamps. Challenges of economics and of thermal management make lamp efficiency a prime concern in controlled environment agriculture, so we will emphasize science considerations relating to discharge lamp efficiency. We will then look at the spectra and ratings of some representative lighting products, and conclude with a discussion of technological advance. A general overview of discharge lighting technology can be found in the book of Waymouth (1971). A recent review of low pressure lighting discharge science is found in Dakin (1991). The pioneering paper of Reiling (1964) provides a good introduction to metal halide discharges. Particularly relevant to lighting for plant growth, a recent and thorough treatment of high pressure Na lamps is found in the book by deGroot and vanVliet (1986). Broad practical aspects of lighting application are thoroughly covered in the IES Lighting Handbook edited by Kaufman (1984).

  16. Chaos in gas discharges

    International Nuclear Information System (INIS)

    Piel, A.

    1993-01-01

    Many gas discharges exhibit natural oscillations which undergo a transition from regular to chaotic behavior by changing an experimental parameter or by applying external modulation. Besides several isolated investigations, two classes of discharge phenomena have been studied in more detail: ionization waves in medium pressure discharges and potential relaxation oscillations in filament cathode discharges at very low pressure. The latter phenomenon will be discussed by comparing experimental results from different discharge arrangements with particle-in-cell simulations and with a model based on the van-der-Pol equation. The filament cathode discharge has two stable modes of operation: the low current anode-glow-mode and the high current temperature-limited-mode, which form the hysteresis curve in the I(U) characteristics. Close to the hysteresis point of the AGM periodic relaxation oscillations occur. The authors demonstrate that the AGM can be understood by ion production in the anode layer, stopping of ions by charge exchange, and trapping in the virtual cathode around the filament. The relaxation oscillations consist of a slow filling phase and a rapid phase that invokes formation of an unstable double-layer, current-spiking, and ion depletion from the cathodic plasma. The relaxation oscillations can be mode-locked by external modulation. Inside a mode-locked state, a period doubling cascade is observed at high modulation degree

  17. Lanthana-bearing nanostructured ferritic steels via spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Pasebani, Somayeh [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Charit, Indrajit, E-mail: icharit@uidaho.edu [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Wu, Yaqiao; Burns, Jatuporn; Allahar, Kerry N.; Butt, Darryl P. [Department of Materials Science and Engineering, Boise State University, Boise, ID 83725 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Cole, James I. [Idaho National Laboratory, Idaho Falls, ID 83401 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Alsagabi, Sultan F. [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States)

    2016-03-15

    A lanthana-containing nanostructured ferritic steel (NFS) was processed via mechanical alloying (MA) of Fe-14Cr-1Ti-0.3Mo-0.5La{sub 2}O{sub 3} (wt.%) and consolidated via spark plasma sintering (SPS). In order to study the consolidation behavior via SPS, sintering temperature and dwell time were correlated with microstructure, density, microhardness and shear yield strength of the sintered specimens. A bimodal grain size distribution including both micron-sized and nano-sized grains was observed in the microstructure of specimens sintered at 850, 950 and1050 °C for 45 min. Significant densification occurred at temperatures greater than 950 °C with a relative density higher than 98%. A variety of nanoparticles, some enriched in Fe and Cr oxides and copious nanoparticles smaller than 10 nm with faceted morphology and enriched in La and Ti oxides were observed. After SPS at 950 °C, the number density of Cr–Ti–La–O-enriched nanoclusters with an average radius of 1.5 nm was estimated to be 1.2 × 10{sup 24} m{sup −3}. The La + Ti:O ratio was close to 1 after SPS at 950 and 1050 °C; however, the number density of nanoclusters decreased at 1050 °C. With SPS above 950 °C, the density improved but the microhardness and shear yield strength decreased due to partial coarsening of the grains and nanoparticles.

  18. Pseudo-spark switch (PSS) characteristics under different operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, B. H., E-mail: dr.bassmahussain@gmail.com; Ahmad, A. K., E-mail: ahmad.kamal@sc.nahrainuniv.edu.iq [College of Science, Al Nahrain University, Jadria, Baghdad (Iraq); Lateef, K. H., E-mail: kamalhlatif@yahoo.com [Ministry of Science and Technology, Jadria, Baghdad (Iraq)

    2016-08-15

    The present paper concentrates on the characteristics of the pseudospark switch (PSS) designed in a previous work. The special characteristics of PSS make it a replacement for other high voltage switches such as thyratrons and ordinary high-pressure spark gaps. PSS is characterized by short rise time and small jitter time. The pseudo park chamber consists of two hollow cylindrical electrodes made of a stainless steel material (type 306L) separated by an insulator. The insulator used in our design is a glazed ceramic 70 mm in diameter and 3.5 mm in thickness. A PSS with an anode voltage of 29.2 kV, and a current of 3.6 kA and 11 ns rise time was achieved and used successfully at a repetition rate of about 2.2 kHz. A simple trigger circuit designed, built, and used effectively reaching more than 1.56 kV trigger pulse which is sufficient to ignite the argon gas inside the cathode to cause a breakdown. A non-inductive dummy load is designed to be a new technique to find the accurate value of the PSS inductance. A jitter time of ±10 ns pulses is observed to occur in a reliable manner for more than 6 h of continuous operation. In this research, the important parameters of this switch like rise time, peak current, and anode voltage were studied at various values of charging capacitance. The lifetime of this system is depending on the kind of the electrode material and on the type of insulation material in the main gap of the pseudospark switch.

  19. Ferritic oxide dispersion strengthened alloys by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Allahar, Kerry N., E-mail: KerryAllahar@boisestate.edu [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Burns, Jatuporn [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Jaques, Brian [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Wu, Y.Q. [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States); Charit, Indrajit [Department of Chemical and Materials Engineering, University of Idaho, McClure Hall Room 405D, Moscow, ID 83844 (United States); Cole, James [Idaho National Laboratory, Idaho Falls, ID 83401 (United States); Butt, Darryl P. [Materials and Science Engineering Department, Boise State University, 1910 University Blvd., Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Blvd., Idaho Falls, ID 83401 (United States)

    2013-11-15

    Spark plasma sintering (SPS) was used to consolidate a Fe–16Cr–3Al (wt.%) powder that was mechanically alloyed with Y{sub 2}O{sub 3} and Ti powders to produce 0.5 Y{sub 2}O{sub 3} and 0.5 Y{sub 2}O{sub 3}–1Ti powders. The effects of mechanical alloying and sintering conditions on the microstructure, relative density and hardness of the sintered oxide dispersion strengthened (ODS) alloys are presented. Scanning electron microscopy indicated a mixed fine-grain and coarse-grain microstructure that was attributed to recrystallization and grain growth during sintering. Analysis of the transmission electron microscopy (TEM) and atom probe tomography (APT) data identified Y–O and Y–O–Ti nanoclusters. Elemental ratios of these nanoclusters were consistent with that observed in hot-extruded ODS alloys. The influence of Ti was to refine the grains as well as the nanoclusters with there being greater number density and smaller sizes of the Y–O–Ti nanoclusters as compared to the Y–O nanoclusters. This resulted in the Ti-containing samples being harder than the Ti-free alloys. The hardness of the alloys with the Y–O–Ti nanoclusters was insensitive to sintering time while smaller hardness values were associated with longer sintering times for the alloys with the Y–O nanoclusters. Pressures greater than 80 MPa are recommended for improved densification as higher sintering temperatures and longer sintering times at 80 MPa did not improve the relative density beyond 97.5%.

  20. Diesel engines vs. spark ignition gasoline engines -- Which is ``greener``?

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W. [Dept. of Energy, Washington, DC (United States)

    1997-12-31

    Criteria emissions, i.e., NO{sub x}, PM, CO, CO{sub 2}, and H{sub 2}, from recently manufactured automobiles, compared on the basis of what actually comes out of the engines, the diesel engine is greener than spark ignition gasoline engines and this advantage for the diesel engine increases with time. SI gasoline engines tend to get out of tune more than diesel engines and 3-way catalytic converters and oxygen sensors degrade with use. Highway measurements of NO{sub 2}, H{sub 2}, and CO revealed that for each model year, 10% of the vehicles produce 50% of the emissions and older model years emit more than recent model year vehicles. Since 1974, cars with SI gasoline engines have uncontrolled emission until the 3-way catalytic converter reaches operating temperature, which occurs after roughly 7 miles of driving. Honda reports a system to be introduced in 1998 that will alleviate this cold start problem by storing the emissions then sending them through the catalytic converter after it reaches operating temperature. Acceleration enrichment, wherein considerable excess fuel is introduced to keep temperatures down of SI gasoline engine in-cylinder components and catalytic converters so these parts meet warranty, results in 2,500 times more CO and 40 times more H{sub 2} being emitted. One cannot kill oneself, accidentally or otherwise, with CO from a diesel engine vehicle in a confined space. There are 2,850 deaths per year attributable to CO from SI gasoline engine cars. Diesel fuel has advantages compared with gasoline. Refinery emissions are lower as catalytic cracking isn`t necessary. The low volatility of diesel fuel results in a much lower probability of fires. Emissions could be improved by further reducing sulfur and aromatics and/or fuel additives. Reformulated fuel has become the term covering reducing the fuels contribution to emissions. Further PM reduction should be anticipated with reformulated diesel and gasoline fuels.

  1. CORONA DISCHARGE IGNITION FOR ADVANCED STATIONARY NATURAL GAS ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul D. Ronney

    2003-09-12

    An ignition source was constructed that is capable of producing a pulsed corona discharge for the purpose of igniting mixtures in a test chamber. This corona generator is adaptable for use as the ignition source for one cylinder on a test engine. The first tests were performed in a cylindrical shaped chamber to study the characteristics of the corona and analyze various electrode geometries. Next a test chamber was constructed that closely represented the dimensions of the combustion chamber of the test engine at USC. Combustion tests were performed in this chamber and various electrode diameters and geometries were tested. The data acquisition and control system hardware for the USC engine lab was updated with new equipment. New software was also developed to perform the engine control and data acquisition functions. Work is underway to design a corona electrode that will fit in the new test engine and be capable igniting the mixture in one cylinder at first and eventually in all four cylinders. A test engine was purchased for the project that has two spark plug ports per cylinder. With this configuration it will be possible to switch between corona ignition and conventional spark plug ignition without making any mechanical modifications.

  2. The performance of a hybrid spark chamber beta-ray camera

    International Nuclear Information System (INIS)

    Aoyama, Takahiko; Watanabe, Tamaki

    1978-01-01

    This paper describes the performance of a hybrid spark chamber for measuring β-ray emitting radionuclide distribution on a plane source, which was developed to improve the instability of usual self-triggering spark chambers. The chamber consists of a parallel plate spark chamber gap and a parallel plate proportional chamber gap composed of mesh electrodes in the same gas space, and is operated by flowing gas, a mixture of argon and ethanol saturated vapor at 0 0 C, continuously through it. Instability is due to the occurrence of spurious sparks not caused by incident particles and it became conspicuous in the small intensity of incident particles. The hybrid spark chamber enabled us to obtain good counting plateau, that is, good stability for especially small intensity of β-rays and even for the background by setting up gas multiplication in the proportional chamber gap moderately high. Good spatial resolution less than 1 mm was obtained for 3 H and 14 C by keeping the distance between the chamber cathode and the source less than 1 mm. In order to obtain good spatial resolution, it is desirable to keep the overvoltage as small as possible while small overvoltage results in the deterioration of the uniformity of sensitivity. It was found by theoretical estimation and experiment that for a given large overvoltage the spatial resolution was improved by increasing the gas multiplication in the proportional chamber gap. The hybrid spark chamber has a relatively long dead time. When there being a number of active spots having different activities in a detection area, the sparking efficiency of a weak active spot also decreases by large counting loss due to the total strong activity. (auth.)

  3. DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers

    Energy Technology Data Exchange (ETDEWEB)

    Neophytou, A.; Mastorakos, E.; Cant, R.S. [Hopkinson Laboratory, Department of Engineering, University of Cambridge (United Kingdom)

    2010-06-15

    A parametric study of forced ignition at the mixing layer between air and air carrying fine monosized fuel droplets is done through one-step chemistry direct numerical simulations to determine the influence of the size and volatility of the droplets, the spark location, the droplet-air mixing layer initial thickness and the turbulence intensity on the ignition success and the subsequent flame propagation. The propagation is analyzed in terms of edge flame displacement speed, which has not been studied before for turbulent edge spray flames. Spark ignition successfully resulted in a tribrachial flame if enough fuel vapour was available at the spark location, which occurred when the local droplet number density was high. Ignition was achieved even when the spark was offset from the spray, on the air side, due to the diffusion of heat from the spark, provided droplets evaporated rapidly. Large kernels were obtained by sparking close to the spray, since fuel was more readily available. At long times after the spark, for all flames studied, the probability density function of the displacement speed was wide, with a mean value in the range 0.55-0.75S{sub L}, with S{sub L} the laminar burning velocity of a stoichiometric gaseous premixed flame. This value is close to the mean displacement speed in turbulent edge flames with gaseous fuel. The displacement speed was negatively correlated with curvature. The detrimental effect of curvature was attenuated with a large initial kernel and by increasing the thickness of the mixing layer. The mixing layer was thicker when evaporation was slow and the turbulence intensity higher. However, high turbulence intensity also distorted the kernel which could lead to high values of curvature. The edge flame reaction component increased when the maximum temperature coincided with the stoichiometric contour. The results are consistent with the limited available experimental evidence and provide insights into the processes associated with

  4. Observation of a spark channel generated in water with shock wave assistance in plate-to-plate electrode configuration

    Energy Technology Data Exchange (ETDEWEB)

    Stelmashuk, V., E-mail: vitalij@ipp.cas.cz [Institute of Plasma Physics, Za Slovankou 3, 182 00 Prague 8 (Czech Republic)

    2014-01-15

    When a high voltage pulse with an amplitude of 30 kV is applied to a pair of disk electrodes at a time when a shock wave is passing between them, an electrical spark is generated. The dynamic changes in the spark morphology are studied here using a high-speed framing camera. The primary result of this work is the provision of experimental evidence of plasma instability that was observed in the channel of the electric spark.

