WorldWideScience

Sample records for spargers

  1. Behaviour of air discharged from a sparger

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yoon Yeong [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    This research has been performed as a part of the project, Development of Design Verification Technology for Korea Next Generation Reactor. At first, current state of the art of the bubble dynamics and the result will be used to develop an optimum tool including computer code for analysis of air or air-steam mixture bubble, which is discharged from a sparger. Introduced are linear perturbation; spherical bubble cloud theory; bubble interaction; and Volume of Fluid, a method of tracking free surface, which is to be used in computational fluid dynamics. An analysis was performed for the oscillation of an air bubble of perfect spherical shape. The heat transfer through the bubble surface is considered, although the effect was not so significant. The effect of initial and boundary conditions were investigated and the correlation equation was developed. 42 refs., 22 figs., 2 tabs. (Author)

  2. SRNL Review And Assessment Of WTP UFP-02 Sparger Design And Testing

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Duignan, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fink, S. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Steimke, J. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-03-24

    During aerosol testing conducted by Parsons Constructors and Fabricators, Inc. (PCFI), air sparger plugging was observed in small-scale and medium-scale testing. Because of this observation, personnel identified a concern that the steam spargers in Pretreatment Facility vessel UFP-02 could plug during Waste Treatment and Immobilization Plant (WTP) operation. The U. S. Department of Energy (DOE) requested that Savannah River National Laboratory (SRNL) provide consultation on the evaluation of known WTP bubbler, and air and steam sparger issues. The authors used the following approach for this task: reviewed previous test reports (including smallscale testing, medium-scale testing, and Pretreatment Engineering Platform [PEP] testing), met with Bechtel National, Inc. (BNI) personnel to discuss sparger design, reviewed BNI documents supporting the sparger design, discussed sparger experience with Savannah River Site Defense Waste Processing Facility (DWPF) and Sellafield personnel, talked to sparger manufacturers about relevant operating experience and design issues, and reviewed UFP-02 vessel and sparger drawings.

  3. Experimental study of steam condensation regime map for simplified spargers

    International Nuclear Information System (INIS)

    Kim, Y. S.; Yoon, Y. J.; Song, C. H.; Park, C. K.; Kang, H. S.; Jun, H. K.

    2003-01-01

    An experimental study was conducted to produce a condensation regime map for single-hole and 4-hole steam spargers using GIRLS facility. The regime map for a single-hole sparger was derived using parameters such as the frequency and magnitude of the dynamic pressure. For 4-hole sparager, the regime map was derived using the trends of sound and dynamic pressure. Using the single-hole and 4-hole data, a steam jet condensation regime map was suggested with respect to pool temperature and steam mass flux

  4. Methodology on the sparger development for Korean next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hwan Yeol; Hwang, Y.D.; Kang, H.S.; Cho, B.H.; Park, J.K

    1999-06-01

    In case of an accident, the safety depressurization system of Korean Next Generation Reactor (KNGR) efficiently depressurize the reactor pressure by directly discharge steam of high pressure and temperature from the pressurizer into the in-containment refuelling water storage tank (IRWST) through spargers. This report was generated for the purpose of developing the sparger of KNGR. This report presents the methodology on application of ABB-Atom. Many thermal hydraulic parameters affecting the maximum bubble could pressure were obtained and the maximum bubble cloud pressure transient curve so called forcing function of KNGR was suggested and design inputs for IRWST (bubble cloud radius vs. time, bubble cloud velocity vs. time, bubble cloudacceleration vs. time, etc.) were generated by the analytic using Rayleigh-Plesset equation. (author). 17 refs., 6 tabs., 27 figs.

  5. Methodology on the sparger development for Korean next generation reactor

    International Nuclear Information System (INIS)

    Kim, Hwan Yeol; Hwang, Y.D.; Kang, H.S.; Cho, B.H.; Park, J.K.

    1999-06-01

    In case of an accident, the safety depressurization system of Korean Next Generation Reactor (KNGR) efficiently depressurize the reactor pressure by directly discharge steam of high pressure and temperature from the pressurizer into the in-containment refuelling water storage tank (IRWST) through spargers. This report was generated for the purpose of developing the sparger of KNGR. This report presents the methodology on application of ABB-Atom. Many thermal hydraulic parameters affecting the maximum bubble could pressure were obtained and the maximum bubble cloud pressure transient curve so called forcing function of KNGR was suggested and design inputs for IRWST (bubble cloud radius vs. time, bubble cloud velocity vs. time, bubble cloud acceleration vs. time, etc.) were generated by the analytic using Rayleigh-Plesset equation. (author). 17 refs., 6 tabs., 27 figs

  6. Flow characteristics and optimal design for RDT sparger

    International Nuclear Information System (INIS)

    Kim, Kwang Chu; Park, Man Heung; Park, Kyoung Suk; Lee, Jong Won

    1999-01-01

    A numerical analysis for RDT sparger of PWR is carried out. Computation is performed to investigate the flow characteristics as the change of design factor. As the result of this study, RDT sparger's flow resistance coefficient is K = 3.53 at the present design condition if engineering margin is considered with 20 percent, and flow ratio into branch pipe is Q s /Q i 0.41. Velocity distribution at exit is not uniform because of separation in branch pipe. In the change of inlet flow rate and second area ratio of branch pipe for main pipe, Flow resistance coefficient is increased as Q s /Q i decreasing, but in the change of branch angle and outlet nozzle diameter of main pipe, flow resistance coefficient is decreased as Q s /Q i decreasing. As the change rate of Q s /Q i is the larger, the change rate of flow resistance coefficient is the larger. The change rate of pressure loss is the largest change as section area ratio changing. The optimal design condition of sparger is estimated as the outlet nozzle diameter ratio of main pipe is D e /D i = 0.333, the second area ratio is A s /A i = 0.2 and the branch angle is α = 55 o . (author)

  7. Evaluation of air flow rates through spargers for optimization of KNGR IRWST and SDVS design

    International Nuclear Information System (INIS)

    Jung, J. S.; Rha, I. S.; Jang, Y. S.; Koh, H. J.; Park, J. N.; Lee, S. W.

    1999-01-01

    In KNGR in the event of POSRVs actuation water, air and steam discharged from the RCS impose the dynamic loads on IRWST walls and submerged structures. The largest load is air clearing load. The main factors having an effect on the air clearing load are steam mass flux, the pressure and air volume in the POSRV discharge line. It is practically difficult to make the amount of air mass and its flow rates discharged through each sparger evenly distributed because several spargers are branched from one horizontal header. For an optimization of KNGR IRWST and SDVS design to minimize the T/H loads, the pressure in the discharge pipe and the air mass flow rates through spargers are evaluated using RELAP5/MOD3 code with changing the POSRV opening time and line and sparger arrangement. It is shown that as the opening time is the longer, the pressure in the discharge line is decreased and difference of the amount of air mass between spargers is reduced. And sparger headers with three spargers show better performance rather than those with six ones

  8. Development of hydrodynamic analysis model for IRWST/Sparger

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Nyung; Lee, Kyung Won; Yum, Sang Hoo; Yoon, Sung Sik [Kyung Hee University, Seoul (Korea)

    2001-04-01

    One of the design improvements of the KNGR(Korean Next Generation Reactor) which is advanced to safety and economy is the adoption of IRWST(In-Containment Refueling Water Storage Tank). The IRWST, installed inside of the containment building, has more designed purpose than merely the location change of the tank. Since the design functions of the IRWST is similar to these of the BWR's suppression pool, theoretical models applicable to BWR's suppression pool can be mostly applied to the IRWST. But for the PWR, the geometry of the sparger, the operation mode and the steam quantity and temperature and pressure of discharged fluid from primary system to IRWST through PSV or SDV may be different from those of BWR. Also there is some defects in detailed parts of condensation model. Therefore we, as the first nation to construct PWR with IRWST, must carry out profound research for there problems such that the results can be utilized and localized as an exclusive technology. To analyze steam condensation in IRWST, BWR operating experience, experimental data, design parameter of IRWST and wide range of literature review were consulted. Through the review, the point at issue in operating experience, every condensation and thermal-hydrolic phenomena in IRWST are throughly analyzed and the dominant parameters are found to be subcooled temperature and mass flow rate. This research has been understood the various theoretical and experimental models related to the phenomena and investigated the references about the concept and the design of KNGR's IRWST. The research has covered details of pipe clearing and boundary conditions, numerical method, bubble behavior and analytical method, distribution of velocity and pressure in sparger, load effect on structures, model of chugging and thermal stratification. These models were qualified for design and safety evaluation of Nuclear Power Plant. 15 refs., 22 figs., 4 tabs. (Author)

  9. Computational Study of the Hydrodynamic Behavior during Air Discharge through a Sparger Submerged in the Condensation Pool

    International Nuclear Information System (INIS)

    Ahn, Hyung-Joon; Bang, Young-Seok; Kim, In-Goo; Kim, Hho-Jung; Lee, Byeong-Eun; Kwon, Soon-Bum

    2002-01-01

    The In-containment Refueling Water Storage Tank (IRWST) has the function of heat sink when steam is released from the pressurizer. The hydrodynamic behaviors occurring at the sparger are very complex because of the wide variety of operating conditions and the complex geometry. Hydrodynamic behavior when air is discharged through a sparger in a condensation pool is investigated using CFD techniques in the present study. The effect of pressure acting on the sparger header during both water and air discharge through the sparger is studied. In addition, pressure oscillation occurring during air discharge through the sparger is studied for a better understanding of mechanisms of air discharge and a better design of the IRWST, including sparger. (authors)

  10. Integrated experimental test program on waterhammer pressure pulses and associated structural responses within a feedwater sparger

    International Nuclear Information System (INIS)

    Nurkkala, P.; Hoikkanen, J.

    1997-01-01

    This paper describes the methods and systems as utilized in an integrated experimental thermohydraulic/mechanics analysis test program on waterhammer pressure pulses within a revised feedwater sparger of a Loviisa generation VVER-440-type reactor. This program was carried out in two stages: (1) measurements with a strictly limited set of operating parameters at Loviisa NPP, and (2) measurements with the full set of operating parameters on a test article simulating the revised feedwater sparger. The experiments at Loviisa NPS served as an invaluable source of information on the nature of waterhammer pressure pulses and structural responses. These tests thus helped to set the objectives and formulate the concept for series of tests on a test article to study the water hammer phenomena. The heavily instrumented full size test article of a steam generator feedwater sparger was placed within a pressure vessel simulating the steam generator. The feedwater sparger was subjected to the full range of operating parameters which were to result in waterhammer pressure pulse trains of various magnitudes and duration. Two different designs of revised feedwater sparger were investigated (i.e. 'grounded' and 'with goose neck'). The following objects were to be met within this program: (1) establish the thermohydraulic parameters that facilitate the occurrence of water hammer pressure pulses, (2) provide a database for further analysis of the pressure pulse phenomena, (3) establish location and severity of these water hammer pressure pulses, (4) establish the structural response due to these pressure pulses, (5) provide input data for structural integrity analysis. (orig.)

  11. CFD application on IRWST hydrodynamic analysis during the sparger air venting

    International Nuclear Information System (INIS)

    Kim, Y. I.; Hwang, Y. D.; Kim, H. Y.; Bae, Y. Y.; Park, J. K.

    1998-01-01

    A numerical study was performed using preleased FLUENT V4.5 to investigate the applicability of the CFD model for IRWST hydrodynamic analysis during the sparger air venting. Transient calculations were performed with the compressible VOF model on the selected ABB-Atom Unit Cell Test data. This study was mainly focused on the simulation of the bubble formation process in the water pool and time varying pressure history during the air venting from the sparger. The simulated peak pressure was over-predicted in general, but the main frequency is in good agreement with the simulated data. It was shown that there was a strong dependence on the mass discharge rate of the air trapped in the vent line. The peak pressure acceptable for the conservative evaluation of the sparger performance was obtained by reducing the air discharge velocity. This indicates that the proper estimations of the air venting velocity consistent with the sparger design and operating conditions is essential for the application of FLUENT V4.5 to the sparger performance analysis of KNGR

  12. Kinetics of Cu (II) separation by ion flotation techniques, in cells with flexible spargers

    International Nuclear Information System (INIS)

    Reyes, M.; Tavera, F. J.; Escudero, R.; Patino, F.; Salinas, E.; Rivera, I.

    2010-01-01

    This research studies and experimentally determines the kinetic parameters and effect of modifying the hydrodynamics and chemical conditions of the air-liquid dispersions during the Cu (II) extraction by ion flotation techniques in cells with porous spargers. Results show that the elimination of Cu (II) from solution can be carried out by ion flotation in one stage, obtaining efficiencies of 68% and 56% for the flat and cylindrical sparger respectively with a xanthate concentration of 0,02 g/l. In multistage systems five cells, recoveries over 92 % were achieved for both sparger geometries. The behavior of the flotation apparent kinetic constant is linear to the parameters that characterize dispersion (Jg, eg y Db), until a point is achieved where the process instability makes the system inoperable. The results show that removing base metal ions by ion flotation is strongly affected by the following factors: collector concentration [C], Jg, eg, Db, Jl and Sb. (Author) 20 refs

  13. Integrated experimental test program on waterhammer pressure pulses and associated structural responses within a feedwater sparger

    Energy Technology Data Exchange (ETDEWEB)

    Nurkkala, P.; Hoikkanen, J. [Imatran Voima Oy, Vantaa (Finland)

    1997-12-31

    This paper describes the methods and systems as utilized in an integrated experimental thermohydraulic/mechanics analysis test program on waterhammer pressure pulses within a revised feedwater sparger of a Loviisa generation VVER-440-type reactor. This program was carried out in two stages: (1) measurements with a strictly limited set of operating parameters at Loviisa NPP, and (2) measurements with the full set of operating parameters on a test article simulating the revised feedwater sparger. The experiments at Loviisa NPS served as an invaluable source of information on the nature of waterhammer pressure pulses and structural responses. These tests thus helped to set the objectives and formulate the concept for series of tests on a test article to study the water hammer phenomena. The heavily instrumented full size test article of a steam generator feedwater sparger was placed within a pressure vessel simulating the steam generator. The feedwater sparger was subjected to the full range of operating parameters which were to result in waterhammer pressure pulse trains of various magnitudes and duration. Two different designs of revised feedwater sparger were investigated (i.e. `grounded` and `with goose neck`). The following objects were to be met within this program: (1) establish the thermohydraulic parameters that facilitate the occurrence of water hammer pressure pulses, (2) provide a database for further analysis of the pressure pulse phenomena, (3) establish location and severity of these water hammer pressure pulses, (4) establish the structural response due to these pressure pulses, (5) provide input data for structural integrity analysis. (orig.). 3 refs.

  14. Integrated experimental test program on waterhammer pressure pulses and associated structural responses within a feedwater sparger

    Energy Technology Data Exchange (ETDEWEB)

    Nurkkala, P; Hoikkanen, J [Imatran Voima Oy, Vantaa (Finland)

    1998-12-31

    This paper describes the methods and systems as utilized in an integrated experimental thermohydraulic/mechanics analysis test program on waterhammer pressure pulses within a revised feedwater sparger of a Loviisa generation VVER-440-type reactor. This program was carried out in two stages: (1) measurements with a strictly limited set of operating parameters at Loviisa NPP, and (2) measurements with the full set of operating parameters on a test article simulating the revised feedwater sparger. The experiments at Loviisa NPS served as an invaluable source of information on the nature of waterhammer pressure pulses and structural responses. These tests thus helped to set the objectives and formulate the concept for series of tests on a test article to study the water hammer phenomena. The heavily instrumented full size test article of a steam generator feedwater sparger was placed within a pressure vessel simulating the steam generator. The feedwater sparger was subjected to the full range of operating parameters which were to result in waterhammer pressure pulse trains of various magnitudes and duration. Two different designs of revised feedwater sparger were investigated (i.e. `grounded` and `with goose neck`). The following objects were to be met within this program: (1) establish the thermohydraulic parameters that facilitate the occurrence of water hammer pressure pulses, (2) provide a database for further analysis of the pressure pulse phenomena, (3) establish location and severity of these water hammer pressure pulses, (4) establish the structural response due to these pressure pulses, (5) provide input data for structural integrity analysis. (orig.). 3 refs.

  15. The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors

    DEFF Research Database (Denmark)

    Tirunehe, Gossay; Norddahl, B.

    2016-01-01

    Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air–water and air–CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas–liquid mediums. CMC....../s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular...... membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (KLa) by a factor of 1.2–1.9 compared to the flat sheet membrane....

  16. The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors.

    Science.gov (United States)

    Tirunehe, Gossaye; Norddahl, B

    2016-04-01

    Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air-water and air-CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas-liquid mediums. CMC solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas-liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (U(G)) range of 0.0004-0.0025 m/s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (K(L)a) by a factor of 1.2-1.9 compared to the flat sheet membrane.

