WorldWideScience

Sample records for spanish forested landscapes

  1. Large-scale determinants of diversity across Spanish forest habitats: accounting for model uncertainty in compositional and structural indicators

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Quller, E.; Torras, O.; Alberdi, I.; Solana, J.; Saura, S.

    2011-07-01

    An integral understanding of forest biodiversity requires the exploration of the many aspects it comprises and of the numerous potential determinants of their distribution. The landscape ecological approach provides a necessary complement to conventional local studies that focus on individual plots or forest ownerships. However, most previous landscape studies used equally-sized cells as units of analysis to identify the factors affecting forest biodiversity distribution. Stratification of the analysis by habitats with a relatively homogeneous forest composition might be more adequate to capture the underlying patterns associated to the formation and development of a particular ensemble of interacting forest species. Here we used a landscape perspective in order to improve our understanding on the influence of large-scale explanatory factors on forest biodiversity indicators in Spanish habitats, covering a wide latitudinal and attitudinal range. We considered six forest biodiversity indicators estimated from more than 30,000 field plots in the Spanish national forest inventory, distributed in 213 forest habitats over 16 Spanish provinces. We explored biodiversity response to various environmental (climate and topography) and landscape configuration (fragmentation and shape complexity) variables through multiple linear regression models (built and assessed through the Akaike Information Criterion). In particular, we took into account the inherent model uncertainty when dealing with a complex and large set of variables, and considered different plausible models and their probability of being the best candidate for the observed data. Our results showed that compositional indicators (species richness and diversity) were mostly explained by environmental factors. Models for structural indicators (standing deadwood and stand complexity) had the worst fits and selection uncertainties, but did show significant associations with some configuration metrics. In general

  2. Governing Forest Landscape Restoration: Cases from Indonesia

    Directory of Open Access Journals (Sweden)

    Cora van Oosten

    2014-05-01

    Full Text Available Forest landscape restoration includes both the planning and implementation of measures to restore degraded forests within the perspective of the wider landscape. Governing forest landscape restoration requires fundamental considerations about the conceptualisation of forested landscapes and the types of restoration measures to be taken, and about who should be engaged in the governance process. A variety of governance approaches to forest landscape restoration exist, differing in both the nature of the object to be governed and the mode of governance. This paper analyses the nature and governance of restoration in three cases of forest landscape restoration in Indonesia. In each of these cases, both the original aim for restoration and the initiators of the process differ. The cases also differ in how deeply embedded they are in formal spatial planning mechanisms at the various political scales. Nonetheless, the cases show similar trends. All cases show a dynamic process of mobilising the landscape’s stakeholders, plus a flexible process of crafting institutional space for conflict management, negotiation and decision making at the landscape level. As a result, the landscape focus changed over time from reserved forests to forested mosaic lands. The cases illustrate that the governance of forest landscape restoration should not be based on strict design criteria, but rather on a flexible governance approach that stimulates the creation of novel public-private institutional arrangements at the landscape level.

  3. Mosaic boreal landscapes with open and forested wetlands

    International Nuclear Information System (INIS)

    Sjoeberg, K.; Ericson, L.

    1997-01-01

    We review patterns and processes important for biodiversity in the Fennoscandian boreal forest, describe man's past and present impact and outline a strategy for conservation. The boreal landscape was earlier characterized by a mosaic of open and forested wetlands and forests. Drainage and felling operation have largely changed that pattern. Several organisms depend upon the landscape mosaic. Natural ecotones between mire and forest provide food resources predictable in space and time contrasting to unpredictable edges in the silvicultured landscape. The mosaic is also a prerequisite for organisms dependent on non-substitutable resources in the landscape. The importance of swamp forests has increased as they function as refugia for earlier more widespread old-growth species. Programmes for maintaining biodiversity in the boreal landscape should include the following points. First, the natural mosaic with open and forested wetlands must be maintained. Second, swamp forests must receive a general protection as they often constitute the only old-growth patches in the landscape. Third, we need to restore earlier disturbance regimes. Present strategy plans for conservation are insufficient, as they imply that a too large proportion of boreal organisms will not be able to survive outside protected areas. Instead, we need to focus more on how to preserve organisms in the man-influenced landscape. As a first step we need to understand how organisms are distributed in landscapes at various spatial scales. We need studies in landscapes where the original mosaic has faced various degrees of fragmentation. (au) 124 refs

  4. Implementing Forest Landscape Restorationin Ethiopia

    Directory of Open Access Journals (Sweden)

    Till Pistorius

    2017-02-01

    Full Text Available Driven by various initiatives and international policy processes, the concept of Forest Landscape Restoration, is globally receiving renewed attention. It is seen internationally and in national contexts as a means for improving resilience of land and communities in the face of increasing environmental degradation through different forest activities. Ethiopia has made a strong voluntary commitment in the context of the Bonn Challenge—it seeks to implement Forest Landscape Restoration (FLR on 15 million ha. In the context of rural Ethiopia, forest establishment and restoration provide a promising approach to reverse the widespread land degradation, which is exacerbated by climate change and food insecurity. This paper presents an empirical case study of FLR opportunities in the Amhara National Regional State, Ethiopia’s largest spans of degraded and barren lands. Following the Restoration Opportunity Assessment Methodology, the study categorizes the main types of landscapes requiring restoration, identifies and prioritizes respective FLR options, and details the costs and benefits associated with each of the five most significant opportunities: medium to large‐scale afforestation and reforestation activities on deforested or degraded marginal land not suitable for agriculture, the introduction of participatory forest management, sustainable woodland management combined with value chain investments, restoration of afro‐alpine and sub‐afro‐alpine areas and the establishment of woodlots.

  5. Exploring component-based approaches in forest landscape modeling

    Science.gov (United States)

    H. S. He; D. R. Larsen; D. J. Mladenoff

    2002-01-01

    Forest management issues are increasingly required to be addressed in a spatial context, which has led to the development of spatially explicit forest landscape models. The numerous processes, complex spatial interactions, and diverse applications in spatial modeling make the development of forest landscape models difficult for any single research group. New...

  6. 75 FR 16719 - Information Collection; Forest Landscape Value and Special Place Mapping for National Forest...

    Science.gov (United States)

    2010-04-02

    ... Collection; Forest Landscape Value and Special Place Mapping for National Forest Planning AGENCY: Forest... on the new information collection, Forest Landscape Value and Special Place Mapping for National Forest Planning. DATES: Comments must be received in writing on or before June 1, 2010 to be assured of...

  7. Visions of Restoration in Fire-Adapted Forest Landscapes: Lessons from the Collaborative Forest Landscape Restoration Program

    Science.gov (United States)

    Urgenson, Lauren S.; Ryan, Clare M.; Halpern, Charles B.; Bakker, Jonathan D.; Belote, R. Travis; Franklin, Jerry F.; Haugo, Ryan D.; Nelson, Cara R.; Waltz, Amy E. M.

    2017-02-01

    Collaborative approaches to natural resource management are becoming increasingly common on public lands. Negotiating a shared vision for desired conditions is a fundamental task of collaboration and serves as a foundation for developing management objectives and monitoring strategies. We explore the complex socio-ecological processes involved in developing a shared vision for collaborative restoration of fire-adapted forest landscapes. To understand participant perspectives and experiences, we analyzed interviews with 86 respondents from six collaboratives in the western U.S., part of the Collaborative Forest Landscape Restoration Program established to encourage collaborative, science-based restoration on U.S. Forest Service lands. Although forest landscapes and group characteristics vary considerably, collaboratives faced common challenges to developing a shared vision for desired conditions. Three broad categories of challenges emerged: meeting multiple objectives, collaborative capacity and trust, and integrating ecological science and social values in decision-making. Collaborative groups also used common strategies to address these challenges, including some that addressed multiple challenges. These included use of issue-based recommendations, field visits, and landscape-level analysis; obtaining support from local agency leadership, engaging facilitators, and working in smaller groups (sub-groups); and science engagement. Increased understanding of the challenges to, and strategies for, developing a shared vision of desired conditions is critical if other collaboratives are to learn from these efforts.

  8. Visions of Restoration in Fire-Adapted Forest Landscapes: Lessons from the Collaborative Forest Landscape Restoration Program.

    Science.gov (United States)

    Urgenson, Lauren S; Ryan, Clare M; Halpern, Charles B; Bakker, Jonathan D; Belote, R Travis; Franklin, Jerry F; Haugo, Ryan D; Nelson, Cara R; Waltz, Amy E M

    2017-02-01

    Collaborative approaches to natural resource management are becoming increasingly common on public lands. Negotiating a shared vision for desired conditions is a fundamental task of collaboration and serves as a foundation for developing management objectives and monitoring strategies. We explore the complex socio-ecological processes involved in developing a shared vision for collaborative restoration of fire-adapted forest landscapes. To understand participant perspectives and experiences, we analyzed interviews with 86 respondents from six collaboratives in the western U.S., part of the Collaborative Forest Landscape Restoration Program established to encourage collaborative, science-based restoration on U.S. Forest Service lands. Although forest landscapes and group characteristics vary considerably, collaboratives faced common challenges to developing a shared vision for desired conditions. Three broad categories of challenges emerged: meeting multiple objectives, collaborative capacity and trust, and integrating ecological science and social values in decision-making. Collaborative groups also used common strategies to address these challenges, including some that addressed multiple challenges. These included use of issue-based recommendations, field visits, and landscape-level analysis; obtaining support from local agency leadership, engaging facilitators, and working in smaller groups (sub-groups); and science engagement. Increased understanding of the challenges to, and strategies for, developing a shared vision of desired conditions is critical if other collaboratives are to learn from these efforts.

  9. Forest landscape restoration in the drylands of Latin America

    OpenAIRE

    Newton, Adrian C.; Del Castillo, Rafael F.; Echeverría, Cristian; Geneletti, Davide; González Espinosa, Mario; Malizia, Lucio R.; Premoli, Andrea C.; Rey Benayas, José María; Smith Ramírez, Cecilia; Williams Linera, Guadalupe

    2012-01-01

    Forest Landscape Restoration (FLR) involves the ecological restoration of degraded forest landscapes, with the aim of benefiting both biodiversity and human well-being. We first identify four fundamental principles of FLR, based on previous definitions. We then critically evaluate the application of these principles in practice, based on the experience gained during an international, collaborative research project conducted in six dry forest landscapes of Latin America. Research highlighted t...

  10. Sustaining forest landscape connectivity under different land cover change scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Rubio, L.; Rodriguez-Freire, M.; Mateo-Sanchez, M. C.; Estreguil, C.; Saura, S.

    2012-11-01

    Managing forest landscapes to sustain functional connectivity is considered one of the key strategies to counteract the negative effects of climate and human-induced changes in forest species pools. With this objective, we evaluated whether a robust network of forest connecting elements can be identified so that it remains efficient when facing different types of potential land cover changes that may affect forest habitat networks and ecological fluxes. For this purpose we considered changes both in the forested areas and in the non-forest intervening landscape matrix. We combined some of the most recent developments in graph theory with models of land cover permeability and least-cost analysis through the forest landscape. We focused on a case of study covering the habitat of a forest dwelling bird (nuthatch, Sitta europaea) in the region of Galicia (NW Spain). Seven land-use change scenarios were analysed for their effects on connecting forest elements (patches and links): one was the simplest case in which the landscape is represented as a binary forest/non-forest pattern (and where matrix heterogeneity is disregarded), four scenarios in which forest lands were converted to other cover types (to scrubland due to wildfires, to extensive and intensive agriculture, and to urban areas), and two scenarios that only involved changes in the non-forested matrix (re naturalization and intensification). Our results show that while the network of connecting elements for the species was very robust to the conversion of the forest habitat patches to different cover types, the different change scenarios in the landscape matrix could more significantly weaken its long-term validity and effectiveness. This is particularly the case when most of the key connectivity providers for the nuthatch are located outside the protected areas or public forests in Galicia, where biodiversity-friendly measures might be more easily implemented. We discuss how the methodology can be applied to

  11. Governance Challenges in an Eastern Indonesian Forest Landscape

    Directory of Open Access Journals (Sweden)

    Rebecca A. Riggs

    2018-01-01

    Full Text Available Integrated approaches to natural resource management are often undermined by fundamental governance weaknesses. We studied governance of a forest landscape in East Lombok, Indonesia. Forest Management Units (Kesatuan Pengelolaan Hutan or KPH are an institutional mechanism used in Indonesia for coordinating the management of competing sectors in forest landscapes, balancing the interests of government, business, and civil society. Previous reviews of KPHs indicate they are not delivering their potential benefits due to an uncertain legal mandate and inadequate resources. We utilized participatory methods with a broad range of stakeholders in East Lombok to examine how KPHs might improve institutional arrangements to better meet forest landscape goals. We find that KPHs are primarily limited by insufficient integration with other actors in the landscape. Thus, strengthened engagement with other institutions, as well as civil society, is required. Although new governance arrangements that allow for institutional collaboration and community engagement are needed in the long term, there are steps that the East Lombok KPH can take now. Coordinating institutional commitments and engaging civil society to reconcile power asymmetries and build consensus can help promote sustainable outcomes. Our study concludes that improved multi-level, polycentric governance arrangements between government, NGOs, the private sector, and civil society are required to achieve sustainable landscapes in Lombok. The lessons from Lombok can inform forest landscape governance improvements throughout Indonesia and the tropics.

  12. Landscape-scale forest disturbance regimes in southern Peruvian Amazonia.

    Science.gov (United States)

    Boyd, Doreen S; Hill, Ross A; Hopkinson, Chris; Baker, Timothy R

    2013-10-01

    Landscape-scale gap-size frequency distributions in tropical forests are a poorly studied but key ecological variable. Currently, a scale gap currently exists between local-scale field-based studies and those employing regional-scale medium-resolution satellite data. Data at landscape scales but of fine resolution would, however, facilitate investigation into a range of ecological questions relating to gap dynamics. These include whether canopy disturbances captured in permanent sample plots (PSPs) are representative of those in their surrounding landscape, and whether disturbance regimes vary with forest type. Here, therefore, we employ airborne LiDAR data captured over 142.5 km2 of mature, swamp, and regenerating forests in southeast Peru to assess the landscape-scale disturbance at a sampling resolution of up to 2 m. We find that this landscape is characterized by large numbers of small gaps; large disturbance events are insignificant and infrequent. Of the total number of gaps that are 2 m2 or larger in area, just 0.45% were larger than 100 m2, with a power-law exponent (alpha) value of the gap-size frequency distribution of 2.22. However, differences in disturbance regimes are seen among different forest types, with a significant difference in the alpha value of the gap-size frequency distribution observed for the swamp/regenerating forests compared with the mature forests at higher elevations. Although a relatively small area of the total forest of this region was investigated here, this study presents an unprecedented assessment of this landscape with respect to its gap dynamics. This is particularly pertinent given the range of forest types present in the landscape and the differences observed. The coupling of detailed insights into forest properties and growth provided by PSPs with the broader statistics of disturbance events using remote sensing is recommended as a strong basis for scaling-up estimates of landscape and regional-scale carbon balance.

  13. Water, Forests, People: The Swedish Experience in Building Resilient Landscapes.

    Science.gov (United States)

    Eriksson, Mats; Samuelson, Lotta; Jägrud, Linnéa; Mattsson, Eskil; Celander, Thorsten; Malmer, Anders; Bengtsson, Klas; Johansson, Olof; Schaaf, Nicolai; Svending, Ola; Tengberg, Anna

    2018-05-21

    A growing world population and rapid expansion of cities increase the pressure on basic resources such as water, food and energy. To safeguard the provision of these resources, restoration and sustainable management of landscapes is pivotal, including sustainable forest and water management. Sustainable forest management includes forest conservation, restoration, forestry and agroforestry practices. Interlinkages between forests and water are fundamental to moderate water budgets, stabilize runoff, reduce erosion and improve biodiversity and water quality. Sweden has gained substantial experience in sustainable forest management in the past century. Through significant restoration efforts, a largely depleted Swedish forest has transformed into a well-managed production forest within a century, leading to sustainable economic growth through the provision of forest products. More recently, ecosystem services are also included in management decisions. Such a transformation depends on broad stakeholder dialog, combined with an enabling institutional and policy environment. Based on seminars and workshops with a wide range of key stakeholders managing Sweden's forests and waters, this article draws lessons from the history of forest management in Sweden. These lessons are particularly relevant for countries in the Global South that currently experience similar challenges in forest and landscape management. The authors argue that an integrated landscape approach involving a broad array of sectors and stakeholders is needed to achieve sustainable forest and water management. Sustainable landscape management-integrating water, agriculture and forests-is imperative to achieving resilient socio-economic systems and landscapes.

  14. The multi-objective Spanish National Forest Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, I.; Vallejo, R.; Álvarez-González, J.G.; Condés, S.; González-Ferreiro, E.; Guerrero, S.

    2017-11-01

    Aim of study: To present the evolution of the current multi-objective Spanish National Forest Inventory (SNFI) through the assessment of different key indicators on challenging areas of the forestry sector. Area of study: Using information from the Second, Third and Fourth SNFI, this work provides case studies in Navarra, La Rioja, Galicia and Balearic Island regions and at national Spanish scale. Material and methods: These case studies present an estimation of reference values for dead wood by forest types, diameter-age modeling for Populus alba and Populus nigra in riparian forest, the invasiveness of alien species and the invasibility of forest types, herbivore preferences and effects on trees and shrub species, the methodology for estimating cork production , and the combination of SNFI4 information and Airborne Laser Scanning datasets with the aim of updating forest-fire behavior assessment information with a high degree of accuracy. Main results: The results show the suitability and feasibility of the proposed methodologies to estimate the indicators using SNFI data with the exception of the estimation of cork production. In this case, additional field variables were suggested in order to obtain robust estimates. Research highlights: By broadening the variables recorded, the SNFI has become an even more important source of forest information for the development of support tools for decision-making and assessment in diverse strategic fields such as those analyzed in this study.

  15. The multi-objective Spanish National Forest Inventory

    International Nuclear Information System (INIS)

    Alberdi, I.; Vallejo, R.; Álvarez-González, J.G.; Condés, S.; González-Ferreiro, E.; Guerrero, S.

    2017-01-01

    Aim of study: To present the evolution of the current multi-objective Spanish National Forest Inventory (SNFI) through the assessment of different key indicators on challenging areas of the forestry sector. Area of study: Using information from the Second, Third and Fourth SNFI, this work provides case studies in Navarra, La Rioja, Galicia and Balearic Island regions and at national Spanish scale. Material and methods: These case studies present an estimation of reference values for dead wood by forest types, diameter-age modeling for Populus alba and Populus nigra in riparian forest, the invasiveness of alien species and the invasibility of forest types, herbivore preferences and effects on trees and shrub species, the methodology for estimating cork production , and the combination of SNFI4 information and Airborne Laser Scanning datasets with the aim of updating forest-fire behavior assessment information with a high degree of accuracy. Main results: The results show the suitability and feasibility of the proposed methodologies to estimate the indicators using SNFI data with the exception of the estimation of cork production. In this case, additional field variables were suggested in order to obtain robust estimates. Research highlights: By broadening the variables recorded, the SNFI has become an even more important source of forest information for the development of support tools for decision-making and assessment in diverse strategic fields such as those analyzed in this study.

  16. Fragmentation, topography, and forest age modulate impacts of drought on a tropical forested landscape in eastern Puerto Rico

    Science.gov (United States)

    Uriarte, M.; Schwartz, N.; Budsock, A.

    2017-12-01

    Naturally regenerating second-growth forests account for ca. 50% of tropical forest cover and provide key ecosystem services. Understanding climate impacts on these ecosystems is critical for developing effective mitigation programs. Differences in environmental conditions and landscape context from old-growth forests may exacerbate climate impacts on second-growth stands. Nearly 70% of forest regeneration is occurring in hilly, upland, or mountain regions; a large proportion of second-growth forests are also fragmented. The effects of drought at the landscape scale, however, and the factors that modulate landscape heterogeneity in drought impacts remain understudied. Heterogeneity in soil moisture, light, and temperature in fragmented, topographically complex landscapes is likely to influence climate impacts on these forests. We examine impacts of a severe drought in 2015 on a forested landscape in Puerto Rico using two anomalies in vegetation indices. The study landscape is fragmented and topographically complex and includes old- and second-growth forests. We consider how topography (slope, aspect), fragmentation (distance to forest edge, patch size), and forest age (old- vs second-growth) modulate landscape heterogeneity of drought impacts and recovery from drought. Drought impacts were more severe in second-growth forests than in old-growth stands. Both topography and forest fragmentation influences the magnitude of drought impacts. Forest growing in steep areas, south facing slopes, small patches, and closer to forest edges exhibited more marked responses to drought. Forest recovery from drought was greater in second-growth forests and south facing slopes but slower in small patches and closer to forest edges. These findings are congruent with studies of drought impacts on tree growth in the study region. Together these results demonstrate the need for a multi-scalar approach to the study of drought impacts on tropical forests.

  17. The multi-objective Spanish National Forest Inventory

    Directory of Open Access Journals (Sweden)

    Iciar Alberdi

    2017-10-01

    Full Text Available Aim of study: To present the evolution of the current multi-objective Spanish National Forest Inventory (SNFI through the assessment of different key indicators on challenging areas of the forestry sector. Area of study: Using information from the Second, Third and Fourth SNFI, this work provides case studies in Navarra, La Rioja, Galicia and Balearic Island regions and at national Spanish scale. Material and methods: These case studies present an estimation of reference values for dead wood by forest types, diameter-age modeling for Populus alba and Populus nigra  in riparian forest, the invasiveness of alien species and the invasibility of forest types, herbivore preferences and effects on trees and shrub species, the methodology for estimating cork production , and the combination of SNFI4 information and Airborne Laser Scanning datasets with the aim of updating forest-fire behavior assessment information with a high degree of accuracy. Main results: The results show the suitability and feasibility of the proposed methodologies to estimate the indicators using SNFI data with the exception of the estimation of cork production. In this case, additional field variables were suggested in order to obtain robust estimates. Research highlights: By broadening the variables recorded, the SNFI has become an even more important source of forest information for the development of support tools for decision-making and assessment in diverse strategic fields such as those analyzed in this study.

  18. The Influence of Forest Management Regimes on Deforestation in a Central Indian Dry Deciduous Forest Landscape

    OpenAIRE

    Shivani Agarwal; Harini Nagendra; Rucha Ghate

    2016-01-01

    This research examines the impact of forest management regimes, with various degrees of restriction, on forest conservation in a dry deciduous Indian forest landscape. Forest change is mapped using Landsat satellite images from 1977, 1990, 1999, and 2011. The landscape studied has lost 1478 km2 of dense forest cover between 1977 and 2011, with a maximum loss of 1002 km2 of dense forest between 1977 and 1990. The number of protected forest areas has increased, concomitant with an increase in r...

  19. Forest landscape restoration : reconciling biodiversity conservation with local livelihoods in Ecuador

    OpenAIRE

    Middendorp, Romaike Sanne

    2017-01-01

    Tropical forest conversion and agricultural intensification are important drivers of loss of biodiversity and ecosystem services on which local communities depend. Resilient agricultural landscapes are crucial to safeguard food security and adapt to environmental and climate changes. An increasing number of policies and programs target forest landscape restoration but lack the scientific basis to ensure sustainable outcomes. This dissertation explores the potential of forest landscape restora...

  20. Landscape context mediates avian habitat choice in tropical forest restoration.

    Directory of Open Access Journals (Sweden)

    J Leighton Reid

    Full Text Available Birds both promote and prosper from forest restoration. The ecosystem functions birds perform can increase the pace of forest regeneration and, correspondingly, increase the available habitat for birds and other forest-dependent species. The aim of this study was to learn how tropical forest restoration treatments interact with landscape tree cover to affect the structure and composition of a diverse bird assemblage. We sampled bird communities over two years in 13 restoration sites and two old-growth forests in southern Costa Rica. Restoration sites were established on degraded farmlands in a variety of landscape contexts, and each included a 0.25-ha plantation, island treatment (trees planted in patches, and unplanted control. We analyzed four attributes of bird communities including frugivore abundance, nectarivore abundance, migrant insectivore richness, and compositional similarity of bird communities in restoration plots to bird communities in old-growth forests. All four bird community variables were greater in plantations and/or islands than in control treatments. Frugivore and nectarivore abundance decreased with increasing tree cover in the landscape surrounding restoration plots, whereas compositional similarity to old-growth forests was greatest in plantations embedded in landscapes with high tree cover. Migrant insectivore richness was unaffected by landscape tree cover. Our results agree with previous studies showing that increasing levels of investment in active restoration are positively related to bird richness and abundance, but differences in the effects of landscape tree cover on foraging guilds and community composition suggest that trade-offs between biodiversity conservation and bird-mediated ecosystem functioning may be important for prioritizing restoration sites.

  1. Energy forest cultivation and the landscape

    International Nuclear Information System (INIS)

    Bell, Simon

    1994-01-01

    The place of energy forestry in the landscape is discussed, principally with reference to Britain and Europe. The importance of design as a means of ensuring an attractive appearance, while meeting functional and economic requirements, is stressed. Simple design principles which help energy forests, mainly short rotation arable coppice, to fit into the landscape are suggested. (author)

  2. The Importance of Forest and Landscape Resource for Community Around Gunung Lumut Protected Forest, East Kalimantan

    OpenAIRE

    Murniati, Murniati; Padmanaba, Michael; Basuki, Imam

    2009-01-01

    The forest of Gunung Lumut in Pasir District, East Kalimantan was designated for a protection forest in 1983. It is surrounded by 15 villages and one settlement lies inside it. Communities in those villages are dependent upon the landscape and forest resources mainly for non timber forest products. This study was focused on the perception of the communities on the importance of the landscape and forests. The study was conducted in two settlements, located in and outside (near) the ...

  3. Landscape and vegetation effects on avian reproduction on bottomland forest restorations

    Science.gov (United States)

    Twedt, Daniel J.; Somershoe, Scott G.; Hazler, Kirsten R.; Cooper, Robert J.

    2010-01-01

    Forest restoration has been undertaken on >200,000 ha of agricultural land in the Mississippi Alluvial Valley, USA, during the past few decades. Decisions on where and how to restore bottomland forests are complex and dependent upon landowner objectives, but for conservation of silvicolous (forest-dwelling) birds, ecologists have espoused restoration through planting a diverse mix of densely spaced seedlings that includes fast-growing species. Application of this planting strategy on agricultural tracts that are adjacent to extant forest or within landscapes that are predominately forested has been advocated to increase forest area and enhance forested landscapes, thereby benefiting area-sensitive, silvicolous birds. We measured support for these hypothesized benefits through assessments of densities of breeding birds and reproductive success of 9 species on 36 bottomland forest restoration sites. Densities of thamnic (shrub-scrub dwelling) and silvicolous birds, such as yellow-breasted chat (Icteria virens), indigo bunting (Passerina cyanea), and white-eyed vireo (Vireo griseus) were positively associated with 1) taller trees, 2) greater stem densities, and 3) a greater proportion of forest within the landscape, whereas densities of birds associated with grasslands, such as dickcissel (Spiza americana) and red-winged blackbird (Agelaius phoeniceus), were negatively associated with these variables. Vegetation structure, habitat edge, and temporal effects had greater influence on nest success than did landscape effects. Taller trees, increased density of woody stems, greater vegetation density, and more forest within the landscape were often associated with greater nest success. Nest success of grassland birds was positively related to distance from forest edge but, for thamnic birds, success was greater near edges. Moreover, nest success and estimated fecundity of thamnic species suggested their populations are self-sustaining on forest restoration sites, whereas

  4. Bioenergy production and forest landscape change in the southeastern United States

    Science.gov (United States)

    Costanza, Jennifer K.; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime A.

    2016-01-01

    Production of woody biomass for bioenergy, whether wood pellets or liquid biofuels, has the potential to cause substantial landscape change and concomitant effects on forest ecosystems, but the landscape effects of alternative production scenarios have not been fully assessed. We simulated landscape change from 2010 to 2050 under five scenarios of woody biomass production for wood pellets and liquid biofuels in North Carolina, in the southeastern United States, a region that is a substantial producer of wood biomass for bioenergy and contains high biodiversity. Modeled scenarios varied biomass feedstocks, incorporating harvest of ‘conventional’ forests, which include naturally regenerating as well as planted forests that exist on the landscape even without bioenergy production, as well as purpose-grown woody crops grown on marginal lands. Results reveal trade-offs among scenarios in terms of overall forest area and the characteristics of the remaining forest in 2050. Meeting demand for biomass from conventional forests resulted in more total forest land compared with a baseline, business-as-usual scenario. However, the remaining forest was composed of more intensively managed forest and less of the bottomland hardwood and longleaf pine habitats that support biodiversity. Converting marginal forest to purpose-grown crops reduced forest area, but the remaining forest contained more of the critical habitats for biodiversity. Conversion of marginal agricultural lands to purpose-grown crops resulted in smaller differences from the baseline scenario in terms of forest area and the characteristics of remaining forest habitats. Each scenario affected the dominant type of land-use change in some regions, especially in the coastal plain that harbors high levels of biodiversity. Our results demonstrate the complex landscape effects of alternative bioenergy scenarios, highlight that the regions most likely to be affected by bioenergy production are also critical for

  5. Landscape-moderated bird nest predation in hedges and forest edges

    Science.gov (United States)

    Ludwig, Martin; Schlinkert, Hella; Holzschuh, Andrea; Fischer, Christina; Scherber, Christoph; Trnka, Alfréd; Tscharntke, Teja; Batáry, Péter

    2012-11-01

    Landscape-scale agricultural intensification has caused severe declines in biodiversity. Hedges and forest remnants may mitigate biodiversity loss by enhancing landscape heterogeneity and providing habitat to a wide range of species, including birds. However, nest predation, the major cause of reproductive failure of birds, has been shown to be higher in forest edges than in forest interiors. Little is known about how spatial arrangement (configuration) of hedges affects the avian nest predation. We performed an experiment with artificial ground and elevated nests (resembling yellowhammer and whitethroat nests) baited with quail and plasticine eggs. Nests were placed in three habitat types with different degrees of isolation from forests: forest edges, hedges connected to forests and hedges isolated from forests. Nest predation was highest in forest edges, lowest in hedges connected to forests and intermediate in isolated hedges. In the early breeding season, we found similar nest predation on ground and elevated nests, but in the late breeding season nest predation was higher on ground nests than on elevated nests. Small mammals were the main predators of ground nests and appeared to be responsible for the increase in predation from early to late breeding season, whereas the elevated nests were mainly depredated by small birds and small mammals. High predation pressure at forest edges was probably caused by both forest and open-landscape predators. The influence of forest predators may be lower at hedges, leading to lower predation pressure than in forest edges. Higher predation pressure in isolated than connected hedges might be an effect of concentration of predators in these isolated habitats. We conclude that landscape configuration of hedges is important in nest predation, with connected hedges allowing higher survival than isolated hedges and forest edges.

  6. [Selection of distance thresholds of urban forest landscape connectivity in Shenyang City].

    Science.gov (United States)

    Liu, Chang-fu; Zhou, Bin; He, Xing-yuan; Chen, Wei

    2010-10-01

    By using the QuickBird remote sensing image interpretation data of urban forests in Shenyang City in 2006, and with the help of geographical information system, this paper analyzed the landscape patches of the urban forests in the area inside the third ring-road of Shenyang. Based on the habitat availability and the dispersal potential of animal and plant species, 8 distance thresholds (50, 100, 200, 400, 600, 800, 1000, and 1200 m) were selected to compute the integral index of connectivity, probability of connectivity, and important value of the landscape patches, and the computed values were used for analyzing and screening the distance thresholds of urban forest landscape connectivity in the City. The results showed that the appropriate distance thresholds of the urban forest landscape connectivity in Shenyang City in 2006 ranged from 100 to 400 m, with 200 m being most appropriate. It was suggested that the distance thresholds should be increased or decreased according to the performability of urban forest landscape connectivity and the different demands for landscape levels.

  7. Fine-scale movement decisions of tropical forest birds in a fragmented landscape.

    Science.gov (United States)

    Gillies, Cameron S; Beyer, Hawthorne L; St Clair, Colleen Cassady

    2011-04-01

    The persistence of forest-dependent species in fragmented landscapes is fundamentally linked to the movement of individuals among subpopulations. The paths taken by dispersing individuals can be considered a series of steps built from individual route choices. Despite the importance of these fine-scale movement decisions, it has proved difficult to collect such data that reveal how forest birds move in novel landscapes. We collected unprecedented route information about the movement of translocated forest birds from two species in the highly fragmented tropical dry forest of Costa Rica. In this pasture-dominated landscape, forest remains in patches or riparian corridors, with lesser amounts of living fencerows and individual trees or "stepping stones." We used step selection functions to quantify how route choice was influenced by these habitat elements. We found that the amount of risk these birds were willing to take by crossing open habitat was context dependent. The forest-specialist Barred Antshrike (Thamnophilus doliatus) exhibited stronger selection for forested routes when moving in novel landscapes distant from its territory relative to locations closer to its territory. It also selected forested routes when its step originated in forest habitat. It preferred steps ending in stepping stones when the available routes had little forest cover, but avoided them when routes had greater forest cover. The forest-generalist Rufous-naped Wren (Campylorhynchus rufinucha) preferred steps that contained more pasture, but only when starting from non-forest habitats. Our results showed that forested corridors (i.e., riparian corridors) best facilitated the movement of a sensitive forest specialist through this fragmented landscape. They also suggested that stepping stones can be important in highly fragmented forests with little remaining forest cover. We expect that naturally dispersing birds and species with greater forest dependence would exhibit even stronger

  8. Keystone Species, Forest and Landscape: A Model to Select Protected Areas

    Science.gov (United States)

    Lins, Daniela Barbosa da Silva; Gardon, Fernando Ravanini; Meyer, João Frederico da Costa Azevedo; Santos, Rozely Ferreira dos

    2017-06-01

    The selection of forest fragments for conservation is usually based on spatial parameters as forest size and canopy integrity. This strategy assumes that chosen fragments present high conservation status, ensuring biodiversity and ecological functions. We argue that a well-preserved forest fragment that remains connected by the landscape structure, does not necessarily hold attributes that ensure the presence of keystone species. We also discuss that the presence of keystone species does not always mean that it has the best conditions for its occurrence and maintenance. We developed a model to select areas in forest landscapes to be prioritized for protection based on suitability curves that unify and compare spatial indicators of three categories: forest fragment quality, landscape quality, and environmental conditions for the occurrence of a keystone species. We use a case study to compare different suitability degrees for Euterpe edulis presence, considered an important functional element in Atlantic Forest (São Paulo, Brazil) landscapes and a forest resource for local people. The results show that the identification of medium or advanced stage fragments as singular indicator of forest quality does not guarantee the existence or maintenance of this keystone species. Even in some well-preserved forest fragments, connected to others and with palm presence, the reverse J-shaped distribution of the population size structure is not sustained and these forests continue to be threatened due to human disturbances.

  9. Historical harvests reduce neighboring old-growth basal area across a forest landscape.

    Science.gov (United States)

    Bell, David M; Spies, Thomas A; Pabst, Robert

    2017-07-01

    While advances in remote sensing have made stand, landscape, and regional assessments of the direct impacts of disturbance on forests quite common, the edge influence of timber harvesting on the structure of neighboring unharvested forests has not been examined extensively. In this study, we examine the impact of historical timber harvests on basal area patterns of neighboring old-growth forests to assess the magnitude and scale of harvest edge influence in a forest landscape of western Oregon, USA. We used lidar data and forest plot measurements to construct 30-m resolution live tree basal area maps in lower and middle elevation mature and old-growth forests. We assessed how edge influence on total, upper canopy, and lower canopy basal area varied across this forest landscape as a function of harvest characteristics (i.e., harvest size and age) and topographic conditions in the unharvested area. Upper canopy, lower canopy, and total basal area increased with distance from harvest edge and elevation. Forests within 75 m of harvest edges (20% of unharvested forests) had 4% to 6% less live tree basal area compared with forest interiors. An interaction between distance from harvest edge and elevation indicated that elevation altered edge influence in this landscape. We observed a positive edge influence at low elevations (800 m). Surprisingly, we found no or weak effects of harvest age (13-60 yr) and harvest area (0.2-110 ha) on surrounding unharvested forest basal area, implying that edge influence was relatively insensitive to the scale of disturbance and multi-decadal recovery processes. Our study indicates that the edge influence of past clearcutting on the structure of neighboring uncut old-growth forests is widespread and persistent. These indirect and diffuse legacies of historical timber harvests complicate forest management decision-making in old-growth forest landscapes by broadening the traditional view of stand boundaries. Furthermore, the consequences

  10. Software applications to three-dimensional visualization of forest landscapes -- A case study demontrating the use of visual nature studio (VNS) in visualizing fire spread in forest landscapes

    Science.gov (United States)

    Brian J. Williams; Bo Song; Chou Chiao-Ying; Thomas M. Williams; John Hom

    2010-01-01

    Three-dimensional (3D) visualization is a useful tool that depicts virtual forest landscapes on computer. Previous studies in visualization have required high end computer hardware and specialized technical skills. A virtual forest landscape can be used to show different effects of disturbances and management scenarios on a computer, which allows observation of forest...

  11. Using landscape disturbance and succession models to support forest management

    Science.gov (United States)

    Eric J. Gustafson; Brian R. Sturtevant; Anatoly S. Shvidenko; Robert M. Scheller

    2010-01-01

    Managers of forested landscapes must account for multiple, interacting ecological processes operating at broad spatial and temporal scales. These interactions can be of such complexity that predictions of future forest ecosystem states are beyond the analytical capability of the human mind. Landscape disturbance and succession models (LDSM) are predictive and...

  12. Applying the Ecosystem Approach to Select Priority Areas for Forest Landscape Restoration in the Yungas, Northwestern Argentina

    Science.gov (United States)

    Ianni, Elena; Geneletti, Davide

    2010-11-01

    This paper proposes a method to select forest restoration priority areas consistently with the key principles of the Ecosystem Approach (EA) and the Forest Landscape Restoration (FLR) framework. The methodology is based on the principles shared by the two approaches: acting at ecosystem scale, involving stakeholders, and evaluating alternatives. It proposes the involvement of social actors which have a stake in forest management through multicriteria analysis sessions aimed at identifying the most suitable forest restoration intervention. The method was applied to a study area in the native forests of Northern Argentina (the Yungas). Stakeholders were asked to identify alternative restoration actions, i.e. potential areas implementing FLR. Ten alternative fincas—estates derived from the Spanish land tenure system—differing in relation to ownership, management, land use, land tenure, and size were evaluated. Twenty criteria were selected and classified into four groups: biophysical, social, economic and political. Finca Ledesma was the closest to the economic, social, environmental and political goals, according to the values and views of the actors involved in the decision. This study represented the first attempt to apply EA principles to forest restoration at landscape scale in the Yungas region. The benefits obtained by the application of the method were twofold: on one hand, researchers and local actors were forced to conceive the Yungas as a complex net of rights rather than as a sum of personal interests. On the other hand, the participatory multicriteria approach provided a structured process for collective decision-making in an area where it has never been implemented.

  13. Forest Landscape Assessment Tool (FLAT): rapid assessment for land management

    Science.gov (United States)

    Lisa Ciecko; David Kimmett; Jesse Saunders; Rachael Katz; Kathleen L. Wolf; Oliver Bazinet; Jeffrey Richardson; Weston Brinkley; Dale J. Blahna

    2016-01-01

    The Forest Landscape Assessment Tool (FLAT) is a set of procedures and tools used to rapidly determine forest ecological conditions and potential threats. FLAT enables planners and managers to understand baseline conditions, determine and prioritize restoration needs across a landscape system, and conduct ongoing monitoring to achieve land management goals. The rapid...

  14. Landscape-level effects on aboveground biomass of tropical forests: A conceptual framework.

    Science.gov (United States)

    Melito, Melina; Metzger, Jean Paul; de Oliveira, Alexandre A

    2018-02-01

    Despite the general recognition that fragmentation can reduce forest biomass through edge effects, a systematic review of the literature does not reveal a clear role of edges in modulating biomass loss. Additionally, the edge effects appear to be constrained by matrix type, suggesting that landscape composition has an influence on biomass stocks. The lack of empirical evidence of pervasive edge-related biomass losses across tropical forests highlights the necessity for a general framework linking landscape structure with aboveground biomass. Here, we propose a conceptual model in which landscape composition and configuration mediate the magnitude of edge effects and seed-flux among forest patches, which ultimately has an influence on biomass. Our model hypothesizes that a rapid reduction of biomass can occur below a threshold of forest cover loss. Just below this threshold, we predict that changes in landscape configuration can strongly influence the patch's isolation, thus enhancing biomass loss. Moreover, we expect a synergism between landscape composition and patch attributes, where matrix type mediates the effects of edges on species decline, particularly for shade-tolerant species. To test our conceptual framework, we propose a sampling protocol where the effects of edges, forest amount, forest isolation, fragment size, and matrix type on biomass stocks can be assessed both collectively and individually. The proposed model unifies the combined effects of landscape and patch structure on biomass into a single framework, providing a new set of main drivers of biomass loss in human-modified landscapes. We argue that carbon trading agendas (e.g., REDD+) and carbon-conservation initiatives must go beyond the effects of forest loss and edges on biomass, considering the whole set of effects on biomass related to changes in landscape composition and configuration. © 2017 John Wiley & Sons Ltd.

  15. Influence of forest planning alternatives on landscape pattern and ecosystem processes in northern Wisconsin, USA

    Science.gov (United States)

    Patrick A. Zollner; L. Jay Roberts; Eric J. Gustafson; Hong S. He; Volker Radeloff

    2008-01-01

    Incorporating an ecosystem management perspective into forest planning requires consideration of the impacts of timber management on a suite of landscape characteristics at broad spatial and long temporal scales. We used the LANDIS forest landscape simulation model to predict forest composition and landscape pattern under seven alternative forest management plans...

  16. Local and landscape factors determining occurrence of phyllostomid bats in tropical secondary forests.

    Directory of Open Access Journals (Sweden)

    Luis Daniel Avila-Cabadilla

    Full Text Available Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological services through seed dispersal, pollination and control of animal populations, in this study we assessed the relationships between phyllostomid occurrence and the variation in local and landscape level habitat attributes caused by disturbance. We mist-netted phyllostomids in 12 sites representing 4 successional stages of a tropical dry forest (initial, early, intermediate and late. We also quantitatively characterized the habitat attributes at the local (vegetation structure complexity and the landscape level (forest cover, area and diversity of patches. Two focal scales were considered for landscape characterization: 500 and 1000 m. During 142 sampling nights, we captured 606 individuals representing 15 species and 4 broad guilds. Variation in phyllostomid assemblages, ensembles and populations was associated with variation in local and landscape habitat attributes, and this association was scale-dependent. Specifically, we found a marked guild-specific response, where the abundance of nectarivores tended to be negatively associated with the mean area of dry forest patches, while the abundance of frugivores was positively associated with the percentage of riparian forest. These results are explained by the prevalence of chiropterophilic species in the dry forest and of chiropterochorous species in the riparian forest. Our results indicate that different vegetation classes, as well as a multi-spatial scale approach must be considered for evaluating bat response to variation in landscape attributes. Moreover, for the long-term conservation of phyllostomids in

  17. Local and landscape factors determining occurrence of phyllostomid bats in tropical secondary forests.

    Science.gov (United States)

    Avila-Cabadilla, Luis Daniel; Sanchez-Azofeifa, Gerardo Arturo; Stoner, Kathryn Elizabeth; Alvarez-Añorve, Mariana Yolotl; Quesada, Mauricio; Portillo-Quintero, Carlos Alonso

    2012-01-01

    Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological services through seed dispersal, pollination and control of animal populations, in this study we assessed the relationships between phyllostomid occurrence and the variation in local and landscape level habitat attributes caused by disturbance. We mist-netted phyllostomids in 12 sites representing 4 successional stages of a tropical dry forest (initial, early, intermediate and late). We also quantitatively characterized the habitat attributes at the local (vegetation structure complexity) and the landscape level (forest cover, area and diversity of patches). Two focal scales were considered for landscape characterization: 500 and 1000 m. During 142 sampling nights, we captured 606 individuals representing 15 species and 4 broad guilds. Variation in phyllostomid assemblages, ensembles and populations was associated with variation in local and landscape habitat attributes, and this association was scale-dependent. Specifically, we found a marked guild-specific response, where the abundance of nectarivores tended to be negatively associated with the mean area of dry forest patches, while the abundance of frugivores was positively associated with the percentage of riparian forest. These results are explained by the prevalence of chiropterophilic species in the dry forest and of chiropterochorous species in the riparian forest. Our results indicate that different vegetation classes, as well as a multi-spatial scale approach must be considered for evaluating bat response to variation in landscape attributes. Moreover, for the long-term conservation of phyllostomids in anthropogenic

  18. Forest landscape models, a tool for understanding the effect of the large-scale and long-term landscape processes

    Science.gov (United States)

    Hong S. He; Robert E. Keane; Louis R. Iverson

    2008-01-01

    Forest landscape models have become important tools for understanding large-scale and long-term landscape (spatial) processes such as climate change, fire, windthrow, seed dispersal, insect outbreak, disease propagation, forest harvest, and fuel treatment, because controlled field experiments designed to study the effects of these processes are often not possible (...

  19. Amazonian landscapes and the bias in field studies of forest structure and biomass.

    Science.gov (United States)

    Marvin, David C; Asner, Gregory P; Knapp, David E; Anderson, Christopher B; Martin, Roberta E; Sinca, Felipe; Tupayachi, Raul

    2014-12-02

    Tropical forests convert more atmospheric carbon into biomass each year than any terrestrial ecosystem on Earth, underscoring the importance of accurate tropical forest structure and biomass maps for the understanding and management of the global carbon cycle. Ecologists have long used field inventory plots as the main tool for understanding forest structure and biomass at landscape-to-regional scales, under the implicit assumption that these plots accurately represent their surrounding landscape. However, no study has used continuous, high-spatial-resolution data to test whether field plots meet this assumption in tropical forests. Using airborne LiDAR (light detection and ranging) acquired over three regions in Peru, we assessed how representative a typical set of field plots are relative to their surrounding host landscapes. We uncovered substantial mean biases (9-98%) in forest canopy structure (height, gaps, and layers) and aboveground biomass in both lowland Amazonian and montane Andean landscapes. Moreover, simulations reveal that an impractical number of 1-ha field plots (from 10 to more than 100 per landscape) are needed to develop accurate estimates of aboveground biomass at landscape scales. These biases should temper the use of plots for extrapolations of forest dynamics to larger scales, and they demonstrate the need for a fundamental shift to high-resolution active remote sensing techniques as a primary sampling tool in tropical forest biomass studies. The potential decrease in the bias and uncertainty of remotely sensed estimates of forest structure and biomass is a vital step toward successful tropical forest conservation and climate-change mitigation policy.

  20. Anthropogenic Influences in Land Use/Land Cover Changes in Mediterranean Forest Landscapes in Sicily

    Directory of Open Access Journals (Sweden)

    Donato S. La Mela Veca

    2016-01-01

    Full Text Available This paper analyzes and quantifies the land use/land cover changes of the main forest and semi-natural landscape types in Sicily between 1955 and 2012. We analyzed seven representative forest and shrubland landscapes in Sicily. These study areas were chosen for their importance in the Sicilian forest panorama. We carried out a diachronic survey on historical and current aerial photos; all the aerial images used to survey the land use/land cover changes were digitalized and georeferenced in the UTM WGS84 system. In order to classify land use, the Regional Forest Inventory 2010 legend was adopted for the more recent images, and the CORINE Land Cover III level used for the older, lower resolution images. This study quantifies forest landscape dynamics; our results show for almost all study areas an increase of forest cover and expansion, whereas a regressive dynamic is found in rural areas due to intensive agricultural and pasturage uses. Understanding the dynamics of forest landscapes could enhance the role of forestry policy as a tool for landscape management and regional planning.

  1. Implementing forest landscape restoration, a practitioner's guide

    Science.gov (United States)

    John Stanturf; Stephanie Mansourian; Michael (eds.). Kleine

    2017-01-01

    Forest landscape restoration (FLR) in a nutshell FLR was defined in 2000 by a group of 30 specialists as “a planned process that aims to regain ecological integrity and enhance human wellbeing in deforested or degraded landscapes”. It does not seek to recreate past ecosystems given the uncertainty concerning the “past”, the significantly altered conditions of the...

  2. Landscape responses of bats to habitat fragmentation in Atlantic forest of paraguay

    Science.gov (United States)

    Gorresen, P.M.; Willig, M.R.

    2004-01-01

    Understanding effects of habitat loss and fragmentation on populations or communities is critical to effective conservation and restoration. This is particularly important for bats because they provide vital services to ecosystems via pollination and seed dispersal, especially in tropical and subtropical habitats. Based on more than 1,000 h of survey during a 15-month period, we quantified species abundances and community structure of phyllostomid bats at 14 sites in a 3,000-km2 region of eastern Paraguay. Abundance was highest for Artibeus lituratus in deforested landscapes and for Chrotopterus auritus in forested habitats. In contrast, Artibeus fimbriatus, Carollia perspicillata, Glossophaga soricina, Platyrrhinus lineatus, Pygoderma bilabiatum, and Sturnira lilium attained highest abundance in moderately fragmented forest landscapes. Forest cover, patch size, and patch density frequently were associated with abundance of species. At the community level, species richness was highest in partly deforested landscapes, whereas evenness was greatest in forested habitat. In general, the highest diversity of bats occurred in landscapes comprising moderately fragmented forest habitat. This underscores the importance of remnant habitat patches to conservation strategies.

  3. [Responses of boreal forest landscape in northern Great Xing'an Mountains of Northeast China to climate change].

    Science.gov (United States)

    Li, Xiao-Na; He, Hong-Shi; Wu, Zhi-Wei; Liang, Yu

    2012-12-01

    With the combination of forest landscape model (LANDIS) and forest gap model (LINKAGES), this paper simulated the effects of climate change on the boreal forest landscape in the Great Xing'an Mountains, and compared the direct effects of climate change and the effects of climate warming-induced fires on the forest landscape. The results showed that under the current climate conditions and fire disturbances, the forest landscape in the study area could maintain its dynamic balance, and Larix gmelinii was still the dominant tree species. Under the future climate and fire disturbances scenario, the distribution area of L. gmelinii and Pinus pumila would be decreased, while that of Betula platyphylla, Populus davidiana, Populus suaveolens, Chosenia arbutifolia, and Pinus sylvestris var. mongolica would be increased, and the forest fragmentation and forest diversity would have an increase. The changes of the forest landscape lagged behind climate change. Climate warming would increase the growth of most tree species except L. gmelinii, while the increased fires would increase the distribution area of P. davidiana, P. suaveolens, and C. arbutifolia and decrease the distribution area of L. gmelinii, P. sylvestris var. mongolica, and P. pumila. The effects of climate warming-induced fires on the forest landscape were almost equal to the direct effects of climate change, and aggravated the direct effects of climate change on forest composition, forest landscape fragmentation, and forest landscape diversity.

  4. A Comparative Study on The Perception of Forest Landscape Using LIST Method Between University Students of Japan and Indonesia

    Directory of Open Access Journals (Sweden)

    Prita Indah Pratiwi

    2015-02-01

    Full Text Available Forest is not only assessed for timber production, but also for public interests. It is not easy to measure the multiple functions and existence values that forests represent to local residents. The purposes of this research were to classify landscape image aspects of students using LIST (Landscape Image Sketching Technique, to know students' attributes influencing perception, and to formulate the differences of forest landscape characters. The research was conducted in three stages: landscape image survey, landscape image analysis, and forest landscape interpretation. LIST method was applied to classify landscape image aspects. Chi-square test was applied to examine the significant differences between students of Japan and Indonesia to perceive forest landscape, while cluster analysis was applied to characterize forest landscape. The results showed that 10 prominent components were detected in both countries. The only attribute influencing perception for Indonesian students was gender. Japanese students categorized forest type into needle leaf, broadleaf, and unknown forest type, while Indonesian students classified forest type into broadleaf and unknown forest type. The results of this study might be useful as a guidance for forest landscape design in Japan and Indonesia.Keywords: chi-square test, cluster analysis, forest, LIST, perception 

  5. Utilizing random forests imputation of forest plot data for landscape-level wildfire analyses

    Science.gov (United States)

    Karin L. Riley; Isaac C. Grenfell; Mark A. Finney; Nicholas L. Crookston

    2014-01-01

    Maps of the number, size, and species of trees in forests across the United States are desirable for a number of applications. For landscape-level fire and forest simulations that use the Forest Vegetation Simulator (FVS), a spatial tree-level dataset, or “tree list”, is a necessity. FVS is widely used at the stand level for simulating fire effects on tree mortality,...

  6. From State-controlled to Polycentric Governance in Forest Landscape Restoration: The Case of the Ecological Forest Purchase Program in Yong'an Municipality of China.

    Science.gov (United States)

    Long, Hexing; Liu, Jinlong; Tu, Chengyue; Fu, Yimin

    2018-07-01

    Forest landscape restoration is emerging as an effective approach to restore degraded forests for the provision of ecosystem services and to minimize trade-offs between conservation and rural livelihoods. Policy and institutional innovations in China illustrate the governance transformation of forest landscape restoration from state-controlled to polycentric governance. Based on a case study of the Ecological Forest Purchase Program in Yong'an municipality, China's Fujian Province, this paper explores how such forest governance transformation has evolved and how it has shaped the outcomes of forest landscape restoration in terms of multi-dimensionality and actor configurations. Our analysis indicates that accommodating the participation of multiple actors and market-based instruments facilitate a smoother transition from state-centered to polycentric governance in forest landscape restoration. Governance transitions for forest landscape restoration must overcome a number of challenges including ensurance of a formal participation forum, fair participation, and a sustainable legislative and financial system to enhance long-term effectiveness.

  7. Birds in Anthropogenic Landscapes: The Responses of Ecological Groups to Forest Loss in the Brazilian Atlantic Forest.

    Directory of Open Access Journals (Sweden)

    José Carlos Morante-Filho

    Full Text Available Habitat loss is the dominant threat to biodiversity and ecosystem functioning in terrestrial environments. In this study, we used an a priori classification of bird species based on their dependence on native forest habitats (forest-specialist and habitat generalists and specific food resources (frugivores and insectivores to evaluate their responses to forest cover reduction in landscapes in the Brazilian Atlantic Forest. From the patch-landscapes approach, we delimited 40 forest sites, and quantified the percentage of native forest within a 2 km radius around the center of each site (from 6 - 85%. At each site, we sampled birds using the point-count method. We used a null model, a generalized linear model and a four-parameter logistic model to evaluate the relationship between richness and abundance of the bird groups and the native forest amount. A piecewise model was then used to determine the threshold value for bird groups that showed nonlinear responses. The richness and abundance of the bird community as a whole were not affected by changes in forest cover in this region. However, a decrease in forest cover had a negative effect on diversity of forest-specialist, frugivorous and insectivorous birds, and a positive effect on generalist birds. The species richness and abundance of all ecological groups were nonlinearly related to forest reduction and showed similar threshold values, i.e., there were abrupt changes in individuals and species numbers when forest amount was less than approximately 50%. Forest sites within landscapes with forest cover that was less than 50% contained a different bird species composition than more extensively forested sites and had fewer forest-specialist species and higher beta-diversity. Our study demonstrated the pervasive effect of forest reduction on bird communities in one of the most important hotspots for bird conservation and shows that many vulnerable species require extensive forest cover to persist.

  8. Birds in Anthropogenic Landscapes: The Responses of Ecological Groups to Forest Loss in the Brazilian Atlantic Forest.

    Science.gov (United States)

    Morante-Filho, José Carlos; Faria, Deborah; Mariano-Neto, Eduardo; Rhodes, Jonathan

    2015-01-01

    Habitat loss is the dominant threat to biodiversity and ecosystem functioning in terrestrial environments. In this study, we used an a priori classification of bird species based on their dependence on native forest habitats (forest-specialist and habitat generalists) and specific food resources (frugivores and insectivores) to evaluate their responses to forest cover reduction in landscapes in the Brazilian Atlantic Forest. From the patch-landscapes approach, we delimited 40 forest sites, and quantified the percentage of native forest within a 2 km radius around the center of each site (from 6 - 85%). At each site, we sampled birds using the point-count method. We used a null model, a generalized linear model and a four-parameter logistic model to evaluate the relationship between richness and abundance of the bird groups and the native forest amount. A piecewise model was then used to determine the threshold value for bird groups that showed nonlinear responses. The richness and abundance of the bird community as a whole were not affected by changes in forest cover in this region. However, a decrease in forest cover had a negative effect on diversity of forest-specialist, frugivorous and insectivorous birds, and a positive effect on generalist birds. The species richness and abundance of all ecological groups were nonlinearly related to forest reduction and showed similar threshold values, i.e., there were abrupt changes in individuals and species numbers when forest amount was less than approximately 50%. Forest sites within landscapes with forest cover that was less than 50% contained a different bird species composition than more extensively forested sites and had fewer forest-specialist species and higher beta-diversity. Our study demonstrated the pervasive effect of forest reduction on bird communities in one of the most important hotspots for bird conservation and shows that many vulnerable species require extensive forest cover to persist.

  9. A hierarchical spatial framework for forest landscape planning.

    Science.gov (United States)

    Pete Bettinger; Marie Lennette; K. Norman Johnson; Thomas A. Spies

    2005-01-01

    A hierarchical spatial framework for large-scale, long-term forest landscape planning is presented along with example policy analyses for a 560,000 ha area of the Oregon Coast Range. The modeling framework suggests utilizing the detail provided by satellite imagery to track forest vegetation condition and for representation of fine-scale features, such as riparian...

  10. Wind Statistics from a Forested Landscape

    DEFF Research Database (Denmark)

    Arnqvist, Johan; Segalini, Antonio; Dellwik, Ebba

    2015-01-01

    An analysis and interpretation of measurements from a 138-m tall tower located in a forested landscape is presented. Measurement errors and statistical uncertainties are carefully evaluated to ensure high data quality. A 40(Formula presented.) wide wind-direction sector is selected as the most...... representative for large-scale forest conditions, and from that sector first-, second- and third-order statistics, as well as analyses regarding the characteristic length scale, the flux-profile relationship and surface roughness are presented for a wide range of stability conditions. The results are discussed...

  11. Global forest loss disproportionately erodes biodiversity in intact landscapes.

    Science.gov (United States)

    Betts, Matthew G; Wolf, Christopher; Ripple, William J; Phalan, Ben; Millers, Kimberley A; Duarte, Adam; Butchart, Stuart H M; Levi, Taal

    2017-07-27

    Global biodiversity loss is a critical environmental crisis, yet the lack of spatial data on biodiversity threats has hindered conservation strategies. Theory predicts that abrupt biodiversity declines are most likely to occur when habitat availability is reduced to very low levels in the landscape (10-30%). Alternatively, recent evidence indicates that biodiversity is best conserved by minimizing human intrusion into intact and relatively unfragmented landscapes. Here we use recently available forest loss data to test deforestation effects on International Union for Conservation of Nature Red List categories of extinction risk for 19,432 vertebrate species worldwide. As expected, deforestation substantially increased the odds of a species being listed as threatened, undergoing recent upgrading to a higher threat category and exhibiting declining populations. More importantly, we show that these risks were disproportionately high in relatively intact landscapes; even minimal deforestation has had severe consequences for vertebrate biodiversity. We found little support for the alternative hypothesis that forest loss is most detrimental in already fragmented landscapes. Spatial analysis revealed high-risk hot spots in Borneo, the central Amazon and the Congo Basin. In these regions, our model predicts that 121-219 species will become threatened under current rates of forest loss over the next 30 years. Given that only 17.9% of these high-risk areas are formally protected and only 8.9% have strict protection, new large-scale conservation efforts to protect intact forests are necessary to slow deforestation rates and to avert a new wave of global extinctions.

  12. Can landscape-level ecological restoration influence fire risk? A spatially-explicit assessment of a northern temperate-southern boreal forest landscape

    Science.gov (United States)

    Douglas J. Shinneman; Brian J. Palik; Meredith W. Cornett

    2012-01-01

    Management strategies to restore forest landscapes are often designed to concurrently reduce fire risk. However, the compatibility of these two objectives is not always clear, and uncoordinated management among landowners may have unintended consequences. We used a forest landscape simulation model to compare the effects of contemporary management and hypothetical...

  13. An object-oriented forest landscape model and its representation of tree species

    Science.gov (United States)

    Hong S. He; David J. Mladenoff; Joel Boeder

    1999-01-01

    LANDIS is a forest landscape model that simulates the interaction of large landscape processes and forest successional dynamics at tree species level. We discuss how object-oriented design (OOD) approaches such as modularity, abstraction and encapsulation are integrated into the design of LANDIS. We show that using OOD approaches, model decisions (olden as model...