  5. Internal combustion engines a detailed introduction to the thermodynamics of spark and compression ignition engines, their design and development

    CERN Document Server

    Benson, Rowland S

    1979-01-01

    Internal Combustion of Engines: A Detailed Introduction to the Thermodynamics of Spark and Compression Ignition Engines, Their Design and Development focuses on the design, development, and operations of spark and compression ignition engines. The book first describes internal combustion engines, including rotary, compression, and indirect or spark ignition engines. The publication then discusses basic thermodynamics and gas dynamics. Topics include first and second laws of thermodynamics; internal energy and enthalpy diagrams; gas mixtures and homocentric flow; and state equation. The text ta

  6. THE EFFECT OF COMPRESSION RATIO VARIATIONS ON THE ENGINE PERFORMANCE PARAMETRES IN SPARK IGNITION ENGINES

    Directory of Open Access Journals (Sweden)

    Yakup SEKMEN

    2005-01-01

    Full Text Available Performance of the spark ignition engines may be increased by changing the geometrical compression ratio according to the amount of charging in cylinders. The designed geometrical compression ratio can be realized as an effective compression ratio under the full load and full open throttle conditions since the effective compression ratio changes with the amount of charging into the cylinder in spark ignition engines. So, this condition of the spark ignition engines forces designers to change their geometrical compression ratio according to the amount of charging into the cylinder for improvement of performance and fuel economy. In order to improve the combustion efficiency, fuel economy, power output, exhaust emissions at partial loads, compression ratio must be increased; but, under high load and low speed conditions to prevent probable knock and hard running the compression ratio must be decreased gradually. In this paper, relation of the performance parameters to compression ratio such as power, torque, specific fuel consumption, cylindir pressure, exhaust gas temperature, combustion chamber surface area/volume ratio, thermal efficiency, spark timing etc. in spark ignition engines have been investigated and using of engines with variable compression ratio is suggested to fuel economy and more clear environment.

  7. Synthesis and characterization of aluminium–alumina micro- and nano-composites by spark plasma sintering

    International Nuclear Information System (INIS)

    Dash, K.; Chaira, D.; Ray, B.C.

    2013-01-01

    Graphical abstract: The evolution of microstructure by varying the particle size of reinforcement in the matrix employing spark plasma sintering has been demonstrated here in Al–Al 2 O 3 system. An emphasis has been laid on varying the reinforcement particle size and evaluating the microstructural morphologies and their implications on mechanical performance of the composites. Nanocomposites of 0.5, 1, 3, 5, 7 volume % alumina (average size 2 O 3 micro- and nano-composites fabricated by spark plasma sintering. • Better matrix-reinforcement integrity in nanocomposites than microcomposites. • Spark plasma sintering method results in higher density and hardness values. • High density and hardness values of nanocomposites than microcomposites. • High dislocation density in spark plasma sintered Al–Al 2 O 3 composites. - Abstract: In the present study, an emphasis has been laid on evaluation of the microstructural morphologies and their implications on mechanical performance of the composites by varying the reinforcement particle size. Nanocomposites of 0.5, 1, 3, 5, 7 volume % alumina (average size 2 O 3 nancomposites respectively. Spark plasma sintering imparts enhanced densification and matrix-reinforcement proximity which have been corroborated with the experimental results

  8. Experimental investigations of argon spark gap recovery times by developing a high voltage double pulse generator.

    Science.gov (United States)

    Reddy, C S; Patel, A S; Naresh, P; Sharma, Archana; Mittal, K C

    2014-06-01

    The voltage recovery in a spark gap for repetitive switching has been a long research interest. A two-pulse technique is used to determine the voltage recovery times of gas spark gap switch with argon gas. First pulse is applied to the spark gap to over-volt the gap and initiate the breakdown and second pulse is used to determine the recovery voltage of the gap. A pulse transformer based double pulse generator capable of generating 40 kV peak pulses with rise time of 300 ns and 1.5 μs FWHM and with a delay of 10 μs-1 s was developed. A matrix transformer topology is used to get fast rise times by reducing L(l)C(d) product in the circuit. Recovery Experiments have been conducted for 2 mm, 3 mm, and 4 mm gap length with 0-2 bars pressure for argon gas. Electrodes of a sparkgap chamber are of rogowsky profile type, made up of stainless steel material, and thickness of 15 mm are used in the recovery study. The variation in the distance and pressure effects the recovery rate of the spark gap. An intermediate plateu is observed in the spark gap recovery curves. Recovery time decreases with increase in pressure and shorter gaps in length are recovering faster than longer gaps.

  9. ClimateSpark: An in-memory distributed computing framework for big climate data analytics

    Science.gov (United States)

    Hu, Fei; Yang, Chaowei; Schnase, John L.; Duffy, Daniel Q.; Xu, Mengchao; Bowen, Michael K.; Lee, Tsengdar; Song, Weiwei

    2018-06-01

    The unprecedented growth of climate data creates new opportunities for climate studies, and yet big climate data pose a grand challenge to climatologists to efficiently manage and analyze big data. The complexity of climate data content and analytical algorithms increases the difficulty of implementing algorithms on high performance computing systems. This paper proposes an in-memory, distributed computing framework, ClimateSpark, to facilitate complex big data analytics and time-consuming computational tasks. Chunking data structure improves parallel I/O efficiency, while a spatiotemporal index is built for the chunks to avoid unnecessary data reading and preprocessing. An integrated, multi-dimensional, array-based data model (ClimateRDD) and ETL operations are developed to address big climate data variety by integrating the processing components of the climate data lifecycle. ClimateSpark utilizes Spark SQL and Apache Zeppelin to develop a web portal to facilitate the interaction among climatologists, climate data, analytic operations and computing resources (e.g., using SQL query and Scala/Python notebook). Experimental results show that ClimateSpark conducts different spatiotemporal data queries/analytics with high efficiency and data locality. ClimateSpark is easily adaptable to other big multiple-dimensional, array-based datasets in various geoscience domains.

  10. Computerized precision control of a synchronous high voltage discharge switch for the beam separation system of the LEP e+/e- collider

    International Nuclear Information System (INIS)

    Dieperink, J.H.; Finnigan, A.; Kalbreier, W.; Keizer, R.L.; Laffin, M.; Mertens, V.

    1989-01-01

    Electrostatic separators are used to separate the beams in LEP. The counter-rotating beams are eventually brought into collision in the four low beta insertions, using switches to discharge simultaneously four high voltage (HV) circuits. Each switch consists of four spark gaps mounted in a pressure vessel. A reduction of the gap widths below the self ignition instance by electric motors results in the initiation of the discharges. Synchronization is ensured by the electrical coupling of the electrodes connected to the ground. The design and performance of the computerized precision control of the discharge switch are described. The dynamic characteristics of the prototype switch are also presented. 5 refs., 5 figs

  11. Fast capillary discharge facility CAPEX-U as a source of the soft X-ray radiation

    Czech Academy of Sciences Publication Activity Database

    Frolov, Oleksandr; Koláček, Karel; Schmidt, Jiří; Štraus, Jaroslav; Prukner, Václav

    2007-01-01

    Roč. 52, č. 16 (2007), s. 295-295 ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics/49th./. Orlando , Florida, 12.11.2007-16.11.2007] R&D Projects: GA ČR GA202/06/1324; GA AV ČR KJB100430702; GA AV ČR KAN300100702; GA MŠk 1P04LA235 Institutional research plan: CEZ:AV0Z20430508 Keywords : Capillary discharge * x-ray * laser * laser-triggered * spark gap * breakdown * plasma Subject RIV: BL - Plasma and Gas Discharge Physics http://meetings.aps.org/Meeting/DPP07/Content/901

  12. Sparking connections: An exploration of adolescent girls' relationships with science

    Science.gov (United States)

    Wheeler, Kathryn A.

    Despite progress in narrowing the gender gap, fewer women than men pursue science careers. Adolescence is a critical age when girls' science interest is sparked or smothered. Prior research provides data on who drops out of the "science pipeline" and when, but few studies examine why and how girls disconnect from science. This thesis is an in-depth exploratory study of adolescent girls' relationships with science based on a series of interviews with four middle-class Caucasian girls---two from public schools, two homeschooled. The girls' stones about their experiences with, feelings about, and perspectives on science, the science process, and their science learning environments are examined with a theoretical and analytic approach grounded in relational psychology. The potential link between girls' voices and their involvement in science is investigated. Results indicate that girls' relationships with science are multitiered. Science is engaging and familiar in the sense that girls are curious about the world, enjoy learning about scientific phenomena, and informally use science in their everyday fives. However, the girls in this study differentiated between the science they do and the field of science, which they view as a mostly male endeavor (often despite real life experiences to the contrary) that uses rather rigid methods to investigate questions of limited scope and interest. In essence, how these girls defined science defined their relationship with science: those with narrow conceptions of science felt distant from it. Adolescent girls' decreased involvement in science activities may be a relational act---a move away from a patriarchical process, pedagogy, and institution that does not resonate with their experiences, questions, and learning styles. Girls often feel like outsiders to science; they resist considering science careers when they have concerns that implicitly or explicitly, doing so would involve sacrificing their knowledge, creativity, or

  13. Multipactor discharge apparatus

    International Nuclear Information System (INIS)

    1976-01-01

    The invention deals with a multipactor discharge apparatus which can be used for tuning microwave organs such as magnetron oscillators and other cavity resonators. This apparatus is suitable for delivering an improved tuning effect in a resonation organ wherefrom the working frequency must be set. This apparatus is equipped with two multipactor discharge electrodes set in a configuration such to that a net current flows from one electrode to another. These electrodes are parallel and flat. The apparatus can be used in magnetron devices as well for continuous waves as for impulses

  14. Red herring vaginal discharge.

    Science.gov (United States)

    Lee, Jun Hee; Pringle, Kirsty; Rajimwale, Ashok

    2013-09-18

    Labial hair tourniquet syndrome is a rare condition that can be easily misdiagnosed and ultimately lead to irreversible damage. An 11-year-old premenarche girl presented with a 5-day history of pain and swelling in the labia with associated vaginal discharge. The general practitioner treated her with clotrimazole without improvement. On examination, there was an oedematous swelling of the right labia with a proximal hair tourniquet. Local anaesthetic was applied and the hair removed with forceps. There was instant relief of pain and the discharge stopped within 24 h. The patient was sent home with a course of antibiotics.

  15. Shock wave interaction with pulsed glow discharge and afterglow plasmas

    International Nuclear Information System (INIS)

    Podder, N.K.; LoCascio, A.C.

    2009-01-01

    Acoustic shock waves are launched by the spark-discharge of a high voltage capacitor in pulsed glow discharge and afterglow plasmas. The glow discharge section of the shock tube is switched on for a period of less than one second at a time, during which a shock wave is launched starting with a large delay between the plasma switch-on and the shock-launch. In the subsequent runs this delay is decremented in equal time intervals up to the plasma switch-on time. A photo acoustic deflection method sensitive to the density gradient of the shock wave is used to study the propagating shock structure and velocity in the igniting plasma. A similar set of measurements are also performed at the plasma switch-off, in which the delay time is incremented in equal time intervals from the plasma switch-off time until the afterglow plasma fully neutralizes itself into the room-temperature gas. Thus, complete time histories of the shock wave propagation in the igniting plasma, as well as in the afterglow plasma, are produced. In the igniting plasma, the changes in the shock-front velocity and dispersion are found to be a strong non-linear function of delay until a saturation point is reached. On the other hand, in the afterglow plasma the trend has been opposite and reversing towards the room temperature values. The observed shock wave properties in both igniting and afterglow plasmas correlate well with the inferred temperature changes in the two plasmas

  16. Travelling-wave-sustained discharges

    International Nuclear Information System (INIS)

    Schlueter, Hans; Shivarova, Antonia

    2007-01-01

    This review is on discharges maintained by travelling waves: new plasma sources, discovered in 1974 and considered as a prototype of the gas discharges according to their definition as nonlinear systems which unify in a self-consistent manner plasmas and fields. In the presentation here of the fluid-plasma models of the diffusion-controlled regime of the travelling-wave-sustained discharges (TWSDs), the basic features of the discharge maintenance-the discharge self-consistency and the electron heating in the high-frequency field-are stressed. Operation of stationary and pulsed discharges, discharge maintenance without and in external magnetic fields as well as discharge production in different gases (argon, helium, helium-argon gas mixtures and hydrogen) are covered. Modulation instability of diffusion-controlled discharges and discharge filamentation at higher gas pressures are also included in the review. Experimental findings which motivate aspects of the reported modelling are pointed out

  17. Structure and characteristics of functional powder composite materials obtained by spark plasma sintering

    Science.gov (United States)

    Oglezneva, S. A.; Kachenyuk, M. N.; Kulmeteva, V. B.; Ogleznev, N. B.

    2017-07-01

    The article describes the results of spark plasma sintering of ceramic materials based on titanium carbide, titanium carbosilicide, ceramic composite materials based on zirconium oxide, strengthened by carbon nanostructures and composite materials of electrotechnical purpose based on copper with addition of carbon structures and titanium carbosilicide. The research shows that the spark plasma sintering can achieve relative density of the material up to 98%. The effect of sintering temperature on the phase composition, density and porosity of the final product has been studied. It was found that with addition of carbon nanostructures the relative density and hardness decrease, but the fracture strength of ZrO2 increases up to times 2. The relative erosion resistance of the electrodes made of composite copper-based powder materials, obtained by spark plasma sintering during electroerosion treatment of tool steel exceeds that parameter of pure copper up to times 15.

  18. Possibility of surface carburization of refractory metals of electric spark alloying

    International Nuclear Information System (INIS)

    Verkhoturov, A.D.; Isaeva, L.P.; Timofeeva, I.I.; Tsyban', V.A.