  17. Foaming/antifoaming in WTP Tanks Equipped with Pulse Jet Mixer and Air Spargers

    International Nuclear Information System (INIS)

    HASSAN, NEGUIB

    2004-01-01

    The River Protection Project-Waste Treatment Plant (RPP-WTP) requested Savannah River National Laboratory (SRNL) to conduct small-scale foaming and antifoam testing using actual Hanford waste and simulants subjected to air sparging. The foaminess of Hanford tank waste solutions was previously demonstrated in SRNL during WTP evaporator foaming and ultrafiltration studies and commercial antifoam DOW Q2-3183A was recommended to mitigate the foam in the evaporators. Currently, WTP is planning to use air spargers in the HLW Lag Storage Vessels, HLW Concentrate Receipt Vessel, and the Ultrafiltration Vessels to assist the performance of the Jet Pulse Mixers (JPM). Sparging of air into WTP tanks will induce a foam layer within the process vessels. The air dispersion in the waste slurries and generated foams could present problems during plant operation. Foam in the tanks could also adversely impact hydrogen removal and mitigation. Antifoam (DOW Q2-3183A) will be used to control foaming in Hanford sparged waste processing tanks. These tanks will be mixed by a combination of pulse-jet mixers and air spargers. The percent allowable foaminess or freeboard in WTP tanks are shown in tables

  18. Numerical analysis of flow field formed by air bubble dischanging through a sparger

    International Nuclear Information System (INIS)

    Kim, H. W.; Bae, Y. Y.

    2002-01-01

    In both a boiling water reactor and an advanced type of pressurized water reactor APR1400 being constructed in Korea, water, air and steam successively discharge into a subcooled water pool through spargers, when a pressure relieving system is in operation. During the discharging processes, the air bubble clouds produce a low-frequency and high-amplitude oscillatory loading, which may result in significant damages to the submerged structures if the resonance between bubble clouds and structures occur. This study deals with a numerical analysis of the flow field due to the oscillation of air bubble clouds by using a commercial thermal hydraulic analysis code FLUENT, version 4.5. The VOF (Volume Of Fluid) model was used to simulate the interface of water, air and steam flows, since it is known to be suitable for the large bubble simulation and it enables to treat air as a compressible fluid. A good agreement between the analysis results and the ABB-Atom test results, which had been performed for the development of BWR sparger, was obtained

  19. Design and development of rolled joint for moderator sparger channel of an Indian Pressurised Heavy Water Reactor

    International Nuclear Information System (INIS)

    Joemon, V.; Sinha, R.K.

    1993-01-01

    Indian Pressurised Heavy Water Reactors are natural uranium fuelled heavy water moderated and cooled reactors. As per the conventional scheme, the moderator enters through one or more inlet nozzles penetrating the calandria shell and flows out through outlet nozzles. Baffles are fixed at the inlet nozzles for proper distribution of moderator in the calandria and to avoid the impact of the jet on the neighbouring calandria tubes. An alternate scheme for moderator inlet has been conceived and engineered in which three lower peripheral lattice locations of the reactor are converted into moderator inlets. This is achieved by moderator sparger channels each containing a 5 m long perforated zircaloy-2 sparger tube rolled to the calandria tube sheets and extended by stainless steel tubular components (inserts) at both ends of a sparger channel. Moderator enters the sparger channel at both ends and flows into the calandria. In the absence of standard codes for design of rolled joints, it was requires to develop these joints based on trials followed by various tests. this paper discusses the details of the rolled joint developed for this purpose, the details of the trials with test results and optimization of rolling parameters for these joints

  20. An experimental investigation of the thermal mixing in a water pool using a simplified I-sparger

    International Nuclear Information System (INIS)

    Kim, Y. S.; Jun, H. G.; Youn, Y. J.; Park, C. K.; Song, C. H.

    2004-01-01

    The SDVS (Safety Depressurization and Vent System) in the APR1400 is designed to cope with some DBEs (Design Bases Events) and beyond-DBEs related to overpressurization of the RCS (Reactor Coolant System). When the POSRV (Power Operated Safety Relief Valve) is actuated, steam from the pressurizer is discharged to the IRWST(In-containment Refueling Water Storage Tank) through I-spargers. When injected steam is condensed in the pool, it induces water motions and temperature variations in the pool, which effects on the steam jet condensation, vice versa. The B and C(Blowdown and Condensation) loop is a test facility for the thermal mixing through a steam sparger in a water pool. Thermal mixing tests provide basic understanding of the physics and some insights related to efficient pool mixing, dynamic load, and the IRWST design improvement etc

  1. Enhancing load-following and/or spectral shift capability in single-sparger natural circulation boiling water reactors

    International Nuclear Information System (INIS)

    Oosterkamp, W.J.

    1992-01-01

    This patent describes a method for obtaining load-following capability in a coiling water reactor (BWR) wherein housed within a reactor pressure vessel (RPV) is a nuclear core disposed within a shroud having a shroud head and which with the RPV defines an annulus region disposed beneath the nuclear core, an upper steam dome connected to a steam outlet in the RPV, a core upper plenum formed within the shroud head and disposed atop the nuclear core, a chimney mounted atop the shroud head and in fluid communication with the core upper plenum and with a steam separator having a skirt which is in fluid communication with the steam dome, the region outside of the chimney defining a downcomer region, there being a water level established therein under normal operation of the BWR, and the RPV containing a feedwater inlet. It comprises: disposing a single sparger connected to the feedwater inlet above the steam separator skirt bottom about the interior circumference of the RPV at an elevation at approximately the water level established during normal operation of the BWR; and adjusting the feedwater flow through the inlet and into the sparger to vary the water level to be above, at or below the elevational location of the sparger in response to load-following need

  2. Air clearing pressure oscillation produced in a quenching tank by a prototype unit cell sparger of the APR1400

    International Nuclear Information System (INIS)

    Cho, Seok; Song, Chul-Hwa; Park, Choon-Kyong; Kim, Hwan-Yeol; Baek, Won-Pil

    2008-01-01

    KAERI has performed a series of experiments to investigate the performance of a prototype sparger for the APR1400 in view of a dynamic load oscillation with a variation of the test conditions such as a discharged air mass, a submergence of the sparger, the valve opening time, and the pool temperature during an air clearing phase. The air mass and pool temperature are in the range of 0.8-1.5 kg and 20-90 o C, respectively. The valve opening time can be adjusted within the range of 0.6-1.8 s. The maximum positive pressure amplitude, which is observed at the bottom of the quenching tank, is increased with the maximum header pressure of the sparger. The valve opening time has a considerable effect on the maximum amplitude. As the opening time decreases, the maximum amplitude at the tank wall is increased. Air mass and pool temperature, however, have a weak effect on the maximum amplitude. Oscillation frequency is decreased with an increase of the air mass in the range of 2.5-4.5 Hz

  3. The Effects of the Properties of Gases on the Design of Bubble Columns Equipped with a Fine Pore Sparger

    Directory of Open Access Journals (Sweden)

    Athanasios G. Kanaris

    2018-03-01

    Full Text Available This work concerns the performance of bubble columns equipped with porous sparger and investigates the effect of gas phase properties by conducting experiments with various gases (i.e., air, CO2, He that cover a wide range of physical property values. The purpose is to investigate the validity of the design equations, which were proposed in our previous work and can predict with reasonable accuracy the transition point from homogeneous to heterogeneous regime as well as the gas holdup and the mean Sauter diameter at the homogeneous regime. Although, the correlations were checked with data obtained using different geometrical configurations and several Newtonian and non-Newtonian liquids, as well as the addition of surfactants, the gas phase was always atmospheric air. The new experiments revealed that only the use of low-density gas (He has a measurable effect on bubble column performance. More precisely, when the low-density gas (He is employed, the transition point shifts to higher gas flow rates and the gas holdup decreases, a fact attributed to the lower momentum force exerted by the gas. In view of the new data, the proposed correlations have been slightly modified to include the effect of gas phase properties and it is found that they can predict the aforementioned quantities with an accuracy of ±15%. It has been also proved that computational fluid dynamics (CFD simulations are an accurate means for assessing the flow characteristics inside a bubble column.

  4. Kinetics of Cu (II) separation by ion flotation techniques, in cells with flexible spargers; Cinetica de separacion de Cu(II) por tecnicas de flotacion ionica, en celdas con dispersores flexibles

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, M.; Tavera, F. J.; Escudero, R.; Patino, F.; Salinas, E.; Rivera, I.

    2010-07-01

    This research studies and experimentally determines the kinetic parameters and effect of modifying the hydrodynamics and chemical conditions of the air-liquid dispersions during the Cu (II) extraction by ion flotation techniques in cells with porous spargers. Results show that the elimination of Cu (II) from solution can be carried out by ion flotation in one stage, obtaining efficiencies of 68% and 56% for the flat and cylindrical sparger respectively with a xanthate concentration of 0,02 g/l. In multistage systems five cells, recoveries over 92 % were achieved for both sparger geometries. The behavior of the flotation apparent kinetic constant is linear to the parameters that characterize dispersion (Jg, eg y Db), until a point is achieved where the process instability makes the system inoperable. The results show that removing base metal ions by ion flotation is strongly affected by the following factors: collector concentration [C], Jg, eg, Db, Jl and Sb. (Author) 20 refs.

  5. Biofixation of carbon dioxide by Chlorococcum sp. in a ...

    African Journals Online (AJOL)

    The results confirmed that the photobioreactor with a membrane sparger is an alternative option for CO2 removal from flue gas by cultivation of microalgae. Keywords: Bioreactor, polytetrafluoroethene membrane sparger (PTFE) membrane sparger, Chlorococcum sp., greenhouse gas. African Journal of Biotechnology Vol.

  6. Pressure vessel for a BWR type reactor

    International Nuclear Information System (INIS)

    Shimamoto, Yoshiharu.

    1980-01-01

    Purpose: To prevent the retention of low temperature water and also prevent the thermal fatigue of the pressure vessel by making large the curvature radius of a pressure vessel of a feed water sparger fitting portion and accelerating the mixing of low-temperature water at the feed water sparger base and in-pile hot water. Constitution: The curvature radius of the corner of the feed water sparger fitting portion in a pressure vessel is formed largely. In-pile circulating water infiltrates up to the base portion of the feed water sparger to carry outside low-temperature water at the base part, which is mixed with in-pile hot water. Accordingly, low temperature water does not stay at the base portion of the feed water sparger and generation of thermal fatigue in the pressure vessel can be prevented and the safety of the BWR type reactor can be improved. (Yoshino, Y.)

  7. Assessing Mercury and Methylmercury Bioavailability in Sediment Pore Water Using Mercury-Specific Hydrogels

    Science.gov (United States)

    2015-06-01

    area ferric (Fe(III)) hydroxide that can remove porewater solutes (Kristensen 2001). Bioirrigation may also promote MeHg efflux to the overlying water...sparger Gold trap Electronic flow meter Zip-top bags Styrofoam shipping container Procedure 1. Prior to sediment deployment, deoxygenate...nitrogen tank, regulator, gold trap, sparger, multi-tube flow meter, deoxygenation vessels. b. Deoxygenation vessels should be set up in series (2 vessels

  8. Scaling and parametric studies of condensation oscillation in an in-containment refueling water storage tank

    International Nuclear Information System (INIS)

    Lee, Jun Hyung; No, Hee Cheon

    2001-01-01

    The purpose of this paper is to study the condensation oscillation phenomena by steam-jetting into subcooled water through a sparger, implementing a scaling methodology and the similarity correlation between the test facility and model prototype. In additon, the results of this study can provide suitable guidelines for sparger design utilized in the IRWST for the Advanced Passive Reactor 1400 (APR 1400). To corroborate the scaling methodology, various experimental tests were conducted. The scaling-related parameters experimentally considered were water temperatures, mass flux, discharge system volumes, tank sizes, source pressure, steam-jetting directions, and numbers of sparger discharge holes. To preserve the scaling similarity, the thickness of the minimum water volume created by the boundary layer that encloses the steam cavity was found to be equal to the maximum length of the steam cavity formed. Four key scaling parameters were identified and empirically correlated with the maximum amplitude of pressure oscillation. They are as follows: Volume of the steam cavity, flow restriction coefficient, discharge hole area, and density ratio of steam to water. Variations of the oscillation amplitude were small when steam-jetting directions were altered. The concept of a reduction factor was introduced for estimating the oscillation amplitude of the multi-hole sparger with test data from a single-hole sparger

  9. Evaluation on the thermal-hydraulic behavior of condensation pool and piping system

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Soon Bum; Lee, B. E.; Baek, S. C.; Joo, S. Y.; Lee, D. E.; Woo, S. W. [Kyungpook National Univ., Daegu (Korea, Republic of)

    2002-03-15

    The In-containment Refueling Water Storage Tank (IRWST) has the function of heat sink, when steam is released from the pressurizer. The hydrodynamic behaviors occurring at the piping system and sparger are very complex because of the wide variety of operating conditions and the complex geometry. Hydrodynamic behavior when air is discharged through a sparger in a condensation pool is investigated using CFD techniques in the present study. The effect of pressure acting on the sparger header during both water and air discharge through the sparger is studied. In addition, pressure oscillation occurring in the IRWST during air discharge through the sparger is studied for a better understanding of mechanisms of air discharge md an advanced evaluation technology of reactor safety. Understanding of flow behaviors occurring m the various types of pipes when POSRV is opened are also very important because those are very complex and may damage the structures of reactor coolant system. The principle of shock tube has been applied to analyze flow behaviors occurring in the piping system and several important phenomena which can be used for the evaluation of nuclear reactor safety has been obtained.

  10. Pressure wave propagation in the discharge piping with water pool

    International Nuclear Information System (INIS)

    Bang, Young S.; Seul, Kwang W.; Kim, In Goo

    2004-01-01

    Pressure wave propagation in the discharge piping with a sparger submerged in a water pool, following the opening of a safety relief valve, is analyzed. To predict the pressure transient behavior, a RELAP5/MOD3 code is used. The applicability of the RELAP5 code and the adequacy of the present modeling scheme are confirmed by simulating the applicable experiment on a water hammer with voiding. As a base case, the modeling scheme was used to calculate the wave propagation inside a vertical pipe with sparger holes and submerged within a water pool. In addition, the effects on wave propagation of geometric factors, such as the loss coefficient, the pipe configuration, and the subdivision of sparger pipe, are investigated. The effects of inflow conditions, such as water slug inflow and the slow opening of a safety relief valve are also examined

  11. A potential explanation for the effect of carbon source on the ...

    African Journals Online (AJOL)

    USER

    2010-08-16

    Aug 16, 2010 ... structure, mixed liquor suspended solids (MLSS), sludge volume index (SVI) .... Fine air bubbles for aeration were supplied through an air sparger at the ..... Ren TT, Liu L, Sheng GP, Liu XW, Yu HQ, Zhang MC, Zhu JR (2008).

  12. In-situ inspection of grooves in reactor tube sheet using a remotely operated cast impression taking device

    International Nuclear Information System (INIS)

    Rajendran, S.; Ramakumar, M.S.

    1996-01-01

    Utmost importance is given to the in-service inspection of critical components of a reactor to ensure its reliable performance during the reactor operation. This paper describes a cast taking device using cold setting resin to take impression of the grooves being made in the tube sheet for sparger tube installation in pressurised heavy water reactor. (author)

  13. Fundamentals of boiling water reactor systems

    International Nuclear Information System (INIS)

    Mattern, J.