  14. Forests as landscapes of social inequality: tropical forest cover and land distribution among shifting cultivators

    Directory of Open Access Journals (Sweden)

    Oliver T. Coomes

    2016-09-01

    Full Text Available Can social inequality be seen imprinted in a forest landscape? We studied the relationship between land holding, land use, and inequality in a peasant community in the Peruvian Amazon where farmers practice swidden-fallow cultivation. Longitudinal data on land holding, land use, and land cover were gathered through field-level surveys (n = 316 and household interviews (n = 51 in 1994/1995 and 2007. Forest cover change between 1965 and 2007 was documented through interpretation of air photos and satellite imagery. We introduce the concept of "land use inequality" to capture differences across households in the distribution of forest fallowing and orchard raising as key land uses that affect household welfare and the sustainability of swidden-fallow agriculture. We find that land holding, land use, and forest cover distribution are correlated and that the forest today reflects social inequality a decade prior. Although initially land-poor households may catch up in terms of land holdings, their use and land cover remain impoverished. Differential land use investment through time links social inequality and forest cover. Implications are discussed for the study of forests as landscapes of inequality, the relationship between social inequality and forest composition, and the forest-poverty nexus.

  15. Trends of Forest Dynamics in Tiger Landscapes Across Asia

    Science.gov (United States)

    Mondal, Pinki; Nagendra, Harini

    2011-10-01

    Protected areas (PAs) are cornerstones of biodiversity conservation, but small parks alone cannot support wide-ranging species, such as the tiger. Hence, forest dynamics in the surrounding landscapes of PAs are also important to tiger conservation. Tiger landscapes often support considerable human population in proximity of the PA, sometimes within the core itself, and thus are subject to various land use activities (such as agricultural expansion and road development) driving habitat loss and fragmentation. We synthesize information from 27 journal articles in 24 tiger landscapes to assess forest-cover dynamics in tiger-range countries. Although 29% of the PAs considered in this study have negligible change in overall forest cover, approximately 71% are undergoing deforestation and fragmentation. Approximately 58% of the total case studies have human settlements within the core area. Most changes—including agricultural expansion, plantation, and farming (52%), fuelwood and fodder collection (43%), logging (38%), grazing (38%), and tourism and development (10%)—can be attributed to human impacts largely linked to the nature of the management regime. This study highlights the need for incorporating new perspectives, ideas, and lessons learned locally and across borders into management plans to ensure tiger conservation in landscapes dominated by human activities. Given the increasing isolation of most parks due to agricultural, infrastructural, and commercial developments at the periphery, it is imperative to conduct planning and evaluation at the landscape level, as well as incorporate multiple actors and institutions in planning, instead of focusing solely on conservation within the PAs as is currently the case in most tiger parks.

  16. A large-scale forest landscape model incorporating multi-scale processes and utilizing forest inventory data

    Science.gov (United States)

    Wen J. Wang; Hong S. He; Martin A. Spetich; Stephen R. Shifley; Frank R. Thompson III; David R. Larsen; Jacob S. Fraser; Jian. Yang

    2013-01-01

    Two challenges confronting forest landscape models (FLMs) are how to simulate fine, standscale processes while making large-scale (i.e., .107 ha) simulation possible, and how to take advantage of extensive forest inventory data such as U.S. Forest Inventory and Analysis (FIA) data to initialize and constrain model parameters. We present the LANDIS PRO model that...

  17. Secondary forest regeneration benefits old-growth specialist bats in a fragmented tropical landscape.

    Science.gov (United States)

    Rocha, Ricardo; Ovaskainen, Otso; López-Baucells, Adrià; Farneda, Fábio Z; Sampaio, Erica M; Bobrowiec, Paulo E D; Cabeza, Mar; Palmeirim, Jorge M; Meyer, Christoph F J

    2018-02-28

    Tropical forest loss and fragmentation are due to increase in coming decades. Understanding how matrix dynamics, especially secondary forest regrowth, can lessen fragmentation impacts is key to understanding species persistence in modified landscapes. Here, we use a whole-ecosystem fragmentation experiment to investigate how bat assemblages are influenced by the regeneration of the secondary forest matrix. We surveyed bats in continuous forest, forest fragments and secondary forest matrix habitats, ~15 and ~30 years after forest clearance, to investigate temporal changes in the occupancy and abundance of old-growth specialist and habitat generalist species. The regeneration of the second growth matrix had overall positive effects on the occupancy and abundance of specialists across all sampled habitats. Conversely, effects on generalist species were negligible for forest fragments and negative for secondary forest. Our results show that the conservation potential of secondary forests for reverting faunal declines in fragmented tropical landscapes increases with secondary forest age and that old-growth specialists, which are often of most conservation concern, are the greatest beneficiaries of secondary forest maturation. Our findings emphasize that the transposition of patterns of biodiversity persistence in island ecosystems to fragmented terrestrial settings can be hampered by the dynamic nature of human-dominated landscapes.

  18. Natural forest regeneration and ecological restoration in human-modified tropical landscapes

    NARCIS (Netherlands)

    Martínez-Ramos, Miguel; Pingarroni, Aline; Rodríguez-Velázquez, Jorge; Toledo-Chelala, Lilibeth; Zermeño-Hernández, Isela; Bongers, Frans

    2016-01-01

    In human-modified tropical landscapes (HMLs) the conservation of biodiversity, functions and services of forest ecosystems depends on persistence of old growth forest remnants, forest regeneration in abandoned agricultural fields, and restoration of degraded lands. Understanding the impacts of

  19. Synergies for Improving Oil Palm Production and Forest Conservation in Floodplain Landscapes

    Science.gov (United States)

    Abram, Nicola K.; Xofis, Panteleimon; Tzanopoulos, Joseph; MacMillan, Douglas C.; Ancrenaz, Marc; Chung, Robin; Peter, Lucy; Ong, Robert; Lackman, Isabelle; Goossens, Benoit; Ambu, Laurentius; Knight, Andrew T.

    2014-01-01

    Lowland tropical forests are increasingly threatened with conversion to oil palm as global demand and high profit drives crop expansion throughout the world’s tropical regions. Yet, landscapes are not homogeneous and regional constraints dictate land suitability for this crop. We conducted a regional study to investigate spatial and economic components of forest conversion to oil palm within a tropical floodplain in the Lower Kinabatangan, Sabah, Malaysian Borneo. The Kinabatangan ecosystem harbours significant biodiversity with globally threatened species but has suffered forest loss and fragmentation. We mapped the oil palm and forested landscapes (using object-based-image analysis, classification and regression tree analysis and on-screen digitising of high-resolution imagery) and undertook economic modelling. Within the study region (520,269 ha), 250,617 ha is cultivated with oil palm with 77% having high Net-Present-Value (NPV) estimates ($413/ha− yr–$637/ha− yr); but 20.5% is under-producing. In fact 6.3% (15,810 ha) of oil palm is commercially redundant (with negative NPV of $-299/ha− yr-$-65/ha− yr) due to palm mortality from flood inundation. These areas would have been important riparian or flooded forest types. Moreover, 30,173 ha of unprotected forest remain and despite its value for connectivity and biodiversity 64% is allocated for future oil palm. However, we estimate that at minimum 54% of these forests are unsuitable for this crop due to inundation events. If conversion to oil palm occurs, we predict a further 16,207 ha will become commercially redundant. This means that over 32,000 ha of forest within the floodplain would have been converted for little or no financial gain yet with significant cost to the ecosystem. Our findings have globally relevant implications for similar floodplain landscapes undergoing forest transformation to agriculture such as oil palm. Understanding landscape level constraints to this crop, and transferring

  20. Spatial resilience of forested landscapes under climate change and management

    Science.gov (United States)

    Melissa S. Lucash; Robert M. Scheller; Eric J. Gustafson; Brian R. Sturtevant

    2017-01-01

    Context Resilience, the ability to recover from disturbance, has risen to the forefront of scientific policy, but is difficult to quantify, particularly in large, forested landscapes subject to disturbances, management, and climate change. Objectives Our objective was to determine which spatial drivers will control landscape...

  1. Loss of aboveground forest biomass and landscape biomass variability in Missouri, US

    Science.gov (United States)

    Brice B. Hanberry; Hong S. He; Stephen R. Shifley

    2016-01-01

    Disturbance regimes and forests have changed over time in the eastern United States. We examined effects of historical disturbance (circa 1813 to 1850) compared to current disturbance (circa 2004 to 2008) on aboveground, live tree biomass (for trees with diameters ≥13 cm) and landscape variation of biomass in forests of the Ozarks and Plains landscapes in Missouri, USA...

  2. Challenges of forest landscape modeling - simulating large landscapes and validating results

    Science.gov (United States)

    Hong S. He; Jian Yang; Stephen R. Shifley; Frank R. Thompson

    2011-01-01

    Over the last 20 years, we have seen a rapid development in the field of forest landscape modeling, fueled by both technological and theoretical advances. Two fundamental challenges have persisted since the inception of FLMs: (1) balancing realistic simulation of ecological processes at broad spatial and temporal scales with computing capacity, and (2) validating...

  3. Mapping the World's Intact Forest Landscapes by Remote Sensing

    Directory of Open Access Journals (Sweden)

    Peter Potapov

    2008-12-01

    Full Text Available Protection of large natural forest landscapes is a highly important task to help fulfill different international strategic initiatives to protect forest biodiversity, to reduce carbon emissions from deforestation and forest degradation, and to stimulate sustainable forest management practices. This paper introduces a new approach for mapping large intact forest landscapes (IFL, defined as an unbroken expanse of natural ecosystems within areas of current forest extent, without signs of significant human activity, and having an area of at least 500 km2. We have created a global IFL map using existing fine-scale maps and a global coverage of high spatial resolution satellite imagery. We estimate the global area of IFL within the current extent of forest ecosystems (forest zone to be 13.1 million km2 or 23.5% of the forest zone. The vast majority of IFL are found in two biomes: Dense Tropical and Subtropical Forests (45.3% and Boreal Forests (43.8%. The lowest proportion of IFL is found in Temperate Broadleaf and Mixed Forests. The IFL exist in 66 of the 149 countries that together make up the forest zone. Three of them - Canada, Russia, and Brazil - contain 63.8% of the total IFL area. Of the world's IFL area, 18.9% has some form of protection, but only 9.7% is strictly protected, i.e., belongs to IUCN protected areas categories I-III. The world IFL map presented here is intended to underpin the development of a general strategy for nature conservation at the global and regional scales. It also defines a baseline for monitoring deforestation and forest degradation that is well suited for use with operational and cost-effective satellite data. All project results and IFL maps are available on a dedicated web site (http://www.intactforests.org.

  4. Modeling forest harvesting effects on landscape pattern in the Northwest Wisconsin Pine Barrens

    Science.gov (United States)

    Volker C. Radeloff; David J. Mladenoff; Eric J. Gustafson; Robert M. Scheller; Patrick A. Zollner; Hong S. Heilman; H. Resit Akcakaya

    2006-01-01

    Forest management shapes landscape patterns, and these patterns often differ significantly from those typical for natural disturbance regimes. This may affect wildlife habitat and other aspects of ecosystem function. Our objective was to examine the effects of different forest management decisions on landscape pattern in a fire adapted ecosystem. We used a factorial...

  5. In situ conservation and landscape genetics in forest species

    Directory of Open Access Journals (Sweden)

    Martín L.M.

    2012-03-01

    Full Text Available Conservation of forest genetic resources is essential for sustaining the environmental and productive values of forests. One of the environmental values is the conservation of the diversity that is assessed through the amount of genetic diversity stored by forests, their structure and dynamics. The current need for forest conservation and management has driven a rapid expansion of landscape genetics discipline that combines tools from molecular genetics, landscape ecology and spatial statistics and is decisive for improving not only ecological knowledge but also for properly managing population genetic resources. The objective of this study is to show the way to establish the safeguard of genetic diversity through this approach using the results obtained in sweet chestnut (Castanea sativa Mill. that has provided a better understanding on the species genetic resources. In this respect, we will show how the information provided by different types of molecular markers (genomic and genic offer more accurate indication on the distribution of the genetic diversity among and within populations assuming different evolutionary drivers.

  6. Modeling and Validation across Scales: Parametrizing the effect of the forested landscape

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Badger, Merete; Angelou, Nikolas

    be transferred into a parametrization of forests in wind models. The presentation covers three scales: the single tree, the forest edges and clearings, and the large-scale forested landscape in which the forest effects are parameterized with a roughness length. Flow modeling results and validation against...

  7. Stakeholders' Perception as Support for Forest Landscape Planning

    Directory of Open Access Journals (Sweden)

    Isabella De Meo

    2011-01-01

    Full Text Available Social sustainability is a key concept introduced in recent decades by international environmental and forestry policies. The paper illustrates the process of stakeholder consultation for the definition of the objectives of the forest landscape plan conducted in a district of the Italian Apennines. Special attention was given to the farmers group, by reason of the great importance of wood pasture in the management system of this area. The results show that the majority of the interviewees feel a strong bond with their territory and with the traditional activities still carried out there, such as forest grazing. However, there are internal differences within the group, mostly linked to age and territory of origin. The multiple correspondence analysis (MCA supported the investigation of these differences and the analysis of the relationship between farmers and their territory. Information emerged from the interviews with farmers allowed a better understanding of the dynamics of the territory and was revealed to be useful for the development of the forest landscape plan.

  8. Forest Landscape Restoration in the Drylands of Latin America

    Directory of Open Access Journals (Sweden)

    Adrian C. Newton

    2012-03-01

    Full Text Available Forest Landscape Restoration (FLR involves the ecological restoration of degraded forest landscapes, with the aim of benefiting both biodiversity and human well-being. We first identify four fundamental principles of FLR, based on previous definitions. We then critically evaluate the application of these principles in practice, based on the experience gained during an international, collaborative research project conducted in six dry forest landscapes of Latin America. Research highlighted the potential for FLR; tree species of high socioeconomic value were identified in all study areas, and strong dependence of local communities on forest resources was widely encountered, particularly for fuelwood. We demonstrated that FLR can be achieved through both passive and active restoration approaches, and can be cost-effective if the increased provision of ecosystem services is taken into account. These results therefore highlight the potential for FLR, and the positive contribution that it could make to sustainable development. However, we also encountered a number of challenges to FLR implementation, including the difficulty of achieving strong engagement in FLR activities among local stakeholders, lack of capacity for community-led initiatives, and the lack of an appropriate institutional and regulatory environment to support restoration activities. Successful implementation of FLR will require new collaborative alliances among stakeholders, empowerment and capacity building of local communities to enable them to fully engage with restoration activities, and an enabling public policy context to enable local people to be active participants in the decision making process.

  9. Evaluating Landscape Connectivity for Puma concolor and Panthera onca Among Atlantic Forest Protected Areas

    Science.gov (United States)

    Castilho, Camila S.; Hackbart, Vivian C. S.; Pivello, Vânia R.; dos Santos, Rozely F.

    2015-06-01

    Strictly Protected Areas and riparian forests in Brazil are rarely large enough or connected enough to maintain viable populations of carnivores and animal movement over time, but these characteristics are fundamental for species conservation as they prevent the extinction of isolated animal populations. Therefore, the need to maintain connectivity for these species in human-dominated Atlantic landscapes is critical. In this study, we evaluated the landscape connectivity for large carnivores (cougar and jaguar) among the Strictly Protected Areas in the Atlantic Forest, evaluated the efficiency of the Mosaics of Protected Areas linked to land uses in promoting landscape connectivity, identified the critical habitat connections, and predicted the landscape connectivity status under the implementation of legislation for protecting riparian forests. The method was based on expert opinion translated into land use and land cover maps. The results show that the Protected Areas are still connected by a narrow band of landscape that is permeable to both species and that the Mosaics of Protected Areas increase the amount of protected area but fail to increase the connectivity between the forested mountain ranges (Serra do Mar and Serra da Mantiqueira). Riparian forests greatly increase connectivity, more than tripling the cougars' priority areas. We note that the selection of Brazilian protected areas still fails to create connectivity among the legally protected forest remnants. We recommend the immediate protection of the priority areas identified that would increase the structural landscape connectivity for these large carnivores, especially paths in the SE/NW direction between the two mountain ranges.

  10. Evaluating Landscape Connectivity for Puma concolor and Panthera onca Among Atlantic Forest Protected Areas.

    Science.gov (United States)

    Castilho, Camila S; Hackbart, Vivian C S; Pivello, Vânia R; dos Santos, Rozely F

    2015-06-01

    Strictly Protected Areas and riparian forests in Brazil are rarely large enough or connected enough to maintain viable populations of carnivores and animal movement over time, but these characteristics are fundamental for species conservation as they prevent the extinction of isolated animal populations. Therefore, the need to maintain connectivity for these species in human-dominated Atlantic landscapes is critical. In this study, we evaluated the landscape connectivity for large carnivores (cougar and jaguar) among the Strictly Protected Areas in the Atlantic Forest, evaluated the efficiency of the Mosaics of Protected Areas linked to land uses in promoting landscape connectivity, identified the critical habitat connections, and predicted the landscape connectivity status under the implementation of legislation for protecting riparian forests. The method was based on expert opinion translated into land use and land cover maps. The results show that the Protected Areas are still connected by a narrow band of landscape that is permeable to both species and that the Mosaics of Protected Areas increase the amount of protected area but fail to increase the connectivity between the forested mountain ranges (Serra do Mar and Serra da Mantiqueira). Riparian forests greatly increase connectivity, more than tripling the cougars' priority areas. We note that the selection of Brazilian protected areas still fails to create connectivity among the legally protected forest remnants. We recommend the immediate protection of the priority areas identified that would increase the structural landscape connectivity for these large carnivores, especially paths in the SE/NW direction between the two mountain ranges.

  11. Reconciling certification and intact forest landscape conservation.

    Science.gov (United States)

    Kleinschroth, Fritz; Garcia, Claude; Ghazoul, Jaboury

    2018-05-29

    In 2014, the Forest Stewardship Council (FSC) added a new criterion to its principles that requires protection of intact forest landscapes (IFLs). An IFL is an extensive area of forest that lacks roads and other signs of human activity as detected through remote sensing. In the Congo basin, our analysis of road networks in formally approved concessionary logging areas revealed greater loss of IFL in certified than in noncertified concessions. In areas of informal (i.e., nonregulated) extraction, road networks are known to be less detectable by remote sensing. Under the current definition of IFL, companies certified under FSC standards are likely to be penalized relative to the noncertified as well as the informal logging sector on account of their planned road networks, despite an otherwise better standard of forest management. This could ultimately undermine certification and its wider adoption, with implications for the future of sustainable forest management.

  12. Modeling disturbance and succession in forest landscapes using LANDIS: introduction

    Science.gov (United States)

    Brian R. Sturtevant; Eric J. Gustafson; Hong S. He

    2004-01-01

    Modeling forest landscape change is challenging because it involves the interaction of a variety of factors and processes, such as climate, succession, disturbance, and management. These processes occur at various spatial and temporal scales, and the interactions can be complex on heterogeneous landscapes. Because controlled field experiments designed to investigate...

  13. Local versus landscape-scale effects of anthropogenic land-use on forest species richness

    Science.gov (United States)

    Buffa, G.; Del Vecchio, S.; Fantinato, E.; Milano, V.

    2018-01-01

    The study investigated the effects of human-induced landscape patterns on species richness in forests. For 80 plots of fixed size, we measured human disturbance (categorized as urban/industrial and agricultural land areas), at 'local' and 'landscape' scale (500 m and 2500 m radius from each plot, respectively), the distance from the forest edge, and the size and shape of the woody patch. By using GLM, we analyzed the effects of disturbance and patch-based measures on both total species richness and the richness of a group of specialist species (i.e. the 'ancient forest species'), representing more specific forest features. Patterns of local species richness were sensitive to the structure and composition of the surrounding landscape. Among the landscape components taken into account, urban/industrial land areas turned out as the most threatening factor for both total species richness and the richness of the ancient forest species. However, the best models evidenced a different intensity of the response to the same disturbance category as well as a different pool of significant variables for the two groups of species. The use of groups of species, such as the ancient forest species pool, that are functionally related and have similar ecological requirements, may represent an effective solution for monitoring forest dynamics under the effects of external factors. The approach of relating local assessment of species richness, and in particular of the ancient forest species pool, to land-use patterns may play an important role for the science-policy interface by supporting and strengthening conservation and regional planning decision making.

  14. Phylogenetic impoverishment of Amazonian tree communities in an experimentally fragmented forest landscape.

    Science.gov (United States)

    Santos, Bráulio A; Tabarelli, Marcelo; Melo, Felipe P L; Camargo, José L C; Andrade, Ana; Laurance, Susan G; Laurance, William F

    2014-01-01

    Amazonian rainforests sustain some of the richest tree communities on Earth, but their ecological and evolutionary responses to human threats remain poorly known. We used one of the largest experimental datasets currently available on tree dynamics in fragmented tropical forests and a recent phylogeny of angiosperms to test whether tree communities have lost phylogenetic diversity since their isolation about two decades previously. Our findings revealed an overall trend toward phylogenetic impoverishment across the experimentally fragmented landscape, irrespective of whether tree communities were in 1-ha, 10-ha, or 100-ha forest fragments, near forest edges, or in continuous forest. The magnitude of the phylogenetic diversity loss was low (phylogenetic diversity, we observed a significant decrease of 50% in phylogenetic dispersion since forest isolation, irrespective of plot location. Analyses based on tree genera that have significantly increased (28 genera) or declined (31 genera) in abundance and basal area in the landscape revealed that increasing genera are more phylogenetically related than decreasing ones. Also, the loss of phylogenetic diversity was greater in tree communities where increasing genera proliferated and decreasing genera reduced their importance values, suggesting that this taxonomic replacement is partially underlying the phylogenetic impoverishment at the landscape scale. This finding has clear implications for the current debate about the role human-modified landscapes play in sustaining biodiversity persistence and key ecosystem services, such as carbon storage. Although the generalization of our findings to other fragmented tropical forests is uncertain, it could negatively affect ecosystem productivity and stability and have broader impacts on coevolved organisms.

  15. Balancing shifting cultivation and forest conservation: lessons from a "sustainable landscape" in southeastern Mexico.

    Science.gov (United States)

    Dalle, Sarah Paule; Pulido, María T; de Blois, Sylvie

    2011-07-01

    Shifting cultivation is often perceived to be a threat to forests, but it is also central to the culture and livelihoods of millions of people worldwide. Balancing agriculture and forest conservation requires knowledge of how agricultural land uses evolve in landscapes with forest conservation initiatives. Based on a case study from Quintana Roo, Mexico, and remote sensing data, we investigated land use and land cover change (LUCC) in relation to accessibility (from main settlement and road) in search of evidence for agricultural expansion and/or intensification after the initiation of a community forestry program in 1986. Intensification was through a shortening of the fallow period. Defining the sampling space as a function of human needs and accessibility to agricultural resources was critical to ensure a user-centered perspective of the landscape. The composition of the accessible landscape changed substantially between 1976 and 1997. Over the 21-year period studied, the local population saw the accessible landscape transformed from a heterogeneous array of different successional stages including mature forests to a landscape dominated by young fallows. We detected a dynamic characterized by intensification of shifting cultivation in the most accessible areas with milpas being felled more and more from young fallows in spite of a preference for felling secondary forests. We argue that the resulting landscape provides a poorer resource base for sustaining agricultural livelihoods and discuss ways in which agricultural change could be better addressed through participatory land use planning. Balancing agricultural production and forest conservation will become even more important in a context of intense negotiations for carbon credits, an emerging market that is likely to drive future land changes worldwide.

  16. Environmental research programme. Ecological research. Annual report 1994. Urban-industrial landscapes, forests, agricultural landscapes, river and lake landscapes, terrestrial ecosystem research, environmental pollution and health

    International Nuclear Information System (INIS)

    1995-01-01

    In the annual report 1994 of the Federal Ministry of Research and Technology, the points of emphasis of the ecological research programme and their financing are discussed. The individual projects in the following subject areas are described in detail: urban-industrial landscapes, forests, agricultural landscapes, river and lake landscapes, other ecosystems and landscapes, terrestrial ecosystem research, environmental pollution and human health and cross-sectional activities in ecological research. (vhe) [de

  17. Unraveling Landscape Complexity: Land Use/Land Cover Changes and Landscape Pattern Dynamics (1954-2008) in Contrasting Peri-Urban and Agro-Forest Regions of Northern Italy.

    Science.gov (United States)

    Smiraglia, D; Ceccarelli, T; Bajocco, S; Perini, L; Salvati, L

    2015-10-01

    This study implements an exploratory data analysis of landscape metrics and a change detection analysis of land use and population density to assess landscape dynamics (1954-2008) in two physiographic zones (plain and hilly-mountain area) of Emilia Romagna, northern Italy. The two areas are characterized by different landscape types: a mixed urban-rural landscape dominated by arable land and peri-urban settlements in the plain and a traditional agro-forest landscape in the hilly-mountain area with deciduous and conifer forests, scrublands, meadows, and crop mosaic. Urbanization and, to a lesser extent, agricultural intensification were identified as the processes underlying landscape change in the plain. Land abandonment determining natural forestation and re-forestation driven by man was identified as the process of change most representative of the hilly-mountain area. Trends in landscape metrics indicate a shift toward more fragmented and convoluted patterns in both areas. Number of patches, the interspersion and juxtaposition index, and the large patch index are the metrics discriminating the two areas in terms of landscape patterns in 1954. In 2008, mean patch size, edge density, interspersion and juxtaposition index, and mean Euclidean nearest neighbor distance were the metrics with the most different spatial patterns in the two areas. The exploratory data analysis of landscape metrics contributed to link changes over time in both landscape composition and configuration providing a comprehensive picture of landscape transformations in a wealthy European region. Evidence from this study are hoped to inform sustainable land management designed for homogeneous landscape units in similar socioeconomic contexts.

  18. Shifting agriculture: the main cause of landscape degradation in the Central Spanish Pyrenees

    Science.gov (United States)

    Lasanta, Teodoro; Nadal-Romero, Estela; Errea, Paz

    2017-04-01

    (minimum disturbances), but the plant succession is slower than in the other agricultural uses. Undoubtedly, the use of marginal areas from agriculture and high soil losses during cultivation justify the presence of highly degraded soils that delay the forest succession. This explains the high stone cover in many slopes and a landscape characterized by shrublands, after more than 60 years of land abandonment. Acknowledgement This research was supported by the DESEMON and ESPAS projects (CGL2014-52135-C3-3-R and CGL2015-65569-R, funded by the MINECO-FEDER). The "Geomorphology and Global Change" and the "Climate, water, global change and natural systems" research groups were financed by the Aragón Government and the European Social Fund (ESF-FSE). Estela Nadal-Romero was the recipient of a "Ramón y Cajal" postdoctoral contract (Spanish Ministry of Economy and Competitiveness). References Lasanta, T., Errea, M.P. & Nadal-Romero, E. (in press). Traditional agrarian landscape in the Mediterranean mountains. A regional and local factors analysis in the Central Spanish Pyrenees. Land Degradation and Development.

  19. Changing tree composition by life history strategy in a grassland-forest landscape

    Science.gov (United States)

    Brice B. Hanberry; John M. Kabrick; Hong S. He

    2014-01-01

    After rapid deforestation in the eastern United States, which generally occurred during the period of 1850-1920, forests did not return to historical composition and structure. We examined forest compositional change and then considered how historical land use and current land use may influence forests in a grassland-forest landscape, the Missouri Plains, where...

  20. Birds communities of fragmented forest within highly urbanized landscape in Kuala Lumpur, Malaysia

    Science.gov (United States)

    Mohd-Taib, F. S.; Rabiatul-Adawiyah, S.; Md-Nor, S.

    2014-09-01

    Urbanization is one form of forest modification for development purposes. It produces forest fragments scattered in the landscape with different intensity of disturbance. We want to determine the effect of forest fragmentation towards bird community in urbanized landscapes in Kuala Lumpur, namely Sungai Besi Forest Reserve (FR), Bukit Nenas FR and Bukit Sungei Puteh FR. We used mist-netting and direct observation method along established trails. These forests differ in size, vegetation composition and land use history. Results show that these forests show relatively low number of species compared to other secondary forest with only 39 bird species recorded. The largest fragment, Sg. Besi encompassed the highest species richness and abundance with 69% species but lower in diversity. Bukit Nenas, the next smallest fragment besides being the only remaining primary forest has the highest diversity index with 1.866. Bkt. Sg. Puteh the smallest fragment has the lowest species richness and diversity with Shanon diversity index of 1.332. The presence of introduced species such as Corvus splendens (House crow) in all study areas suggest high disturbance encountered by these forests. Nonetheless, these patches comprised of considerably high proportion of native species. In conclusion, different intensity of disturbance due to logging activities and urbanization surrounding the forest directly influenced bird species richness and diversity. These effects however can be compensated by maintaining habitat complexity including high vegetation composition and habitat structure at the landscape level.

  1. Evaluating the impact of abrupt changes in forest policy and management practices on landscape dynamics: analysis of a Landsat image time series in the Atlantic Northern Forest.

    Science.gov (United States)

    Legaard, Kasey R; Sader, Steven A; Simons-Legaard, Erin M

    2015-01-01

    Sustainable forest management is based on functional relationships between management actions, landscape conditions, and forest values. Changes in management practices make it fundamentally more difficult to study these relationships because the impacts of current practices are difficult to disentangle from the persistent influences of past practices. Within the Atlantic Northern Forest of Maine, U.S.A., forest policy and management practices changed abruptly in the early 1990s. During the 1970s-1980s, a severe insect outbreak stimulated salvage clearcutting of large contiguous tracts of spruce-fir forest. Following clearcut regulation in 1991, management practices shifted abruptly to near complete dependence on partial harvesting. Using a time series of Landsat satellite imagery (1973-2010) we assessed cumulative landscape change caused by these very different management regimes. We modeled predominant temporal patterns of harvesting and segmented a large study area into groups of landscape units with similar harvest histories. Time series of landscape composition and configuration metrics averaged within groups revealed differences in landscape dynamics caused by differences in management history. In some groups (24% of landscape units), salvage caused rapid loss and subdivision of intact mature forest. Persistent landscape change was created by large salvage clearcuts (often averaging > 100 ha) and conversion of spruce-fir to deciduous and mixed forest. In groups that were little affected by salvage (56% of landscape units), contemporary partial harvesting caused loss and subdivision of intact mature forest at even greater rates. Patch shape complexity and edge density reached high levels even where cumulative harvest area was relatively low. Contemporary practices introduced more numerous and much smaller patches of stand-replacing disturbance (typically averaging forest ecology.

  2. Harnessing landscape heterogeneity for managing future disturbance risks in forest ecosystems

    Science.gov (United States)

    Seidl, Rupert; Albrich, Katharina; Thom, Dominik; Rammer, Werner

    2018-01-01

    In order to prevent irreversible impacts of climate change on the biosphere it is imperative to phase out the use of fossil fuels. Consequently, the provisioning of renewable resources such as timber and biomass from forests is an ecosystem service of increasing importance. However, risk factors such as changing disturbance regimes are challenging the continuous provisioning of ecosystem services, and are thus a key concern in forest management. We here used simulation modeling to study different risk management strategies in the context of timber production under changing climate and disturbance regimes, focusing on a 8127 ha forest landscape in the Northern Front Range of the Alps in Austria. We show that under a continuation of historical management, disturbances from wind and bark beetles increase by +39.5% on average over 200 years in response to future climate change. Promoting mixed forests and climate-adapted tree species as well as increasing management intensity effectively reduced future disturbance risk. Analyzing the spatial patterns of disturbance on the landscape, we found a highly uneven distribution of risk among stands (Gini coefficients up to 0.466), but also a spatially variable effectiveness of silvicultural risk reduction measures. This spatial variability in the contribution to and control of risk can be used to inform disturbance management: Stands which have a high leverage on overall risk and for which risks can effectively be reduced (24.4% of the stands in our simulations) should be a priority for risk mitigation measures. In contrast, management should embrace natural disturbances for their beneficial effects on biodiversity in areas which neither contribute strongly to landscape-scale risk nor respond positively to risk mitigation measures (16.9% of stands). We here illustrate how spatial heterogeneity in forest landscapes can be harnessed to address both positive and negative effects of changing natural disturbance regimes in

  3. Simulation of Landscape Pattern of Old Growth Forests of Korean Pine by Block Kringing

    Science.gov (United States)

    Wang Zhengquan; Wang Qingcheng; Zhang Yandong

    1997-01-01

    The study area was located in Liangshui Natural Reserve. Xaozing'an Mountains, Northeastern China. Korean pine forests are the typical forest ecosystems and landscapes in this region. It is a high degress of spatial and temporal heterogeneity at different scales, which effected on landscape pattern and processes. In this paper we used the data of 144 plots and...

  4. THE IMPORTANCE OF FOREST AND LANDSCAPE RESOURCE FOR COMMUNITY AROUND GUNUNG LUMUT PROTECTED FOREST, EAST KALIMANTAN

    Directory of Open Access Journals (Sweden)

    Murniati Murniati

    2009-06-01

    Full Text Available The forest of Gunung  Lumut  in Pasir District,  East Kalimantan was designated  for a protection  forest in 1983. It is surrounded  by 15 villages  and one settlement  lies inside it. Communities in those villages are dependent upon the landscape and forest resources mainly for non timber forest products. This study was focused on the perception of the communities on the importance of the landscape and forests. The study was conducted in two settlements, located  in and outside  (near  the protection  forest,  namely  Rantau  Layung  Village  and Mului  Sub-Village.  Data collection  was undertaken through  general field observations, key- informant personal  interviews and focus group  discussions.  In Rantau  Layung, the most important land  type  was rice  field, whereas  in Mului  was forest.  There  were  13 and 14 use categories  of landscape  resources  in Rantau  Layung  and Mului,  respectively, such as food, medicine,  constructions and source of income.  People in Rantau  Layung  and Mului ranked  plants  to be more  important than  animals.  People  also considered  products  from wild  resources  to be more  important than  those from cultivated  and purchased  sources. Communities living  in both  settlements  considered  the future  uses of forests to be the most important as compared to those of the present and past. They  suggested that sungkai (Peronema canescens and telien (Eusideroxylon zwageri to be the most important plants while payau  (Cervus unicolor and telaus (Muntiacus muntjak to be the most important animals. People used the wildlife mainly for food and source of income. They also identified important and potential  resources for economic  development in the area, i.e. ecotourism  and hydro- power for electric  generator.

  5. An innovative computer design for modeling forest landscape change in very large spatial extents with fine resolutions

    Science.gov (United States)

    Jian Yang; Hong S. He; Stephen R. Shifley; Frank R. Thompson; Yangjian. Zhang

    2011-01-01

    Although forest landscape models (FLMs) have benefited greatly from ongoing advances of computer technology and software engineering, computing capacity remains a bottleneck in the design and development of FLMs. Computer memory overhead and run time efficiency are primary limiting factors when applying forest landscape models to simulate large landscapes with fine...

  6. Uncertainty in future water supplies from forests: hydrologic effects of a changing forest landscape

    Science.gov (United States)

    Jones, J. A.; Achterman, G. L.; Alexander, L. E.; Brooks, K. N.; Creed, I. F.; Ffolliott, P. F.; MacDonald, L.; Wemple, B. C.

    2008-12-01

    Forests account for 33 percent of the U.S. land area, process nearly two-thirds of the fresh water supply, and provide water to 40 percent of all municipalities or about 180 million people. Water supply management is becoming more difficult given the increasing demand for water, climate change, increasing development, changing forest ownership, and increasingly fragmented laws governing forest and watershed management. In 2006, the US National Research Council convened a study on the present understanding of forest hydrology, the hydrologic effects of a changing forest landscape, and research and management needs for sustaining water resources from forested landscapes. The committee concluded that while it is possible to generate short-term water yield increases by timber harvesting, there are a variety of reasons why active forest management has only limited potential to sustainably increase water supplies. These include the short-term nature of the increases in most environments, the timing of the increases, the need for downstream storage, and that continuing ground- based timber harvest can reduce water quality. At the same time, past and continuing changes in forest structure and management may be altering water supplies at the larger time and space scales that are of most interest to forest and water managers. These changes include the legacy of past forest management practices, particularly fire suppression and clearcutting; exurban sprawl, which permanently converts forest land to nonforest uses; effects of climate change on wildfires, insect outbreaks, forest structure, forest species composition, snowpack depth and snowmelt; road networks; and changes in forest land ownership. All of these changes have the potential to alter water quantity and quality from forests. Hence, the baseline conditions that have been used to estimate sustained water yields from forested watersheds may no longer be applicable. Stationarity also can no longer be assumed for the

  7. 75 FR 16728 - Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest...

    Science.gov (United States)

    2010-04-02

    ... DEPARTMENT OF AGRICULTURE Forest Service Beaver Creek Landscape Management Project, Ashland Ranger... manner that increases resiliency of the Beaver Creek Landscape Management Project area ecosystem to... requirements to require. The Beaver Creek Landscape Management Project includes treatments previously proposed...

  8. 76 FR 13344 - Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest...

    Science.gov (United States)

    2011-03-11

    ... DEPARTMENT OF AGRICULTURE Forest Service Beaver Creek Landscape Management Project, Ashland Ranger... Impact Statement for the Beaver Creek Landscape Management Project was published in the Federal Register... Responsible Official for the Beaver Creek Landscape Management Project. DATES: The Final Environmental Impact...

  9. Landscape composition influences abundance patterns and habitat use of three ungulate species in fragmented secondary deciduous tropical forests, Mexico

    Directory of Open Access Journals (Sweden)

    G. García-Marmolejo

    2015-01-01

    Full Text Available Secondary forests are extensive in the tropics. Currently, these plant communities are the available habitats for wildlife and in the future they will possibly be some of the most wide-spread ecosystems world-wide. To understand the potential role of secondary forests for wildlife conservation, three ungulate species were studied: Mazama temama, Odocoileus virginianus and Pecari tajacu. We analyzed their relative abundance and habitat use at two spatial scales: (1 Local, where three different successional stages of tropical deciduous forest were compared, and (2 Landscape, where available habitats were compared in terms of landscape composition (proportion of forests, pastures and croplands within 113 ha. To determine the most important habitat-related environmental factors influencing the Sign Encounter Rate (SER of the three ungulate species, 11 physical, anthropogenic and vegetation variables were simultaneously analyzed through model selection using Akaike’s Information Criterion. We found, that P. tajacu and O. virginianus mainly used early successional stages, while M. temama used all successional stages in similar proportions. The latter species, however, used early vegetation stages only when they were located in landscapes mainly covered by forest (97%. P. tajacu and O. virginianus also selected landscapes covered essentially by forests, although they required smaller percentages of forest (86%. All ungulate species avoided landscape fragments covered by pastures. For all three species, landscape composition and human activities were the variables that best explained SER. We concluded that landscape is the fundamental scale for ungulate management, and that secondary forests are potentially important landscape elements for ungulate conservation.

  10. A framework for evaluating forest landscape model predictions using empirical data and knowledge

    Science.gov (United States)

    Wen J. Wang; Hong S. He; Martin A. Spetich; Stephen R. Shifley; Frank R. Thompson; William D. Dijak; Qia. Wang

    2014-01-01

    Evaluation of forest landscape model (FLM) predictions is indispensable to establish the credibility of predictions. We present a framework that evaluates short- and long-term FLM predictions at site and landscape scales. Site-scale evaluation is conducted through comparing raster cell-level predictions with inventory plot data whereas landscape-scale evaluation is...

  11. Transforming forest landscape conflicts: the promises and perils of global forest management initiatives such as REDD+

    Directory of Open Access Journals (Sweden)

    Seth Kane

    2018-04-01

    Full Text Available Implementation of Reducing Emissions from Deforestation and Forest Degradation (REDD+ is designed to relieve pressure on tropical forests, however, many are concerned that it is a threat to the rights of forest communities. These potential risks need serious attention as earlier studies have shown that the Asia-Pacific region is a forest conflict hotspot, with many economic, environmental and social implications at global (e.g. climate change to local levels (e.g. poverty. Drawing on an analysis of nine case studies from four countries (Cambodia, Myanmar, Nepal and Vietnam this paper examines why and how REDD+ can be a driver for forest conflict and how it also has the potential to simultaneously transform these conflicts. The analytical framework, “sources of impairment”, applied in the study was developed to increase understanding and facilitate the resolution of forest landscape conflicts in a sustainable manner (i.e. transformation. The main findings are that REDD+ can be a source of conflict in the study sites, but also had transformative potential when good practices were followed. For example, in some sites, the REDD+ projects were sources of impairment for forest communities by restricting access to forest resources. However, the research also identified REDD+ projects that enabled the participation of traditionally marginalized groups and built local forest management capacities, leading to strengthened tenure for some forest communities. Similarly, in some countries REDD+ has served as a mechanism to pilot Free, Prior and Informed Consent (FPIC, which will likely have significant impacts in mitigating conflicts by addressing the sources at local to national levels. Based on these findings, there are many reasons to be optimistic that REDD+ can address the underlying causes of forest landscape conflicts, especially when linked with other governance initiatives such as Forest Law Enforcement, Governance and Trade – Voluntary

  12. Distribution of wild mammal assemblages along an urban-rural-forest landscape gradient in warm-temperate East Asia.

    Science.gov (United States)

    Saito, Masayuki; Koike, Fumito

    2013-01-01

    Urbanization may alter mammal assemblages via habitat loss, food subsidies, and other factors related to human activities. The general distribution patterns of wild mammal assemblages along urban-rural-forest landscape gradients have not been studied, although many studies have focused on a single species or taxon, such as rodents. We quantitatively evaluated the effects of the urban-rural-forest gradient and spatial scale on the distributions of large and mid-sized mammals in the world's largest metropolitan area in warm-temperate Asia using nonspecific camera-trapping along two linear transects spanning from the urban zone in the Tokyo metropolitan area to surrounding rural and forest landscapes. Many large and mid-sized species generally decreased from forest landscapes to urban cores, although some species preferred anthropogenic landscapes. Sika deer (Cervus nippon), Reeves' muntjac (Muntiacus reevesi), Japanese macaque (Macaca fuscata), Japanese squirrel (Sciurus lis), Japanese marten (Martes melampus), Japanese badger (Meles anakuma), and wild boar (Sus scrofa) generally dominated the mammal assemblage of the forest landscape. Raccoon (Procyon lotor), raccoon dog (Nyctereutes procyonoides), and Japanese hare (Lepus brachyurus) dominated the mammal assemblage in the intermediate zone (i.e., rural and suburban landscape). Cats (feral and free-roaming housecats; Felis catus) were common in the urban assemblage. The key spatial scales for forest species were more than 4000-m radius, indicating that conservation and management plans for these mammal assemblages should be considered on large spatial scales. However, small green spaces will also be important for mammal conservation in the urban landscape, because an indigenous omnivore (raccoon dog) had a smaller key spatial scale (500-m radius) than those of forest mammals. Urbanization was generally the most important factor in the distributions of mammals, and it is necessary to consider the spatial scale of

  13. Distribution of Wild Mammal Assemblages along an Urban–Rural–Forest Landscape Gradient in Warm-Temperate East Asia

    Science.gov (United States)

    Saito, Masayuki; Koike, Fumito

    2013-01-01

    Urbanization may alter mammal assemblages via habitat loss, food subsidies, and other factors related to human activities. The general distribution patterns of wild mammal assemblages along urban–rural–forest landscape gradients have not been studied, although many studies have focused on a single species or taxon, such as rodents. We quantitatively evaluated the effects of the urban–rural–forest gradient and spatial scale on the distributions of large and mid-sized mammals in the world's largest metropolitan area in warm-temperate Asia using nonspecific camera-trapping along two linear transects spanning from the urban zone in the Tokyo metropolitan area to surrounding rural and forest landscapes. Many large and mid-sized species generally decreased from forest landscapes to urban cores, although some species preferred anthropogenic landscapes. Sika deer (Cervus nippon), Reeves' muntjac (Muntiacus reevesi), Japanese macaque (Macaca fuscata), Japanese squirrel (Sciurus lis), Japanese marten (Martes melampus), Japanese badger (Meles anakuma), and wild boar (Sus scrofa) generally dominated the mammal assemblage of the forest landscape. Raccoon (Procyon lotor), raccoon dog (Nyctereutes procyonoides), and Japanese hare (Lepus brachyurus) dominated the mammal assemblage in the intermediate zone (i.e., rural and suburban landscape). Cats (feral and free-roaming housecats; Felis catus) were common in the urban assemblage. The key spatial scales for forest species were more than 4000-m radius, indicating that conservation and management plans for these mammal assemblages should be considered on large spatial scales. However, small green spaces will also be important for mammal conservation in the urban landscape, because an indigenous omnivore (raccoon dog) had a smaller key spatial scale (500-m radius) than those of forest mammals. Urbanization was generally the most important factor in the distributions of mammals, and it is necessary to consider the spatial

  14. Distribution of wild mammal assemblages along an urban-rural-forest landscape gradient in warm-temperate East Asia.

    Directory of Open Access Journals (Sweden)

    Masayuki Saito

    Full Text Available Urbanization may alter mammal assemblages via habitat loss, food subsidies, and other factors related to human activities. The general distribution patterns of wild mammal assemblages along urban-rural-forest landscape gradients have not been studied, although many studies have focused on a single species or taxon, such as rodents. We quantitatively evaluated the effects of the urban-rural-forest gradient and spatial scale on the distributions of large and mid-sized mammals in the world's largest metropolitan area in warm-temperate Asia using nonspecific camera-trapping along two linear transects spanning from the urban zone in the Tokyo metropolitan area to surrounding rural and forest landscapes. Many large and mid-sized species generally decreased from forest landscapes to urban cores, although some species preferred anthropogenic landscapes. Sika deer (Cervus nippon, Reeves' muntjac (Muntiacus reevesi, Japanese macaque (Macaca fuscata, Japanese squirrel (Sciurus lis, Japanese marten (Martes melampus, Japanese badger (Meles anakuma, and wild boar (Sus scrofa generally dominated the mammal assemblage of the forest landscape. Raccoon (Procyon lotor, raccoon dog (Nyctereutes procyonoides, and Japanese hare (Lepus brachyurus dominated the mammal assemblage in the intermediate zone (i.e., rural and suburban landscape. Cats (feral and free-roaming housecats; Felis catus were common in the urban assemblage. The key spatial scales for forest species were more than 4000-m radius, indicating that conservation and management plans for these mammal assemblages should be considered on large spatial scales. However, small green spaces will also be important for mammal conservation in the urban landscape, because an indigenous omnivore (raccoon dog had a smaller key spatial scale (500-m radius than those of forest mammals. Urbanization was generally the most important factor in the distributions of mammals, and it is necessary to consider the spatial scale

  15. Landscape perception based on personal attributes in determining the scenic beauty of in-stand natural secondary forests

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2016-06-01

    Full Text Available The aim of this paper was to validate factors affecting the in-stand landscape quality and how important each factor was in determining scenic beauty of natural secondary forests. The study was limited to 23 stand-level cases of natural secondary forests in Shen Zhen city in southern China. Typical samples of photographs and public estimations were applied to evaluate scenic beauty inside the natural secondary forests. The major factors were then selected by multiple linear-regression analysis and a model between scenic beauty estimation (SBE values and in-stand landscape features was established. Rise in crown density, fall in plant litter, glow in color of trunk, fall in arbor richness, and rise in visible distance increased scenic beauty values of in-stand landscape. These five factors significantly explained the differences in scenic beauty, and together accounted for 45% of total variance in SBEs. Personal factors (e.g. gender, age and education did not significantly affect the ratings of landscape photos, although variations of landscape quality were affected by some personal factors. Results of this study will assist policymakers, silviculturists and planners in landscape design and management of natural secondary forests in Shenzhen city. People can improve the scenic beauty values by pruning branches and clearing plant litter, which subsequently improve the forest health and contribute to forest recreation.

  16. The Spanish National Forest Inventory: history, development, challenges and perspectives

    Directory of Open Access Journals (Sweden)

    Iciar Alberdi

    2017-09-01

    Full Text Available It is important to have a statistically robust forest information data base which can be updated and can provide long-term information. National Forest Inventories (NFI provide one of the best large-scale sources of information, and therefore are a cornerstone of forest policies. The scopes of NFIs, which are the primary source of data for national and large-area assessments, has been broadened to include new variables to meet increasing information requirements. This paper describes the history, methodology and guidance of Spanish NFI and international requirements. The current objectives are determined by analysing future perspectives and possible direction of future assessments. These objectives include harmonization of NFI, open data source and to broaden the number of field variables monitored (multi-objective inventory in order to effectively fulfil information requirements.

  17. Local and landscape-scale biotic correlates of mistletoe distribution in Mediterranean pine forests

    Energy Technology Data Exchange (ETDEWEB)

    Roura-Pascual, N.; Brotons, L.; Garcia, D.; Zamora, R.; Caceres, M. de

    2012-11-01

    The study of the spatial patterns of species allows the examination of hypotheses on the most plausible ecological processes and factors determining their distribution. To investigate the determinants of parasite species on Mediterranean forests at regional scales, occurrence data of the European Misletoe (Viscum album) in Catalonia (NE Iberian Peninsula) were extracted from forest inventory data and combined with different types of explanatory variables by means of generalized linear mixed models. The presence of mistletoes in stands of Pinus halepensis seems to be determined by multiple factors (climatic conditions, and characteristics of the host tree and landscape structure) operating at different spatial scales, with the availability of orchards of Olea europaea in the surroundings playing a relevant role. These results suggest that host quality and landscape structure are important mediators of plant-plant and plant-animal interactions and, therefore, management of mistletoe populations should be conducted at both local (i.e. clearing of infected host trees) and landscape scales (e.g. controlling the availability of nutrient-rich food sources that attract bird dispersers). Research and management at landscape-scales are necessary to anticipate the negative consequence of land-use changes in Mediterranean forests. (Author) 38 refs.

  18. Gene Flow of a Forest-Dependent Bird across a Fragmented Landscape.

    Directory of Open Access Journals (Sweden)

    Rachael V Adams

    Full Text Available Habitat loss and fragmentation can affect the persistence of populations by reducing connectivity and restricting the ability of individuals to disperse across landscapes. Dispersal corridors promote population connectivity and therefore play important roles in maintaining gene flow in natural populations inhabiting fragmented landscapes. In the prairies, forests are restricted to riparian areas along river systems which act as important dispersal corridors for forest dependent species across large expanses of unsuitable grassland habitat. However, natural and anthropogenic barriers within riparian systems have fragmented these forested habitats. In this study, we used microsatellite markers to assess the fine-scale genetic structure of a forest-dependent species, the black-capped chickadee (Poecile atricapillus, along 10 different river systems in Southern Alberta. Using a landscape genetic approach, landscape features (e.g., land cover were found to have a significant effect on patterns of genetic differentiation. Populations are genetically structured as a result of natural breaks in continuous habitat at small spatial scales, but the artificial barriers we tested do not appear to restrict gene flow. Dispersal between rivers is impeded by grasslands, evident from isolation of nearby populations (~ 50 km apart, but also within river systems by large treeless canyons (>100 km. Significant population genetic differentiation within some rivers corresponded with zones of different cottonwood (riparian poplar tree species and their hybrids. This study illustrates the importance of considering the impacts of habitat fragmentation at small spatial scales as well as other ecological processes to gain a better understanding of how organisms respond to their environmental connectivity. Here, even in a common and widespread songbird with high dispersal potential, small breaks in continuous habitats strongly influenced the spatial patterns of genetic

  19. Landscape genetic analyses reveal fine-scale effects of forest fragmentation in an insular tropical bird.

    Science.gov (United States)

    Khimoun, Aurélie; Peterman, William; Eraud, Cyril; Faivre, Bruno; Navarro, Nicolas; Garnier, Stéphane

    2017-10-01

    Within the framework of landscape genetics, resistance surface modelling is particularly relevant to explicitly test competing hypotheses about landscape effects on gene flow. To investigate how fragmentation of tropical forest affects population connectivity in a forest specialist bird species, we optimized resistance surfaces without a priori specification, using least-cost (LCP) or resistance (IBR) distances. We implemented a two-step procedure in order (i) to objectively define the landscape thematic resolution (level of detail in classification scheme to describe landscape variables) and spatial extent (area within the landscape boundaries) and then (ii) to test the relative role of several landscape features (elevation, roads, land cover) in genetic differentiation in the Plumbeous Warbler (Setophaga plumbea). We detected a small-scale reduction of gene flow mainly driven by land cover, with a negative impact of the nonforest matrix on landscape functional connectivity. However, matrix components did not equally constrain gene flow, as their conductivity increased with increasing structural similarity with forest habitat: urban areas and meadows had the highest resistance values whereas agricultural areas had intermediate resistance values. Our results revealed a higher performance of IBR compared to LCP in explaining gene flow, reflecting suboptimal movements across this human-modified landscape, challenging the common use of LCP to design habitat corridors and advocating for a broader use of circuit theory modelling. Finally, our results emphasize the need for an objective definition of landscape scales (landscape extent and thematic resolution) and highlight potential pitfalls associated with parameterization of resistance surfaces. © 2017 John Wiley & Sons Ltd.

  20. Temporal bird community dynamics are strongly affected by landscape fragmentation in a Central American tropical forest region

    Science.gov (United States)

    Blandón, A.C.; Perelman, S.B.; Ramírez, M.; López, A.; Javier, O.; Robbins, Chandler S.

    2016-01-01

    Habitat loss and fragmentation are considered the main causes of species extinctions, particularly in tropical ecosystems. The objective of this work was to evaluate the temporal dynamics of tropical bird communities in landscapes with different levels of fragmentation in eastern Guatemala. We evaluated five bird community dynamic parameters for forest specialists and generalists: (1) species extinction, (2) species turnover, (3) number of colonizing species, (4) relative species richness, and (5) a homogeneity index. For each of 24 landscapes, community dynamic parameters were estimated from bird point count data, for the 1998–1999 and 2008–2009 periods, accounting for species’ detection probability. Forest specialists had higher extinction rates and a smaller number of colonizing species in landscapes with higher fragmentation, thus having lower species richness in both time periods. Alternatively, forest generalists elicited a completely different pattern, showing a curvilinear association to forest fragmentation for most parameters. Thus, greater community dynamism for forest generalists was shown in landscapes with intermediate levels of fragmentation. Our study supports general theory regarding the expected negative effects of habitat loss and fragmentation on the temporal dynamics of biotic communities, particularly for forest specialists, providing strong evidence from understudied tropical bird communities.

  1. Black Truffle Harvesting in Spanish Forests: Trends, Current Policies and Practices, and Implications on its Sustainability

    Science.gov (United States)

    Garcia-Barreda, Sergi; Forcadell, Ricardo; Sánchez, Sergio; Martín-Santafé, María; Marco, Pedro; Camarero, J. Julio; Reyna, Santiago

    2018-04-01

    The European black truffle is a mycorrhizal fungus native to Spanish Mediterranean forests. In most Spanish regions it was originally commercially harvested in the second half of the 20th century. Experts agree that wild truffle yields suffered a sharp decline during the 1970s and 1980s. However, official statistics for Spanish harvest are scarce and seemingly conflicting, and little attention has been paid to the regime for the exploitation of truffle-producing forests and its implications on the sustainability of this resource. Trends in harvest from 1969 to 2013 and current harvesting practices were analyzed as a case study, taking into account that Spain is a major truffle producer worldwide, but at the same time truffles have only recently been exploited. The available statistical sources, which include an increasing proportion of cultivated truffles since the mid-1990s, were explored, with estimates from Truffle Harvesters Federation showing higher consistency. Statistical sources were then compared with proxies for wild harvest (rents from truffle leases in public forests) to corroborate time trends in wild harvesting. Results suggest that black truffle production is recovering in recent years thanks to plantations, whereas wild harvest is still declining. The implications of Spanish legal and institutional framework on sustainability of wild truffle use are reviewed. In the current scenario, the decline of wild harvest is likely to continue and eventually make commercial harvesting economically unattractive, thus aggravating sustainability issues. Strengthening of property rights, rationalization of harvesting pressure, forest planning and involvement of public stakeholders are proposed as corrective measures.

  2. Dynamics of a temperate deciduous forest under landscape-scale management: Implications for adaptability to climate change

    Science.gov (United States)

    Matthew G. Olson; Benjamin O. Knapp; John M. Kabrick

    2017-01-01

    Landscape forest management is an approach to meeting diverse objectives that collectively span multiple spatial scales. It is critical that we understand the long-term effects of landscape management on the structure and composition of forest tree communities to ensure that these practices are sustainable. Furthermore, it is increasingly important to also consider...

  3. Participatory conservation approaches for satoyama, the traditional forest and agricultural landscape of Japan.

    Science.gov (United States)

    Kobori, Hiromi; Primack, Richard B

    2003-06-01

    The traditional agricultural landscape of Japan, known as satoyama, consists of a mixture of forests, wet rice paddy fields, grasslands, and villages. This landscape supports a great diversity of plant and animal species, many of which are significant to the Japanese culture. The satoyama landscape is currently being rapidly converted to residential and industrial uses in Japan's expanding metropolitan areas, with the local loss of many species. Only 7% of the land in the Yokohama area remains as satoyama. City residents and older farmers have become key participants in programs to protect examples of satoyama. Many urban residents value the experience of participating in agricultural and conservation activities once they are made aware of the threat faced by the satoyama landscape. In one particularly successful program, conservation efforts and fund-raising are linked to "Totoro", an imaginary forest animal featured in a popular animated film.

  4. Linking an ecosystem model and a landscape model to study forest species response to climate warming

    Science.gov (United States)

    Hong S. He; David J. Mladenoff; Thomas R. Crow

    1999-01-01

    No single model can address forest change from single tree to regional scales. We discuss a framework linking an ecosystem process model {LINKAGES) with a spatial landscape model (LANDIS) to examine forest species responses to climate warming for a large, heterogeneous landscape in northern Wisconsin, USA. Individual species response at the ecosystem scale was...

  5. Promoting biodiversity values of small forest patches in agricultural landscapes: Ecological drivers and social demand.

    Science.gov (United States)

    Varela, Elsa; Verheyen, Kris; Valdés, Alicia; Soliño, Mario; Jacobsen, Jette B; De Smedt, Pallieter; Ehrmann, Steffen; Gärtner, Stefanie; Górriz, Elena; Decocq, Guillaume

    2018-04-01

    Small forest patches embedded in agricultural (and peri-urban) landscapes in Western Europe play a key role for biodiversity conservation with a recognized capacity of delivering a wide suite of ecosystem services. Measures aimed to preserve these patches should be both socially desirable and ecologically effective. This study presents a joint ecologic and economic assessment conducted on small forest patches in Flanders (Belgium) and Picardie (N France). In each study region, two contrasted types of agricultural landscapes were selected. Open field (OF) and Bocage (B) landscapes are distinguished by the intensity of their usage and higher connectivity in the B landscapes. The social demand for enhancing biodiversity and forest structure diversity as well as for increasing the forest area at the expenses of agricultural land is estimated through an economic valuation survey. These results are compared with the outcomes of an ecological survey where the influence of structural features of the forest patches on the associated herbaceous diversity is assessed. The ecological and economic surveys show contrasting results; increasing tree species richness is ecologically more important for herbaceous diversity in the patch, but both tree species richness and herbaceous diversity obtain insignificant willingness to pay estimates. Furthermore, although respondents prefer the proposed changes to take place in the region where they live, we find out that social preferences and ecological effectiveness do differ between landscapes that represent different intensities of land use. Dwellers where the landscape is perceived as more "degraded" attach more value to diversity enhancement, suggesting a prioritization of initiatives in these area. In contrast, the ecological analyses show that prioritizing the protection and enhancement of the relatively better-off areas is more ecologically effective. Our study calls for a balance between ecological effectiveness and welfare

  6. Forest gradient response in Sierran landscapes: the physical template

    Science.gov (United States)

    Urban, Dean L.; Miller, Carol; Halpin, Patrick N.; Stephenson, Nathan L.

    2000-01-01

    Vegetation pattern on landscapes is the manifestation of physical gradients, biotic response to these gradients, and disturbances. Here we focus on the physical template as it governs the distribution of mixed-conifer forests in California's Sierra Nevada. We extended a forest simulation model to examine montane environmental gradients, emphasizing factors affecting the water balance in these summer-dry landscapes. The model simulates the soil moisture regime in terms of the interaction of water supply and demand: supply depends on precipitation and water storage, while evapotranspirational demand varies with solar radiation and temperature. The forest cover itself can affect the water balance via canopy interception and evapotranspiration. We simulated Sierran forests as slope facets, defined as gridded stands of homogeneous topographic exposure, and verified simulated gradient response against sample quadrats distributed across Sequoia National Park. We then performed a modified sensitivity analysis of abiotic factors governing the physical gradient. Importantly, the model's sensitivity to temperature, precipitation, and soil depth varies considerably over the physical template, particularly relative to elevation. The physical drivers of the water balance have characteristic spatial scales that differ by orders of magnitude. Across large spatial extents, temperature and precipitation as defined by elevation primarily govern the location of the mixed conifer zone. If the analysis is constrained to elevations within the mixed-conifer zone, local topography comes into play as it influences drainage. Soil depth varies considerably at all measured scales, and is especially dominant at fine (within-stand) scales. Physical site variables can influence soil moisture deficit either by affecting water supply or water demand; these effects have qualitatively different implications for forest response. These results have clear implications about purely inferential approaches

  7. Spatially explicit and stochastic simulation of forest landscape fire disturbance and succession

    Science.gov (United States)

    Hong S. He; David J. Mladenoff

    1999-01-01

    Understanding disturbance and recovery of forest landscapes is a challenge because of complex interactions over a range of temporal and spatial scales. Landscape simulation models offer an approach to studying such systems at broad scales. Fire can be simulated spatially using mechanistic or stochastic approaches. We describe the fire module in a spatially explicit,...