    1981-01-01

    The paper is concerned with a study in the alloying layer formation under electric spark alloying of refractory (Ti, Zr, Nb, Mo, W, Co, Fe) metals with graphite in argon and in air using the EhFI-46A installation. It is shown that in electric spark alloying with graphite there appear certain specific conditions for the alloying layer formation manifested in the cathode mass decrease during treatment. In this case an alloying layer consisting of carbides, oxides of the corresponding metals and material of the base is formed on the metal surface. The best carburization conditions in the process of electric spark alloying are realized for group 4 metals when treating them in ''soft'' regime, specific time of alloying being 1-3 min/sm 2 and for group 5 and 6 metals - in ''rigid'' regime of treatment and specific time of alloying 3-5 min/cm 2 [ru

  19. A dynamic re-partitioning strategy based on the distribution of key in Spark

    Science.gov (United States)

    Zhang, Tianyu; Lian, Xin

    2018-05-01

    Spark is a memory-based distributed data processing framework, has the ability of processing massive data and becomes a focus in Big Data. But the performance of Spark Shuffle depends on the distribution of data. The naive Hash partition function of Spark can not guarantee load balancing when data is skewed. The time of job is affected by the node which has more data to process. In order to handle this problem, dynamic sampling is used. In the process of task execution, histogram is used to count the key frequency distribution of each node, and then generate the global key frequency distribution. After analyzing the distribution of key, load balance of data partition is achieved. Results show that the Dynamic Re-Partitioning function is better than the default Hash partition, Fine Partition and the Balanced-Schedule strategy, it can reduce the execution time of the task and improve the efficiency of the whole cluster.

  20. Development And Testing Of Biogas-Petrol Blend As An Alternative Fuel For Spark Ignition Engine

    Directory of Open Access Journals (Sweden)

    Awogbemi

    2015-08-01

    Full Text Available Abstract This research is on the development and testing of a biogas-petrol blend to run a spark ignition engine. A2080 ratio biogaspetrol blend was developed as an alternative fuel for spark ignition engine test bed. Petrol and biogas-petrol blend were comparatively tested on the test bed to determine the effectiveness of the fuels. The results of the tests showed that biogas petrol blend generated higher torque brake power indicated power brake thermal efficiency and brake mean effective pressure but lower fuel consumption and exhaust temperature than petrol. The research concluded that a spark ignition engine powered by biogas-petrol blend was found to be economical consumed less fuel and contributes to sanitation and production of fertilizer.

  1. A seasonal copula mixture for hedging the clean spark spread with wind power futures

    DEFF Research Database (Denmark)

    Christensen, Troels Sønderby; Pircalabu, Anca; Høg, Esben

    2018-01-01

    The recently introduced German wind power futures have brought the opportunity to address the problem of volume risk in wind power generation directly. In this paper we study the hedging benefits of these instruments in the context of gas-fired power plants by employing a strategy that allows...... and the dependence structure, while being straightforward and easy to implement. Based on Monte Carlo simulations from the proposed model, the results indicate that significant benefits can be achieved by using wind power futures to hedge the spot clean spark spread. Moreover, a comparison study shows...... trading in the spot clean spark spread and wind power futures. To facilitate hedging decisions, we propose a time-varying copula mixture for the joint behavior of the spot clean spark spread and the daily wind index. The model describes the data surprisingly well, both in terms of the marginals...

  2. Spark counting technique of alpha tracks on an aluminium oxide film

    International Nuclear Information System (INIS)

    Morishima, Hiroshige; Koga, Taeko; Niwa, Takeo; Kawai, Hiroshi

    1984-01-01

    We have tried to use aluminium oxide film as a neutron detector film with a spark counter for neutron monitoring in the mixed field of neutron and gamma-rays near a reactor. The merits of this method are that (1) aluminium oxide is good electric insulator, (2) any desired thickness of the film can be prepared, (3) chemical etching of the thin film can be dispensed with. The relation between spark counts and numbers of alpha-particles which entered the aluminium oxide film 1 μm thick was linear in the range of 10 5 -10 7 alpha-particles. The sensitivity(ratio of the spark counts to irradiated numbers of alpha-particles) was approximately 10 -3 . (author)

  3. Synergistic effect of pulsed corona discharges and ozonation on decolourization of methylene blue in water

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Muhammad Arif [Applied Chemistry Division, PINSTECH, PO Nilore, Islamabad (Pakistan); Ubaid-ur-Rehman [Applied Chemistry Division, PINSTECH, PO Nilore, Islamabad (Pakistan); Ghaffar, Abdul; Ahmed, Kurshid [Electronics Division, PINSTECH, PO Nilore, Islamabad (Pakistan)

    2002-08-01

    The effect of O{sub 2} and O{sub 3} bubbling on decolourization of methylene blue by pulsed corona discharges in water was studied. The pulsed corona discharges were produced by charging an 80 pF capacitor with a 40 kV DC source, through a 100 M{omega} resistor, and discharging it into a needle-plate type reactor at 60 Hz through a rotating spark gap switch. A 20 ml sample of 13.25 mg l{sup -1} methylene blue in distilled water was decolourized in 120 min. Bubbling O{sub 2} at 10 ml min{sup -1} through the discharge region reduced the decolourization time to 25 min. Bubbling O{sub 2} containing 1500 {mu}mol O{sub 3} l{sup -1} at 10 ml min{sup -1} reduced the decolourization time to 8 min. The O{sub 3} was produced by fractionating input energy between a water treatment reactor and a O{sub 3} generator, i.e. no additional energy was consumed for O{sub 3} production. Under the same experimental conditions methylene blue solution in tap water was decolourized in >210 min by corona discharge in solution, in 30 min by corona discharge with O{sub 2} bubbling, and in 11 min by corona discharge with bubbling of O{sub 2} containing 1500 {mu}mol O{sub 3} l{sup -1}.

  4. Synergistic effect of pulsed corona discharges and ozonation on decolourization of methylene blue in water

    International Nuclear Information System (INIS)

    Malik, Muhammad Arif; Ubaid-ur-Rehman; Ghaffar, Abdul; Ahmed, Kurshid

    2002-01-01

    The effect of O 2 and O 3 bubbling on decolourization of methylene blue by pulsed corona discharges in water was studied. The pulsed corona discharges were produced by charging an 80 pF capacitor with a 40 kV DC source, through a 100 MΩ resistor, and discharging it into a needle-plate type reactor at 60 Hz through a rotating spark gap switch. A 20 ml sample of 13.25 mg l -1 methylene blue in distilled water was decolourized in 120 min. Bubbling O 2 at 10 ml min -1 through the discharge region reduced the decolourization time to 25 min. Bubbling O 2 containing 1500 μmol O 3 l -1 at 10 ml min -1 reduced the decolourization time to 8 min. The O 3 was produced by fractionating input energy between a water treatment reactor and a O 3 generator, i.e. no additional energy was consumed for O 3 production. Under the same experimental conditions methylene blue solution in tap water was decolourized in >210 min by corona discharge in solution, in 30 min by corona discharge with O 2 bubbling, and in 11 min by corona discharge with bubbling of O 2 containing 1500 μmol O 3 l -1

  5. Characterization of transient discharges under atmospheric-pressure conditions applying nitrogen photoemission and current measurements

    International Nuclear Information System (INIS)

    Keller, Sandra; Rajasekaran, Priyadarshini; Bibinov, Nikita; Awakowicz, Peter

    2012-01-01

    The plasma parameters such as electron distribution function and electron density of three atmospheric-pressure transient discharges namely filamentary and homogeneous dielectric barrier discharges in air, and the spark discharge of an argon plasma coagulation (APC) system are determined. A combination of numerical simulation as well as diagnostic methods including current measurement and optical emission spectroscopy (OES) based on nitrogen emissions is used. The applied methods supplement each other and resolve problems, which arise when these methods are used individually. Nitrogen is used as a sensor gas and is admixed in low amount to argon for characterizing the APC discharge. Both direct and stepwise electron-impact excitation of nitrogen emissions are included in the plasma-chemical model applied for characterization of these transient discharges using OES where ambiguity arises in the determination of plasma parameters under specific discharge conditions. It is shown that the measured current solves this problem by providing additional information useful for the determination of discharge-specific plasma parameters. (paper)

  6. Discharges from nuclear power stations

    International Nuclear Information System (INIS)

    1991-02-01

    HM Inspectorate of Pollution commissioned, with authorising responsibilities in England and Wales, a study into the discharges of radioactive effluents from Nuclear Power Stations. The study considered arisings from nuclear power stations in Europe and the USA and the technologies to treat and control the radioactive discharges. This report contains details of the technologies used at many nuclear power stations to treat and control radioactive discharges and gives, where information was available, details of discharges and authorised discharge limits. (author)

  7. SciDB versus Spark: A Preliminary Comparison Based on an Earth Science Use Case

    Science.gov (United States)

    Clune, T.; Kuo, K. S.; Doan, K.; Oloso, A.

    2015-12-01

    We compare two Big Data technologies, SciDB and Spark, for performance, usability, and extensibility, when applied to a representative Earth science use case. SciDB is a new-generation parallel distributed database management system (DBMS) based on the array data model that is capable of handling multidimensional arrays efficiently but requires lengthy data ingest prior to analysis, whereas Spark is a fast and general engine for large scale data processing that can immediately process raw data files and thereby avoid the ingest process. Once data have been ingested, SciDB is very efficient in database operations such as subsetting. Spark, on the other hand, provides greater flexibility by supporting a wide variety of high-level tools including DBMS's. For the performance aspect of this preliminary comparison, we configure Spark to operate directly on text or binary data files and thereby limit the need for additional tools. Arguably, a more appropriate comparison would involve exploring other configurations of Spark which exploit supported high-level tools, but that is beyond our current resources. To make the comparison as "fair" as possible, we export the arrays produced by SciDB into text files (or converting them to binary files) for the intake by Spark and thereby avoid any additional file processing penalties. The Earth science use case selected for this comparison is the identification and tracking of snowstorms in the NASA Modern Era Retrospective-analysis for Research and Applications (MERRA) reanalysis data. The identification portion of the use case is to flag all grid cells of the MERRA high-resolution hourly data that satisfies our criteria for snowstorm, whereas the tracking portion connects flagged cells adjacent in time and space to form a snowstorm episode. We will report the results of our comparisons at this presentation.

  8. ClimateSpark: An In-memory Distributed Computing Framework for Big Climate Data Analytics

    Science.gov (United States)

    Hu, F.; Yang, C. P.; Duffy, D.; Schnase, J. L.; Li, Z.

    2016-12-01

    Massive array-based climate data is being generated from global surveillance systems and model simulations. They are widely used to analyze the environment problems, such as climate changes, natural hazards, and public health. However, knowing the underlying information from these big climate datasets is challenging due to both data- and computing- intensive issues in data processing and analyzing. To tackle the challenges, this paper proposes ClimateSpark, an in-memory distributed computing framework to support big climate data processing. In ClimateSpark, the spatiotemporal index is developed to enable Apache Spark to treat the array-based climate data (e.g. netCDF4, HDF4) as native formats, which are stored in Hadoop Distributed File System (HDFS) without any preprocessing. Based on the index, the spatiotemporal query services are provided to retrieve dataset according to a defined geospatial and temporal bounding box. The data subsets will be read out, and a data partition strategy will be applied to equally split the queried data to each computing node, and store them in memory as climateRDDs for processing. By leveraging Spark SQL and User Defined Function (UDFs), the climate data analysis operations can be conducted by the intuitive SQL language. ClimateSpark is evaluated by two use cases using the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate reanalysis dataset. One use case is to conduct the spatiotemporal query and visualize the subset results in animation; the other one is to compare different climate model outputs using Taylor-diagram service. Experimental results show that ClimateSpark can significantly accelerate data query and processing, and enable the complex analysis services served in the SQL-style fashion.

  9. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    International Nuclear Information System (INIS)

    Wang Zhi; He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo

    2010-01-01

    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO x emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  10. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhi, E-mail: wangzhi@tsinghua.edu.c [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China); He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2010-05-15

    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO{sub x} emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  11. A high-current rail-type gas switch with preionization by an additional corona discharge

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, E. I.; Belozerov, O. S.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    The characteristics of a high-current rail-type gas switch with preionization of the gas (air) in a spark gap by an additional corona discharge are investigated. The experiments were performed in a voltage range of 10–45 kV using a two-electrode switch consisting of two cylindrical electrodes with a diameter of 22 mm and a length of 100 mm and a set of laterally located corona-discharge needles. The requirements for the position and size of the needles are defined for which a corona discharge is ignited before a breakdown of the main gap and does not change to a sparking form, and the entire length of the rail electrodes is efficiently used. The fulfillment of these requirements ensures stable operation of the switch with a small variation of the pulse breakdown voltage, which is not more than 1% for a fixed voltage-pulse rise time in the range from 150 ns to 3.5 μs. A short delay time of the switch breakdown makes it possible to control the two-electrode switch by an overvoltage pulse of nanosecond duration.

  12. A high-current rail-type gas switch with preionization by an additional corona discharge

    International Nuclear Information System (INIS)

    Antipov, E. I.; Belozerov, O. S.; Krastelev, E. G.

    2016-01-01

    The characteristics of a high-current rail-type gas switch with preionization of the gas (air) in a spark gap by an additional corona discharge are investigated. The experiments were performed in a voltage range of 10–45 kV using a two-electrode switch consisting of two cylindrical electrodes with a diameter of 22 mm and a length of 100 mm and a set of laterally located corona-discharge needles. The requirements for the position and size of the needles are defined for which a corona discharge is ignited before a breakdown of the main gap and does not change to a sparking form, and the entire length of the rail electrodes is efficiently used. The fulfillment of these requirements ensures stable operation of the switch with a small variation of the pulse breakdown voltage, which is not more than 1% for a fixed voltage-pulse rise time in the range from 150 ns to 3.5 μs. A short delay time of the switch breakdown makes it possible to control the two-electrode switch by an overvoltage pulse of nanosecond duration.