    1976-01-01

    The reactor assembly consists of the reactor vessel, its internal components of the core, shroud, steam separator, dryer assemblies, feedwater spargers, internal recirculation pumps and control rod drive housings. Connected to the steam lines are the pressure relief valves which protect the pressure boundary from damage due to overpressure. (orig./TK) [de

  14. Scaling and Parametric Studies of Condensation Oscillation in an In-Containment Refueling Water Storage Tank

    International Nuclear Information System (INIS)

    Lee, Jun Hyung; No, Hee Cheon

    2003-01-01

    The purpose of this paper is to study the condensation oscillation phenomena by steam-jetting into subcooled water through a multihole sparger, implementing a scaling methodology and the similarity correlation between the test facility and model prototype. To corroborate the scaling methodology, various experimental tests were conducted. The thickness of the boundary layer that encloses the steam cavity was found to be equal to the maximum length of the steam cavity formed. Three key scaling parameters were identified and correlated with the maximum amplitude of pressure oscillation: flow restriction coefficient, area ratio of discharge hole to steam cavity, and density ratio of water to steam. Variations of the oscillation amplitude were small when steam-jetting directions were altered. The concept of a reduction factor was introduced for estimating the oscillation amplitude of the multihole sparger with test data from a single-hole sparger. The results of this study can provide suitable guidelines for sparger design utilized in the in-containment refueling water storage tank for the Advanced Power Reactor 1400

  15. EFFECTS OF OXYGEN AND AIR MIXING ON VOID FRACTIONS IN A LARGE SCALE SYSTEM

    International Nuclear Information System (INIS)

    Leishear, R; Hector Guerrero, H; Michael Restivo, M

    2008-01-01

    Oxygen and air mixing with spargers was performed in a 30 foot tall by 30 inch diameter column, to investigate mass transfer as air sparged up through the column and removed saturated oxygen from solution. The mixing techniques required to support this research are the focus of this paper. The fluids tested included water, water with an antifoam agent (AFA), and a high, solids content, Bingham plastic, nuclear waste simulant with AFA, referred to as AZ01 simulant, which is non-radioactive. Mixing of fluids in the column was performed using a recirculation system and an air sparger. The re-circulation system consisted of the column, a re-circulating pump, and associated piping. The air sparger was fabricated from a two inch diameter pipe concentrically installed in the column and open near the bottom of the column. The column contents were slowly re-circulated while fluids were mixed with the air sparger. Samples were rheologically tested to ensure effective mixing, as required. Once the fluids were adequately mixed, oxygen was homogeneously added through the re-circulation loop using a sintered metal oxygen sparger followed by a static mixer. Then the air sparger was re-actuated to remove oxygen from solution as air bubbled up through solution. To monitor mixing effectiveness several variables were monitored, which included flow rates, oxygen concentration, differential pressures along the column height, fluid levels, and void fractions, which are defined as the percent of dissolved gas divided by the total volume of gas and liquid. Research showed that mixing was uniform for water and water with AFA, but mixing for the AZ101 fluid was far more complex. Although mixing of AZ101 was uniform throughout most of the column, gas entrapment and settling of solids significantly affected test results. The detailed test results presented here provide some insight into the complexities of mixing and void fractions for different fluids and how the mixing process itself

  16. EFFECTS OF OXYGEN AND AIR MIXING ON VOID FRACTIONS IN A LARGE SCALE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R; Hector Guerrero, H; Michael Restivo, M

    2008-09-11

    Oxygen and air mixing with spargers was performed in a 30 foot tall by 30 inch diameter column, to investigate mass transfer as air sparged up through the column and removed saturated oxygen from solution. The mixing techniques required to support this research are the focus of this paper. The fluids tested included water, water with an antifoam agent (AFA), and a high, solids content, Bingham plastic, nuclear waste simulant with AFA, referred to as AZ01 simulant, which is non-radioactive. Mixing of fluids in the column was performed using a recirculation system and an air sparger. The re-circulation system consisted of the column, a re-circulating pump, and associated piping. The air sparger was fabricated from a two inch diameter pipe concentrically installed in the column and open near the bottom of the column. The column contents were slowly re-circulated while fluids were mixed with the air sparger. Samples were rheologically tested to ensure effective mixing, as required. Once the fluids were adequately mixed, oxygen was homogeneously added through the re-circulation loop using a sintered metal oxygen sparger followed by a static mixer. Then the air sparger was re-actuated to remove oxygen from solution as air bubbled up through solution. To monitor mixing effectiveness several variables were monitored, which included flow rates, oxygen concentration, differential pressures along the column height, fluid levels, and void fractions, which are defined as the percent of dissolved gas divided by the total volume of gas and liquid. Research showed that mixing was uniform for water and water with AFA, but mixing for the AZ101 fluid was far more complex. Although mixing of AZ101 was uniform throughout most of the column, gas entrapment and settling of solids significantly affected test results. The detailed test results presented here provide some insight into the complexities of mixing and void fractions for different fluids and how the mixing process itself

  17. An Eulerian-Eulerian Approach to CFD Simulation of Two-Phase Bubble Column using ANSYS CFX Code

    International Nuclear Information System (INIS)

    Mohd Amirul Syafiq Mohd Yunos; Nur Khairunnisa Abd Halim; Siti Aslina Hussain

    2016-01-01

    Bubble columns are widely used as gas-liquid contactors and reactors in chemical, biochemical and petrochemical industries. Effective mixing, high interfacial area between phases, cheap to install and lack of moving parts are the main factors bubble column is chosen for the described processes. Understanding the complexity of the fluid dynamics of gas-liquid flow in bubble column is important due to its unsteady complex processes as well as application in the chemical and bioprocess industries. The gas-liquid of two-phase fluid flow system has been carried out to investigate the hydrodynamics parameters. An Eulerian-Eulerian approach was used to model air as the dispersed phase within a continuous phase of water using the commercial software ANSYSTM CFD software (CFX 14.0). The turbulence in the gas-liquid simulation is described by using the k-e model. This process occurs under the atmospheric pressure. The configuration of model consists of 0.2 m width, 0.2 m depth and 0.5 m height of rectangular bubble column equipped with a sparger at the bottom. Two different sparger designs, Sparger A with 4 holes and 2.6 mm diameter each and Sparger B with 81 holes and 0.5 mm diameter each are tested for three different value of superficial gas velocity of 0.0125 m/s, 0.0501 m/s and 0.0627 m/s. The volume fraction of model is described the behavior of bubble which is represented by the parameters of gas holdup, contact surface area and gas superficial velocity. The simulation was verified by comparing the two different model results. Comparison of simulation results with the experimental work data has provided a successful validation of the model. Results shows the contact surface area increasing with behavior of bubble and gas holdup increases with increasing superficial gas velocity but independent of the sparger design at high superficial velocity (>0.05 m/s). The highest value obtained which is represented of water superficial velocity, gas holdup and superficial gas

  18. Desulphurization of flue gases

    International Nuclear Information System (INIS)

    Kovacs, B.; Fueloep, T.

    1998-01-01

    Sulphur dioxide pollution of the ambient air from fossil fuel plants is one of the most serious environmental problems in Hungary. Results of sulphur dioxide absorption in water and lime suspensions in Jet Bubbling Reactor are presented Efficiency of absorption was examined as the function of immersion depth of the sparger pipes and Ca 2+ concentration of the lime suspensions. It is shown that chemisorption is twice as effective in sulphur dioxide removal than absorption in water. (author)

  19. Investigation of column flotation process on sulphide ore using 2-electrode capacitance sensor: The effect of air flow rate and solid percentage

    Science.gov (United States)

    Haryono, Didied; Harjanto, Sri; Wijaya, Rifky; Oediyani, Soesaptri; Nugraha, Harisma; Huda, Mahfudz Al; Taruno, Warsito Purwo

    2018-04-01

    Investigation of column flotation process on sulphide ore using 2-electrode capacitance sensor is presented in this paper. The effect of air flow rate and solid percentage on column flotation process has been experimentally investigated. The purpose of this paper is to understand the capacitance signal characteristic affected by the air flow rate and the solid percentage which can be used to determine the metallurgical performance. Experiments were performed using a laboratory column flotation cell which has a diameter of 5 cm and the total height of 140 cm. The sintered ceramic sparger and wash water were installed at the bottom and above of the column. Two-electrode concave type capacitance sensor was also installed at a distance of 50 cm from the sparger. The sensor was attached to the outer wall of the column, connected to data acquisition system, manufactured by CTECH Labs Edwar Technology and personal computer for further data processing. Feed consisting ZnS and SiO2 with the ratio of 3:2 was mixed with some reagents to make 1 litre of slurry. The slurry was fed into the aerated column at 100 cm above the sparger with a constant rate and the capacitance signals were captured during the process. In this paper, 7.5 and 10% of solid and 2-4 L/min of air flow rate with 0.5 L/min intervals were used as independent variables. The results show that the capacitance signal characteristics between the 7.5 and 10% of solid are different at any given air flow rate in which the 10% solid produced signals higher than those of 7.5%. Metallurgical performance and capacitance signal exhibit a good correlation.

  20. An evaluation of thermal-hydrodynamics for condensation pool and piping system

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Soon Bum; Lee, B. E.; Baek, S. C.; Joo, S. Y.; Lee, D. E.; Woo, S. W. [Kyungpook National Univ., Daegu (Korea, Republic of)

    2003-03-15

    If the steam with high pressure and high temperature at APR-1400 is discharged into IRWST through, the spargers submerged into it to release the pressure of coolant system 10 accident. The shock wave accompanying unsteady flow motion is propagated through the various piping system, it exerts high pressure load on units and may cause the structural problems and severe vibration. From the viewpoint of nuclear power plant safety, The analysis of flow behaviors 10 the IRWST and piping system is essential to achieve the technology for the evaluation of safety. And also he evaluation methods by the analysis of thermal hydrodynamic behaviors through the sparger is established. The results obtained show that the initial shock wave experienced reflection, diffraction and interaction with shock-induced vortex. The time-dependent maximum load exerted on the wall is largest 10 the T-junction, while the smallest 10 the branch. It is found that because there is nearly no change 10 pressure at condensation pool during water clearing, the system appears to be safe. However, calculations of the air clearing for 0.2 second were performed using VOF model to analyze air that coexist with water between load reduction and sparger head. In addition, since actual POSRV opening takes finite time of 1.7 second, it is expected that the flow field will be different from the that of instant opening the valve. Therefore, now the grid generation is proceeded for the case of POSRV opening at finite time of 1.7 second consecutively. The future study alms at flow analysis of POSRV opening at finite time, changing boundary conditions for wall into pressure inlet.

  1. Retrofitting Trojan Nuclear Plant's spent resin transfer system

    International Nuclear Information System (INIS)

    Pierce, R.E.

    1979-01-01

    The spent resin slurry transport system at the Trojan Nuclear Plant operated by Portland General Electric Company is one of the most advanced systems of its type in the nuclear industry today. The new system affords the plant's operators safe remote sonic indication for spent resin and cover water levels, manual remote dewatering and watering capability to establish desirable resin-to-water volumetric ratios, reliable non-mechanical resin agitation utilizing fixed spargers, and controllable process flow utilizing a variable speed recessed impeller pump

  2. Influence of void on image quality of industrial SPECT

    International Nuclear Information System (INIS)

    Park, J G; Jung, S H; Kim, J B; Moon, J; Kim, C H

    2013-01-01

    Industrial single photon emission computed tomography (SPECT) is a promising technique to determine the dynamic behavior of industrial process media and has been developed in the Korea Atomic Energy Research Institute. The present study evaluated the influence of a void, which is presence in multiphase reactors of industrial process, on the image quality of an industrial SPECT. The results are very encouraging; that is, the performance of the industrial SPECT system is little influenced by the presence of a void, which means that industrial SPECT is an appropriate tool to estimate the dynamic characteristics of the process media in a water-air phase bubble column with a static gas sparger

  3. Construction of the blowdown and condensation loop

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choon Kyung; Song, Chul Kyung; Cho, Seok; Chun, S. Y.; Chung, Moon Ki

    1997-12-01

    The blowdown and condensation loop (B and C loop) has been constructed to get experimental data for designing the safety depressurization system (SDS) and steam sparger which are considered to implement in the Korea Next Generation Reactor (KNGR). In this report, system description on the B and C loop is given in detail, which includes the drawings and technical specification of each component, instrumentation and control system, and the operational procedures and the results of the performance testing. (author). 7 refs., 11 tabs., 48 figs.

  4. General Electric Company analytical model for loss-of-coolant analysis in accordance with 10CFR50 appendix K, amendment No. 3: effect of steam environment on BWR core spray distribution

    International Nuclear Information System (INIS)

    1977-04-01

    The core spray sparger designs of the BWR/2 through BWR/5 product lines were verified by means of full-scale mock-ups tested in air at various flow conditions. In 1974, an overseas technical partner of General Electric reported that a steam environment changed the individual core spray nozzle patterns when compared to patterns measured in air. This document describes preliminary findings of how a steam environment alters the core spray nozzle pattern, and the actions which General Electric is pursuing to quantify the steam effects

  5. Peach Bottom Atomic Power Station, Units 2 and 3. Annual operating report: January--December 1976

    International Nuclear Information System (INIS)

    1977-01-01

    Unit 2 experienced 11 forced outages, 5 power reductions, and one major refueling outage which lasted about 3 months during which time the feedwater spargers were replaced. Net electrical power generated was 5,569,633 MWH with the generator on line 5,998 hrs. Unit 3 experienced 17 forced outages, 11 power reductions and 2 major outages. The first refueling outage began 12/24/77. Net electrical power generated was 6,049,644 MWH with the unit on line 6,829 hrs. Information is presented concerning operations, personnel exposures, radioactive releases, maintenance, and irradiated fuel examination

  6. Oxygen mass transfer in a stirred tank bioreactor using different impeller configurations for environmental purposes

    Science.gov (United States)

    2013-01-01

    In this study, a miniature stirred tank bioreactor was designed for treatment of waste gas containing benzene, toluene and xylene. Oxygen mass transfer characteristics for various twin and single-impeller systems were investigated for 6 configurations in a vessel with 10 cm of inner diameter and working volume of 1.77L. Three types of impellers, namely, Rushton turbine, Pitched 4blades and Pitched 2blades impellers with downward pumping have been used. Deionized water was used as a liquid phase. With respect to other independent variables such as agitation speed, aeration rate, type of sparger, number of impellers, the relative performance of these impellers was assessed by comparing the values of (KLa) as a key parameter. Based on the experimental data, empirical correlations as a function of the operational conditions have been proposed, to study the oxygen transfer rates from air bubbles generated in the bioreactor. It was shown that twin Rushton turbine configuration demonstrates superior performance (23% to 77% enhancement in KLa) compared with other impeller compositions and that sparger type has negligible effect on oxygen mass transfer rate. Agitation speeds of 400 to 800 rpm were the most efficient speeds for oxygen mass transfer in the stirred bioreactor. PMID:23369581

  7. Numerical study on the characteristics of air bubble oscillation in water

    International Nuclear Information System (INIS)

    Kim, Hwan Yeol; Bae, Yoon Yeong

    2003-01-01

    In both a boiling water reactor and an advanced type of pressurized water reactor under construction in Korea named APR1400, when a pressure relieving system is in operation, water, air and steam discharge successively into a sub-cooled water pool through spargers. Among the phenomena occurring during the discharging processes, the air bubble clouds with a low-frequency and high-amplitude oscillation may result in significant damage to the submerged structures if the resonance between the bubble clouds and structures occur. The phenomena involved are so complicated that most predictions of frequency and pressure loads have resorted to experimental work and computational approach has been precluded. This study deals with a numerical prediction of the pressure field generated by the oscillation of air bubble. The analysis was performed by using a commercial thermal hydraulic analysis code, FLUENT, version 4.5. The multiphase flows of water, air and steam were simulated by the VOF (Volume Of Fluid) model contained in the code. Unlike the author's previous study, the LRR (Load Reduction Ring) of the sparger is artificially blocked for the investigation of LRR effects on the pressure field. It also includes the effect of air mass and inlet pressure in the piping on the pressure field. (author)

  8. Reliable prediction of heat transfer coefficient in three-phase bubble column reactor via adaptive neuro-fuzzy inference system and regularization network

    Science.gov (United States)

    Garmroodi Asil, A.; Nakhaei Pour, A.; Mirzaei, Sh.

    2018-04-01

    In the present article, generalization performances of regularization network (RN) and optimize adaptive neuro-fuzzy inference system (ANFIS) are compared with a conventional software for prediction of heat transfer coefficient (HTC) as a function of superficial gas velocity (5-25 cm/s) and solid fraction (0-40 wt%) at different axial and radial locations. The networks were trained by resorting several sets of experimental data collected from a specific system of air/hydrocarbon liquid phase/silica particle in a slurry bubble column reactor (SBCR). A special convection HTC measurement probe was manufactured and positioned in an axial distance of 40 and 130 cm above the sparger at center and near the wall of SBCR. The simulation results show that both in-house RN and optimized ANFIS due to powerful noise filtering capabilities provide superior performances compared to the conventional software of MATLAB ANFIS and ANN toolbox. For the case of 40 and 130 cm axial distance from center of sparger, at constant superficial gas velocity of 25 cm/s, adding 40 wt% silica particles to liquid phase leads to about 66% and 69% increasing in HTC respectively. The HTC in the column center for all the cases studied are about 9-14% larger than those near the wall region.

  9. Boiling-Water Reactor internals aging degradation study

    International Nuclear Information System (INIS)

    Luk, K.H.

    1993-09-01

    This report documents the results of an aging assessment study for boiling water reactor (BWR) internals. Major stressors for BWR internals are related to unsteady hydrodynamic forces generated by the primary coolant flow in the reactor vessel. Welding and cold-working, dissolved oxygen and impurities in the coolant, applied loads and exposures to fast neutron fluxes are other important stressors. Based on results of a component failure information survey, stress corrosion cracking (SCC) and fatigue are identified as the two major aging-related degradation mechanisms for BWR internals. Significant reported failures include SCC in jet-pump holddown beams, in-core neutron flux monitor dry tubes and core spray spargers. Fatigue failures were detected in feedwater spargers. The implementation of a plant Hydrogen Water Chemistry (HWC) program is considered as a promising method for controlling SCC problems in BWR. More operating data are needed to evaluate its effectiveness for internal components. Long-term fast neutron irradiation effects and high-cycle fatigue in a corrosive environment are uncertainty factors in the aging assessment process. BWR internals are examined by visual inspections and the method is access limited. The presence of a large water gap and an absence of ex-core neutron flux monitors may handicap the use of advanced inspection methods, such as neutron noise vibration measurements, for BWR

  10. Emergency reactor cooling device

    International Nuclear Information System (INIS)

    Arakawa, Ken.