  8. Modeling long-term changes in forested landscapes and their relation to the Earth's energy balance

    Science.gov (United States)

    Shugart, H. H.; Emanuel, W. R.; Solomon, A. M.

    1984-01-01

    The dynamics of the forested parts of the Earth's surface on time scales from decades to centuries are discussed. A set of computer models developed at Oak Ridge National Laboratory and elsewhere are applied as tools. These models simulate a landscape by duplicating the dynamics of growth, death and birth of each tree living on a 0.10 ha element of the landscape. This spatial unit is generally referred to as a gap in the case of the forest models. The models were tested against and applied to a diverse array of forests and appear to provide a reasonable representation for investigating forest-cover dynamics. Because of the climate linkage, one important test is the reconstruction of paleo-landscapes. Detailed reconstructions of changes in vegetation in response to changes in climate are crucial to understanding the association of the Earth's vegetation and climate and the response of the vegetation to climate change.

  9. The positive net radiative greenhouse gas forcing of increasing methane emissions from a thawing boreal forest-wetland landscape.

    Science.gov (United States)

    Helbig, Manuel; Chasmer, Laura E; Kljun, NatasCha; Quinton, William L; Treat, Claire C; Sonnentag, Oliver

    2017-06-01

    At the southern margin of permafrost in North America, climate change causes widespread permafrost thaw. In boreal lowlands, thawing forested permafrost peat plateaus ('forest') lead to expansion of permafrost-free wetlands ('wetland'). Expanding wetland area with saturated and warmer organic soils is expected to increase landscape methane (CH 4 ) emissions. Here, we quantify the thaw-induced increase in CH 4 emissions for a boreal forest-wetland landscape in the southern Taiga Plains, Canada, and evaluate its impact on net radiative forcing relative to potential long-term net carbon dioxide (CO 2 ) exchange. Using nested wetland and landscape eddy covariance net CH 4 flux measurements in combination with flux footprint modeling, we find that landscape CH 4 emissions increase with increasing wetland-to-forest ratio. Landscape CH 4 emissions are most sensitive to this ratio during peak emission periods, when wetland soils are up to 10 °C warmer than forest soils. The cumulative growing season (May-October) wetland CH 4 emission of ~13 g CH 4  m -2 is the dominating contribution to the landscape CH 4 emission of ~7 g CH 4  m -2 . In contrast, forest contributions to landscape CH 4 emissions appear to be negligible. The rapid wetland expansion of 0.26 ± 0.05% yr -1 in this region causes an estimated growing season increase of 0.034 ± 0.007 g CH 4  m -2  yr -1 in landscape CH 4 emissions. A long-term net CO 2 uptake of >200 g CO 2  m -2  yr -1 is required to offset the positive radiative forcing of increasing CH 4 emissions until the end of the 21st century as indicated by an atmospheric CH 4 and CO 2 concentration model. However, long-term apparent carbon accumulation rates in similar boreal forest-wetland landscapes and eddy covariance landscape net CO 2 flux measurements suggest a long-term net CO 2 uptake between 49 and 157 g CO 2  m -2  yr -1 . Thus, thaw-induced CH 4 emission increases likely exert a positive net radiative greenhouse gas

  10. Watering the forest for the trees: An emerging priority for managing water in forest landscapes

    Science.gov (United States)

    Grant, Gordon E.; Tague, Christina L.; Allen, Craig D.

    2013-01-01

    Widespread threats to forests resulting from drought stress are prompting a re-evaluation of priorities for water management on forest lands. In contrast to the widely held view that forest management should emphasize providing water for downstream uses, we argue that maintaining forest health in the context of a changing climate may require focusing on the forests themselves and on strategies to reduce their vulnerability to increasing water stress. Management strategies would need to be tailored to specific landscapes but could include thinning, planting and selecting for drought-tolerant species, irrigating, and making more water available to plants for transpiration. Hydrologic modeling reveals that specific management actions could reduce tree mortality due to drought stress. Adopting water conservation for vegetation as a priority for managing water on forested lands would represent a fundamental change in perspective and potentially involve trade-offs with other downstream uses of water.

  11. Forest Loss in Protected Areas and Intact Forest Landscapes: A Global Analysis.

    Science.gov (United States)

    Heino, Matias; Kummu, Matti; Makkonen, Marika; Mulligan, Mark; Verburg, Peter H; Jalava, Mika; Räsänen, Timo A

    2015-01-01

    In spite of the high importance of forests, global forest loss has remained alarmingly high during the last decades. Forest loss at a global scale has been unveiled with increasingly finer spatial resolution, but the forest extent and loss in protected areas (PAs) and in large intact forest landscapes (IFLs) have not so far been systematically assessed. Moreover, the impact of protection on preserving the IFLs is not well understood. In this study we conducted a consistent assessment of the global forest loss in PAs and IFLs over the period 2000-2012. We used recently published global remote sensing based spatial forest cover change data, being a uniform and consistent dataset over space and time, together with global datasets on PAs' and IFLs' locations. Our analyses revealed that on a global scale 3% of the protected forest, 2.5% of the intact forest, and 1.5% of the protected intact forest were lost during the study period. These forest loss rates are relatively high compared to global total forest loss of 5% for the same time period. The variation in forest losses and in protection effect was large among geographical regions and countries. In some regions the loss in protected forests exceeded 5% (e.g. in Australia and Oceania, and North America) and the relative forest loss was higher inside protected areas than outside those areas (e.g. in Mongolia and parts of Africa, Central Asia, and Europe). At the same time, protection was found to prevent forest loss in several countries (e.g. in South America and Southeast Asia). Globally, high area-weighted forest loss rates of protected and intact forests were associated with high gross domestic product and in the case of protected forests also with high proportions of agricultural land. Our findings reinforce the need for improved understanding of the reasons for the high forest losses in PAs and IFLs and strategies to prevent further losses.

  12. Social perception of the forest landscape in Trentino-Alto Adige (Italy: comparison of case studies

    Directory of Open Access Journals (Sweden)

    Pastorella F

    2016-12-01

    Full Text Available The landscape is the product of human activities and nature as developed during the centuries. However, the landscape has a symbolic value because it can be considered the identity and culture of a territory that includes the values and beliefs of local population. The Alpine landscape is a unicum in the world due to its geomorphologic, climatic and vegetation characteristics and socio-economic conditions of local population. Over the centuries the social perception of Alps has changed: in a first phase the Alps were considered “horrible and scary mountains”, later Alps were perceived as “beautiful and fascinating places”, and currently the Alpine mountains are considered a place of relaxation and recreation. The analysis of landscape perception aimed to investigate the visitors’ opinions about landscape is an important instrument to support the decision concerning the land planning and management. This study focuses on the analysis of the aesthetic perception of visitors on Alpine landscapes following two perspectives: a first overall perspective considering the landscape as a mosaic of different land uses and a second perspective of detail observing the individual components that characterize the forest landscape. The aim of the study is to identify the most appreciated elements of landscape from the aesthetic point of view and the influence of socio-demographic characteristics of respondents on individual perception. In order to investigate the perception about the Alpine landscapes 358 visitors of two sites of Trentino-Alto Adige (Val di Genova and Santa Maria lake were interviewed using a structured questionnaire. The results show that the most appreciated elements of the landscape by the visitors are water (lakes and rivers and forests. These preferences are also conditioned by the site where the interviews were made. In addition, the results show that for the respondents of this survey the forest with the highest attractiveness

  13. The relative impact of harvest and fire upon landscape-level dynamics of older forests: Lessons from the Northwest Forest Plan

    Science.gov (United States)

    Sean P. Healey; Warren B. Cohen; Thomas A. Spies; Melinda Moeur; Dirk Pflungmacher; M. German Whitley; Michael Lefsky

    2008-01-01

    Interest in preserving older forests at the landscape level has increased in many regions, including the Pacific Northwest of the United States. The Northwest Forest Plan (NWFP) of 1994 initiated a significant reduction in the harvesting of older forests on federal land. We used historical satellite imagery to assess the effect of this reduction in relation to: past...

  14. Management Effectiveness of a Secondary Coniferous Forest for Landscape Appreciation and Psychological Restoration.

    Science.gov (United States)

    Takayama, Norimasa; Fujiwara, Akio; Saito, Haruo; Horiuchi, Masahiro

    2017-07-18

    We investigated the influence of forest management on landscape appreciation and psychological restoration in on-site settings by exposing respondents to an unmanaged, dense coniferous (crowding) forest and a managed (thinned) coniferous forest; we set the two experimental settings in the forests of the Fuji Iyashinomoroi Woodland Study Center. The respondents were individually exposed to both settings while sitting for 15 min and were required to answer three questionnaires to analyze the psychological restorative effects before and after the experiment (feeling (the Profile of Mood States), affect (the Positive and Negative Affect Schedule), and subjective restorativeness (the Restorative Outcome Scale). To compare landscape appreciation, they were required to answer another two questionnaires only after the experiment, for scene appreciation (the semantic differential scale) and for the restorative properties of each environment (the Perceived Restorativeness Scale). Finally, we obtained these findings: (1) the respondents evaluated each forest environment highly differently and evaluated the thinned forest setting more positively; (2) the respondents' impressions of the two physical environments did not appear to be accurately reflected in their evaluations; (3) forest environments have potential restorative effects whether or not they are managed, but these effects can be partially enhanced by managing the forests.

  15. Large forest patches promote breeding success of a terrestrial mammal in urban landscapes.

    Directory of Open Access Journals (Sweden)

    Masashi Soga

    Full Text Available Despite a marked increase in the focus toward biodiversity conservation in fragmented landscapes, studies that confirm species breeding success are scarce and limited. In this paper, we asked whether local (area of forest patches and landscape (amount of suitable habitat surrounding of focal patches factors affect the breeding success of raccoon dogs (Nyctereutes procyonoides in Tokyo, Central Japan. The breeding success of raccoon dogs is easy to judge as adults travel with pups during the breeding season. We selected 21 forest patches (3.3-797.8 ha as study sites. In each forest patch, we used infra-red-triggered cameras for a total of 60 camera days per site. We inspected each photo to determine whether it was of an adult or a pup. Although we found adult raccoon dogs in all 21 forest patches, pups were found only in 13 patches. To estimate probability of occurrence and detection for raccoon in 21 forest fragments, we used single season site occupancy models in PRESENCE program. Model selection based on AIC and model averaging showed that the occupancy probability of pups was positively affected by patch area. This result suggests that large forests improve breeding success of raccoon dogs. A major reason for the low habitat value of small, isolated patches may be the low availability of food sources and the high risk of being killed on the roads in such areas. Understanding the effects of local and landscape parameters on species breeding success may help us to devise and implement effective long-term conservation and management plans.

  16. Landscape characterization integrating expert and local spatial knowledge of land and forest resources.

    Science.gov (United States)

    Fagerholm, Nora; Käyhkö, Niina; Van Eetvelde, Veerle

    2013-09-01

    In many developing countries, political documentation acknowledges the crucial elements of participation and spatiality for effective land use planning. However, operative approaches to spatial data inclusion and representation in participatory land management are often lacking. In this paper, we apply and develop an integrated landscape characterization approach to enhance spatial knowledge generation about the complex human-nature interactions in landscapes in the context of Zanzibar, Tanzania. We apply an integrated landscape conceptualization as a theoretical framework where the expert and local knowledge can meet in spatial context. The characterization is based on combining multiple data sources in GIS, and involves local communities and their local spatial knowledge since the beginning into the process. Focusing on the expected information needs for community forest management, our characterization integrates physical landscape features and retrospective landscape change data with place-specific community knowledge collected through participatory GIS techniques. The characterization is established in a map form consisting of four themes and their synthesis. The characterization maps are designed to support intuitive interpretation, express the inherently uncertain nature of the data, and accompanied by photographs to enhance communication. Visual interpretation of the characterization mediates information about the character of areas and places in the studied local landscape, depicting the role of forest resources as part of the landscape entity. We conclude that landscape characterization applied in GIS is a highly potential tool for participatory land and resource management, where spatial argumentation, stakeholder communication, and empowerment are critical issues.

  17. The Role of Old-growth Forests in Frequent-fire Landscapes

    Directory of Open Access Journals (Sweden)

    Daniel Binkley

    2007-12-01

    Full Text Available Classic ecological concepts and forestry language regarding old growth are not well suited to frequent-fire landscapes. In frequent-fire, old-growth landscapes, there is a symbiotic relationship between the trees, the understory graminoids, and fire that results in a healthy ecosystem. Patches of old growth interspersed with younger growth and open, grassy areas provide a wide variety of habitats for animals, and have a higher level of biodiversity. Fire suppression is detrimental to these forests, and eventually destroys all old growth. The reintroduction of fire into degraded frequent-fire, old-growth forests, accompanied by appropriate thinning, can restore a balance to these ecosystems. Several areas require further research and study: 1 the ability of the understory to respond to restoration treatments, 2 the rate of ecosystem recovery following wildfires whose level of severity is beyond the historic or natural range of variation, 3 the effects of climate change, and 4 the role of the microbial community. In addition, it is important to recognize that much of our knowledge about these old-growth systems comes from a few frequent-fire forest types.

  18. The forgotten D : challenges of addressing forest degradation in complex mosaic landscapes under REDD

    OpenAIRE

    Mertz, O.; Muller, D.; Sikor, T.; Hett, C.; Heinimann, A.; Castella, Jean-Christophe; Lestrelin, Guillaume; Ryan, C. M.; Reay, D. S.; Schmidt-Vogt, D.; Danielsen, F.; Theilade, I.; van Noordwijk, M.; Verchot, L. V.; Burgess, N. D.

    2012-01-01

    International climate negotiations have stressed the importance of considering emissions from forest degradation under the planned REDD+ (Reducing Emissions from Deforestation and forest Degradation + enhancing forest carbon stocks) mechanism. However, most research, pilot-REDD+ projects and carbon certification agencies have focused on deforestation and there appears to be a gap in knowledge on complex mosaic landscapes containing degraded forests, smallholder agriculture, agroforestry and p...

  19. Evaluation of alternative approaches for landscape-scale biomass estimation in a mixed-species northern forest

    Science.gov (United States)

    Coeli M. Hoover; Mark J. Ducey; R. Andy Colter; Mariko Yamasaki

    2018-01-01

    There is growing interest in estimating and mapping biomass and carbon content of forests across large landscapes. LiDAR-based inventory methods are increasingly common and have been successfully implemented in multiple forest types. Asner et al. (2011) developed a simple universal forest carbon estimation method for tropical forests that reduces the amount of required...

  20. The effects of seed dispersal on the simulation of long-term forest landscape change

    Science.gov (United States)

    Hong S. He; David J. Mladenoff

    1999-01-01

    The study of forest landscape change requires an understanding of the complex interactions of both spatial and temporal factors. Traditionally, forest gap models have been used to simulate change on small and independent plots. While gap models are useful in examining forest ecological dynamics across temporal scales, large, spatial processes, such as seed dispersal,...

  1. Monitoring Forest Change in Landscapes Under-Going Rapid Energy Development: Challenges and New Perspectives

    Directory of Open Access Journals (Sweden)

    Paul D. Pickell

    2014-07-01

    Full Text Available The accelerated development of energy resources around the world has substantially increased forest change related to oil and gas activities. In some cases, oil and gas activities are the primary catalyst of land-use change in forested landscapes. We discuss the challenges associated with characterizing ecological change related to energy resource development using North America as an exemplar. We synthesize the major impacts of energy development to forested ecosystems and offer new perspectives on how to detect and monitor anthropogenic disturbance during the Anthropocene. The disturbance of North American forests for energy development has resulted in persistent linear corridors, suppression of historical disturbance regimes, novel ecosystems, and the eradication of ecological memory. Characterizing anthropogenic disturbances using conventional patch-based disturbance measures will tend to underestimate the ecological impacts of energy development. Suitable indicators of anthropogenic impacts in forests should be derived from the integration of multi-scalar Earth observations. Relating these indicators to ecosystem condition will be a capstone in the progress toward monitoring forest change in landscapes undergoing rapid energy development.

  2. Simulating ungulate herbivory across forest landscapes: A browsing extension for LANDIS-II

    Science.gov (United States)

    DeJager, Nathan R.; Drohan, Patrick J.; Miranda, Brian M.; Sturtevant, Brian R.; Stout, Susan L.; Royo, Alejandro; Gustafson, Eric J.; Romanski, Mark C.

    2017-01-01

    Browsing ungulates alter forest productivity and vegetation succession through selective foraging on species that often dominate early succession. However, the long-term and large-scale effects of browsing on forest succession are not possible to project without the use of simulation models. To explore the effects of ungulates on succession in a spatially explicit manner, we developed a Browse Extension that simulates the effects of browsing ungulates on the growth and survival of plant species cohorts within the LANDIS-II spatially dynamic forest landscape simulation model framework. We demonstrate the capabilities of the new extension and explore the spatial effects of ungulates on forest composition and dynamics using two case studies. The first case study examined the long-term effects of persistently high white-tailed deer browsing rates in the northern hardwood forests of the Allegheny National Forest, USA. In the second case study, we incorporated a dynamic ungulate population model to simulate interactions between the moose population and boreal forest landscape of Isle Royale National Park, USA. In both model applications, browsing reduced total aboveground live biomass and caused shifts in forest composition. Simulations that included effects of browsing resulted in successional patterns that were more similar to those observed in the study regions compared to simulations that did not incorporate browsing effects. Further, model estimates of moose population density and available forage biomass were similar to previously published field estimates at Isle Royale and in other moose-boreal forest systems. Our simulations suggest that neglecting effects of browsing when modeling forest succession in ecosystems known to be influenced by ungulates may result in flawed predictions of aboveground biomass and tree species composition.

  3. The use of view analyses in shaping a forest landscape in the vicinity of water reservoirs

    Directory of Open Access Journals (Sweden)

    Janeczko Emilia

    2017-09-01

    Full Text Available An increasing importance of the social functions of the forest entails the necessity to modify forestry management in a way which would ensure its social acceptance. This mainly concerns those parts of the forest that are “most visible”, in the surroundings of roads, tourist trails, as well as water bodies. The article discusses the importance of view analyses in forest landscaping. On the basis of the adopted methodological assumptions, the assessment of landscape resources of the forest in the vicinity of a water reservoir in the Kielce Forest District (Radom Regional Forest Directorate has been made. Available ortophotomaps and aerial photographs taken by UAVs were used for view analyses together with elevation data collected through airborne laser scanning. The results obtained allow to make recommendations for the protection of the reservoir exposure as well as engineering forest management and silviculture. Consequently, the inclusion of visual analyses into the planning stage enables verification of the quality of forest management plans.

  4. The history of widespread decrease in oak dominance exemplified in a grassland--forest landscape

    Science.gov (United States)

    Brice B. Hanberry; Daniel C. Dey; Hong S. He

    2014-01-01

    Regionally-distinctive open oak forest ecosystems have been replaced either by intensive agriculture and grazing fields or by denser forests throughout eastern North America and Europe. To quantify changes in tree communities and density in the Missouri Plains, a grassland-forest landscape, we used historical surveys from1815 to 1864 and current surveys from 2004 to...

  5. A System for Drawing Synthetic Images of Forested Landscapes

    Science.gov (United States)

    Timothy P. McDonald

    1997-01-01

    A software package for drawing images of forested landscapes was developed. Programs included in the system convert topographic and stand polygon information output from a GIS into a form that can be read by a general-purpose ray-tracing renderer. Other programs generate definitions for surface features, mainly trees but ground surface textural properties as well. The...

  6. Changes in forest landscape due to agricultural activities and their influence on natural ecosystems: the eastern Galician mountains

    Directory of Open Access Journals (Sweden)

    Diaz-Maroto I.J.

    2018-03-01

    Full Text Available Forest and agricultural landscapes are vital in relation to biodiversity. Protection policies in such areas should include incentives to enable the common landuse practices. Conservation cannot be addressed in the short term because these landscapes have evolved as socio-ecological systems and provide optimal conditions for biodiversity maintenance. They occur in areas where agriculture has not changed significantly as in the eastern Galician mountains. The landscape dynamics has been shaped by human involvement during centuries. We analyzed how the landscape has evolved according to environmental, socioeconomic and historical changes with the aim of proposing actions for its conservation. The study focused on the recovery of natural hardwood forests which have been intensively exploited since ancient times. Over the past few centuries, these forests have been transformed to agricultural land, felled for use in the naval, metallurgical and railway industries, expropriated from the Church, and affected by wildfire; more recently, have been replaced by fast growing species. Today, broadleaved forests cover small areas of rugged land where the topography often precludes other land uses. In conclusion, although the landscape in the study area has undergone a major transformation, now this land is a priority for biodiversity conservation.

  7. Remote sensing-based landscape indicators for the evaluation of threatened-bird habitats in a tropical forest.

    Science.gov (United States)

    Singh, Minerva; Tokola, Timo; Hou, Zhengyang; Notarnicola, Claudia

    2017-07-01

    Avian species persistence in a forest patch is strongly related to the degree of isolation and size of a forest patch and the vegetation structure within a patch and its matrix are important predictors of bird habitat suitability. A combination of space-borne optical (Landsat), ALOS-PALSAR (radar), and airborne Light Detection and Ranging (LiDAR) data was used for assessing variation in forest structure across forest patches that had undergone different levels of forest degradation in a logged forest-agricultural landscape in Southern Laos. The efficacy of different remote sensing (RS) data sources in distinguishing forest patches that had different seizes, configurations, and vegetation structure was examined. These data were found to be sensitive to the varying levels of degradation of the different patch categories. Additionally, the role of local scale forest structure variables (characterized using the different RS data and patch area) and landscape variables (characterized by distance from different forest patches) in influencing habitat preferences of International Union for Conservation of Nature (IUCN) Red listed birds found in the study area was examined. A machine learning algorithm, MaxEnt, was used in conjunction with these data and field collected geographical locations of the avian species to identify the factors influencing habitat preference of the different bird species and their suitable habitats. Results show that distance from different forest patches played a more important role in influencing habitat suitability for the different avian species than local scale factors related to vegetation structure and health. In addition to distance from forest patches, LiDAR-derived forest structure and Landsat-derived spectral variables were important determinants of avian habitat preference. The models derived using MaxEnt were used to create an overall habitat suitability map (HSM) which mapped the most suitable habitat patches for sustaining all the

  8. Bird community in an Araucaria forest fragment in relation to changes in the surrounding landscape in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Pedro Scherer-Neto

    2012-12-01

    Full Text Available The dynamics of the bird community in a small forest fragment was evaluated along seven years in relation to changes in the surrounding landscape. The study area is an Araucaria forest fragment in Southern Brazil (state of Paraná. The sampling period covered the years 1988 through 1994 and the mark-release-recapture method was utilized. The landscape analysis was based on Landsat TM images, and changes in exotic tree plantations, native forest, open areas (agriculture, pasture, bare soil, and abandoned field, and "capoeira"(native vegetation < 2 m were quantified. The relationship between landscape changes and changes in abundance diversity of forest birds, open-area birds, forest-edge birds, and bamboo specialists was evaluated. Richness estimates were run for each year studied. The richness recorded in the study area comprised 96 species. The richness estimates were 114, 118 and 110 species for Chao 1, Jackknife 1 and Bootstrap, respectively. The bird community varied in species richness, abundance and diversity from year to year. As for species diversity, 1991, 1993 and 1994 were significantly different from the other years. Changes in the landscape contributed to the increase in abundance and richness for the groups of forest, open-area and bamboo-specialist species. An important factor discussed was the effect of the flowering of "taquara" (Poaceae, which contributed significantly to increasing richness of bamboo seed eaters, mainly in 1992 and 1993. In general, the results showed that landscape changes affected the dynamics and structure of the bird community of this forest fragment over time, and proved to have an important role in conservation of the avian community in areas of intensive forestry and agricultural activities.

  9. From Forest Landscape to Agricultural Landscape in the Developing Tropical Country of Malaysia: Pattern, Process, and Their Significance on Policy

    Science.gov (United States)

    Abdullah, Saiful Arif; Hezri, Adnan A.

    2008-11-01

    Agricultural expansion and deforestation are spatial processes of land transformation that impact on landscape pattern. In peninsular Malaysia, the conversion of forested areas into two major cash crops—rubber and oil palm plantations—has been identified as driving significant environmental change. To date, there has been insufficient literature studying the link between changes in landscape patterns and land-related development policies. Therefore, this paper examines: (i) the links between development policies and changes in land use/land cover and landscape pattern and (ii) the significance and implications of these links for future development policies. The objective is to generate insights on the changing process of land use/land cover and landscape pattern as a functional response to development policies and their consequences for environmental conditions. Over the last century, the development of cash crops has changed the country from one dominated by natural landscapes to one dominated by agricultural landscapes. But the last decade of the century saw urbanization beginning to impact significantly. This process aligned with the establishment of various development policies, from land development for agriculture between the mid 1950s and the 1970s to an emphasis on manufacturing from the 1980s onward. Based on a case study in Selangor, peninsular Malaysia, a model of landscape pattern change is presented. It contains three stages according to the relative importance of rubber (first stage: 1900-1950s), oil palm (second stage: 1960s-1970s), and urban (third stage: 1980s-1990s) development that influenced landscape fragmentation and heterogeneity. The environmental consequences of this change have been depicted through loss of biodiversity, geohazard incidences, and the spread of vector-borne diseases. The spatial ecological information can be useful to development policy formulation, allowing diagnosis of the country’s “health” and sustainability

  10. Visual simulations of forest wildlife habitat structure, change, and landscape context in New England

    Science.gov (United States)

    Richard M. DeGraaf; Anna M. Lester; Mariko Yamasaki; William B. Leak

    2007-01-01

    Visualization is a powerful tool for depicting projections of forest structure and landscape conditions, for communicating habitat management practices, and for providing a landscape context to private landowners and to those concerned with public land management. Recent advances in visualization technology, especially in graphics quality, ease of use, and relative...

  11. Succession of ephemeral secondary forests and their limited role for the conservation of floristic diversity in a human-modified tropical landscape.

    Directory of Open Access Journals (Sweden)

    Michiel van Breugel

    Full Text Available Both local- and landscape-scale processes drive succession of secondary forests in human-modified tropical landscapes. Nonetheless, until recently successional changes in composition and diversity have been predominantly studied at the patch level. Here, we used a unique dataset with 45 randomly selected sites across a mixed-use tropical landscape in central Panama to study forest succession simultaneously on local and landscape scales and across both life stages (seedling, sapling, juvenile and adult trees and life forms (shrubs, trees, lianas, and palms. To understand the potential of these secondary forests to conserve tree species diversity, we also evaluated the diversity of species that can persist as viable metapopulations in a dynamic patchwork of short-lived successional forests, using different assumptions about the average relative size at reproductive maturity. We found a deterministic shift in the diversity and composition of the local plant communities as well as the metacommunity, driven by variation in the rate at which species recruited into and disappeared from the secondary forests across the landscape. Our results indicate that dispersal limitation and the successional niche operate simultaneously and shape successional dynamics of the metacommunity of these early secondary forests. A high diversity of plant species across the metacommunity of early secondary forests shows a potential for restoration of diverse forests through natural succession, when trees and fragments of older forests are maintained in the agricultural matrix and land is abandoned or set aside for a long period of time. On the other hand, during the first 32 years the number of species with mature-sized individuals was a relatively small and strongly biased sub-sample of the total species pool. This implies that ephemeral secondary forests have a limited role in the long-term conservation of tree species diversity in human-modified tropical landscapes.

  12. Fragmentation increases wind disturbance impacts on forest structure and carbon stocks in a western Amazonian landscape.

    Science.gov (United States)

    Schwartz, Naomi B; Uriarte, María; DeFries, Ruth; Bedka, Kristopher M; Fernandes, Katia; Gutiérrez-Vélez, Victor; Pinedo-Vasquez, Miguel A

    2017-09-01

    Tropical second-growth forests could help mitigate climate change, but the degree to which their carbon potential is achieved will depend on exposure to disturbance. Wind disturbance is common in tropical forests, shaping structure, composition, and function, and influencing successional trajectories. However, little is known about the impacts of extreme winds on second-growth forests in fragmented landscapes, though these ecosystems are often located in mosaics of forest, pasture, cropland, and other land cover types. Indirect evidence suggests that fragmentation increases risk of wind damage in tropical forests, but no studies have found such impacts following severe storms. In this study, we ask whether fragmentation and forest type (old vs. second growth) were associated with variation in wind damage after a severe convective storm in a fragmented production landscape in western Amazonia. We applied linear spectral unmixing to Landsat 8 imagery from before and after the storm, and combined it with field observations of damage to map wind effects on forest structure and biomass. We also used Landsat 8 imagery to map land cover with the goals of identifying old- and second-growth forest and characterizing fragmentation. We used these data to assess variation in wind disturbance across 95,596 ha of forest, distributed over 6,110 patches. We find that fragmentation is significantly associated with wind damage, with damage severity higher at forest edges and in edgier, more isolated patches. Damage was also more severe in old-growth than in second-growth forests, but this effect was weaker than that of fragmentation. These results illustrate the importance of considering landscape context in planning tropical forest restoration and natural regeneration projects. Assessments of long-term carbon sequestration potential need to consider spatial variation in disturbance exposure. Where risk of extreme winds is high, minimizing fragmentation and isolation could increase

  13. Spatial variation and prediction of forest biomass in a heterogeneous landscape

    Institute of Scientific and Technical Information of China (English)

    S.Lamsal; D.M.Rizzo; R.K.Meentemeyer

    2012-01-01

    Large areas assessments of forest biomass distribution are a challenge in heterogeneous landscapes,where variations in tree growth and species composition occur over short distances.In this study,we use statistical and geospatial modeling on densely sampled forest biomass data to analyze the relative importance of ecological and physiographic variables as determinants of spatial variation of forest biomass in the environmentally heterogeneous region of the Big Sur,California.We estimated biomass in 280 forest plots (one plot per 2.85 km2) and measured an array of ecological (vegetation community type,distance to edge,amount of surrounding non-forest vegetation,soil properties,fire history) and physiographic drivers (elevation,potential soil moisture and solar radiation,proximity to the coast) of tree growth at each plot location.Our geostatistical analyses revealed that biomass distribution is spatially structured and autocorrelated up to 3.1 km.Regression tree (RT) models showed that both physiographic and ecological factors influenced biomass distribution.Across randomly selected sample densities (sample size 112 to 280),ecological effects of vegetation community type and distance to forest edge,and physiographic effects of elevation,potentialsoil moisture and solar radiation were the most consistent predictors of biomass.Topographic moisture index and potential solar radiation had a positive effect on biomass,indicating the importance of topographicallymediated energy and moisture on plant growth and biomass accumulation.RT model explained 35% of the variation in biomass and spatially autocorrelated variation were retained in regession residuals.Regression kriging model,developed from RT combined with kriging of regression residuals,was used to map biomass across the Big Sur.This study demonstrates how statistical and geospatial modeling can be used to discriminate the relative importance of physiographic and ecologic effects on forest biomass and develop

  14. Sustaining the Landscape: A Method for Comparing Current and Desired Future Conditions of Forest Ecosystems in the North Cumberland Plateau and Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Druckenbrod, D.L.

    2004-12-22

    This project initiates an integrated-landscape conservation approach within the Northern Cumberlands Project Area in Tennessee and Kentucky. The mixed mesophytic forests within the Cumberland Plateau and Mountains are among the most diverse in North America; however, these forests have been impacted by and remain threatened from changes in land use across this landscape. The integrated-landscape conservation approach presented in this report outlines a sequence of six conservation steps. This report considers the first three of these steps in two, successive stages. Stage 1 compares desired future conditions (DFCs) and current prevailing conditions (CPCs) at the landscape-scale utilizing remote sensing imagery, remnant forests, and descriptions of historical forest types within the Cumberland Plateau. Subsequently, Stage 2 compares DFCs and CPCs for at-risk forest types identified in Stage 1 utilizing structural, compositional, or functional attributes from USFS Forest Inventory and Analysis data. Ecological indicators will be developed from each stage that express the gaps between these two realizations of the landscape. The results from these first three steps will directly contribute to the final three steps of the integrated-landscape conservation approach by providing guidance for the generation of new conservation strategies in the Northern Cumberland Plateau and Mountains.

  15. Climate change impact on landscape fire and forest biomass dynamics

    International Nuclear Information System (INIS)

    Li, C.

    2004-01-01

    The aim of this study was to improve current understandings of fire regimes. The estimation of biomass dynamics at the stand scale is essential for understanding landscape scale biomass dynamics, particularly in order to understand the potential effects of fire regimes. This study presented a synthesis of research results obtained from stand scale studies together with fire behaviour and weather variables. Landscape structure, topography and climate conditions were also considered. Integration of the data was conducted with the SEM-LAND model, a spatially explicit model for landscape dynamics. Equations for the model were presented, including fire initiation and spread, as well as a lightning fire process and simulated fire suppression. Results indicated that fire suppression could alter the distribution of fire sizes. The effect of tree and stand mortality on forest biomass estimates was also discussed along with the impact of climate change on fire regimes. Results indicate that fire activities are likely to increase. Results also demonstrate that fire frequency and size distribution are correlated without human intervention. Theoretical negative exponential forest age distribution is not always supported by empirical observations. Point-based fire frequency and fire cycle definitions are special cases from a computational perspective. Detection of quantitative interrelationships may simplify preconditions for estimating fire regimes, and serve as a means to address incomplete empirical observations. 12 refs., 3 figs

  16. Evaluating carbon storage, timber harvest, and habitat possibilities for a Western Cascades (USA) forest landscape.

    Science.gov (United States)

    Kline, Jeffrey D; Harmon, Mark E; Spies, Thomas A; Morzillo, Anita T; Pabst, Robert J; McComb, Brenda C; Schnekenburger, Frank; Olsen, Keith A; Csuti, Blair; Vogeler, Jody C

    2016-10-01

    Forest policymakers and managers have long sought ways to evaluate the capability of forest landscapes to jointly produce timber, habitat, and other ecosystem services in response to forest management. Currently, carbon is of particular interest as policies for increasing carbon storage on federal lands are being proposed. However, a challenge in joint production analysis of forest management is adequately representing ecological conditions and processes that influence joint production relationships. We used simulation models of vegetation structure, forest sector carbon, and potential wildlife habitat to characterize landscape-level joint production possibilities for carbon storage, timber harvest, and habitat for seven wildlife species across a range of forest management regimes. We sought to (1) characterize the general relationships of production possibilities for combinations of carbon storage, timber, and habitat, and (2) identify management variables that most influence joint production relationships. Our 160 000-ha study landscape featured environmental conditions typical of forests in the Western Cascade Mountains of Oregon (USA). Our results indicate that managing forests for carbon storage involves trade-offs among timber harvest and habitat for focal wildlife species, depending on the disturbance interval and utilization intensity followed. Joint production possibilities for wildlife species varied in shape, ranging from competitive to complementary to compound, reflecting niche breadth and habitat component needs of species examined. Managing Pacific Northwest forests to store forest sector carbon can be roughly complementary with habitat for Northern Spotted Owl, Olive-sided Flycatcher, and red tree vole. However, managing forests to increase carbon storage potentially can be competitive with timber production and habitat for Pacific marten, Pileated Woodpecker, and Western Bluebird, depending on the disturbance interval and harvest intensity chosen

  17. Forested landscapes promote richness and abundance of native bees (Hymenoptera: Apoidea: Anthophila) in Wisconsin apple orchards.

    Science.gov (United States)

    Watson, J C; Wolf, A T; Ascher, J S

    2011-06-01

    Wild bees provide vital pollination services for many native and agricultural plant species, yet the landscape conditions needed to support wild bee populations are not well understood or appreciated. We assessed the influence of landscape composition on bee abundance and species richness in apple (Malus spp.) orchards of northeastern Wisconsin during the spring flowering period. A diverse community of bee species occurs in these apple orchards, dominated by wild bees in the families Andrenidae and Halictidae and the honey bee, Apis mellifera L. Proportion of forest area in the surrounding landscape was a significant positive predictor of wild bee abundance in orchards, with strongest effects at a GIS (Geographic Information Systems) buffer distance of 1,000 m or greater. Forest area also was positively associated with species richness, showing strongest effects at a buffer distance of 2,000 m. Nonagricultural developed land (homes, lawns, etcetera) was significantly negatively associated with species richness at buffer distances >750 m and wild bee abundance in bowl traps at all distances. Other landscape variables statistically associated with species richness or abundance of wild bees included proportion area of pasture (positive) and proportion area of roads (negative). Forest area was not associated with honey bee abundance at any buffer distance. These results provide clear evidence that the landscape surrounding apple orchards, especially the proportion of forest area, affects richness and abundance of wild bees during the spring flowering period and should be a part of sustainable land management strategies in agro-ecosystems of northeastern Wisconsin and other apple growing regions.

  18. The relationship between landscape patterns and human-caused fire occurrence in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Castafreda-Aumedes, S.; Garcia-Martin, A.; Vega-Garcia, C.

    2013-05-01

    Aim of study: Human settlements and activities have completely modified landscape structure in the Mediterranean region. Vegetation patterns show the interactions between human activities and natural processes on the territory, and allow understanding historical ecological processes and socioeconomic factors. The arrangement of land uses in the rural landscape can be perceived as a proxy for human activities that often lead to the use, and escape, of fire, the most important disturbance in our forest landscapes. In this context, we tried to predict human-caused fire occurrence in a 5-year period by quantifying landscape patterns. Area of study: This study analyses the Spanish territory included in the Iberian Peninsula and Balearic Islands (497,166 km{sup 2}). Material and Methods: We evaluated spatial pattern applying a set of commonly used landscape ecology metrics to landscape windows of 10x10 sq km (4751 units in the UTM grid) overlaid on the Forest Map of Spain, MFE200. Main results: The best logistic regression model obtained included Shannon's Diversity Index, Mean Patch Edge and Mean Shape Index as explicative variables and the global percentage of correct predictions was 66.3 %. Research highlights: Our results suggested that the highest probability of fire occurrence at that time was associated with areas with a greater diversity of land uses and with more compact patches with fewer edges. (Author) 58 refs.

  19. The effect of local and landscape-level characteristics on the abundance of forest birds in early-successional habitats during the post-fledging season in western Massachusetts.

    Directory of Open Access Journals (Sweden)

    Michelle A Labbe

    Full Text Available Many species of mature forest-nesting birds ("forest birds" undergo a pronounced shift in habitat use during the post-fledging period and move from their forest nesting sites into areas of early-successional vegetation. Mortality is high during this period, thus understanding the resource requirements of post-fledging birds has implications for conservation. Efforts to identify predictors of abundance of forest birds in patches of early-successional habitats have so far been equivocal, yet these previous studies have primarily focused on contiguously forested landscapes and the potential for landscape-scale influences in more fragmented and modified landscapes is largely unknown. Landscape composition can have a strong influence on the abundance and productivity of forest birds during the nesting period, and could therefore affect the number of forest birds in the landscape available to colonize early-successional habitats during the post-fledging period. Therefore, the inclusion of landscape characteristics should increase the explanatory power of models of forest bird abundance in early-successional habitat patches during the post-fledging period. We examined forest bird abundance and body condition in relation to landscape and habitat characteristics of 15 early-successional sites during the post-fledging season in Massachusetts. The abundance of forest birds was influenced by within-patch habitat characteristics, however the explanatory power of these models was significantly increased by the inclusion of landscape fragmentation and the abundance of forest birds in adjacent forest during the nesting period for some species and age groups. Our findings show that including factors beyond the patch scale can explain additional variation in the abundance of forest birds in early-successional habitats during the post-fledging period. We conclude that landscape composition should be considered when siting early-successional habitat to maximize its

  20. The Effect of Local and Landscape-Level Characteristics on the Abundance of Forest Birds in Early-Successional Habitats during the Post-Fledging Season in Western Massachusetts

    Science.gov (United States)

    Labbe, Michelle A.; King, David I.

    2014-01-01

    Many species of mature forest-nesting birds (“forest birds”) undergo a pronounced shift in habitat use during the post-fledging period and move from their forest nesting sites into areas of early-successional vegetation. Mortality is high during this period, thus understanding the resource requirements of post-fledging birds has implications for conservation. Efforts to identify predictors of abundance of forest birds in patches of early-successional habitats have so far been equivocal, yet these previous studies have primarily focused on contiguously forested landscapes and the potential for landscape-scale influences in more fragmented and modified landscapes is largely unknown. Landscape composition can have a strong influence on the abundance and productivity of forest birds during the nesting period, and could therefore affect the number of forest birds in the landscape available to colonize early-successional habitats during the post-fledging period. Therefore, the inclusion of landscape characteristics should increase the explanatory power of models of forest bird abundance in early-successional habitat patches during the post-fledging period. We examined forest bird abundance and body condition in relation to landscape and habitat characteristics of 15 early-successional sites during the post-fledging season in Massachusetts. The abundance of forest birds was influenced by within-patch habitat characteristics, however the explanatory power of these models was significantly increased by the inclusion of landscape fragmentation and the abundance of forest birds in adjacent forest during the nesting period for some species and age groups. Our findings show that including factors beyond the patch scale can explain additional variation in the abundance of forest birds in early-successional habitats during the post-fledging period. We conclude that landscape composition should be considered when siting early-successional habitat to maximize its benefit to

  1. Bird and bat predation services in tropical forests and agroforestry landscapes.

    Science.gov (United States)

    Maas, Bea; Karp, Daniel S; Bumrungsri, Sara; Darras, Kevin; Gonthier, David; Huang, Joe C-C; Lindell, Catherine A; Maine, Josiah J; Mestre, Laia; Michel, Nicole L; Morrison, Emily B; Perfecto, Ivette; Philpott, Stacy M; Şekercioğlu, Çagan H; Silva, Roberta M; Taylor, Peter J; Tscharntke, Teja; Van Bael, Sunshine A; Whelan, Christopher J; Williams-Guillén, Kimberly

    2016-11-01

    Understanding distribution patterns and multitrophic interactions is critical for managing bat- and bird-mediated ecosystem services such as the suppression of pest and non-pest arthropods. Despite the ecological and economic importance of bats and birds in tropical forests, agroforestry systems, and agricultural systems mixed with natural forest, a systematic review of their impact is still missing. A growing number of bird and bat exclosure experiments has improved our knowledge allowing new conclusions regarding their roles in food webs and associated ecosystem services. Here, we review the distribution patterns of insectivorous birds and bats, their local and landscape drivers, and their effects on trophic cascades in tropical ecosystems. We report that for birds but not bats community composition and relative importance of functional groups changes conspicuously from forests to habitats including both agricultural areas and forests, here termed 'forest-agri' habitats, with reduced representation of insectivores in the latter. In contrast to previous theory regarding trophic cascade strength, we find that birds and bats reduce the density and biomass of arthropods in the tropics with effect sizes similar to those in temperate and boreal communities. The relative importance of birds versus bats in regulating pest abundances varies with season, geography and management. Birds and bats may even suppress tropical arthropod outbreaks, although positive effects on plant growth are not always reported. As both bats and birds are major agents of pest suppression, a better understanding of the local and landscape factors driving the variability of their impact is needed. © 2015 Cambridge Philosophical Society.

  2. Snow-covered Landsat time series stacks improve automated disturbance mapping accuracy in forested landscapes

    Science.gov (United States)

    Kirk M. Stueve; Ian W. Housman; Patrick L. Zimmerman; Mark D. Nelson; Jeremy B. Webb; Charles H. Perry; Robert A. Chastain; Dale D. Gormanson; Chengquan Huang; Sean P. Healey; Warren B. Cohen

    2011-01-01

    Accurate landscape-scale maps of forests and associated disturbances are critical to augment studies on biodiversity, ecosystem services, and the carbon cycle, especially in terms of understanding how the spatial and temporal complexities of damage sustained from disturbances influence forest structure and function. Vegetation change tracker (VCT) is a highly automated...

  3. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape.

    Science.gov (United States)

    Zald, Harold S J; Dunn, Christopher J

    2018-04-26

    Many studies have examined how fuels, topography, climate, and fire weather influence fire severity. Less is known about how different forest management practices influence fire severity in multi-owner landscapes, despite costly and controversial suppression of wildfires that do not acknowledge ownership boundaries. In 2013, the Douglas Complex burned over 19,000 ha of Oregon & California Railroad (O&C) lands in Southwestern Oregon, USA. O&C lands are composed of a checkerboard of private industrial and federal forestland (Bureau of Land Management, BLM) with contrasting management objectives, providing a unique experimental landscape to understand how different management practices influence wildfire severity. Leveraging Landsat based estimates of fire severity (Relative differenced Normalized Burn Ratio, RdNBR) and geospatial data on fire progression, weather, topography, pre-fire forest conditions, and land ownership, we asked (1) what is the relative importance of different variables driving fire severity, and (2) is intensive plantation forestry associated with higher fire severity? Using Random Forest ensemble machine learning, we found daily fire weather was the most important predictor of fire severity, followed by stand age and ownership, followed by topographic features. Estimates of pre-fire forest biomass were not an important predictor of fire severity. Adjusting for all other predictor variables in a general least squares model incorporating spatial autocorrelation, mean predicted RdNBR was higher on private industrial forests (RdNBR 521.85 ± 18.67 [mean ± SE]) vs. BLM forests (398.87 ± 18.23) with a much greater proportion of older forests. Our findings suggest intensive plantation forestry characterized by young forests and spatially homogenized fuels, rather than pre-fire biomass, were significant drivers of wildfire severity. This has implications for perceptions of wildfire risk, shared fire management responsibilities, and developing

  4. Modeling the Effects of Harvest Alternatives on Mitigating Oak Decline in a Central Hardwood Forest Landscape.

    Directory of Open Access Journals (Sweden)

    Wen J Wang

    Full Text Available Oak decline is a process induced by complex interactions of predisposing factors, inciting factors, and contributing factors operating at tree, stand, and landscape scales. It has greatly altered species composition and stand structure in affected areas. Thinning, clearcutting, and group selection are widely adopted harvest alternatives for reducing forest vulnerability to oak decline by removing susceptible species and declining trees. However, the long-term, landscape-scale effects of these different harvest alternatives are not well studied because of the limited availability of experimental data. In this study, we applied a forest landscape model in combination with field studies to evaluate the effects of the three harvest alternatives on mitigating oak decline in a Central Hardwood Forest landscape. Results showed that the potential oak decline in high risk sites decreased strongly in the next five decades irrespective of harvest alternatives. This is because oak decline is a natural process and forest succession (e.g., high tree mortality resulting from intense competition would eventually lead to the decrease in oak decline in this area. However, forest harvesting did play a role in mitigating oak decline and the effectiveness varied among the three harvest alternatives. The group selection and clearcutting alternatives were most effective in mitigating oak decline in the short and medium terms, respectively. The long-term effects of the three harvest alternatives on mitigating oak decline became less discernible as the role of succession increased. The thinning alternative had the highest biomass retention over time, followed by the group selection and clearcutting alternatives. The group selection alternative that balanced treatment effects and retaining biomass was the most viable alternative for managing oak decline. Insights from this study may be useful in developing effective and informed forest harvesting plans for managing oak

  5. Landscape genetics of leaf-toed geckos in the tropical dry forest of northern Mexico.

    Directory of Open Access Journals (Sweden)

    Christopher Blair

    Full Text Available Habitat fragmentation due to both natural and anthropogenic forces continues to threaten the evolution and maintenance of biological diversity. This is of particular concern in tropical regions that are experiencing elevated rates of habitat loss. Although less well-studied than tropical rain forests, tropical dry forests (TDF contain an enormous diversity of species and continue to be threatened by anthropogenic activities including grazing and agriculture. However, little is known about the processes that shape genetic connectivity in species inhabiting TDF ecosystems. We adopt a landscape genetic approach to understanding functional connectivity for leaf-toed geckos (Phyllodactylus tuberculosus at multiple sites near the northernmost limit of this ecosystem at Alamos, Sonora, Mexico. Traditional analyses of population genetics are combined with multivariate GIS-based landscape analyses to test hypotheses on the potential drivers of spatial genetic variation. Moderate levels of within-population diversity and substantial levels of population differentiation are revealed by FST and Dest. Analyses using structure suggest the occurrence of from 2 to 9 genetic clusters depending on the model used. Landscape genetic analysis suggests that forest cover, stream connectivity, undisturbed habitat, slope, and minimum temperature of the coldest period explain more genetic variation than do simple Euclidean distances. Additional landscape genetic studies throughout TDF habitat are required to understand species-specific responses to landscape and climate change and to identify common drivers. We urge researchers interested in using multivariate distance methods to test for, and report, significant correlations among predictor matrices that can impact results, particularly when adopting least-cost path approaches. Further investigation into the use of information theoretic approaches for model selection is also warranted.

  6. Landscape genetics of leaf-toed geckos in the tropical dry forest of northern Mexico.

    Science.gov (United States)

    Blair, Christopher; Jiménez Arcos, Victor H; Mendez de la Cruz, Fausto R; Murphy, Robert W

    2013-01-01

    Habitat fragmentation due to both natural and anthropogenic forces continues to threaten the evolution and maintenance of biological diversity. This is of particular concern in tropical regions that are experiencing elevated rates of habitat loss. Although less well-studied than tropical rain forests, tropical dry forests (TDF) contain an enormous diversity of species and continue to be threatened by anthropogenic activities including grazing and agriculture. However, little is known about the processes that shape genetic connectivity in species inhabiting TDF ecosystems. We adopt a landscape genetic approach to understanding functional connectivity for leaf-toed geckos (Phyllodactylus tuberculosus) at multiple sites near the northernmost limit of this ecosystem at Alamos, Sonora, Mexico. Traditional analyses of population genetics are combined with multivariate GIS-based landscape analyses to test hypotheses on the potential drivers of spatial genetic variation. Moderate levels of within-population diversity and substantial levels of population differentiation are revealed by FST and Dest. Analyses using structure suggest the occurrence of from 2 to 9 genetic clusters depending on the model used. Landscape genetic analysis suggests that forest cover, stream connectivity, undisturbed habitat, slope, and minimum temperature of the coldest period explain more genetic variation than do simple Euclidean distances. Additional landscape genetic studies throughout TDF habitat are required to understand species-specific responses to landscape and climate change and to identify common drivers. We urge researchers interested in using multivariate distance methods to test for, and report, significant correlations among predictor matrices that can impact results, particularly when adopting least-cost path approaches. Further investigation into the use of information theoretic approaches for model selection is also warranted.

  7. Landscape Genetics of Leaf-Toed Geckos in the Tropical Dry Forest of Northern Mexico

    Science.gov (United States)

    Blair, Christopher; Jiménez Arcos, Victor H.; Mendez de la Cruz, Fausto R.; Murphy, Robert W.

    2013-01-01

    Habitat fragmentation due to both natural and anthropogenic forces continues to threaten the evolution and maintenance of biological diversity. This is of particular concern in tropical regions that are experiencing elevated rates of habitat loss. Although less well-studied than tropical rain forests, tropical dry forests (TDF) contain an enormous diversity of species and continue to be threatened by anthropogenic activities including grazing and agriculture. However, little is known about the processes that shape genetic connectivity in species inhabiting TDF ecosystems. We adopt a landscape genetic approach to understanding functional connectivity for leaf-toed geckos (Phyllodactylus tuberculosus) at multiple sites near the northernmost limit of this ecosystem at Alamos, Sonora, Mexico. Traditional analyses of population genetics are combined with multivariate GIS-based landscape analyses to test hypotheses on the potential drivers of spatial genetic variation. Moderate levels of within-population diversity and substantial levels of population differentiation are revealed by F ST and D est. Analyses using structure suggest the occurrence of from 2 to 9 genetic clusters depending on the model used. Landscape genetic analysis suggests that forest cover, stream connectivity, undisturbed habitat, slope, and minimum temperature of the coldest period explain more genetic variation than do simple Euclidean distances. Additional landscape genetic studies throughout TDF habitat are required to understand species-specific responses to landscape and climate change and to identify common drivers. We urge researchers interested in using multivariate distance methods to test for, and report, significant correlations among predictor matrices that can impact results, particularly when adopting least-cost path approaches. Further investigation into the use of information theoretic approaches for model selection is also warranted. PMID:23451230

  8. Conserving tropical tree diversity and forest structure: the value of small rainforest patches in moderately-managed landscapes.

    Science.gov (United States)

    Hernández-Ruedas, Manuel A; Arroyo-Rodríguez, Víctor; Meave, Jorge A; Martínez-Ramos, Miguel; Ibarra-Manríquez, Guillermo; Martínez, Esteban; Jamangapé, Gilberto; Melo, Felipe P L; Santos, Bráulio A

    2014-01-01

    Rainforests are undergoing severe deforestation and fragmentation worldwide. A huge amount of small forest patches are being created, but their value in conserving biodiversity and forest structure is still controversial. Here, we demonstrate that in a species-rich and moderately-managed Mexican tropical landscape small rainforest patches (<100 ha) can be highly valuable for the conservation of tree diversity and forest structure. These patches showed diverse communities of native plants, including endangered species, and a new record for the country. Although the number of logged trees increased in smaller patches, patch size was a poor indicator of basal area, stem density, number of species, genera and families, and community evenness. Cumulative species-area curves indicated that all patches had a similar contribution to the regional species diversity. This idea also was supported by the fact that patches strongly differed in floristic composition (high β-diversity), independently of patch size. Thus, in agreement with the land-sharing approach, our findings support that small forest patches in moderately-managed landscapes should be included in conservation initiatives to maintain landscape heterogeneity, species diversity, and ecosystem services.

  9. Conserving Tropical Tree Diversity and Forest Structure: The Value of Small Rainforest Patches in Moderately-Managed Landscapes

    Science.gov (United States)

    Hernández-Ruedas, Manuel A.; Arroyo-Rodríguez, Víctor; Meave, Jorge A.; Martínez-Ramos, Miguel; Ibarra-Manríquez, Guillermo; Martínez, Esteban; Jamangapé, Gilberto; Melo, Felipe P. L.; Santos, Bráulio A.

    2014-01-01

    Rainforests are undergoing severe deforestation and fragmentation worldwide. A huge amount of small forest patches are being created, but their value in conserving biodiversity and forest structure is still controversial. Here, we demonstrate that in a species-rich and moderately-managed Mexican tropical landscape small rainforest patches (tree diversity and forest structure. These patches showed diverse communities of native plants, including endangered species, and a new record for the country. Although the number of logged trees increased in smaller patches, patch size was a poor indicator of basal area, stem density, number of species, genera and families, and community evenness. Cumulative species-area curves indicated that all patches had a similar contribution to the regional species diversity. This idea also was supported by the fact that patches strongly differed in floristic composition (high β-diversity), independently of patch size. Thus, in agreement with the land-sharing approach, our findings support that small forest patches in moderately-managed landscapes should be included in conservation initiatives to maintain landscape heterogeneity, species diversity, and ecosystem services. PMID:24901954

  10. Mapping Plant Diversity and Composition Across North Carolina Piedmont Forest Landscapes Using Lidar-Hyperspectral Remote Sensing

    Science.gov (United States)

    Hakkenberg, Christopher R.

    Forest modification, from local stress to global change, has given rise to efforts to model, map, and monitor critical properties of forest communities like structure, composition, and diversity. Predictive models based on data from spatially-nested field plots and LiDAR-hyperspectral remote sensing systems are one particularly effective means towards the otherwise prohibitively resource-intensive task of consistently characterizing forest community dynamics at landscape scales. However, to date, most predictive models fail to account for actual (rather than idealized) species and community distributions, are unsuccessful in predicting understory components in structurally and taxonomically heterogeneous forests, and may suffer from diminished predictive accuracy due to incongruity in scale and precision between field plot samples, remotely-sensed data, and target biota of varying size and density. This three-part study addresses these and other concerns in the modeling and mapping of emergent properties of forest communities by shifting the scope of prediction from the individual or taxon to the whole stand or community. It is, after all, at the stand scale where emergent properties like functional processes, biodiversity, and habitat aggregate and manifest. In the first study, I explore the relationship between forest structure (a proxy for successional demographics and resource competition) and tree species diversity in the North Carolina Piedmont, highlighting the empirical basis and potential for utilizing forest structure from LiDAR in predictive models of tree species diversity. I then extend these conclusions to map landscape pattern in multi-scale vascular plant diversity as well as turnover in community-continua at varying compositional resolutions in a North Carolina Piedmont landscape using remotely-sensed LiDAR-hyperspectral estimates of topography, canopy structure, and foliar biochemistry. Recognizing that the distinction between correlation and

  11. What are the transitions of woodlands at the landscape level? Change trajectories of forest, non-forest and reclamation woody vegetation elements in a mining landscape in North-western Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Skaloš, J.; Novotný, M.; Woitsch, Jiří; Zacharová, J.; Berchová, K.; Svoboda, M.; Křováková, K.; Romportl, D.; Keken, Z.

    2015-01-01

    Roč. 58, March (2015), s. 206-216 ISSN 0143-6228 Institutional support: RVO:68378076 Keywords : Forest history * Change trajectories * GIS * Mining landscape Subject RIV: DO - Wilderness Conservation Impact factor: 2.565, year: 2015

  12. Ecological effects of harvesting biomass for energy in the Spanish Mediterranean

    International Nuclear Information System (INIS)

    Zavala, Miguel A.; Marcos, Francisco

    1993-01-01

    Biomass utilization for energy has major consequences for Spanish Mediterranean landscapes. In this paper we present a synthesis of the ecological effects of harvesting biomass for energy. We compare these effects with other fuel reduction procedures such as prescribed burning. Throughout history we see that some Iberian ecosystems are stabilized by long human interference. One of the stabilizing factors is the utilization of wood as a source of energy. New energy sources and massive human movements towards urban areas have changed the ecosystem dynamics. Reforested areas in Spain during the period from 1940 to 1970 included silviculture treatments that in some cases never took place. This has led to a greater accumulation of biomass. The current perspective of the problem must be analyzed from an economic and political viewpoint. For instance, the Middle East crisis has direct consequences for the budget dedicated to forest energetics, and consequently for the landscape. This shows how ecological problems must be dealt with using a very broad perspective. In Spain current biomass usage should be considered primarily as a complementary silvicultural treatment rather than as a way of producing great biomass outputs. If we are going to manage our forest from an ecological perspective, we have to analyze the effects of these operations at the stand level. At the landscape level fuel management plans should be included in the Forest Management Prescriptions (ordenaciones) whether in terms of harvesting or in a prescribed burning plan

  13. Change in the forested and developed landscape of the Lake Tahoe basin, California and Nevada, USA, 1940-2002

    Science.gov (United States)

    Raumann, C.G.; Cablk, Mary E.

    2008-01-01

    The current ecological state of the Lake Tahoe basin has been shaped by significant landscape-altering human activity and management practices since the mid-1850s; first through widespread timber harvesting from the 1850s to 1920s followed by urban development from the 1950s to the present. Consequences of landscape change, both from development and forest management practices including fire suppression, have prompted rising levels of concern for the ecological integrity of the region. The impacts from these activities include decreased water quality, degraded biotic communities, and increased fire hazard. To establish an understanding of the Lake Tahoe basin's landscape change in the context of forest management and development we mapped, quantified, and described the spatial and temporal distribution and variability of historical changes in land use and land cover in the southern Lake Tahoe basin (279 km2) from 1940 to 2002. Our assessment relied on post-classification change detection of multi-temporal land-use/cover and impervious-surface-area data that were derived through manual interpretation, image processing, and GIS data integration for four dates of imagery: 1940, 1969, 1987, and 2002. The most significant land conversion during the 62-year study period was an increase in developed lands with a corresponding decrease in forests, wetlands, and shrublands. Forest stand densities increased throughout the 62-year study period, and modern thinning efforts resulted in localized stand density decreases in the latter part of the study period. Additionally forests were gained from succession, and towards the end of the study period extensive tree mortality occurred. The highest rates of change occurred between 1940 and 1969, corresponding with dramatic development, then rates declined through 2002 for all observed landscape changes except forest density decrease and tree mortality. Causes of landscape change included regional population growth, tourism demands

  14. History and Productivity Determine the Spatial Distribution of Key Habitats for Biodiversity in Norwegian Forest Landscapes

    Directory of Open Access Journals (Sweden)

    Magne Sætersdal

    2016-01-01

    Full Text Available Retention forestry, including the retention of woodland key habitats (WKH at the forest stand scale, has become an essential management practice in boreal forests. Here, we investigate the spatial distribution of 9470 habitat patches, mapped according to the Complementary Habitat Inventory method (CHI habitats, as potential WKHs in 10 sample areas in Norway. We ask whether there are parts of the forest landscapes that have consistently low or high density of CHI habitats compared to the surveyed landscape as a whole, and therefore have a low or high degree of conflict with harvesting, respectively. We found that there was a general pattern of clumped distribution of CHI habitats at distances up to a few kilometres. Furthermore, results showed that most types of CHI habitats were approximately two to three times as common in the 25% steepest slopes, lowest altitudes and highest site indices. CHI habitats that are most common in old-growth forests were found at longer distances from roads, whereas habitats rich in deciduous trees were found at shorter distances from roads than expected. Both environmental factors and the history of human impact are needed to explain the spatial distribution of CHI habitats. The overrepresentation of WKHs in parts of the forest landscapes represents a good starting point to develop more efficient inventory methods.