  13. Impulse tests on distribution transformers protected by means of spark gaps

    Energy Technology Data Exchange (ETDEWEB)

    Pykaelae, M.L.; Palva, V. [Helsinki Univ. of Technology, Otaniemi (Finland). High Voltage Institute; Niskanen, K. [ABB Corporate Research, Vaasa (Finland)

    1997-12-31

    Distribution transformers in rural networks have to cope with transient overvoltages, even with those caused by the direct lightning strokes to the lines. In Finland the 24 kV network conditions, such as wooden pole lines, high soil resistivity and isolated neutral network, lead into fast transient overvoltages. Impulse testing of pole-mounted distribution transformers ({<=} 200 kVA) protected by means of spark gaps were studied. Different failure detection methods were used. Results can be used as background information for standardization work dealing with distribution transformers protected by means of spark gaps. (orig.) 9 refs.

  14. Impulse tests on distribution transformers protected by means of spark gaps

    Energy Technology Data Exchange (ETDEWEB)

    Pykaelae, M L; Palva, V [Helsinki Univ. of Technology, Otaniemi (Finland). High Voltage Institute; Niskanen, K [ABB Corporate Research, Vaasa (Finland)

    1998-12-31

    Distribution transformers in rural networks have to cope with transient overvoltages, even with those caused by the direct lightning strokes to the lines. In Finland the 24 kV network conditions, such as wooden pole lines, high soil resistivity and isolated neutral network, lead into fast transient overvoltages. Impulse testing of pole-mounted distribution transformers ({<=} 200 kVA) protected by means of spark gaps were studied. Different failure detection methods were used. Results can be used as background information for standardization work dealing with distribution transformers protected by means of spark gaps. (orig.) 9 refs.

  15. Graphene-induced strengthening in spark plasma sintered tantalum carbide–nanotube composite

    International Nuclear Information System (INIS)

    Lahiri, Debrupa; Khaleghi, Evan; Bakshi, Srinivasa Rao; Li, Wei; Olevsky, Eugene A.; Agarwal, Arvind

    2013-01-01

    Transverse rupture strength of spark plasma sintered tantalum carbide (TaC) composites reinforced with long and short carbon nanotubes (CNTs) is reported. The rupture strength depends on the transformation behavior of the CNTs during spark plasma sintering, which is dependent on their length. The TaC composite with short nanotubes shows the highest specific rupture strength. Shorter CNTs transform into multi-layered graphene sheets between TaC grains, whereas long ones retain the tubular structure. Two-dimensionsal graphene platelets offer higher resistance to pull-out, resulting in delayed fracture and higher strength.

  16. Sparking limits, cavity loading, and beam breakup instability associated with high-current rf linacs

    International Nuclear Information System (INIS)

    Faehl, R.J.; Lemons, D.S.; Thode, L.E.

    1982-01-01

    The limitations on high-current rf linacs due to gap sparking, cavity loading, and the beam breakup instability are studied. It appears possible to achieve cavity accelerating gradients as high as 35 MV/m without sparking. Furthermore, a linear analysis, as well as self-consistent particle simulations of a multipulsed 10 kA beam, indicated that only a negligible small fraction of energy is radiated into nonfundamental cavity modes. Finally, the beam breakup instability is analyzed and found to be able to magnify initial radial perturbations by a factor of no more than about 20 during the beam transit time through a 1 GeV accelerator

  17. Welding of titanium and nickel alloy by combination of explosive welding and spark plasma sintering technologies

    Energy Technology Data Exchange (ETDEWEB)

    Malyutina, Yu. N., E-mail: iuliiamaliutina@gmail.com; Bataev, A. A., E-mail: bataev@adm.nstu.ru; Shevtsova, L. I., E-mail: edeliya2010@mail.ru [Novosibirsk State Technical University, Novosibirsk, 630073 (Russian Federation); Mali, V. I., E-mail: vmali@mail.ru; Anisimov, A. G., E-mail: anis@hydro.nsc.ru [Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, 630090 (Russian Federation)

    2015-10-27

    A possibility of titanium and nickel-based alloys composite materials formation using combination of explosive welding and spark plasma sintering technologies was demonstrated in the current research. An employment of interlayer consisting of copper and tantalum thin plates makes possible to eliminate a contact between metallurgical incompatible titanium and nickel that are susceptible to intermetallic compounds formation during their interaction. By the following spark plasma sintering process the bonding has been received between titanium and titanium alloy VT20 through the thin powder layer of pure titanium that is distinguished by low defectiveness and fine dispersive structure.

  18. AN EXPERIMENTAL INVESTIGATION OF THE EFFECTS OF VARIABLE VALVE TIMING ON THE PERFORMANCE IN SPARK IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    Ali AKBAŞ

    2001-01-01

    Full Text Available In this study, an alternative prototype has been designed and constructed for variable valve timing systems which are used in spark ignition engines. The effects of intake valve timing and lift changing on engine performance have been investigated without changing the opening duration of the valves. A four stroke, single cylinder, spark ignition engine has been used for these experiments.

  19. Effect of Spark Motor Program on the development of gross motor skills in intellectually disabled educable boys

    Directory of Open Access Journals (Sweden)

    Hashem Faal Moganloo

    2013-11-01

    Results: Spark Program caused significant changes in all the variables of the study, except speed and agility, in the experimental group after 24 sessions. The changes included: agility and speed (P=0.731, balance (P=0, strength (P=0.002, and bilateral coordination (P=0. Conclusion: Spark Motor Program can improve gross motor skills in intellectually disabled educable students.

  20. Method for improving the electrostatics perforation pattern using power controlled discharges

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, C; Miranda, E; GarcIa-Garcia, J [Departament d' Enginyeria Electronica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Martinez-Cisneros, C; Alonso, J, E-mail: carolina.garzon@uab.cat [Departament de Quimica Analitica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)

    2011-06-23

    The aims of this work are to show the influence of adding a series resistance at the output of a discharge generator circuit and to point out that this component can be used to control the spark energy in electrostatic perforation systems. Analysis of the experimental results reveals that there exists a close connection between the resistor value and the obtained perforation pattern both in hole density and size. The use of a series resistor has a strong influence on the material porosity, which is an important industrial parameter for assessing the pattern perforation quality.

  1. Target fabrication using laser and spark erosion machining

    International Nuclear Information System (INIS)

    Clement, X.; Coudeville, A.; Eyharts, P.; Perrine , J.P.; Rouillard, R.

    1981-11-01

    Lasers and E.D.M. (electrical discharge machining) are both extremely useful tools for machining the small targets needed in inertial confinement studies. Lasers are currently used in a wide range of target problems and it appears that E.D.M. has a still wider range of applications for plane and spherical targets. The problems of material deformation and tool breaking are practically eliminated as the electrode and the machined part are not in mechanical contact. In comparison with laser micromachining E.D.M. offers: larger versatility with the possibility of new developments and applications; higher production speed for thin conducting materials; lower initial and operating costs; the processes are well controlled, reproducible and can be easily automated; the operation is safe without the dangers associted with lasers

  2. Effect of the SPARK Program on Physical Activity, Cardiorespiratory Endurance, and Motivation in Middle-School Students.

    Science.gov (United States)

    Fu, You; Gao, Zan; Hannon, James C; Burns, Ryan D; Brusseau, Timothy A

    2016-05-01

    This study aimed to examine the effect of a 9-week SPARK program on physical activity (PA), cardiorespiratory endurance (Progressive Aerobic Cardiovascular Endurance Run; PACER), and motivation in middle-school students. 174 students attended baseline and posttests and change scores computed for each outcome. A MANOVA was employed to examine change score differences using follow-up ANOVA and Bonferroni post hoc tests. MANOVA yielded a significant interaction for Grade × Gender × Group (Wilks's Λ = 0.89, P interactions with perceived competence differences between SPARK grades 6 and 8 (Mean Δ = 0.38, P < .05), Enjoyment differences between SPARK grades 6 and 7 (Mean Δ = 0.67, P < .001), and SPARK grades 6 and 8 (Mean Δ = 0.81, P < .001). Following the intervention, SPARK displayed greater increases on PA and motivation measures in younger students compared with the Traditional program.

  3. Vessel Sewage Discharges: No-Discharge Zones (NDZs)

    Science.gov (United States)

    States may petition the EPA to establish areas, called no discharge zones (NDZs), where vessel sewage discharges are prohibited. This page describes how NDZs are designated, the types of designations, who enforces them, and how to comply.

  4. Monitoring of lightning discharge

    International Nuclear Information System (INIS)

    Grigor'ev, V.A.

    2001-01-01

    The paper presents a brief description of a lightning discharge recording system developed at the NPO 'Monitoring Techniques' under the direction of V.M. Moskolenko (Moscow). The system provides information about dangerous environmental occurrences such as tornados and hurricanes, making the forecast of extreme situations possible, especially in the areas of dangerous industries and objects. The created automatic system can be useful in solving the tasks relating to nuclear test monitoring. (author)

  5. Underwater Ship Husbandry Discharges

    Science.gov (United States)

    2011-11-01

    which entered into force in September of 2008, prohibits the use of harmful organotins such as tributyltin ( TBT ) in AFCs used on international...States. The use of TBT AFCs is explicitly prohibited under the VGP, and vessels must remove such coatings or paint over them to prevent toxic ...to hull husbandry include (1) the discharge of toxic chemicals used as biocides in AFCs and (2) biofouling as a vector for aquatic nuisance species

  6. Radioactive wastes and discharges

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources.

  7. Radioactive wastes and discharges

    International Nuclear Information System (INIS)

    2000-01-01

    The guide sets out the radiation safety requirements and limits for the treatment of radioactive waste. They shall be observed when discharging radioactive substances into the atmosphere or sewer system, or when delivering solid, low-activity waste to a landfill site without a separate waste treatment plan. The guide does not apply to the radioactive waste resulting from the utilisation of nuclear energy or natural resources

  8. InnerSpark: A Creative Summer School and Artistic Community for Teenagers with Visual Arts Talent

    Science.gov (United States)

    Chin, Christina S.; Harrington, David M.

    2009-01-01

    InnerSpark is a residential summer arts training program for high school students established by the California State Legislature (California Education Code sections 8950-8957) in order to make it possible for "artistically gifted and talented students, broadly representative of the socioeconomic and ethnic diversity of the state, to receive…

  9. Influence of spark plasma sintering and baghdadite powder on mechanical properties of hydroxyapatite

    NARCIS (Netherlands)

    Khandan, A.; Karamian, E.; Mehdikhani-Nahrkhalaji, M.; Mirmohammadi, H.; Farzadi, A.; Ozada, N.; Heidarshenas, B.; Zamani, K.

    2015-01-01

    Since hydroxyapatite-based materials have similar composition and crystallinity as natural calcified tissues, can be used for bone/tissue engineering. In the present study a novel nanocomposite based on bioceramics such as Natural Hydroxyapatite (NHA) and Baghdadite (BAG), was sintered by spark

  10. Spark plasma-sintered Sn-based intermetallic alloys and their Li-storage studies

    CSIR Research Space (South Africa)

    Nithyadharseni, P

    2016-06-01

    Full Text Available In the present study, SnSb, SnSb/Fe, SnSb/Co, and SnSb/Ni alloy powders processed by co-precipitation were subjected to spark plasma-sintering (SPS) at 400 °C for 5 min. The compacts were structurally and morphologically characterized by X...

  11. SPARK-UP; Seaweed Production And Refining of Kelp, Ulva and Palmaria

    NARCIS (Netherlands)

    Wald, J.; Visser, de W.; Brandenburg, W.A.; Jongschaap, R.E.E.; Werf, van der A.K.; Deelman, Berth-Jan; Helmendach-Nieuwenhuize, Carola

    2016-01-01

    In het SPARK-UP project, waarin de partners Arkema, PRI-WUR en North Seaweed samenwerkten aan de ontwikkeling van toepassing van zeewier in de biobased economy, is de afgelopen jaren veel werk verzet. In een bassin op het terrein van Arkema, heeft PRI een teeltsysteem opgezet en in gebruik genomen,

  12. Spark erosion implant prosthetics in the management of an acquired maxillofacial defect.

    Science.gov (United States)

    Bloem, T J; Baxter, W D; Vivas, J

    1996-03-01

    The concept and use of spark erosion (EDM) prosthetics in implant prosthodontics has been described and demonstrated in its application to a patient suffering maxillofacial trauma. The advantages and disadvantages of this technology have been discussed for the edification of the restorative and surgical provider.

  13. A cinema for the unborn: moving pictures, mental pictures and Electra Sparks's New Thought film theory.

    Science.gov (United States)

    Ellis, Patrick

    2017-09-01

    In the 1910s, New York suffragette Electra Sparks wrote a series of essays in the Moving Picture News that advocated for cine-therapy treatments for pregnant women. Film was, in her view, the great democratizer of beautiful images, providing high-cultural access to the city's poor. These positive 'mental pictures' were important for her because, she claimed, in order to produce an attractive, healthy child, the mother must be exposed to quality cultural material. Sparks's championing of cinema during its 'second birth' was founded upon the premise of New Thought. This metaphysical Christian doctrine existed alongside the self-help and esoteric publishing domains and testified, above all, to the possibility of the 'mind-cure' of the body through the positive application of 'mental pictures'. Physiologically, their method began best in the womb, where the thoughts of the mother were of utmost importance: the eventual difference between birthing an Elephant Man or an Adonis. This positive maternal impression was commonplace in New Thought literature; it was Sparks's innovation to apply it to cinema. Investigating Sparks's film theory, practice and programming reveals her to be a harbinger of the abiding analogy between mind and motion picture that occupies film theorists to this day.

  14. 78 FR 50412 - California State Nonroad Engine Pollution Control Standards; Amendments to Spark Ignition Marine...

    Science.gov (United States)

    2013-08-19

    ... Engine Pollution Control Standards; Amendments to Spark Ignition Marine Engine and Boat Regulations... emission standards; enhanced evaporative emission controls for high performance sterndrive/inboard engines... requirement relating to the control of emissions from new nonroad engines which are used in construction...