    1993-01-01

    An emergency nuclear reactor cooling device comprises a water reservoir, emergency core cooling water pipelines having one end connected to a water feeding sparger, fire extinguishing facility pipelines, cooling water pressurizing pumps, a diesel driving machine for driving the pumps and a battery. In a water reservoir, cooling water is stored by an amount required for cooling the reactor upon emergency and for fire extinguishing, and fire extinguishing facility pipelines connecting the water reservoir and the fire extinguishing facility are in communication with the emergency core cooling water pipelines connected to the water feeding sparger by system connection pipelines. Pumps are operated by a diesel power generator to introduce cooling water from the reservoir to the emergency core cooling water pipelines. Then, even in a case where AC electric power source is entirely lost and the emergency core cooling system can not be used, the diesel driving machine is operated using an exclusive battery, thereby enabling to inject cooling water from the water reservoir to a reactor pressure vessel and a reactor container by the diesel drive pump. (N.H.)

  11. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH(TM)) Process

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-06-30

    per day) took place on 06 April 1997. Pressure drop and resistance coefficient across the gas sparger at the bottom of the reactor increased over this initial operating period. The demonstration unit was shut down from 08 May -17 June 1997 as part of a scheduled complex outage for the Kingsport site. During this outage, the gas sparger was removed, cleaned, and reinstalled. After completion of other maintenance activities, the demonstration unit was restarted, and maintained stable operation through the remainder of the reporting period. Again, the gas sparger showed an increase in pressure drop and resistance since the restart, although not as rapidly as during the April-May operation. Fresh oil was introduced online for the first time to a new flush connection on the gas inlet line to the reactov the flush lowered the pressure drop by 1 psi. However, the effects were temporary, and the sparger resistance coefficient continued to increase. Additional flushing with both fresh oil and entrained slurry recovered in the cyclone and secondary oil knock-out drum will be attempted in order to stabilize the sparger resistance coefficient.

  12. Impact of chemistry on Standard High Solids Vessel Design mixing

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-02

    The plan for resolving technical issues regarding mixing performance within vessels of the Hanford Waste Treatment Plant Pretreatment Facility directs a chemical impact study to be performed. The vessels involved are those that will process higher (e.g., 5 wt % or more) concentrations of solids. The mixing equipment design for these vessels includes both pulse jet mixers (PJM) and air spargers. This study assesses the impact of feed chemistry on the effectiveness of PJM mixing in the Standard High Solids Vessel Design (SHSVD). The overall purpose of this study is to complement the Properties that Matter document in helping to establish an acceptable physical simulant for full-scale testing. The specific objectives for this study are (1) to identify the relevant properties and behavior of the in-process tank waste that control the performance of the system being tested, (2) to assess the solubility limits of key components that are likely to precipitate or crystallize due to PJM and sparger interaction with the waste feeds, (3) to evaluate the impact of waste chemistry on rheology and agglomeration, (4) to assess the impact of temperature on rheology and agglomeration, (5) to assess the impact of organic compounds on PJM mixing, and (6) to provide the technical basis for using a physical-rheological simulant rather than a physical-rheological-chemical simulant for full-scale vessel testing. Among the conclusions reached are the following: The primary impact of precipitation or crystallization of salts due to interactions between PJMs or spargers and waste feeds is to increase the insoluble solids concentration in the slurries, which will increase the slurry yield stress. Slurry yield stress is a function of pH, ionic strength, insoluble solids concentration, and particle size. Ionic strength and chemical composition can affect particle size. Changes in temperature can affect SHSVD mixing through its effect on properties such as viscosity, yield stress, solubility

  13. Cinética de separación de Cu (II por técnicas de flotación iónica, en celdas con dispersores flexibles

    Directory of Open Access Journals (Sweden)

    Reyes, M.

    2010-04-01

    Full Text Available This research studies and experimentally determines the kinetic parameters and effect of modifying the hydrodynamics and chemical conditions of the air-liquid dispersions during the Cu (II extraction by ion flotation techniques in cells with porous spargers. Results show that the elimination of Cu (II from solution can be carried out by ion flotation in one stage, obtaining efficiencies of 68% and 56% for the flat and cylindrical sparger respectively with a xanthate concentration of 0,02 g/l. In multistage systems five cells, recoveries over 92 % were achieved for both sparger geometries. The behavior of the flotation apparent kinetic constant is linear to the parameters that characterize dispersion (Jg, eg y Db, until a point is achieved where the process instability makes the system inoperable. The results show that removing base metal ions by ion flotation is strongly affected by the following factors: collector concentration [C], Jg, eg, Db, Jl and Sb.

    Este estudio investiga y determina experimentalmente los parámetros cinéticos y el efecto de la modificación de las condiciones químicas e hidrodinámicas de las dispersiones aire-líquido, durante la separación de Cu (II mediante técnicas de flotación iónica en celdas con dispersores porosos. Los resultados muestran que la eliminación de Cu (II de la solución se puede llevar acabo por flotación iónica en una etapa, con 68 y 56 % de recuperación y una concentración de xantato de 0,02 g/l, para los difusores de burbujas cilíndrico y plano, respectivamente. En sistemas multi etapas cinco celdas, se lograron recuperaciones superiores al 92 % para ambas geometrías de dispersión. La constante cinética de flotación aparente mantiene un comportamiento lineal con los parámetros que caracterizan una dispersión (Jg, eg y Db, hasta un punto donde la inestabilidad del proceso vuelve inoperable el sistema. Los resultados muestran que la remoción de iones

  14. Prediction of gas hold-up for alcohol solutions in a draft-tube bubble column

    Directory of Open Access Journals (Sweden)

    Albijanić Boris V.

    2006-01-01

    Full Text Available This paper deals with the prediction of the overall gas hold-up (εg, in the diluted solutions of C -C alcohols in draft - tube bubble column, by applying several newly proposed correlations and some of the well-known equations. Experiments were carried out in a column, consisting of two coaxial glass tubes, with a single sparger. Gas phase was air, while the liquid phases were aqueous solutions of alcohols, in concentrations of 0.5% w/w and 1% w/w. Overall gas hold-up was determined by applying volume expansion technique. The following order for εg values was observed: water < methanol < ethanol < n-propanol < n-butanol. Concentration of the applied alcohol appeared to be less significant than the .sort of alcohol itself. The best newly proposed correlation enables predicting of our experimental data with the average square deviation of empirical formula: s2=0.58 E-04.

  15. Oscillation of large air bubble cloud

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2001-07-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  16. Oscillation of large air bubble cloud

    International Nuclear Information System (INIS)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K.

    2001-01-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  17. Thermal-hydraulic tests for reactor safety system

    International Nuclear Information System (INIS)

    Chun, Se Young; Chung, Moon Ki; Baek, Won Pil

    2002-05-01

    Tests for the safety depressurization system, Sparger adopted for the Korean next generation reactor, APR1400 are carried out for several geometries with the B and C (Blowdown and Condensation) facility in the condition of high temperature and pressure and with a small test facility in the condition of atmospheric temperature and pressure. Tests for the critical heat flux are performed with the RCS(Reactor Coolant System) facility as well as with the Freon CHF Loop in the condition of high temperature and pressure. The atmospheric temperature and pressure facility is utilized for development of the high standard thermal hydraulic measurement technology. The optical method is developed to measure the local thermal-hydraulic behavior for the single and two-phase boiling phenomena

  18. Design details of the Engitec 'EZINEX' electrowinning plant

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, D.J.; MacDonald, S.A. [Dremco, Incorporated, Phoenix, Arizona (United States); Olper, M. [Engitec Technologies S.p.a., Novate Milanese (Italy)

    2001-07-01

    The EZINEX Process for zinc recovery from steel mill flue dust was installed at the Ferro-Nord steel complex in Italy in 1995. The electrolyte was zinc ammonium chloride, at 70{sup o}C, which required some novel design features to make the process a practical reality. These included FRP-lined concrete cells, titanium cathodes, graphite anodes with gas spargers and mist suppression gaskets. The cell gasses were collected via a ductwork and a compressor; the collected gases were then recycled back to the anodes as the sparge gas. No ammonia odors were detectable above the cells. This paper describes the design criteria and equipment specifically designed for the process. (author)

  19. Preliminary study on functional performance of compound type multistage safety injection tank

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Young In; Kim, Keung Koo

    2015-01-01

    Highlights: • Functional performance of compound type multistage safety injection tanks is studied. • Effects of key design parameters are scrutinized. • Distinctive flow features in compound type safety injection tanks are explored. - Abstract: A parametric study is carried out to evaluate the functional performance of a compound type multistage safety injection tank that would be considered one of the components for the passive safety injection systems in nuclear power plants. The effects of key design parameters such as the initial volume fraction and charging pressure of gas, tank elevation, vertical location of a sparger, resistance coefficient, and operating condition on the injection flow rate are scrutinized along with a discussion of the relevant flow features. The obtained results indicate that the compound type multistage safety injection tank can effectively control the injection flow rate in a passive manner, by switching the driving force for the safety injection from gas pressure to gravity during the refill and reflood phases, respectively

  20. Pure Air`s Bailly scrubber: A four-year retrospective

    Energy Technology Data Exchange (ETDEWEB)

    Manavi, G.B.; Vymazal, D.C. [Pure Air, Allentown, PA (United States); Sarkus, T.A. [Dept. of Energy, Pittsburgh, PA (United States)

    1997-12-31

    Pure Air`s Advanced Flue Gas Desulfurization (AFGD) Clean Coal Project has completed four highly successful years of operation at NIPSCO`s Bailly Station. As part of their program, Pure Air has concluded a six-part study of system performance. This paper summarizes the results of the demonstration program, including AFGD performance on coals ranging from 2.0--2.4% sulfur. The paper highlights novel aspects of the Bailly facility, including pulverized limestone injection, air rotary sparger for oxidation, wastewater evaporation system and the production of PowerChip{reg_sign} gypsum. Operations and maintenance which have led to the facility`s notable 99.47% availability record are also discussed. A project company, Pure Air on the Lake Limited Partnership, owns the AFGD facility. Pure Air was the turn key contractor and Air Products and Chemicals, Inc. is the operator of the AFGD system.

  1. Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-30

    The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

  2. Savannah River Plant defense waste vitrification studies during FY 1982. Summary report

    International Nuclear Information System (INIS)

    Ethridge, L.J.

    1983-10-01

    Five major melter runs were completed during FY 1982 on the Pilot-Scale Ceramic Melter (PSCM). Over 41,000 L of feed were processed by the PSCM, producing approx. 21,000 kg of glass. The design basis reference capacity of approx. 39 kg/h-m 2 was met or exceeded in all the melter runs. Off-gas characterization was emphasized during this fiscal year. Entrainment of feed material is the largest contributor to the mass of particulate leaving the melter, averaging 0.2 wt% of the incoming feed on an oxide basis. This is a DF of approx. 500. This mass does show an enrichment of some of the volatile and semivolatile components. Higher losses of cesium, tellurium, and cadmium occurred with formate feed. The Experimental Ceramic Melter (ECM) was used this year to study the application of two techniques to increase melting rates in ceramic melters. The first was the use of an air sparger to forcibly agitate the glass in the melter to improve the heat transfer. The air-sparger agitation increased the throughput capacity of the ECM, but did not seem to affect melting efficiency. The second technique for increasing melter rates tested on the ECM was the use of microwave boosting. While significant improvement was noted in the vitrification rates, two problems were encountered: coating of the isolation window and heating of the refractory lining of the ECM lid. The buildup of fine dust on the window caused arcing between the coating and the waveguide. This arcing damages the window and waveguide and causes instability in the microwave power supply. Four techniques were investigated to solve the problem. These techniques were of limited success and await further testing. 33 figures, 58 tables

  3. EFFECTS OF ALTERNATE ANTIFOAM AGENTS, NOBLE METALS, MIXING SYSTEMS AND MASS TRANSFER ON GAS HOLDUP AND RELEASE FROM NONNEWTONIAN SLURRIES

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, H; Mark Fowley, M; Charles Crawford, C; Michael Restivo, M; Robert Leishear, R

    2007-12-24

    Gas holdup tests performed in a small-scale mechanically-agitated mixing system at the Savannah River National Laboratory (SRNL) were reported in 2006. The tests were for a simulant of waste from the Hanford Tank 241-AZ-101 and featured additions of DOW Corning Q2-3183A Antifoam agent. Results indicated that this antifoam agent (AFA) increased gas holdup in the waste simulant by about a factor of four and, counter intuitively, that the holdup increased as the simulant shear strength decreased (apparent viscosity decreased). These results raised questions about how the AFA might affect gas holdup in Hanford Waste Treatment and Immobilization Plant (WTP) vessels mixed by air sparging and pulse-jet mixers (PJMs). And whether the WTP air supply system being designed would have the capacity to handle a demand for increased airflow to operate the sparger-PJM mixing systems should the AFA increase retention of the radiochemically generated flammable gases in the waste by making the gas bubbles smaller and less mobile, or decrease the size of sparger bubbles making them mix less effectively for a given airflow rate. A new testing program was developed to assess the potential effects of adding the DOW Corning Q2-3183A AFA to WTP waste streams by first confirming the results of the work reported in 2006 by Stewart et al. and then determining if the AFA in fact causes such increased gas holdup in a prototypic sparger-PJM mixing system, or if the increased holdup is just a feature of the small-scale agitation system. Other elements of the new program include evaluating effects other variables could have on gas holdup in systems with AFA additions such as catalysis from trace noble metals in the waste, determining mass transfer coefficients for the AZ-101 waste simulant, and determining whether other AFA compositions such as Dow Corning 1520-US could also increase gas holdup in Hanford waste. This new testing program was split into two investigations, prototypic sparger

  4. Bubble coalescence in a Newtonian fluid

    Science.gov (United States)

    Garg, Vishrut; Basaran, Osman

    2017-11-01

    Bubble coalescence plays a central role in the hydrodynamics of gas-liquid systems such as bubble column reactors, spargers, and foams. Two bubbles approaching each other at velocity V coalesce when the thin film between them ruptures, which is often the rate-limiting step. Experimental studies of this system are difficult, and recent works provide conflicting results on the effect of V on coalescence times. We simulate the head-on approach of two bubbles of equal radii R in an incompressible Newtonian fluid (density ρ, viscosity μ, and surface tension σ) by solving numerically the free boundary problem comprised of the Navier Stokes and continuity equations. Simulations are made challenging by the existence of highly disparate lengthscales, i.e. film thickness and drop radii, which are resolved by using the method of elliptic mesh generation. For a given liquid, the bubbles are shown to coalesce for all velocities below a critical value. The effects of Ohnesorge number Oh = μ /√{ ρσR } on coalescence time and critical velocity are also investigated.

  5. Studies on the dissolution and long term weathering of spilled crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Mackay, D; Charles, M E; Sumchi, Lee; Lun, R; Ooijen, H van; Romocki, K; Harner, T; Ralfs, M

    1993-04-01

    The development of a laboratory system for the study of the long term behavior of crude oil on a water surface is described. The apparatus consists of a cylindrical glass vessel containing water which is rotated at 33 rpm, thus creating a concave surface in which oil tends to accumulate at the center. Turbulence is induced by a stationary stirrer. Results are described of tests conducted with a number of crude oils and it is concluded that the system is able to create reproducible conditions of controlled evaporation, dissolution, turbulence, photolysis, and oil in water emulsion formation. A major advantage of the system is its simplicity and robustness which permits prolonged exposure of the oil to simulate weathering, over periods of weeks and months. A second system is described which can be used to determine the concentrations of dissolved hydrocarbons under oil slicks by in-situ headspace analysis. A prototype submersible sparger sampling system was devised and tested, and results are presented. It is concluded that the system is a promising and practical method of determining the extent to which dissolved hydrocarbons are present in water at various depths under an oil slick. In both cases it is concluded that the concepts have sufficient merit that further work is justified. Recommendations are made for further research and development which will, it is hoped, enable these systems to be used to investigate aspects of the fate and effects of oil spills at sea. 6 refs., 14 figs., 4 tabs.