  15. Occurrence patterns of dead wood and wood-dependent lichens in managed boreal forest landscapes

    OpenAIRE

    Svensson, Måns

    2013-01-01

    Dead wood is a key resource for biodiversity, on which thousands of forest organisms are dependent. Because of current forest management, there has been a large-scale change in dead wood amounts and qualities, and consequently, many wood-dependent species are threatened. The general aim of this thesis is to increase our understanding of habitat requirements and occurrence patterns of wood-dependent lichens in managed, boreal forest landscapes. We surveyed dead wood and wood-dependent lichens ...

  16. Modified forest rotation lengths: Long-term effects on landscape-scale habitat availability for specialized species.

    Science.gov (United States)

    Roberge, Jean-Michel; Öhman, Karin; Lämås, Tomas; Felton, Adam; Ranius, Thomas; Lundmark, Tomas; Nordin, Annika

    2018-03-15

    We evaluated the long-term implications from modifying rotation lengths in production forests for four forest-reliant species with different habitat requirements. By combining simulations of forest development with habitat models, and accounting both for stand and landscape scale influences, we projected habitat availability over 150 years in a large Swedish landscape, using rotation lengths which are longer (+22% and +50%) and shorter (-22%) compared to current practices. In terms of mean habitat availability through time, species requiring older forest were affected positively by extended rotations, and negatively by shortened rotations. For example, the mean habitat area for the treecreeper Certhia familiaris (a bird preferring forest with larger trees) increased by 31% when rotations were increased by 22%, at a 5% cost to net present value (NPV) and a 7% decrease in harvested volume. Extending rotation lengths by 50% provided more habitat for this species compared to a 22% extension, but at a much higher marginal cost. In contrast, the beetle Hadreule elongatula, which is dependent on sun-exposed dead wood, benefited from shortened rather than prolonged rotations. Due to an uneven distribution of stand-ages within the landscape, the relative amounts of habitat provided by different rotation length scenarios for a given species were not always consistent through time during the simulation period. If implemented as a conservation measure, prolonging rotations will require long-term strategic planning to avoid future bottlenecks in habitat availability, and will need to be accompanied by complementary measures accounting for the diversity of habitats necessary for the conservation of forest biodiversity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Approaches to modeling landscape-scale drought-induced forest mortality

    Science.gov (United States)

    Gustafson, Eric J.; Shinneman, Douglas

    2015-01-01

    Drought stress is an important cause of tree mortality in forests, and drought-induced disturbance events are projected to become more common in the future due to climate change. Landscape Disturbance and Succession Models (LDSM) are becoming widely used to project climate change impacts on forests, including potential interactions with natural and anthropogenic disturbances, and to explore the efficacy of alternative management actions to mitigate negative consequences of global changes on forests and ecosystem services. Recent studies incorporating drought-mortality effects into LDSMs have projected significant potential changes in forest composition and carbon storage, largely due to differential impacts of drought on tree species and interactions with other disturbance agents. In this chapter, we review how drought affects forest ecosystems and the different ways drought effects have been modeled (both spatially and aspatially) in the past. Building on those efforts, we describe several approaches to modeling drought effects in LDSMs, discuss advantages and shortcomings of each, and include two case studies for illustration. The first approach features the use of empirically derived relationships between measures of drought and the loss of tree biomass to drought-induced mortality. The second uses deterministic rules of species mortality for given drought events to project changes in species composition and forest distribution. A third approach is more mechanistic, simulating growth reductions and death caused by water stress. Because modeling of drought effects in LDSMs is still in its infancy, and because drought is expected to play an increasingly important role in forest health, further development of modeling drought-forest dynamics is urgently needed.

  18. Landscape Builder: Software for the creation of initial landscapes for LANDIS from FIA data

    Directory of Open Access Journals (Sweden)

    William Dijak

    2013-06-01

    Full Text Available I developed Landscape Builder to create spatially explicit landscapes as starting conditions for LANDIS Pro 7.0 and LANDIS II landscape forest simulation models from classified satellite imagery and Forest Inventory and Analysis (FIA data collected over multiple years. LANDIS Pro and LANDIS II models project future landscapes by simulating tree growth, tree species succession, disease, insects, fire, wind, and management disturbance. Landscape Builder uses inventory plot attributes from the FIA inventory database, FIA unit map, National Forest type map, National Forest size class map, land cover map, and landform map to assign FIA plot attributes to raster pixels representing a real forest landscape. In addition to creating a detailed map of current (initial forest landscape conditions, the software produces specific files required for use in LANDIS Pro 7.0 or LANDIS II format. Other tools include the ability to create a dominant species and age-class map from previously created LANDIS maps, a tool to create a dominant species and age-class map from a stand map and field plot data, and a tool to convert between Esri ascii rasters and Erdas file format types.

  19. Application of GIS to Empirical Windthrow Risk Model in Mountain Forested Landscapes

    Directory of Open Access Journals (Sweden)

    Lukas Krejci

    2018-02-01

    Full Text Available Norway spruce dominates mountain forests in Europe. Natural variations in the mountainous coniferous forests are strongly influenced by all the main components of forest and landscape dynamics: species diversity, the structure of forest stands, nutrient cycling, carbon storage, and other ecosystem services. This paper deals with an empirical windthrow risk model based on the integration of logistic regression into GIS to assess forest vulnerability to wind-disturbance in the mountain spruce forests of Šumava National Park (Czech Republic. It is an area where forest management has been the focus of international discussions by conservationists, forest managers, and stakeholders. The authors developed the empirical windthrow risk model, which involves designing an optimized data structure containing dependent and independent variables entering logistic regression. The results from the model, visualized in the form of map outputs, outline the probability of risk to forest stands from wind in the examined territory of the national park. Such an application of the empirical windthrow risk model could be used as a decision support tool for the mountain spruce forests in a study area. Future development of these models could be useful for other protected European mountain forests dominated by Norway spruce.

  20. Are Boreal Ovenbirds, Seiurus aurocapilla, More Prone to Move across Inhospitable Landscapes in Alberta's Boreal Mixedwood Forest than in Southern Québec's Temperate Deciduous Forest?

    Directory of Open Access Journals (Sweden)

    Marc Bélisle

    2007-12-01

    Full Text Available Population life-history traits such as the propensity to move across inhospitable landscapes should be shaped by exposure to landscape structure over evolutionary time. Thus, birds that recently evolved in landscapes fragmented by natural disturbances such as fire would be expected to show greater behavioral and morphological vagility relative to conspecifics that evolved under less patchy landscapes shaped by fewer and finer-scaled disturbances, i.e., the resilience hypothesis. These predictions are not new, but they remain largely untested, even for well-studied taxa such as neotropical migrant birds. We combined two experimental translocation, i.e., homing, studies to test whether Ovenbird, Seiurus aurocapilla, from the historically dynamic boreal mixedwood forest of north-central Alberta (n = 55 is more vagile than Ovenbird from historically less dynamic deciduous forest of southern Québec (n = 89. We found no regional difference in either wing loading or the response of homing Ovenbird to landscape structure. Nevertheless, this study presents a heuristic framework that can advance the understanding of boreal landscape dynamics as an evolutionary force.

  1. Primavera Ring. Management perspectives on La Primavera forest buffer zone, from the cultural landscapes approach

    Directory of Open Access Journals (Sweden)

    Pedro Alcocer Santos

    2016-06-01

    Full Text Available The current article intends to high light the need to implement a buffer zone for La Primavera Forest,  Biosphere reserve MaB UNESCO in Guadalajara, Jalisco. The criteria to develop this transition zone is based on understanding this territory as a Cultural Landscape. Seeking common ground between Biosphere Reserves and Cultural Landscapes criteria to organize the management and development of the buffer zone. To understand the opponents of city development and forest preservation as complementary elements, a paradigm shift is needed. This is an applied research from the ITESO, and it is structured as a Think Tank that involves society, government and academy.

  2. Tropical forest-transition landscapes: a portfolio for studying people, tree crops and agro-ecological change in context

    NARCIS (Netherlands)

    Dewi, S.; Noordwijk, van M.; Zulkarnain, Muhammad Thoha; Dwiputra, Adrian; Hyman, Glenn; Prabhu, R.; Gitz, V.; Nasi, Robert

    2017-01-01

    Nudging the development trajectory of tropical landscapes towards sustainability requires a global commitment and policies that take diverse contexts and forest transitions into account. Out-scaling and upscaling landscape-level actions to achieve sustainable development goals globally need to be

  3. Preliminary Assessment of JERS-1 SAR to Discriminating Boreal Landscape Features for the Boreal Forest Mapping Project

    Science.gov (United States)

    McDonald, Kyle; Williams, Cynthia; Podest, Erika; Chapman, Bruce

    1999-01-01

    This paper presents an overview of the JERS-1 North American Boreal Forest Mapping Project and a preliminary assessment of JERS-1 SAR imagery for application to discriminating features applicable to boreal landscape processes. The present focus of the JERS-1 North American Boreal Forest Mapping Project is the production of continental scale wintertime and summertime SAR mosaics of the North American boreal forest for distribution to the science community. As part of this effort, JERS-1 imagery has been collected over much of Alaska and Canada during the 1997-98 winter and 1998 summer seasons. To complete the mosaics, these data will be augmented with data collected during previous years. These data will be made available to the scientific community via CD ROM containing these and similar data sets compiled from companion studies of Asia and Europe. Regional landscape classification with SAR is important for the baseline information it will provide about distribution of woodlands, positions of treeline, current forest biomass, distribution of wetlands, and extent of major rivercourses. As well as setting the stage for longer term change detection, comparisons across several years provides additional baseline information about short-term landscape change. Rapid changes, including those driven by fire, permafrost heat balance, flooding, and insect outbreaks can dominate boreal systems. We examine JERS-1 imagery covering selected sites in Alaska and Canada to assess quality and applicability to such relevant ecological and hydrological issues. The data are generally of high quality and illustrate many potential applications. A texture-based classification scheme is applied to selected regions to assess the applicability of these data for distinguishing distribution of such landcover types as wetland, tundra, woodland and forested landscapes.

  4. [Specific features of nesting bird populations in forest-meadow-field landscapes of Meshchovsk Opolye reflect the diversity of their biotope connections].

    Science.gov (United States)

    Kut'in, S D; Konstantinov, V M

    2008-01-01

    Studies on specific features of nesting bird populations in patchy landscapes were performed in Meshchovsk Opolye, Kaluga Region, from 1981 to 1990. Indices of similarity between the avifaunas of agricultural fields, lowland bogs, and small-leaved forests markedly differed from parameters of their population density in rank and value. In the series of biotopes differing in the relative amount of woodland, from central areas of small-leaved forests to forest margins and then to forest islands gradually decreasing in size, the birds segregated into two distinct groups, one characteristic of forest margins and large forest islands and the other characteristic of small and very small forest islands. Specific features of bird density distribution in forest-meadow-field landscapes of Meshchovsk Opolye reflected heterogeneity of their populations manifested in diverse connections with nesting biotopes.

  5. A long-scale biodiversity monitoring methodology for Spanish national forest inventory. Application to Álava region

    Directory of Open Access Journals (Sweden)

    Iciar Alberdi

    2014-04-01

    Full Text Available Aim of study: In this study, a methodology has been designed to assess biodiversity in the frame of the Spanish National Forest Inventory with the aim of evaluating the conservation status of Spanish forests and their future evolution. This methodology takes into account the different national and international initiatives together with the different types and characteristics of forests in Spain. Area of study: Álava province (Basque country, Spain.Material and methods: To analyse the contribution of each of the different indices to the biodiversity assessment, a statistical analysis using PCA multivariate techniques was performed for structure, composition and dead wood indicators. Main Results: The selected biodiversity indicators (based on field measurements are presented along with an analysis of the results from four representative forest types in Álava by way of an example of the potential of this methodology. Research highlights: The statistical analysis revealed the important information contribution of Mingling index to the composition indicators. Regarding the structure indicators, it is remarkable the interest of using standard deviations and skewness of height and diameter as indicators. Finally it is interesting to point out the interest of assessing dead saplings since they provide additional information and their volume is a particularly useful parameter for analyzing the success of regeneration.Keywords: species richness; structural diversity; dead wood; NFI; PCA.

  6. A Framework for Integrating Transboundary Values, Landscape Connectivity, and ′Protected Areas′ Values Within a Forest Management Area in Northern Alberta

    Directory of Open Access Journals (Sweden)

    Jim Witiw

    2015-01-01

    Full Text Available Daishowa-Marubeni International (DMI is an integrated forest products company with operations in northern Alberta, Canada. As part of its sustainable forestry practices, it has embarked on a comprehensive plan to maintain biodiversity and landscape connectivity values within its area of operation. In addition to identification of High Conservation Value Forests (HCVF as part of an internal forest planning system and to assist forest certification interests, DMI has developed a plan for a Continuous Reserve Network (CRN. This paper describes the rationale behind DMI′s decision to identify a framework for both HCVF and the CRN. The company believes this CRN is a novel approach to ensuring visibility of connected landscape processes. DMI has introduced the concept to government, local sawmill stakeholders, and its public advisory committee, with a goal towards implementing the CRN within the area of its forest tenure as part of its forest management plan. The CRN represents nearly 44% of DMI′s tenure area, and thus makes a significant contribution to landscape connectivity and forest biodiversity. The case study represents an example where values and goals of legislated protected areas are also captured by management prescriptions within non-harvestable areas and timber-producing forests associated with an ecosystem-based approach to sustainable forest management.

  7. Relative importance of current and past landscape structure and local habitat conditions for plant species richness in dry grassland-like forest openings.

    Science.gov (United States)

    Husáková, Iveta; Münzbergová, Zuzana

    2014-01-01

    In fragmented landscapes, plant species richness may depend not only on local habitat conditions but also on landscape structure. In addition, both present and past landscape structure may be important for species richness. There are, however, only a few studies that have investigated the relative importance of all of these factors. The aim of this study was to examine the effect of current and past landscape structures and habitat conditions on species richness at dry grassland-like forest openings in a forested landscape and to assess their relative importance for species richness. We analyzed information on past and present landscape structures using aerial photographs from 1938, 1973, 1988, 2000 and 2007. We calculated the area of each locality and its isolation in the present and in the past and the continuity of localities in GIS. At each locality, we recorded all vascular plant species (296 species in 110 forest openings) and information on abiotic conditions of the localities. We found that the current species richness of the forest openings was significantly determined by local habitat conditions as well as by landscape structure in the present and in the past. The highest species richness was observed on larger and more heterogeneous localities with rocks and shallow soils, which were already large and well connected to other localities in 1938. The changes in the landscape structure in the past can thus have strong effects on current species richness. Future studies attempting to understand determinants of species diversity in fragmented landscapes should also include data on past landscape structure, as it may in fact be more important than the present structure.

  8. Tigers need cover: multi-scale occupancy study of the big cat in Sumatran forest and plantation landscapes.

    Directory of Open Access Journals (Sweden)

    Sunarto Sunarto

    Full Text Available The critically endangered Sumatran tiger (Panthera tigris sumatrae Pocock, 1929 is generally known as a forest-dependent animal. With large-scale conversion of forests into plantations, however, it is crucial for restoration efforts to understand to what extent tigers use modified habitats. We investigated tiger-habitat relationships at 2 spatial scales: occupancy across the landscape and habitat use within the home range. Across major landcover types in central Sumatra, we conducted systematic detection, non-detection sign surveys in 47, 17×17 km grid cells. Within each cell, we surveyed 40, 1-km transects and recorded tiger detections and habitat variables in 100 m segments totaling 1,857 km surveyed. We found that tigers strongly preferred forest and used plantations of acacia and oilpalm, far less than their availability. Tiger probability of occupancy covaried positively and strongly with altitude, positively with forest area, and negatively with distance-to-forest centroids. At the fine scale, probability of habitat use by tigers across landcover types covaried positively and strongly with understory cover and altitude, and negatively and strongly with human settlement. Within forest areas, tigers strongly preferred sites that are farther from water bodies, higher in altitude, farther from edge, and closer to centroid of large forest block; and strongly preferred sites with thicker understory cover, lower level of disturbance, higher altitude, and steeper slope. These results indicate that to thrive, tigers depend on the existence of large contiguous forest blocks, and that with adjustments in plantation management, tigers could use mosaics of plantations (as additional roaming zones, riparian forests (as corridors and smaller forest patches (as stepping stones, potentially maintaining a metapopulation structure in fragmented landscapes. This study highlights the importance of a multi-spatial scale analysis and provides crucial

  9. Landscape anthropogenic disturbance in the Mediterranean ecosystem: is the current landscape sustainable?

    Science.gov (United States)

    Biondi, Guido; D'Andrea, Mirko; Fiorucci, Paolo; Franciosi, Chiara; Lima, Marco

    2013-04-01

    Mediterranean landscape during the last centuries has been subject to strong anthropogenic disturbances who shifted natural vegetation cover in a cultural landscape. Most of the natural forest were destroyed in order to allow cultivation and grazing activities. In the last century, fast growing conifer plantations were introduced in order to increase timber production replacing slow growing natural forests. In addition, after the Second World War most of the grazing areas were changed in unmanaged mediterranean conifer forest frequently spread by fires. In the last decades radical socio economic changes lead to a dramatic abandonment of the cultural landscape. One of the most relevant result of these human disturbances, and in particular the replacement of deciduous forests with coniferous forests, has been the increasing in the number of forest fires, mainly human caused. The presence of conifers and shrubs, more prone to fire, triggered a feedback mechanism that makes difficult to return to the stage of potential vegetation causing huge economic, social and environmental damages. The aim of this work is to investigate the sustainability of the current landscape. A future landscape scenario has been simulated considering the natural succession in absence of human intervention assuming the current fire regime will be unaltered. To this end, a new model has been defined, implementing an ecological succession model coupled with a simply Forest Fire Model. The ecological succession model simulates the vegetation dynamics using a rule-based approach discrete in space and time. In this model Plant Functional Types (PFTs) are used to describe the landscape. Wildfires are randomly ignited on the landscape, and their propagation is simulated using a stochastic cellular automata model. The results show that the success of the natural succession toward a potential vegetation cover is prevented by the frequency of fire spreading. The actual landscape is then unsustainable

  10. Landscape patterns of species-level association between ground-beetles and overstory trees in boreal forests of western Canada (Coleoptera, Carabidae

    Directory of Open Access Journals (Sweden)

    Colin Bergeron

    2011-11-01

    Full Text Available Spatial associations between species of trees and ground-beetles (Coleoptera: Carabidae involve many indirect ecological processes, likely reflecting the function of numerous forest ecosystem components. Describing and quantifying these associations at the landscape scale is basic to the development of a surrogate-based framework for biodiversity monitoring and conservation. In this study, we used a systematic sampling grid covering 84 km2 of boreal mixedwood forest to characterize the ground-beetle assemblage associated with each tree species occurring on this landscape. Projecting the distribution of relative basal area of each tree species on the beetle ordination diagram suggests that the carabid community is structured by the same environmental factors that affects the distribution of trees, or perhaps even by trees per se. Interestingly beetle species are associated with tree species of the same rank order of abundance on this landscape, suggesting that conservation of less abundant trees will concomitantly foster conservation of less abundant beetle species. Landscape patterns of association described here are based on characteristics that can be directly linked to provincial forest inventories, providing a basis that is already available for use of tree species as biodiversity surrogates in boreal forest land management.

  11. Relationships between avian richness and landscape structure at multiple scales using multiple landscapes

    Science.gov (United States)

    Michael S. Mitchell; Scott H. Rutzmoser; T. Bently Wigley; Craig Loehle; John A. Gerwin; Patrick D. Keyser; Richard A. Lancia; Roger W. Perry; Christopher L. Reynolds; Ronald E. Thill; Robert Weih; Don White; Petra Bohall Wood

    2006-01-01

    Little is known about factors that structure biodiversity on landscape scales, yet current land management protocols, such as forest certification programs, place an increasing emphasis on managing for sustainable biodiversity at landscape scales. We used a replicated landscape study to evaluate relationships between forest structure and avian diversity at both stand...

  12. Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes

    Science.gov (United States)

    Meyer, Victoria; Saatchi, Sassan; Clark, David B.; Keller, Michael; Vincent, Grégoire; Ferraz, António; Espírito-Santo, Fernando; d'Oliveira, Marcus V. N.; Kaki, Dahlia; Chave, Jérôme

    2018-06-01

    Large tropical trees store significant amounts of carbon in woody components and their distribution plays an important role in forest carbon stocks and dynamics. Here, we explore the properties of a new lidar-derived index, the large tree canopy area (LCA) defined as the area occupied by canopy above a reference height. We hypothesize that this simple measure of forest structure representing the crown area of large canopy trees could consistently explain the landscape variations in forest volume and aboveground biomass (AGB) across a range of climate and edaphic conditions. To test this hypothesis, we assembled a unique dataset of high-resolution airborne light detection and ranging (lidar) and ground inventory data in nine undisturbed old-growth Neotropical forests, of which four had plots large enough (1 ha) to calibrate our model. We found that the LCA for trees greater than 27 m (˜ 25-30 m) in height and at least 100 m2 crown size in a unit area (1 ha), explains more than 75 % of total forest volume variations, irrespective of the forest biogeographic conditions. When weighted by average wood density of the stand, LCA can be used as an unbiased estimator of AGB across sites (R2 = 0.78, RMSE = 46.02 Mg ha-1, bias = -0.63 Mg ha-1). Unlike other lidar-derived metrics with complex nonlinear relations to biomass, the relationship between LCA and AGB is linear and remains unique across forest types. A comparison with tree inventories across the study sites indicates that LCA correlates best with the crown area (or basal area) of trees with diameter greater than 50 cm. The spatial invariance of the LCA-AGB relationship across the Neotropics suggests a remarkable regularity of forest structure across the landscape and a new technique for systematic monitoring of large trees for their contribution to AGB and changes associated with selective logging, tree mortality and other types of tropical forest disturbance and dynamics.

  13. Characterizing the spatial distribution of giant pandas (Ailuropoda melanoleuca) in fragmented forest landscapes

    NARCIS (Netherlands)

    Wang, T.; Ye, X.P.; Skidmore, A.K.; Toxopeus, A.G.

    2010-01-01

    Aim. To examine the effects of forest fragmentation on the distribution of the entire wild giant panda (Ailuropoda melanoleuca) population, and to propose a modelling approach for monitoring the spatial distribution and habitat of pandas at the landscape scale using Moderate Resolution Imaging

  14. Landscape fragmentation, severe drought, and the new Amazon forest fire regime.

    Science.gov (United States)

    Alencar, Ane A; Brando, Paulo M; Asner, Gregory P; Putz, Francis E

    2015-09-01

    Changes in weather and land use are transforming the spatial and temporal characteristics of fire regimes in Amazonia, with important effects on the functioning of dense (i.e., closed-canopy), open-canopy, and transitional forests across the Basin. To quantify, document, and describe the characteristics and recent changes in forest fire regimes, we sampled 6 million ha of these three representative forests of the eastern and southern edges of the Amazon using 24 years (1983-2007) of satellite-derived annual forest fire scar maps and 16 years of monthly hot pixel information (1992-2007). Our results reveal that changes in forest fire regime properties differentially affected these three forest types in terms of area burned and fire scar size, frequency, and seasonality. During the study period, forest fires burned 15% (0.3 million ha), 44% (1 million ha), and 46% (0.6 million ha) of dense, open, and transitional forests, respectively. Total forest area burned and fire scar size tended to increase over time (even in years of average rainfall in open canopy and transitional forests). In dense forests, most of the temporal variability in fire regime properties was linked to El Nino Southern Oscillation (ENSO)-related droughts. Compared with dense forests, transitional and open forests experienced fires twice as frequently, with at least 20% of these forests' areas burning two or more times during the 24-year study period. Open and transitional forests also experienced higher deforestation rates than dense forests. During drier years, the end of the dry season was delayed by about a month, which resulted in larger burn scars and increases in overall area burned later in the season. These observations suggest that climate-mediated forest flammability is enhanced by landscape fragmentation caused by deforestation, as observed for open and transitional forests in the Eastern portion of the Amazon Basin.

  15. Impact of natural climate change and historical land use on landscape development in the Atlantic Forest of Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    UDO NEHREN

    2013-06-01

    Full Text Available Climate variations and historical land use had a major impact on landscape development in the Brazilian Atlantic Forest (Mata Atlântica. In southeast Brazil, rainforest expanded under warm-humid climate conditions in the late Holocene, but have been dramatically reduced in historical times. Nevertheless, the numerous remaining forest fragments are of outstanding biological richness. In our research in the Atlantic Forest of Rio de Janeiro we aim at the reconstruction of the late Quaternary landscape evolution and an assessment of human impact on landscapes and rainforests. In this context, special focus is given on (a effects of climate variations on vegetation cover, soil development, and geomorphological processes, and (b spatial and temporal land use and landscape degradation patterns. In this paper we present some new results of our interdisciplinary research in the Serra dos Órgãos mountain range, state of Rio de Janeiro.

  16. Managed forest landscape structure and avian species richness in the southeastern US

    Science.gov (United States)

    Craig Loehle; T. Bently Wigley; Scott Rutzmoser; John A. Gerwin; Patrick D. Keyser; Richard A. Lancia; Christopher J. Reynolds; Ronald E. Thill; Robert Weih; Don White; Petra Bohall Wood

    2005-01-01

    Forest structural features at the stand scale (e.g., snags, stem density, species composition) and habitat attributes at larger spatial scales (e.g., landscape pattern, road density) can influence biological diversity and have been proposed as indicators in sustainable forestry programs. This study investigated relationships between such factors and total richness of...

  17. Anthropogenic influence on forest landscape in the Khumbu valley, Nepal

    Science.gov (United States)

    Lingua, Emanuele; Garbarino, Matteo; Urbinati, Carlo; Carrer, Marco

    2013-04-01

    High altitude Himalayan regions are geo-dynamically very active and very sensitive to natural and anthropogenic disturbances due to their steep slopes, variations of precipitations with elevation and short growing periods. Nonetheless, even in this remote region human pressure is often the most important factor affecting forest landscape. In the last decades the firewood demand has increased each year between September to December. The increase in the number of tourists, mountaineering, guides, porters, carpenters, lodges lead to a peak in the use of fuelwood. In order to understand anthropogenic impacts on forest, resources landscape and stand scale dynamics were analyzed in the Sagarmatha National Park (SNP) and its Buffer Zone in the Khumbu Valley (Nepal, Eastern Himalaya). Biological and historical data sources were employed, and a multi-scale approach was adopted to capture the influence of human activities on the distribution of tree species and forest structure. Stand structure and a range of environmental variables were sampled in 197 20x20 m square plots, and land use and anthropogenic variables were derived in a GIS environment (thematic maps and IKONOS, Landsat and Terra ASTER satellite images). We used multivariate statistical analyses to relate forest structure, anthropogenic influences, land uses, and topography. Fuel wood is the prime source of energy for cooking (1480-1880 Kg/person/year) and Quercus semecarpifolia, Rhododendron arboreum and Pinus wallichiana, among the others, are the most exploited species. Due to lack of sufficient energy sources deforestation is becoming a problem in the area. This might be a major threat causing soil erosion, landslides and other natural hazards. Among the 25 species of trees that were found in the Buffer Zone Community Forests of SNP, Pinus wallichiana, Lyonia ovalifolia, Quercus semecarpifolia and Rhododendron arboreum are the dominant species. The total stand density ranged from 228 to 379 tree/ha and the

  18. Examining alternative landscape metrics in ecological forest planning: a case for capercaillie in Catalonia

    OpenAIRE

    Palahi, M.; Pukkala, T.; Pascual, L.; Trasobares, A.

    2004-01-01

    This study examined the performance of four different landscape metrics in a landscape ecological forest planning situation in Catalonia: (1) proportion of suitable habitat (non-spatial) (%H); (2) spatial autocorrelation; (3) the proportion of habitat-habitat boundary of the total compartment boundary (H-H) and (4) the proportion of habitat-non-habitat boundary (H-nonH). They were analysed in a case study problem that aimed at the maintenance and improvement of capercaillie habitats in two si...

  19. Potential Distribution of Mountain Cloud Forest in Michoacán, Mexico: Prioritization for Conservation in the Context of Landscape Connectivity.

    Science.gov (United States)

    Correa Ayram, Camilo A; Mendoza, Manuel E; Etter, Andrés; Pérez Salicrup, Diego R

    2017-07-01

    Landscape connectivity is essential in biodiversity conservation because of its ability to reduce the effect of habitat fragmentation; furthermore is a key property in adapting to climate change. Potential distribution models and landscape connectivity studies have increased with regard to their utility to prioritizing areas for conservation. The objective of this study was to model the potential distribution of Mountain cloud forests in the Transversal Volcanic System, Michoacán and to analyze the role of these areas in maintaining landscape connectivity. Potential distribution was modeled for the Mountain cloud forests based on the maximum entropy approach using 95 occurrence points and 17 ecological variables at 30 m spatial resolution. Potential connectivity was then evaluated by using a probability of connectivity index based on graph theory. The percentage of variation (dPCk) was used to identify the individual contribution of each potential area of Mountain cloud forests in overall connectivity. The different ways in which the potential areas of Mountain cloud forests can contribute to connectivity were evaluated by using the three fractions derived from dPCk (dPCintrak, dPCfluxk, and dPCconnectork). We determined that 37,567 ha of the TVSMich are optimal for the presence of Mountain cloud forests. The contribution of said area in the maintenance of connectivity was low. The conservation of Mountain cloud forests is indispensable, however, in providing or receiving dispersal flows through TVSMich because of its role as a connector element between another habitat types. The knowledge of the potential capacity of Mountain cloud forests to promote structural and functional landscape connectivity is key in the prioritization of conservation areas.

  20. Gamebird responses to anthropogenic forest fragmentation and degradation in a southern Amazonian landscape

    Directory of Open Access Journals (Sweden)

    Fernanda Michalski

    2017-06-01

    Full Text Available Although large-bodied tropical forest birds are impacted by both habitat loss and fragmentation, their patterns of habitat occupancy will also depend on the degree of forest habitat disturbance, which may interact synergistically or additively with fragmentation effects. Here, we examine the effects of forest patch and landscape metrics, and levels of forest disturbance on the patterns of persistence of six gamebird taxa in the southern Brazilian Amazon. We use both interview data conducted with long-term residents and/or landowners from 129 remnant forest patches and 15 continuous forest sites and line-transect census data from a subset of 21 forest patches and two continuous forests. Forest patch area was the strongest predictor of species persistence, explaining as much as 46% of the overall variation in gamebird species richness. Logistic regression models showed that anthropogenic disturbance—including surface wildfires, selective logging and hunting pressure—had a variety of effects on species persistence. Most large-bodied gamebird species were sensitive to forest fragmentation, occupying primarily large, high-quality forest patches in higher abundances, and were typically absent from patches 10,000 ha, relatively undisturbed forest patches to both maximize persistence and maintain baseline abundances of large neotropical forest birds.

  1. Threshold responses of forest birds to landscape changes around exurban development.

    Directory of Open Access Journals (Sweden)

    Marcela Suarez-Rubio

    Full Text Available Low-density residential development (i.e., exurban development is often embedded within a matrix of protected areas and natural amenities, raising concern about its ecological consequences. Forest-dependent species are particularly susceptible to human settlement even at low housing densities typical of exurban areas. However, few studies have examined the response of forest birds to this increasingly common form of land conversion. The aim of this study was to assess whether, how, and at what scale forest birds respond to changes in habitat due to exurban growth. We evaluated changes in habitat composition (amount and configuration (arrangement for forest and forest-edge species around North America Breeding Bird Survey (BBS stops between 1986 and 2009. We used Threshold Indicator Taxa Analysis to detect change points in species occurrence at two spatial extents (400-m and 1-km radius buffer. Our results show that exurban development reduced forest cover and increased habitat fragmentation around BBS stops. Forest birds responded nonlinearly to most measures of habitat loss and fragmentation at both the local and landscape extents. However, the strength and even direction of the response changed with the extent for several of the metrics. The majority of forest birds' responses could be predicted by their habitat preferences indicating that management practices in exurban areas might target the maintenance of forested habitats, for example through easements or more focused management for birds within existing or new protected areas.

  2. Landscape attributes as drivers of the geographical variation in density of Sapajus nigritus Kerr, 1792, a primate endemic to the Atlantic Forest

    Science.gov (United States)

    Hendges, Carla D.; Melo, Geruza L.; Gonçalves, Alberto S.; Cerezer, Felipe O.; Cáceres, Nilton C.

    2017-10-01

    Neotropical primates are among the most well studied forest mammals concerning their population densities. However, few studies have evaluated the factors that influence the spatial variation in the population density of primates, which limits the possibility of inferences towards this animal group, especially at the landscape-level. Here, we compiled density data of Sapajus nigritus from 21 forest patches of the Brazilian Atlantic Forest. We tested the effects of climatic variables (temperature, precipitation), landscape attributes (number of patches, mean inter-patch isolation distance, matrix modification index) and patch size on the population density using linear models and the Akaike information criterion. Our findings showed that the density of S. nigritus is influenced by landscape attributes, particularly by fragmentation and matrix modification. Overall, moderately fragmented landscapes and those surrounded by matrices with intermediate indexes of temporal modification (i.e., crop plantations, forestry) are related to high densities of this species. These results support the assumptions that ecologically flexible species respond positively to forest fragmentation. However, the non-linear relationship between S. nigritus density and number of patches suggests that even the species that are most tolerant to forest cover changes seem to respond positively only at an intermediate level of habitat fragmentation, being dependent of both a moderate degree of forest cover and a high quality matrix. The results we found here can be a common response to fragmentation for those forest dweller species that are able to use the matrix as complementary foraging sites.

  3. Fuels planning: science synthesis and integration; social issues fact sheet 14: Landscape preference in forested ecosystems

    Science.gov (United States)

    Christine Esposito

    2006-01-01

    It is important to understand what types of landscape settings most people prefer to be able to plan fuels treatment and other forest management activities that will be acceptable to the general public. This fact sheet considers the four common elements of visually preferred forest settings: large trees; herbacious, smooth groundcover; open midstory canopy; and vistas...

  4. Landscape variation in tree species richness in northern Iran forests.

    Science.gov (United States)

    Bourque, Charles P-A; Bayat, Mahmoud

    2015-01-01

    Mapping landscape variation in tree species richness (SR) is essential to the long term management and conservation of forest ecosystems. The current study examines the prospect of mapping field assessments of SR in a high-elevation, deciduous forest in northern Iran as a function of 16 biophysical variables representative of the area's unique physiography, including topography and coastal placement, biophysical environment, and forests. Basic to this study is the development of moderate-resolution biophysical surfaces and associated plot-estimates for 202 permanent sampling plots. The biophysical variables include: (i) three topographic variables generated directly from the area's digital terrain model; (ii) four ecophysiologically-relevant variables derived from process models or from first principles; and (iii) seven variables of Landsat-8-acquired surface reflectance and two, of surface radiance. With symbolic regression, it was shown that only four of the 16 variables were needed to explain 85% of observed plot-level variation in SR (i.e., wind velocity, surface reflectance of blue light, and topographic wetness indices representative of soil water content), yielding mean-absolute and root-mean-squared error of 0.50 and 0.78, respectively. Overall, localised calculations of wind velocity and surface reflectance of blue light explained about 63% of observed variation in SR, with wind velocity accounting for 51% of that variation. The remaining 22% was explained by linear combinations of soil-water-related topographic indices and associated thresholds. In general, SR and diversity tended to be greatest for plots dominated by Carpinus betulus (involving ≥ 33% of all trees in a plot), than by Fagus orientalis (median difference of one species). This study provides a significant step towards describing landscape variation in SR as a function of modelled and satellite-based information and symbolic regression. Methods in this study are sufficiently general to be

  5. Landscape variation in tree species richness in northern Iran forests.

    Directory of Open Access Journals (Sweden)

    Charles P-A Bourque

    Full Text Available Mapping landscape variation in tree species richness (SR is essential to the long term management and conservation of forest ecosystems. The current study examines the prospect of mapping field assessments of SR in a high-elevation, deciduous forest in northern Iran as a function of 16 biophysical variables representative of the area's unique physiography, including topography and coastal placement, biophysical environment, and forests. Basic to this study is the development of moderate-resolution biophysical surfaces and associated plot-estimates for 202 permanent sampling plots. The biophysical variables include: (i three topographic variables generated directly from the area's digital terrain model; (ii four ecophysiologically-relevant variables derived from process models or from first principles; and (iii seven variables of Landsat-8-acquired surface reflectance and two, of surface radiance. With symbolic regression, it was shown that only four of the 16 variables were needed to explain 85% of observed plot-level variation in SR (i.e., wind velocity, surface reflectance of blue light, and topographic wetness indices representative of soil water content, yielding mean-absolute and root-mean-squared error of 0.50 and 0.78, respectively. Overall, localised calculations of wind velocity and surface reflectance of blue light explained about 63% of observed variation in SR, with wind velocity accounting for 51% of that variation. The remaining 22% was explained by linear combinations of soil-water-related topographic indices and associated thresholds. In general, SR and diversity tended to be greatest for plots dominated by Carpinus betulus (involving ≥ 33% of all trees in a plot, than by Fagus orientalis (median difference of one species. This study provides a significant step towards describing landscape variation in SR as a function of modelled and satellite-based information and symbolic regression. Methods in this study are sufficiently

  6. Environmental drivers of Ixodes ricinus abundance in forest fragments of rural European landscapes.

    Science.gov (United States)

    Ehrmann, Steffen; Liira, Jaan; Gärtner, Stefanie; Hansen, Karin; Brunet, Jörg; Cousins, Sara A O; Deconchat, Marc; Decocq, Guillaume; De Frenne, Pieter; De Smedt, Pallieter; Diekmann, Martin; Gallet-Moron, Emilie; Kolb, Annette; Lenoir, Jonathan; Lindgren, Jessica; Naaf, Tobias; Paal, Taavi; Valdés, Alicia; Verheyen, Kris; Wulf, Monika; Scherer-Lorenzen, Michael

    2017-09-06

    The castor bean tick (Ixodes ricinus) transmits infectious diseases such as Lyme borreliosis, which constitutes an important ecosystem disservice. Despite many local studies, a comprehensive understanding of the key drivers of tick abundance at the continental scale is still lacking. We analyze a large set of environmental factors as potential drivers of I. ricinus abundance. Our multi-scale study was carried out in deciduous forest fragments dispersed within two contrasting rural landscapes of eight regions, along a macroclimatic gradient stretching from southern France to central Sweden and Estonia. We surveyed the abundance of I. ricinus, plant community composition, forest structure and soil properties and compiled data on landscape structure, macroclimate and habitat properties. We used linear mixed models to analyze patterns and derived the relative importance of the significant drivers. Many drivers had, on their own, either a moderate or small explanatory value for the abundance of I. ricinus, but combined they explained a substantial part of variation. This emphasizes the complex ecology of I. ricinus and the relevance of environmental factors for tick abundance. Macroclimate only explained a small fraction of variation, while properties of macro- and microhabitat, which buffer macroclimate, had a considerable impact on tick abundance. The amount of forest and the composition of the surrounding rural landscape were additionally important drivers of tick abundance. Functional (dispersules) and structural (density of tree and shrub layers) properties of the habitat patch played an important role. Various diversity metrics had only a small relative importance. Ontogenetic tick stages showed pronounced differences in their response. The abundance of nymphs and adults is explained by the preceding stage with a positive relationship, indicating a cumulative effect of drivers. Our findings suggest that the ecosystem disservices of tick-borne diseases, via the

  7. Challenges to governing sustainable forest food and landscapes: Irvingia spp. from southern Cameroon

    NARCIS (Netherlands)

    Ingram, V.J.; Ewane, Marcos; Ndumbe, L.N.; Awono, A.

    2017-01-01

    Across the Congo Basin, bush mango (Irvingia spp.) nuts have been harvested from forest landscapes for consumption, sold as a foodstuff and for medicine for centuries. Data on this trade however are sparse. A value chain approach was used to gather information on stakeholders in the chain from the

  8. LANDIS 4.0 users guide. LANDIS: a spatially explicit model of forest landscape disturbance, management, and succession

    Science.gov (United States)

    Hong S. He; Wei Li; Brian R. Sturtevant; Jian Yang; Bo Z. Shang; Eric J. Gustafson; David J. Mladenoff

    2005-01-01

    LANDIS 4.0 is new-generation software that simulates forest landscape change over large spatial and temporal scales. It is used to explore how disturbances, succession, and management interact to determine forest composition and pattern. Also describes software architecture, model assumptions and provides detailed instructions on the use of the model.

  9. Geotechnology and landscape ecology applied to the selection of potential forest fragments for seed harvesting.

    Science.gov (United States)

    Santos, Alexandre Rosa Dos; Antonio Alvares Soares Ribeiro, Carlos; de Oliveira Peluzio, Telma Machado; Esteves Peluzio, João Batista; de Queiroz, Vagner Tebaldi; Figueira Branco, Elvis Ricardo; Lorenzon, Alexandre Simões; Domingues, Getulio Fonseca; Marcatti, Gustavo Eduardo; de Castro, Nero Lemos Martins; Teixeira, Thaisa Ribeiro; Dos Santos, Gleissy Mary Amaral Dino Alves; Santos Mota, Pedro Henrique; Ferreira da Silva, Samuel; Vargas, Rozimelia; de Carvalho, José Romário; Macedo, Leandro Levate; da Silva Araújo, Cintia; de Almeida, Samira Luns Hatum

    2016-12-01

    The Atlantic Forest biome is recognized for its biodiversity and is one of the most threatened biomes on the planet, with forest fragmentation increasing due to uncontrolled land use, land occupation, and population growth. The most serious aspect of the forest fragmentation process is the edge effect and the loss of biodiversity. In this context, the aim of this study was to evaluate the dynamics of forest fragmentation and select potential forest fragments with a higher degree of conservation for seed harvesting in the Itapemirim river basin, Espírito Santo State, Brazil. Image classification techniques, forest landscape ecology, and multi-criteria analysis were used to evaluate the evolution of forest fragmentation to develop the landscape metric indexes, and to select potential forest fragments for seed harvesting for the years 1985 and 2013. According to the results, there was a reduction of 2.55% of the occupancy of the fragments in the basin between the years 1985 and 2013. For the years 1985 and 2013, forest fragment units 2 and 3 were spatialized with a high potential for seed harvesting, representing 6.99% and 16.01% of the total fragments, respectively. The methodology used in this study has the potential to be used to support decisions for the selection of potential fragments for seed harvesting because selecting fragments in different environments by their spatial attributes provides a greater degree of conservation, contributing to the protection and conscious management of the forests. The proposed methodology can be adapted to other areas and different biomes of the world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Charcoal kiln sites, associated landscape attributes and historic forest conditions: DTM-based investigations in Hesse (Germany

    Directory of Open Access Journals (Sweden)

    Marcus Schmidt

    2016-03-01

    Full Text Available Background An examination of the distribution of ancient charcoal kiln sites in the forest landscape seems to be worthwhile, since general trends in the selection of suitable kiln site locations in the past might become obvious. In this way forest landscape elements with a more intense usage by charcoal burning can be identified. By doing this, we can expect to gain information on the former condition and tree species composition of woodland. Investigations on the spatial distribution of charcoal kiln sites in relation to landscape attributes are sparse, however, probably due to the high on-site mapping effort. The outstanding suitability of LiDAR-derived digital terrain models (DTMs for the detection of charcoal kiln sites has been recently proved. Hence, DTM-based surveys of charcoal kiln sites represent a promising attempt to fill this research gap. Methods Based on DTM-based surveys, we analyzed the spatial distribution of charcoal kiln sites in two forest landscapes in the German federal state of Hesse: Reinhardswald and Kellerwald-Edersee National Park. In doing so, we considered the landscape attibutes "tree species composition", “water supply status”, “nutrient supply status”, “soil complex classes”, “altitude”, “exposition”, and “inclination”. Results We found that charcoal kiln sites were established preferably on hillside locations that provided optimal growing and regeneration conditions for European beech (Fagus sylvatica due to their acidic brown soils and sufficient water supply. These results are in line with instructions for the selection of appropriate kiln site locations, found in literature from the 18th to the 19th century. Conclusions We conclude that there were well-stocked, beech-dominated deciduous forest stands in northern Hesse before 1800, particularly at poorly accessible hillside locations. These large stocks of beech wood were utilized by the governments of the different Hessian territories

  11. Shared visions, future challenges: a case study of three Collaborative Forest Landscape Restoration Program locations

    Directory of Open Access Journals (Sweden)

    Emily H. Walpole

    2017-06-01

    Full Text Available The USDA Forest Service is encouraging the restoration of select forest ecosystems through its Collaborative Forest Landscape Restoration Program (CFLRP. Collaboration is often necessary to implement landscape-scale management projects such as these, and a substantial body of research has examined the benefits and limitations of using collaboration as a tool for improving relationships, trust, and other outcomes among stakeholder groups. However, limited research has investigated the use of collaboration to achieve large-scale ecological restoration goals. Restoration poses some unique conditions for a collaborative approach, including reaching agreement on which historic conditions to use as a reference point, the degree of departure from these reference conditions that warrants management intervention, and how to balance historic conditions with expected future conditions and current human uses of the landscape. Using a mental-models approach, semistructured interviews were conducted with a total of 25 participants at three CFLRP sites. Results indicate that collaboration contributed to improved relationships and trust among participants, even among stakeholder groups with a history of disagreement over management goals. In addition, a shared focus on improving ecosystem resilience helped groups to address controversial management topics such as forest thinning in some areas. However, there was also evidence that CFLRP partnerships in our study locations have primarily focused on areas of high agreement among their stakeholders to date, and have not yet addressed other contentious topics. Previous studies suggest that first conducting management in areas with high consensus among participating stakeholders can build relationships and advance long-term goals. Nonetheless, our results indicate that achieving compromise in less obviously departed systems will require more explicit value-based discussions among stakeholders.

  12. Modeling the Influence of Dynamic Zoning of Forest Harvesting on Ecological Succession in a Northern Hardwoods Landscape

    Science.gov (United States)

    Patrick A. Zollner; Eric J. Gustafson; Hong S. He; Volker C. Radeloff; David J. Mladenoff

    2005-01-01

    Dynamic zoning (systematic alteration in the spatial and temporal allocation of even-aged forest management practices) has been proposed as a means to change the spatial pattern of timber harvest across a landscape to maximize forest interior habitat while holding timber harvest levels constant. Simulation studies have established that dynamic zoning strategies...

  13. Sustainable landscapes in a world of change: tropical forests, land use and implementation of REDD+: Part I

    Science.gov (United States)

    Richard Birdsey; Yude Pan; Richard Houghton

    2013-01-01

    Tropical forests play a critical role in the Earth system; however, tropical landscapes have changed greatly in recent decades because of increasing demand for land to support agriculture and timber production, fuel wood, and other pressures of population and human economics. The observable results are a legacy of persistent deforestation, forest degradation, increased...

  14. Assessment of the landscape connectivity of the Puuc-Chenes region, Mexico, based on the habitat requirements of jaguar (Panthera onca

    Directory of Open Access Journals (Sweden)

    Eduardo Salazar

    2017-03-01

    Full Text Available The Yucatan Peninsula is included as part of the initiative for the Mesoamerican Biological Corridor. In its central area, are located three Protected Natural Areas (PNA: the Biocultural Puuc Reserve (RBP, by its Spanish acronym, the Bala’an K’aax flora and fauna protected area (APB, by its Spanish acronym, Quintana Roo, and the Calakmul Biosphere Reserve (RBC, by its Spanish acronym, Campeche. The Puuc-Chenes region is located in the center of the Yucatan Peninsula - among these PNAs - which included important fragments of vegetation that in the past formed a continuum through the forests of the Yucatan Peninsula, constituting an important link to keep the connectivity of the Mayan forest. However, the expansion of the agricultural frontier is causing the fragmentation of the habitat. In the present study, the structural and functional connectivity of the Puuc-Chenes region is analyzed, based on habitat requirements of the Panthera onca (jaguar by sex. Both, male and female, prefer tropical forest, however, P. onca males dare to transit in secondary vegetation and inclusively in agricultural areas. Males make inroads to villages more often than females, coming close to, and even crossing roads. P. onca males have a home range of 60 km2. In the present study, the ArcMap, FRAGSTATS and IDRISI software were used to analyses the structural and functional connectivity of the landscape, based on the known differences of habitat requirements for P. onca males and females. A vegetation and land use map of the studied area was elaborated, based on Landsat 7 ETM+ images, with 30 m size pixels. The following cover classes were differentiated: tropical forest, secondary forest, agriculture, urban, and water polls, which were validated in the fields. The Puuc-Chenes has an extension of 972 578 ha. Tropical forest was the dominant vegetation cover (49.8% with the largest patch index covering 19.7% of the total landscape. The landscape had 2 509 fragments

  15. Multifunctionality assessment in forest planning at landscape level. The study case of Matese Mountain Community (Italy.

    Directory of Open Access Journals (Sweden)

    Umberto Di Salvatore

    2013-12-01

    Full Text Available Normal 0 14 false false false MicrosoftInternetExplorer4 The main objective is to improve a method that aims at evaluating forest multifunctionality from a technical and practical point of view. A methodological approach - based on the index of forest multifunctionality level - is proposed to assess the “fulfilment capability” of a function providing an estimate of performance level of each function in a given forest. This method is aimed at supporting technicians requested to define most suitable management guidelines and silvicultural practices in the framework of a Forest Landscape Management Plan (FLMP. The study area is the Matese district in southern Apennines (Italy, where a landscape planning experimentation was implemented. The approach includes the qualitative and quantitative characterization of selected populations, stratified by forest category by a sampling set of forest inventory plots. A 0.5 ha area around the sample plot was described by filling a form including the following information: site condition, tree species composition, stand origin and structure, silvicultural system, health condition, microhabitats presence. In each sample plot, both the multifunctionality assessment and the estimate of the effect of alternative management options on ecosystem goods and services, were carried out. The introduction of the term “fulfilment capability” and the modification of the concept of priority level - by which the ranking of functions within a plot is evaluated - is an improvement of current analysis method. This enhanced approach allows to detect the current status of forest plot and its potential framed within the whole forest. Assessing functional features of forests with this approach reduces the inherent subjectivity and allows to get useful information on forest multifunctionality to support forest planners in defining management guidelines consistent with current status and potential evolutive pattern.

  16. Isolation by distance, resistance and/or clusters? Lessons learned from a forest-dwelling carnivore inhabiting a heterogeneous landscape

    Science.gov (United States)

    Aritz Ruiz-Gonzalez; Samuel A. Cushman; Maria Jose Madeira; Ettore Randi; Benjamin J. Gomez-Moliner

    2015-01-01

    Landscape genetics provides a valuable framework to understand how landscape features influence gene flow and to disentangle the factors that lead to discrete and/or clinal population structure. Here, we attempt to differentiate between these processes in a forest-dwelling small carnivore [European pine marten (Martes martes)]. Specifically, we used...

  17. A Moveable Feast: Insects Moving at the Forest-Crop Interface Are Affected by Crop Phenology and the Amount of Forest in the Landscape.

    Science.gov (United States)

    González, Ezequiel; Salvo, Adriana; Defagó, María Teresa; Valladares, Graciela

    2016-01-01

    Edges have become prevailing habitats, mainly as a result of habitat fragmentation and agricultural expansion. The interchange of functionally relevant organisms like insects occurs through these edges and can influence ecosystem functioning in both crop and non-crop habitats. However, very few studies have focused on the directionality of insect movement through edges, and the role of crop and non-crop amount has been ignored. Using bi-directional flight interception traps we investigated interchange of herbivore, natural enemy, pollinator and detritivore insects between native forest fragments and soybean crops, simultaneously considering movement direction, forest cover in the landscape and crop phenology. In total, 52,173 specimens and 877 morphospecies were collected. We found that, within most functional and taxonomic groups, movement intensity was similar (richness and/or abundance) between directions, whereas a predominantly forest-to-crop movement characterized natural enemies. Insect movement was extensively affected by crop phenology, decreasing during crop senescence, and was enhanced by forest cover particularly at senescence. Mainly the same herbivore species moved to and from the forest, but different natural enemy species predominated in each direction. Finally, our analyses revealed greater forest contribution to natural enemy than to herbivore communities in the crop, fading with distance to the forest in both groups. By showing that larger amounts of forest lead to richer insect interchange, in both directions and in four functional groups, our study suggests that allocation to natural and cultivated habitats at landscape level could influence functioning of both systems. Moreover, natural enemies seemed to benefit more than pests from natural vegetation, with natural enemy spillover from forests likely contributing to pest control in soybean fields. Thus consequences of insect interchange seem to be mostly positive for the agroecosystem

  18. Detrital carbon pools in temperate forests: magnitude and potential for landscape-scale assessment

    Science.gov (United States)

    John Bradford; Peter Weishampel; Marie-Louise Smith; Randall Kolka; Richard A. Birdsey; Scott V. Ollinger; Michael G. Ryan

    2009-01-01

    Reliably estimating carbon storage and cycling in detrital biomass is an obstacle to carbon accounting. We examined carbon pools and fluxes in three small temperate forest landscapes to assess the magnitude of carbon stored in detrital biomass and determine whether detrital carbon storage is related to stand structural properties (leaf area, aboveground biomass,...

  19. Sex-specific roost selection by adult red bats in a diverse forested landscape

    Science.gov (United States)

    Roger W. Perry; Ronald E. Thill; S. Andrew Carter

    2007-01-01

    The eastern red bat (Lasiurus borealis) is a common, widespread species that occurs throughout eastern North America; however, information on potential differences in roost selection between sexes is limited. We studied summer diurnal roosting of adult red bats in a diverse forested landscape to: (1) characterize roosts of adult males and females, (2...

  20. Future landscapes: opportunities and challenges

    Science.gov (United States)

    John Stanturf

    2015-01-01

    The global magnitude of degraded and deforested areas is best approached by restoring landscapes. Heightened international perception of the importance of forests and trees outside forests (e.g., woodlands, on farms) demands new approaches to future landscapes. The current need for forest restoration is two billion ha; most opportunities are mosaic restoration in the...

  1. Linking Hunter Knowledge with Forest Change to Understand Changing Deer Harvest Opportunities in Intensively Logged Landscapes

    Directory of Open Access Journals (Sweden)

    Todd J. Brinkman

    2009-06-01

    Full Text Available The effects of landscape changes caused by intensive logging on the availability of wild game are important when the harvest of wild game is a critical cultural practice, food source, and recreational activity. We assessed the influence of extensive industrial logging on the availability of wild game by drawing on local knowledge and ecological science to evaluate the relationship between forest change and opportunities to harvest Sitka black-tailed deer (Odocoileus hemionus sitkensis on Prince of Wales Island, Alaska. We used data collected through interviews with local deer hunters and GIS analysis of land cover to determine relationships among landscape change, hunter access, and habitat for deer hunting over the last 50 yr. We then used these relationships to predict how harvest opportunities may change in the future. Intensive logging from 1950 into the 1990s provided better access to deer and habitat that facilitated deer hunting. However, successional changes in intensively logged forests in combination with a decline in current logging activity have reduced access to deer and increased undesirable habitat for deer hunting. In this new landscape, harvest opportunities in previously logged landscapes have declined, and hunters identify second-growth forest as one of the least popular habitats for hunting. Given the current state of the logging industry in Alaska, it is unlikely that the logging of the remaining old-growth forests or intensive management of second-growth forests will cause hunter opportunities to rebound to historic levels. Instead, hunter opportunities may continue to decline for at least another human generation, even if the long-term impacts of logging activity and deer harvest on deer numbers are minimal. Adapting hunting strategies to focus on naturally open habitats such as alpine and muskeg that are less influenced by external market forces may require considerably more hunting effort but provide the best option for

  2. Landscape structure in the northern coast of Paraná state, a hotspot for the brazilian Atlantic Forest conservation

    Directory of Open Access Journals (Sweden)

    Érico Emed Kauano

    2012-10-01

    Full Text Available The "Serra do Mar" region comprises the largest remnant of the Brazilian Atlantic Forest. The coast of the Paraná State is part of the core area of the "Serra do Mar" corridor and where actions for biodiversity conservation must be planned. In this study we aimed at characterizing the landscape structure in the APA-Guaraqueçaba, the largest protected area in this region, in order to assist environmental policies of this region. Based on a supervised classification of a mosaic of LANDSAT-5-TM satellite images (from March 2009, we developed a map (1:75,000 scale with seven classes of land use and land cover and analyzed the relative quantities of forests and modified areas in slopes and lowlands. The APA-Guaraqueçaba is comprised mainly by the Dense Ombrophilous Forest (68.6% of total area and secondary forests (9.1%, indicating a forested landscape matrix; anthropogenic and bare soil areas (0.8% and the Pasture/Grasslands class (4.2% were less representative. Slopes were less fragmented and more preserved (96.3% of Dense Ombrophilous Forest and secondary forest than lowlands (71.3%, suggesting that restoration initiatives in the lowlands must be stimulated in this region. We concluded that most of the region sustains well-conserved ecosystems, highlighting the importance of Paraná northern coast for the biodiversity maintenance of the Atlantic Forest.

  3. Hydrologic response to and recovery from differing silvicultural systems in a deciduous forest landscape with seasonal snow cover

    Science.gov (United States)

    Buttle, J. M.; Beall, F. D.; Webster, K. L.; Hazlett, P. W.; Creed, I. F.; Semkin, R. G.; Jeffries, D. S.

    2018-02-01

    Hydrological consequences of alternative harvesting strategies in deciduous forest landscapes with seasonal snow cover have received relatively little attention. Most forest harvesting experiments in landscapes with seasonal snow cover have focused on clearcutting in coniferous forests. Few have examined alternative strategies such as selection or shelterwood cutting in deciduous stands whose hydrologic responses to harvesting may differ from those of conifers. This study presents results from a 31-year examination of hydrological response to and recovery from alternative harvesting strategies in a deciduous forest landscape with seasonal snow cover in central Ontario, Canada. A quantitative means of assessing hydrologic recovery to harvesting is also developed. Clearcutting resulted in increased water year (WY) runoff. This was accompanied by increased runoff in all seasons, with greatest relative increases in Summer. Direct runoff and baseflow from treatment catchments generally increased following harvesting, although annual peak streamflow did not. Largest increases in WY runoff and seasonal runoff as well as direct runoff and baseflow generally occurred in the selection harvest catchment, likely as a result of interception of hillslope runoff by a forest access road and redirection to the stream channel. Hydrologic recovery appeared to begin towards the end of the experimental period for several streamflow metrics but was incomplete for all harvesting strategies 15 years after harvesting. Geochemical tracing indicated that harvesting enhanced the relative importance of surface and near-surface water pathways on catchment slopes for all treatments, with the clearcut catchment showing the most pronounced and prolonged response. Such insights into water partitioning between flow pathways may assist assessments of the ecological and biogeochemical consequences of forest disturbance.

  4. Development of methods for the restoration of the American elm in forested landscapes

    Science.gov (United States)

    James M. Slavicek

    2013-01-01

    A project was initiated in 2003 to establish test sites to develop methods to reintroduce the American elm (Ulmus americana L.) in forested landscapes. American elm tree strains with high levels of tolerance to Dutch elm disease (DED) were established in areas where the trees can naturally regenerate and spread. The process of regeneration will...

  5. Multiple Wins, Multiple Organizations—How to Manage Institutional Interaction in Financing Forest Landscape Restoration (FLR

    Directory of Open Access Journals (Sweden)

    Astrid Carrapatoso

    2018-03-01

    Full Text Available By restoring forest ecosystems and fostering resilient and sustainable land use practices, Forest Landscape Restoration (FLR contributes to climate change mitigation, adaptation and sustainable development as well as the protection of biological diversity and combating desertification. This integrative approach provides the opportunity for multiple wins, but it necessitates the management of complex institutional interactions arising from the involvement of multiple international organizations. Focusing on the pivotal aspect of financing, this article surveys the landscape of public international institutions supporting FLR and analyzes the effectiveness of existing mechanisms of inter-institutional coordination and harmonization. Methodologically, our research is based on a document analysis, complemented by participant observation of the two Bonn Climate Change Conferences in May and November 2017 as well as the Global Landscapes Forum in December 2017. We find that financial institutions have established fairly effective rules for the management of positive and negative externalities through the introduction of co-benefits and safeguards. The fact that each institution has their own safeguards provisions, however, leads to significant transaction costs for recipient countries. In the discussion, we thus recommend that institutions should refrain from an unnecessary duplication of standards and focus on best practice.

  6. Forest Productivity and Diversity: Using Ecological Theory and Landscape Models to Guide Sustainable Forest Management

    Energy Technology Data Exchange (ETDEWEB)

    Huston, M.A.