  15. Spark Ignition of Combustible Vapor in a Plastic Bottle as a Demonstration of Rocket Propulsion

    Science.gov (United States)

    Mattox, J. R.

    2017-01-01

    I report an innovation that provides a compelling demonstration of rocket propulsion, appropriate for students of physics and other physical sciences. An electrical spark is initiated from a distance to cause the deflagration of a combustible vapor mixed with air in a lightweight plastic bottle that is consequently propelled as a rocket by the…

  16. Preliminary comparison of MP sparking characteristics for SF6 insulating gas mixtures and pure SF6

    International Nuclear Information System (INIS)

    Lindgren, R.; Wegner, H.E.

    1978-01-01

    Operation of the Brookhaven MP-7 tandem Van de Graaff accelerator with pure SF 6 insulating gas is described. Sparking and terminal voltage were monitored and are compared for operation with a mixture of SF 6 , N 2 , CO 2 and O 2 . The accelerator was found to be more difficult to operate with pure SF 6

  17. Modeling And Simulation Of Combined Extrusion For Spark Plug Body Parts

    Science.gov (United States)

    Canta, T.; Noveanu, D.; Frunza, D.

    2004-06-01

    The paper presents the modeling and simulation for the extrusion technology of a new type of spark plug body for Dacia Supernova car. This technology was simulated using the finite elements modeling and analysis SuperForm software, designed for the simulation of plastic deformation processes. There is also presented a comparison between the results of the simulation and the industrial results.

  18. Fe-Zn intermetallic phases prepared by diffusion annealing and spark-plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Pokorný, P.; Cinert, Jakub; Pala, Zdeněk

    2016-01-01

    Roč. 50, č. 2 (2016), s. 253-256 ISSN 1580-2949 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61389021 Keywords : Fe-Zn intermetallics * spark-plasma sintering * diffusion annealing * phase composition * hardness Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 0.436, year: 2016

  19. Improving the Tribological Properties of Spark-Anodized Titanium by Magnetron Sputtered Diamond-Like Carbon

    Directory of Open Access Journals (Sweden)

    Zhaoxiang Chen

    2018-02-01

    Full Text Available Spark-anodization of titanium can produce adherent and wear-resistant TiO2 film on the surface, but the spark-anodized titanium has lots of surface micro-pores, resulting in an unstable and high friction coefficient against many counterparts. In this study, the diamond-like carbon (DLC was introduced into the micro-pores of spark-anodized titanium by the magnetron sputtering technique and a TiO2/DLC composite coating was fabricated. The microstructure and tribological properties of TiO2/DLC composite coating were investigated and compared with the anodic TiO2 mono-film and DLC mono-film. Results show that the DLC deposition significantly decreased the surface roughness and porosity of spark-anodized titanium. The fabricated TiO2/DLC composite coating exhibited a more stable and much lower friction coefficient than anodic TiO2 mono-film. Although the friction coefficient of the composite coating and the DLC mono-film was similar under both light load and heavy load conditions, the wear life of the composite coating was about 43% longer than that of DLC mono-film under heavy load condition. The wear rate of titanium with protective composite coating was much lower than that of titanium with DLC mono-film. The superior low friction coefficient and wear rate of the TiO2/DLC composite coating make it a good candidate as protective coating on titanium alloys.

  20. Development of 2024 AA-Yttrium composites by Spark Plasma Sintering

    Science.gov (United States)

    Vidyasagar, CH S.; Karunakar, D. B.

    2018-04-01

    The method of fabrication of MMNCs is quite a challenge, which includes advanced processing techniques like Spark Plasma Sintering (SPS), etc. The objective of the present work is to fabricate aluminium based MMNCs with the addition of small amounts of yttrium using Spark Plasma Sintering and to evaluate their mechanical and microstructure properties. Samples of 2024 AA with yttrium ranging from 0.1% to 0.5 wt% are fabricated by Spark Plasma Sintering (SPS). Hardness of the samples is determined using Vickers hardness testing machine. The metallurgical characterization of the samples is evaluated by Optical Microscopy (OM), Field Emission Scanning Electron Microscopy (FE-SEM). Unreinforced 2024 AA sample is also fabricated as a benchmark to compare its properties with those of the composite developed. It is found that the yttrium addition increases the above mentioned properties by altering the precipitation kinetics and intermetallic formation to some extent and then decreases gradually when yttrium wt% increases beyond 0.3 wt%. High density (˂ 99.75) is achieved in the samples and highest hardness achieved is 114 Hv, fabricated by spark plasma sintering and uniform distribution of yttrium is observed.

  1. Sparking Passion: Engaging Student Voice through Project-Based Learning in Learning Communities

    Science.gov (United States)

    Ball, Christy L.

    2016-01-01

    How do we confront entrenched educational practices in higher education that lead to student demotivation, poor retention, and low persistence? This article argues that project-based learning that situates student voice and capacity at the center of culturally-responsive curriculum has the potential to spark student passion for problem-solving…

  2. Measurement of the spark probability in single gap parallel plate chambers

    International Nuclear Information System (INIS)

    Arefiev, A.; Bencze, Gy.L.; Choumilov, E.; Civinini, C.; Dalla Santa, F.; D'Alessandro, R.; Ferrando, A.; Fouz, M.C.; Golovkin, V.; Kholodenko, A.; Iglesias, A.; Ivochkin, V.; Josa, M.I.; Malinin, A.; Meschini, M.; Misyura, S.; Pojidaev, V.; Salicio, J.M.

    1996-01-01

    We present results on the measurements of the spark probability with CO 2 and CF 4 /CO 2 (80/20) mixture, at atmospheric pressure, using 1.5 mm gas gap parallel plate chambers, working at a gas gain ranging from 4.5 x 10 2 to 3.3 x 10 4 . (orig.)

  3. Commissioning of an automated microphotometer used in spark-source mass spectrometry

    International Nuclear Information System (INIS)

    Pearton, D.C.G.; Heron, C.

    1983-01-01

    A description of the automated microphotometer and its operation is given, which includes measurement under computer control. Speed and precision tests indicate that the system is superior in every respect to that in which an analyst reads photoplates in spark-source mass spectrometry

  4. Preliminary investigation into the simulation of a laser-induced plasma by means of a floating object in a spark gap

    CSIR Research Space (South Africa)

    West, NJ

    2007-08-01

    Full Text Available In this research, an orthogonally laser-triggered spark gap is investigated. The laser beam is directed in the region of a 30mm spark gap at 90 degrees to the gap and focused on the axis. The influence of plasma position within the spark gap...

  5. Characterization of microwave-induced electric discharge phenomena in metal-solvent mixtures.

    Science.gov (United States)

    Chen, Wen; Gutmann, Bernhard; Kappe, C Oliver

    2012-02-01

    Electric discharge phenomena in metal-solvent mixtures are investigated utilizing a high field density, sealed-vessel, single-mode 2.45 GHz microwave reactor with a built-in camera. Particular emphasis is placed on studying the discharges exhibited by different metals (Mg, Zn, Cu, Fe, Ni) of varying particle sizes and morphologies in organic solvents (e.g., benzene) at different electric field strengths. Discharge phenomena for diamagnetic and paramagnetic metals (Mg, Zn, Cu) depend strongly on the size of the used particles. With small particles, short-lived corona discharges are observed that do not lead to a complete breakdown. Under high microwave power conditions or with large particles, however, bright sparks and arcs are experienced, often accompanied by solvent decomposition and formation of considerable amounts of graphitized material. Small ferromagnetic Fe and Ni powders (discharges. Electric discharges were also observed when Cu metal or other conductive materials such as silicon carbide were exposed to the microwave field in the absence of a solvent in an argon or nitrogen atmosphere.

  6. Specific Localization of High-Voltage Discharge in Vicinity of Two Gases

    Science.gov (United States)

    Leonov, Sergey; Shurupov, Michail; Shneider, Michail; Napartovich, Anatoly; Kochetov, Igor

    2011-10-01

    A subject of paper is the appearance and dynamics of sub-microsecond long filamentary high-voltage discharge generated in atmosphere, and in non-homogeneous gaseous media. Typical discharge parameters are: maximal current 1-3kA, breakdown voltage >100 kV, duration 30-100 ns, gap distance 50-100mm. The effect of discharge specific localization within mixing layer of two gases is particularly discussed. The second discussed idea is the filamentary discharge movement within a region with concentration gradient of different components. For the short-pulse discharge the physical mechanism appears as the following. The first stage of the spark breakdown is the multiple streamers propagation from the high-voltage electrode toward the grounded one. In case of high-power electrical source those streamers occupy a huge volume of the gas, covering all possible paths for the further development. The next phase consists of the real selection of the discharge path among the multiple channels with non-zero conductivity. Experiments and calculations are presented for Air-CO2 and Air-C2H4 pairs. The effects found are supposed to be applied for lightning prediction/protection, and for high-speed mixing acceleration. The work was funded through EOARD-ISTC project #3793p. Some part of this work was supported by RFBR grant #10-08-00952.

  7. Plasma Discharge Process in a Pulsed Diaphragm Discharge System

    Science.gov (United States)

    Duan, Jianjin; Hu, Jue; Zhang, Chao; Wen, Yuanbin; Meng, Yuedong; Zhang, Chengxu

    2014-12-01

    As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.

  8. Compact Intracloud Discharges

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David A. [Univ. of Colorado, Boulder, CO (United States)

    1998-11-01

    In November of 1993, mysterious signals recorded by a satellite-borne broadband VHF radio science experiment called Blackboard led to a completely unexpected discovery. Prior to launch of the ALEXIS satellite, it was thought that its secondary payload, Blackboard, would most often detect the radio emissions from lightning when its receiver was not overwhelmed by noise from narrowband communication carriers. Instead, the vast majority of events that triggered the instrument were isolated pairs of pulses that were one hundred times more energetic than normal thunderstorm electrical emissions. The events, which came to be known as TIPPs (for transionospheric pulse pairs), presented a true mystery to the geophysics community. At the time, it was not even known whether the events had natural or anthropogenic origins. After two and one half years of research into the unique signals, two ground-based receiver arrays in New Mexico first began to detect and record thunderstorm radio emissions that were consistent with the Blackboard observations. On two occasions, the ground-based systems and Blackboard even recorded emissions that were produced by the same exact events. From the ground based observations, it has been determined that TIPP events areproduced by brief, singular, isolated, intracloud electrical discharges that occur in intense regions of thunderstorms. These discharges have been dubbed CIDS, an acronym for compact intracloud discharges. During the summer of 1996, ground-based receiver arrays were used to record the electric field change signals and broadband HF emissions from hundreds of CIDS. Event timing that was accurate to within a few microseconds made possible the determination of source locations using methods of differential time of arrival. Ionospheric reflections of signals were recorded in addition to groundwave/line-of-sight signals and were used to determine accurate altitudes for the discharges. Twenty-four CIDS were recorded from three

  9. Effect of spark plug and fuel injector location on mixture stratification in a GDI engine - A CFD analysis

    Science.gov (United States)

    Saw, O. P.; Mallikarjuna, J. M.

    2017-09-01

    The mixture preparation in gasoline direct injection (GDI) engines operating at stratified condition plays an important role in deciding the combustion, performance and emission characteristics of the engine. In a wall-guided GDI engine, with a late fuel injection strategy, piston top surface is designed in such a way that the injected fuel is directed towards the spark plug to form a combustible mixture at the time of ignition. In addition, in these engines, location of spark-plug and fuel injector, fuel injection pressure and timing are also important to create a combustible mixture near the spark plug. Therefore, understanding the mixture formation under the influence of the location of spark plug and fuel injector is very essential for the optimization of the engine parameters. In this study, an attempt is made to understand the effect of spark plug and fuel injector location on the mixture preparation in a four-stroke, four-valve and wall-guided GDI engine operating under a stratified condition by using computational fluid dynamics (CFD) analysis. All the CFD simulations are carried out at an engine speed of 2000 rev/min., and compression ratio of 10.6, at an overall equivalence ratio (ER) of about 0.65. The fuel injection and spark timings are maintained at 605 and 710 CADs respectively. Finally, it is concluded that, combination of central spark plug and side fuel injector results in better combustion and performance.

  10. Continuous pile discharging machine

    International Nuclear Information System (INIS)

    Smith, P.P.

    1976-01-01

    A device for discharging cartridges from tubes under fluid pressure includes a cylindrical housing adapted to be seated in a leak-tight manner on the end of one of the tubes, a chute depending from the cylindrical housing near the end seated on the end of the tube, a rotatable piston having a wrench on the forward end thereof disposed in the cylindrical housing and adapted to manipulate a plug in the end of the tube, and a telescopic hydraulic ram adapted to move the piston toward the plug. In addition the wrench contains a magnet which prevents inadvertent uncoupling of the wrench and the plug. 7 claims, 10 drawing figures

  11. Capacitive discharge exciplex lamps

    Energy Technology Data Exchange (ETDEWEB)

    Sosnin, E A; Erofeev, M V; Tarasenko, V F [High Current Electronics Institute, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation)

    2005-09-07

    Simple-geometry exciplex lamps of a novel type excited by a capacitive discharge (CD-excilamps) have been investigated. An efficient radiation has been obtained on KrBr*, KrCl*, XeBr*, XeCl* molecules and I* atom. The highest values of efficiency of various working molecules are approximately 10-18%. The lifetime of the operating gas mixture in KrCl*, XeCl*, I* and XeBr* exciplex lamps excited by a CD is above 1000 h. Owing to the above-mentioned characteristics, the exciplex lamps excited by a CD are supposed to be very promising for various applications.

  12. Capacitive discharge exciplex lamps

    International Nuclear Information System (INIS)

    Sosnin, E A; Erofeev, M V; Tarasenko, V F

    2005-01-01

    Simple-geometry exciplex lamps of a novel type excited by a capacitive discharge (CD-excilamps) have been investigated. An efficient radiation has been obtained on KrBr*, KrCl*, XeBr*, XeCl* molecules and I* atom. The highest values of efficiency of various working molecules are approximately 10-18%. The lifetime of the operating gas mixture in KrCl*, XeCl*, I* and XeBr* exciplex lamps excited by a CD is above 1000 h. Owing to the above-mentioned characteristics, the exciplex lamps excited by a CD are supposed to be very promising for various applications

  13. Continuous pile discharging machine

    Science.gov (United States)

    Smith, Phillips P.