  6. Supportive measures toward safety assurance of post-disaster Fukushima Daiichi Nuclear Power Plant

    International Nuclear Information System (INIS)

    Hatazawa, Mamoru

    2012-01-01

    Toshiba group had taken supportive measures toward safety assurance of post-disaster Fukushima Daiichi Nuclear Power Plant, such as active water treatment, upgrade core cooling capability with additional water injection rout of core spray spargers, alternative cooling system of spent fuel pool with air cooler and nitrogen injection into reactor containment vessel from portable air separation system for nitrogen generation. As for a water treatment system for handling the radioactive water that had built up in the basement of the turbine building from injected water for cooling fuel debris, it was implemented at first by water treatment equipment from Areva and Kurion and now by Simplified Active Water Retrieve and Recovery System (SARRY) which Toshiba had newly developed as redundant system. Purified water could be reused for circulating injected water for reactor cooling. Strenuous efforts would be made for installation of cover building for fuel removal from spent fuel pool of unit 3 reactor and technology development for fuel debris removal using remote control robots. Portable gamma camera had been developed for decontamination works of radiation 'hot spot'. With loading SARRY on truck, mobile contaminated water treatment and contaminated soil purification system using oxalic acid solution for cesium extraction had been developed to contribute environmental remedial action in surrounding areas. (T. Tanaka)

  7. Development of zero conditioning procedure for coal reverse flotation

    Energy Technology Data Exchange (ETDEWEB)

    D.P. Patil; J.S. Laskowski [University of British Columbia, Vancouver, BC (Canada). Mining Engineering Department

    2008-04-15

    The zero conditioning method was developed to facilitate the flotation of gangue minerals in the reverse coal flotation process. Batch and continuous methods were developed to maintain the zero conditioning principle during reverse flotation. Batch zero conditioning was achieved by adding the required amount of DTAB in one step, as soon as the air was introduced into the system. The continuous zero conditioning method involves uninterrupted addition of DTAB through a specially built sparger in the form of aerosol during the flotation experiment. This produces active bubbles that carry collector. The addition of DTAB in the form of aerosol during reverse flotation proved to be better in reducing the ash of a sub-bituminous (LS-26) coal from 34.7% to 22.9% with a froth product (gangue) yield of 36.8% without any depressant. In the presence of coal depressant (dextrin, 0.5 kg/t), the ash content of LS-26 coal was reduced from 34.7% to 16.5% at a clean coal yield of 55%, whereas the conventional (forward) flotation with fuel oil provided a clean coal containing 16.5% ash with only 29.2% yield. These results prove that flotation of gangue minerals is very much improved by maintaining zero conditioning time conditions in a coal reverse flotation process.

  8. Wire-Mesh Tomography Measurements of Void Fraction in Rectangular Bubble Columns

    International Nuclear Information System (INIS)

    Reddy Vanga, B.N.; Lopez de Bertodano, M.A.; Zaruba, A.; Prasser, H.M.; Krepper, E.

    2004-01-01

    Bubble Columns are widely used in the process industry and their scale-up from laboratory scale units to industrial units have been a subject of extensive study. The void fraction distribution in the bubble column is affected by the column size, superficial velocity of the dispersed phase, height of the liquid column, size of the gas bubbles, flow regime, sparger design and geometry of the bubble column. The void fraction distribution in turn affects the interfacial momentum transfer in the bubble column. The void fraction distribution in a rectangular bubble column 10 cm wide and 2 cm deep has been measured using Wire-Mesh Tomography. Experiments were performed in an air-water system with the column operating in the dispersed bubbly flow regime. The experiments also serve the purpose of studying the performance of wire-mesh sensors in batch flows. A 'wall peak' has been observed in the measured void fraction profiles, for the higher gas flow rates. This 'wall peak' seems to be unique, as this distribution has not been previously reported in bubble column literature. Low gas flow rates yielded the conventional 'center peak' void profile. The effect of column height and superficial gas velocity on the void distribution has been investigated. Wire-mesh Tomography also facilitates the measurement of bubble size distribution in the column. This paper presents the measurement principle and the experimental results for a wide range of superficial gas velocities. (authors)

  9. Improvement of ore recovery efficiency in a flotation column cell using ultra-sonic enhanced bubbles

    Science.gov (United States)

    Filippov, L. O.; Royer, J. J.; Filippova, I. V.

    2017-07-01

    The ore process flotation technique is enhanced by using external ultra-sonic waves. Compared to the classical flotation method, the application of ultrasounds to flotation fluids generates micro-bubbles by hydrodynamic cavitation. Flotation performances increase was modelled as a result of increased probabilities of the particle-bubble attachment and reduced detachment probability under sonication. A simplified analytical Navier-Stokes model is used to predict the effect of ultrasonic waves on bubble behavior. If the theory is verified by experimentation, it predicts that the ultrasonic waves would create cavitation micro-bubbles, smaller than the flotation bubble added by the gas sparger. This effect leads to increasing the number of small bubbles in the liquid which promote particle-bubble attachment through coalescence between bubbles and micro-bubbles. The decrease in the radius of the flotation bubbles under external vibration forces has an additional effect by enhancing the bubble-particle collision. Preliminary results performed on a potash ore seem to confirm the theory.

  10. A review of the internal components of the second generation of Swedish BWRs in perspective of their importance for the total safety. A diploma work in reactor technology

    International Nuclear Information System (INIS)

    Appelgren, S.; Eriksson, Stefan

    1999-03-01

    An investigation has been done of the second generation of Swedish BWRs, Barsebaeck 1 and 2, and Oskarshamn 2, concerning the vessel internals and theirs significance for the reactor safety. The purpose with this pilot study has been to produce a support for the course of action and to be a source of information for more detailed analyses of the vessel internals. A number of accident scenarios have been depicted and discussed regarding how they might occur and what the consequences might be. It is postulated that they start on account of some vessel internals failing. To be able to develop these scenarios it was necessary to collect and go through a relative large number of analyses and calculations. These have consisted of design conditions, calculation of stress and damage reports. In design conditions are included the maximum loads that a component expect to be subjected to in the course of different postulated averages. The design conditions are the input to the calculation of stress. The damage reports treat and analyse the damages that the internals have been exposed to during the years. For each scenario that has been treated, a judgement has been done about why or why not it is probable to happen. The authors do not claim to have made a probability study along the lines that are commonly accepted. The internal parts that have been the subject for the study are the core head, the feed water spargers, the steam dryers, the core shroud and the core shroud support. Below are the results with argumentations and recommendations. Core head: the core head has the behaviour that contribute most to the complexity of the scenarios. Initiators of this kind of scenarios are postulated weaknesses in the extensions of the bolts fastening the shroud head to the core shroud. A collapse of the extensions of the bolts fastening the shroud head to the core shroud will have a great impact on the reactor safety. Very likely it would lead to absent core cooling and absent

  11. Thermal stratification in a scaled-down suppression pool of the Fukushima Daiichi nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Byeongnam, E-mail: jo@vis.t.u-tokyo.ac.jp [Nuclear Professional School, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki 319-1188 (Japan); Erkan, Nejdet [Nuclear Professional School, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki 319-1188 (Japan); Takahashi, Shinji [Department of Nuclear Engineering and Management, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Song, Daehun [Nuclear Professional School, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki 319-1188 (Japan); Hyundai and Kia Corporate R& D Division, Hyundai Motors, 772-1, Jangduk-dong, Hwaseong-Si, Gyeonggi-Do 445-706 (Korea, Republic of); Sagawa, Wataru; Okamoto, Koji [Nuclear Professional School, The University of Tokyo, 2-22 Shirakata, Tokai-mura, Ibaraki 319-1188 (Japan)

    2016-08-15

    Highlights: • Thermal stratification was reproduced in a scaled-down suppression pool of the Fukushima Daiichi nuclear power plants. • Horizontal temperature profiles were uniform in the toroidal suppression pool. • Subcooling-steam flow rate map of thermal stratification was obtained. • Steam bubble-induced flow model in suppression pool was suggested. • Bubble frequency strongly depends on the steam flow rate. - Abstract: Thermal stratification in the suppression pool of the Fukushima Daiichi nuclear power plants was experimentally investigated in sub-atmospheric pressure conditions using a 1/20 scale torus shaped setup. The thermal stratification was reproduced in the scaled-down suppression pool and the effect of the steam flow rate on different thermal stratification behaviors was examined for a wide range of steam flow rates. A sparger-type steam injection pipe that emulated Fukushima Daiichi Unit 3 (F1U3) was used. The steam was injected horizontally through 132 holes. The development (formation and disappearance) of thermal stratification was significantly affected by the steam flow rate. Interestingly, the thermal stratification in the suppression pool vanished when subcooling became lower than approximately 5 °C. This occurred because steam bubbles are not well condensed at low subcooling temperatures; therefore, those bubbles generate significant upward momentum, leading to mixing of the water in the suppression pool.

  12. SBWR PCCS vent phenomena and suppression pool mixing

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, P. [Thermal-Hydraulics Lab., Paul Scherrer Institute, Villigen (Switzerland); Andreani, M. [Nuclear Engineering Lab., Swiss Federal Institute of Technology, Zurich (Switzerland)

    1995-09-01

    The most important phenomena influencing the effectiveness of the pressure suppression capability of the water pool within the Wetwell compartment of the SBWR Containment, during the period of Passive Containment Cooling System (PCCS) venting, have been critically reviewed. In addition, calculations have been carried-out to determine the condensation of the vented steam and the distribution of the energy deposited in the liquid pool. It has been found that a large contribution to the vapour suppression is due to condensation inside the vent pipe. The condensation rate of the steam inside the bubbles, produced at the vent exit, during their rise to the surface, may however be rather low, because of the large size bubbles. This can lead to vapour channelling to the Wetwell gas space. The above comments are likely to be ameliorated if the vent exit is a distributed source or sparger. Due to the large water flow rates within the {open_quotes}bubbly two-phase plume{close_quotes} generated by the gas injection, the water in the pool above the vent exit is likely to be heated nearly isothermally (perfect mixing). The effect of the suppression pool walls would be to enhance the recirculation and, consequently to promote mixing. The large size of the bubbles therein and of the walls on pool mixing are the most severe difficulties in extrapolating the results from scaled experiments to prototypical conditions.

  13. Dismantling of JPDR reactor internals by underwater plasma arc cutting technique using robotic manipulator

    International Nuclear Information System (INIS)

    Yokota, M.

    1988-01-01

    The actual dismantling of JPDR started on December 4, 1986. As of now, equipment that surrounds the reactor has mostly been removed to provide working space in reactor containment prior to the dismantling of reactor internals. Some reactor internals have been successfully dismantled using the underwater arc cutting system with a robotic manipulator during the period of January to March 1988. The cutting system is composed of an underwater plasma arc cutting device and a robotic manipulator. The cut off reactor internals were core spray block, feedwater sparger and stabilizers for fuel upper grid tube. The plasma arc cutting device was developed to dismantle the reactor internals underwater. It mainly consists of a plasma torch, power and gas supply systems for the torch, and by-product treatment systems. It has the cutting ability of 130 mm thickness stainless steel underwater. The robotic manipulator has seven degrees of freedom of movement, enabling it to move in almost the same way as the arm of a human being. The arm of the robot is mounted on a supporting device which is suspended by three chains from the support structure set on a service floor. A plasma torch is griped by the robotic hand; its position to the structure to be cut is controlled from a remote control room, about 100 meters outside the reactor containment

  14. Preliminary Multi-dimensional Scaling Approach for IRWST Thermal Mixing Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soon Joon; Lee, Byung Chul [SNU Research Innovation Center, Seoul (Korea, Republic of); Jung, Jae Sik; Moon, Young Tae; Seong, Ho Je; Lee, Kyu Kwang; Kho, Hee Jin [Korea Power Engineering Company Inc., Yongin (Korea, Republic of); Yadigaroglu, G. [Swiss Federal Institute of Technology, Zurich (Switzerland)

    2007-07-01

    One of the key role of IRWST (In-containment Refueling Water Storage Tank) in APR1400 is to increases the quenching efficiency of steam and to alleviate probable pressure surge induced by the sudden discharge of the high pressure steam during plant transient such as IOPOSRV (Inadvertent Opening of Pilot Operated Safety Relief Valve) accident or TLOFW (Total Loss of Feedwater) accident. When the POSRV opens in SDVS (Safety Depressurization and Vent System), the steam is discharged into the subcooled water in IRWST, following water clearing and air clearing. The discharged steam forms a 'jet' of vapor cone and ambient water near the sparger hole, and this jet propels a pool circulation. Continuous injection of high energy steam into the pool causes the pool temperature to rise, and eventually the steam condensing pattern may become very unstable by local temperature rise For the sake of safe operation of such kind of pool like as IRWST, there have been several regulations on suppression pool in BWR (Boiling Water Reactor). The principal regulation is 'local pool temperature limits'. That is, the suppression pool local temperature shall not exceed certain limit. And such a regulation is fully based on the pool mixing phenomena which largely depends on the geometry of pool, steam injection pattern, and so on. Thus, this guide cannot be directly applied to the design reference nor regulation guide of the IRWST.

  15. An innovative membrane bioreactor for methane biohydroxylation.

    Science.gov (United States)

    Pen, N; Soussan, L; Belleville, M-P; Sanchez, J; Charmette, C; Paolucci-Jeanjean, D

    2014-12-01

    In this study, a membrane bioreactor (MBR) was developed for efficient, safe microbial methane hydroxylation with Methylosinus trichosporium OB3b. This innovative MBR, which couples a bioreactor with two gas/liquid macroporous membrane contactors supplying the two gaseous substrates (methane and oxygen) was operated in fed-batch mode. The feasibility and the reproducibility of this new biohydroxylation process were first demonstrated. The mass transfer within this MBR was twice that observed in a batch reactor in similar conditions. The productivity reached with this MBR was 75±25mgmethanol(gdrycell)(-1)h(-1). Compared to the literature, this value is 35times higher than that obtained with the only other fed-batch membrane bioreactor reported, which was run with dense membranes, and is comparable to those obtained with bioreactors fed by bubble-spargers. However, in the latter case, an explosive gas mixture can be formed, a problem that is avoided with the MBR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Condenser Design for the Proposed AM600 NPP

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Md. Mizanur; Abdallah, Khaled Atya Ahmed; Field, Robert M. [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    The design goals are to make the condenser more robust and compact with a reduced component count. The AM600 condenser design also has new features as described below. Considering that the minimum heat sink temperature for potentially emergent nuclear countries is on the order of 21.deg. C or higher, a turbine design with a single low pressure rotor can be considered without sacrificing thermal efficiency. The condenser back pressure range for the considered markets is on the order of 2 to 3 in-HgA. With these boundary conditions, the AM600 condenser duty can be met with a single pressure zone design with a total of eight (8) titanium tube bundles (four (4) per pass) divided into four isolable sections. Due to the compact design (i.e., accepting exhaust from only one low pressure cylinder), both axial ends of the condenser are unobstructed and available for attachment of extended flash chambers, diverting inflows away from the tube bundles. The single shell design of this condenser then allows for an innovative design feature, namely the extended flash chambers. This permits the routing of dump, drain, vent, and bypass flows directly to these chambers, bypassing the condenser shell. Within the condenser shell, this design eliminates impingement plates, impingement boxes, and spargers. Failure of these components represents an ongoing source of condenser tube damage in operating nuclear units, requiring significant resources for outage inspections. The extended flash chamber approach also has a number of other advantages as delineated above.

  17. Review of steam jet condensation in a water pool

    International Nuclear Information System (INIS)

    Kim, Y. S.; Song, C. H.; Park, C. K.; Kang, H. S.; Jeon, H. G.; Yoon, Y. J.

    2002-01-01

    In the advanced nuclear power plants including APR1400, the SDVS is adopted to increase the plant safety using the concept of feed-and-bleed operation. In the case of the TLOFW, the POSRV located at the top of the pressurizer is expected to open due to the pressurization of the reactor coolant system and discharges steam and/or water mixture into the water pool, where the mixture is condensed. During the condensation of the mixture, thermal-hydraulic loads such as pressure and temperature variations are induced to the pool structure. For the pool structure design, such thermal-hydraulic aspects should be considered. Understanding the phenomena of the submerged steam jet condensation in a water pool is helpful for system designers to design proper pool structure, sparger, and supports etc. This paper reviews and evaluates the steam jet condensation in a water pool on the physical phenomena of the steam condensation including condensation regime map, heat transfer coefficient, steam plume, steam jet condensation load, and steam jet induced flow

  18. Test for Jet Flow Induced by Steam Jet Condensation Using the GIRLS Facility

    International Nuclear Information System (INIS)

    Kim, Yeon Sik; Yoon, Y. J.; Song, C. H.