    1998-11-01

    Sustainable forest management requires maintaining or increasing ecosystem productivity, while preserving or restoring natural levels of biodiversity. Application of general concepts from ecological theory, along with use of mechanistic, landscape-based computer models, can contribute to the successful achievement of both of these objectives. Ecological theories based on the energetics and dynamics of populations can be used to predict the general distribution of individual species, the diversity of different types of species, ecosystem process rates and pool sizes, and patterns of spatial and temporal heterogeneity over a broad range of environmental conditions. This approach requires subdivision of total biodiversity into functional types of organisms, primarily because different types of organisms respond very differently to the spatial and temporal variation of environmental conditions on landscapes. The diversity of species of the same functional type (particularly among plants) tends to be highest at relatively low levels of net primary productivity, while the total number of different functional types (particularly among animals) tends to be highest at high levels of productivity (e.g., site index or potential net primary productivity). In general, the diversity of animals at higher trophic levels (e.g., predators) reaches its maximum at much higher levels of productivity than the diversity of lower trophic levels (e.g., plants). This means that a single environment cannot support high diversity of all types of organisms. Within the framework of the general patterns described above, the distributions, population dynamics, and diversity of organisms in specific regions can be predicted more precisely using a combination of computer simulation models and GIS data based on satellite information and ground surveys. Biophysical models that use information on soil properties, climate, and hydrology have been developed to predict how the abundance and spatial

  7. Dry forest resilience varies under simulated climate‐management scenarios in a central Oregon, USA landscape.

    Science.gov (United States)

    Halofsky, Joshua S; Halofsky, Jessica E; Burcsu, Theresa; Hemstrom, Miles A

    Determining appropriate actions to create or maintain landscapes resilient to climate change is challenging because of uncertainty associated with potential effects of climate change and their interactions with land management. We used a set of climate-informed state-and-transition models to explore the effects of management and natural disturbances on vegetation composition and structure under different future climates. Models were run for dry forests of central Oregon under a fire suppression scenario (i.e., no management other than the continued suppression of wildfires) and an active management scenario characterized by light to moderate thinning from below and some prescribed fire, planting, and salvage logging. Without climate change, area in dry province forest types remained constant. With climate change, dry mixed-conifer forests increased in area (by an average of 21–26% by 2100), and moist mixed-conifer forests decreased in area (by an average of 36–60% by 2100), under both management scenarios. Average area in dry mixed-conifer forests varied little by management scenario, but potential decreases in the moist mixed-conifer forest were lower with active management. With changing climate in the dry province of central Oregon, our results suggest the likelihood of sustaining current levels of dense, moist mixed-conifer forests with large-diameter, old trees is low (less than a 10% chance) irrespective of management scenario; an opposite trend was observed under no climate change simulations. However, results also suggest active management within the dry and moist mixed-conifer forests that creates less dense forest conditions can increase the persistence of larger-diameter, older trees across the landscape. Owing to projected increases in wildfire, our results also suggest future distributions of tree structures will differ from the present. Overall, our projections indicate proactive management can increase forest resilience and sustain some societal

  8. Prescribed burning consumes key forest structural components: implications for landscape heterogeneity.

    Science.gov (United States)

    Holland, Greg J; Clarke, Michael F; Bennett, Andrew F

    2017-04-01

    Prescribed burning to achieve management objectives is a common practice in fire-prone regions worldwide. Structural components of habitat that are combustible and slow to develop are particularly susceptible to change associated with prescribed burning. We used an experimental, "whole-landscape" approach to investigate the effect of differing patterns of prescribed burning on key habitat components (logs, stumps, dead trees, litter cover, litter depth, and understorey vegetation). Twenty-two landscapes (each ~100 ha) were selected in a dry forest ecosystem in southeast Australia. Experimental burns were conducted in 16 landscapes (stratified by burn extent) while six served as untreated controls. We measured habitat components prior to and after burning. Landscape burn extent ranged from 22% to 89% across the 16 burn treatments. With the exception of dead standing trees (no change), all measures of habitat components declined as a consequence of burning. The degree of loss increased as the extent to which a landscape was burned also increased. Prescribed burning had complex effects on the spatial heterogeneity (beta diversity) of structural components within landscapes. Landscapes that were more heterogeneous pre-fire were homogenized by burning, while those that were more homogenous pre-fire tended to display greater differentiation post-burning. Thus, the notion that patch mosaic burning enhances heterogeneity at the landscape-scale depends on prior conditions. These findings have important management implications. Where prescribed burns must be undertaken, effects on important resources can be moderated via control of burn characteristics (e.g., burn extent). Longer-term impacts of prescribed burning will be strongly influenced by the return interval, given the slow rate at which some structural components accumulate (decades to centuries). Management of habitat structural components is important given the critical role they play in (1) provision of habitat

  9. LandscapeDNDC used to model nitrous oxide emissions from soils under an oak forest in southern England

    Science.gov (United States)

    Cade, Shirley; Clemitshaw, Kevin; Lowry, David; Yamulki, Sirwan; Casella, Eric; Molina, Saul; Haas, Edwin; Kiese, Ralf

    2013-04-01

    Nitrous oxide (N2O) is an important greenhouse gas, having a global warming potential of approximately 300 times that of carbon dioxide (CO2), and plays a significant role in depleting stratospheric ozone. Its principal source is microbial activity in soils and waters. Measured values of N2O emissions from soils show high temporal dynamics and a large range as a result of inter-related physico-chemical factors affecting the microbial processes, thus making predictions difficult. Emissions often occur in pulses following re-wetting, frost-thaw or management events such as N-fertilization, which further complicates predictions. Process-based models have been developed to help understand this emission variability and as potential tools for IPCC Tier 3 reporting on national emission inventories. Forests are promoted as sinks for CO2 and can be used as renewable sources of energy or longer term CO2 storage if timber is used in products such as in construction and furniture, provided appropriate replanting takes place. It is important that the effect of any changes in forest management and land use as a result of a desire to reduce CO2 emissions does not increase N2O emissions from forest soils, which are still poorly understood, compared to agricultural soils. LandscapeDNDC (Haas et al 2012) has been developed as a process-oriented model, based on the biogeochemical model, DNDC (Li et al, 1992), in order to simulate biosphere-atmosphere-hydrosphere exchanges at site and regional scales. It can model the carbon and nitrogen turnover and associated greenhouse gas (GHG) emissions of forest, agricultural and grassland ecosystems, and allows modelling of impacts of regional land use change over time. This study uses data (including forest growth, GHG emissions and soil moisture) from an oak forest, known as the Straits Enclosure, at Alice Holt in Hampshire, where extensive measurements have been made by Forest Research since 1995. It involves validation of the site scale

  10. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest-wetland landscape.

    Science.gov (United States)

    Helbig, Manuel; Chasmer, Laura E; Desai, Ankur R; Kljun, Natascha; Quinton, William L; Sonnentag, Oliver

    2017-08-01

    In the sporadic permafrost zone of northwestern Canada, boreal forest carbon dioxide (CO 2 ) fluxes will be altered directly by climate change through changing meteorological forcing and indirectly through changes in landscape functioning associated with thaw-induced collapse-scar bog ('wetland') expansion. However, their combined effect on landscape-scale net ecosystem CO 2 exchange (NEE LAND ), resulting from changing gross primary productivity (GPP) and ecosystem respiration (ER), remains unknown. Here, we quantify indirect land cover change impacts on NEE LAND and direct climate change impacts on modeled temperature- and light-limited NEE LAND of a boreal forest-wetland landscape. Using nested eddy covariance flux towers, we find both GPP and ER to be larger at the landscape compared to the wetland level. However, annual NEE LAND (-20 g C m -2 ) and wetland NEE (-24 g C m -2 ) were similar, suggesting negligible wetland expansion effects on NEE LAND . In contrast, we find non-negligible direct climate change impacts when modeling NEE LAND using projected air temperature and incoming shortwave radiation. At the end of the 21st century, modeled GPP mainly increases in spring and fall due to reduced temperature limitation, but becomes more frequently light-limited in fall. In a warmer climate, ER increases year-round in the absence of moisture stress resulting in net CO 2 uptake increases in the shoulder seasons and decreases during the summer. Annually, landscape net CO 2 uptake is projected to decline by 25 ± 14 g C m -2 for a moderate and 103 ± 38 g C m -2 for a high warming scenario, potentially reversing recently observed positive net CO 2 uptake trends across the boreal biome. Thus, even without moisture stress, net CO 2 uptake of boreal forest-wetland landscapes may decline, and ultimately, these landscapes may turn into net CO 2 sources under continued anthropogenic CO 2 emissions. We conclude that NEE LAND changes are more likely to be

  11. Acidic, neutral and alkaline forest ponds as a landscape element affecting the biodiversity of freshwater snails.

    Science.gov (United States)

    Spyra, Aneta

    2017-08-22

    In recent years, the number of areas remaining under the influence of acidity has increased. At all levels of ecosystems, biodiversity decreases with acidification, due to the elimination of species that are most sensitive to low pH. Forest ponds belong to a specific group that varied in location, a huge amount of leaf litter, and isolation from other aquatic environments. They are crucial in the industrial landscape with well-developed industry and human activity. The aim was to investigate the relative importance of water chemistry in explaining snail assemblage compositions and species richness in forest ponds of contrasting pH. Patterns in gastropod communities were determined from an analysis in 26 forest ponds with multivariate gradient analysis. Ponds ranged in a base mean pH from 3.0 to 9.0. pH has been found to be an important factor influencing gastropod fauna. Neutral ponds support diverse communities, typical of small water bodies. In two acidic pond types, snail fauna was different. Among the species characteristic for acidic ponds (pH landscape management and planning.

  12. First direct landscape-scale measurement of tropical rain forest Leaf Area Index, a key driver of global primary productivity

    Science.gov (United States)

    David B. Clark; Paulo C. Olivas; Steven F. Oberbauer; Deborah A. Clark; Michael G. Ryan

    2008-01-01

    Leaf Area Index (leaf area per unit ground area, LAI) is a key driver of forest productivity but has never previously been measured directly at the landscape scale in tropical rain forest (TRF). We used a modular tower and stratified random sampling to harvest all foliage from forest floor to canopy top in 55 vertical transects (4.6 m2) across 500 ha of old growth in...

  13. Can native plant species be preserved in an anthropogenic forest landscape dominated by aliens? A case study from Mediterranean Chile

    Directory of Open Access Journals (Sweden)

    Steffi Heinrichs

    2016-06-01

    Full Text Available Plantations with fast growing exotic tree species can negatively affect native plant species diversity and promote the spread of alien species. Mediterranean Chile experienced major landscape changes with a vast expansion of industrial plantations of Pinus radiata in the past. However, with increasing knowledge of biodiversity effects on ecosystem services Chilean forest owners now aim to integrate the conservation of native biodiversity into forest management, but data on native species diversity and establishment within a plantation landscape is scarce. Here we investigated plant species diversity and composition in four forest management options applied within a landscape dominated by P. radiata plantations in comparison to an unmanaged reference: (i a clear cut, (ii a strip cut, (iii a native canopy of Nothofagus glauca and (iv a young P. radiata plantation. We wanted to assess if native plant species can be maintained either by natural regeneration or by planting of native tree species (Nothofagus glauca, N. obliqua, Quillaja saponaria within this landscape. Results show a high diversity of native and forest plant species within the different management options indicating a high potential for native biodiversity restoration within an anthropogenic landscape. In particular, herbaceous species can benefit from management. They are rare in unmanaged natural forests that are characterized by low light conditions and a thick litter layer. Management, however, also promoted a diversity of alien species. The rapid spread of alien grass species after management can deter an initial establishment of native tree species or the survival and growth after planting mainly under dry but less under sufficient moisture conditions. The most unsuccessful option for promoting native plant species was clear cutting in a dry area where alien grasses were abundant. For drought-tolerant tree species such as Quillaja saponaria, though

  14. Frugivorous bats maintain functional habitat connectivity in agricultural landscapes but rely strongly on natural forest fragments.

    Science.gov (United States)

    Ripperger, Simon P; Kalko, Elisabeth K V; Rodríguez-Herrera, Bernal; Mayer, Frieder; Tschapka, Marco

    2015-01-01

    Anthropogenic changes in land use threaten biodiversity and ecosystem functioning by the conversion of natural habitat into agricultural mosaic landscapes, often with drastic consequences for the associated fauna. The first step in the development of efficient conservation plans is to understand movement of animals through complex habitat mosaics. Therefore, we studied ranging behavior and habitat use in Dermanura watsoni (Phyllostomidae), a frugivorous bat species that is a valuable seed disperser in degraded ecosystems. Radio-tracking of sixteen bats showed that the animals strongly rely on natural forest. Day roosts were exclusively located within mature forest fragments. Selection ratios showed that the bats foraged selectively within the available habitat and positively selected natural forest. However, larger daily ranges were associated with higher use of degraded habitats. Home range geometry and composition of focal foraging areas indicated that wider ranging bats performed directional foraging bouts from natural to degraded forest sites traversing the matrix over distances of up to three hundred meters. This behavior demonstrates the potential of frugivorous bats to functionally connect fragmented areas by providing ecosystem services between natural and degraded sites, and highlights the need for conservation of natural habitat patches within agricultural landscapes that meet the roosting requirements of bats.

  15. Frugivorous bats maintain functional habitat connectivity in agricultural landscapes but rely strongly on natural forest fragments.

    Directory of Open Access Journals (Sweden)

    Simon P Ripperger

    Full Text Available Anthropogenic changes in land use threaten biodiversity and ecosystem functioning by the conversion of natural habitat into agricultural mosaic landscapes, often with drastic consequences for the associated fauna. The first step in the development of efficient conservation plans is to understand movement of animals through complex habitat mosaics. Therefore, we studied ranging behavior and habitat use in Dermanura watsoni (Phyllostomidae, a frugivorous bat species that is a valuable seed disperser in degraded ecosystems. Radio-tracking of sixteen bats showed that the animals strongly rely on natural forest. Day roosts were exclusively located within mature forest fragments. Selection ratios showed that the bats foraged selectively within the available habitat and positively selected natural forest. However, larger daily ranges were associated with higher use of degraded habitats. Home range geometry and composition of focal foraging areas indicated that wider ranging bats performed directional foraging bouts from natural to degraded forest sites traversing the matrix over distances of up to three hundred meters. This behavior demonstrates the potential of frugivorous bats to functionally connect fragmented areas by providing ecosystem services between natural and degraded sites, and highlights the need for conservation of natural habitat patches within agricultural landscapes that meet the roosting requirements of bats.

  16. Acidic, neutral and alkaline forest ponds as a landscape element affecting the biodiversity of freshwater snails

    Science.gov (United States)

    Spyra, Aneta

    2017-10-01

    In recent years, the number of areas remaining under the influence of acidity has increased. At all levels of ecosystems, biodiversity decreases with acidification, due to the elimination of species that are most sensitive to low pH. Forest ponds belong to a specific group that varied in location, a huge amount of leaf litter, and isolation from other aquatic environments. They are crucial in the industrial landscape with well-developed industry and human activity. The aim was to investigate the relative importance of water chemistry in explaining snail assemblage compositions and species richness in forest ponds of contrasting pH. Patterns in gastropod communities were determined from an analysis in 26 forest ponds with multivariate gradient analysis. Ponds ranged in a base mean pH from 3.0 to 9.0. pH has been found to be an important factor influencing gastropod fauna. Neutral ponds support diverse communities, typical of small water bodies. In two acidic pond types, snail fauna was different. Among the species characteristic for acidic ponds (pH aquatic ecosystems is still incomplete because anthropogenic acidification is a recent phenomenon. It is extremely important in forest habitats, since they react more intensively to climatic factors and are often used in landscape management and planning.

  17. Options for biodiversity conservation in managed forest landscapes of multiple ownerships in Oregon and Washington, USA.

    Science.gov (United States)

    N. Suzuki; D.H. Olson

    2007-01-01

    We review the policies and management approaches used in U.S. Pacific Northwest planted forest to address biodiversity protection. We provide a case-study watershed design from southern Oregon, integrating various stand-to-landscape biodiversity-management approaches.

  18. LANDIS PRO: a landscape model that predicts forest composition and structure changes at regional scales

    Science.gov (United States)

    Wen J. Wang; Hong S. He; Jacob S. Fraser; Frank R. Thompson; Stephen R. Shifley; Martin A. Spetich

    2014-01-01

    LANDIS PRO predicts forest composition and structure changes incorporating species-, stand-, and landscape-scales processes at regional scales. Species-scale processes include tree growth, establishment, and mortality. Stand-scale processes contain density- and size-related resource competition that regulates self-thinning and seedling establishment. Landscapescale...

  19. Applying a framework for landscape planning under climate change for the conservation of biodiversity in the Finnish boreal forest.

    Science.gov (United States)

    Mazziotta, Adriano; Triviño, Maria; Tikkanen, Olli-Pekka; Kouki, Jari; Strandman, Harri; Mönkkönen, Mikko

    2015-02-01

    Conservation strategies are often established without consideration of the impact of climate change. However, this impact is expected to threaten species and ecosystem persistence and to have dramatic effects towards the end of the 21st century. Landscape suitability for species under climate change is determined by several interacting factors including dispersal and human land use. Designing effective conservation strategies at regional scales to improve landscape suitability requires measuring the vulnerabilities of specific regions to climate change and determining their conservation capacities. Although methods for defining vulnerability categories are available, methods for doing this in a systematic, cost-effective way have not been identified. Here, we use an ecosystem model to define the potential resilience of the Finnish forest landscape by relating its current conservation capacity to its vulnerability to climate change. In applying this framework, we take into account the responses to climate change of a broad range of red-listed species with different niche requirements. This framework allowed us to identify four categories in which representation in the landscape varies among three IPCC emission scenarios (B1, low; A1B, intermediate; A2, high emissions): (i) susceptible (B1 = 24.7%, A1B = 26.4%, A2 = 26.2%), the most intact forest landscapes vulnerable to climate change, requiring management for heterogeneity and resilience; (ii) resilient (B1 = 2.2%, A1B = 0.5%, A2 = 0.6%), intact areas with low vulnerability that represent potential climate refugia and require conservation capacity maintenance; (iii) resistant (B1 = 6.7%, A1B = 0.8%, A2 = 1.1%), landscapes with low current conservation capacity and low vulnerability that are suitable for restoration projects; (iv) sensitive (B1 = 66.4%, A1B = 72.3%, A2 = 72.0%), low conservation capacity landscapes that are vulnerable and for which alternative conservation measures are required depending on the

  20. Landscape characteristics of Rhizophora mangle forests and propagule deposition in coastal environments of Florida (USA)

    Science.gov (United States)

    Sengupta, R.; Middleton, B.; Yan, C.; Zuro, M.; Hartman, H.

    2005-01-01

    Field dispersal studies are seldom conducted at regional scales even though reliable information on mid-range dispersal distance is essential for models of colonization. The purpose of this study was to examine the potential distance of dispersal of Rhizophora mangle propagules by comparing deposition density with landscape characteristics of mangrove forests. Propagule density was estimated at various distances to mangrove sources (R. mangle) on beaches in southwestern Florida in both high-and low-energy environments, either facing open gulf waters vs. sheltered, respectively. Remote sensing and Geographic Information Systems were used to identify source forests and to determine their landscape characteristics (forest size and distance to deposition area) for the regression analyses. Our results indicated that increasing density of propagules stranded on beaches was related negatively to the distance of the deposition sites from the nearest stands of R. mangle and that deposition was greatly diminished 2 km or more from the source. Measures of fragmentation such as the area of the R. mangle forests were related to propagule deposition but only in low-energy environments. Our results suggest that geographic models involving the colonization of coastal mangrove systems should include dispersal dynamics at mid-range scales, i.e., for our purposes here, beyond the local scale of the forest and up to 5 km distant. Studies of mangrove propagule deposition at various spatial scales are key to understanding regeneration limitations in natural gaps and restoration areas. Therefore, our study of mid-range propagule dispersal has broad application to plant ecology, restoration, and modeling. ?? Springer 2005.

  1. Vulnerability and Resilience of Temperate Forest Landscapes to Broad-Scale Deforestation in Response to Changing Fire Regimes and Altered Post-Fire Vegetation Dynamics

    Science.gov (United States)

    Tepley, A. J.; Veblen, T. T.; Perry, G.; Anderson-Teixeira, K. J.

    2015-12-01

    In the face of on-going climatic warming and land-use change, there is growing concern that temperate forest landscapes could be near a tipping point where relatively small changes to the fire regime or altered post-fire vegetation dynamics could lead to extensive conversion to shrublands or savannas. To evaluate vulnerability and resilience to such conversion, we develop a simple model based on three factors we hypothesize to be key in predicting temperate forest responses to changing fire regimes: (1) the hazard rate (i.e., the probability of burning in the next year given the time since the last fire) in closed-canopy forests, (2) the hazard rate for recently-burned, open-canopy vegetation, and (3) the time to redevelop canopy closure following fire. We generate a response surface representing the proportions of the landscape potentially supporting closed-canopy forest and non-forest vegetation under nearly all combinations of these three factors. We then place real landscapes on this response surface to assess the type and magnitude of changes to the fire regime that would drive extensive forest loss. We show that the deforestation of much of New Zealand that followed initial human colonization and the introduction of a new ignition source ca. 750 years ago was essentially inevitable due to the slow rate of forest recovery after fire and the high flammability of post-fire vegetation. In North America's Pacific Northwest, by contrast, a predominantly forested landscape persisted despite two periods of widespread burning in the recent past due in large part to faster post-fire forest recovery and less pronounced differences in flammability between forests and the post-fire vegetation. We also assess the factors that could drive extensive deforestation in other regions to identify where management could reduce this potential and to guide field and modeling work to better understand the responses and ecological feedbacks to changing fire regimes.

  2. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes.

    Science.gov (United States)

    Seidl, Rupert; Rammer, Werner

    2017-07-01

    Growing evidence suggests that climate change could substantially alter forest disturbances. Interactions between individual disturbance agents are a major component of disturbance regimes, yet how interactions contribute to their climate sensitivity remains largely unknown. Here, our aim was to assess the climate sensitivity of disturbance interactions, focusing on wind and bark beetle disturbances. We developed a process-based model of bark beetle disturbance, integrated into the dynamic forest landscape model iLand (already including a detailed model of wind disturbance). We evaluated the integrated model against observations from three wind events and a subsequent bark beetle outbreak, affecting 530.2 ha (3.8 %) of a mountain forest landscape in Austria between 2007 and 2014. Subsequently, we conducted a factorial experiment determining the effect of changes in climate variables on the area disturbed by wind and bark beetles separately and in combination. iLand was well able to reproduce observations with regard to area, temporal sequence, and spatial pattern of disturbance. The observed disturbance dynamics was strongly driven by interactions, with 64.3 % of the area disturbed attributed to interaction effects. A +4 °C warming increased the disturbed area by +264.7 % and the area-weighted mean patch size by +1794.3 %. Interactions were found to have a ten times higher sensitivity to temperature changes than main effects, considerably amplifying the climate sensitivity of the disturbance regime. Disturbance interactions are a key component of the forest disturbance regime. Neglecting interaction effects can lead to a substantial underestimation of the climate change sensitivity of disturbance regimes.

  3. Changes in tree reproductive traits reduce functional diversity in a fragmented Atlantic forest landscape.

    Directory of Open Access Journals (Sweden)

    Luciana Coe Girão

    Full Text Available Functional diversity has been postulated to be critical for the maintenance of ecosystem functioning, but the way it can be disrupted by human-related disturbances remains poorly investigated. Here we test the hypothesis that habitat fragmentation changes the relative contribution of tree species within categories of reproductive traits (frequency of traits and reduces the functional diversity of tree assemblages. The study was carried out in an old and severely fragmented landscape of the Brazilian Atlantic forest. We used published information and field observations to obtain the frequency of tree species and individuals within 50 categories of reproductive traits (distributed in four major classes: pollination systems, floral biology, sexual systems, and reproductive systems in 10 fragments and 10 tracts of forest interior (control plots. As hypothesized, populations in fragments and control plots differed substantially in the representation of the four major classes of reproductive traits (more than 50% of the categories investigated. The most conspicuous differences were the lack of three pollination systems in fragments--pollination by birds, flies and non-flying mammals--and that fragments had a higher frequency of both species and individuals pollinated by generalist vectors. Hermaphroditic species predominate in both habitats, although their relative abundances were higher in fragments. On the contrary, self-incompatible species were underrepresented in fragments. Moreover, fragments showed lower functional diversity (H' scores for pollination systems (-30.3%, floral types (-23.6%, and floral sizes (-20.8% in comparison to control plots. In contrast to the overwhelming effect of fragmentation, patch and landscape metrics such as patch size and forest cover played a minor role on the frequency of traits. Our results suggest that habitat fragmentation promotes a marked shift in the relative abundance of tree reproductive traits and

  4. Anticipating forest and range land development in central Oregon (USA) for landscape analysis, with an example application involving mule deer

    Science.gov (United States)

    Jeffrey D. Kline; Alissa Moses; Theresa Burcsu

    2010-01-01

    Forest policymakers, public lands managers, and scientists in the Pacific Northwest (USA) seek ways to evaluate the landscape-level effects of policies and management through the multidisciplinary development and application of spatially explicit methods and models. The Interagency Mapping and Analysis Project (IMAP) is an ongoing effort to generate landscape-wide...

  5. Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA

    Directory of Open Access Journals (Sweden)

    Thomas A. Spies

    2017-03-01

    Full Text Available Fire-prone landscapes present many challenges for both managers and policy makers in developing adaptive behaviors and institutions. We used a coupled human and natural systems framework and an agent-based landscape model to examine how alternative management scenarios affect fire and ecosystem services metrics in a fire-prone multiownership landscape in the eastern Cascades of Oregon. Our model incorporated existing models of vegetation succession and fire spread and information from original empirical studies of landowner decision making. Our findings indicate that alternative management strategies can have variable effects on landscape outcomes over 50 years for fire, socioeconomic, and ecosystem services metrics. For example, scenarios with federal restoration treatments had slightly less high-severity fire than a scenario without treatment; exposure of homes in the wildland-urban interface to fire was also slightly less with restoration treatments compared to no management. Treatments appeared to be more effective at reducing high-severity fire in years with more fire than in years with less fire. Under the current management scenario, timber production could be maintained for at least 50 years on federal lands. Under an accelerated restoration scenario, timber production fell because of a shortage of areas meeting current stand structure treatment targets. Trade-offs between restoration outcomes (e.g., open forests with large fire-resistant trees and habitat for species that require dense older forests were evident. For example, the proportional area of nesting habitat for northern spotted owl (Strix occidentalis was somewhat less after 50 years under the restoration scenarios than under no management. However, the amount of resilient older forest structure and habitat for white-headed woodpecker (Leuconotopicus albolarvatus was higher after 50 years under active management. More carbon was stored on this landscape without management than

  6. Measuring the effect of fuel treatments on forest carbon using landscape risk analysis

    Directory of Open Access Journals (Sweden)

    A. A. Ager

    2010-12-01

    Full Text Available Wildfire simulation modelling was used to examine whether fuel reduction treatments can potentially reduce future wildfire emissions and provide carbon benefits. In contrast to previous reports, the current study modelled landscape scale effects of fuel treatments on fire spread and intensity, and used a probabilistic framework to quantify wildfire effects on carbon pools to account for stochastic wildfire occurrence. The study area was a 68 474 ha watershed located on the Fremont-Winema National Forest in southeastern Oregon, USA. Fuel reduction treatments were simulated on 10% of the watershed (19% of federal forestland. We simulated 30 000 wildfires with random ignition locations under both treated and untreated landscapes to estimate the change in burn probability by flame length class resulting from the treatments. Carbon loss functions were then calculated with the Forest Vegetation Simulator for each stand in the study area to quantify change in carbon as a function of flame length. We then calculated the expected change in carbon from a random ignition and wildfire as the sum of the product of the carbon loss and the burn probabilities by flame length class. The expected carbon difference between the non-treatment and treatment scenarios was then calculated to quantify the effect of fuel treatments. Overall, the results show that the carbon loss from implementing fuel reduction treatments exceeded the expected carbon benefit associated with lowered burn probabilities and reduced fire severity on the treated landscape. Thus, fuel management activities resulted in an expected net loss of carbon immediately after treatment. However, the findings represent a point in time estimate (wildfire immediately after treatments, and a temporal analysis with a probabilistic framework used here is needed to model carbon dynamics over the life cycle of the fuel treatments. Of particular importance is the long-term balance between emissions from the

  7. Measuring the effect of fuel treatments on forest carbon using landscape risk analysis

    Science.gov (United States)

    Ager, A. A.; Finney, M. A.; McMahan, A.; Cathcart, J.

    2010-12-01

    Wildfire simulation modelling was used to examine whether fuel reduction treatments can potentially reduce future wildfire emissions and provide carbon benefits. In contrast to previous reports, the current study modelled landscape scale effects of fuel treatments on fire spread and intensity, and used a probabilistic framework to quantify wildfire effects on carbon pools to account for stochastic wildfire occurrence. The study area was a 68 474 ha watershed located on the Fremont-Winema National Forest in southeastern Oregon, USA. Fuel reduction treatments were simulated on 10% of the watershed (19% of federal forestland). We simulated 30 000 wildfires with random ignition locations under both treated and untreated landscapes to estimate the change in burn probability by flame length class resulting from the treatments. Carbon loss functions were then calculated with the Forest Vegetation Simulator for each stand in the study area to quantify change in carbon as a function of flame length. We then calculated the expected change in carbon from a random ignition and wildfire as the sum of the product of the carbon loss and the burn probabilities by flame length class. The expected carbon difference between the non-treatment and treatment scenarios was then calculated to quantify the effect of fuel treatments. Overall, the results show that the carbon loss from implementing fuel reduction treatments exceeded the expected carbon benefit associated with lowered burn probabilities and reduced fire severity on the treated landscape. Thus, fuel management activities resulted in an expected net loss of carbon immediately after treatment. However, the findings represent a point in time estimate (wildfire immediately after treatments), and a temporal analysis with a probabilistic framework used here is needed to model carbon dynamics over the life cycle of the fuel treatments. Of particular importance is the long-term balance between emissions from the decay of dead trees

  8. Species composition and diversity of non-forest woody vegetation along roads in the agricultural landscape

    Directory of Open Access Journals (Sweden)

    Tóth Attila

    2016-03-01

    Full Text Available Non-forest woody vegetation represents an important component of green infrastructure in the agricultural landscape, where natural and semi-natural forest cover has only a low land use proportion. This paper focuses on linear woody vegetation structures along roads in the agricultural landscape and analyses them in three study areas in the Nitra Region, Slovakia. We evaluate species composition and diversity, species occurrence frequency or spatial distribution, their structure according to relatively achievable age and origin. For the evaluation of occurrence frequency, a Frequency Factor was proposed and applied. This factor allows a better comparison of different study areas and results in more representative findings. The study areas were divided into sectors based on visual landscape features, which are easily identifiable in the field, such as intersections and curves in roads, and intersections of roads with other features, such as cadastral or land boundaries, watercourses, etc. Based on the species abundance, woody plants present within the sectors were categorised into 1 predominant, 2 complementary and 3 mixed-in species; and with regard to their origin into 1 autochthonous and 2 allochthonous. Further, trees were categorised into 1 long-lived, 2 medium-lived and 3 short-lived tree species. The main finding is that among trees, mainly allochthonous species dominated. Robinia pseudoacacia L. was the predominant tree species in all three study areas. It was up to 4 times more frequent than other predominant tree species. Introduced tree species prevailed also among complementary and mixed-in species. Among shrubs, mainly native species dominated, while non-native species had a significantly lower proportion and spatial distribution. Based on these findings, several measures have been proposed to improve the overall ecological stability, the proportion and spatial distribution of native woody plant species. The recommendations and

  9. Inverted edge effects on carbon stocks in human-dominated landscapes

    Science.gov (United States)

    Romitelli, I.; Keller, M.; Vieira, S. A.; Metzger, J. P.; Reverberi Tambosi, L.

    2017-12-01

    Although the importance of tropical forests to regulate greenhouse gases is well documented, little is known about what factors affect the ability of these forests to store carbon in human-dominated landscapes. Among those factors, the landscape structure, particularly the amount of forest cover, the type of matrix and edge effects, can have important roles. We tested how carbon stock is influenced by a combination of factors of landscape composition (pasture and forest cover), landscape configuration (edge effect) and relief factors (slope, elevation and aspect). To test those relationships, we performed a robust carbon stock estimation with inventory and LiDAR data in human-dominated landscapes from the Brazilian Atlantic forest region. The study area showed carbon stock mean 45.49 ± 9.34 Mg ha-1. The interaction between forest cover, edge effect and slope was the best combination explanatory of carbon stock. We observed an inverted edge effect pattern where carbon stock is higher close to the edges of the studied secondary forests. This inverted edge effect observed contradicts the usual pattern reported in the literature for mature forests. We suppose this pattern is related with a positive effect that edge conditions can have stimulating forest regeneration, but the underlying processes to explain the observed pattern should still be tested. Those results suggest that Carbon stocks in human-dominated and fragmented landscapes can be highly affected by the landscape structure, and particularly that edges conditions can favor carbon sequestration in regenerating tropical forests.

  10. The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape.

    Science.gov (United States)

    Chambers, Jeffrey Q; Negron-Juarez, Robinson I; Marra, Daniel Magnabosco; Di Vittorio, Alan; Tews, Joerg; Roberts, Dar; Ribeiro, Gabriel H P M; Trumbore, Susan E; Higuchi, Niro

    2013-03-05

    Old-growth forest ecosystems comprise a mosaic of patches in different successional stages, with the fraction of the landscape in any particular state relatively constant over large temporal and spatial scales. The size distribution and return frequency of disturbance events, and subsequent recovery processes, determine to a large extent the spatial scale over which this old-growth steady state develops. Here, we characterize this mosaic for a Central Amazon forest by integrating field plot data, remote sensing disturbance probability distribution functions, and individual-based simulation modeling. Results demonstrate that a steady state of patches of varying successional age occurs over a relatively large spatial scale, with important implications for detecting temporal trends on plots that sample a small fraction of the landscape. Long highly significant stochastic runs averaging 1.0 Mg biomass⋅ha(-1)⋅y(-1) were often punctuated by episodic disturbance events, resulting in a sawtooth time series of hectare-scale tree biomass. To maximize the detection of temporal trends for this Central Amazon site (e.g., driven by CO2 fertilization), plots larger than 10 ha would provide the greatest sensitivity. A model-based analysis of fractional mortality across all gap sizes demonstrated that 9.1-16.9% of tree mortality was missing from plot-based approaches, underscoring the need to combine plot and remote-sensing methods for estimating net landscape carbon balance. Old-growth tropical forests can exhibit complex large-scale structure driven by disturbance and recovery cycles, with ecosystem and community attributes of hectare-scale plots exhibiting continuous dynamic departures from a steady-state condition.

  11. Forest-edge utilization by carnivores in relation to local and landscape habitat characteristics in central European farmland

    Czech Academy of Sciences Publication Activity Database

    Šálek, Martin; Červinka, J.; Pavluvčík, P.; Poláková, S.; Tkadlec, Emil

    2014-01-01

    Roč. 79, č. 3 (2014), s. 176-182 ISSN 1616-5047 Institutional support: RVO:68081766 Keywords : Carnivores * Farmland * Forest-edge utilization * Landscape characteristics * Local characteristics Subject RIV: EH - Ecology, Behaviour Impact factor: 1.478, year: 2014

  12. Handbook on advances in remote sensing and geographic information systems paradigms and applications in forest landscape modeling

    CERN Document Server

    Favorskaya, Margarita N

    2017-01-01

    This book presents the latest advances in remote-sensing and geographic information systems and applications. It is divided into four parts, focusing on Airborne Light Detection and Ranging (LiDAR) and Optical Measurements of Forests; Individual Tree Modelling; Landscape Scene Modelling; and Forest Eco-system Modelling. Given the scope of its coverage, the book offers a valuable resource for students, researchers, practitioners, and educators interested in remote sensing and geographic information systems and applications.

  13. Wildfire, Fuels Reduction, and Herpetofaunas across Diverse Landscape Mosaics in Northwestern Forests

    Science.gov (United States)

    Bury, R. Bruce

    2004-01-01

    The herpetofauna (amphibians and reptiles) of northwestern forests (U.S.A.) is diverse, and many species are locally abundant. Most forest amphibians west of the Cascade Mountain crest are associated with cool, cascading streams or coarse woody material on the forest floor, which are characteristics of mature forests. Extensive loss and fragmentation of habitat resulted from logging across approximately 50% of old-growth forests in northern California and approximately 80% of stands in Oregon and Washington. There is a complex landscape mosaic and overlap of northern and southern biotic elements in the Klamath-Siskiyou Region along the Oregon and California border, creating a biodiversity hotspot. The region experiences many low-severity fires annually, punctuated by periodic major fires, including the Biscuit fire, the largest in North America in 2002. In the fire's northern portion, severe fire occurred on >50% of stands of young, managed trees but on only about 25a??33% of old-growth stands. This suggests that the legacy of timber harvest may produce fire-prone stands. Calls for prescribed fire and thinning to reduce fuel loads will remove large amounts of coarse woody material from forests, which reduces cover for amphibians and alters nutrient inputs to streams. Our preliminary evidence suggests no negative effects of wildfire on terrestrial amphibians, but stream amphibians decrease following wildfire. Most reptiles are adapted to open terrain, so fire usually improves their habitat. Today, the challenge is to maintain biodiversity in western forests in the face of intense political pressures designed to 'prevent' catastrophic fires. We need a dedicated research effort to understanding how fire affects biota and to proactively investigate outcomes of fuel-reduction management on wildlife in western forests.

  14. Modeling the effects of harvest alternatives on mitigating oak decline in a Central Hardwood Forest landscape

    Science.gov (United States)

    Wen J. Wang; Hong S. He; Martin A. Spetich; Stephen R. Shifley; Frank R. III Thompson; Jacob S. Fraser

    2013-01-01

    Oak decline is a process induced by complex interactions of predisposing factors, inciting factors, and contributing factors operating at tree, stand, and landscape scales. It has greatly altered species composition and stand structure in affected areas. Thinning, clearcutting, and group selection are widely adopted harvest alternatives for reducing forest...

  15. Landscape-scale drivers of glacial ecosystem change in the montane forests of the eastern Andean flank, Ecuador

    NARCIS (Netherlands)

    Loughlin, N.J.D.; Gosling, W.D.; Coe, A.L.; Gulliver, P.; Mothes, P.; Montoya, E.

    2018-01-01

    Understanding the impact of landscape-scale disturbance events during the last glacial period is vital in accurately reconstructing the ecosystem dynamics of montane environments. Here, a sedimentary succession from the tropical montane cloud forest of the eastern Andean flank of Ecuador provides

  16. Forest landscape assessment: the effects of pre-experience education on public perception of scenic beauty

    Science.gov (United States)

    Chad D. Pierskalla; Kevin E. Saunders; David W. McGill; David A. Smaldone

    2008-01-01

    Aldo Leopold argued for a type of "ecological aesthetic," where perceptions of natural landscape beauty are tied to an understanding of the natural process of forests. The purpose of this study is to examine how education affects perceptions of scenic beauty. Thirty-two students were assigned to four groups, with each group participating in a different...

  17. Opposing resonses to ecological gradients structure amphibian and reptile communities across a temperate grassland-savanna-forest landscape

    Science.gov (United States)

    Grundel, Ralph; Beamer, David; Glowacki, Gary A.; Frohnapple, Krystal; Pavlovic, Noel B.

    2014-01-01

    Temperate savannas are threatened across the globe. If we prioritize savanna restoration, we should ask how savanna animal communities differ from communities in related open habitats and forests. We documented distribution of amphibian and reptile species across an open-savanna–forest gradient in the Midwest U.S. to determine how fire history and habitat structure affected herpetofaunal community composition. The transition from open habitats to forests was a transition from higher reptile abundance to higher amphibian abundance and the intermediate savanna landscape supported the most species overall. These differences warn against assuming that amphibian and reptile communities will have similar ecological responses to habitat structure. Richness and abundance also often responded in opposite directions to some habitat characteristics, such as cover of bare ground or litter. Herpetofaunal community species composition changed along a fire gradient from infrequent and recent fires to frequent but less recent fires. Nearby (200-m) wetland cover was relatively unimportant in predicting overall herpetofaunal community composition while fire history and fire-related canopy and ground cover were more important predictors of composition, diversity, and abundance. Increased developed cover was negatively related to richness and abundance. This indicates the importance of fire history and fire related landscape characteristics, and the negative effects of development, in shaping the upland herpetofaunal community along the native grassland–forest continuum.

  18. Stability, Bistability, and Critical Thresholds in Fire-prone Forested Landscapes: How Frequency and Intensity of Disturbance Interact and Influence Forest Cover

    Science.gov (United States)

    Miller, A. D.

    2015-12-01

    Many aspects of disturbance processes can have large impacts on the composition of plant communities, and associated changes in land cover type in turn have biogeochemical feedbacks to climate. In particular, changes to disturbance regimes can potentially change the number and stability of equilibrial states, and plant community states can differ dramatically in their carbon (C) dynamics, energy balance, and hydrology. Using the Klamath region of northern California as a model system, we present a theoretical analysis of how changes to climate and associated fire dynamics can disrupt high-carbon, long-lived conifer forests and replace them with shrub-chaparral communities that have much lower biomass and are more pyrogenic. Specifically, we develop a tractable model of plant community dynamics, structured by size class, life-history traits, lottery-type competition, and species-specific responses to disturbance. We assess the stability of different states in terms of disturbance frequency and intensity, and quantitatively partition long-term low-density population growth rates into mechanisms that influence critical transitions from stable to bistable behavior. Our findings show how different aspects of disturbance act and interact to control competitive outcomes and stable states, hence ecosystem-atmosphere C exchange. Forests tend to dominate in low frequency and intensity regimes, while shrubs dominate at high fire frequency and intensity. In other regimes, the system is bistable, and the fate of the system depends both on initial conditions and random chance. Importantly, the system can cross a critical threshold where hysteresis prevents easy return to the prior forested state. We conclude that changes in disturbance-recovery dynamics driven by projected climate change can shift this system away from forest dominated in the direction of shrub-dominated landscape. This will result in a large net C release from the landscape, and alter biophysical ecosystem

  19. Environmental research programme. Ecological research. Annual report 1995. Urban-industrial landscapes, forests, agricultural landscapes, river and lake landscapes, terrestrial ecosystem research, environmental pollution and health

    International Nuclear Information System (INIS)

    1996-01-01

    In promoting ecology research, the federal ministry of science and technology (BMBF) pursues the aim to enhance understanding of the natural resources indispensable to the life of man, animals and plant societies and their interrelations, and to point out existing scope for action to preserve or replenish them. Consequently, ecology research makes an essential contribution towards effective nature conservancy and environmental protection. The interactions between climate and ecosystems also form an important part of this. With regard to topical environmental issues concerning agricultural landscapes, rivers and lakes, forests and urban-industrial agglomerations, system interrelations in representative ecosystems are investigated. The results are to be embodied in directives for the protection or appropriate use of these ecosystems in order to contribute towards a sustainable development of these types of landscapes. The book also evaluates and assesses which types of nuisances, interventions and modes of use represent hazards for the respective systems. (orig./VHE) [de

  20. Jointly optimizing selection of fuel treatments and siting of forest biomass-based energy production facilities for landscape-scale fire hazard reduction.

    Science.gov (United States)

    Peter J. Daugherty; Jeremy S. Fried

    2007-01-01

    Landscape-scale fuel treatments for forest fire hazard reduction potentially produce large quantities of material suitable for biomass energy production. The analytic framework FIA BioSum addresses this situation by developing detailed data on forest conditions and production under alternative fuel treatment prescriptions, and computes haul costs to alternative sites...

  1. Thresholds of species loss in Amazonian deforestation frontier landscapes.

    Science.gov (United States)

    Ochoa-Quintero, Jose Manuel; Gardner, Toby A; Rosa, Isabel; Ferraz, Silvio Frosini de Barros; Sutherland, William J

    2015-04-01

    In the Brazilian Amazon, private land accounts for the majority of remaining native vegetation. Understanding how land-use change affects the composition and distribution of biodiversity in farmlands is critical for improving conservation strategies in the face of rapid agricultural expansion. Working across an area exceeding 3 million ha in the southwestern state of Rondônia, we assessed how the extent and configuration of remnant forest in replicate 10,000-ha landscapes has affected the occurrence of a suite of Amazonian mammals and birds. In each of 31 landscapes, we used field sampling and semistructured interviews with landowners to determine the presence of 28 large and medium sized mammals and birds, as well as a further 7 understory birds. We then combined results of field surveys and interviews with a probabilistic model of deforestation. We found strong evidence for a threshold response of sampled biodiversity to landscape level forest cover; landscapes with deforested landscapes many species are susceptible to extirpation following relatively small additional reductions in forest area. In the model of deforestation by 2030 the number of 10,000-ha landscapes under a conservative threshold of 43% forest cover almost doubled, such that only 22% of landscapes would likely to be able to sustain at least 75% of the 35 focal species we sampled. Brazilian law requires rural property owners in the Amazon to retain 80% forest cover, although this is rarely achieved. Prioritizing efforts to ensure that entire landscapes, rather than individual farms, retain at least 50% forest cover may help safeguard native biodiversity in private forest reserves in the Amazon. © 2015 Society for Conservation Biology.

  2. An application of remote sensing data in mapping landscape-level forest biomass for monitoring the effectiveness of forest policies in northeastern China.

    Science.gov (United States)

    Wang, Xinchuang; Shao, Guofan; Chen, Hua; Lewis, Bernard J; Qi, Guang; Yu, Dapao; Zhou, Li; Dai, Limin

    2013-09-01

    Monitoring the dynamics of forest biomass at various spatial scales is important for better understanding the terrestrial carbon cycle as well as improving the effectiveness of forest policies and forest management activities. In this article, field data and Landsat image data acquired in 1999 and 2007 were utilized to quantify spatiotemporal changes of forest biomass for Dongsheng Forestry Farm in Changbai Mountain region of northeastern China. We found that Landsat TM band 4 and Difference Vegetation Index with a 3 × 3 window size were the best predictors associated with forest biomass estimations in the study area. The inverse regression model with Landsat TM band 4 predictor was found to be the best model. The total forest biomass in the study area decreased slightly from 2.77 × 10(6) Mg in 1999 to 2.73 × 10(6) Mg in 2007, which agreed closely with field-based model estimates. The area of forested land increased from 17.9 × 10(3) ha in 1999 to 18.1 × 10(3) ha in 2007. The stabilization of forest biomass and the slight increase of forested land occurred in the period following implementations of national forest policies in China in 1999. The pattern of changes in both forest biomass and biomass density was altered due to different management regimes adopted in light of those policies. This study reveals the usefulness of the remote sensing-based approach for detecting and monitoring quantitative changes in forest biomass at a landscape scale.

  3. The effect of slight thinning of managed coniferous forest on landscape appreciation and psychological restoration

    Science.gov (United States)

    Takayama, Norimasa; Saito, Haruo; Fujiwara, Akio; Horiuchi, Masahiro

    2017-12-01

    We investigated the influence of slight thinning (percentage of woods: 16.6%, basal area: 9.3%) on landscape appreciation and the psychological restorative effect of an on-site setting by exposing respondents to an ordinarily managed coniferous woodland. The experiments were conducted in an experimental plot in the same coniferous woodland in May (unthinned) and October 2013 (thinned). The respondents were the same 15 individuals for both experiments. Respondents were individually exposed to the enclosed plot and the forest-view plot within the same tent for 15 min. In both sessions, respondents were required to answer three questionnaires measuring their mood (Profile of Mood States), emotion (Positive and Negative Affect Schedule), and feeling of restoration (Restorative Outcome Scale) to investigate the psychological restorative effect before and after the experiment. They completed two other questionnaires measuring appreciation for the environment (Semantic Differential) and the restorative properties of the environment (Perceived Restorativeness Scale) following the experiments. We first analyzed the difference in landscape appreciation between the unthinned and thinned conditions. We did not find any statistical difference in appreciation for the environment (Semantic Differential) or the restorative properties of the environment (Perceived Restorativeness Scale); rather, we found that weather conditions had a primary influence on landscape appreciation. With respect to the psychological restorative effect, a two-way repeated analysis of valiance (ANOVA) revealed significant main effects for a selection of indices, depending on the presence or absence of thinning. However, multiple comparison analyses revealed that these effects seemed to be due to the difference in the experimental experience rather than the presence or absence of thinning. In conclusion, the effect of the slight thinning of the managed coniferous forest was too weak to be reflected in the

  4. A comparison of accuracy and cost of LiDAR versus stand exam data for landscape management on the Malheur National Forest

    Science.gov (United States)

    Susan Hummel; A. T. Hudak; E. H. Uebler; M. J. Falkowski; K. A. Megown

    2011-01-01

    Foresters are increasingly interested in remote sensing data because they provide an overview of landscape conditions, which is impractical with field sample data alone. Light Detection and Ranging (LiDAR) provides exceptional spatial detail of forest structure, but difficulties in processing LiDAR data have limited their application beyond the research community....

  5. Opportunites for Integrated Landscape Planning – the Broker, the Arena, the Tool

    Directory of Open Access Journals (Sweden)

    Julia Carlsson

    2017-12-01

    Full Text Available As an integrated social and ecological system, the forest landscape includes multiple values. The need for a landscape pproach in land use planning is being increasingly advocated in research, policy and practice. This paper explores how institutional conditions in the forest policy and management sector can be developed to meet demands for a multifunctional landscape perspective. Departing from obstacles recognised in collaborative planning literature, we build an analytical framework which is operationalised in a Swedish context at municipal level. Our case illustrating this is Vilhelmina Model Forest, where actual barriers and opportunities for a multiple-value landscape approach are identified through 32 semi-structured interviews displaying stakeholders’ views on forest values,ownership rights and willingness to consider multiple values, forest policy and management premises, and collaboration. As an opportunity to overcome the barriers, we suggest and discuss three key components by which an integrated landscape planning approach could be realized in forest management planning: the need for a landscape coordinator (broker, the need for a collaborative forum (arena, and the development of the existing forest management plan into an advanced multifunctional landscape plan (tool.

  6. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing.

    Science.gov (United States)

    Hakkenberg, C R; Zhu, K; Peet, R K; Song, C

    2018-02-01

    The central role of floristic diversity in maintaining habitat integrity and ecosystem function has propelled efforts to map and monitor its distribution across forest landscapes. While biodiversity studies have traditionally relied largely on ground-based observations, the immensity of the task of generating accurate, repeatable, and spatially-continuous data on biodiversity patterns at large scales has stimulated the development of remote-sensing methods for scaling up from field plot measurements. One such approach is through integrated LiDAR and hyperspectral remote-sensing. However, despite their efficiencies in cost and effort, LiDAR-hyperspectral sensors are still highly constrained in structurally- and taxonomically-heterogeneous forests - especially when species' cover is smaller than the image resolution, intertwined with neighboring taxa, or otherwise obscured by overlapping canopy strata. In light of these challenges, this study goes beyond the remote characterization of upper canopy diversity to instead model total vascular plant species richness in a continuous-cover North Carolina Piedmont forest landscape. We focus on two related, but parallel, tasks. First, we demonstrate an application of predictive biodiversity mapping, using nonparametric models trained with spatially-nested field plots and aerial LiDAR-hyperspectral data, to predict spatially-explicit landscape patterns in floristic diversity across seven spatial scales between 0.01-900 m 2 . Second, we employ bivariate parametric models to test the significance of individual, remotely-sensed predictors of plant richness to determine how parameter estimates vary with scale. Cross-validated results indicate that predictive models were able to account for 15-70% of variance in plant richness, with LiDAR-derived estimates of topography and forest structural complexity, as well as spectral variance in hyperspectral imagery explaining the largest portion of variance in diversity levels. Importantly

  7. The impacts of climate change and disturbance on spatio-temporal trajectories of biodiversity in a temperate forest landscape.

    Science.gov (United States)

    Thom, Dominik; Rammer, Werner; Dirnböck, Thomas; Müller, Jörg; Kobler, Johannes; Katzensteiner, Klaus; Helm, Norbert; Seidl, Rupert

    2017-02-01

    1. The ongoing changes to climate challenge the conservation of forest biodiversity. Yet, in thermally limited systems, such as temperate forests, not all species groups might be affected negatively. Furthermore, simultaneous changes in the disturbance regime have the potential to mitigate climate-related impacts on forest species. Here, we (i) investigated the potential long-term effect of climate change on biodiversity in a mountain forest landscape, (ii) assessed the effects of different disturbance frequencies, severities and sizes and (iii) identified biodiversity hotspots at the landscape scale to facilitate conservation management. 2. We employed the model iLand to dynamically simulate the tree vegetation on 13 865 ha of the Kalkalpen National Park in Austria over 1000 years, and investigated 36 unique combinations of different disturbance and climate scenarios. We used simulated changes in tree cover and composition as well as projected temperature and precipitation to predict changes in the diversity of Araneae, Carabidae, ground vegetation, Hemiptera, Hymenoptera, Mollusca, saproxylic beetles, Symphyta and Syrphidae, using empirical response functions. 3. Our findings revealed widely varying responses of biodiversity indicators to climate change. Five indicators showed overall negative effects, with Carabidae, saproxylic beetles and tree species diversity projected to decrease by more than 33%. Six indicators responded positively to climate change, with Hymenoptera, Mollusca and Syrphidae diversity projected to increase more than twofold. 4. Disturbances were generally beneficial for the studied indicators of biodiversity. Our results indicated that increasing disturbance frequency and severity have a positive effect on biodiversity, while increasing disturbance size has a moderately negative effect. Spatial hotspots of biodiversity were currently found in low- to mid-elevation areas of the mountainous study landscape, but shifted to higher

  8. Landscape Risk Factors for Lyme Disease in the Eastern Broadleaf Forest Province of the Hudson River Valley and the Effect of Explanatory Data Classification Resolution

    Science.gov (United States)

    This study assessed how landcover classification affects associations between landscape characteristics and Lyme disease rate. Landscape variables were derived from the National Land Cover Database (NLCD), including native classes (e.g., deciduous forest, developed low intensity)...

  9. Succession of Ephemeral Secondary Forests and Their Limited Role for the Conservation of Floristic Diversity in a Human-Modified Tropical Landscape

    DEFF Research Database (Denmark)

    van Breugel, Michiel; Hall, Jefferson S.; Craven, Dylan

    2013-01-01

    of these secondary forests to conserve tree species diversity, we also evaluated the diversity of species that can persist as viable metapopulations in a dynamic patchwork of short-lived successional forests, using different assumptions about the average relative size at reproductive maturity. We found...... niche operate simultaneously and shape successional dynamics of the metacommunity of these early secondary forests. A high diversity of plant species across the metacommunity of early secondary forests shows a potential for restoration of diverse forests through natural succession, when trees....... This implies that ephemeral secondary forests have a limited role in the long-term conservation of tree species diversity in human-modified tropical landscapes....

  10. Drivers for plant species diversity in a characteristic tropical forest landscape in Bangladesh

    DEFF Research Database (Denmark)

    Steinbauer, Manuel; Uddin, Mohammad Bela; Jentsch, Anke

    2016-01-01

    species richness and community composition along a land use intensity gradient in a forest landscape including tea gardens, tree plantations and nature reserves (Satchari Reserved Forest) based on multivariate approaches and variation partitioning. We find richness as well composition of tree...... and understory species to directly relate to a disturbance gradient that reflects protection status and elevation. This is astonishing, as the range in elevation is with 70 m really small. Topography and protection remain significant drivers of biodiversity after correcting for human disturbances. While tree...... and non-tree species richness were positively correlated, they differ considerably in their relation to other environmental or disturbance variables as well as in the spatial richness pattern. The disturbance regime particularly structures tree species richness and composition in protected areas. We...

  11. Hydrologic landscape regionalisation using deductive classification and random forests.

    Directory of Open Access Journals (Sweden)

    Stuart C Brown

    Full Text Available Landscape classification and hydrological regionalisation studies are being increasingly used in ecohydrology to aid in the management and research of aquatic resources. We present a methodology for classifying hydrologic landscapes based on spatial environmental variables by employing non-parametric statistics and hybrid image classification. Our approach differed from previous classifications which have required the use of an a priori spatial unit (e.g. a catchment which necessarily results in the loss of variability that is known to exist within those units. The use of a simple statistical approach to identify an appropriate number of classes eliminated the need for large amounts of post-hoc testing with different number of groups, or the selection and justification of an arbitrary number. Using statistical clustering, we identified 23 distinct groups within our training dataset. The use of a hybrid classification employing random forests extended this statistical clustering to an area of approximately 228,000 km2 of south-eastern Australia without the need to rely on catchments, landscape units or stream sections. This extension resulted in a highly accurate regionalisation at both 30-m and 2.5-km resolution, and a less-accurate 10-km classification that would be more appropriate for use at a continental scale. A smaller case study, of an area covering 27,000 km2, demonstrated that the method preserved the intra- and inter-catchment variability that is known to exist in local hydrology, based on previous research. Preliminary analysis linking the regionalisation to streamflow indices is promising suggesting that the method could be used to predict streamflow behaviour in ungauged catchments. Our work therefore simplifies current classification frameworks that are becoming more popular in ecohydrology, while better retaining small-scale variability in hydrology, thus enabling future attempts to explain and visualise broad-scale hydrologic

  12. New Energy Landscapes of Pennsylvania: Forests to Farms to Fracking

    Science.gov (United States)

    Johnson, Deborah A.

    landscapes such as clear-cut forests, coal mining, and conventional drilling that linger in forests, in the minds of older residents, and photos of the past. Contest ensues between "green forces" and industry that utilize different tools for land use control. Differences surface between what the oil and gas industry knew before, and what it is learning in the early 21st century. The magnitude of shale gas technology includes larger and more sophisticated machinery, higher pressured fracking, increased material amounts, varied land use, and impact on public infrastructure. Cultural differences occur between Texan gas field workers and local Pennsylvanians generated by different physical geography, climate, and regulatory framework. Further findings demonstrate a wide gap in communication between those of differing ideologies. Some stakeholders show up in the matrix as "omitted" from decision-making including small businesses and conventional drillers, public health sector professionals, and water well drillers. Other findings show an unwillingness to share in the costs of energy development. Interviewees explain the costs that they endure as the country pursues energy security, while others outside of Pennsylvania take in only the benefits. Over time, society conforms as a new "normal" is formed. All of this takes place while the world is watching Pennsylvania evolve through the early stages and unknown outcomes of shale gas extraction.

  13. Using interviews and biological sign surveys to infer seasonal use of forested and agricultural portions of a human-dominated landscape by Asian elephants in Nepal

    Science.gov (United States)

    Lamichhane, Babu Ram; Subedi, Naresh; Pokheral, Chiranjibi Prasad; Dhakal, Maheshwar; Acharya, Krishna Prasad; Pradhan, Narendra Man Babu; Smith, James L. David; Malla, Sabita; Thakuri, Bishnu Singh; Yackulic, Charles B.

    2018-01-01

    Understanding how wide-ranging animals use landscapes in which human use is highly heterogeneous is important for determining patterns of human–wildlife conflict and designing mitigation strategies. Here, we show how biological sign surveys in forested components of a human-dominated landscape can be combined with human interviews in agricultural portions of a landscape to provide a full picture of seasonal use of different landscape components by wide-ranging animals and resulting human–wildlife conflict. We selected Asian elephants (Elephas maximus) in Nepal to illustrate this approach. Asian elephants are threatened throughout their geographic range, and there are large gaps in our understanding of their landscape-scale habitat use. We identified all potential elephant habitat in Nepal and divided the potential habitat into sampling units based on a 10 km by 10 km grid. Forested areas within grids were surveyed for signs of elephant use, and local villagers were interviewed regarding elephant use of agricultural areas and instances of conflict. Data were analyzed using single-season and multi-season (dynamic) occupancy models. A single-season occupancy model applied to data from 139 partially or wholly forested grid cells estimated that 0.57 of grid cells were used by elephants. Dynamic occupancy models fit to data from interviews across 158 grid cells estimated that monthly use of non-forested, human-dominated areas over the preceding year varied between 0.43 and 0.82 with a minimum in February and maximum in October. Seasonal patterns of crop raiding by elephants coincided with monthly elephant use of human-dominated areas, and serious instances of human–wildlife conflict were common. Efforts to mitigate human–elephant conflict in Nepal are likely to be most effective if they are concentrated during August through December when elephant use of human-dominated landscapes and human–elephant conflict are most common.

  14. 36 CFR 219.12 - Collaboration and cooperatively developed landscape goals.

    Science.gov (United States)

    2010-07-01

    ... cooperatively developed landscape goals. 219.12 Section 219.12 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PLANNING National Forest System Land and Resource Management Planning Collaborative Planning for Sustainability § 219.12 Collaboration and cooperatively developed landscape goals. (a...

  15. Persistence of long-distance, insect-mediated pollen movement for a tropical canopy tree species in remnant forest patches in an urban landscape.