    1976-05-11

    A device for discharging cartridges from tubes under fluid pressure includes a cylindrical housing adapted to be seated in a leak-tight manner on the end of one of the tubes, a chute depending from the cylindrical housing near the end seated on the end of the tube, a rotatable piston having a wrench on the forward end thereof disposed in the cylindrical housing and adapted to manipulate a plug in the end of the tube, and a telescopic hydraulic ram adapted to move the piston toward the plug. In addition the wrench contains a magnet which prevents inadvertent uncoupling of the wrench and the plug.

  14. X-ray emission from a nanosecond-pulse discharge in an inhomogeneous electric field at atmospheric pressure

    International Nuclear Information System (INIS)

    Zhang Cheng; Shao Tao; Ren Chengyan; Zhang Dongdong; Tarasenko, Victor; Kostyrya, Igor D.; Ma Hao; Yan Ping

    2012-01-01

    This paper describes experimental studies of the dependence of the X-ray intensity on the anode material in nanosecond high-voltage discharges. The discharges were generated by two nanosecond-pulse generators in atmospheric air with a highly inhomogeneous electric field by a tube-plate gap. The output pulse of the first generator (repetitive pulse generator) has a rise time of about 15 ns and a full width at half maximum of 30–40 ns. The output of the second generator (single pulse generator) has a rise time of about 0.3 ns and a full width at half maximum of 1 ns. The electrical characteristics and the X-ray emission of nanosecond-pulse discharge in atmospheric air are studied by the measurement of voltage-current waveforms, discharge images, X-ray count and dose. Our experimental results showed that the anode material rarely affects electrical characteristics, but it can significantly affect the X-ray density. Comparing the density of X-rays, it was shown that the highest x-rays density occurred in the diffuse discharge in repetitive pulse mode, then the spark discharge with a small air gap, and then the corona discharge with a large air gap, in which the X-ray density was the lowest. Therefore, it could be confirmed that the bremsstrahlung at the anode contributes to the X-ray emission from nanosecond-pulse discharges.

  15. Electric discharges in an electrostatic machine. Analysis of work by J.A. Staniforth and C.M. Cooke

    International Nuclear Information System (INIS)

    Frick, G.

    1988-04-01

    Electric discharges, stored energy, and transient phenomena in electrostatic accelerators are reviewed in the framework of the Vivitron project. Before discharge, predischarge phenomena governed by the value of the electric field and the geometry appear. Transient phenomena appear after discharge. The alternance lasts from 20 to 100 nsec. Waves propagating along the electrodes can cause other discharges, after a time lapse. Overvoltages of a factor of 1.5 to 2 can appear. If they provoke fresh discharges, formation times may be such that in many cases the overvoltages remain present throughout times of this order of magnitude. The behavior of a solid insulator under such conditions is unknown, and the behavior inside the tube is poorly understood. If the initial arc is produced outside the tube, a large part of the available energy will be dissipated before the arrival of the overvoltage at the sensitive part of the tube. If the discharge begins in the tube, it will propagate outside because of the short circuit created in the tube by the discharges. For rapid phenomena, it is possible that the spark gaps may not always operate efficiently, especially for vacuum discharges [fr

  16. Experimental Investigation – Magnetic Assisted Electro Discharge Machining

    Science.gov (United States)

    Kesava Reddy, Chirra; Manzoor Hussain, M.; Satyanarayana, S.; Krishna, M. V. S. Murali

    2018-04-01

    Emerging technology needs advanced machined parts with high strength and temperature resistance, high fatigue life at low production cost with good surface quality to fit into various industrial applications. Electro discharge machine is one of the extensively used machines to manufacture advanced machined parts which cannot be machined by other traditional machine with high precision and accuracy. Machining of DIN 17350-1.2080 (High Carbon High Chromium steel), using electro discharge machining has been discussed in this paper. In the present investigation an effort is made to use permanent magnet at various positions near the spark zone to improve surface quality of the machined surface. Taguchi methodology is used to obtain optimal choice for each machining parameter such as peak current, pulse duration, gap voltage and Servo reference voltage etc. Process parameters have significant influence on machining characteristics and surface finish. Improvement in surface finish is observed when process parameters are set at optimum condition under the influence of magnetic field at various positions.

  17. Cálculo del exponente de Hurst utilizando Spark Streaming: enfoque experimental sobre un flujo de transacciones de criptomonedas

    OpenAIRE

    Basgall, María José; Hasperué, Waldo; Naiouf, Marcelo; Bariviera, Aurelio F.

    2017-01-01

    Actualmente es cada vez más común encontrarse con problemas de Big Data, donde las aplicaciones desarrolladas para resolver dichos problemas son implementadas en frameworks específicos. Uno de los que más se utiliza es Apache Spark, que posee el módulo Spark Streaming el cual permite el tratamiento de datos provenientes de un flujo de información potencialmente infinito. En este trabajo se presenta una aplicación implementada en Spark Streaming que realiza el cálculo del exponente de Hurst, u...

  18. Influence of sintering temperature on mechanical properties of spark plasma sintered pre-alloyed Ti-6Al-4 V powder

    Energy Technology Data Exchange (ETDEWEB)

    Muthuchamy, A.; Patel, Paridh; Rajadurai, M. [VIT Univ., Vellore, Tamil Nadu (India); Chaurisiya, Jitendar K. [NIT, Suratkal (India); Annamalai, A. Raja [VIT Univ., Vellore, Tamil Nadu (India). Centre for Innovative Manufacturing Research

    2018-04-01

    Spark plasma sintering provides faster heating that can create fully, or near fully, dense samples without significant grain growth. In this study, pre-alloyed Ti-6Al-4 V powder compact samples produced through field assisted sintering in a spark plasma sintering machine are compared as a function of consolidation temperature. The effect of sintering temperature on the densification mechanism, microstructural evolution and mechanical properties of spark plasma sintered Ti-6Al-4 V alloy compacts was investigated in detail. The compact, sintered at 1100 C, exhibited near net density, highest hardness and strength as compared to the other compacts processed at a temperature lower than 1100 C.

  19. Cryogenic high current discharges

    International Nuclear Information System (INIS)

    Meierovich, B.E.

    1994-01-01

    Z-pinches formed from frozen deuterium fibers by a rapidly rising current have enhanced stability and high neutron yield. The efforts to understand the enhanced stability and neutron yield on the basis of classical picture of Bennett equilibrium of the current channel has not given satisfactory results. The traditional approach does not take into account the essential difference between the frozen deuterium fiber Z-pinches and the usual Z-pinches such as exploding wires or classical gas-puffed Z-pinches. The very low temperature of the fiber atoms (10 K), together with the rapidly rising current, result in the coexistence of a high current channel with unionized fiber atoms for a substantial period of time. This phenomena lasts during the risetime. This approach takes into account the difference of the breakdown in a dielectric deuterium fiber and the breakdown in a metallic wire. This difference is essential to the understanding of specific features of cryogenic high current discharges. Z-pinches in frozen deuterium fibers should be considered as a qualitatively new phenomenon on the boundary of cryogenic and high current physics. It is a start of a new branch in plasma physics: the physics of cryogenic high current discharges

  20. Diffusion of condenser water discharge

    International Nuclear Information System (INIS)

    Iwakiri, Toshio

    1977-01-01

    Thermal and nuclear power stations in Japan are mostly located in coastal area, and the cooling water is discharged into sea as warm water. Recently, large interest is taken in this matter, and it is desirable to predict the diffusion of warm discharge accurately and to take effective measures for lowering the temperature. As for the methods of predicting the diffusion of warm discharge, simplified estimation, mathematical analysis and hydrographical model experiment are used corresponding to objects and conditions. As for the measures to lower temperature, the method of discharging warm water into deep sea bottom was confirmed to be very effective. In this paper, the phenomena of diffusion of warm discharge in sea, the methods of predicting the diffusion of warm discharge, and the deep sea discharge as the measure for lowering temperature are outlined. The factors concerning the diffusion of warm discharge in sea are the conditions of discharge, topography and sea state, and the diffusion is roughly divided into mixing diffusion in the vicinity of warm water outlet and eddy diffusion in distant region. It is difficult to change artificially the conditions of diffusion in distant region, and the measures of raising the rate of dilution in near region are effective, therefore the deep sea discharge is adopted. (Kako, I.)

  1. Heart bypass surgery - minimally invasive - discharge

    Science.gov (United States)

    ... invasive direct coronary artery bypass - discharge; MIDCAB - discharge; Robot assisted coronary artery bypass - discharge; RACAB - discharge; Keyhole ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  2. Vaginal Discharge: What's Normal, What's Not

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Vaginal Discharge: What's Normal, What's Not KidsHealth / For Teens / ... Discharge: What's Normal, What's Not Print What Is Vaginal Discharge? Vaginal discharge is fluid that comes from ...

  3. Analysis of Multipactor Discharge

    International Nuclear Information System (INIS)

    Lau, Y. Y.

    2005-01-01

    Several comprehensive studies of radio frequency (rf) breakdown and rf heating are reported. They are of general interest to magnetic confinement fusion, rf linac, and high power microwave source development. The major results include: (1) a ground-breaking theory of multipactor discharge on dielectric, including a successful proof-of-principle experiment that verified the newly developed scaling laws, (2) an in depth investigation of the failure mechanisms of diamond windows and ceramic windows, and of the roles of graphitization, thin films of coating and contaminants, and (3) a most comprehensive theory, to date, on the heating of particulates by an electromagnetic pulse, and on the roles of rf magnetic field heating and of rf electric field heating, including the construction of new scaling laws that govern them. The above form a valuable knowledge base for the general problem of heating phenomenology

  4. Radioactive wastes and discharges

    International Nuclear Information System (INIS)

    1993-01-01

    According to the Section 24 of the Finnish Radiation Decree (1512/91), the Finnish Centre for Radiation and Nuclear Safety shall specify the concentration and activity limits and principles for the determination whether a waste can be defined as a radioactive waste or not. The radiation safety requirements and limits for the disposal of radioactive waste are given in the guide. They must be observed when discharging radioactive waste into the atmosphere or sewer system, or when delivering solid low-activity waste to a landfill site without a separate waste disposal plan. The guide does not apply to the radioactive waste resulting from the utilization of nuclear energy of natural resources. (4 refs., 1 tab.)

  5. Plasma processes in water under effect of short duration pulse discharges

    Science.gov (United States)

    Gurbanov, Elchin

    2013-09-01

    It is very important to get a clear water without any impurities and bacteria by methods, that don't change the physical and chemical indicators of water now. In this article the plasma processes during the water treatment by strong electric fields and short duration pulse discharges are considered. The crown discharge around an electrode with a small radius of curvature consists of plasma leader channels with a high conductivity, where the thermo ionization processes and UV-radiation are taken place. Simultaneously the partial discharges around potential electrode lead to formation of atomic oxygen and ozone. The spark discharge arises, when plasma leader channels cross the all interelectrode gap, where the temperature and pressure are strongly grown. As a result the shock waves and dispersing liquid streams in all discharge gap are formed. The plasma channels extend, pressure inside it becomes less than hydrostatic one and the collapse and UV-radiation processes are started. The considered physical processes can be successfully used as a basis for development of pilot-industrial installations for conditioning of drinking water and to disinfecting of sewage.

  6. Synergistic effect of pulsed corona discharges and ozonation on decolourization of methylene blue in water

    CERN Document Server

    Malik, M A; Ghaffar, A; Ahmed, K

    2002-01-01

    The effect of O sub 2 and O sub 3 bubbling on decolourization of methylene blue by pulsed corona discharges in water was studied. The pulsed corona discharges were produced by charging an 80 pF capacitor with a 40 kV DC source, through a 100 M OMEGA resistor, and discharging it into a needle-plate type reactor at 60 Hz through a rotating spark gap switch. A 20 ml sample of 13.25 mg l sup - sup 1 methylene blue in distilled water was decolourized in 120 min. Bubbling O sub 2 at 10 ml min sup - sup 1 through the discharge region reduced the decolourization time to 25 min. Bubbling O sub 2 containing 1500 mu mol O sub 3 l sup - sup 1 at 10 ml min sup - sup 1 reduced the decolourization time to 8 min. The O sub 3 was produced by fractionating input energy between a water treatment reactor and a O sub 3 generator, i.e. no additional energy was consumed for O sub 3 production. Under the same experimental conditions methylene blue solution in tap water was decolourized in >210 min by corona discharge in solution, in...

  7. Tesla's coherent plasma discharge -and- a plan for megavolts at Megahertz

    International Nuclear Information System (INIS)

    Nichson, J.D.