    2007-03-01

    To investigate the characteristics of the turbulent jet induced by steam jet condensation in a water tank through a single-hole sparger an experimental investigation was performed using the GIRLS facility. The experiments were conducted with respect to two cases, e.g. horizontal and vertical upward injections. For the measurements, pitot tube and thermocouples were used for turbulent flow velocity and temperatures, respectively. Overall flow shapes of the turbulent jet by the steam jet condensation are similar to those of axially symmetric turbulent jet flows. The angular coefficients of turbulent rays are quantitatively comparable between the traditional turbulent jet flows and the turbulent jet flows induced by the steam jet condensation in this work. Although the turbulent flows were induced by the horizontally injected steam jet condensation, general theory of turbulent jets was found to be applicable to the turbulent flows of this work. But for the vertically upward injection case, experimental data were quite deviated from the theoretical ones, which is considered due to the buoyancy effect

  19. Parametric and scaling studies of condensation oscillation in subcooled water of the in-containment refueling water storage tank

    International Nuclear Information System (INIS)

    Lee, Jun Hyung; No, Hee Cheon

    1999-01-01

    Condensation oscillation by jetting the steam into subcooled water through spargers is studied. To provide a suitable guideline for oscillation phenomena in the IRWST of the next generation reactor, scaling methodology is introduced. Through scaling methodology and subsequent tests, it shows that the volume of steam cavity determines the dynamic characteristics of condensation oscillation. The second-order linear differential equation for frequency analysis is derived and its results are compared with those from the test data. Two types of condensation phenomena exist according to steam flow rates. At subsonic jet, condensation interface becomes irregular in shape and upper system volumes affect the dynamic characteristics of condensation oscillation. At sonic jet, a regular steam cavity forms at the exit of discharge holes. Parametric effects and subsequent dynamic responses of the pool tank are investigated through experiments in applicable test ranges. When the temperature of pool water becomes lower, the amplitude becomes larger. Critical parameters are derived from the scaling methodology and are system volume, cavity volume, discharge hole area, and density ration. It is found that system friction factors affect frequency components of condensation oscillation. Oscillations of a steam cavity occur mainly on the face of the axial direction and pressure amplitudes become larger than that of the lateral direction

  20. Numerical Simulation of Mixing in a Micro-well Scale Bioreactor by Computational Fluid Dynamics

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The introduction of the multi-well plate miniaturisation technology with its associated automated dispensers, readers and integrated systems coupled with advances in life sciences has a propelling effect on the rate at which new potential drug molecules are discovered. The translation of these discoveries to real outcome now demands parallel approaches which allow large numbers of process options to be rapidly assessed. The engineering challenges in achieving this provide the motivation for the proposed work. In this work we used computational fluid dynamics(CFD) analysis to study flow conditions in a gas-liquid contactor which has the potential to be used as a fermenter on a multi-well format. The bioreactor had a working volume of 6.5 mL with the major dimensions equal to those of a single well of a 24-well plate. The 6.5 mL bioreactor was mechanically agitated and aerated by a single sparger placed beneath the bottom impeller. Detailed numerical procedure for solving the governing flow equations is given. The CFD results are combined with population balance equations to establish the size of the bubbles and their distribution in the bioreactor, Power curves with and without aeration are provided based on the simulated results.

  1. Development of integrated computer code for analysis of risk reduction strategy

    International Nuclear Information System (INIS)

    Kim, Dong Ha; Kim, See Darl; Kim, Hee Dong

    2002-05-01

    The development of the MIDAS/TH integrated severe accident code was performed in three main areas: 1) addition of new models derived from the national experimental programs and models for APR-1400 Korea next generation reactor, 2) improvement of the existing models using the recently available results, and 3) code restructuring for user friendliness. The unique MIDAS/TH models include: 1) a kinetics module for core power calculation during ATWS, 2) a gap cooling module between the molten corium pool and the reactor vessel wall, 3) a penetration tube failure module, 4) a PAR analysis module, and 5) a look-up table for the pressure and dynamic load during steam explosion. The improved models include: 1) a debris dispersal module considering the cavity geometry during DCH, 2) hydrogen burn and deflagration-to-detonation transition criteria, 3) a peak pressure estimation module for hydrogen detonation, and 4) the heat transfer module between the molten corium pool and the overlying water. The sparger and the ex-vessel heat transfer module were assessed. To enhance user friendliness, code restructuring was performed. In addition, a sample of severe accident analysis results was organized under the preliminary database structure

  2. Spectrometric Analysis for Pulse Jet Mixer Testing

    International Nuclear Information System (INIS)

    ZEIGLER, KRISTINE

    2004-01-01

    The Analytical Development Section (ADS) was tasked with providing support for a Hanford River Protection Program-Waste Treatment Program (RPP-WTP) project test involving absorption analysis for non-Newtonian pulse jet mixer testing for small scale (PJM) and prototype (CRV) tanks with sparging. Tanks filled with clay were mixed with various amounts of powdered dye as a tracer. The objective of the entire project was to determine the best mixing protocol (nozzle velocity, number of spargers used, total air flow, etc.) by determining the percent mixed volume through the use of an ultraviolet-visible (UV-Vis) spectrometer. The dye concentration within the sample could be correlated to the volume fraction mixed in the tank. Samples were received in vials, a series of dilutions were generated from the clay, allowed to equilibrate, then centrifuged and siphoned for the supernate liquid to analyze by absorption spectroscopy. Equilibration of the samples and thorough mixing of the samples were a continuous issue with dilution curves being difficult to obtain. Despite these technical issues, useful data was obtained for evaluation of various mix conditions

  3. Reactions of POxCly- ions with O2(a 1[Delta]g), H2O, and Cl2 at 298 K

    Science.gov (United States)

    Midey, Anthony J.; Dotan, Itzhak; Viggiano, A. A.

    2008-06-01

    The rate constants and product branching ratios for the reactions of phosphorus oxychloride anions, POxCly- for x = 1-2 and y = 1-3, with O2(a 1[Delta]g), Cl2, and H2O have been measured in a selected ion flow tube (SIFT) at 298 K. A mixture of O2(a 1[Delta]g) in O2 has been produced using a recently designed chemical singlet oxygen generator (sparger) with an emission detection scheme adopted previously in our laboratory. The experiments continue a series of investigations into the oxidation reactions of POxCly- ions, searching for pathways to the terminal PO2- and PO3- ions observed in combustion chemistry with POCl3 present. None of the POxCly- ions react with H2O or O2(a 1[Delta]g). The O2(a 1[Delta]g) rate constants have a limit of <1 × 10-11 cm3 s-1, except for PO2Cl- where a limit of <5 × 10-11 cm3 s-1 has been determined. The H2O rate constants have limits of <1 × 10-11 cm3 s-1. All of the POxCly- ions react with Cl2, excluding PO3- and PO2Cl2-. Depending on the reactant ion, Cl-, Cl2- or PO2Cl2- product ions form.

  4. Result of 11th regular inspection of No.1 plant in Shimane Nuclear Power Station, Chugoku Electric Power Co., Inc

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The 11th regular inspection of No.1 plant in Shimane Nuclear Power Station was carried out from January 9 to July 2, 1986. The parallel operation was resumed on June 19, 1986, 162 days after the parallel off. The facilities as the object of inspection were the reactor proper, reactor cooling system, measurement and control system, fuel facilities, radiation control facilities, waste facilities, reactor containment installation, and emergency power generation system. On these facilities as the object of inspection, the appearance, disassembling, leak, function, performance and other inspections were carried out, as the result, any abnormality was not found. The works related to this regular inspection were accomplished within the range of the allowable radiation dose based on the relevant laws. The main reconstruction works carried out during the period of this regular inspection were as follows. Feed water spargers were replaced with those of welded type, the material of the drain pipe for No.3 feed heater was changed to STPA 23, an exhaust compressor, an exhaust gas-water separator and others, which have not been used, were removed, and the connecting pipe for a liquid nitrogen evaporator was installed. (Kako, I.)

  5. Modelling of the Bubble Size Distribution in an Aerated Stirred Tank: Theoretical and Numerical Comparison of Different Breakup Models

    Directory of Open Access Journals (Sweden)

    Kálal Zbyněk

    2014-09-01

    Full Text Available The main topic of this study is the mathematical modelling of bubble size distributions in an aerated stirred tank using the population balance method. The air-water system consisted of a fully baffled vessel with a diameter of 0.29 m, which was equipped with a six-bladed Rushton turbine. The secondary phase was introduced through a ring sparger situated under the impeller. Calculations were performed with the CFD software CFX 14.5. The turbulent quantities were predicted using the standard k-ε turbulence model. Coalescence and breakup of bubbles were modelled using the MUSIG method with 24 bubble size groups. For the bubble size distribution modelling, the breakup model by Luo and Svendsen (1996 typically has been used in the past. However, this breakup model was thoroughly reviewed and its practical applicability was questioned. Therefore, three different breakup models by Martínez-Bazán et al. (1999a, b, Lehr et al. (2002 and Alopaeus et al. (2002 were implemented in the CFD solver and applied to the system. The resulting Sauter mean diameters and local bubble size distributions were compared with experimental data.

  6. Assessment of passive safety injection systems of ALWRs. Final report of the European Commission 4th framework programme. Project FI4I-CT95-004 (APSI)

    Energy Technology Data Exchange (ETDEWEB)

    Tuunanen, J. [VTT Energy, Espoo (Finland). Nuclear Energy; Vihavainen, J. [Lappeenranta Univ. of Technology (Finland); D' Auria, F. [Univ. of Pisa (Italy); Kimber, G. [AEA Technology (United Kingdom)

    1999-07-01

    The European Commission 4th Framework Programme project 'Assessment of Passive Safety Injection Systems of Advanced Light Water Reactors (FI4I-CT95-0004)' involved experiments on the PACTEL test facility and computer simulations of selected experiments. The experiments focused on the performance of Passive Safety Injection Systems (PSIS) of Advanced Light Water Reactors (ALWRs) in Small Break Loss-Of-Coolant Accident (SBLOCA) conditions. The PSIS consisted of a Core Make-up Tank (CMT) and two pipelines. A pressure balancing line (PBL) connected the CMT to one cold leg. The injection line (IL) connected it to the downcomer. The project involved 15 experiments in three series. The experiments provided valuable information about condensation and heat transfer processes in the CMT, thermal stratification of water in the CMT, and natural circulation flow through the PSIS lines. The experiments showed the examined PSIS works efficiently in SBLOCAs although the flow through the PSIS may stop in very small SBLOCAs, when the hot water fills the CMT. The experiments also demonstrated the importance of flow distributor (sparger) in the CMT to limit rapid condensation. The project included validation of three thermal-hydraulic computer codes (APROS, CATHARE and RELAP5). The analyses showed the codes are capable of simulating the overall behaviour of the transients. The codes predicted accurately the core heatup, which occurred when the primary coolant inventory was reduced so much that the core top became free of water. The detailed analyses of the calculation results showed that some models in the codes still need improvements. Especially, further development of models for thermal stratification, condensation and natural circulation flow with small driving forces would be necessary for accurate simulation of phenomena in the PSIS. (orig.)

  7. Assessing the degree of plug flow in oxidation flow reactors (OFRs): a study on a potential aerosol mass (PAM) reactor

    Science.gov (United States)

    Mitroo, Dhruv; Sun, Yujian; Combest, Daniel P.; Kumar, Purushottam; Williams, Brent J.

    2018-03-01

    Oxidation flow reactors (OFRs) have been developed to achieve high degrees of oxidant exposures over relatively short space times (defined as the ratio of reactor volume to the volumetric flow rate). While, due to their increased use, attention has been paid to their ability to replicate realistic tropospheric reactions by modeling the chemistry inside the reactor, there is a desire to customize flow patterns. This work demonstrates the importance of decoupling tracer signal of the reactor from that of the tubing when experimentally obtaining these flow patterns. We modeled the residence time distributions (RTDs) inside the Washington University Potential Aerosol Mass (WU-PAM) reactor, an OFR, for a simple set of configurations by applying the tank-in-series (TIS) model, a one-parameter model, to a deconvolution algorithm. The value of the parameter, N, is close to unity for every case except one having the highest space time. Combined, the results suggest that volumetric flow rate affects mixing patterns more than use of our internals. We selected results from the simplest case, at 78 s space time with one inlet and one outlet, absent of baffles and spargers, and compared the experimental F curve to that of a computational fluid dynamics (CFD) simulation. The F curves, which represent the cumulative time spent in the reactor by flowing material, match reasonably well. We value that the use of a small aspect ratio reactor such as the WU-PAM reduces wall interactions; however sudden apertures introduce disturbances in the flow, and suggest applying the methodology of tracer testing described in this work to investigate RTDs in OFRs to observe the effect of modified inlets, outlets and use of internals prior to application (e.g., field deployment vs. laboratory study).

  8. Development of advanced design features for KNGR reactor vessel and internals

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Kyun; Ru, Bong; Lee, Jae Han; Lee, Hyung Yeon; Kim, Jong Bum; Ku, Kyung Heoy; Lee, Ki Young; Lee, Jun; Kim, Young In [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    Developments of KNGR design require to enhance the design to implement the design requirements, such as plant life time from 40 years to 60 years, safety, performance and structure and components design. The designs used for existing nuclear power plants should be modified or improved to meet the requirements in KNGR design. The purpose of the task is to develop the Advanced Design Features (ADF) related to mechanical and structural design for KNGR reactor vessel and reactor internals. The structural integrity for the System 80+ reactor vessel, of which design life is 60 years, was reviewed. EPRI-URD, CESSAR-DC, and the present design status and characteristics of System 80+ reactor vessel were comparatively studied and the improvement of reactor vessel surveillance program was investigated. The performance and aseismic characteristics of the CE-type CEDM, which will be used in System 80+, are investigated. The driving cycles of CEDM are evaluated for the load follow operation(LFO), of which Mode K is being developed by KAERI. The position of the USNRC, EPRI, ABB-CE, and industries on the elimination of OBE are reviewed, and especially ABB-CE System 80+ FSER is reviewed in detail. For the pre-stage of the verification of the OBE elimination from the design, the review of the seismic responses, i.e.. shear forces and moments, of YGN 3/4 RI was performed and the ratio of OBE response to SSE response was analysed. The screening criteria were reviewed to evaluate the integrity against pressurized thermal shock (PTS) for RV belt-line of System 80+. The evaluation methods for fracture integrity when screening criteria are not met were reviewed. The structural characteristics of IRWST spargers of System 80+ were investigated and the effect of hydrodynamic loads on NSSS was reviewed. 18 figs., 9 tabs., 40 refs. (Author) .new.

  9. Development of advanced design features for KNGR reactor vessel and internals

    International Nuclear Information System (INIS)

    Park, Jong Kyun; Ru, Bong; Lee, Jae Han; Lee, Hyung Yeon; Kim, Jong Bum; Ku, Kyung Heoy; Lee, Ki Young; Lee, Jun; Kim, Young In

    1995-12-01

    Developments of KNGR design require to enhance the design to implement the design requirements, such as plant life time from 40 years to 60 years, safety, performance and structure and components design. The designs used for existing nuclear power plants should be modified or improved to meet the requirements in KNGR design. The purpose of the task is to develop the Advanced Design Features (ADF) related to mechanical and structural design for KNGR reactor vessel and reactor internals. The structural integrity for the System 80+ reactor vessel, of which design life is 60 years, was reviewed. EPRI-URD, CESSAR-DC, and the present design status and characteristics of System 80+ reactor vessel were comparatively studied and the improvement of reactor vessel surveillance program was investigated. The performance and aseismic characteristics of the CE-type CEDM, which will be used in System 80+, are investigated. The driving cycles of CEDM are evaluated for the load follow operation(LFO), of which Mode K is being developed by KAERI. The position of the USNRC, EPRI, ABB-CE, and industries on the elimination of OBE are reviewed, and especially ABB-CE System 80+ FSER is reviewed in detail. For the pre-stage of the verification of the OBE elimination from the design, the review of the seismic responses, i.e.. shear forces and moments, of YGN 3/4 RI was performed and the ratio of OBE response to SSE response was analysed. The screening criteria were reviewed to evaluate the integrity against pressurized thermal shock (PTS) for RV belt-line of System 80+. The evaluation methods for fracture integrity when screening criteria are not met were reviewed. The structural characteristics of IRWST spargers of System 80+ were investigated and the effect of hydrodynamic loads on NSSS was reviewed. 18 figs., 9 tabs., 40 refs. (Author) .new

  10. Challenges in design of zirconium alloy reactor components

    International Nuclear Information System (INIS)

    Kakodkar, Anil; Sinha, R.K.