    Science.gov (United States)

    Noreen, A M E; Niissalo, M A; Lum, S K Y; Webb, E L

    2016-12-01

    As deforestation and urbanization continue at rapid rates in tropical regions, urban forest patches are essential repositories of biodiversity. However, almost nothing is known about gene flow of forest-dependent tree species in urban landscapes. In this study, we investigated gene flow in the insect-pollinated, wind-dispersed tropical tree Koompassia malaccensis in and among three remnant forest patches in the urbanized landscape of Singapore. We genotyped the vast majority of adults (N=179) and a large number of recruits (N=2103) with 8 highly polymorphic microsatellite markers. Spatial genetic structure of the recruit and adult cohorts was significant, showing routine gene dispersal distances of ~100-400 m. Parentage analysis showed that 97% of recruits were within 100 m of their mother tree, and a high frequency of relatively short-distance pollen dispersal (median ~143-187 m). Despite routine seed and pollen dispersal distances of within a few hundred meters, interpatch gene flow occurred between all patches and was dominated by pollen movement: parentage analysis showed 76 pollen versus 2 seed interpatch dispersal events, and the seedling neighborhood model estimated ~1-6% seed immigration and ~21-46% pollen immigration rates, depending on patch. In addition, the smallest patch (containing five adult K. malaccensis trees) was entirely surrounded by >2.5 km of 'impervious' substrate, yet had the highest proportional pollen and seed immigration estimates of any patch. Hence, contrary to our hypothesis, insect-mediated gene flow persisted across an urban landscape, and several of our results also parallel key findings from insect-pollinated canopy trees sampled in mixed agricultural-forest landscapes.

  16. Mobbing call experiment suggests the enhancement of forest bird movement by tree cover in urban landscapes across seasons

    Directory of Open Access Journals (Sweden)

    Atsushi Shimazaki

    2017-06-01

    Full Text Available Local scale movement behavior is an important basis to predict large-scale bird movements in heterogeneous landscapes. Here we conducted playback experiments using mobbing calls to estimate the probability that forest birds would cross a 50-m urban area during three seasons (breeding, dispersal, and wintering seasons with varying amounts of tree cover, building area, and electric wire density. We examined the responses of four forest resident species: Marsh Tit (Poecile palustris, Varied Tit (Sittiparus varius, Japanese Tit (P. minor, and Eurasian Nuthatch (Sitta europaea in central Hokkaido, northern Japan. We carried out and analyzed 250 playback experiments that attracted 618 individuals. Our results showed that tree cover increased the crossing probability of three species other than Varied Tit. Building area and electric wire density had no detectable effect on crossing probability for four species. Seasonal difference in the crossing probability was found only for Varied Tit, and the probability was the highest in the breeding season. These results suggest that the positive effect of tree cover on the crossing probability would be consistent across seasons. We therefore conclude that planting trees would be an effective way to promote forest bird movement within an urban landscape.

  17. Determining the size of a complete disturbance landscape: multi-scale, continental analysis of forest change.

    Science.gov (United States)

    Buma, Brian; Costanza, Jennifer K; Riitters, Kurt

    2017-11-21

    The scale of investigation for disturbance-influenced processes plays a critical role in theoretical assumptions about stability, variance, and equilibrium, as well as conservation reserve and long-term monitoring program design. Critical consideration of scale is required for robust planning designs, especially when anticipating future disturbances whose exact locations are unknown. This research quantified disturbance proportion and pattern (as contagion) at multiple scales across North America. This pattern of scale-associated variability can guide selection of study and management extents, for example, to minimize variance (measured as standard deviation) between any landscapes within an ecoregion. We identified the proportion and pattern of forest disturbance (30 m grain size) across multiple landscape extents up to 180 km 2 . We explored the variance in proportion of disturbed area and the pattern of that disturbance between landscapes (within an ecoregion) as a function of the landscape extent. In many ecoregions, variance between landscapes within an ecoregion was minimal at broad landscape extents (low standard deviation). Gap-dominated regions showed the least variance, while fire-dominated showed the largest. Intensively managed ecoregions displayed unique patterns. A majority of the ecoregions showed low variance between landscapes at some scale, indicating an appropriate extent for incorporating natural regimes and unknown future disturbances was identified. The quantification of the scales of disturbance at the ecoregion level provides guidance for individuals interested in anticipating future disturbances which will occur in unknown spatial locations. Information on the extents required to incorporate disturbance patterns into planning is crucial for that process.

  18. Forest Islands and Castaway Communities: REDD+ and Forest Restoration in Prey Lang Forest

    Directory of Open Access Journals (Sweden)

    Courtney Work

    2017-02-01

    Full Text Available Climate Change policies are playing an ever-increasing role in global development strategies and their implementation gives rise to often-unforeseen social conflicts and environmental degradations. A landscape approach to analyzing forest-based Climate Change Mitigation policies (CCM and land grabs in the Prey Lang Forest landscape, Cambodia revealed two Korea-Cambodia partnership projects designed to increase forest cover that are juxtaposed in this paper. Case study data revealed a REDD+ project with little negative impact or social conflict in the project area and an Afforestation/Reforestation (A/R project that created both social and ecological conflicts. The study concludes that forest-based CCM policies can reduce conflict through efforts at minimal transformation of local livelihoods, maximal attention to the tenure rights, responsibilities, and authority of citizens, and by improving, not degrading, the project landscapes. The paper presents the circumstances under which these guidelines are sidestepped by the A/R project, and importantly reveals that dramatic forest and livelihood transformation had already affected the community and environment in the REDD+ project site. There are deep contradictions at the heart of climate change policies toward which attention must be given, lest we leave our future generations with nothing but forest islands and castaway communities.

  19. Rangelands management in Spanish Natura 2000 sites.

    Science.gov (United States)

    Hernando Gallego, A.; Tejera Gimeno, R.; Velázquez Saornil, J.; Núñez Martí, V.; Grande Vega, M.

    2009-04-01

    Spanish open oak woodlands have had multiple land uses such as firewood extraction and grazing through centuries. Consequently, 20% of the Spanish forest is coppice forest. This particular agrosilvopastoral system is well widespread in the southern and western part of the Iberian Peninsula. As a result of the implementation of Natura 2000 in Spain, many of these habitats have been included in this network listed as "Dehesas" with evergreen Quercus spp. (Sclerophyllous grazed forests -dehesas-). The main goal of Natura 2000 is assuring "favourable conservation status" of natural habitats and species within these areas (Habitats Directive 92/43/ECC). This is the case of the study area, "Dehesa Boyal" (Ávila), which management plan has been carried out in a public forest land. The current situation is a degraded coppice forest, Quercus pyrenaica and Q.ilex, with a shrub encroachment due to previous firewood extraction. Besides, problems such as soil compaction and lack of sexual have been observed presumably related with livestock (180 horses, 1100 goats, 900 sheeps and 190 cows distributed in different seasons). Livestock feed on the acorns and hedge young sprouts making them sprouting again. The shrub encroachment is far from "conservation status" required in Natura 2000. Furthermore, the livestock cannot be removed because it is an important part of this agrosilvopastoral system not only for the landscape but also for its economic importance to local owners. Management plans should consider all of these circumstances and propose an integrated approach. To achieve this goal, the area was accurately classified in age classes by "stands" (oak shrubland, low pole stages, coppice tall shrub and sapling) in each habitat, using Geographic Information Systems (G.I.S), remote sensing techniques and detailed field work. Then, the "conservation status" of each stand is classified in A (Favourable), B (Inconvenient) and C (Unfavourable conservation status) considering some

  20. Historic Landscape Survey, Maxwell AFB, Alabama

    Science.gov (United States)

    2013-08-01

    signifies Maxwell AFB’s historic landscapes. 2.1 The pre-military landscape Prehistory in the southeastern United States is generally designated as...the period of Native American occupation before Spanish explorers made contact in the fifteenth and sixteenth centuries. In Alabama, the prehistory ... prehistory or history is made clear.56 A historic property is determined to be either significant or not significant by applying standardized National

  1. Geospatial Assessment of Forest Fragmentation and its Implications for Ecological Processes in Tropical Forests

    Directory of Open Access Journals (Sweden)

    Adepoju Kayode Adewale

    2017-11-01

    Full Text Available The study assessed the patterns of spatio-temporal configuration imposed on a forest landscape in Southwestern Nigeria due to fragmentation for the period 1986 – 2010 in order to understand the relationship between landscape patterns and the ecological processes influencing the distribution of species in tropical forest environment. Time-series Landsat TM and ETM satellite images and forest inventory data were pre-processed and classified into four landuse/landcover categories using maximum likelihood classification algorithm. Fragstats software was used for the computation of seven landscape and six class level metrics to provide indicators of fragmentation and landscape connectivity from the classified images.

  2. Urban Forests

    Science.gov (United States)

    David Nowak

    2016-01-01

    Urban forests (and trees) constitute the second forest resource considered in this report. We specifically emphasize the fact that agricultural and urban forests exist on a continuum defined by their relationship (and interrelationship) with a given landscape. These two forest types generally serve different purposes, however. Whereas agricultural forests are...

  3. Landscape development, forest fires, and wilderness management.

    Science.gov (United States)

    Wright, H E

    1974-11-08

    Both the landforms and the vegetation of the earth develop to states that are maintained in dynamic equilibrium. Short-term equilibrium of a hillslope or river valley results from intersection between erosional and depositional tendencies, controlled by gravitational force and the efficiency of the transporting medium. Long-term equilibrium of major landforms depends on crustal uplift and the resistance of the rock to weathering. In most parts of the world landscape evolves toward a peneplain, but the reduction rate approaches zero as the cycle progresses, and the counteracting force of crustal uplift intercedes before the end form is reached. Davis described this theoretical model in elegant terms. Leopold and Hack have provided a new and quantitative understanding of short-range geomorphic interactions that tend to discredit the Davisian model in the eyes of many. However, the substitute models of quasi-equilibrium or dynamic equilibrium merely describe short-range situations in which this or that Davisian stage is maintained despite uplift or downwasting. Given crustal stability and an unchanging climate, landforms would presumably still evolve through Davisian stages. However, the Davis model cannot be tested, for despite tremendous inventions in geochronology and impressive advances in stratigraphic knowledge, we cannot yet establish the rates or even the fact of crustal uplift in most areas. We are left with an unresolvable problem, for the sedimentary records of erosional history are largely inaccessible, undatable, and indecipherable, at least in the detail necessary to describe long-term evolution of the landscape. We know more about the evolution and maintenance of vegetation assemblages than about landform evolution, for even long-term vegetation sequences are within the scope of radiocarbon dating, and the biostratigraphic record is detailed. Even here, however, distinctions between short-term and long-term situations must be made, so that Clements

  4. Landscape fuel reduction, forest fire, and biophysical linkages to local habitat use and local persistence of fishers (Pekania pennanti) in Sierra Nevada mixed-conifer forests

    Science.gov (United States)

    R.A. Sweitzer; B.J. Furnas; R.H. Barrett; Kathryn Purcell; Craig Thompson

    2016-01-01

    Fire suppression and logging have contributed to major changes in California’s Sierra Nevada forests. Strategically placed landscape treatments (SPLATS) are being used to reduce density of trees, shrubs, and surface fuels to limit wildfire intensity and spread, but may negatively impact fishers (Pekania pennanti). We used camera traps to survey for...

  5. Methods for integrated modeling of landscape change: Interior Northwest Landscape Analysis System.

    Science.gov (United States)

    Jane L. Hayes; Alan. A. Ager; R. James Barbour

    2004-01-01

    The Interior Northwest Landscape Analysis System (INLAS) links a number of resource, disturbance, and landscape simulations models to examine the interactions of vegetative succession, management, and disturbance with policy goals. The effects of natural disturbance like wildfire, herbivory, forest insects and diseases, as well as specific management actions are...

  6. Projecting biodiversity and wood production in future forest landscapes: 15 key modeling considerations.

    Science.gov (United States)

    Felton, Adam; Ranius, Thomas; Roberge, Jean-Michel; Öhman, Karin; Lämås, Tomas; Hynynen, Jari; Juutinen, Artti; Mönkkönen, Mikko; Nilsson, Urban; Lundmark, Tomas; Nordin, Annika

    2017-07-15

    A variety of modeling approaches can be used to project the future development of forest systems, and help to assess the implications of different management alternatives for biodiversity and ecosystem services. This diversity of approaches does however present both an opportunity and an obstacle for those trying to decide which modeling technique to apply, and interpreting the management implications of model output. Furthermore, the breadth of issues relevant to addressing key questions related to forest ecology, conservation biology, silviculture, economics, requires insights stemming from a number of distinct scientific disciplines. As forest planners, conservation ecologists, ecological economists and silviculturalists, experienced with modeling trade-offs and synergies between biodiversity and wood biomass production, we identified fifteen key considerations relevant to assessing the pros and cons of alternative modeling approaches. Specifically we identified key considerations linked to study question formulation, modeling forest dynamics, forest processes, study landscapes, spatial and temporal aspects, and the key response metrics - biodiversity and wood biomass production, as well as dealing with trade-offs and uncertainties. We also provide illustrative examples from the modeling literature stemming from the key considerations assessed. We use our findings to reiterate the need for explicitly addressing and conveying the limitations and uncertainties of any modeling approach taken, and the need for interdisciplinary research efforts when addressing the conservation of biodiversity and sustainable use of environmental resources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Landscape characterization and biodiversity research

    Energy Technology Data Exchange (ETDEWEB)

    Dale, V.H. [Oak Ridge National Lab., TN (United States); Offerman, H. [Univ. of Maryland, College Park, MD (United States). Geography Dept.; Frohn, R. [Univ. of California, Santa Barbara, CA (United States); Gardner, R.H. [Appalachian Environmental Lab., Frostburg, MD (United States)

    1995-03-01

    Rapid deforestation often produces landscape-level changes in forest characteristics and structure, including area, distribution, and forest habitat types. Changes in landscape pattern through fragmentation or aggregation of natural habitats can alter patterns of abundance for single species and entire communities. Examples of single-species effects include increased predation along the forest edge, the decline in the number of species with poor dispersal mechanisms, and the spread of exotic species that have deleterious effects (e.g., gypsy moth). A decrease in the size and number of natural habitat patches increases the probability of local extirpation and loss of diversity of native species, whereas a decline in connectivity between habitat patches can negatively affect species persistence. Thus, there is empirical justification for managing entire landscapes, not just individual habitat types, in order to insure that native plant and animal diversity is maintained. A landscape is defined as an area composed of a mosaic of interacting ecosystems, or patches, with the heterogeneity among the patches significantly affecting biotic and abiotic processes in the landscape. Patches comprising a landscape are usually composed of discrete areas of relatively homogeneous environmental conditions and must be defined in terms of the organisms of interest. A large body of theoretical work in landscape ecology has provided a wealth of methods for quantifying spatial characteristics of landscapes. Recent advances in remote sensing and geographic information systems allow these methods to be applied over large areas. The objectives of this paper are to present a brief overview of common measures of landscape characteristics, to explore the new technology available for their calculation, to provide examples of their application, and to call attention to the need for collection of spatially-explicit field data.

  8. Discourses across Scales on Forest Landscape Restoration

    Directory of Open Access Journals (Sweden)

    Sabine Reinecke

    2018-02-01

    Full Text Available Forest Landscape Restoration (FLR has recently received broad political support, e.g., under the Bonn Challenge. However, although the concept promises quadruple wins for humans, biodiversity as well as climate change mitigation and adaptation, it remains heavily underutilized in practice. Drawing on a social constructivist reading and a survey in different developing and developed countries, we elaborate on varying existing narratives about FLR at global and country level. Overall, we find that FLR understandings in different countries strongly resonate with the globally pursued idea of enhancing ecological and human well-being. In more detail, however, rural development and climate mitigation oriented motives are prioritized over aspects of species conservation or adaptation. Globally, strong emphasis is placed on collaborative processes empowering local actors. At country level, by contrast, these ideas regarding greater local authority are complemented with a techno-managerial notion of government control. Considering the potential power struggles that could be evoked from such dialectic expectations, we see it as a primary responsibility for global FLR processes to fully embrace the political dimension of FLR and to support conflict resolution and adaptive learning processes.

  9. Resilient landscapes in Mediterranean urban areas: Understanding factors influencing forest trends.

    Science.gov (United States)

    Tomao, Antonio; Quatrini, Valerio; Corona, Piermaria; Ferrara, Agostino; Lafortezza, Raffaele; Salvati, Luca

    2017-07-01

    Urban and peri-urban forests are recognized as basic elements for Nature-Based Solutions (NBS), as they preserve and may increase environmental quality in urbanized contexts. For this reason, the amount of forest land per inhabitant is a pivotal efficiency indicator to be considered in the sustainable governance, land management, planning and design of metropolitan areas. The present study illustrates a multivariate analysis of per-capita forest area (PFA) in mainland Attica, the urban region surrounding Athens, Greece. Attica is considered a typical case of Mediterranean urbanization where planning has not regulated urban expansion and successive waves of spontaneous growth have occurred over time. In such a context, an analysis of factors that can affect landscape changes in terms of PFA may inform effective strategies for the sustainable management of socio-ecological local systems in light of the NBS perspective. A total of 26 indicators were collected per decade at the municipal scale in the study area with the aim to identify the factors most closely associated to the amount of PFA. Indicators of urban morphology and functions have been considered together with environmental and topographical variables. In Attica, PFA showed a progressive decrease between 1960 and 2010. In particular, PFA progressively declined (1980, 1990) along fringe areas surrounding Athens and in peri-urban districts experiencing dispersed expansion of residential settlements. Distance from core cities and from the seacoast, typical urban functions (e.g., multiple use of buildings and per capita built-up area) and percentage of agricultural land-use in each municipality are the variables most associated with high PFA. In recent years, some municipalities have shown an expansion of forest cover, mainly due to land abandonment and forest recolonization. Findings from this case study have allowed us to identify priorities for NBS at metropolitan level aimed at promoting more sustainable

  10. Radioactive caesium in Boreal forest landscapes - Dynamics and transport in food webs. Summary of research 1986-1996

    International Nuclear Information System (INIS)

    Bergman, R.; Nylen, T.; Palo, T.

    1998-12-01

    The need for - but also the paucity of - radioecological knowledge concerning the boreal forest became particularly apparent after the nuclear power plant accident in Chernobyl in April 1986. As a consequence several new projects were initiated in the Nordic countries with particular focus on the behaviour of radioactive caesium in terrestrial and aquatic systems characteristic for the Fenno-Scandinavian landscapes. Among these new projects a multi-disciplinary co-operation in Umeaa between scientists at the Swedish University of Agricultural Sciences, and the Defence Research Establishment emerged. Initially this joint work focused mainly on descriptions of the dynamic changes of the content of radioactive caesium in soil-plant and animal communities in the county of Vaesterbotten. Most of the studies have been performed at the Vindeln experimental forest, 60 km NW of Umeaa. Plants of key interest were: bilberry (Vaccinium myrtillus), birch (Betula spp.), and pine (Pinus sylvestris), and among the animals: the moose (Alces alces) and a small rodent, the forest vole (Clethrionomus glareolus). Gradually over the past ten years the research has entered the stage where the specific causes of the caesium behaviour have been addressed - partly by the help of models developed for simulating forest ecosystems, partly by complementary field experiments. This paper reviews our main findings on this theme concerning the behaviour of radioactive caesium in boreal landscapes and significant pathways to man, as has become apparent from the radioecological co-operation dating from about ten years back. A list of the publications arising from these studies since 1986 is also presented in this report

  11. Radioactive caesium in Boreal forest landscapes - Dynamics and transport in food webs. Summary of research 1986-1996

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, R.; Nylen, T.; Palo, T

    1998-12-01

    The need for - but also the paucity of - radioecological knowledge concerning the boreal forest became particularly apparent after the nuclear power plant accident in Chernobyl in April 1986. As a consequence several new projects were initiated in the Nordic countries with particular focus on the behaviour of radioactivecaesium in terrestrial and aquatic systems characteristic for the Fenno-Scandinavian landscapes. Among these new projects a multi-disciplinary co-operation in Umeaa between scientists at the Swedish University of Agricultural Sciences, and the Defence Research Establishment emerged. Initially this joint work focused mainly on descriptions of the dynamic changes of the content of radioactive caesium in soil-plant and animal communities in the county of Vaesterbotten. Most of the studies have been performed at the Vindeln experimental forest, 60 km NW of Umeaa. Plants of key interest were: bilberry (Vaccinium myrtillus), birch (Betula spp.), and pine (Pinus sylvestris), and among the animals: the moose (Alces alces) and a small rodent, the forest vole (Clethrionomus glareolus). Gradually over the past ten years the research has entered the stage where the specific causes of the caesium behaviour have been addressed - partly by the help of models developed for simulating forest ecosystems, partly by complementary field experiments. This paper reviews our main findings on this theme concerning the behaviour of radioactive caesium in boreal landscapes and significant pathways to man, as has become apparent from the radioecological co-operation dating from about ten years back. A list of the publications arising from these studies since 1986 is also presented in this report.

  12. Modeling plant composition as community continua in a forest landscape with LiDAR and hyperspectral remote sensing.

    Science.gov (United States)

    Hakkenberg, C R; Peet, R K; Urban, D L; Song, C

    2018-01-01

    In light of the need to operationalize the mapping of forest composition at landscape scales, this study uses multi-scale nested vegetation sampling in conjunction with LiDAR-hyperspectral remotely sensed data from the G-LiHT airborne sensor to map vascular plant compositional turnover in a compositionally and structurally complex North Carolina Piedmont forest. Reflecting a shift in emphasis from remotely sensing individual crowns to detecting aggregate optical-structural properties of forest stands, predictive maps reflect the composition of entire vascular plant communities, inclusive of those species smaller than the resolution of the remotely sensed imagery, intertwined with proximate taxa, or otherwise obscured from optical sensors by dense upper canopies. Stand-scale vascular plant composition is modeled as community continua: where discrete community-unit classes at different compositional resolutions provide interpretable context for continuous gradient maps that depict n-dimensional compositional complexity as a single, consistent RGB color combination. In total, derived remotely sensed predictors explain 71%, 54%, and 48% of the variation in the first three components of vascular plant composition, respectively. Among all remotely sensed environmental gradients, topography derived from LiDAR ground returns, forest structure estimated from LiDAR all returns, and morphological-biochemical traits determined from hyperspectral imagery each significantly correspond to the three primary axes of floristic composition in the study site. Results confirm the complementarity of LiDAR and hyperspectral sensors for modeling the environmental gradients constraining landscape turnover in vascular plant composition and hold promise for predictive mapping applications spanning local land management to global ecosystem modeling. © 2017 by the Ecological Society of America.

  13. Patterns and predictors of β-diversity in the fragmented Brazilian Atlantic forest: a multiscale analysis of forest specialist and generalist birds.

    Science.gov (United States)

    Morante-Filho, José Carlos; Arroyo-Rodríguez, Víctor; Faria, Deborah

    2016-01-01

    Biodiversity maintenance in human-altered landscapes (HALs) depends on the species turnover among localities, but the patterns and determinants of β-diversity in HALs are poorly known. In fact, declines, increases and neutral shifts in β-diversity have all been documented, depending on the landscape, ecological group and spatial scale of analysis. We shed some light on this controversy by assessing the patterns and predictors of bird β-diversity across multiple spatial scales considering forest specialist and habitat generalist bird assemblages. We surveyed birds from 144 point counts in 36 different forest sites across two landscapes with different amount of forest cover in the Brazilian Atlantic forest. We analysed β-diversity among points, among sites and between landscapes with multiplicative diversity partitioning of Hill numbers. We tested whether β-diversity among points was related to within-site variations in vegetation structure, and whether β-diversity among sites was related to site location and/or to differences among sites in vegetation structure and landscape composition (i.e. per cent forest and pasture cover surrounding each site). β-diversity between landscapes was lower than among sites and among points in both bird assemblages. In forest specialist birds, the landscape with less forest cover showed the highest β-diversity among sites (bird differentiation among sites), but generalist birds showed the opposite pattern. At the local scale, however, the less forested landscape showed the lowest β-diversity among points (bird homogenization within sites), independently of the bird assemblage. β-diversity among points was weakly related to vegetation structure, but higher β-diversity values were recorded among sites that were more isolated from each other, and among sites with higher differences in landscape composition, particularly in the less forested landscape. Our findings indicate that patterns of bird β-diversity vary across scales

  14. Mammal indicator species for protected areas and managed forests in a landscape conservation area in northern India

    Science.gov (United States)

    Pradeep K. Mathur; Harish Kumar; John F. Lehmkuhl; Anshuman Tripathi; Vishwas B. Sawarkar; Rupak. De

    2010-01-01

    There is a realization that managed forests and other natural areas in the landscape matrix can and must make significant contributions to biodiversity conservation. Often, however, there are no consistent baseline vegetation or wildlife data for assessing the status of biodiversity elements across protected and managed areas for conservation planning, nor is there a...

  15. Agro-forest landscape and the 'fringe' city: a multivariate assessment of land-use changes in a sprawling region and implications for planning.

    Science.gov (United States)

    Salvati, Luca

    2014-08-15

    The present study evaluates the impact of urban expansion on landscape transformations in Rome's metropolitan area (1500 km(2)) during the last sixty years. Landscape composition, structure and dynamics were assessed for 1949 and 2008 by analyzing the distribution of 26 metrics for nine land-use classes. Changes in landscape structure are analysed by way of a multivariate statistical approach providing a summary measure of rapidity-to-change for each metric and class. Land fragmentation increased during the study period due to urban expansion. Poorly protected or medium-low value added classes (vineyards, arable land, olive groves and pastures) experienced fragmentation processes compared with protected or high-value added classes (e.g. forests, olive groves) showing larger 'core' areas and lower fragmentation. The relationship observed between class area and mean patch size indicates increased fragmentation for all uses of land (both expanding and declining) except for urban areas and forests. Reducing the impact of urban expansion for specific land-use classes is an effective planning strategy to contrast the simplification of Mediterranean landscape in peri-urban areas. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Domestic dogs in a fragmented landscape in the Brazilian Atlantic Forest: abundance, habitat use and caring by owners

    Directory of Open Access Journals (Sweden)

    PC. Torres

    Full Text Available This study aimed at estimating the population size and attitudes of residents towards caring for domestic dogs, through questionnaire surveys, as well as the frequency of these animals in different habitats (anthropic and forest patch, using scent stations. The study was conducted in a severely fragmented area of the Brazilian Atlantic Forest. A large number of unrestricted dogs was recorded, averaging 6.2 ind/km². These dogs have owners and are regularly fed. Dog records decreased from the anthropogenic matrix to the forest patch edge, which suggests that dogs act as an edge effect on forest patches. Encounters between domestic dog and wild animals can still be frequent in severely fragmented landscapes, mainly at the forest edges. However the fact that most dogs have an owner and are more frequent in the anthropic habitat suggests that their putative effects are less severe than expected for a carnivore of such abundance, but the reinforcement of responsible ownership is needed to further ameliorate such effects.

  17. Spatial and temporal dimensions of landscape fragmentation across the Brazilian Amazon.

    Science.gov (United States)

    Rosa, Isabel M D; Gabriel, Cristina; Carreiras, Joāo M B

    2017-01-01

    The Brazilian Amazon in the past decades has been suffering severe landscape alteration, mainly due to anthropogenic activities, such as road building and land clearing for agriculture. Using a high-resolution time series of land cover maps (classified as mature forest, non-forest, secondary forest) spanning from 1984 through 2011, and four uncorrelated fragmentation metrics (edge density, clumpiness index, area-weighted mean patch size and shape index), we examined the temporal and spatial dynamics of forest fragmentation in three study areas across the Brazilian Amazon (Manaus, Santarém and Machadinho d'Oeste), inside and outside conservation units. Moreover, we compared the impacts on the landscape of: (1) different land uses (e.g. cattle ranching, crop production), (2) occupation processes (spontaneous vs. planned settlements) and (3) implementation of conservation units. By 2010/2011, municipalities located along the Arc of Deforestation had more than 55% of the remaining mature forest strictly confined to conservation units. Further, the planned settlement showed a higher rate of forest loss, a more persistent increase in deforested areas and a higher relative incidence of deforestation inside conservation units. Distinct agricultural activities did not lead to significantly different landscape structures; the accessibility of the municipality showed greater influence in the degree of degradation of the landscapes. Even with a high proportion of the landscapes covered by conservation units, which showed a strong inhibitory effect on forest fragmentation, we show that dynamic agriculturally driven economic activities, in municipalities with extensive road development, led to more regularly shaped, heavily fragmented landscapes, with higher densities of forest edge.

  18. Characterizing forest carbon stocks at tropical biome and landscape level in Mount Apo National Park, Philippines

    Science.gov (United States)

    Rubas, L. C.

    2012-12-01

    Forest resources sequester and store carbon, and serve as a natural brake on climate change. In the tropics, the largest source of greenhouse emission is from deforestation and forest degradation (Gibbs et al 2007). This paper attempts to compile sixty (60) existing studies on using remote sensing to measure key environmental forest indicators at two levels of scales: biome and landscape level. At the tropical forest biome level, there is not as much remote sensing studies that have been done as compared to other forest biomes. Also, existing studies on tropical Asia is still sparse compared to other tropical regions in Latin America and Africa. Biomass map is also produced for the tropical biome using keyhole macro language (KML) which is projected on Google Earth. The compiled studies showed there are four indicators being measured using remote sensors in tropical forest. These are biomass, landcover classification, deforestation and cloud cover. The landscape level will focus on Mount Apo National Park in the Philippines which is encompassing a total area of 54,974.87 hectares. It is one of the ten priority sites targeted in the World Bank-assisted Biodiversity Conservation Program. This park serves as the major watershed for the three provinces with 19 major rivers emanating from the montane formations. Only a small fraction of the natural forest that once covered the country remains. In spite of different policies that aim to reduce logging recent commercial deforestation, illegal logging and agricultural expansion pose an important threat to the remaining forest areas. In some locations in the country, these hotspots of deforestation overlap with the protected areas (Verburg et al 2006). The study site was clipped using ArcGIS from the forest biomass carbon density map produced by Gibbs and Brown (2007). Characterization on this national park using vegetation density, elevation, slope, land cover and precipitation will be conducted to determine factors that

  19. Developing strategies to initialize landscape-scale vegetation maps from FIA data to enhance resolution of individual species-size cohort representation in the landscape disturbance model SIMPPLLE

    Science.gov (United States)

    Jacob John Muller

    2014-01-01

    The ability of forest resource managers to understand and anticipate landscape-scale change in composition and structure relies upon an adequate characterization of the current forest composition and structure of various patches (or stands), along with the capacity of forest landscape models (FLMs) to predict patterns of growth, succession, and disturbance at multiple...

  20. Restoration of mangrove forest landscape in Babulu Laut village, sub district of Babulu, Penajam Paser Utara district

    Science.gov (United States)

    Febrina, W. K.; Marjenah; Sumaryono

    2018-04-01

    The reforestation activities of mangrove forest carried out in various regions have not been well known as the success and influence of landscape in rehabilitation area. Utilization of existing land along the coastal Babulu Laut Village has reduced the area of mangrove forest from day to day. Due to the use of land by the community without considering the conservation aspect causes the loss of mangrove forest. This study aims to determine the final condition of the success rate of forest and land rehabilitation, land cover and the benefits of mangrove forest restoration for the surrounding people. The research method used is the preparation and orientation of research location, data input, codefication, data processing, the field verification and analysis of data. The results of the execution of the inventory mangrove in 22 research location in the Babulu Laut Village, Babulu Subdistrict, Penajam Paser Utara District of 125 ha of plant a whole is kind of Rhizophora sp, where the intensity of sampling 2% with the growing plants of 65.92 %or 2,175 stem/ha then success rate of Mangrove Forest Rehabilitation at Babulu Laut Village Babulu Subdistrict is medium level (55-75%).

  1. Application of analytic hierarchy process in landscape management: Case study area Košutnjak park-forest

    Directory of Open Access Journals (Sweden)

    Lakićević Milena

    2011-01-01

    Full Text Available Proper management is one of key elements of the natural landscape protection strategy. Park-forests with protected and conserved natural elements represent attractive eco-tourism urban zones. Košutnjak is the most visited park-forest in Serbian capitol Belgrade, unfortunately with increasing number of degraded and devastated areas as a consequence of negative human impacts in the past. In order to conserve natural values in this popular forested city area, and to improve its tourism potential, we found that in achieving that goal, it is meaningful to asses possible management practices and identify the most desired one by applying the analytic hierarchy process (AHP, scientifically sound multi-criteria decision making tool. Based on the obtained results, a recommended strategy is to renovate natural vegetation and to promote recreational and tourism offer in Košutnjak with respect of the sustainability principle.

  2. Composition and Structure of Forest Fire Refugia: What Are the Ecosystem Legacies across Burned Landscapes?

    Directory of Open Access Journals (Sweden)

    Garrett W. Meigs

    2018-05-01

    Full Text Available Locations within forest fires that remain unburned or burn at low severity—known as fire refugia—are important components of contemporary burn mosaics, but their composition and structure at regional scales are poorly understood. Focusing on recent, large wildfires across the US Pacific Northwest (Oregon and Washington, our research objectives are to (1 classify fire refugia and burn severity based on relativized spectral change in Landsat time series; (2 quantify the pre-fire composition and structure of mapped fire refugia; (3 in forested areas, assess the relative abundance of fire refugia and other burn severity classes across forest composition and structure types. We analyzed a random sample of 99 recent fires in forest-dominated landscapes from 2004 to 2015 that collectively encompassed 612,629 ha. Across the region, fire refugia extent was substantial but variable from year to year, with an annual mean of 38% of fire extent and range of 15–60%. Overall, 85% of total fire extent was forested, with the other 15% being non-forest. In comparison, 31% of fire refugia extent was non-forest prior to the most recent fire, highlighting that mapped refugia do not necessarily contain tree-based ecosystem legacies. The most prevalent non-forest cover types in refugia were vegetated: shrub (40%, herbaceous (33%, and crops (18%. In forested areas, the relative abundance of fire refugia varied widely among pre-fire forest types (20–70% and structural conditions (23–55%. Consistent with fire regime theory, fire refugia and high burn severity areas were inversely proportional. Our findings underscore that researchers, managers, and other stakeholders should interpret burn severity maps through the lens of pre-fire land cover, especially given the increasing importance of fire and fire refugia under global change.

  3. Long-term forest-savannah dynamics in the Bolivian Amazon: implications for conservation.

    Science.gov (United States)

    Mayle, Francis E; Langstroth, Robert P; Fisher, Rosie A; Meir, Patrick

    2007-02-28

    The aim of this paper is to evaluate the respective roles of past changes in climate, geomorphology and human activities in shaping the present-day forest-savannah mosaic of the Bolivian Amazon, and consider how this palaeoecological perspective may help inform conservation strategies for the future. To this end, we review a suite of palaeoecological and archaeological data from two distinct forest-savannah environments in lowland Bolivia: Noel Kempff Mercado National Park (NKMNP) on the Precambrian Shield and the 'Llanos de Moxos' in the Beni basin. We show that they contain markedly contrasting legacies of past climatic, geomorphic and anthropogenic influences between the last glacial period and the Spanish Conquest. In NKMNP, increasing precipitation caused evergreen rainforest expansion, at the expense of semi-deciduous dry forest and savannahs, over the last three millennia. In contrast, pre-Hispanic indigenous cultures were instrumental in facilitating recent forest expansion in the Llanos de Moxos by building a vast network of earthworks. Insights from Mid-Holocene palaeodata, together with ecological observations and modelling studies, suggest that there will be progressive replacement of rainforest by dry forest and savannah in NKMNP over the twenty-first century in response to the increased drought predicted by general circulation models. Protection of the latitudinal landscape corridors may be needed to facilitate these future species reassortments. However, devising appropriate conservation strategies for the Llanos de Moxos will be more difficult due to its complex legacy of Palaeo-Indian impact. Without fully understanding the degree to which its current biota has been influenced by past native cultures, the type and intensity of human land use appropriate for this landscape in the future will be difficult to ascertain.

  4. Impacts of Landscape Context on Patterns of Wind Downfall Damage in a Fragmented Amazonian Landscape

    Science.gov (United States)

    Schwartz, N.; Uriarte, M.; DeFries, R. S.; Gutierrez-Velez, V. H.; Fernandes, K.; Pinedo-Vasquez, M.

    2015-12-01

    Wind is a major disturbance in the Amazon and has both short-term impacts and lasting legacies in tropical forests. Observed patterns of damage across landscapes result from differences in wind exposure and stand characteristics, such as tree stature, species traits, successional age, and fragmentation. Wind disturbance has important consequences for biomass dynamics in Amazonian forests, and understanding the spatial distribution and size of impacts is necessary to quantify the effects on carbon dynamics. In November 2013, a mesoscale convective system was observed over the study area in Ucayali, Peru, a highly human modified and fragmented forest landscape. We mapped downfall damage associated with the storm in order to ask: how does the severity of damage vary within forest patches, and across forest patches of different sizes and successional ages? We applied spectral mixture analysis to Landsat images from 2013 and 2014 to calculate the change in non-photosynthetic vegetation fraction after the storm, and combined it with C-band SAR data from the Sentinel-1 satellite to predict downfall damage measured in 30 field plots using random forest regression. We then applied this model to map damage in forests across the study area. Using a land cover classification developed in a previous study, we mapped secondary and mature forest, and compared the severity of damage in the two. We found that damage was on average higher in secondary forests, but patterns varied spatially. This study demonstrates the utility of using multiple sources of satellite data for mapping wind disturbance, and adds to our understanding of the sources of variation in wind-related damage. Ultimately, an improved ability to map wind impacts and a better understanding of their spatial patterns can contribute to better quantification of carbon dynamics in Amazonian landscapes.

  5. Quantifying resilience of multiple ecosystem services and biodiversity in a temperate forest landscape.

    Science.gov (United States)

    Cantarello, Elena; Newton, Adrian C; Martin, Philip A; Evans, Paul M; Gosal, Arjan; Lucash, Melissa S

    2017-11-01

    Resilience is increasingly being considered as a new paradigm of forest management among scientists, practitioners, and policymakers. However, metrics of resilience to environmental change are lacking. Faced with novel disturbances, forests may be able to sustain existing ecosystem services and biodiversity by exhibiting resilience, or alternatively these attributes may undergo either a linear or nonlinear decline. Here we provide a novel quantitative approach for assessing forest resilience that focuses on three components of resilience, namely resistance, recovery, and net change, using a spatially explicit model of forest dynamics. Under the pulse set scenarios, we explored the resilience of nine ecosystem services and four biodiversity measures following a one-off disturbance applied to an increasing percentage of forest area. Under the pulse + press set scenarios, the six disturbance intensities explored during the pulse set were followed by a continuous disturbance. We detected thresholds in net change under pulse + press scenarios for the majority of the ecosystem services and biodiversity measures, which started to decline sharply when disturbance affected >40% of the landscape. Thresholds in net change were not observed under the pulse scenarios, with the exception of timber volume and ground flora species richness. Thresholds were most pronounced for aboveground biomass, timber volume with respect to the ecosystem services, and ectomycorrhizal fungi and ground flora species richness with respect to the biodiversity measures. Synthesis and applications . The approach presented here illustrates how the multidimensionality of stability research in ecology can be addressed and how forest resilience can be estimated in practice. Managers should adopt specific management actions to support each of the three components of resilience separately, as these may respond differently to disturbance. In addition, management interventions aiming to deliver resilience

  6. Multiple successional pathways in human-modified tropical landscapes

    NARCIS (Netherlands)

    Arroyo-Rodríguez, Víctor; Melo, Felipe P.L.; Martínez-Ramos, Miguel; Bongers, Frans; Chazdon, Robin L.; Meave, Jorge A.; Norden, Natalia; Santos, Bráulio A.; Leal, Inara R.; Tabarelli, Marcelo

    2017-01-01

    Old-growth tropical forests are being extensively deforested and fragmented worldwide. Yet forest recovery through succession has led to an expansion of secondary forests in human-modified tropical landscapes (HMTLs). Secondary forests thus emerge as a potential repository for tropical

  7. Desirable forest structures for a restored Front Range

    Science.gov (United States)

    Yvette L. Dickinson; Rob Addington; Greg Aplet; Mike Babler; Mike Battaglia; Peter Brown; Tony Cheng; Casey Cooley; Dick Edwards; Jonas Feinstein; Paula Fornwalt; Hal Gibbs; Megan Matonis; Kristen Pelz; Claudia Regan

    2014-01-01

    As part of the federal Collaborative Forest Landscape Restoration Program administered by the US Forest Service, the Colorado Front Range Collaborative Forest Landscape Restoration Project (FR-CFLRP, a collaborative effort of the Front Range Roundtable1 and the US Forest Service) is required to define desired conditions for lower montane ponderosa pine (Pinus ponderosa...

  8. Prediction of Soil Erosion Rates in Japan where Heavily Forested Landscape with Unstable Terrain

    Science.gov (United States)

    Nanko, K.; Oguro, M.; Miura, S.; Masaki, T.

    2016-12-01

    Soil is fundamental for plant growth, water conservation, and sustainable forest management. Multidisciplinary interest in the role of the soil in areas such as biodiversity, ecosystem services, land degradation, and water security has been growing (Miura et al., 2015). Forest is usually protective land use from soil erosion because vegetation buffers rainfall power and erosivity. However, some types of forest in Japan show high susceptibility to soil erosion due to little ground cover and steep slopes exceeding thirty degree, especially young Japanese cypress (Chamaecyparis obtusa) plantations (Miura et al., 2002). This is a critical issue for sustainable forest management because C. obtusaplantations account for 10% of the total forest coverage in Japan (Forestry Agency, 2009). Prediction of soil erosion rates on nationwide scale is necessary to make decision for future forest management plan. To predict and map soil erosion rates across Japan, we applied three soil erosion models, RUSLE (Revised Universal Soil Loss Equation, Wischmeier and Smith, 1978), PESERA (Pan-European Soil Erosion Risk Assessment, Kirkby et al., 2003), and RMMF (Revised Morgan-Morgan-Finney, Morgan, 2001). The grid scale is 1-km. RUSLE and PESERA are most widely used erosion models today. RMMF includes interactions between rainfall and vegetation, such as canopy interception and ratio of canopy drainage in throughfall. Evaporated rainwater by canopy interception, generally accounts for 15-20% in annual rainfall, does not contribute soil erosion. Whereas, larger raindrops generated by canopy drainage produced higher splash erosion rates than gross rainfall (Nanko et al., 2008). Therefore, rainfall redistribution process in canopy should be considered to predict soil erosion rates in forested landscape. We compared the results from three erosion models and analyze the importance of environmental factors for the prediction of soil erosion rates. This research was supported by the Environment

  9. Degradation in carbon stocks near tropical forest edges.

    Science.gov (United States)

    Chaplin-Kramer, Rebecca; Ramler, Ivan; Sharp, Richard; Haddad, Nick M; Gerber, James S; West, Paul C; Mandle, Lisa; Engstrom, Peder; Baccini, Alessandro; Sim, Sarah; Mueller, Carina; King, Henry

    2015-12-18

    Carbon stock estimates based on land cover type are critical for informing climate change assessment and landscape management, but field and theoretical evidence indicates that forest fragmentation reduces the amount of carbon stored at forest edges. Here, using remotely sensed pantropical biomass and land cover data sets, we estimate that biomass within the first 500 m of the forest edge is on average 25% lower than in forest interiors and that reductions of 10% extend to 1.5 km from the forest edge. These findings suggest that IPCC Tier 1 methods overestimate carbon stocks in tropical forests by nearly 10%. Proper accounting for degradation at forest edges will inform better landscape and forest management and policies, as well as the assessment of carbon stocks at landscape and national levels.

  10. Historical framework to explain long-term coupled human and natural system feedbacks: application to a multiple-ownership forest landscape in the northern Great Lakes region, USA

    Science.gov (United States)

    Michelle M. Steen-Adams; Nancy Langston; Mark D. O. Adams; David J. Mladenoff

    2015-01-01

    Current and future human and forest landscape conditions are influenced by the cumulative, unfolding history of socialecological interactions. Examining past system responses, especially unintended consequences, can reveal valuable insights that promote learning and adaptation in forest policy and management. Temporal couplings are complex, however; they can be...

  11. Immigration rates in fragmented landscapes--empirical evidence for the importance of habitat amount for species persistence.

    Directory of Open Access Journals (Sweden)

    Thomas Püttker

    Full Text Available BACKGROUND: The total amount of native vegetation is an important property of fragmented landscapes and is known to exert a strong influence on population and metapopulation dynamics. As the relationship between habitat loss and local patch and gap characteristics is strongly non-linear, theoretical models predict that immigration rates should decrease dramatically at low levels of remaining native vegetation cover, leading to patch-area effects and the existence of species extinction thresholds across fragmented landscapes with different proportions of remaining native vegetation. Although empirical patterns of species distribution and richness give support to these models, direct measurements of immigration rates across fragmented landscapes are still lacking. METHODOLOGY/PRINCIPAL FINDINGS: Using the Brazilian Atlantic forest marsupial Gray Slender Mouse Opossum (Marmosops incanus as a model species and estimating demographic parameters of populations in patches situated in three landscapes differing in the total amount of remaining forest, we tested the hypotheses that patch-area effects on population density are apparent only at intermediate levels of forest cover, and that immigration rates into forest patches are defined primarily by landscape context surrounding patches. As expected, we observed a positive patch-area effect on M. incanus density only within the landscape with intermediate forest cover. Density was independent of patch size in the most forested landscape and the species was absent from the most deforested landscape. Specifically, the mean estimated numbers of immigrants into small patches were lower in the landscape with intermediate forest cover compared to the most forested landscape. CONCLUSIONS/SIGNIFICANCE: Our results reveal the crucial importance of the total amount of remaining native vegetation for species persistence in fragmented landscapes, and specifically as to the role of variable immigration rates in

  12. Relationships between bat occupancy and habitat and landscape structure along a savanna, woodland, forest gradient in the Missouri Ozarks

    Science.gov (United States)

    Clarissa A. Starbuck; Sybill K. Amelon; Frank R. III. Thompson

    2015-01-01

    Many land-management agencies are restoring savannas and woodlands using prescribed fire and forest thinning, and information is needed on how wildlife species respond to these management activities. Our objectives were to evaluate support for relationships of bat site occupancy with vegetation structure and management and landscape composition and structure across a...

  13. Temporal mapping of deforestation and forest degradation in Nepal: Applications to forest conservation

    NARCIS (Netherlands)

    Panta, M.; Kim, K.; Joshi, C.

    2008-01-01

    Deforestation and forest degradation are associated and progressive processes resulting in the conversion of forest area into a mosaic of mature forest fragments, pasture, and degraded habitat. Monitoring of forest landscape spatial structures has been recommended to detect degenerative trends in

  14. Landscape Change in the Midwest: An Integrated Research and Development Program

    Science.gov (United States)

    Paul H. Gobster; Robert G. Haight; Dave Shriner

    2000-01-01

    Change happens. In the realm of forest landscapes, one of the great realizations of the late 20th century was that forests in the United States and elsewhere often are not the stable systems we once thought them to be, attaining a final "climax" stage through the process of succession. Advances in forest ecology show that landscape change is the rule rather...

  15. Natural vegetation cover in the landscape and edge effects: differential responses of insect orders in a fragmented forest.

    Science.gov (United States)

    González, Ezequiel; Salvo, Adriana; Valladares, Graciela

    2017-10-01

    Human activities have led to global simplification of ecosystems, among which Neotropical dry forests are some of the most threatened. Habitat loss as well as edge effects may affect insect communities. Here, we analyzed insects sampled with pan traps in 9 landscapes (at 5 scales, in 100-500 m diameter circles) comprising cultivated fields and Chaco Serrano forests, at overall community and taxonomic order level. In total 7043 specimens and 456 species of hexapods were captured, with abundance and richness being directly related to forest cover at 500 m and higher at edges in comparison with forest interior. Community composition also varied with forest cover and edge/interior location. Different responses were detected among the 8 dominant orders. Collembola, Hemiptera, and Orthoptera richness and/or abundance were positively related to forest cover at the larger scale, while Thysanoptera abundance increased with forest cover only at the edge. Hymenoptera abundance and richness were negatively related to forest cover at 100 m. Coleoptera, Diptera, and Hymenoptera were more diverse and abundant at the forest edge. The generally negative influence of forest loss on insect communities could have functional consequences for both natural and cultivated systems, and highlights the relevance of forest conservation. Higher diversity at the edges could result from the simultaneous presence of forest and matrix species, although "resource mapping" might be involved for orders that were richer and more abundant at edges. Adjacent crops could benefit from forest proximity since natural enemies and pollinators are well represented in the orders showing positive edge effects. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  16. Integrating Landsat Data and High-Resolution Imagery for Applied Conservation Assessment of Forest Cover in Latin American Heterogenous Landscapes

    Science.gov (United States)

    Thomas, N.; Rueda, X.; Lambin, E.; Mendenhall, C. D.

    2012-12-01

    Large intact forested regions of the world are known to be critical to maintaining Earth's climate, ecosystem health, and human livelihoods. Remote sensing has been successfully implemented as a tool to monitor forest cover and landscape dynamics over broad regions. Much of this work has been done using coarse resolution sensors such as AVHRR and MODIS in combination with moderate resolution sensors, particularly Landsat. Finer scale analysis of heterogeneous and fragmented landscapes is commonly performed with medium resolution data and has had varying success depending on many factors including the level of fragmentation, variability of land cover types, patch size, and image availability. Fine scale tree cover in mixed agricultural areas can have a major impact on biodiversity and ecosystem sustainability but may often be inadequately captured with the global to regional (coarse resolution and moderate resolution) satellite sensors and processing techniques widely used to detect land use and land cover changes. This study investigates whether advanced remote sensing methods are able to assess and monitor percent tree canopy cover in spatially complex human-dominated agricultural landscapes that prove challenging for traditional mapping techniques. Our study areas are in high altitude, mixed agricultural coffee-growing regions in Costa Rica and the Colombian Andes. We applied Random Forests regression tree analysis to Landsat data along with additional spectral, environmental, and spatial variables to predict percent tree canopy cover at 30m resolution. Image object-based texture, shape, and neighborhood metrics were generated at the Landsat scale using eCognition and included in the variable suite. Training and validation data was generated using high resolution imagery from digital aerial photography at 1m to 2.5 m resolution. Our results are promising with Pearson's correlation coefficients between observed and predicted percent tree canopy cover of .86 (Costa

  17. Contingent Diversity on Anthropic Landscapes

    Directory of Open Access Journals (Sweden)

    William Balée

    2010-02-01

    Full Text Available Behaviorally modern human beings have lived in Amazonia for thousands of years. Significant dynamics in species turnovers due to human-mediated disturbance were associated with the ultimate emergence and expansion of agrarian technologies in prehistory. Such disturbances initiated primary and secondary landscape transformations in various locales of the Amazon region. Diversity in these locales can be understood by accepting the initial premise of contingency, expressed as unprecedented human agency and human history. These effects can be accessed through the archaeological record and in the study of living languages. In addition, landscape transformation can be demonstrated in the study of traditional knowledge (TK. One way of elucidating TK distinctions between anthropic and nonanthropic landscapes concerns elicitation of differential labeling of these landscapes and more significantly, elicitation of the specific contents, such as trees, occurring in these landscapes. Freelisting is a method which can be used to distinguish the differential species compositions of landscapes resulting from human-mediated disturbance vs. those which do not evince records of human agency and history. The TK of the Ka’apor Indians of Amazonian Brazil as revealed in freelisting exercises shows differentiation of anthropogenic from high forests as well as a recognition of diversity in the anthropogenic forests. This suggests that the agents of human-mediated disturbance and landscape transformation in traditional Amazonia encode diversity and contingency into their TK, which encoding reflects past cultural influence on landscape and society over time.

  18. Creation of forest edges has a global impact on forest vertebrates

    Science.gov (United States)

    Peres, CA; Banks-Leite, C; Wearn, OR; Marsh, CJ; Butchart, SHM; Arroyo-Rodríguez, V; Barlow, J; Cerezo, A; Cisneros, L; D’Cruze, N; Faria, D; Hadley, A; Harris, S; Klingbeil, BT; Kormann, U; Lens, L; Medina-Rangel, GF; Morante-Filho, JC; Olivier, P; Peters, SL; Pidgeon, A; Ribeiro, DB; Scherber, C; Schneider-Maunory, L; Struebig, M; Urbina-Cardona, N; Watling, JI; Willig, MR; Wood, EM; Ewers, RM

    2017-01-01

    Summary Forest edges influence more than half the world’s forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. We assembled an unmatched global dataset on species responses to fragmentation and developed a new statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1673 vertebrate species. We show that 85% of species’ abundances are affected, either positively or negatively, by forest edges. Forest core species, which were more likely to be listed as threatened by the IUCN, only reached peak abundances at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale. PMID:29088701

  19. Long-term landscape changes in a subalpine spruce-fir forest in central Utah, USA

    Directory of Open Access Journals (Sweden)

    Jesse L. Morris1

    2015-12-01

    Full Text Available Background: In Western North America, increasing wildfire and outbreaks of native bark beetles have been mediated by warming climate conditions. Bioclimatic models forecast the loss of key high elevation species throughout the region. This study uses retrospective vegetation and fire history data to reconstruct the drivers of past disturbance and environmental change. Understanding the relationship among climate, antecedent disturbances, and the legacy effects of settlement-era logging can help identify the patterns and processes that create landscapes susceptible to bark beetle epidemics. Methods: Our analysis uses data from lake sediment cores, stand inventories, and historical records. Sediment cores were dated with radiometric techniques (14C and 210Pb/137Cs and subsampled for pollen and charcoal to maximize the temporal resolution during the historical period (1800 CE to present and to provide environmental baseline data (last 10,500 years. Pollen data for spruce were calibrated to carbon biomass (C t/ha using standard allometric equations and a transfer function. Charcoal samples were analyzed with statistical models to facilitate peak detection and determine fire recurrence intervals. Results: The Wasatch Plateau has been dominated by Engelmann spruce forests for the last ~10,500 years, with subalpine fir becoming more prominent since 6000 years ago. This landscape has experienced a dynamic fire regime, where burning events are more frequent and of higher magnitude during the last 3000 years. Two important disturbances have impacted Engelmann spruce in the historical period: 1 high-grade logging during the late 19th century; and (2 a high severity spruce beetle outbreak in the late 20th century that killed >90 % of mature spruce (>10 cm dbh. Conclusions: Our study shows that spruce-dominated forests in this region are resilient to a range of climate and disturbance regimes. Several lines of evidence suggest that 19th century logging

  20. Effects of logging on roadless space in intact forest landscapes of the Congo Basin.

    Science.gov (United States)

    Kleinschroth, Fritz; Healey, John R; Gourlet-Fleury, Sylvie; Mortier, Frédéric; Stoica, Radu S

    2017-04-01

    Forest degradation in the tropics is often associated with roads built for selective logging. The protection of intact forest landscapes (IFL) that are not accessible by roads is high on the biodiversity conservation agenda and a challenge for logging concessions certified by the Forest Stewardship Council (FSC). A frequently advocated conservation objective is to maximize the retention of roadless space, a concept that is based on distance to the nearest road from any point. We developed a novel use of the empty-space function - a general statistical tool based on stochastic geometry and random sets theory - to calculate roadless space in a part of the Congo Basin where road networks have been expanding rapidly. We compared the temporal development of roadless space in certified and uncertified logging concessions inside and outside areas declared IFL in 2000. Inside IFLs, road-network expansion led to a decrease in roadless space by more than half from 1999 to 2007. After 2007, loss leveled out in most areas to close to 0 due to an equilibrium between newly built roads and abandoned roads that became revegetated. However, concessions in IFL certified by FSC since around 2007 continuously lost roadless space and reached a level comparable to all other concessions. Only national parks remained mostly roadless. We recommend that forest-management policies make the preservation of large connected forest areas a top priority by effectively monitoring - and limiting - the occupation of space by roads that are permanently accessible. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  1. Industrious Landscaping

    DEFF Research Database (Denmark)

    Brichet, Nathalia Sofie; Hastrup, Frida

    2018-01-01

    This article has a twofold ambition. It offers a history of landscaping at Søby brown coal beds—a former mining site in western Denmark—and a methodological discussion of how to write such a study. Exploring this specific industrial landscape through a series of projects that have made different...... natural resources appear, we show that even what is recognized as resources shifts over time according to radically different and unpredictable agendas. This indicates that the Søby landscape is fundamentally volatile, as its resourcefulness has been seen interchangeably to shift between the brown coal...... business, inexpensive estates for practically savvy people, pasture for grazing, and recreational forest, among other things. We discuss these rifts in landscape history, motivated by what we refer to as industriousness, to show that, at sites such as Søby, both natural resources and historical...

  2. Landscape Character of Pongkor Mining Ecotourism Area

    Science.gov (United States)

    Kusumoarto, A.; Gunawan, A.; Machfud; Hikmat, A.

    2017-10-01

    Pongkor Mining Ecotourism Area has a diverse landscape character as a potential landscape resources for the development of ecotourism destination. This area is part of the Mount of Botol Resort, Halimun Salak National Park (HSNP). This area also has a fairly high biodiversity. This study aims to identify and analysis the category of landscape character in the Pongkor Mining Ecotourism Area for the development of ecotourism destination. This study used a descriptive approach through field surveys and interviews, was carried out through two steps : 1) identify the landscape character, and 2) analysis of the landscape character. The results showed that in areas set aside for ecotourism destination in Pongkor Mining, landscape character category scattered forests, tailing ponds, river, plain, and the built environment. The Category of landscape character most dominant scattered in the area is forest, here is the river, plain, tailing ponds, the built environment, and plain. The landscape character in a natural environment most preferred for ecotourism activities. The landscape character that spread in the natural environment and the built environment is a potential that must be protected and modified such as elimination of incongruous element, accentuation of natural form, alteration of the natural form, intensification and enhanced visual quality intensively to be developed as a ecotourism destination area.

  3. Using landscape ecology to test hypotheses about large-scale abundance patterns in migratory birds

    Science.gov (United States)

    Flather, C.H.; Sauer, J.R.

    1996-01-01

    The hypothesis that Neotropical migrant birds may be undergoing widespread declines due to land use activities on the breeding grounds has been examined primarily by synthesizing results from local studies. Growing concern for the cumulative influence of land use activities on ecological systems has heightened the need for large-scale studies to complement what has been observed at local scales. We investigated possible landscape effects on Neotropical migrant bird populations for the eastern United States by linking two large-scale inventories designed to monitor breeding-bird abundances and land use patterns. The null hypothesis of no relation between landscape structure and Neotropical migrant abundance was tested by correlating measures of landscape structure with bird abundance, while controlling for the geographic distance among samples. Neotropical migrants as a group were more 'sensitive' to landscape structure than either temperate migrants or permanent residents. Neotropical migrants tended to be more abundant in landscapes with a greater proportion of forest and wetland habitats, fewer edge habitats, large forest patches, and with forest habitats well dispersed throughout the scene. Permanent residents showed few correlations with landscape structure and temperate migrants were associated with habitat diversity and edge attributes rather than with the amount, size, and dispersion of forest habitats. The association between Neotropical migrant abundance and forest fragmentation differed among physiographic strata, suggesting that land-scape context affects observed relations between bird abundance and landscape structure. Finally, associations between landscape structure and temporal trends in Neotropical migrant abundance were negatively correlated with forest habitats. These results suggest that extrapolation of patterns observed in some landscapes is not likely to hold regionally, and that conservation policies must consider the variation in landscape

  4. Scaling wood volume estimates from inventory plots to landscapes with airborne LiDAR in temperate deciduous forest

    Directory of Open Access Journals (Sweden)

    Shaun R. Levick

    2016-05-01

    Full Text Available Abstract Background Monitoring and managing carbon stocks in forested ecosystems requires accurate and repeatable quantification of the spatial distribution of wood volume at landscape to regional scales. Grid-based forest inventory networks have provided valuable records of forest structure and dynamics at individual plot scales, but in isolation they may not represent the carbon dynamics of heterogeneous landscapes encompassing diverse land-management strategies and site conditions. Airborne LiDAR has greatly enhanced forest structural characterisation and, in conjunction with field-based inventories, it provides avenues for monitoring carbon over broader spatial scales. Here we aim to enhance the integration of airborne LiDAR surveying with field-based inventories by exploring the effect of inventory plot size and number on the relationship between field-estimated and LiDAR-predicted wood volume in deciduous broad-leafed forest in central Germany. Results Estimation of wood volume from airborne LiDAR was most robust (R2 = 0.92, RMSE = 50.57 m3 ha−1 ~14.13 Mg C ha−1 when trained and tested with 1 ha experimental plot data (n = 50. Predictions based on a more extensive (n = 1100 plot network with considerably smaller (0.05 ha plots were inferior (R2 = 0.68, RMSE = 101.01 ~28.09 Mg C ha−1. Differences between the 1 and 0.05 ha volume models from LiDAR were negligible however at the scale of individual land-management units. Sample size permutation tests showed that increasing the number of inventory plots above 350 for the 0.05 ha plots returned no improvement in R2 and RMSE variability of the LiDAR-predicted wood volume model. Conclusions Our results from this study confirm the utility of LiDAR for estimating wood volume in deciduous broad-leafed forest, but highlight the challenges associated with field plot size and number in establishing robust relationships between airborne LiDAR and field derived wood volume. We

  5. Scaling wood volume estimates from inventory plots to landscapes with airborne LiDAR in temperate deciduous forest.

    Science.gov (United States)

    Levick, Shaun R; Hessenmöller, Dominik; Schulze, E-Detlef

    2016-12-01

    Monitoring and managing carbon stocks in forested ecosystems requires accurate and repeatable quantification of the spatial distribution of wood volume at landscape to regional scales. Grid-based forest inventory networks have provided valuable records of forest structure and dynamics at individual plot scales, but in isolation they may not represent the carbon dynamics of heterogeneous landscapes encompassing diverse land-management strategies and site conditions. Airborne LiDAR has greatly enhanced forest structural characterisation and, in conjunction with field-based inventories, it provides avenues for monitoring carbon over broader spatial scales. Here we aim to enhance the integration of airborne LiDAR surveying with field-based inventories by exploring the effect of inventory plot size and number on the relationship between field-estimated and LiDAR-predicted wood volume in deciduous broad-leafed forest in central Germany. Estimation of wood volume from airborne LiDAR was most robust (R 2  = 0.92, RMSE = 50.57 m 3 ha -1  ~14.13 Mg C ha -1 ) when trained and tested with 1 ha experimental plot data (n = 50). Predictions based on a more extensive (n = 1100) plot network with considerably smaller (0.05 ha) plots were inferior (R 2  = 0.68, RMSE = 101.01 ~28.09 Mg C ha -1 ). Differences between the 1 and 0.05 ha volume models from LiDAR were negligible however at the scale of individual land-management units. Sample size permutation tests showed that increasing the number of inventory plots above 350 for the 0.05 ha plots returned no improvement in R 2 and RMSE variability of the LiDAR-predicted wood volume model. Our results from this study confirm the utility of LiDAR for estimating wood volume in deciduous broad-leafed forest, but highlight the challenges associated with field plot size and number in establishing robust relationships between airborne LiDAR and field derived wood volume. We are moving into a forest management era where

  6. Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp

    Science.gov (United States)

    Wedeux, B. M. M.; Coomes, D. A.