    1987-01-01

    In his lecture on Experiments With Alternate Currents of High Potential and High Frequency before the Institute of Electrical Engineers in London (1892), Tesla reports a discharge through a partially evacuated air tube of 1 meter length and 1 inch diameter. It is characterized by the following properties: (1) The filamentary discharge may be locally displaced by a nearby dielectric body or a magnet. (2) When the filament is released, it demonstrates behaviour similar to that of a string which suspends a weight, including the formation of standing waves with distinct nodes. (3) Its decay time is on the order of 8 minutes. (4) The vibrating filament may be split with a magnet to produce two vibrating filaments. (5) This effect could only be formed with a dynamo-driven coil at low air pressures in the tube. The disruptive discharge coil (coloquially a Tesla Coil) failed to produce the effect with its superior voltage and frequency range. It is here proposed that this phenomenon is related to positive leader formation. A model for this, consistent for AC and DC discharges, is advanced. Also, a novel method for regulation of a nitrogen-filled spark gap will be proposed. It is hoped that this new device will produce smooth, uniform discharges from the Tesla Coil. This, if theory is correct on many points, will reproduce Tesla's coherent plasma at higher pressures in free-standing form, and will allow other novel effects

  8. Anodizing of magnesium alloy AZ31 in alkaline solutions with silicate under continuous sparking

    International Nuclear Information System (INIS)

    Chai Liyuan; Yu Xia; Yang Zhihui; Wang Yunyan; Okido, Masazumi

    2008-01-01

    Anodization is a useful technique for forming protective films on magnesium alloys and improves its corrosion resistance. Based on the alkaline electrolyte solution with primary oxysalt developed previously, the optimum secondary oxysalt was selected by comparing the anti-corrosion property of anodic film. The structure, component and surface morphology of anodic film and cross-section were analyzed using energy dispersion spectrometer (EDS), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The corrosion process was detected by electrochemical impedance spectroscopy (EIS). The results showed that secondary oxysalt addition resulted in different anodizing processes, sparking or non-sparking. Sodium silicate was the most favorable additive of electrolyte, in which anodic film with the strongest corrosion resistance was obtained. The effects of process parameters, such as silicate concentration, applied current density and temperature, were also investigated. High temperature did not improve anti-property of anodic film, while applying high current density resulted in more porous surface of film

  9. A Parallel Approach for Frequent Subgraph Mining in a Single Large Graph Using Spark

    Directory of Open Access Journals (Sweden)

    Fengcai Qiao

    2018-02-01

    Full Text Available Frequent subgraph mining (FSM plays an important role in graph mining, attracting a great deal of attention in many areas, such as bioinformatics, web data mining and social networks. In this paper, we propose SSiGraM (Spark based Single Graph Mining, a Spark based parallel frequent subgraph mining algorithm in a single large graph. Aiming to approach the two computational challenges of FSM, we conduct the subgraph extension and support evaluation parallel across all the distributed cluster worker nodes. In addition, we also employ a heuristic search strategy and three novel optimizations: load balancing, pre-search pruning and top-down pruning in the support evaluation process, which significantly improve the performance. Extensive experiments with four different real-world datasets demonstrate that the proposed algorithm outperforms the existing GraMi (Graph Mining algorithm by an order of magnitude for all datasets and can work with a lower support threshold.

  10. A jumping spark counter for various applications; rapid determination of its counting parameters

    International Nuclear Information System (INIS)

    Varnagy, M.; Vasvary, L.; Gyarmati, E.; Juhasz, S.; Scharbert, T.; Sztaricskai, T.

    1977-01-01

    On the basis of the method proposed by Cross and Tommasino a jumping spark counter (JSC) has been constructed which is applicable for the counting (continuously or 'step by step') of the perforations in thin (5-20μm) polymer foils. The JSC was combined with a DIDAC 4000 multichannel pulse-height analyser and multiscaler to determine automatically the best parameters and procedures for spark counting as well as to study the working mechanism of the JSC. Investigations were performed on etched Markrofol GK foils irradiated with fission fragments and exposed to 0.35 MRad gamma-rays. The track density interval studies was 0-50000 tracks/cm 2 . The possibility of the adoption of JSC for neutron dosimetric application, evaluation of angular distribution and for safegaurd purposes was tested. The possible consequences of the results are discussed. (Auth.)

  11. A Feature Selection Method for Large-Scale Network Traffic Classification Based on Spark

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2016-02-01

    Full Text Available Currently, with the rapid increasing of data scales in network traffic classifications, how to select traffic features efficiently is becoming a big challenge. Although a number of traditional feature selection methods using the Hadoop-MapReduce framework have been proposed, the execution time was still unsatisfactory with numeral iterative computations during the processing. To address this issue, an efficient feature selection method for network traffic based on a new parallel computing framework called Spark is proposed in this paper. In our approach, the complete feature set is firstly preprocessed based on Fisher score, and a sequential forward search strategy is employed for subsets. The optimal feature subset is then selected using the continuous iterations of the Spark computing framework. The implementation demonstrates that, on the precondition of keeping the classification accuracy, our method reduces the time cost of modeling and classification, and improves the execution efficiency of feature selection significantly.

  12. Magnetic microstructure and magnetic properties of spark plasma sintered NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.L., E-mail: hyl1019_lin@163.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Wang, Y.; Hou, Y.H.; Wang, Y.L.; Wu, Y.; Ma, S.C. [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Z.W.; Zeng, D.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Tian, Y.; Xia, W.X. [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Zhong, Z.C., E-mail: zzhong2014@sina.com [School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2016-02-01

    Nanocrystalline NdFeB magnets were prepared by spark plasma sintering (SPS) technique using melt-spun ribbons as starting materials. A distinct two-zone structure with coarse grain zone and fine grain zone was formed in the SPSed magnets. Multi-domain particle in coarse grain zone and exchange interaction domain for fine grain zone were observed. Intergranular non-magnetic phase was favorable to improve the coercivity due to the enhancement of domain wall pinning effects and increased exchange-decouple. The remanent polarization of 0.83 T, coercivity of 1516 kA/m, and maximum energy product of 118 kJ/m{sup 3} are obtained for an isotropic magnet. - Highlights: • Nanocrystalline NdFeB magnets were prepared by spark plasma sintering technique. • Multi-domain particle and exchange interaction domain were observed. • Magnetic microstructure and their relation to the properties were investigated.

  13. Gas mixtures for spark gap closing switches with emphasis on efficiency of operation

    International Nuclear Information System (INIS)

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-01-01

    The efficient operation of a spark gap closing switch requires a gaseous medium with large breakdown strength, low conduction voltage, and a short formative time lag. Gas properties necessary to achieve these requirements are identified and discussed. Based on available knowledge of such properties, a number of binary (e.g., c-C 4 F 8 , or l-C 3 F 6 , or n-C 4 F 10 , or C 3 F 8 , or C 6 F 6 in Ar or He or H 2 ) and ternary gas mixtures (e.g., c-C 4 F 8 , or n-C 4 F 10 , or C 3 F 8 in Ar or He + C 2 H 2 or another low ionization onset additive) have been identified which may be suitable for use in spark gap closing switches

  14. Prediction of heart disease using apache spark analysing decision trees and gradient boosting algorithm

    Science.gov (United States)

    Chugh, Saryu; Arivu Selvan, K.; Nadesh, RK

    2017-11-01

    Numerous destructive things influence the working arrangement of human body as hypertension, smoking, obesity, inappropriate medication taking which causes many contrasting diseases as diabetes, thyroid, strokes and coronary diseases. The impermanence and horribleness of the environment situation is also the reason for the coronary disease. The structure of Apache start relies on the evolution which requires gathering of the data. To break down the significance of use programming focused on data structure the Apache stop ought to be utilized and it gives various central focuses as it is fast in light as it uses memory worked in preparing. Apache Spark continues running on dispersed environment and chops down the data in bunches giving a high profitability rate. Utilizing mining procedure as a part of the determination of coronary disease has been exhaustively examined indicating worthy levels of precision. Decision trees, Neural Network, Gradient Boosting Algorithm are the various apache spark proficiencies which help in collecting the information.

  15. Jumping spark evaluation of α-radiograms taken on strippable LR-115 film

    International Nuclear Information System (INIS)

    Somogyi, G.; Hunyadi, I.; Varga, Zs.

    1978-01-01

    Jumping spark counting was used for the automatic measurement of α-ray tracks on Kodak Pathe LR-115 type special cellulose nitrate films. The effect of temperature and interruptions on the etching rate was observed during the etching of the α track detectors. The recommended parameters for the etching are the following: 10% NaOH solution, 60 +- 0.1 deg C, 1.5 h etching time, 20 rotations/min. The final thickness is 6-7 μm. The counting efficiency of the jumping spark evaluation in the function of the track density and the α energy was carefully studied. The angular distribution of the α particles from the Al(p, α) 24 Mg reaction was determined. This method can be effectively used for the measurement of environmental α activity as for 222 Rn release from 226 Ra. (V.N.)

  16. Evaluating the Impact of Data Placement to Spark and SciDB with an Earth Science Use Case

    Science.gov (United States)

    Doan, Khoa; Oloso, Amidu; Kuo, Kwo-Sen; Clune, Thomas; Yu, Hongfeng; Nelson, Brian; Zhang, Jian

    2016-01-01

    We investigate the impact of data placement for two Big Data technologies, Spark and SciDB, with a use case from Earth Science where data arrays are multidimensional. Simultaneously, this investigation provides an opportunity to evaluate the performance of the technologies involved. Two datastores, HDFS and Cassandra, are used with Spark for our comparison. It is found that Spark with Cassandra performs better than with HDFS, but SciDB performs better yet than Spark with either datastore. The investigation also underscores the value of having data aligned for the most common analysis scenarios in advance on a shared nothing architecture. Otherwise, repartitioning needs to be carried out on the fly, degrading overall performance.

  17. Pestov spark counter prototype development for the CERN-LHC ALICE experiment

    International Nuclear Information System (INIS)

    Badura, E.; Eschke, J.; Gaiser, H.; Gutbrod, H.H.; Kopf, U.; Neyer, C.; Roters, B.; Schmidt, H.R.; Schulze, R.; Steinhaeuser, P.; Stelzer, H.; Frolov, A.R.

    1995-11-01

    A prototype Pestov Spark Counter with 2-dimensional position resolution has been developed. The position resolution is 0.32 mm and <2 mm in transverse and longitudinal direction, respectively. Beam tests yielded both the time resolution and the efficiency in accordance with earlier results obtained at BNIP Novosibirsk. A longterm stability test has been performed and stable behaviour for more then 3 months was observed. (orig.)

  18. Method for operating a spark-ignition, direct-injection internal combustion engine

    Science.gov (United States)

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  19. Master Sintering Surface: A practical approach to its construction and utilization for Spark Plasma Sintering prediction

    Directory of Open Access Journals (Sweden)

    Pouchly V.

    2012-01-01

    Full Text Available The sintering is a complex thermally activated process, thus any prediction of sintering behaviour is very welcome not only for industrial purposes. Presented paper shows the possibility of densification prediction based on concept of Master Sintering Surface (MSS for pressure assisted Spark Plasma Sintering (SPS. User friendly software for evaluation of the MSS is presented. The concept was used for densification prediction of alumina ceramics sintered by SPS.

  20. Spark-protected ion-source control and monitoring system at 1.5 MV

    International Nuclear Information System (INIS)

    Bogaty, J.M.; Zolecki, R.

    1981-01-01

    The Heavy Ion Fusion Program at Argonne National Laboratory utilizes a 1.5-MV Xe ion preaccelerator. Reliable beam transport requires accurate measurements and precise control of various ion-source parameters. This paper discusses the use of a multiplexed fiberoptic data-transmission system and low-cost digital stepper motors for control functions. Techniques are discussed which allow TTL and CMOS semiconductor curcuits to survive the destructive sparks which can occur in the 1.5-MV preaccelerator

  1. Microstructure and phase stability of W-Cr alloy prepared by spark plasma sintering

    Czech Academy of Sciences Publication Activity Database

    Vilémová, Monika; Illková, Ksenia; Lukáč, František; Matějíček, Jiří; Klečka, Jakub; Leitner, J.

    2018-01-01

    Roč. 127, February (2018), s. 173-178 ISSN 0920-3796 R&D Projects: GA ČR(CZ) GA17-23964S Institutional support: RVO:61389021 Keywords : Tungsten-chromium alloy * Phase stability * Decomposition * Thermal conductivity * Self-passivating alloys * Spark plasma sintering Subject RIV: JJ - Other Materials OBOR OECD: Materials engineering Impact factor: 1.319, year: 2016 https://www.sciencedirect.com/science/article/pii/S092037961830005X

  2. Effect of gasket of varying thickness on spark ignition engines | Ajayi ...

    African Journals Online (AJOL)

    In the study of Toyota, In-line, 4 cylinders, spark ignition engine using gaskets of varying thicknesses (1.75mm, 3.5mm, 5.25mm, 7mm and 8.75mm) between the cylinder head and the engine block, the performance characteristics of the engine was investigated via the effect of engine speed on brake power, brake thermal ...

  3. Review and evaluation of spark source mass spectrometry as an analytical method

    International Nuclear Information System (INIS)

    Beske, H.E.

    1981-01-01

    The analytical features and most important fields of application of spark source mass spectrometry are described with respect to the trace analysis of high-purity materials and the multielement analysis of technical alloys, geochemical and cosmochemical, biological and radioactive materials, as well as in environmental analysis. Comparisons are made to other analytical methods. The distribution of the method as well as opportunities for contract analysis are indicated and developmental tendencies discussed. (orig.) [de

  4. Layout Study and Application of Mobile App Recommendation Approach Based On Spark Streaming Framework

    Science.gov (United States)

    Wang, H. T.; Chen, T. T.; Yan, C.; Pan, H.

    2018-05-01

    For App recommended areas of mobile phone software, made while using conduct App application recommended combined weighted Slope One algorithm collaborative filtering algorithm items based on further improvement of the traditional collaborative filtering algorithm in cold start, data matrix sparseness and other issues, will recommend Spark stasis parallel algorithm platform, the introduction of real-time streaming streaming real-time computing framework to improve real-time software applications recommended.

  5. Influence of graphite contamination on the optical properties of transparent spinel obtained by spark plasma sintering

    International Nuclear Information System (INIS)

    Bernard-Granger, G.; Benameur, N.; Guizard, C.; Nygren, M.