    1992-01-01

    Zirconium alloy components used in core-internal assemblies of heavy water reactors have to be designed under constraints imposed by need to have minimum mass, limitations of fabrication, welding and joining techniques with this material, and unique mechanisms for degradation of the operating performance of these components. These constraints manifest as challenges for design and development when the size, shape and dimensions of the components and assemblies are unconventional or untried, or when one is aiming for maximization of service life of these components under severe operating conditions. A number of such challenges were successfully met during the development of core-internal components and assemblies of Dhruva reactor. Some of the then untried ideas which were developed and successfully implemented include use of electron beam welding, cold forming of hemispherical ends of reentrant cans, and a large variety of rolled joints of innovative designs. This experience provided the foundation for taking up and successfully completing several tasks relating to coolant channels, liquid poison channels and sparger channels for PHWRs and test sections for the in-pile loops of Dhruva reactor. For life prediction and safety assessment of coolant channels of PHWRs some analytical tools, notably, a computer code for prediction of creep limited life of coolant channels has been developed. Some of the future challenges include the development of easily replaceable coolant channels and also large diameter coolant channels for Advanced Heavy Water Reactor, and development of solutions to overcome deterioration of service life of coolant channels due to hydriding. (author). 5 refs., 13 figs., 1 tab

  11. Assessing the degree of plug flow in oxidation flow reactors (OFRs: a study on a potential aerosol mass (PAM reactor

    Directory of Open Access Journals (Sweden)

    D. Mitroo

    2018-03-01

    Full Text Available Oxidation flow reactors (OFRs have been developed to achieve high degrees of oxidant exposures over relatively short space times (defined as the ratio of reactor volume to the volumetric flow rate. While, due to their increased use, attention has been paid to their ability to replicate realistic tropospheric reactions by modeling the chemistry inside the reactor, there is a desire to customize flow patterns. This work demonstrates the importance of decoupling tracer signal of the reactor from that of the tubing when experimentally obtaining these flow patterns. We modeled the residence time distributions (RTDs inside the Washington University Potential Aerosol Mass (WU-PAM reactor, an OFR, for a simple set of configurations by applying the tank-in-series (TIS model, a one-parameter model, to a deconvolution algorithm. The value of the parameter, N, is close to unity for every case except one having the highest space time. Combined, the results suggest that volumetric flow rate affects mixing patterns more than use of our internals. We selected results from the simplest case, at 78 s space time with one inlet and one outlet, absent of baffles and spargers, and compared the experimental F curve to that of a computational fluid dynamics (CFD simulation. The F curves, which represent the cumulative time spent in the reactor by flowing material, match reasonably well. We value that the use of a small aspect ratio reactor such as the WU-PAM reduces wall interactions; however sudden apertures introduce disturbances in the flow, and suggest applying the methodology of tracer testing described in this work to investigate RTDs in OFRs to observe the effect of modified inlets, outlets and use of internals prior to application (e.g., field deployment vs. laboratory study.

  12. Trihalomethanes in potable water

    International Nuclear Information System (INIS)

    Ahmad, M.; Bajahalan, A.S.

    2005-01-01

    These experiments were conducted to evaluate the quality of potable water in Yanbu AI-Sinaiyah, one of the leading industrial city in the Kingdom of Saudi Arabia. The major source of water is Redsea. Desalinated water is distributed in the whole city for domestic uses. At the treatment plant chlorine is being used as disinfectant in pre and post desalination. The present study was conducted to determine the presence of disinfection by-products in potable water. Trihalomethanes are the major disinfection by-products found in the chlorinated water. Trihalomethanes identified in these experiments are chloroform, dichlorobromomethane, dibromochloromethane and tribromomethane. Thichloromethanes are considered to be carcinogenic, hence it is very important to investigate the presence of these compounds in potable water. Samples were collected from consumers tap and preserved at the site for analysis. In the laboratory samples were extracted by Tekmar Velocity XPT purge and trap unit. High purity nitrogen was purged through a sparger in the samples and purged volatiles were trapped in a carbo trap at room temperature. Then trapped components were desorbed with high purity helium and transferred to gas chromatograph injector and analysed by Varian Saturn 2200 GC-MS using 30 m long factor four capillary column. The effect of temperature and seasonal variation (winter and summer) was also monitored. Mean trihalomethane level was higher in summer (8.617 micro g/L) than in winter (5.173 micro g/L). Mean concentration of all the four THMs was 6.9 micro g/L, much less than prescribed EPA limits (80 micro g/L). About 13 brands of bottled water were also analysed for THMs. Only tribromomethane and dibromochloromethane were detected in few brands. Experiments were also conducted to remove THMs from chlorinated water and found that passing through activated charcoal and boiling the water for couple of minutes were sufficient to remove all the THMs from chlorinated water. (author)

  13. Interdependences between flow patterns and oxygen entry in aeration tanks of wastewater treatment plants; Der Zusammenhang von Stroemungsstrukturen und Sauerstoffeintrag bei druckbeluefteten Belebungsbecken

    Energy Technology Data Exchange (ETDEWEB)

    Thiersch, B.

    2001-07-01

    The flow field, turbulence intensities and the distribution of the relative gas-holdup of aeration tanks of operating wastewater treatment plants were investigated experimentally with Acoustic-Doppler-Velocimeter probes. Based on the experimental results a hydrodynamical model in Euler-Euler-Formulation was developed and numerical studies of different tank and diffuser arrangements were performed. It was found that the flow pattern is mainly influenced by the gas sparger arrangement and the tank aspect-ratio. Combining the experimental and numerical results reasons for different aeration efficiencies were identified. Increasing the diffuser density changed the flow field from the spiral type to the cellular pattern with instable and dynamical structures. These flow patterns improved the aeration efficiency by increasing the residence time of the bubbles and the recirculating flows. (orig.) [German] In der vorliegenden Arbeit werden grundlegende Stroemungsstrukturen von druckbeluefteten Belebungsbecken anhand messtechnischer Untersuchungen der Geschwindigkeitsverteilungen, Turbulenzgroessen und relativer Gasgehaltsverteilungen von Belebungsbecken im Betriebszustand aufgezeigt. Vorab wird die Einsatzfaehigkeit von Akkustik-Doppler-Sonden in dispersen Zweiphasenstroemungen detailliert ueberprueft. Aufbauend auf den Messergebnissen wird ein numerisches Simulationsprogramm zur dynamischen Berechnung unterschiedlicher Beckenkonfigurationen entwickelt. Aus den experimentellen Ergebnissen in Verbindung mit den Berechnungsergebnissen sowie den Auswertungen frueherer Untersuchungen konnten hydromechanische Ursachen der unterschiedlichen Sauerstoffeintragseffizienz bei verschiedenen Beckenkonzeptionen abgeleitet werden. Dabei stellen die Anordnung sowie Gleichverteilung der Belueftungselemente sowie das Querschnittsverhaeltnis der Belebungsbecken die wesentlichen Einflussgroessen auf die Ausbildung der Stroemungsstrukturen dar. Mit zunehmender Belegungsdichte und

  14. Strategy for Passivating Char Efficiently at the Pilot Scale

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, Timothy C [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-01-18

    Fast pyrolysis is a promising pathway for the commercialization of liquid transportation fuels from biomass. Fast pyrolysis is performed at moderate heat (450-600 degrees Celcius) in an oxygen-deficient environment. One of the products of fast pyrolysis is biochar, which is often used as a heat source or as a soil amendment. Biochar is a partially reacted solid that is created in the production of bio-oil during fast pyrolysis. Biochar produced at these conditions contains significant quantities of carbon that adsorb oxygen when exposed to air. Biochar adsorption of oxygen is an exothermic process that may generate sufficient heat for combustion in ambient air. Biochar is also a self-insulating material which compounds the effects of heat generated internally. These factors lead to safety concerns and material handling difficulties. The Thermochemical Process Development Unit at the National Renewable Energy Laboratory operates a pilot plant that may be configured for fast pyrolysis, gasification, and will be introducing catalytic fast pyrolysis capabilities in 2018. The TCPDU designed and installed a system to introduce oxygen to collected biochar systematically for a controlled passivation. Biochar is collected and cooled in an oxygen deficient environment during fast pyrolysis. Oxygen is then introduced to the biochar on a mass flow basis. A sparger imbedded within the biochar sample near the bottom of the bed flows air diluted with nitrogen into the char bed, and excess gasses are removed from the top of the collection drum, above the char bed. Pressure within the collection drum is measured indicating adequate flow through filters. Sample weight is recorded before and after passivation. During passivation, temperature is measured at 18 points within the char bed. Oxygen content and temperature are measured leaving the char bed. Maximum temperature parameters were established to ensure operator safety during biochar passivation. Extensive passivation data was

  15. Evaluation of reflooding effects on an overheated boiling water reactor core in a small steam-line break accident using MAAP, MELCOR, and SCDAP/RELAP5 computer codes

    International Nuclear Information System (INIS)

    Lindholm, I.; Pekkarinen, E.; Sjoevall, H.

    1995-01-01

    Selected core reflooding situations were investigated in the case of a Finnish boiling water reactor with three severe accident analysis computer codes (MAAP, MELCOR, and SCDAP/RELAP5). The unmitigated base case accident scenario was a 10% steam-line break without water makeup to the reactor pressure vessel initially. The pumping of water to the core was started with the auxiliary feed water system when the maximum fuel cladding temperature reached 1,500 K. The auxiliary feedwater system pumps water (temperature 303 K) through the core spray spargers (core spray) on the top of the core and through feedwater nozzles to the downcomer (downcomer injection). The scope of the study was restricted to cases where the overheated core was still geometrically intact at the start of the reflooding. The following different core reflooding situations were investigated: (1) auxiliary feedwater injection to core spray (45 kg/s); (2) auxiliary feedwater injection to downcomer (45 kg/s); (3) auxiliary feedwater injection to downcomer (45 kg/s) and to core spray (45 kg/s); (4) no reflooding of the core. All the three codes predicted debris formation after the water addition, and in all MAAP and MELCOR reflooding results the core was quenched. The major difference between the code predictions was in the amount of H 2 produced, though the trends in H 2 production were similar. Additional steam production during the quenching process accelerated the oxidation in the unquenched parts of the core. This result is in accordance with several experimental observations

  16. Numerical and experimental investigation of the self-inducing turbine aeration capacity

    International Nuclear Information System (INIS)

    Achouri, Ryma; Dhaouadi, Hatem; Mhiri, Hatem; Bournot, Philippe

    2014-01-01

    Highlights: • Numerical and experimental study of k L a coefficient of a self-inducing turbine. • Validation of experimental results. • Numerical study of k L a variation with the variation of impeller submersion and blade inclination. • Numerical study of the flow field and hydrodynamic parameters. - Abstract: Self-inducing turbines are a model of mixers that ensure the aeration of a fluid field without using a sparger and a surface aerator. Nevertheless, this type of turbines remain quite complicated in terms of behavior of the fluid within the tank, and its actual aeration capacity varies depending on the type of turbine used. The studied turbine is self-inducing and made of three blades and each blade contains five holes. In this work, we evaluated experimentally – using the technique of dynamic oxygenation and deoxygenating – the aeration capacity of our impeller by calculating the volumetric mass transfer coefficient k L a for various submergences and various inclination angles of the blade. This work was then validated by a numerical modeling using the commercial code Fluent, and the flow within the tank as well as the evolution of the hydrodynamic parameters was also studied. The simulation is steady state with a VOF multiphase model and the realizable k–ε turbulence model. We finally concluded that k L a decreases with the increase of the inclination angle and with the increase of the submergence of our turbine. We could also study the hydrodynamic parameters of the flow such as the power number, the aeration number and the shear rate

  17. Two-fluid model LES of a bubble column

    International Nuclear Information System (INIS)

    Brahma N Reddy Vanga; Martin A Lopez de Bertodano; Eckhard Krepper; Alexandr Zaruba; Horst-Michael Prasser

    2005-01-01

    The hydrodynamics of a rectangular bubble column operating in the dispersed bubbly regime has been numerically investigated using a two-fluid model Large Eddy Simulation (LES). Experimental data were obtained to validate the model. LES computational fluid dynamic calculations of the transient flow for the bubble column were performed to account for the turbulence in the liquid phase. The computational mesh is of the same scale as the bubble size. The sub grid-scale Reynolds stresses were calculated with the Smagorinsky model. Furthermore, the effect of the bubbles on the turbulence in the continuous phase was modeled using Sato's eddy viscosity model for bubble-induced turbulence. Mean quantities were computed by averaging over a time period that was longer than the dynamic time scales of the turbulence, in particular the void fraction and the average velocity of the bubbles. A systematic analysis of the effect of the interfacial momentum transfer terms on these quantities has been conducted. The bubble column was locally aerated using a sparger located in the center of the bottom plate. The experimental studies involve wire-mesh tomography measurements for void fraction and bubble size distributions and digital image processing of high speed camera images for estimation of bubble velocities, size distributions and flow patterns. Experiments were performed for various aspect ratios (height of water column to width ratio) and superficial gas velocities. It was found that the non-drag bubble forces play a very prominent role in the predicting the correct flow pattern and void fraction distributions. In the calculations, the lift force and the wall force were considered. A 'wall peak' in the time averaged void fraction distribution has been experimentally observed and this cannot be predicted without including these non-drag forces in the numerical calculations. In this paper, experimental data are compared with the results of the numerical simulations. (authors)

  18. Assessment of passive safety injection systems of ALWRs. Final report of the European Commission 4th framework programme. Project FI4I-CT95-004 (APSI)

    International Nuclear Information System (INIS)

    Tuunanen, J.; D'Auria, F.; Kimber, G.

    1999-01-01

    The European Commission 4th Framework Programme project 'Assessment of Passive Safety Injection Systems of Advanced Light Water Reactors (FI4I-CT95-0004)' involved experiments on the PACTEL test facility and computer simulations of selected experiments. The experiments focused on the performance of Passive Safety Injection Systems (PSIS) of Advanced Light Water Reactors (ALWRs) in Small Break Loss-Of-Coolant Accident (SBLOCA) conditions. The PSIS consisted of a Core Make-up Tank (CMT) and two pipelines. A pressure balancing line (PBL) connected the CMT to one cold leg. The injection line (IL) connected it to the downcomer. The project involved 15 experiments in three series. The experiments provided valuable information about condensation and heat transfer processes in the CMT, thermal stratification of water in the CMT, and natural circulation flow through the PSIS lines. The experiments showed the examined PSIS works efficiently in SBLOCAs although the flow through the PSIS may stop in very small SBLOCAs, when the hot water fills the CMT. The experiments also demonstrated the importance of flow distributor (sparger) in the CMT to limit rapid condensation. The project included validation of three thermal-hydraulic computer codes (APROS, CATHARE and RELAP5). The analyses showed the codes are capable of simulating the overall behaviour of the transients. The codes predicted accurately the core heatup, which occurred when the primary coolant inventory was reduced so much that the core top became free of water. The detailed analyses of the calculation results showed that some models in the codes still need improvements. Especially, further development of models for thermal stratification, condensation and natural circulation flow with small driving forces would be necessary for accurate simulation of phenomena in the PSIS. (orig.)

  19. Analysis of steam condensation in APR1400 IRWST for loss of coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Young Suk

    2006-02-15

    The In-Containment Refueling Water Storage Tank (IRWST) of APR1400 is installed at the bottom of containment building to promote the plant safety functions during an accident. This design feature brings about uncertainty factors which may necessitate conventional prediction of temperature and pressure of containment building improved or revised when an accident occurs. The hot steam which is released from RCS break enters the IRWST through four Pressure Relief Dampers (PRDs). It is expected to be condensed with water stored in IRWST, in which water is colder than incoming steam. The purpose of this study is to investigate the influence of IRWST and pressure relief damper on back pressure and temperature in APR1400 containment codes such as CONTEMPT-LT and GOTHIC. The comparison of codes showed that GOTHIC code be more appropriate for the prediction of containment pressure and temperature under the condition of steam condensation occurring in confined water pool. Especially, the GOTHIC has superior capability to treat multi-compartmentalized geometry This study developed one-compartment (single) model, two-compartment (separated) model, and three-dimension (3-D) model, respectively. Two compartment model separates the IRWST from the other containment compartments. In 3-D model, only the IRWST is nodalized with Cartesian modeling. The single model is developed for comparison with two-compartment model which can analyze PRD's influence. The separated model for predicting PRD's influence divides the space between containment and IRWST. 3-D model for IRWST was generated because it is not symmetric considering location of sparger, pump, and suction sump. Therefore, IRWST is simulated with not only detailed three-dimensional behavior but also independent flow paths for four PRDs. Many experimental studies for the direct-contact heat transfer in stratified steam water flows, cocurrent or countercurrent, have been performed (Segev et al., 1981; Lim et al., 1981

  20. Results of Large-Scale Testing on Effects of Anti-Foam Agent on Gas Retention and Release

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Charles W.; Guzman-Leong, Consuelo E.; Arm, Stuart T.; Butcher, Mark G.; Golovich, Elizabeth C.; Jagoda, Lynette K.; Park, Walter R.; Slaugh, Ryan W.; Su, Yin-Fong; Wend, Christopher F.; Mahoney, Lenna A.; Alzheimer, James M.; Bailey, Jeffrey A.; Cooley, Scott K.; Hurley, David E.; Johnson, Christian D.; Reid, Larry D.; Smith, Harry D.; Wells, Beric E.; Yokuda, Satoru T.