    2015-11-01

    Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplay between environmental factors and disturbance legacies on forest canopy structure across landscapes is practically unexplored. We used airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistent with previous work linking deep peat to stunted tree growth. Gap size frequency distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of Pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and illegal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced. With logging, the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and peat depth gradient within the old-growth tropical peat swamp forest. This relationship breaks down after selective logging, with canopy structural recovery, as observed by ALS, modulated by environmental conditions. These findings improve our

  7. Tropical forest transitions: structural changes in forest area, composition and landscape

    NARCIS (Netherlands)

    Wiersum, K.F.

    2014-01-01

    Most studies on tropical forest dynamics focus on the processes of deforestation and forest degradation and its associated ecological impacts; comparatively little attention is given to the emergence of forest transitions. This review gives an overview of forest transitions in the tropics as

  8. Biogenic VOC Emissions from Tropical Landscapes

    Science.gov (United States)

    Guenther, A.; Greenberg, J.; Harley, P.; Otter, L.; Vanni Gatti, L.; Baker, B.

    2003-04-01

    Biogenic VOC have an important role in determining the chemical composition of atmosphere. As a result, these compounds are important for visibility, biogeochemical cycling, climate and radiative forcing, and the health of the biosphere. Tropical landscapes are estimated to release about 80% of total global biogenic VOC emissions but have been investigated to lesser extent than temperate regions. Tropical VOC emissions are particularly important due to the strong vertical transport and the rapid landuse change that is occurring there. This presentation will provide an overview of field measurements of biogenic VOC emissions from tropical landscapes in Amazonia (Large-scale Biosphere-atmosphere experiment in Amazonia, LBA) Central (EXPRESSO) and Southern (SAFARI 2000) Africa, Asia and Central America. Flux measurement methods include leaf-scale (enclosure measurements), canopy-scale (above canopy tower measurements), landscape-scale (tethered balloon), and regional-scale (aircraft measurements) observations. Typical midday isoprene emission rates for different landscapes vary by more than a factor of 20 with the lowest emissions observed from degraded forests. Emissions of alpha-pinene vary by a similar amount with the highest emissions associated with landscapes dominated by light dependent monoterpene emitting plants. Isoprene emissions tend to be higher for neotropical forests (Amazon and Costa Rica) in comparison to Africa and Asian tropical forests but considerable differences are observed within regions. Strong seasonal variations were observed in both the Congo and the Amazon rainforests with peak emissions during the dry seasons. Substantial emissions of light dependent monoterpenes, methanol and acetone are characteristic of at least some tropical landscapes.

  9. The expanding genomic landscape of autism: discovering the 'forest' beyond the 'trees'

    Science.gov (United States)

    Hu, Valerie W

    2013-01-01

    Autism spectrum disorders are neurodevelopmental disorders characterized by significant deficits in reciprocal social interactions, impaired communication and restricted, repetitive behaviors. As autism spectrum disorders are among the most heritable of neuropsychiatric disorders, much of autism research has focused on the search for genetic variants in protein-coding genes (i.e., the 'trees'). However, no single gene can account for more than 1% of the cases of autism spectrum disorders. Yet, genome-wide association studies have often identified statistically significant associations of genetic variations in regions of DNA that do not code for proteins (i.e., intergenic regions). There is increasing evidence that such noncoding regions are actively transcribed and may participate in the regulation of genes, including genes on different chromosomes. This article summarizes evidence that suggests that the research spotlight needs to be expanded to encompass far-reaching gene-regulatory mechanisms that include a variety of epigenetic modifications, as well as noncoding RNA (i.e., the 'forest'). Given that noncoding RNA represents over 90% of the transcripts in most cells, we may be observing just the 'tip of the iceberg' or the 'edge of the forest' in the genomic landscape of autism.

  10. Mosquito community composition in dynamic landscapes from the Atlantic Forest biome (Diptera, Culicidae

    Directory of Open Access Journals (Sweden)

    Mário Luís Pessôa Guedes

    2014-03-01

    Full Text Available Mosquito community composition in dynamic landscapes from the Atlantic Forest biome (Diptera, Culicidae. Considering that some species of Culicidae are vectors of pathogens, both the knowledge of the diversity of the mosquito fauna and how some environment factors influence in it, are important subjects. In order to address the composition of Culicidae species in a forest reserve in southern Atlantic Forest, we compared biotic and abiotic environmental determinants and how they were associated with the occurrence of species between sunset and sunrise. The level of conservation of the area was also considered. The investigation was carried out at Reserva Natural do Morro da Mina, in Antonina, state of Paraná, Brazil. We performed sixteen mosquito collections employing Shannon traps at three-hour intervals, from July 2008 to June 2009. The characterization of the area was determined using ecological indices of diversity, evenness, dominance and similarity. We compared the frequency of specimens with abiotic variables, i.e., temperature, relative humidity and pluviosity. Seven thousand four hundred ten mosquito females were captured. They belong to 48 species of 12 genera. The most abundant genera were Anopheles, Culex, Coquillettidia, Aedes and Runchomyia. Among the species, the most abundant was Anopheles cruzii, the primary vector of Plasmodium spp. in the Atlantic Forest. Results of the analyses showed that the abiotic variables we tested did not influence the occurrence of species, although certain values suggested that there was an optimum range for the occurrence of culicid species. It was possible to detect the presence of species of Culicidae with different epidemiologic profiles and habitat preference.

  11. Landscape Infrastructures: On Boundary Objects and Passage Points

    DEFF Research Database (Denmark)

    Boris, Stefan Darlan

    2009-01-01

    This paper is part of my ongoing Ph.D. thesis “Landscape infrastructures – Urban Forests as Ecological Systems”. Through investigations of the notion of infrastructure in a landscape urban discourse the thesis of this paper is that landscape infrastructure when seen as a fundamental relational...

  12. Impact of Forest Harvesting and Forest Regeneration on Runoff Dynamics at Watersheds of Central Siberia

    Directory of Open Access Journals (Sweden)

    A. A. Onuchin

    2014-02-01

    Full Text Available In the paper disturbance of Angara river region forests were estimated and peculiarities of forest regeneration after logging and wild fires were analyzed. According to the landscape classification of the regional study, three groups of landscapes differencing on types of forest successions were developed. It was shown that water protective and water regulate functions of the Angara river region forests change under commercial forest harvesting. Comparisons of the inventory and hydrological data detected that hydrological consequences of commercial forest harvesting are dependent on climatic parameters and forest regeneration peculiarities. In the continental climate conditions, when forest regeneration is delayed, snow storms are more active, snow evaporation increases and runoff reduces. In the process of logging sites overgrown with secondary small-leaved forest, snow accumulation increases and runoff increases, exceeding the value of annual runoff at undisturbed watersheds.

  13. Forest diversity and disturbance: changing influences and the future of Virginia's Forests

    Science.gov (United States)

    Christine J. Small; James L. Chamberlain

    2015-01-01

    The Virginia landscape supports a remarkable diversity of forests, from maritime dunes, swamp forests, and pine savannas of the Atlantic coastal plain, to post-agricultural pine-hardwood forests of the piedmont, to mixed oak, mixed-mesophytic, northern hardwood, and high elevation conifer forests in Appalachian mountain provinces. Virginia’s forests also have been...

  14. Creation of forest edges has a global impact on forest vertebrates

    Science.gov (United States)

    Pfeifer, M.; Lefebvre, V.; Peres, C. A.; Banks-Leite, C.; Wearn, O. R.; Marsh, C. J.; Butchart, S. H. M.; Arroyo-Rodríguez, V.; Barlow, J.; Cerezo, A.; Cisneros, L.; D'Cruze, N.; Faria, D.; Hadley, A.; Harris, S. M.; Klingbeil, B. T.; Kormann, U.; Lens, L.; Medina-Rangel, G. F.; Morante-Filho, J. C.; Olivier, P.; Peters, S. L.; Pidgeon, A.; Ribeiro, D. B.; Scherber, C.; Schneider-Maunoury, L.; Struebig, M.; Urbina-Cardona, N.; Watling, J. I.; Willig, M. R.; Wood, E. M.; Ewers, R. M.

    2017-11-01

    Forest edges influence more than half of the world’s forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. Here we assembled a global dataset on species responses to fragmentation and developed a statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1,673 vertebrate species. We show that the abundances of 85% of species are affected, either positively or negatively, by forest edges. Species that live in the centre of the forest (forest core), that were more likely to be listed as threatened by the International Union for Conservation of Nature (IUCN), reached peak abundances only at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest-core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale.

  15. Rare Plants of the Redwood Forest and Forest Management Effects

    Science.gov (United States)

    Teresa Sholars; Clare Golec

    2007-01-01

    Coast redwood forests are predominantly a timber managed habitat type, subjected to repeated disturbances and short rotation periods. What does this repeated disturbance mean for rare plants associated with the redwood forests? Rare plant persistence through forest management activities is influenced by many factors. Persistence of rare plants in a managed landscape is...

  16. Landscape-scale effects of fire severity on mixed-conifer and red fir forest structure in Yosemite National Park

    Science.gov (United States)

    Kane, Van R.; Lutz, James A.; Roberts, Susan L.; Smith, Douglas F.; McGaughey, Robert J.; Povak, Nicholas A.; Brooks, Matthew L.

    2013-01-01

    While fire shapes the structure of forests and acts as a keystone process, the details of how fire modifies forest structure have been difficult to evaluate because of the complexity of interactions between fires and forests. We studied this relationship across 69.2 km2 of Yosemite National Park, USA, that was subject to 32 fires ⩾40 ha between 1984 and 2010. Forests types included ponderosa pine (Pinus ponderosa), white fir-sugar pine (Abies concolor/Pinus lambertiana), and red fir (Abies magnifica). We estimated and stratified burned area by fire severity using the Landsat-derived Relativized differenced Normalized Burn Ratio (RdNBR). Airborne LiDAR data, acquired in July 2010, measured the vertical and horizontal structure of canopy material and landscape patterning of canopy patches and gaps. Increasing fire severity changed structure at the scale of fire severity patches, the arrangement of canopy patches and gaps within fire severity patches, and vertically within tree clumps. Each forest type showed an individual trajectory of structural change with increasing fire severity. As a result, the relationship between estimates of fire severity such as RdNBR and actual changes appears to vary among forest types. We found three arrangements of canopy patches and gaps associated with different fire severities: canopy-gap arrangements in which gaps were enclosed in otherwise continuous canopy (typically unburned and low fire severities); patch-gap arrangements in which tree clumps and gaps alternated and neither dominated (typically moderate fire severity); and open-patch arrangements in which trees were scattered across open areas (typically high fire severity). Compared to stands outside fire perimeters, increasing fire severity generally resulted first in loss of canopy cover in lower height strata and increased number and size of gaps, then in loss of canopy cover in higher height strata, and eventually the transition to open areas with few or no trees. However

  17. An Empirical Assessment of Temporal Decorrelation Using the Uninhabited Aerial Vehicle Synthetic Aperture Radar over Forested Landscapes

    Directory of Open Access Journals (Sweden)

    Michelle Hofton

    2012-04-01

    Full Text Available We present an empirical assessment of the impact of temporal decorrelation on interferometric coherence measured over a forested landscape. A series of repeat-pass interferometric radar images with a zero spatial baseline were collected with UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar, a fully polarimetric airborne L-band radar system. The dataset provided temporal separations of 45 minutes, 2, 7 and 9 days. Coincident airborne lidar and weather data were collected. We theoretically demonstrate that UAVSAR measurement accuracy enables accurate quantification of temporal decorrelation. Data analysis revealed precipitation events to be the main driver of temporal decorrelation over the acquisition period. The experiment also shows temporal decorrelation increases with canopy height, and this pattern was found consistent across forest types and polarization.

  18. Effects of local tree diversity on herbivore communities diminish with increasing forest fragmentation on the landscape scale.

    Directory of Open Access Journals (Sweden)

    Franziska Peter

    Full Text Available Forest fragmentation and plant diversity have been shown to play a crucial role for herbivorous insects (herbivores, hereafter. In turn, herbivory-induced leaf area loss is known to have direct implications for plant growth and reproduction as well as long-term consequences for ecosystem functioning and forest regeneration. So far, previous studies determined diverging responses of herbivores to forest fragmentation and plant diversity. Those inconsistent results may be owed to complex interactive effects of both co-occurring environmental factors albeit they act on different spatial scales. In this study, we investigated whether forest fragmentation on the landscape scale and tree diversity on the local habitat scale show interactive effects on the herbivore community and leaf area loss in subtropical forests in South Africa. We applied standardized beating samples and a community-based approach to estimate changes in herbivore community composition, herbivore abundance, and the effective number of herbivore species on the tree species-level. We further monitored leaf area loss to link changes in the herbivore community to the associated process of herbivory. Forest fragmentation and tree diversity interactively affected the herbivore community composition, mainly by a species turnover within the family of Curculionidae. Furthermore, herbivore abundance increased and the number of herbivore species decreased with increasing tree diversity in slightly fragmented forests whereas the effects diminished with increasing forest fragmentation. Surprisingly, leaf area loss was neither affected by forest fragmentation or tree diversity, nor by changes in the herbivore community. Our study highlights the need to consider interactive effects of environmental changes across spatial scales in order to draw reliable conclusions for community and interaction patterns. Moreover, forest fragmentation seems to alter the effect of tree diversity on the herbivore

  19. The potential of landscape labelling approaches for integrated landscape management in Europe

    DEFF Research Database (Denmark)

    Mann, Carsten; Plieninger, Tobias

    2017-01-01

    This paper combines conceptual thinking and empirical analysis of landscape labelling as a new governance approach. With the help of a literature review and qualitative interviews, we (1) explore the conceptual orientation of landscape labelling, (2) analyse existing approaches in Europe and (3......) elaborate its potential for integrated landscape management on a regional scale. Governance analysis to identify fostering and hindering factors is carried out for regional brands in biosphere reserves in Germany, geographic indication in Spain, organic agriculture in France and a community forest...... approach within policy mixes that depend on supportive governance structures and stakeholders....

  20. Revisiting the Factors Shaping Outcomes for Forest and Landscape Restoration in Sub-Saharan Africa : A Way Forward for Policy, Practice and Research

    NARCIS (Netherlands)

    Djenontin, I.N.S.; Foli, S.; Zulu, L.C.

    2018-01-01

    A lack of systematic understanding of the elements that determine the success of forest and landscape restoration (FLR) investments leads to the inability to clearly articulate strategic and practical approaches to support natural resource restoration endeavors across Sub-Saharan Africa (SSA). This

  1. Honey bee success predicted by landscape composition in Ohio, USA

    Directory of Open Access Journals (Sweden)

    DB Sponsler

    2015-03-01

    Full Text Available Foraging honey bees (Apis mellifera L. can routinely travel as far as several kilometers from their hive in the process of collecting nectar and pollen from floral patches within the surrounding landscape. Since the availability of floral resources at the landscape scale is a function of landscape composition, apiculturists have long recognized that landscape composition is a critical determinant of honey bee colony success. Nevertheless, very few studies present quantitative data relating colony success metrics to local landscape composition. We employed a beekeeper survey in conjunction with GIS-based landscape analysis to model colony success as a function of landscape composition in the State of Ohio, USA, a region characterized by intensive cropland, urban development, deciduous forest, and grassland. We found that colony food accumulation and wax production were positively related to cropland and negatively related to forest and grassland, a pattern that may be driven by the abundance of dandelion and clovers in agricultural areas compared to forest or mature grassland. Colony food accumulation was also negatively correlated with urban land cover in sites dominated by urban and agricultural land use, which does not support the popular opinion that the urban environment is more favorable to honey bees than cropland.

  2. Honey bee success predicted by landscape composition in Ohio, USA.

    Science.gov (United States)

    Sponsler, D B; Johnson, R M

    2015-01-01

    Foraging honey bees (Apis mellifera L.) can routinely travel as far as several kilometers from their hive in the process of collecting nectar and pollen from floral patches within the surrounding landscape. Since the availability of floral resources at the landscape scale is a function of landscape composition, apiculturists have long recognized that landscape composition is a critical determinant of honey bee colony success. Nevertheless, very few studies present quantitative data relating colony success metrics to local landscape composition. We employed a beekeeper survey in conjunction with GIS-based landscape analysis to model colony success as a function of landscape composition in the State of Ohio, USA, a region characterized by intensive cropland, urban development, deciduous forest, and grassland. We found that colony food accumulation and wax production were positively related to cropland and negatively related to forest and grassland, a pattern that may be driven by the abundance of dandelion and clovers in agricultural areas compared to forest or mature grassland. Colony food accumulation was also negatively correlated with urban land cover in sites dominated by urban and agricultural land use, which does not support the popular opinion that the urban environment is more favorable to honey bees than cropland.

  3. Water availability determines the richness and density of fig trees within Brazilian semideciduous forest landscapes

    Science.gov (United States)

    Coelho, Luís Francisco Mello; Ribeiro, Milton Cezar; Pereira, Rodrigo Augusto Santinelo

    2014-05-01

    The success of fig trees in tropical ecosystems is evidenced by the great diversity (+750 species) and wide geographic distribution of the genus. We assessed the contribution of environmental variables on the species richness and density of fig trees in fragments of seasonal semideciduous forest (SSF) in Brazil. We assessed 20 forest fragments in three regions in Sao Paulo State, Brazil. Fig tree richness and density was estimated in rectangular plots, comprising 31.4 ha sampled. Both richness and fig tree density were linearly modeled as function of variables representing (1) fragment metrics, (2) forest structure, and (3) landscape metrics expressing water drainage in the fragments. Model selection was performed by comparing the AIC values (Akaike Information Criterion) and the relative weight of each model (wAIC). Both species richness and fig tree density were better explained by the water availability in the fragment (meter of streams/ha): wAICrichness = 0.45, wAICdensity = 0.96. The remaining variables related to anthropic perturbation and forest structure were of little weight in the models. The rainfall seasonality in SSF seems to select for both establishment strategies and morphological adaptations in the hemiepiphytic fig tree species. In the studied SSF, hemiepiphytes established at lower heights in their host trees than reported for fig trees in evergreen rainforests. Some hemiepiphytic fig species evolved superficial roots extending up to 100 m from their trunks, resulting in hectare-scale root zones that allow them to efficiently forage water and soil nutrients. The community of fig trees was robust to variation in forest structure and conservation level of SSF fragments, making this group of plants an important element for the functioning of seasonal tropical forests.

  4. Effects of LiDAR point density and landscape context on the retrieval of urban forest biomass

    Science.gov (United States)

    Singh, K. K.; Chen, G.; McCarter, J. B.; Meentemeyer, R. K.

    2014-12-01

    Light Detection and Ranging (LiDAR), as an alternative to conventional optical remote sensing, is being increasingly used to accurately estimate aboveground forest biomass ranging from individual tree to stand levels. Recent advancements in LiDAR technology have resulted in higher point densities and better data accuracies, which however pose challenges to the procurement and processing of LiDAR data for large-area assessments. Reducing point density cuts data acquisition costs and overcome computational challenges for broad-scale forest management. However, how does that impact the accuracy of biomass estimation in an urban environment containing a great level of anthropogenic disturbances? The main goal of this study is to evaluate the effects of LiDAR point density on the biomass estimation of remnant forests in the rapidly urbanizing regions of Charlotte, North Carolina, USA. We used multiple linear regression to establish the statistical relationship between field-measured biomass and predictor variables (PVs) derived from LiDAR point clouds with varying densities. We compared the estimation accuracies between the general Urban Forest models (no discrimination of forest type) and the Forest Type models (evergreen, deciduous, and mixed), which was followed by quantifying the degree to which landscape context influenced biomass estimation. The explained biomass variance of Urban Forest models, adjusted R2, was fairly consistent across the reduced point densities with the highest difference of 11.5% between the 100% and 1% point densities. The combined estimates of Forest Type biomass models outperformed the Urban Forest models using two representative point densities (100% and 40%). The Urban Forest biomass model with development density of 125 m radius produced the highest adjusted R2 (0.83 and 0.82 at 100% and 40% LiDAR point densities, respectively) and the lowest RMSE values, signifying the distance impact of development on biomass estimation. Our evaluation

  5. Forest loss in protected areas and intact forest landscapes : A global analysis

    NARCIS (Netherlands)

    Heino, Matias; Kummu, Matti; Makkonen, Marika; Mulligan, Mark; Verburg, Peter H.; Jalava, Mika; Räsänen, Timo A.

    2015-01-01

    In spite of the high importance of forests, global forest loss has remained alarmingly high during the last decades. Forest loss at a global scale has been unveiled with increasingly finer spatial resolution, but the forest extent and loss in protected areas (PAs) and in large intact forest

  6. Are Protected Areas Required to Maintain Functional Diversity in Human-Modified Landscapes?

    Science.gov (United States)

    Cottee-Jones, H. Eden W.; Matthews, Thomas J.; Bregman, Tom P.; Barua, Maan; Tamuly, Jatin; Whittaker, Robert J.

    2015-01-01

    The conversion of forest to agriculture across the world’s tropics, and the limited space for protected areas, has increased the need to identify effective conservation strategies in human-modified landscapes. Isolated trees are believed to conserve elements of ecological structure, providing micro-sites for conservation in matrix landscapes, and facilitating seed dispersal and forest restoration. Here we investigate the role of isolated Ficus trees, which are of critical importance to tropical forest ecosystems, in conserving frugivore composition and function in a human-modified landscape in Assam, India. We surveyed the frugivorous birds feeding at 122 isolated Ficus trees, 33 fruit trees, and 31 other large trees across a range of 32 km from the nearest intact forest. We found that Ficus trees attracted richer and more abundant assemblages of frugivores than the other tree categories. However, incidence function estimates revealed that forest specialist species decreased dramatically within the first kilometre of the forest edge. Despite this, species richness and functional diversity remained consistent across the human-modified landscape, as habitat generalists replaced forest-dependent frugivores, and accounted for most of the ecological function found in Ficus trees near the forest edge. We recommend that isolated Ficus trees are awarded greater conservation status, and suggest that their conservation can support ecologically functional networks of frugivorous bird communities. PMID:25946032

  7. Trees Outside Forests (TOF inventory as a tool for landscape analysis and support for territorial planning

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available During the FAO Expert Consultation on Global Forest Resources Assessment 2000 (Kotka - Finland 1996, the importance of Trees Outside Forests (TOF and the need for complete and detailed information about these stands were underlined for the first time. Since then and thanks to some pilot studies launched by FAO at the end of the ninenties, the international attention focused on three main topics: the definition of TOF and its classification (linear features, small woods, scattered and individual trees; the effective sampling methods to assess TOF, that are usually rare elements; the ecological role and the economic and social importance of TOF in industrialized and developing countries. Basing on these considerations, the sampling points of the second Italian National Forest Inventory (National Inventory of Forests and Carbon Sinks - INFC intercepting small woods or linear features were recorded. Consequently, the INFC provides information about a substantial portion of the TOF of the country. Thanks to the availability of these data, a specific study was undertaken, aimed at improving information on TOF features and their role in the landscape. The present paper reports on the first results of this study for four regions of the Central Italy (Lazio, Marche, Toscana and Umbria, where the TOF are particularly significant.

  8. Forest dynamics in a forest-tundra ecotone, Medicine Bow Mountains, Wyoming

    Science.gov (United States)

    Christopher J. Earle

    1993-01-01

    The alpine timberline in much of western North America is characterized by a structurally complex transition from subalpine forest to alpine tundra, the forest-tundra ecotone. Trees within the ecotone are typically arrayed across the landscape within clumps or "ribbon forests," elongated strips oriented perpendicular to the prevailing winds. This study...

  9. Local, Short-term Effects of Forest Harvesting on Breeding Waterfowl and Common Loon in Forest-Dominated Landscapes of Quebec

    Directory of Open Access Journals (Sweden)

    Louis-Vincent Lemelin

    2007-12-01

    Full Text Available Northern forests are major breeding habitats for several waterfowl and other waterbird species. In Quebec, as in many other areas within the boreal region, clear-cut logging is an important human activity, and it is likely to affect ground- and cavity-nesting species differently. We used Black Duck Joint Venture/Canadian Wildlife Service aerial survey data, together with Quebec digital forest maps, to investigate local, i.e., within 2 km of clear-cut areas, short-term (~ 4 yr effects of forest harvesting on waterfowl and Common Loon. Our predictions were that clear-cut logging would not affect ground nesters, but would negatively affect pair settling patterns in cavity nesters through nesting habitat disturbance. Our study spanned a 540,000-km² territory in which we considered over 30,000 ha of clear-cut areas that were dispersed into 42 different locations. We controlled for interannual variation in population size by comparing the pre- and post-harvest percentages of potentially hospitable nesting cover disturbed by timber harvesting within a 1-km radius of indicated breeding pairs. Our results suggest that timber harvesting positively influenced local populations of Canada Goose and American Green-winged Teal. No other ground-nesting species showed a significant response. For the cavity-nesting guild and species, we detected no local, short-term effect of clear-cutting. This result was unexpected because many previous studies of nest-box provisioning reported increased breeding pair densities, indicating that availability of natural holes may limit cavity-nesting duck populations. Moreover, because cavity-nesting ducks are considered among the most vulnerable bird species to forest management, our results are consistent with the hypothesis that boreal bird populations exhibit some resilience to disturbance. This conclusion follows from a study in landscapes where forests were mostly first-growth. It is not evident that it will remain valid

  10. An integrated analysis of the effects of past land use on forest herb colonization at the landscape scale

    Science.gov (United States)

    Verheyen, K.; Guntenspergen, Glenn R.; Biesbrouck, B.; Hermy, M.

    2003-01-01

    A framework that summarizes the direct and indirect effects of past land use on forest herb recolonization is proposed, and used to analyse the colonization patterns of forest understorey herbaceous species in a 360-ha mixed forest, grassland and arable landscape in the Dijle river valley (central Belgium).Fine-scale distribution maps were constructed for 14 species. The species were mapped in 15 946 forest plots and outside forests (along parcel margins) in 5188 plots. Forest stands varied in age between 1 and more than 224 years. Detailed land-use history data were combined with the species distribution maps to identify species-specific colonization sources and to calculate colonization distances.The six most frequent species were selected for more detailed statistical analysis.Logistic regression models indicated that species frequency in forest parcels was a function of secondary forest age, distance from the nearest colonization source and their interaction. Similar age and distance effects were found within hedgerows.In 199 forest stands, data about soils, canopy structure and the cover of competitive species were collected. The relative importance of habitat quality and spatio-temporal isolation for the colonization of the forest herb species was quantified using structural equation modelling (SEM), within the framework proposed for the effects of past land use.The results of the SEM indicate that, except for the better colonizing species, the measured habitat quality variables are of minor importance in explaining colonization patterns, compared with the combination of secondary forest age and distance from colonization sources.Our results suggest the existence of a two-stage colonization process in which diaspore availability determines the initial pattern, which is affected by environmental sorting at later stages.

  11. Mapping resource use over a Russian landscape: an integrated look at harvesting of a non-timber forest product in central Kamchatka

    International Nuclear Information System (INIS)

    Hitztaler, Stephanie K; Bergen, Kathleen M

    2013-01-01

    Small-scale resource use became an important adaptive mechanism in remote logging communities in Russia at the onset of the post-Soviet period in 1991. We focused on harvesting of a non-timber forest product, lingonberry (Vaccinium vitis-idaea), in the forests of the Kamchatka Peninsula (Russian Far East). We employed an integrated geographical approach to make quantifiable connections between harvesting and the landscape, and to interpret these relationships in their broader contexts. Landsat TM images were used for a new classification; the resulting land-cover map was the basis for linking non-spatial data on harvesters’ gathering behaviors to spatial data within delineated lingonberry gathering sites. Several significant relationships emerged: (1) mature forests negatively affected harvesters’ initial choice to gather in a site, while young forests had a positive effect; (2) land-cover type was critical in determining how and why gathering occurred: post-disturbance young and maturing forests were significantly associated with higher gathering intensity and with the choice to market harvests; and (3) distance from gathering sites to villages and main roads also mattered: longer distances were significantly correlated to more time spent gathering and to increased marketing of harvests. We further considered our findings in light of the larger ecological and social dynamics at play in central Kamchatka. This unique study is an important starting point for conservation- and sustainable development-based work, and for additional research into the drivers of human–landscape interactions in the Russian Far East. (letter)

  12. Cultural landscapes of the Araucaria Forests in the northern plateau of Santa Catarina, Brazil.

    Science.gov (United States)

    Machado Mello, Anna Jacinta; Peroni, Nivaldo

    2015-06-09

    The Araucaria Forest is associated with the Atlantic Forest domain and is a typical ecosystem of southern Brazil. The expansion of Araucaria angustifolia had a human influence in southern Brazil, where historically hunter-gatherer communities used the pinhão, araucaria's seed, as a food source. In the north of the state of Santa Catarina, the Araucaria Forest is a mosaic composed of cultivation and pasture inserted between forest fragments, where pinhão and erva-mate are gathered; some local communities denominate these forest ecotopes as caívas. Therefore, the aim of this study is to understand how human populations transform, manage and conserve landscapes using the case study of caívas from the Araucaria Forests of southern Brazil, as well as to evaluate the local ecological knowledge and how these contribute to conservation of the Araucaria Forest. This study was conducted in the northern plateau of the state of Santa Catarina, Brazil in local five communities. To assess ethnoecological perceptions the historical use and management of caívas, semi-structured interviews, checklist interviews and guided tours were conducted with family units. In total 28 family units participated in the study that had caívas on their properties. During the course of the study two main perceptions of the ecotope caíva were found, there is no consensus to the exact definition; perception of caívas is considered a gradient. In general caívas are considered to have the presence of cattle feeding on native pasture, with denser forest area that is managed, and the presence of specific species. Eleven management practices within caívas were found, firewood collection, cattle grazing, trimming of the herbaceous layer, and erva-mate extraction were the most common. Caívas are perceived and defined through the management practices and native plant resources. All participants stated that there have been many changes to the management practices within caívas and to the ca

  13. Heritage landscape structure analysis in surrounding environment of the Grand Canal Yangzhou section

    Science.gov (United States)

    Xu, Huan

    2018-03-01

    The Yangzhou section of the Grand Canal is selected for a case study in this paper. The ZY-3 satellite images of 2016 are adopted as the data source. RS and GIS are used to analyze the landscape classification of the surrounding landscape of the Grand Canal, and the classification results are precisely evaluated. Next, the overall features of the landscape pattern are analyzed. The results showed that the overall accuracy is 82.5% and the Kappa coefficient is 78.17% in the Yangzhou section. The producer’s accuracy of the water landscape is the highest, followed by that of the other landscape, farmland landscape, garden and forest landscape, architectural landscape. The user’s accuracy of different landscape types can be ranked in a descending order, as the water landscape, farmland landscape, road landscape, architectural landscape, other landscape, garden and forest landscape. The farmland landscape and the architectural landscape are the top advantageous landscape types of the heritage site. The research findings can provide basic data for landscape protection, management and sustainable development of the Grand Canal Yangzhou section.

  14. [Regional ecological construction and mission of landscape ecology].

    Science.gov (United States)

    Xiao, Duning; Xie, Fuju; Wei, Jianbing

    2004-10-01

    The eco-construction on regional and landscape scale is the one which can be used to specific landscape and intercrossing ecosystem in specific region including performing scientific administration of ecosystem and optimizing environmental function. Recently, the government has taken a series of significant projects into action, such as national forest protection item, partly forest restoration, and adjustment of water, etc. Enforcing regional eco-construction and maintaining the ecology security of the nation have become the strategic requisition. In various regions, different eco-construction should be applied, for example, performing ecological safeguard measure in ecological sensitive zone, accommodating the ecological load in ecological fragile zone, etc., which can control the activities of human being, so that, sustainable development can be reached. Facing opportunity and challenge in the development of landscape ecology, we have some key topics: landscape pattern of ecological security, land use and ecological process, landscape changes under human activity stress, quantitative evaluation of the influence on human being activities, evaluation of zonal ecological security and advance warning of ecological risk, and planning and optimizing of model in landscape eco-construction.

  15. Landscape and zonal features of the formation of producing economy in Russia

    Science.gov (United States)

    Nizovtsev, Vyacheslav; Natalia, Erman

    2016-04-01

    Based on analysis of the extensive source base, including complex landscape, component, paleogeographic and archeological published and scientific materials as well as the connected analysis of published paleogeographical, paleolandscape and historical and geographic maps of the territory of Russia landscape and zonal features of the transition from appropriating economy to producing economy were determined. All the specifics of historical changes in the landscape use of the vast areas of Russia is caused by the variety of its landscape zones and the specifics of their constituent landscapes. Human economic activities as a factor of differentiation and development of landscapes became apparent almost in all landscape zones together with the emergence of the producing type of economy from the Aeneolithic-Bronze Age (Atlantic period) in the southern steppe regions (in the northern areas of the main centers of the producing economy) and from the Bronze Age in the forest areas. The emergence of the producing economy in the forest-steppe and steppe landscape zones on the territory of Russia is dated IV (Aeneolithic) - III (Early Bronze Age) millennium BC. It is from this period that on the European part of Russia and in Siberia the so-called Neolithic revolution begins. The use of copper and bronze axes helped to develop new areas for planting crops in the forest-steppe zone. In the forest-steppe zone swidden and lea tillage cultivation develops. In the steppe and forest-steppe Eurasia depending on the local landscape conditions two ways of producing economy with a predominance of cattle-breeding developed: nomadic cattle breeding and house cattle breeding with a significant influence of agriculture in the economy and long-term settlements. The steppe areas were completely dominated by the mobile nomadic herding, breeding cattle and small cattle. Along with the valley landscapes the interfluvial landscapes were also actively explored. Almost in all the steppe areas

  16. Comparison of Tillandsia usneoides (Spanish moss) water and leachate dynamics between urban and pristine barrier island maritime oak forests

    Science.gov (United States)

    Van Stan, J. T.; Stubbins, A.; Reichard, J. S.; Wright, K.; Jenkins, R. B.

    2013-12-01

    Epiphyte coverage on forest canopies can drastically alter the volume and chemical composition of rainwater reaching soils. Along subtropical and tropical coastlines Tillandisa usneoides L. (Spanish moss), in particular, can envelop urban and natural tree crowns. Several cities actively manage their 'moss' covered forest to enhance aesthetics in the most active tourist areas (e.g., Savannah GA, St. Augustine FL, Charleston SC). Since T. usneoides survives through atmospheric water and solute exchange from specialized trichomes (scales), we hypothesized that T. usneoides water storage dynamics and leachate chemistry may be altered by exposure to this active urban atmosphere. 30 samples of T. usneoides from managed forests around the tourist center of Savannah, Georgia, USA were collected to compare with 30 samples from the pristine maritime live oak (Quercus virginiana Mill.) forests of a nearby undeveloped barrier island (St. Catherines Island, Georgia, USA). Maximum water storage capacities were determined via submersion (for all 60 samples) along with dissolved ion (DI) and organic matter (DOM) concentrations (for 15 samples each) after simulated throughfall generation using milliQ ultrapurified water. Further, DOM quality was evaluated (for 15 samples each) using absorbance and fluorescence spectroscopy (EEMS). Results show significant alterations to water storage dynamics, DI, DOM, and DOM quality metrics under urban atmospheric conditions, suggesting modified C and water cycling in urban forest canopies that may, in turn, influence intrasystem nutrient cycles in urban catchment soils or streams via runoff.

  17. Advances in forest hydrology: challenges and opportunities

    Science.gov (United States)

    D.M. Amatya; K.R. Douglas-Mankin; T.M. Williams; R.W. Skaggs; J.E. Nettles

    2011-01-01

    Forests are an integral component of the landscape, and maintaining their functional integrity is fundamental for the sustainability of ecosystems and societies alike. Tools, innovations, and practices, analogous to those developed to improve agricultural production and quantify environmental impacts, are needed to ensure the sustainability of these forested landscapes...

  18. Bioversity in Multi-Ownership Landscapes

    Science.gov (United States)

    Thomas A. Spies; K. Norman Johnson

    2005-01-01

    Many landscapes in the West are a patchwork of federal, state, forest industry and nonindustrial private forestlands. Each of these owners has a particular set of goals and practices that shapes the structure, species and dynamics of forest vegetation on their lands. Consequently, the pattern of landownership can have a major effect on the distribution of plants and...

  19. Forest health in a changing world.

    Science.gov (United States)

    Pautasso, Marco; Schlegel, Markus; Holdenrieder, Ottmar

    2015-05-01

    Forest pathology, the science of forest health and tree diseases, is operating in a rapidly developing environment. Most importantly, global trade and climate change are increasing the threat to forest ecosystems posed by new diseases. Various studies relevant to forest pathology in a changing world are accumulating, thus making it necessary to provide an update of recent literature. In this contribution, we summarize research at the interface between forest pathology and landscape ecology, biogeography, global change science and research on tree endophytes. Regional outbreaks of tree diseases are requiring interdisciplinary collaboration, e.g. between forest pathologists and landscape ecologists. When tree pathogens are widely distributed, the factors determining their broad-scale distribution can be studied using a biogeographic approach. Global change, the combination of climate and land use change, increased pollution, trade and urbanization, as well as invasive species, will influence the effects of forest disturbances such as wildfires, droughts, storms, diseases and insect outbreaks, thus affecting the health and resilience of forest ecosystems worldwide. Tree endophytes can contribute to biological control of infectious diseases, enhance tolerance to environmental stress or behave as opportunistic weak pathogens potentially competing with more harmful ones. New molecular techniques are available for studying the complete tree endobiome under the influence of global change stressors from the landscape to the intercontinental level. Given that exotic tree diseases have both ecologic and economic consequences, we call for increased interdisciplinary collaboration in the coming decades between forest pathologists and researchers studying endophytes with tree geneticists, evolutionary and landscape ecologists, biogeographers, conservation biologists and global change scientists and outline interdisciplinary research gaps.

  20. Empirical relationships between tree fall and landscape-level amounts of logging and fire.

    Science.gov (United States)

    Lindenmayer, David B; Blanchard, Wade; Blair, David; McBurney, Lachlan; Stein, John; Banks, Sam C

    2018-01-01

    Large old trees are critically important keystone structures in forest ecosystems globally. Populations of these trees are also in rapid decline in many forest ecosystems, making it important to quantify the factors that influence their dynamics at different spatial scales. Large old trees often occur in forest landscapes also subject to fire and logging. However, the effects on the risk of collapse of large old trees of the amount of logging and fire in the surrounding landscape are not well understood. Using an 18-year study in the Mountain Ash (Eucalyptus regnans) forests of the Central Highlands of Victoria, we quantify relationships between the probability of collapse of large old hollow-bearing trees at a site and the amount of logging and the amount of fire in the surrounding landscape. We found the probability of collapse increased with an increasing amount of logged forest in the surrounding landscape. It also increased with a greater amount of burned area in the surrounding landscape, particularly for trees in highly advanced stages of decay. The most likely explanation for elevated tree fall with an increasing amount of logged or burned areas in the surrounding landscape is change in wind movement patterns associated with cutblocks or burned areas. Previous studies show that large old hollow-bearing trees are already at high risk of collapse in our study area. New analyses presented here indicate that additional logging operations in the surrounding landscape will further elevate that risk. Current logging prescriptions require the protection of large old hollow-bearing trees on cutblocks. We suggest that efforts to reduce the probability of collapse of large old hollow-bearing trees on unlogged sites will demand careful landscape planning to limit the amount of timber harvesting in the surrounding landscape.

  1. Comparing the landscape level perceptual abilities of forest sciurids in fragmented agricultural landscapes*

    Science.gov (United States)

    Patrick A. Zollner

    2000-01-01

    Perceptual range is the maximum distance from which an animal can perceive the presence of remote landscape elements such as patches of habitat. Such perceptual abilities are of interest because they influence the probability that an animal will successfully disperse to a new patch in a landscape. Furthermore, understanding how perceptual range differs between species...

  2. Size and frequency of natural forest disturbances and the Amazon forest carbon balance

    Science.gov (United States)

    F.D.B. Espirito-Santo; M. Gloor; M. Keller; Y. Malhi; S. Saatchi; B. Nelson; R.C. Oliveira Junior; C. Pereira; J. Lloyd; S. Frolking; M. Palace; Y.E. Shimabukuro; V. Duarte; A. Monteagudo Mendoza; G. Lopez-Gonzalez; T.R. Baker; T.R. Feldpausch; R.J.W. Brienen; G.P. Asner; D.S. Boyd; O.L. Phillips

    2014-01-01

    Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of disturbance events in natural forests from 0.01 ha to 2,651 ha size throughout Amazonia using a novel...

  3. Spatial-temporal changes in trees outside forests

    DEFF Research Database (Denmark)

    Novotný, M.; Skaloš, J.; Plieninger, T.

    2017-01-01

    Trees outside forests act as ecologically valuable elements in the rural landscapes of Europe. This study proposes a new classification system for trees outside forest elements based on the shape and size of the patches and their location in fields. Using this system, the study evaluates the spat......Trees outside forests act as ecologically valuable elements in the rural landscapes of Europe. This study proposes a new classification system for trees outside forest elements based on the shape and size of the patches and their location in fields. Using this system, the study evaluates...

  4. Biodiversity conservation values of fragmented communally reserved forests, managed by indigenous people, in a human-modified landscape in Borneo.

    Science.gov (United States)

    Takeuchi, Yayoi; Soda, Ryoji; Diway, Bibian; Kuda, Tinjan Ak; Nakagawa, Michiko; Nagamasu, Hidetoshi; Nakashizuka, Tohru

    2017-01-01

    This study explored the conservation values of communally reserved forests (CRFs), which local indigenous communities deliberately preserve within their area of shifting cultivation. In the current landscape of rural Borneo, CRFs are the only option for conservation because other forested areas have already been logged or transformed into plantations. By analyzing their alpha and beta diversity, we investigated how these forests can contribute to restore regional biodiversity. Although CRFs were fragmented and some had been disturbed in the past, their tree species diversity was high and equivalent to that of primary forests. The species composition of intact forests and forests disturbed in the past did not differ clearly, which indicates that past logging was not intensive. All CRFs contained unique and endangered species, which are on the IUCN Red List, Sarawak protected plants, or both. On the other hand, the forest size structure differed between disturbed and intact CRFs, with the disturbed CRFs consisting of relatively smaller trees. Although the beta diversity among CRFs was also high, we found a high contribution of species replacement (turnover), but not of richness difference, in the total beta diversity. This suggests that all CRFs have a conservation value for restoring the overall regional biodiversity. Therefore, for maintaining the regional species diversity and endangered species, it would be suitable to design a conservation target into all CRFs.

  5. Fragmentation of Continental United States Forests

    Science.gov (United States)

    Kurt H. Riitters; James D. Wickham; Robert V. O' Neill; K. Bruce Jones; Elizabeth R. Smith; John W. Coulston; Timothy G. Wade; Jonathan H. Smith

    2002-01-01

    We report a multiple-scale analysis of forest fragmentation based on 30-m (0.09 ha pixel-1) land- cover maps for the conterminous United States. Each 0.09-ha unit of forest was classified according to fragmentation indexes measured within the surrounding landscape, for five landscape sizes including 2.25, 7.29, 65.61, 590.49, and 5314.41 ha....

  6. Associations between forest characteristics and socio-economic development: a case study from Portugal.

    Science.gov (United States)

    Ribeiro, Sónia Carvalho; Lovett, Andrew

    2009-07-01

    The integration of socio-economic and environmental objectives is a major challenge in developing strategies for sustainable landscapes. We investigated associations between socio-economic variables, landscape metrics and measures of forest condition in the context of Portugal. The main goals of the study were to 1) investigate relationships between forest conditions and measures of socio-economic development at national and regional scales, 2) test the hypothesis that a systematic variation in forest landscape metrics occurs according to the stage of socio-economic development and, 3) assess the extent to which landscape metrics can inform strategies to enhance forest sustainability. A ranking approach and statistical techniques such as Principal Component Analysis were used to achieve these objectives. Relationships between socio-economic characteristics, landscape metrics and measures of forest condition were only significant in the regional analysis of municipalities in Northern Portugal. Landscape metrics for different tree species displayed significant variations across socio-economic groups of municipalities and these differences were consistent with changes in characteristics suggested by the forest transition model. The use of metrics also helped inform place-specific strategies to improve forest management, though it was also apparent that further work was required to better incorporate differences in forest functions into sustainability planning.

  7. Selection of roosting habitat by forest bats in a diverse forested landscape

    Science.gov (United States)

    Roger W. Perry; Ronald E. Thill; David M. Leslie

    2007-01-01

    Many studies of roost selection by forest-dwelling bats have concentrated on microhabitat surrounding roosts without providing forest stand level preferences of bats; thus, those studies have provided only part of the information needed by managers. We evaluated diurnal summer roost selection by the bat community at the forest-stand level in a diversely forested...

  8. Landscape structure shapes habitat finding ability in a butterfly.

    Directory of Open Access Journals (Sweden)

    Erik Öckinger

    Full Text Available Land-use intensification and habitat fragmentation is predicted to impact on the search strategies animals use to find habitat. We compared the habitat finding ability between populations of the speckled wood butterfly (Pararge aegeria L. from landscapes that differ in degree of habitat fragmentation. Naïve butterflies reared under standardized laboratory conditions but originating from either fragmented agricultural landscapes or more continuous forested landscapes were released in the field, at fixed distances from a target habitat patch, and their flight paths were recorded. Butterflies originating from fragmented agricultural landscapes were better able to find a woodlot habitat from a distance compared to conspecifics from continuous forested landscapes. To manipulate the access to olfactory information, a subset of individuals from both landscape types were included in an antennae removal experiment. This confirmed the longer perceptual range for butterflies from agricultural landscapes and indicated the significance of both visual and olfactory information for orientation towards habitat. Our results are consistent with selection for increased perceptual range in fragmented landscapes to reduce dispersal costs. An increased perceptual range will alter the functional connectivity and thereby the chances for population persistence for the same level of structural connectivity in a fragmented landscape.

  9. Landscape Structure Shapes Habitat Finding Ability in a Butterfly

    Science.gov (United States)

    Öckinger, Erik; Van Dyck, Hans

    2012-01-01

    Land-use intensification and habitat fragmentation is predicted to impact on the search strategies animals use to find habitat. We compared the habitat finding ability between populations of the speckled wood butterfly (Pararge aegeria L.) from landscapes that differ in degree of habitat fragmentation. Naïve butterflies reared under standardized laboratory conditions but originating from either fragmented agricultural landscapes or more continuous forested landscapes were released in the field, at fixed distances from a target habitat patch, and their flight paths were recorded. Butterflies originating from fragmented agricultural landscapes were better able to find a woodlot habitat from a distance compared to conspecifics from continuous forested landscapes. To manipulate the access to olfactory information, a subset of individuals from both landscape types were included in an antennae removal experiment. This confirmed the longer perceptual range for butterflies from agricultural landscapes and indicated the significance of both visual and olfactory information for orientation towards habitat. Our results are consistent with selection for increased perceptual range in fragmented landscapes to reduce dispersal costs. An increased perceptual range will alter the functional connectivity and thereby the chances for population persistence for the same level of structural connectivity in a fragmented landscape. PMID:22870227

  10. The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Miguel O. [NASA Goddard Space Flight Center; Schaaf, Crystal [Boston University; Woodcock, Curtis E. [Boston University; Strahler, Alan [Boston University; Yang, Xiaoyuan [Boston University; Braswell, Rob H. [Complex Systems Research Center, Durham, NH; Curtis, Peter [Ohio State University, The, Columbus; Davis, Kenneth J. [Pennsylvania State University; Dragoni, Danilo [Indiana University; Goulden, Michael L. [University of California, Irvine; Gu, Lianhong [ORNL; Hollinger, David Y [ORNL; Meyers, Tilden P. [NOAA, Oak Ridge, TN; Wilson, Tim B. [NOAA; Munger, J. William [Harvard University; Wofsy, Steve [Harvard University; Privette, Jeffrey L. [NOAA; Richardson, Andrew D. [Harvard University

    2009-11-01

    A new methodology for establishing the spatial representativeness of tower albedo measurements that are routinely used in validation of satellite retrievals from global land surface albedo and reflectance anisotropy products is presented. This method brings together knowledge of the intrinsic biophysical properties of a measurement site, and the surrounding landscape to produce a number of geostatistical attributes that describe the overall variability, spatial extent, strength of the spatial correlation, and spatial structure of surface albedo patterns at separate seasonal periods throughout the year. Variogram functions extracted from Enhanced Thematic Mapper Plus (ETM+) retrievals of surface albedo using multiple spatial and temporal thresholds were used to assess the degree to which a given point (tower) measurement is able to capture the intrinsic variability of the immediate landscape extending to a satellite pixel. A validation scheme was implemented over a wide range of forested landscapes, looking at both deciduous and coniferous sites, from tropical to boreal ecosystems. The experiment focused on comparisons between tower measurements of surface albedo acquired at local solar noon and matching retrievals from the MODerate Resolution Imaging Spectroradiometer (MODIS) (Collection V005) Bidirectional Reflectance Distribution Function (BRDF)/albedo algorithm. Assessments over a select group of field stations with comparable landscape features and daily retrieval scenarios further demonstrate the ability of this technique to identify measurement sites that contain the intrinsic spatial and seasonal features of surface albedo over sufficiently large enough footprints for use in modeling and remote sensing studies. This approach, therefore, improves our understanding of product uncertainty both in terms of the representativeness of the field data and its relationship to the larger satellite pixel.

  11. Fuels planning: science synthesis and integration; forest structure and fire hazard fact sheet 03: visualizing forest structure and fuels

    Science.gov (United States)

    Rocky Mountain Research Station USDA Forest Service

    2004-01-01

    The software described in this fact sheet provides managers with tools for visualizing forest and fuels information. Computer-based landscape simulations can help visualize stand and landscape conditions and the effects of different management treatments and fuel changes over time. These visualizations can assist forest planning by considering a range of management...

  12. The Importance of Landscape Elements for Bat Activity and Species Richness in Agricultural Areas.

    Directory of Open Access Journals (Sweden)

    Olga Heim

    Full Text Available Landscape heterogeneity is regarded as a key factor for maintaining biodiversity and ecosystem function in production landscapes. We investigated whether grassland sites at close vicinity to forested areas are more frequently used by bats. Considering that bats are important consumers of herbivorous insects, including agricultural pest, this is important for sustainable land management. Bat activity and species richness were assessed using repeated monitoring from May to September in 2010 with acoustic monitoring surveys on 50 grassland sites in the Biosphere Reserve Schorfheide-Chorin (North-East Germany. Using spatial analysis (GIS, we measured the closest distance of each grassland site to potentially connecting landscape elements (e.g., trees, linear vegetation, groves, running and standing water. In addition, we assessed the distance to and the percent land cover of forest remnants and urban areas in a 200 m buffer around the recording sites to address differences in the local landscape setting. Species richness and bat activity increased significantly with higher forest land cover in the 200 m buffer and at smaller distance to forested areas. Moreover, species richness increased in proximity to tree groves. Larger amount of forest land cover and smaller distance to forest also resulted in a higher activity of bats on grassland sites in the beginning of the year during May, June and July. Landscape elements near grassland sites also influenced species composition of bats and species richness of functional groups (open, edge and narrow space foragers. Our results highlight the importance of forested areas, and suggest that agricultural grasslands that are closer to forest remnants might be better buffered against outbreaks of agricultural pest insects due to higher species richness and higher bat activity. Furthermore, our data reveals that even for highly mobile species such as bats, a very dense network of connecting elements within the

  13. An Overview of Hydrologic Studies at Center for Forested Wetlands Research, USDA Forest Service

    Science.gov (United States)

    Devendra M. Amatya; Carl C. Trettin; R. Wayne Skaggs; Timothy J. Callahan; Ge Sun; Masato Miwa; John E. Parsons

    2004-01-01

    Managing forested wetland landscapes for water quality improvement and productivity requires a detailed understanding of functional linkages between ecohydrological processes and management practices. Studies are being conducted at Center for Forested Wetlands Research (CFWR), USDA Forest Service to understand the fundamental hydrologic and biogeochemical processes...

  14. Landscape Transformation in Tropical Latin America: Assessing Trends and Policy Implications for REDD+

    Directory of Open Access Journals (Sweden)

    Maria del Carmen Vera Diaz

    2010-12-01

    Full Text Available Important transformations are underway in tropical landscapes in Latin America with implications for economic development and climate change. Landscape transformation is driven not only by national policies and markets, but also by global market dynamics associated with an increased role for transnational traders and investors. National and global trends affect a disparate number of social, political and economic interactions taking place at the local level, which ultimately shapes land-use and socio-economic change. This paper reviews five different trajectories of landscape change in tropical Latin America, and discusses their implications for development and conservation: (1 Market-driven growth of agribusiness; (2 expansion and modernization of traditional cattle ranching; (3 slow growth of peasant agriculture; (4 logging in production forest frontiers; and (5 resurgence of agro-extractive economies. Contrasting trade-offs between economic development and forest conservation emerge across these landscapes, calling for nuanced policy responses to manage them in the context of climate change. This discussion sets the background to assess how reduction of emissions from deforestation and forest degradation and enhancing carbon stocks (REDD+ aims should be better aligned with current landscape trajectories and associated actors to better address climate-change mitigation in forest landscapes with effective and equitable outcomes.

  15. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    Science.gov (United States)

    Costanza, Jennifer; Abt, Robert C.; McKerrow, Alexa; Collazo, Jaime

    2015-01-01

    We linked state-and-transition simulation models (STSMs) with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS) was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  16. Linking state-and-transition simulation and timber supply models for forest biomass production scenarios

    Directory of Open Access Journals (Sweden)

    Jennifer K. Costanza

    2015-03-01

    Full Text Available We linked state-and-transition simulation models (STSMs with an economics-based timber supply model to examine landscape dynamics in North Carolina through 2050 for three scenarios of forest biomass production. Forest biomass could be an important source of renewable energy in the future, but there is currently much uncertainty about how biomass production would impact landscapes. In the southeastern US, if forests become important sources of biomass for bioenergy, we expect increased land-use change and forest management. STSMs are ideal for simulating these landscape changes, but the amounts of change will depend on drivers such as timber prices and demand for forest land, which are best captured with forest economic models. We first developed state-and-transition model pathways in the ST-Sim software platform for 49 vegetation and land-use types that incorporated each expected type of landscape change. Next, for the three biomass production scenarios, the SubRegional Timber Supply Model (SRTS was used to determine the annual areas of thinning and harvest in five broad forest types, as well as annual areas converted among those forest types, agricultural, and urban lands. The SRTS output was used to define area targets for STSMs in ST-Sim under two scenarios of biomass production and one baseline, business-as-usual scenario. We show that ST-Sim output matched SRTS targets in most cases. Landscape dynamics results indicate that, compared with the baseline scenario, forest biomass production leads to more forest and, specifically, more intensively managed forest on the landscape by 2050. Thus, the STSMs, informed by forest economics models, provide important information about potential landscape effects of bioenergy production.

  17. Analyzing landscape changes in the Bafa Lake Nature Park of Turkey using remote sensing and landscape structure metrics.

    Science.gov (United States)

    Esbah, Hayriye; Deniz, Bulent; Kara, Baris; Kesgin, Birsen

    2010-06-01

    Bafa Lake Nature Park is one of Turkey's most important legally protected areas. This study aimed at analyzing spatial change in the park environment by using object-based classification technique and landscape structure metrics. SPOT 2X (1994) and ASTER (2005) images are the primary research materials. Results show that artificial surfaces, low maqui, garrigue, and moderately high maqui covers have increased and coniferous forests, arable lands, permanent crop, and high maqui covers have decreased; coniferous forest, high maqui, grassland, and saline areas are in a disappearance stage of the land transformation; and the landscape pattern is more fragmented outside the park boundaries. The management actions should support ongoing vegetation regeneration, mitigate transformation of vegetation structure to less dense and discontinuous cover, control the dynamics at the agricultural-natural landscape interface, and concentrate on relatively low but steady increase of artificial surfaces.

  18. Longleaf pine forests and woodlands: old growth under fire!

    Science.gov (United States)

    Joan L. Walker

    1999-01-01

    The author discusses a once widespread forest type of the Southeast – longleaf pine dominated forests and woodlands. This system depends on fire – more or less frequent, and often of low intensity. Because human-mediated landscape fragmentation has drastically changed the behavior of fire on longleaf pine dominated landscapes, these forests and woodlands will never be...

  19. Landscape Dynamics on the Island of La Gonave, Haiti, 1990–2010

    Directory of Open Access Journals (Sweden)

    Lisa M. Kennedy

    2013-09-01

    Full Text Available The island of La Gonave lies northwest of Port-au-Prince and is representative of the subsistence Haitian lifestyle. Little is known about the land cover changes and conversion rates on La Gonave. Using Landsat images from 1990 to 2010, this research investigates landscape dynamics through image classification, change detection, and landscape pattern analysis. Five land cover classes were considered: Agriculture, Forest/Dense Vegetation (DV, Shrub, Barren/Eroded, and Nonforested Wetlands. Overall image classification accuracy was 87%. Results of land cover change analysis show that all major land cover types experienced substantial changes from 1990 to 2010. The area percent change was −39.7, −22.7, 87.4, and −7.0 for Agriculture, Forest/Dense Vegetation, Shrub, and Barren/Eroded. Landscape pattern analysis illustrated the encroachment of Shrub cover in core Forest/DV patches and the decline of Agricultural patch integrity. Agricultural abandonment, deforestation, and forest regrowth combined to generate a dynamic island landscape, resulting in higher levels of land cover fragmentation.

  20. Conserving tigers in working landscapes.

    Science.gov (United States)

    Chanchani, Pranav; Noon, Barry R; Bailey, Larissa L; Warrier, Rekha A

    2016-06-01

    Tiger (Panthera tigris) conservation efforts in Asia are focused on protected areas embedded in human-dominated landscapes. A system of protected areas is an effective conservation strategy for many endangered species if the network is large enough to support stable metapopulations. The long-term conservation of tigers requires that the species be able to meet some of its life-history needs beyond the boundaries of small protected areas and within the working landscape, including multiple-use forests with logging and high human use. However, understanding of factors that promote or limit the occurrence of tigers in working landscapes is incomplete. We assessed the relative influence of protection status, prey occurrence, extent of grasslands, intensity of human use, and patch connectivity on tiger occurrence in the 5400 km(2) Central Terai Landscape of India, adjacent to Nepal. Two observer teams independently surveyed 1009 km of forest trails and water courses distributed across 60 166-km(2) cells. In each cell, the teams recorded detection of tiger signs along evenly spaced trail segments. We used occupancy models that permitted multiscale analysis of spatially correlated data to estimate cell-scale occupancy and segment-scale habitat use by tigers as a function of management and environmental covariates. Prey availability and habitat quality, rather than protected-area designation, influenced tiger occupancy. Tiger occupancy was low in some protected areas in India that were connected to extensive areas of tiger habitat in Nepal, which brings into question the efficacy of current protection and management strategies in both India and Nepal. At a finer spatial scale, tiger habitat use was high in trail segments associated with abundant prey and large grasslands, but it declined as human and livestock use increased. We speculate that riparian grasslands may provide tigers with critical refugia from human activity in the daytime and thereby promote tiger occurrence

  1. Landscapes in transition

    NARCIS (Netherlands)

    Padfield, Rory; Drew, Simon; Syayuti, Khadijah; Page, Susan; Evers, Stephanie; Campos-Arceiz, Ahimsa; Kangayatkarasu, Nagulendran; Sayok, Alex; Hansen, Sune; Schouten, Greetje; Maulidia, Martha; Papargyropoulou, Effie; Tham, Mun Hou

    2016-01-01

    The recent Southeast Asian haze crisis has generated intense public scrutiny over the rate, methods and types of landscape change in the tropics. Debate has centred on the environmental impacts of large-scale agricultural expansion, particularly the associated loss of high carbon stock forest and

  2. Supplementing forest ecosystem health projects on the ground

    Science.gov (United States)

    Cathy Barbouletos; Lynette Z. Morelan

    1995-01-01

    Understanding the functions and processes of ecosystems is critical before implementing forest ecosystem health projects on the landscape. Silvicultural treatments such as thinning, prescribed fire, and reforestation can simulate disturbance regimes and landscape patterns that have regulated forest ecosystems for centuries. As land managers we need to understand these...