    2009-01-01

    The optical properties of transparent spinel sintered by spark plasma sintering have been investigated for incident electromagnetic radiations with wavelengths in the range 0.2-2 μm. It is shown that residual porosities and second-phase graphite particles have a strong influence on the in-line transmittance. Because of the graphite particles, the in-line transmittance measured does not approach that of monocrystalline spinel for wavelengths above 1 μm

  6. Spark plasma sintering of SiC and ZrC

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, F.; Galy, J. [CEMES-CNRS, 29 rue Jeanne Marvig BP94347 31055 Toulouse Cx 4 (France); Allemand, A. [CEA Saclay, DRT/DTEN/S3ME/LTMEx, 91191 Gif-sur-Yvette (France)

    2005-07-01

    Spark plasma sintering a relative new technique allows sintering material powders in a reduced time compared to formal process of densification. In order to analyse densification mechanisms and to compare with hot isostatic pressing technique, pellets of silicon carbide and zirconium carbide were sintered by HIP and by SPS from 1750 to 1950 deg. C, with different pressures (50 to 75 MPa) and various holding times (0 to 10 min). Their densities were determined and their microstructures were SEM analysed. (authors)

  7. Engine Torque Control of Spark Ignition Engine using Fuzzy Gain Scheduling

    OpenAIRE

    Aris Triwiyatno

    2012-01-01

    In the spark ignition engine system, driver convenience is very dependent on satisfying engine torque appropriate with the throttle position given by the driver. Unfortunately, sometimes the fulfillment of engine torque is not in line with fuel saving efforts. This requires the development of high performance and robust power train controllers. One way to potentially meet these performance requirements is to introduce a method of controlling engine torque using fuzzy gain scheduling. By using...

  8. Fuel Saving Strategy in Spark Ignition Engine Using Fuzzy Logic Engine Torque Control

    OpenAIRE

    Aris Triwiyatno; Sumardi

    2012-01-01

    In the case of injection gasoline engine, or better known as spark ignition engines, an effort to improve engine performance as well as to reduce fuel consumption is a fairly complex problem. Generally, engine performance improvement efforts will lead to increase in fuel consumption. However, this problem can be solved by implementing engine torque control based on intelligent regulation such as the fuzzy logic inference system. In this study, fuzzy logic engine torque regulation is used to c...

  9. Effect of swirl on the performance and combustion of a biogas fuelled spark ignition engine

    International Nuclear Information System (INIS)

    Porpatham, E.; Ramesh, A.; Nagalingam, B.

    2013-01-01

    Highlights: • Tests were conducted on a biogas fuelled SI engine with normal and masked valve. • Improvement in brake power and brake thermal efficiency with masked valve. • Lean misfire limit is extended with enhanced swirl from 0.68 to 0.65. • Enhanced swirl decreases HC level from1530 ppm to 1340 ppm and increases NO emission from 2250 ppm to 3440 ppm. • The reduction in ignition delay and higher heat release rate with enhanced swirl. - Abstract: The influence of swirl on the performance, emissions and combustion in a constant speed Spark Ignition (SI) engine was studied experimentally. A single cylinder diesel engine was modified to operate as a biogas operated spark ignition engine. The engine was operated at 1500 rpm at throttle opening of 25% and 100% at various equivalence ratios. The tests covered a range of equivalence ratios from rich to lean operating limits and also at an optimum compression ratio of 13:1 with normal and masked intake valve to enhance swirl. The spark timing was set to MBT (Minimum advance for Best Torque). It was found that masked valve configuration enhanced the power output and brake thermal efficiency at full throttle. The lean limit of combustion also got extended. Heat release rates indicated enhanced combustion rates with masked valve, which are mainly responsible for the improvement in thermal efficiency. NO level increased with masked valve as compared to normal configuration. The spark timings were to be retarded by about 6 °CA and 4 °CA when compared to normal configuration at 25% and 100% throttle respectively

  10. Studies on the characteristics of nuclear track spark counting for neutron monitoring

    International Nuclear Information System (INIS)

    Kawai, H.; Koga, T.; Morishima, H.; Niwa, T.; Nishiwaki, Y.

    1979-01-01

    The fission-track counting method using polycarbonate foil is known to be very effective for neutron monitoring. The detection system consists of a track detector foil placed in contact with a thin layer of fissile material. When the unit is irradiated with neutrons, fission fragments from the fissile material produce tracks in the foil. The foil is then etched chemically to enlarge the tracks to etch-pits, which are counted by an automatic spark counting method suggested by Cross and Tommasino. Spark counting characteristics of the above system using polycarbonate detector foils of different thicknesses and aluminized polyester sheets having different thicknesses of the aluminium which serves as an electrode, and etch-pit sizes in relation to spark counting have been studied. The results obtained are summarized as follows: 1. A growth in etch-pit sizes was observed for etching times of 10 to 50 minutes with Makrofol KG (10 μm thick) and Panlite foils (18 μm thick). As the etching time increased, the number of etch-pits which appeared as round pits increased and the number which appeared rod-like decreased; 2. Round etch-pits seemed to be easily spark-punched; 3. Major and minor diameters of etch-pits produced by fission fragments from the uranium fissile target were larger than those from the thorium target; 4. As the thickness of the Makrofol KG foil increased, the minor diameters of the etch-pits appeared to become smaller and major diameters larger; 5. The foils that appeared to be best suited for routine use were 10 μm thick Makrofol KG or 6 μm thick Lumirror foils. (author)

  11. Nanocrystalline Al7075+1 wt % Zr Alloy Prepared Using Mechanical Milling and Spark Plasma Sintering.

    Czech Academy of Sciences Publication Activity Database

    Molnárová, O.; Málek, P.; Veselý, J.; Šlapáková, M.; Minárik, P.; Lukáč, František; Chráska, Tomáš; Novák, P.; Průša, F.

    2017-01-01

    Roč. 10, č. 9 (2017), č. článku 1105. ISSN 1996-1944 R&D Projects: GA ČR(CZ) GA15-15609S Institutional support: RVO:61389021 Keywords : gas atomization * mechanical milling * spark plasma sintering * microstructure * microhardness * recrystallization Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 2.654, year: 2016 http://www.readcube.com/articles/10.3390/ma10091105

  12. Sparking ideas, making connections:Digital Film Archives and collaborative scholarship

    OpenAIRE

    Atkinson, Sarah Anne

    2012-01-01

    Film archiving is a rapidly changing field as a result of the accelerating development of online digital technologies. Taking as its case study the example of SP-ARK (1), the Sally Potter online film archive, this article proposes a notable shift from the traditional single-user archive model to emerging multi-user, collaborative forms of archival scholarship. The digital preservation and presentation of archival materials dramatically impact upon the nature of the types and levels of access ...

  13. An experimental study on performance and emission characteristics of a hydrogen fuelled spark ignition engine

    OpenAIRE

    Kahraman, Erol; Özcanlı, Şevket Cihangir; Özerdem, Barış

    2007-01-01

    In the present paper, the performance and emission characteristics of a conventional four cylinder spark ignition (SI) engine operated on hydrogen and gasoline are investigated experimentally. The compressed hydrogen at 20 MPa has been introduced to the engine adopted to operate on gaseous hydrogen by external mixing. Two regulators have been used to drop the pressure first to 300 kPa, then to atmospheric pressure. The variations of torque, power, brake thermal efficiency, brake mean effectiv...

  14. Over compression influence to the performances of the spark ignition engines

    Science.gov (United States)

    Rakosi, E.; Talif, S. G.; Manolache, G.

    2016-08-01

    This paper presents the theoretical and experimental results of some procedures used in improving the performances of the automobile spark ignition engines. The study uses direct injection and high over-compression applied to a standard engine. To this purpose, the paper contains both the constructive solutions and the results obtained from the test bed concerning the engine power indices, fuel consumption and exhaust emissions.

  15. About the constructive and functional particularities of spark ignition engines with gasoline direct injection: experimental results

    Science.gov (United States)

    Niculae, M.; Ivan, F.; Neacsu, D.

    2017-08-01

    The paper aims to analyze and compare the environmental performances between a gasoline direct engine and a multi-point injection engine. There are analyzed the stages of emission formation during the New European Driving Cycle. The paper points out the dynamic, economic and environmental performances of spark ignition engines equipped with a GDI systems. Reason why, we believe the widespread implementation of this technology is today an immediate need.

  16. Spark Plasma Sintering of a Gas Atomized Al7075 Alloy: Microstructure and Properties

    Czech Academy of Sciences Publication Activity Database

    Molnárová, O.; Málek, P.; Lukáč, František; Chráska, Tomáš

    2016-01-01

    Roč. 9, č. 12 (2016), č. článku 1004. ISSN 1996-1944 R&D Projects: GA ČR(CZ) GA15-15609S Institutional support: RVO:61389021 Keywords : gas atomized Al7075 alloy * spark plasma sintering * microstructure * microhardness * high temperature stability Subject RIV: JJ - Other Materials Impact factor: 2.654, year: 2016 http://www.mdpi.com/1996-1944/9/12/1004

  17. Consolidation of W–Ta composites: Hot isostatic pressing and spark and pulse plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Dias, M., E-mail: marta.dias@itn.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Guerreiro, F. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Correia, J.B. [LNEG, Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 1649-038 Lisboa (Portugal); Galatanu, A. [National Institute of Materials Physics, Atomistilor 105 bis Bucharest-Magurele, 077125 Ilfov (Romania); Rosiński, M. [Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw (Poland); Monge, M.A.; Munoz, A. [Departamento de Física, Univerdidad Carlos III de Madrid, Avd. de la Universidad 30, 28911 Madrid (Spain); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Carvalho, P.A. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2015-10-15

    Highlights: • Consolidation of W–Ta composites using three techniques: HIP, SPS and PPS. • Comparison of consolidation methods in terms of W–Ta interdiffusion and densification. • Microstructure analysis in terms of oxides formation. - Abstract: Composites consisting of tantalum fiber/powder dispersed in a nanostructured W matrix have been consolidated by spark and pulse plasma sintering as well as by hot isostatic pressing. The microstructural observations revealed that the tungsten–tantalum fiber composites consolidated by hot isostatic pressing and pulse plasma sintering presented a continuous layer of Ta{sub 2}O{sub 5} phase at the W/Ta interfaces, while the samples consolidated by spark plasma sintering evidenced a Ta + Ta{sub 2}O{sub 5} eutectic mixture due to the higher temperature of this consolidation process. Similar results have been obtained for the tungsten–tantalum powder composites. A (W, Ta) solid solution was detected around the prior nanostructured W particles in tungsten–tantalum powder composites consolidated by spark and pulse plasma sintering. Higher densifications were obtained for composites consolidated by hot isostatic pressing and pulse plasma sintering.

  18. The investigation of order–disorder transition process of ZSM-5 induced by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Wang, Lianjun, E-mail: wanglj@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Jiang, Wan [Engineering Research Center of Advanced Glasses Manufacturing Technology, MOE, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Lin, He, E-mail: linhe@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 239 Zhangheng Road, Pudong, Shanghai 200120 (China)

    2014-04-01

    Based on the amorphization of zeolites, an order–disorder transition method was used to prepare silica glass via Spark Plasma Sintering (SPS). In order to get a better understanding about the mechanism of amorphization induced by SPS, the intermediate products in this process were prepared and characterized by different characterization techniques. X-ray diffraction and High-energy synchrotron X-ray scattering show a gradual transformation from ordered crystal to glass. Local structural changes in glass network including Si–O bond length, O–Si–O bond angle, size of rings, coordination were detected by Infrared spectroscopy and {sup 29}Si magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy. Topologically ordered, amorphous material with a different intermediate-range structure can be obtained by precise control of intermediate process which can be expected to optimize and design material. - Graphical abstract: Low-density, ordered zeolites collapse to the rigid amorphous glass through spark plasma sintering. The intermediate-range structure formed in the process of order–disorder transition may give rise to specific property. - Highlights: • Order–disorder transition process of ZSM-5 induced by spark plasma sintering was investigated using several methods including XRD, High-energy synchrotron X-ray scattering, SAXS, IR, NMR, ect. • Order–disorder transition induced by SPS was compared with TIA and PIA. • Three stages has been divided during the whole process. • The collapse temperature range which may give rise to intermediate-range structure has been located.

  19. Performance enhancement of a spark ignition engine fed by different fuel types

    International Nuclear Information System (INIS)

    Hedfi, Hachem; Jbara, Abdessalem; Jedli, Hedi; Slimi, Khalifa; Stoppato, Anna

    2016-01-01

    Highlights: • Biogas mixed with hydrogen is checked for a spark ignition engine. • An engine fed by biogas, hydrogen, natural gas or liquid petroleum gas is studied. • Efficiency is optimized with respect to consumption and exhaust gas recirculation. • Combustion reaction progress is characterized in real time. - Abstract: A numerical model based on thermodynamic and kinetic analyses has been established in order to evaluate biogas, hydrogen, natural gas or liquid petroleum gas as fuels in a spark ignition engine. For each fuel type, consumption as well as efficiency have been compared to gasoline in order to generate the same engine work (in the range of 0.28–0.43 W h/cycle). It was found that the spark ignition engine can be fed by an equimolar mixture of biogas and hydrogen. Moreover, thermal efficiency has been enhanced with respect to fuel consumption and exhaust gas recirculation (EGR). It was shown that an equimolar mixture between biogas and hydrogen increases the ITE by around 2.2% and decreases the mass consumption by less than 0.01 g/cycle. In addition, the combustion reaction progresses as well as CO and CO_2 emissions have been characterized in real time.

  20. Cyclic variation of heat flux on spark plug; Tenka plug bu no netsuryusoku hendo no sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, K.; Sasaki, T.; Urata, Y. [Honda Motor Co. Ltd., Tokyo (Japan); Kagawa, J.; Matsutani, W. [NGK Spark Plug Co. Ltd., Nagoya (Japan)

    1998-02-25

    This paper examines the relationship between the magnitude of the heat flux to the spark plug ground electrode, averaged over an 80` crank angle (CA) of early compression stroke, and the initial burning rate, defined as the CA at which 5% of mass is burned. The heat flux was measured by a thin-film thermocouple with the hot junction on the surface of ground electrode. The results demonstrate that faster initial burning rate correlated well with increasing heat flux from the spark plug to the mixture. The difference in the magnitude and direction of the heat flux is associated with the amount of residual gas concentration and thus the results show the effect of residual gas concentration. The cycle-averaged heat flux from the hot junction is 0.367 MW/m{sup 2}, corresponding to a total heat flow of 20 W from the total surface area of ground electrode. This value is about an order of magnitude larger than that previously reported in the literature for locations away from the spark plug, e. g. at the cylinder wall. 11 refs., 9 figs., 1 tab.