    2008-01-03

    The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site. The waste treatment process in the pretreatment facility will mix both Newtonian and non-Newtonian slurries in large process tanks. Process vessels mixing non-Newtonian slurries will use pulse jet mixers (PJMs), air sparging, and recirculation pumps. An anti-foam agent (AFA) will be added to the process streams to prevent surface foaming, but may also increase gas holdup and retention within the slurry. The work described in this report addresses gas retention and release in simulants with AFA through testing and analytical studies. Gas holdup and release tests were conducted in a 1/4-scale replica of the lag storage vessel operated in the Pacific Northwest National Laboratory (PNNL) Applied Process Engineering Laboratory using a kaolin/bentonite clay and AZ-101 HLW chemical simulant with non-Newtonian rheological properties representative of actual waste slurries. Additional tests were performed in a small-scale mixing vessel in the PNNL Physical Sciences Building using liquids and slurries representing major components of typical WTP waste streams. Analytical studies were directed at discovering how the effect of AFA might depend on gas composition and predicting the effect of AFA on gas retention and release in the full-scale plant, including the effects of mass transfer to the sparge air. The work at PNNL was part of a larger program that included tests conducted at Savannah River National Laboratory (SRNL) that is being reported separately. SRNL conducted gas holdup tests in a small-scale mixing vessel using the AZ-101 high-level waste (HLW) chemical simulant to investigate the effects of different AFAs, their components, and of adding noble metals. Full-scale, single-sparger mass transfer tests were also conducted at SRNL in water and AZ-101 HLW simulant to provide data for PNNL

  1. Analysis of steam condensation in APR1400 IRWST for loss of coolant accident

    International Nuclear Information System (INIS)

    Oh, Young Suk

    2006-02-01

    The In-Containment Refueling Water Storage Tank (IRWST) of APR1400 is installed at the bottom of containment building to promote the plant safety functions during an accident. This design feature brings about uncertainty factors which may necessitate conventional prediction of temperature and pressure of containment building improved or revised when an accident occurs. The hot steam which is released from RCS break enters the IRWST through four Pressure Relief Dampers (PRDs). It is expected to be condensed with water stored in IRWST, in which water is colder than incoming steam. The purpose of this study is to investigate the influence of IRWST and pressure relief damper on back pressure and temperature in APR1400 containment codes such as CONTEMPT-LT and GOTHIC. The comparison of codes showed that GOTHIC code be more appropriate for the prediction of containment pressure and temperature under the condition of steam condensation occurring in confined water pool. Especially, the GOTHIC has superior capability to treat multi-compartmentalized geometry This study developed one-compartment (single) model, two-compartment (separated) model, and three-dimension (3-D) model, respectively. Two compartment model separates the IRWST from the other containment compartments. In 3-D model, only the IRWST is nodalized with Cartesian modeling. The single model is developed for comparison with two-compartment model which can analyze PRD's influence. The separated model for predicting PRD's influence divides the space between containment and IRWST. 3-D model for IRWST was generated because it is not symmetric considering location of sparger, pump, and suction sump. Therefore, IRWST is simulated with not only detailed three-dimensional behavior but also independent flow paths for four PRDs. Many experimental studies for the direct-contact heat transfer in stratified steam water flows, cocurrent or countercurrent, have been performed (Segev et al., 1981; Lim et al., 1981; Kim and

  2. Turbulence-induced bubble collision force modeling and validation in adiabatic two-phase flow using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Subash L., E-mail: sharma55@purdue.edu [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907-1290 (United States); Hibiki, Takashi; Ishii, Mamoru [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907-1290 (United States); Brooks, Caleb S. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois, Urbana, IL 61801 (United States); Schlegel, Joshua P. [Nuclear Engineering Program, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Buchanan, John R. [Bechtel Marine Propulsion Corporation, Bettis Laboratory, West Mifflin, PA 15122 (United States)

    2017-02-15

    Highlights: • Void distribution in narrow rectangular channel with various non-uniform inlet conditions. • Modeling of void diffusion due to bubble collision force. • Validation of new modeling in adiabatic air–water two-phase flow in a narrow channel. - Abstract: The prediction capability of the two-fluid model for gas–liquid dispersed two-phase flow depends on the accuracy of the closure relations for the interfacial forces. In previous studies of two-phase flow Computational Fluid Dynamics (CFD), interfacial force models for a single isolated bubble has been extended to disperse two-phase flow assuming the effect in a swarm of bubbles is similar. Limited studies have been performed investigating the effect of the bubble concentration on the lateral phase distribution. Bubbles, while moving through the liquid phase, may undergo turbulence-driven random collision with neighboring bubbles without significant coalescence. The rate of these collisions depends upon the bubble approach velocity and bubble spacing. The bubble collision frequency is expected to be higher in locations with higher bubble concentrations, i.e., volume fraction. This turbulence-driven random collision causes the diffusion of the bubbles from high concentration to low concentration. Based on experimental observations, a phenomenological model has been developed for a “turbulence-induced bubble collision force” for use in the two-fluid model. For testing the validity of the model, two-phase flow data measured at Purdue University are utilized. The geometry is a 10 mm × 200 mm cross section channel. Experimentally, non-uniform inlet boundary conditions are applied with different sparger combinations to vary the volume fraction distribution across the wider dimension. Examining uniform and non-uniform inlet data allows for the influence of the volume fraction to be studied as a separate effect. The turbulence-induced bubble collision force has been implemented in ANSYS CFX. The

  3. Pulse Jet Mixer Overblow Testing for Assessment of Loadings During Multiple Overblows

    Energy Technology Data Exchange (ETDEWEB)

    Pfund, David M.; Bontha, Jagannadha R.; Michener, Thomas E.; Nigl, Franz; Yokuda, Satoru T.; Leigh, Richard J.; Golovich, Elizabeth C.; Baumann, Aaron W.; Kurath, Dean E.; Hoza, Mark; Combs, William H.; Fort, James A.; Bredt, Ofelia P.

    2009-07-20

    The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment Plant (WTP) is being designed and built to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks. The WTP consists of three primary facilities: pretreatment, low-activity waste (LAW) vitrification, and high-level waste (HLW) vitrification. The pretreatment facility will receive waste feed from the Hanford tank farms and separate it into 1) a high-volume, low-activity liquid stream stripped of most solids and radionuclides and 2) a much smaller volume of HLW slurry containing most of the solids and most of the radioactivity. Many of the vessels in the pretreatment facility will contain pulse jet mixers (PJMs) that will provide some or all of the mixing in the vessels. This technology was selected for use in so-called “black cell” regions of the WTP, where maintenance capability will not be available for the operating life of the WTP. PJM technology was selected for use in these regions because it has no moving mechanical parts that require maintenance. The vessels with the most concentrated slurries will also be mixed with air spargers and/or steady jets in addition to the mixing provided by the PJMs. This report contains the results of single and multiple PJM overblow tests conducted in a large, ~13 ft-diameter × 15-ft-tall tank located in the high bay of the Pacific Northwest National Laboratory (PNNL) 336 Building test facility. These single and multiple PJM overblow tests were conducted using water and a clay simulant to bound the lower and upper rheological properties of the waste streams anticipated to be processed in the WTP. Hydrodynamic pressures were measured at a number of locations in the test vessel using an array of nine pressure sensors and four hydrophones. These measurements were made under normal and limiting vessel operating conditions (i.e., maximum PJM fluid emptying velocity, maximum and minimum vessel

  4. Pulse Jet Mixer Overblow Testing for Assessment of Loadings During Multiple Overblows

    Energy Technology Data Exchange (ETDEWEB)

    Pfund, David M.; Bontha, Jagannadha R.; Michener, Thomas E.; Nigl, Franz; Yokuda, Satoru T.; Leigh, Richard J.; Golovich, Elizabeth C.; Baumann, Aaron W.; Kurath, Dean E.; Hoza, Mark; Combs, William H.; Fort, James A.; Bredt, Ofelia P.

    2008-03-03

    The U.S. Department of Energy (DOE) Office of River Protection’s Waste Treatment Plant (WTP) is being designed and built to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks. The WTP consists of three primary facilities: pretreatment, low-activity waste (LAW) vitrification, and high-level waste (HLW) vitrification. The pretreatment facility will receive waste feed from the Hanford tank farms and separate it into 1) a high-volume, low-activity liquid stream stripped of most solids and radionuclides and 2) a much smaller volume of HLW slurry containing most of the solids and most of the radioactivity. Many of the vessels in the pretreatment facility will contain pulse jet mixers (PJMs) that will provide some or all of the mixing in the vessels. This technology was selected for use in so-called “black cell” regions of the WTP, where maintenance capability will not be available for the operating life of the WTP. PJM technology was selected for use in these regions because it has no moving mechanical parts that require maintenance. The vessels with the most concentrated slurries will also be mixed with air spargers and/or steady jets in addition to the mixing provided by the PJMs. This report contains the results of single and multiple PJM overblow tests conducted in a large, ~13 ft-diameter × 15-ft-tall tank located in the high bay of the Pacific Northwest National Laboratory (PNNL) 336 Building test facility. These single and multiple PJM overblow tests were conducted using water and a clay simulant to bound the lower and upper rheological properties of the waste streams anticipated to be processed in the WTP. Hydrodynamic pressures were measured at a number of locations in the test vessel using an array of nine pressure sensors and four hydrophones. These measurements were made under normal and limiting vessel operating conditions (i.e., maximum PJM fluid emptying velocity, maximum and minimum vessel

  5. Mass transfer model for two-layer TBP oxidation reactions

    International Nuclear Information System (INIS)

    Laurinat, J.E.

    1994-01-01

    To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments. Three cases were investigated: (1) transfer of water into the TBP layer with sparging of both the aqueous and TBP layers, (2) transfer of water into the TBP layer with sparging of just the TBP layer, and (3) transfer of butanol into the aqueous layer with sparging of both layers. The TBP layer was comprised of 99% pure TBP (spiked with butanol for the butanol transfer experiments), and the aqueous layer was comprised of either water or an aluminum nitrate solution. The liquid layers were air sparged to simulate the mixing due to the evolution of gases generated by oxidation reactions. A plastic tube and a glass frit sparger were used to provide different size bubbles. Rates of mass transfer were measured using infrared spectrophotometers provided by SRTC/Analytical Development

  6. Mixed convection in a two-phase flow cooling loop

    International Nuclear Information System (INIS)

    Janssens-Maenhout, G.; Daubner, M.; Knebel, J.U.

    2002-03-01

    This report summarizes the numerical simulations using the CFD code CFX4.1 which has additional models for subcooled flow boiling phenomena and the interfacial forces. The improved CFX4.1 code can be applied to the design of boiling induced mixed convection cooling loops in a defined parameter range. The experimental part describes the geysering experiments and the instability effects on the two-phase natural circulation flow. An experimentally validated flow pattern map in the Phase Change Number - Subcooling Number (N PCh - N Sub ) diagram defines the operational range in which flow instabilities such as geysering can be expected. One important perspective of this combined experimental/numerical work, which is in the field of two-phase flow, is its application to the development of accelerator driven systems (ADS). The main objective on an ADS is its potential to transmute minor actinides and long-lived fission products, thus participating in closing the fuel cycle. The development of an ADS is an important issue within the Euratom Fifth FP on Partitioning and Transmutation. One concept of an ADS, which is investigated in more detail within the ''preliminary design study of an experimental ADS'' Project (PDS-XADS) of the Euratom Fifth FP, is the XADS lead-bismuth cooled Experimental ADS of ANSALDO. An essential feature of this concept is the natural circulation of the primary coolant within the reactor pool. The natural circulation, which is driven by the density differences between the blanket and the heat exchanger, is enhanced by the injection of the nitrogen cover gas through spargers located in a riser part just above the blanket. This so-called gas-lift pump system has not been investigated in more detail nor has this gas-lift pump system been numerically/experimentally confirmed. The knowledge gained within the SUCO Programe, i.e. the modelling of the interfacial forces, the experimental work on flow instabilities and the modelling of the interfacial area

  7. Mixed convection in a two-phase flow cooling loop

    Energy Technology Data Exchange (ETDEWEB)

    Janssens-Maenhout, G.; Daubner, M.; Knebel, J.U.

    2002-03-01

    This report summarizes the numerical simulations using the CFD code CFX4.1 which has additional models for subcooled flow boiling phenomena and the interfacial forces. The improved CFX4.1 code can be applied to the design of boiling induced mixed convection cooling loops in a defined parameter range. The experimental part describes the geysering experiments and the instability effects on the two-phase natural circulation flow. An experimentally validated flow pattern map in the Phase Change Number - Subcooling Number (N{sub PCh} - N{sub Sub}) diagram defines the operational range in which flow instabilities such as geysering can be expected. One important perspective of this combined experimental/numerical work, which is in the field of two-phase flow, is its application to the development of accelerator driven systems (ADS). The main objective on an ADS is its potential to transmute minor actinides and long-lived fission products, thus participating in closing the fuel cycle. The development of an ADS is an important issue within the Euratom Fifth FP on Partitioning and Transmutation. One concept of an ADS, which is investigated in more detail within the ''preliminary design study of an experimental ADS'' Project (PDS-XADS) of the Euratom Fifth FP, is the XADS lead-bismuth cooled Experimental ADS of ANSALDO. An essential feature of this concept is the natural circulation of the primary coolant within the reactor pool. The natural circulation, which is driven by the density differences between the blanket and the heat exchanger, is enhanced by the injection of the nitrogen cover gas through spargers located in a riser part just above the blanket. This so-called gas-lift pump system has not been investigated in more detail nor has this gas-lift pump system been numerically/experimentally confirmed. The knowledge gained within the SUCO Programe, i.e. the modelling of the interfacial forces, the experimental work on flow instabilities and the

  8. Properties Important To Mixing For WTP Large Scale Integrated Testing

    International Nuclear Information System (INIS)

    Koopman, D.; Martino, C.; Poirier, M.

    2012-01-01

    Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL was to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i

  9. PROPERTIES IMPORTANT TO MIXING FOR WTP LARGE SCALE INTEGRATED TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.; Martino, C.; Poirier, M.

    2012-04-26

    Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL was to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i

  10. Commercial-Scale Demonstration of the Liquid Phase Methanol (LPMEOH) Process

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-21

    catalyst deactivation in the demonstration unit. Based on the results of plant operation and catalyst sampling, DOE accepted a recommendation by Air Products and Eastman to drain the initial charge of catalyst from the reactor and replace the charge with fresh catalyst. Prior to this catalyst turnaround, a final test was performed to determine the impact of raising the operating temperature of the LPMEOW Reactor from 250"C to 260oC. carbon. Activation of the new flesh charge of catalyst began on 13 November 1997. Just as in the original start-up in April of 1997, only a partial charge of catalyst (20,700 pounds) was activated to limit the amount of material exposed to poisons at the outset. An attempted restart of the LPMEOW Demonstration Unit on 26 November 1997 was unsuccessfid; settling of the flesh catalyst appeared to have occurred in the LPMEOFP Reactor and gas inlet piping, which resulted in the plugging of the gas sparger at the bottom of the vessel.

  11. Development of a Nuclear Steam Supply System Thermal-Hydraulic Module for the Nuclear Power Plant Simulator Using a Best-Estimate Code, RETRAN

    International Nuclear Information System (INIS)

    Suh, Jae Seung

    2004-08-01

    The NSSS (Nuclear Steam Supply System) thermal-hydraulic programs adopted in the domestic full-scope power plant simulators were provided in early 1980s by foreign vendors. Because of limited computational capability at that time, they usually used very simplified physical models for the real-time simulation of Ness thermal-hydraulic transients, which entails inaccurate results and, thus, the possibility of so-called 'negative training', especially for complicated two-phase flows in the reactor coolant system. To resolve the problem, a realistic NSSS thermal-hydraulic program ARTS has been developed, it was based on the RETRAN code for the improvement of the Nuclear Power Plant full-scope simulator. Since ARTS is a generalized code to solve a simultaneous equation system, the smaller time-step size should be used if converged solution could not obtain even in a single volume. Therefore, dedicated models which do not force to reduce the time-step size are sometimes more suitable in terms of a real-time calculation and robustness. The PRT(Pressurizer Relief Tank) is a good example, which requires a dedicated model. The PRT consists of subcooled water in bottom and non-condensable gas in top. The sparger merged under subcooled water enhances condensation. The complicated thermal-hydraulic phenomena such as condensation, phase separation with existence of non-condensable gas makes difficult to simulate. Therefore, the PRT volume may limit the time-step size if it is modeled with a general control volume. To mitigate the time-step size reduction due to convergence failure at this component using RETRAN, the PRT model was developed as a dedicated model. The dedicated model was expected to provide reasonable results without convergence problem in the analysis of the system transients. The ARTS code guarantees the real-time calculations of almost all transients and ensures the robustness of simulations. However, there are some possibilities of calculation failure in the