  3. Forest Fragmentation and Driving Forces in Yingkou, Northeastern China

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2017-03-01

    Full Text Available Forest fragmentation, the process of changing original large and intact forest patches into smaller and isolated areas, significantly influences the balance of surface physical environment, biodiversity, and species richness. Sufficient knowledge of forest fragmentation is necessary to maintain ecological balance and promote sustainable resource utilization. This study combines remote sensing, geographical information systems, and landscape metrics to assess forest fragmentation at landscape and pixel levels during different time periods (2000–2005, 2005–2010, and 2010–2015 in the Yingkou region. Spatial statistical analysis is also used to analyze the relationship between forest landscape fragmentation and its determinants (e.g., natural factors, socioeconomic factors, and proximity factors. Results show that forest patches became smaller, subdivided, and isolated during 2010–2015 at the total landscape level. Local changes occurred in the southwest of the study region or around the development area. Our data also indicate that shrinkage and subdivision were the main forest fragmentation processes during three times, and attrition became the main forest fragmentation process from 2010 to 2015. These changes were significantly influenced by natural factors (e.g., elevation and slope, proximity factors (e.g., distance to city and distance to province roads, and socioeconomic factors (e.g., gross domestic product. Results presented in this study provide valuable insights into the pattern and processes of forest fragmentation and present direct implications for the protection and reasonable utilization of forest resources.

  4. Tropes of Fear: the Impact of Globalization on Batek Religious Landscapes

    Directory of Open Access Journals (Sweden)

    Ivan Tacey

    2013-04-01

    Full Text Available The Batek are a forest and forest-fringe dwelling population numbering around 1,500 located in Peninsular Malaysia. Most Batek groups were mobile forest-dwelling foragers and collectors until the recent past. The Batek imbue the forest with religious significance that they inscribe onto the landscape through movement, everyday activities, storytelling, trancing and shamanic journeying. However, as processes of globalization transform Malaysian landscapes, many Batek groups have been deterritorialized and relocated to the forest fringes where they are often pressured into converting to world religions, particularly Islam. Batek religious beliefs and practices have been re-shaped by their increasing encounters with global flows of ideologies, technologies, objects, capital and people, as landscapes are opened up to development. This article analyzes the ways these encounters are incorporated into the fabric of the Batek’s religious world and how new objects and ideas have been figuratively and literally assimilated into their taboo systems and cosmology. Particular attention is paid to the impacts of globalization as expressed through tropes of fear.

  5. Reliability and precision of pellet-group counts for estimating landscape-level deer density

    Science.gov (United States)

    David S. deCalesta

    2013-01-01

    This study provides hitherto unavailable methodology for reliably and precisely estimating deer density within forested landscapes, enabling quantitative rather than qualitative deer management. Reliability and precision of the deer pellet-group technique were evaluated in 1 small and 2 large forested landscapes. Density estimates, adjusted to reflect deer harvest and...

  6. Conservation value and permeability of neotropical oil palm landscapes for orchid bees.

    Directory of Open Access Journals (Sweden)

    George Livingston

    Full Text Available The proliferation of oil palm plantations has led to dramatic changes in tropical landscapes across the globe. However, relatively little is known about the effects of oil palm expansion on biodiversity, especially in key ecosystem-service providing organisms like pollinators. Rapid land use change is exacerbated by limited knowledge of the mechanisms causing biodiversity decline in the tropics, particularly those involving landscape features. We examined these mechanisms by undertaking a survey of orchid bees, a well-known group of Neotropical pollinators, across forest and oil palm plantations in Costa Rica. We used chemical baits to survey the community in four regions: continuous forest sites, oil palm sites immediately adjacent to forest, oil palm sites 2 km from forest, and oil palm sites greater than 5 km from forest. We found that although orchid bees are present in all environments, orchid bee communities diverged across the gradient, and community richness, abundance, and similarity to forest declined as distance from forest increased. In addition, mean phylogenetic distance of the orchid bee community declined and was more clustered in oil palm. Community traits also differed with individuals in oil palm having shorter average tongue length and larger average geographic range size than those in the forest. Our results indicate two key features about Neotropical landscapes that contain oil palm: 1 oil palm is selectively permeable to orchid bees and 2 orchid bee communities in oil palm have distinct phylogenetic and trait structure compared to communities in forest. These results suggest that conservation and management efforts in oil palm-cultivating regions should focus on landscape features.

  7. CEPF Western Ghats Special Series: Meghamalai landscape : a biodiversity hotspot

    Directory of Open Access Journals (Sweden)

    S. Bhupathy

    2013-11-01

    Full Text Available The Meghamalai, also known as High Wavy Mountains, is located in the Theni Forest Division of Tamil Nadu, Western Ghats. The landscape is endowed with an array of vegetation types varying from dry (thorn forests in the eastern side to wet (evergreen forests on the western side due to wide elevation gradient (220-2000 m above sea level and varied rainfall pattern (wind ward and leeward zones. The composition and configuration of this landscape facilitates diverse species of vertebrates (18 species of fishes, 35 amphibians, 90 reptiles, 254 birds, 63 mammals. In the past, selected floral and faunal groups of Meghamalai have been sporadically surveyed by the British explorers. However, in-depth ecological studies on various biota have only been initiated in recent years by SACON and WILD, which highlighted the conservation importance of the area. It is hoped that the recently declared Meghamalai Wildlife Sanctuary encompassing a part of the landscape, and the proposal of the Srivilliputtur-Meghamalai Tiger Reserve, if realized, would help conserving the diverse biota of this landscape in the long run.

  8. Forest disturbance by an ecosystem engineer: beaver in boreal forest landscapes

    OpenAIRE

    Nummi, Petri; Kuuluvainen, Timo

    2013-01-01

    Natural disturbances are important for forest ecosystem dynamics and maintenance of biodiversity. In the boreal forest, large-scale disturbances such as wildfires and windstorms have been emphasized, while disturbance agents acting at smaller scales have received less attention. Especially in Europe beavers have long been neglected as forest disturbance agents because they were extirpated from most of their range centuries ago. However, now they are returning to many parts of their former dis...

  9. Adaptation of bird communities to farmland abandonment in a mountain landscape.

    Directory of Open Access Journals (Sweden)

    João Lopes Guilherme

    Full Text Available Widespread farmland abandonment has led to significant landscape transformations of many European mountain areas. These semi-natural multi-habitat landscapes are important reservoirs of biodiversity and their abandonment has important conservation implications. In multi-habitat landscapes the adaptation of communities depends on the differential affinity of the species to the available habitats. We use nested species-area relationships (SAR to model species richness patterns of bird communities across scales in a mountain landscape, in NW Portugal. We compare the performance of the classic-SAR and the countryside-SAR (i.e. multi-habitat models at the landscape scale, and compare species similarity decay (SSD at the regional scale. We find a considerable overlap of bird communities in the different land-uses (farmland, shrubland and oak forest at the landscape scale. Analysis of the classic and countryside SAR show that specialist species are strongly related to their favourite habitat. Farmland and shrubland have higher regional SSD compared to oak forests. However, this is due to the opportunistic use of farmlands by generalist birds. Forest specialists display significant regional turnover in oak forest. Overall, the countryside-SAR model had a better fit to the data showing that habitat composition determines species richness across scales. Finally, we use the countryside-SAR model to forecast bird diversity under four scenarios of land-use change. Farmland abandonment scenarios show little impact on bird diversity as the model predicts that the complete loss of farmland is less dramatic, in terms of species diversity loss, than the disappearance of native Galicio-Portuguese oak forest. The affinities of species to non-preferred habitats suggest that bird communities can adapt to land-use changes derived from farmland abandonment. Based on model predictions we argue that rewilding may be a suitable management option for many European mountain

  10. Perceptions of Post-Wildfire Landscape Change and Recovery

    Science.gov (United States)

    Kooistra, C. M.; Hall, T. E.; Paveglio, T.; Carroll, M.; Smith, A. M.

    2013-12-01

    Considering the dynamic nature of the earth and climate systems and the increasing potential for widespread forest disturbances, it is important to understand the implications of landscape changes, and perceptions of changes, on people's responses to forest disturbances. Understanding how people perceive landscape change over time following forest disturbances helps researchers, land managers, and community leaders identify important biophysical and social characteristics that influence the vulnerability of people who experience forest disturbances, as well as their responses to those disturbances. This poster describes people's perceptions of landscape change following a significant wildfire. The lightning ignited Dahl fire burned 12 miles southeast of Roundup, MT mostly on private land in the summer of June 2012. The fire burned approximately 22,000 acres and destroyed 73 residences. We conducted interviews in the summer of 2013 with more than 40 residents, land managers, emergency personnel, and other stakeholders. While interviews covered several topics, this poster focuses on responses to questions regarding perceptions of short- and long-term landscape change after the fire, including both social and biophysical perspectives. Interviews revealed that people's understanding of the role of wildfires as a natural ecosystem process, as well as their connections with the landscape (i.e., sense of place), were important factors that influenced their perceptions of landscape change after the fire. Many respondents discussed the landscape ';recovering' to pre-fire conditions in longer-term timeframes, such as ';multiple generations.' They often referenced previous wildfires, the Hawk Creek fire (1984) and the Majeras fire (2006), by explaining how parts of the landscape affected by the Dahl fire might compare to certain areas of the previous fires. Variations in recovery expectations were often based on perceptions of the severity of the fire (especially temperature

  11. Developments in strategic landscape monitoring for the Nordic countries

    DEFF Research Database (Denmark)

    Landscape plays an increasingly relevant and prominent role in the protection and mangement of the Earth's terrestrial environments and ecosystems, including the diverse forested, agricultural, wilderness and build-up landscapes within the Nordic countries. However to be meaningful in the Informa...

  12. Modelling the impact of forest loss on shallow landslide sediment yield, Ijuez river catchment, Spanish Pyrenees

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The SHETRAN model for simulating the sediment yield arising from shallow landslides at the scale of a river catchment was applied to the 45-km2 Ijuez catchment in the central Spanish Pyrenees, to investigate the effect of loss of forest cover on landslide and debris flow incidence and on catchment sediment yield. The application demonstrated how such a model, with a large number of parameters to be evaluated, can be used even when directly measured data are not available: rainfall and discharge time series were generated by reference to other local records and data providing the basis for a soil map were obtained by a short field campaign. Uncertainty bounds for the outputs were determined as a function of the uncertainty in the values of key model parameters. For a four-year period and for the existing forested state of the catchment, a good ability to simulate the observed long term spatial distribution of debris flows (represented by a 45-year inventory and to determine catchment sediment yield within the range of regional observations was demonstrated. The lower uncertainty bound on simulated landslide occurrence approximated the observed annual rate of landsliding and suggests that landslides provide a relatively minor proportion of the total sediment yield, at least in drier years. A scenario simulation in which the forest cover was replaced by grassland indicated an increase in landsliding but a decrease in the number of landslides which evolve into debris flows and, at least for drier years, a reduction in sediment delivery to the channel network.

  13. Accounting for biomass carbon stock change due to wildfire in temperate forest landscapes in Australia.

    Science.gov (United States)

    Keith, Heather; Lindenmayer, David B; Mackey, Brendan G; Blair, David; Carter, Lauren; McBurney, Lachlan; Okada, Sachiko; Konishi-Nagano, Tomoko

    2014-01-01

    Carbon stock change due to forest management and disturbance must be accounted for in UNFCCC national inventory reports and for signatories to the Kyoto Protocol. Impacts of disturbance on greenhouse gas (GHG) inventories are important for many countries with large forest estates prone to wildfires. Our objective was to measure changes in carbon stocks due to short-term combustion and to simulate longer-term carbon stock dynamics resulting from redistribution among biomass components following wildfire. We studied the impacts of a wildfire in 2009 that burnt temperate forest of tall, wet eucalypts in south-eastern Australia. Biomass combusted ranged from 40 to 58 tC ha(-1), which represented 6-7% and 9-14% in low- and high-severity fire, respectively, of the pre-fire total biomass carbon stock. Pre-fire total stock ranged from 400 to 1040 tC ha(-1) depending on forest age and disturbance history. An estimated 3.9 TgC was emitted from the 2009 fire within the forest region, representing 8.5% of total biomass carbon stock across the landscape. Carbon losses from combustion were large over hours to days during the wildfire, but from an ecosystem dynamics perspective, the proportion of total carbon stock combusted was relatively small. Furthermore, more than half the stock losses from combustion were derived from biomass components with short lifetimes. Most biomass remained on-site, although redistributed from living to dead components. Decomposition of these components and new regeneration constituted the greatest changes in carbon stocks over ensuing decades. A critical issue for carbon accounting policy arises because the timeframes of ecological processes of carbon stock change are longer than the periods for reporting GHG inventories for national emissions reductions targets. Carbon accounts should be comprehensive of all stock changes, but reporting against targets should be based on human-induced changes in carbon stocks to incentivise mitigation activities.

  14. Wildfire ash: its production and hydro-eco-geomorphic effects in forested landscapes

    Science.gov (United States)

    Doerr, S. H.; Bodi, M.; Santin, C.; Balfour, V.; Woods, S.; Mataix-Solera, J.; Cerda, A.; Shakesby, R.

    2012-12-01

    Fire, whether ignited naturally or by humans, is one of the most important disturbance agents in many of the world's forested ecosystems. Amongst its direct consequences is the deposition of a range of solid and largely powdery residues on the ground consisting of charred organic material including charcoal and residual mineral material. This fragile 'ash' layer can be removed in large quantities from hillslopes within days by wind or water erosion, with the latter facilitating its transfer to the hydrological system. Probably as a result of its ephemeral nature and not being soil, vegetation or litter, ash has seen limited attention in studies on hydrological impacts of wildfire. Those few studies available show that ash can substantially affect the hydrological system. When present on hillslopes as a water-absorbent layer, it can reduce surface runoff, protect soil against rainsplash erosion, and its leachates can reportedly reduce soil erodibility by promoting flocculation of dispersed clays. In contrast, however, ash can also increase surface runoff by blocking soil pores or by forming a crust. Furthermore, ash is thought capable of promoting debris flows. Its net effect probably depends on the nature of the ash and soil including their respective water repellency levels, the pore size distribution of the soil, and general terrain and rainfall characteristics. Being very mobile, ash can be the source of substantial organic and inorganic sediment inputs, and of solute influxes into the fluvial system. These can affect water quality sometimes with detrimental effects on aquatic organisms and domestic water supply. This presentation aims to provide an overview of the current knowledge base regarding the production and potential effects of wildfire ash on the hydrological system in and beyond forested landscapes..The late Scott Woods examining a thick ash layer following a severe fire in a conifer forest. Montana, USA.

  15. Key processes at the stand to landscape scale

    International Nuclear Information System (INIS)

    Perry, D.A.

    1991-01-01

    The smooth transition from one mature community type to another during climate change depends on the rate of climate change, the speed of migration, and the stability of extant communities as they become increasingly maladapted to local climates. The expected increase in natural disturbances will probably be the most important factor influencing forests over the next century, and has the potential to convert many forests to early successional, perhaps weedy vegetation. Protecting key structures and processes at both the stand and landscape scale will be critically important to easing the transition from one mature forest type to another and preventing site capture by weeds. Two general steps are necessary at the landscape scale: maintain migration corridors, and promote landscape patterns that dampen, rather than magnify, the spread of disturbances. At the stand level, it will be important to protect photosynthetic capacity and soil fertility. Steps to accomplish these goals include: protection of habitats required by natural enemies of forest pests; maintenance or restoration of natural biological diversity; maintenance or restoration of individual tree vigor through practices such as aggressive thinning; and moving from clearcutting to shelterwoods and/or group selections, thereby keeping some cover of mature green trees on sites at all times. 28 refs

  16. COMPARATIVE ANALYSIS OF INDICATORS OBTAINED BY CORINELAND COVER METHODOLOGY FOR SUSTAINABLE USE OF FOREST ECOSYSTEMS

    Directory of Open Access Journals (Sweden)

    Slaviša Popović

    2015-07-01

    Full Text Available Serbian Environmental Protection Agency followed international and national indicators to do monitoring of forested landscape area for the period 1990-2000. Based on the data obtained by Corine Land Cover methodology following the indicators like Forest area, Forested landscape, Forest land and Forest and semi natural area, analysis was done. The forested landscape indicators analysis helped trends monitoring during the period from 1990 - 2000 year. Dynamic of forested area changes could have direct impact on the practical implementation of indicators. Indicator Forest area can be used in planning sustainable use of forests. Recorded growth rates value in 2000year, compared to the 1990th is 0.296%. Indicator Forested landscape increase for 0.186% till 2000 year, while the indicator Forested Land recorded value growth rate of 0.193%. Changes in rates of those indicators can be used in the future for “emission trading”. The smallest increment of rate change of 0.1% was recorded in indicator Forests and semi natural area. Information given by this indicator can be used for monitoring habitats in high mountain areas.

  17. Bringing soil science to society after catastrophic events such as big forest fires. Some examples of field approaches in Spanish Mediterranean areas

    Science.gov (United States)

    Mataix-Solera, Jorge; Arcenegui, Vicky; Cerdà, Artemi; García-Orenes, Fuensanta; Moltó, Jorge; Chrenkovà, Katerina; Torres, Pilar; Lozano, Elena; Jimenez-Pinilla, Patricia; Jara-Navarro, Ana B.

    2015-04-01

    Forest fires must be considered a natural factor in Mediterranean ecosystems, but the changes in land use in the last six decades have altered its natural regime making them an ongoing environmental problem. Some big forest fires (> 500 has) also have a great socio-economical impact on human population. Our research team has experience of 20 years studying the effects of forest fires on soil properties, their recovery after fire and the impact of some post-fire management treatments. In this work we want to show our experience of how to transfer part of our knowledge to society after two catastrophic events of forest fires in the Alicante Province (E Spain). Two big forest fires: one in "Sierra de Mariola (Alcoi)" and other in "Montgó Natural Park (Javea-Denia)" occurred in in July 2012 and September 2014 respectivelly, and as consequence a great impact was produced on the populations of nearby affected villages. Immediatelly, some groups were formed through social networks with the aim of trying to help recover the affected areas as soon as possible. Usually, society calls for early reforestation and this preassure on forest managers and politicians can produce a response with a greater impact on fire-affected area than the actual fire. The soil is a fragile ecosystem after forest fire, and the situation after fire can vary greatly depending on many factors such as fire severity, previous history of fire in the area, soil type, topography, etc. An evaluation of the site to make the best decision for recovery of the area, protecting the soil and avoiding degradation of the ecosystem is necessary. In these 2 cases we organized some field activities and conferences to give society knowledge of how soil is affected by forest fires, and what would be the best post-fire management depending on how healthy the soil is and the vegetation resilience after fire and our expectations for a natural recovery. The application of different types of mulch in vulnerable areas, the

  18. Creating a geodesign syllabus for landscape architecture in Denmark

    DEFF Research Database (Denmark)

    Stysiak, Aleksander Andrzej; Nielsen, Søren Zebitz; Hare, Richard

    2016-01-01

    Geodesign provides a conceptual framework through which to understand relationships between geoscience and design. This article takes its point of departure from the merger of the Departments of Geography and Geology and Forest, Landscape and Planning at the University of Copenhagen, and the subs......Geodesign provides a conceptual framework through which to understand relationships between geoscience and design. This article takes its point of departure from the merger of the Departments of Geography and Geology and Forest, Landscape and Planning at the University of Copenhagen...

  19. Collaborative restoration effects on forest structure in ponderosa pine-dominated forests of Colorado

    Science.gov (United States)

    Jeffery B. Cannon; Kevin J. Barrett; Benjamin M. Gannon; Robert N. Addington; Mike A. Battaglia; Paula J. Fornwalt; Gregory H. Aplet; Antony S. Cheng; Jeffrey L. Underhill; Jennifer S. Briggs; Peter M. Brown

    2018-01-01

    In response to large, severe wildfires in historically fire-adapted forests in the western US, policy initiatives, such as the USDA Forest Service’s Collaborative Forest Landscape Restoration Program (CFLRP), seek to increase the pace and scale of ecological restoration. One required component of this program is collaborative adaptive management, in which monitoring...

  20. Private forests, housing growth, and America’s water supply: A report from the Forests on the Edge and Forests to Faucets Projects

    Science.gov (United States)

    M. H. Mockrin; R. L. Lilja; E. Weidner; S. M. Stein; M. A. Carr

    2014-01-01

    America’s private forests provide a vast array of public goods and services, including abundant, clean surface water. Forest loss and development can affect water quality and quantity when forests are removed and impervious surfaces, such as paved roads, spread across the landscape. We rank watersheds across the conterminous United States according to the contributions...

  1. Recovery of carbon pools a decade after wildfire in black spruce forests of interior Alaska: effects of soil texture and landscape position

    Science.gov (United States)

    Gregory P. Houle; Evan S. Kane; Eric S. Kasischke; Carolyn M. Gibson; Merritt R. Turetsky

    2017-01-01

    We measured organic-layer (OL) recovery and carbon stocks in dead woody debris a decade after wildfire in black spruce (Picea mariana (Mill.) B.S.P.) forests of interior Alaska. Previous study at these research plots has shown the strong role that landscape position plays in governing the proportion of OL consumed during fire and revegetation after...

  2. Forest diversity, climate change and forest fires in the Mediterranean region of Turkey.

    Science.gov (United States)

    Ozturk, Munir; Gucel, Salih; Kucuk, Mahir; Sakcali, Serdal

    2010-01-01

    This paper reviews the forest resources in Turkey in the light of published literature and summarises extensive fieldwork undertaken in the Mediterranean phytogeograhical region of Turkey. The issues of landscape change and the associated drivers are addressed and the threats to the forest diversity are considered. It notes the impacts of climate change and forest fires and attemepts have been made to put forth future options for sustainable forest development.

  3. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes.

    Directory of Open Access Journals (Sweden)

    Renata Pardini

    Full Text Available Ecological systems are vulnerable to irreversible change when key system properties are pushed over thresholds, resulting in the loss of resilience and the precipitation of a regime shift. Perhaps the most important of such properties in human-modified landscapes is the total amount of remnant native vegetation. In a seminal study Andrén proposed the existence of a fragmentation threshold in the total amount of remnant vegetation, below which landscape-scale connectivity is eroded and local species richness and abundance become dependent on patch size. Despite the fact that species patch-area effects have been a mainstay of conservation science there has yet to be a robust empirical evaluation of this hypothesis. Here we present and test a new conceptual model describing the mechanisms and consequences of biodiversity change in fragmented landscapes, identifying the fragmentation threshold as a first step in a positive feedback mechanism that has the capacity to impair ecological resilience, and drive a regime shift in biodiversity. The model considers that local extinction risk is defined by patch size, and immigration rates by landscape vegetation cover, and that the recovery from local species losses depends upon the landscape species pool. Using a unique dataset on the distribution of non-volant small mammals across replicate landscapes in the Atlantic forest of Brazil, we found strong evidence for our model predictions--that patch-area effects are evident only at intermediate levels of total forest cover, where landscape diversity is still high and opportunities for enhancing biodiversity through local management are greatest. Furthermore, high levels of forest loss can push native biota through an extinction filter, and result in the abrupt, landscape-wide loss of forest-specialist taxa, ecological resilience and management effectiveness. The proposed model links hitherto distinct theoretical approaches within a single framework

  4. Forest, trees and agroforestry

    DEFF Research Database (Denmark)

    Rahman, Syed Ajijur; Foli, Samson; Al Pavel, Muha Abdullah

    2015-01-01

    Scientific community is concerned to address contemporary issues of food production and conserve tropical forests that support the livelihoods of millions of people. A review of the literature on deforestation, forest utilization, and landscape management for ecosystem services was conducted to i...

  5. The United States Regional Association of the International Association for Landscape Ecology

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Abstracts are presented from a meeting on landscape ecology. Topics include: conservation, climatic change, forest management, aquatic, wetland, rural and urban landscapes, land use, and biodiversity.

  6. The United States Regional Association of the International Association for Landscape Ecology

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    Abstracts are presented from a meeting on landscape ecology. Topics include: conservation, climatic change, forest management, aquatic, wetland, rural and urban landscapes, land use, and biodiversity.

  7. Transport and Breakdown of Organic Matter in Urban and Forested Streams: The Effects of Altered Hydrology and Landscape Position

    Science.gov (United States)

    Belt, K. T.; Swan, C. M.; Pouyat, R. V.; Kaushal, S.; Groffman, P. M.; Stack, W. P.; Fisher, G. T.

    2006-05-01

    A better understanding of how urbanization and trees interact to alter organic matter transport and cycling is needed to assess retention in catchments and streams, as well as to estimate the magnitude of carbon fluxes to the atmosphere and to downstream aquatic ecosystems. The influx of particulate and dissolved organic matter (POM/DOC) to headwater streams normally originates within or near riparian areas, and is important to aquatic food webs in stream ecosystems. Urban catchments, however, have huge effective drainage densities (due to storm drainage infrastructure), which facilitate a POM/DOC "gutter subsidy" to streams that dwarfs riparian inputs and alters benthic litter quality (and represents a major short-circuit in the carbon vegetation-soil cycle.) We measured in-situ leaf litter breakdown rates, flows, DOC, BOD and nutrients in forested, suburban and urban streams of the BES LTER and Baltimore City DPW sampling networks, which encompassed a variety of urban and rural landscapes. Sycamore and Planetree leaf litter in-situ experiments revealed faster breakdown rates for suburban and urban landscape litter than for riparian litter, with rates being much faster than literature values for forested catchments. DOC, BOD and nutrient data (storm and dry weather) from BES/DPW stream sites showed much higher concentrations and loads in the more urbanized catchments and indicate the streams are likely heterotrophic and experience transient but high dissolved oxygen demands. High nutrient concentrations, faster litter breakdown rates, and substantially higher upland urban fluxes of organic matter (particulate and dissolved) in urban streams suggest that export rates are likely substantially higher than in forested systems and that carbon loads to both downstream aquatic systems and to the atmosphere (as CO2) are substantial.

  8. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape.

    Science.gov (United States)

    Alamgir, Mohammed; Campbell, Mason J; Turton, Stephen M; Pert, Petina L; Edwards, Will; Laurance, William F

    2016-07-20

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m(2) of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.

  9. Geospatial analysis of forest fragmentation in Uttara Kannada District, India

    Institute of Scientific and Technical Information of China (English)

    Ramachandra T V; Bharath Setturu; Subash Chandran

    2016-01-01

    Background: Landscapes consist of heterogeneous interacting dynamic elements with complex ecological,economic and cultural attributes. These complex interactions help in the sustenance of natural resources through bio-geochemical and hydrological cycling. The ecosystem functions are altered with changes in the landscape structure. Fragmentation of large contiguous forests to small and isolated forest patches either by natural phenomena or anthropogenic activities leads to drastic changes in forest patch sizes, shape, connectivity and internal heterogeneity, which restrict the movement leading to inbreeding among Meta populations with extirpation of species.Methods: Landscape dynamics are assessed through land use analysis by way of remote sensing data acquired at different time periods. Forest fragmentation is assessed at the pixel level through computation of two indicators,i.e., Pf(the ratio of pixels that are forested to the total non-water pixels in the window) and Pff(the proportion of all adjacent(cardinal directions only) pixel pairs that include at least one forest pixel, for which both pixels are forested).Results: Uttara Kannada District has the distinction of having the highest forest cover in Karnataka State, India. This region has been experiencing changes in its forest cover and consequent alterations in functional abilities of its ecosystem. Temporal land use analyses show the trend of deforestation, evident from the reduction of evergreen-semi evergreen forest cover from 57.31 %(1979) to 32.08 %(2013) Forest fragmentation at the landscape level shows a decline of interior forests 64.42 %(1979) to 25.62 %(2013) and transition of non-forest categories such as crop land, plantations and built-up areas, amounting now to 47.29 %. PCA prioritized geophysical and socio variables responsible for changes in the landscape structure at local levels.Conclusion: Terrestrial forest ecosystems in Uttara Kannada District of Central Western Ghats have been

  10. Identification Of Minangkabau Landscape Characters

    Science.gov (United States)

    Asrina, M.; Gunawan, A.; Aris, Munandar

    2017-10-01

    Minangkabau is one of cultures in indonesia which occupies landscape intact. Landscape of Minangkabau have a very close relationship with the culture of the people. Uniqueness of Minangkabau culture and landscape forming an inseparable characterunity. The landscape is necessarily identified to know the inherent landscape characters. The objective of this study was to identify the character of the Minangkabau landscape characterizes its uniqueness. The study was conducted by using descriptive method comprised literature review and field observasion. Observed the landscape characters comprised two main features, they were major and minor features. Indetification of the features was conducted in two original areas (darek) of the Minangkabau traditional society. The research results showed that major features or natural features of the landscape were predominantly landform, landcover, and hidrology. All luhak (districts) of Minangkabau showed similar main features such as hill, canyon, lake, valley, and forest. The existence of natural features such as hills, canyon and valleys characterizes the nature of minangkabau landscape. Minor features formed by Minangkabau cultural society were agricultural land and settlement. Rumah gadang (big house) is one of famous minor features characterizes the Minangkabau culture. In addition, several historical artefacts of building and others structure may strengthen uniqueness of the Minangkabau landscape character, such as The royal palace, inscription, and tunnels.

  11. The Landscape Ecological Impact of Afforestation on the British Uplands and Some Initiatives to Restore Native Woodland Cover

    Directory of Open Access Journals (Sweden)

    Bunce Robert G. H.

    2014-11-01

    Full Text Available The majority of forest cover in the British Uplands had been lost by the beginning of the Nineteenth Century, because of felling followed by overgrazing by sheep and deer. The situation remained unchanged until a government policy of afforestation, mainly by exotic conifers, after the First World War up to the present day. This paper analyses the distribution of these predominantly coniferous plantations, and shows how they occupy specific parts of upland landscapes in different zones throughout Britain Whilst some landscapes are dominated by these new forests, elsewhere the blocks of trees are more localised. Although these forests virtually eliminate native ground vegetation, except in rides and unplanted land, the major negative impacts are at the landscape level. For example, drainage systems are altered and ancient cultural landscape patterns are destroyed. These impacts are summarised and possible ways of amelioration are discussed. By contrast, in recent years, a series of projects have been set up to restore native forest cover, as opposed to the extensive plantations of exotic species. Accordingly, the paper then provides three examples of such initiatives designed to restore native forests to otherwise bare landscapes, as well as setting them into a policy context. Whilst such projects cover a limited proportion of the British Uplands they nevertheless restore forest to landscapes at a local level.

  12. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland

    Science.gov (United States)

    Lara, M.; Genet, Helene; McGuire, A. David; Euskirchen, Eugénie S.; Zhang, Yujin; Brown, Dana R. N.; Jorgenson, M.T.; Romanovsky, V.; Breen, Amy L.; Bolton, W.R.

    2016-01-01

    Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of

  13. New Perspectives on People and Forests

    DEFF Research Database (Denmark)

    The aim of this book is to elucidate the role of forests as part of a landscape in the life of people. Most landscapes today are cultural landscapes that are influenced by human activity and that in turn have a profound effect on our understanding of and identification with a place. The book...

  14. Modelling landslide dynamics in forested landscapes

    NARCIS (Netherlands)

    Claessens, L.F.G.

    2005-01-01

    The research resulting in this thesis covers the geological, geomorphological and landscape ecology related themes of the project 'Podzolisation under Kauri (Agathis australis): for better or worse?' supported by theNetherlands Organisation

  15. Evaluating Anthropogenic Risk of Grassland and Forest Habitat Degradation using Land-Cover Data

    Directory of Open Access Journals (Sweden)

    Kurt Riitters

    2009-09-01

    Full Text Available The effects of landscape context on habitat quality are receiving increased attention in conservation biology. The objective of this research is to demonstrate a landscape-level approach to mapping and evaluating the anthropogenic risks of grassland and forest habitat degradation by examining habitat context as defined by intensive anthropogenic land uses at multiple spatial scales. A landscape mosaic model classifies a given location according to the amounts of intensive agriculture and intensive development in its surrounding landscape, providing measures of anthropogenic risks attributable to habitat isolation and edge effects at that location. The model is implemented using a land-cover map (0.09 ha/pixel of the conterminous United States and six landscape sizes (4.4, 15.2, 65.6, 591, 5300, and 47800 ha to evaluate the spatial scales of anthropogenic risk. Statistics for grassland and forest habitat are extracted by geographic overlays of the maps of land-cover and landscape mosaics. Depending on landscape size, 81 to 94 percent of all grassland and forest habitat occurs in landscapes that are dominated by natural land-cover including habitat itself. Within those natural-dominated landscapes, 50 percent of grassland and 59 percent of forest is within 590 m of intensive agriculture and/or intensive developed land which is typically a minor component of total landscape area. The conclusion is that anthropogenic risk attributable to habitat patch isolation affects a small proportion of the total grassland or forest habitat area, while the majority of habitat area is exposed to edge effects.

  16. Detecting Precontact Anthropogenic Microtopographic Features in a Forested Landscape with Lidar: A Case Study from the Upper Great Lakes Region, AD 1000-1600.

    Science.gov (United States)

    Howey, Meghan C L; Sullivan, Franklin B; Tallant, Jason; Kopple, Robert Vande; Palace, Michael W

    2016-01-01

    Forested settings present challenges for understanding the full extent of past human landscape modifications. Field-based archaeological reconnaissance in forests is low-efficiency and most remote sensing techniques are of limited utility, and together, this means many past sites and features in forests are unknown. Archaeologists have increasingly used light detection and ranging (lidar), a remote sensing tool that uses pulses of light to measure reflecting surfaces at high spatial resolution, to address these limitations. Archaeology studies using lidar have made significant progress identifying permanent structures built by large-scale complex agriculturalist societies. Largely unaccounted for, however, are numerous small and more practical modifications of landscapes by smaller-scale societies. Here we show these may also be detectable with lidar by identifying remnants of food storage pits (cache pits) created by mobile hunter-gatherers in the upper Great Lakes during Late Precontact (ca. AD 1000-1600) that now only exist as subtle microtopographic features. Years of intensive field survey identified 69 cache pit groups between two inland lakes in northern Michigan, almost all of which were located within ~500 m of a lakeshore. Applying a novel series of image processing techniques and statistical analyses to a high spatial resolution DTM we created from commercial-grade lidar, our detection routine identified 139 high potential cache pit clusters. These included most of the previously known clusters as well as several unknown clusters located >1500 m from either lakeshore, much further from lakeshores than all previously identified cultural sites. Food storage is understood to have emerged regionally as a risk-buffering strategy after AD 1000 but our results indicate the current record of hunter-gatherer cache pit food storage is markedly incomplete and this practice and its associated impact on the landscape may be greater than anticipated. Our study also

  17. Patterns among the ashes: Exploring the relationship between landscape pattern and the emerald ash borer

    Science.gov (United States)

    Susan J. Crocker; Dacia M. Meneguzzo; Greg C. Liknes

    2010-01-01

    Landscape metrics, including host abundance and population density, were calculated using forest inventory and land cover data to assess the relationship between landscape pattern and the presence or absence of the emerald ash borer (EAB) (Agrilus planipennis Fairmaire). The Random Forests classification algorithm in the R statistical environment was...

  18. Study on the planning principles of urban forest

    Institute of Scientific and Technical Information of China (English)

    Dai Xing'an; Zhang Qingfei

    2006-01-01

    The urban forest is the main body for the urban forestry management. There are not unified rules and standards for the planning of the urban forest yet in China. This paper discusses the planning principles of the urban forest: the priority of the ecological function, the adaptation to local conditions, the optimization in the whole system, the mutual dependence of forest and city, the culture continuance and recreation satisfaction, sustainable development and operability, etc. This paper takes Changsha as an example to elaborate the planning principles of the urban forest.Firstly, Changsha urban forest ecosphere is composed of the eco-garden, the round-the-city forest belt, the ecological isolation belt, the green channel, the landscape of the rivers and streams, the forest park, the biodiversity reserve and the eco-forest in suburb area. It aims to make every kind of ecological essential factors organically merge into the complex city ecosystem to build an eco-city, to strengthen the connection of wide-open space with various habitats spots, to protnote resident's accessibility, to perfect landscape ecology, and to make full use of the ecological function of urban forest. When we construct the urban forest, we must optimize the comprehensive benefit and make the urban forest structure and the layout in the best condition in order to build the harmonious green city for both man and nature to realize the whole optimization of the city system by the complex functions of the urban forest in ecology, environmental protection, landscape, recreation, etc.

  19. MILDLY-DAMAGED FOREST AREAS IN BOREAL FORESTS OF THE WORLD. THE ORIGIN, DEVELOPMENT, IMPOTANCE AND PROBABLE FUTURE OF THE CONCEPT OF MILDLY-DAMAGED FOREST AREAS WITH REGARD TO BOREAL FORESTS

    Directory of Open Access Journals (Sweden)

    I.V. Zhuravleva

    2016-03-01

    Full Text Available The most important environmental goals at the global level, relating to forests, are conservation of biological diversity in the natural environment of its habitat and preservation of the environmental role (especially regarding the climate of forests. Major forest areas, not fragmented by infrastructure and preserving the diversity of relationships between landscape elements, are of crucial importance for solution of both these problems. Since many decisions, concerning conservation and management, are taken at inter-regional and inter-state levels or within the framework of various international processes, it is important to have clear and uniform criteria for identification of such areas. The article deals with occurrence, development and current state of the most common concepts of allocation thereof – the concept of mildly-damaged forest areas, based on the use of remote sensing data, especially images from Landsat satellites. The article substantiates a necessity of further development and update of the concept of intact forest landscapes: unification of approaches to their identification near northern boundaries of forests, adjustment of approaches to registering impacts of forest fires in the context of global climate change and land-use practices, adaption to new public data of remote sensing of the Earth.

  20. Assessing Impacts of Climate Change on Forests: The State of Biological Modeling

    Science.gov (United States)

    Dale, V. H.; Rauscher, H. M.

    1993-04-06

    Models that address the impacts to forests of climate change are reviewed by four levels of biological organization: global, regional or landscape, community, and tree. The models are compared as to their ability to assess changes in greenhouse gas flux, land use, maps of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models consider the largest number of impacts. Developing landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research development are identified: (1) linking socioeconomic and ecologic models, (2) interfacing forest models at different scales, (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes, and (4) relating information from different scales.

  1. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project

    Science.gov (United States)

    Ewers, Robert M.; Didham, Raphael K.; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D.; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L.; Turner, Edgar C.

    2011-01-01

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification. PMID:22006969

  2. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project.

    Science.gov (United States)

    Ewers, Robert M; Didham, Raphael K; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L; Turner, Edgar C

    2011-11-27

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.

  3. Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan

    Science.gov (United States)

    Robert E. Kennedy; Zhiqiang Yang; Warren B. Cohen; Eric Pfaff; Justin Braaten; Peder. Nelson

    2012-01-01

    Understanding fine-grain patterns of forest disturbance and regrowth at the landscape scale is critical for effective management, particularly in forests in western Washington, Oregon, and California, U.S., where the policy known as the Northwest Forest Plan (NWFP) was imposed in 1994 over > 8 million ha of forest in an effort to balance environmental and economic...

  4. Local understanding of forest conservation in land use change dynamics

    DEFF Research Database (Denmark)

    Shaleh, Muhammad Adha; Guth, Miriam Karen; Rahman, Syed Ajijur

    2016-01-01

    Forest (SEPPSF), Malaysia. Nine in-depth interviews were conducted with Orang Asli Jakun living in SEPPSF using open-ended questions. Local communities have positive perspectives toward the forest conservation program, despite massive environmental changes in their living landscape. This study suggests......The success of local forest conservation program depends on a critical appreciation of local communities. Based on this understanding, the present study aims to explore people’s perspective of forest conservation in a context of changes in their living landscape at South East Pahang Peat Swamp...

  5. Forest landscape analysis and design: a process for developing and implementing land management objectives for landscape patterns.

    Science.gov (United States)

    Nancy Diaz; Dean. Apostol

    1992-01-01

    This publication presents a Landscape Design and Analysis Process, along with some simple methods and tools for describing landscapes and their function. The information is qualitative in nature and highlights basic concepts, but does not address landscape ecology in great depth. Readers are encouraged to consult the list of selected references in Chapter 2 if they...

  6. A multispecies framework for landscape conservation planning.

    Science.gov (United States)

    Schwenk, W Scott; Donovan, Therese M

    2011-10-01

    Rapidly changing landscapes have spurred the need for quantitative methods for conservation assessment and planning that encompass large spatial extents. We devised and tested a multispecies framework for conservation planning to complement single-species assessments and ecosystem-level approaches. Our framework consisted of 4 elements: sampling to effectively estimate population parameters, measuring how human activity affects landscapes at multiple scales, analyzing the relation between landscape characteristics and individual species occurrences, and evaluating and comparing the responses of multiple species to landscape modification. We applied the approach to a community of terrestrial birds across 25,000 km(2) with a range of intensities of human development. Human modification of land cover, road density, and other elements of the landscape, measured at multiple spatial extents, had large effects on occupancy of the 67 species studied. Forest composition within 1 km of points had a strong effect on occupancy of many species and a range of negative, intermediate, and positive associations. Road density within 1 km of points, percent evergreen forest within 300 m, and distance from patch edge were also strongly associated with occupancy for many species. We used the occupancy results to group species into 11 guilds that shared patterns of association with landscape characteristics. Our multispecies approach to conservation planning allowed us to quantify the trade-offs of different scenarios of land-cover change in terms of species occupancy. Conservation Biology © 2011 Society for Conservation Biology. No claim to original US government works.

  7. Monitoring, modelling and managing Canada's forest carbon cycle

    International Nuclear Information System (INIS)

    Kurz, W.

    2005-01-01

    This paper presents information concerning the management of carbon stocks both globally and in Canada, with reference to the fact that forests may contribute to carbon emissions problems. Global fossil carbon emissions statistics were provided, as well as data of forest area per capita in Canada and various countries. Details of forest management options and carbon accounting with reference to the Kyoto Protocol were reviewed. An explanation of forest management credits in national accounts was provided. An explanation of carbon sinks and carbon sources was also presented, along with details of stand level carbon dynamics. A model for calculating landscape level carbon stocks was presented, with reference to increasing and decreasing disturbances. A hypothetical landscape example was provided. It was concluded that age-class structure affect the amount of carbon stored in landscape; age-class structure also affect carbon dynamics; and responses reflect the change in disturbance regimes. An overview of international reporting requirements was presented. Canadian harvests equal 54,000 tonnes of carbon per year. It was recommended that managed forests could increase carbon in forests while also managing carbon harvests to meet society's needs. A chart presenting forest management details was presented, along with a hypothetical landscape example and a forecast for cumulative changes after 50 years, The benefits and challenges of forest management were reviewed as well as options regarding salvaging and deforestation avoidance. A carbon budget model was presented. It was concluded that forests in Canada could be used in a greenhouse gas management strategy. However, changes in disturbance may mean the difference between net source or net sink. Details of biomass were presented and multi-mode combustion facilities. The feasibility of biomass as a fuel source was discussed, with reference to hydrogen fuel. Gas composition profiles were provided, as well as details of

  8. Landscape consequences of natural gas extraction in Cameron, Clarion, Elk, Forest, Jefferson, McKean, Potter, and Warren Counties, Pennsylvania, 2004-2010

    Science.gov (United States)

    Milheim, L. E.; Slonecker, E. T.; Roig-Silva, C. M.; Winters, S. G.; Ballew, J. R.

    2014-01-01

    Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing hydrocarbon-rich geologic formations, have led to an intense effort to find and extract unconventional natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique for extraction, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Cameron, Clarion, Elk, Forest, Jefferson, McKean, Potter, and Warren Counties in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication. In this region, natural gas and oil development disturbed

  9. Modeling Aquatic Macroinvertebrate Richness Using Landscape Attributes

    Directory of Open Access Journals (Sweden)

    Marcia S. Meixler

    2015-01-01

    Full Text Available We used a rapid, repeatable, and inexpensive geographic information system (GIS approach to predict aquatic macroinvertebrate family richness using the landscape attributes stream gradient, riparian forest cover, and water quality. Stream segments in the Allegheny River basin were classified into eight habitat classes using these three landscape attributes. Biological databases linking macroinvertebrate families with habitat classes were developed using life habits, feeding guilds, and water quality preferences and tolerances for each family. The biological databases provided a link between fauna and habitat enabling estimation of family composition in each habitat class and hence richness predictions for each stream segment. No difference was detected between field collected and modeled predictions of macroinvertebrate families in a paired t-test. Further, predicted stream gradient, riparian forest cover, and total phosphorus, total nitrogen, and suspended sediment classifications matched observed classifications much more often than by chance alone. High gradient streams with forested riparian zones and good water quality were predicted to have the greatest macroinvertebrate family richness and changes in water quality were predicted to have the greatest impact on richness. Our findings indicate that our model can provide meaningful landscape scale macroinvertebrate family richness predictions from widely available data for use in focusing conservation planning efforts.

  10. Geospatial analysis of forest fragmentation in Uttara Kannada District, India

    Directory of Open Access Journals (Sweden)

    Ramachandra T V

    2016-04-01

    Full Text Available Background: Landscapes consist of heterogeneous interacting dynamic elements with complex ecological, economic and cultural attributes. These complex interactions help in the sustenance of natural resources through bio-geochemical and hydrological cycling. The ecosystem functions are altered with changes in the landscape structure. Fragmentation of large contiguous forests to small and isolated forest patches either by natural phenomena or anthropogenic activities leads to drastic changes in forest patch sizes, shape, connectivity and internal heterogeneity, which restrict the movement leading to inbreeding among Meta populations with extirpation of species. Methods: Landscape dynamics are assessed through land use analysis by way of remote sensing data acquired at different time periods. Forest fragmentation is assessed at the pixel level through computation of two indicators, i.e., Pf (the ratio of pixels that are forested to the total non-water pixels in the window and Pff (the proportion of all adjacent (cardinal directions only pixel pairs that include at least one forest pixel, for which both pixels are forested. Results: Uttara Kannada District has the distinction of having the highest forest cover in Karnataka State, India. This region has been experiencing changes in its forest cover and consequent alterations in functional abilities of its ecosystem. Temporal land use analyses show the trend of deforestation, evident from the reduction of evergreen - semi evergreen forest cover from 57.31 % (1979 to 32.08 % (2013 Forest fragmentation at the landscape level shows a decline of interior forests 64.42 % (1979 to 25.62 % (2013 and transition of non-forest categories such as crop land, plantations and built-up areas, amounting now to 47.29 %. PCA prioritized geophysical and socio variables responsible for changes in the landscape structure at local levels. Conclusion: Terrestrial forest ecosystems in Uttara Kannada District of Central

  11. Boreal forests

    International Nuclear Information System (INIS)

    Essen, P.A.; Ericson, L.; Ehnstroem, B.; Sjoeberg, K.

    1997-01-01

    We review patterns and processes important for biodiversity in the Fennoscandian boreal forest, describe man's past and present impact and outline a strategy for conservation. Natural disturbances, particularly forest fire and gap formation, create much of the structural and functional diversity in forest ecosystems. Several boreal plants and animals are adapted to fire regimes. In contrast, many organisms (epiphytic lichens, fungi, invertebrates) require stable conditions with long continuity in canopy cover. The highly mechanized and efficient Fennoscandian forest industry has developed during the last century. The result is that most natural forest has been lost and that several hundreds of species, mainly cryptograms and invertebrates, are threatened. The forestry is now in a transition from exploitation to sustainable production and has recently incorporated some measures to protect the environment. Programmes for maintaining biodiversity in the boreal forest should include at least three parts. First, the system of forest reserves must be significantly improved through protection of large representative ecosystems and key biotopes that host threatened species. Second, we must restore ecosystem properties that have been lost or altered. Natural disturbance regimes must be allowed to operate or be imitated, for example by artificial fire management. Stand-level management should particularly increase the amount of coarse woody debris, the number of old deciduous trees and large, old conifers, by using partial cutting. Third, natural variation should also be mimicked at the landscape level, for example, by reducing fragmentation and increasing links between landscape elements. Long-term experiments are required to evaluate the success of different management methods in maintaining biodiversity in the boreal forest. (au) 260 refs

  12. CHARACTERIZING LANDSCAPE SPATIAL HETEROGENEITY USING SEMIVARIOGRAM PARAMETERS DERIVED FROM NDVI IMAGES

    Directory of Open Access Journals (Sweden)

    Eduarda Martiniano de Oliveira Silveira

    2017-12-01

    Full Text Available Assuming a relationship between landscape heterogeneity and measures of spatial dependence by using remotely sensed data, the aim of this work was to evaluate the potential of semivariogram parameters, derived from satellite images with different spatial resolutions, to characterize landscape spatial heterogeneity of forested and human modified areas. The NDVI (Normalized Difference Vegetation Index was generated in an area of Brazilian amazon tropical forest (1,000 km².We selected samples (1 x 1 km from forested and human modified areas distributed throughout the study area, to generate the semivariogram and extract the sill (σ²-overall spatial variability of the surface property and range (φ-the length scale of the spatial structures of objects parameters. The analysis revealed that image spatial resolution influenced the sill and range parameters. The average sill and range values increase from forested to human modified areas and the greatest between-class variation was found for LANDSAT 8 imagery, indicating that this image spatial resolution is the most appropriate for deriving sill and range parameters with the intention of describing landscape spatial heterogeneity. By combining remote sensing and geostatistical techniques, we have shown that the sill and range parameters of semivariograms derived from NDVI images are a simple indicator of landscape heterogeneity and can be used to provide landscape heterogeneity maps to enable researchers to design appropriate sampling regimes. In the future, more applications combining remote sensing and geostatistical features should be further investigated and developed, such as change detection and image classification using object-based image analysis (OBIA approaches.

  13. Public acceptance of disturbance-based forest management: factors influencing support

    Science.gov (United States)

    Christine S. Olsen; Angela L. Mallon; Bruce A. Shindler

    2012-01-01

    Growing emphasis on ecosystem and landscape-level forest management across North America has spurred an examination of alternative management strategies which focus on emulating dynamic natural disturbance processes, particularly those associated with forest fire regimes. This topic is the cornerstone of research in the Blue River Landscape Study (BRLS) on the...

  14. Forest fragmentation and bird community dynamics: inference at regional scales

    Science.gov (United States)

    Boulinier, T.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Flather, C.H.; Pollock, K.H.

    2001-01-01

    With increasing fragmentation of natural areas and a dramatic reduction of forest cover in several parts of the world, quantifying the impact of such changes on species richness and community dynamics has been a subject of much concern. Here, we tested whether in more fragmented landscapes there was a lower number of area-sensitive species and higher local extinction and turnover rates, which could explain higher temporal variability in species richness. To investigate such potential landscape effects at a regional scale, we merged two independent, large-scale monitoring efforts: the North American Breeding Bird Survey (BBS) and the Land Use and Land Cover Classification data from the U.S. Geological Survey. We used methods that accounted for heterogeneity in the probability of detecting species to estimate species richness and temporal changes in the bird communities for BBS routes in three mid-Atlantic U.S. states. Forest breeding bird species were grouped prior to the analyses into area-sensitive and non-area-sensitive species according to previous studies. We tested predictions relating measures of forest structure at one point in time (1974) to species richness at that time and to parameters of forest bird community change over the following 22-yr-period (1975-1996). We used the mean size of forest patches to characterize landscape structure, as high correlations among landscape variables did not allow us to disentangle the relative roles of habitat fragmentation per se and habitat loss. As predicted, together with lower species richness for area-sensitive species on routes surrounded by landscapes with lower mean forest-patch size, we found higher mean year-to-year rates of local extinction. Moreover, the mean year-to-year rates of local turnover (proportion of locally new species) for area-sensitive species were also higher in landscapes with lower mean forest-patch size. These associations were not observed for the non-area-sensitive species group. These

  15. The use of shaded fuelbreaks in landscape fire management

    Science.gov (United States)

    James K. Agee; Bernie Bahro; Mark A. Finney; Philip N. Omi; David B. Sapsis; Carl N. Skinner; Jan W. van Wagtendonk; C. Phillip Weatherspoon

    2000-01-01

    Shaded fuelbreaks and larger landscape fuel treatments, such as prescribed fire, are receiving renewed interest as forest protection strategies in the western United States. The effectiveness of fuelbreaks remains a subject of debate because of differing fuelbreak objectives, prescriptions for creation and maintenance, and their placement in landscapes with differing...

  16. Reconstructing and modelling 71 years of forest growth in a Canadian boreal landscape : a test of the CBM-CFS3 carbon accounting model

    Energy Technology Data Exchange (ETDEWEB)

    Bernier, P.Y.; Guindon, L. [Canadian Forest Service, Quebec, PQ (Canada). Laurentian Forestry Centre; Kurz, W.A.; Stinson, G. [Canadian Forest Service, Victoria, BC (Canada). Pacific Forestry Centre

    2010-01-15

    Modelled estimates have suggested that Canada's managed forests are now shifting from being carbon sinks to becoming carbon sources. This study evaluated the Canadian Forest Sector carbon budget model (CBM-CFS3). A reconstructed dataset of forest growth and disturbances encompassing a 62 km{sup 2} landscape spanning a 71 year period were used to demonstrate that the CBM-CFS3 simulations underestimated realized net biomass accrual by 10 per cent in undisturbed stands, and may also underestimate biomass accrual in disturbed stands. Results from the model were compared with mechanistic model predictions, flux-tower measurements of ecosystem carbon exchanges, and long-term observations of changes in biomass. The errors were attributed to the initial 1928 operational forest photointerpretation and inventory procedures used to determine merchantable volume and biomass. Regionally parameterized yield curves may also be contributing to errors. Results of the study suggested that long-term trends in climate or atmospheric composition may not have contributed to the bias. A similar exercise conducted in a Pacific coastal forest demonstrated a small relative impact on total carbon from forest management activities in the absence of natural disturbances. 30 refs., 1 tab., 8 figs.

  17. Declining Brown-headed Cowbird (Molothrus ater populations are associated with landscape-specific reductions in brood parasitism and increases in songbird productivity.

    Directory of Open Access Journals (Sweden)

    W Andrew Cox

    Full Text Available Many songbird species have experienced significant population declines, partly because of brood parasitism by the Brown-headed Cowbird (Molothrus ater, which is positively associated with increasing landscape forest cover in the midwestern United States. However, cowbirds are also experiencing long-term population declines, which should reduce parasitism pressure and thus increase productivity of host species. We used 20 years of nest monitoring data from five sites in Missouri across a gradient of landscape forest cover to assess temporal trends in the rate and intensity of brood parasitism for Acadian Flycatchers (Empidonax virescens, Indigo Buntings (Passerina cyanea, and Northern Cardinals (Cardinalis cardinalis. We evaluated whether there were concomitant changes in fledging brood size, nest survival, a combination of the two metrics (i.e., host young produced per nest attempt, and whether such changes were more substantial with decreasing landscape forest cover. Parasitism rates and intensities declined substantially during 1991-2010. Fledging brood size and nest survival rates were positively associated with landscape forest cover, confirming the fragmentation hypothesis for Midwest forest birds. Declining parasitism rates were associated with increased fledging brood sizes, with more pronounced increases as landscape forest cover decreased. Nest survival increased insubstantially across time during laying and incubation, but not during the nestling stage. The best predictor of nest survival was parasitism status, with parasitized nests surviving at lower rates than unparasitized nests. Overall, productivity increased during 1991-2010, with more pronounced increases associated with lower levels of landscape forest cover. The negative effects of cowbirds on nest survival in addition to fledging brood size in less forested landscapes suggest that cowbirds may be a primary cause of forest fragmentation effects on songbird productivity in the

  18. Accounting for Biomass Carbon Stock Change Due to Wildfire in Temperate Forest Landscapes in Australia

    Science.gov (United States)

    Keith, Heather; Lindenmayer, David B.; Mackey, Brendan G.; Blair, David; Carter, Lauren; McBurney, Lachlan; Okada, Sachiko; Konishi-Nagano, Tomoko

    2014-01-01

    Carbon stock change due to forest management and disturbance must be accounted for in UNFCCC national inventory reports and for signatories to the Kyoto Protocol. Impacts of disturbance on greenhouse gas (GHG) inventories are important for many countries with large forest estates prone to wildfires. Our objective was to measure changes in carbon stocks due to short-term combustion and to simulate longer-term carbon stock dynamics resulting from redistribution among biomass components following wildfire. We studied the impacts of a wildfire in 2009 that burnt temperate forest of tall, wet eucalypts in south-eastern Australia. Biomass combusted ranged from 40 to 58 tC ha−1, which represented 6–7% and 9–14% in low- and high-severity fire, respectively, of the pre-fire total biomass carbon stock. Pre-fire total stock ranged from 400 to 1040 tC ha−1 depending on forest age and disturbance history. An estimated 3.9 TgC was emitted from the 2009 fire within the forest region, representing 8.5% of total biomass carbon stock across the landscape. Carbon losses from combustion were large over hours to days during the wildfire, but from an ecosystem dynamics perspective, the proportion of total carbon stock combusted was relatively small. Furthermore, more than half the stock losses from combustion were derived from biomass components with short lifetimes. Most biomass remained on-site, although redistributed from living to dead components. Decomposition of these components and new regeneration constituted the greatest changes in carbon stocks over ensuing decades. A critical issue for carbon accounting policy arises because the timeframes of ecological processes of carbon stock change are longer than the periods for reporting GHG inventories for national emissions reductions targets. Carbon accounts should be comprehensive of all stock changes, but reporting against targets should be based on human-induced changes in carbon stocks to incentivise mitigation activities

  19. Soil map disaggregation improved by soil-landscape relationships, area-proportional sampling and random forest implementation

    DEFF Research Database (Denmark)

    Møller, Anders Bjørn; Malone, Brendan P.; Odgers, Nathan

    implementation generally improved the algorithm’s ability to predict the correct soil class. The implementation of soil-landscape relationships and area-proportional sampling generally increased the calculation time, while the random forest implementation reduced the calculation time. In the most successful......Detailed soil information is often needed to support agricultural practices, environmental protection and policy decisions. Several digital approaches can be used to map soil properties based on field observations. When soil observations are sparse or missing, an alternative approach...... is to disaggregate existing conventional soil maps. At present, the DSMART algorithm represents the most sophisticated approach for disaggregating conventional soil maps (Odgers et al., 2014). The algorithm relies on classification trees trained from resampled points, which are assigned classes according...

  20. 78 FR 73819 - Forest Resource Coordinating Committee

    Science.gov (United States)

    2013-12-09

    ..., Conservation, and Energy Act of 2008 (Pub. L. 110-246). Additional information on the Forest Resource... into the Whitten Building. FOR FURTHER INFORMATION CONTACT: Maya Solomon, Forest Resource Coordinating... forest health, and landscape scale conservation and management. The meeting is open to the public. All...

  1. [Basic theory and research method of urban forest ecology].

    Science.gov (United States)

    He, Xingyuan; Jin, Yingshan; Zhu, Wenquan; Xu, Wenduo; Chen, Wei

    2002-12-01

    With the development of world economy and the increment of urban population, the urban environment problem hinders the urban sustainable development. Now, more and more people realized the importance of urban forests in improving the quality of urban ecology. Therefore, a new subject, urban forest ecology, and correlative new concept frame in the field formed. The theoretic foundation of urban forest ecology derived from the mutual combination of theory relating to forest ecology, landscape ecology, landscape architecture ecology and anthrop-ecology. People survey the development of city from the view of ecosystem, and regard the environment, a colony of human, animals and plants, as main factors of the system. The paper introduces systematically the urban forest ecology as follows: 1) the basic concept of urban forest ecology; 2) the meaning of urban forest ecology; 3) the basic principle and theoretic base of urban forest ecology; 4) the research method of urban forest ecology; 5) the developmental expectation of urban forest ecology.

  2. Polycentric governance of multifunctional forested landscapes

    Directory of Open Access Journals (Sweden)

    Harini Nagendra

    2012-08-01

    Full Text Available Human-induced causes of forest change occur at multiple scales. Yet, most governance mechanisms are designed at a single level – whether international, national, regional or local – and do not provide effective solutions for the overarching challenge of forest governance. Efforts to “decentralize” governmental arrangements frequently do not recognize the importance of complex, polycentric arrangements and are based on a presumption of a single government at one level taking charge of a policy arena, often ignoring the existence of many vibrant self-governed institutions. Polycentric institutions provide a useful framework for governance, enabling aspects of preferred solutions to be used together in efforts to protect the long-term sustainability of diverse forested social-ecological systems. By considering the interaction between actors at different levels of governance, polycentricity contributes to a more nuanced understanding of the variation in diverse governance outcomes in the management of common-pool resources based on the needs and interests of citizens and the complexity of resources and governance systems at local, regional, national, and global levels. In this paper, we discuss challenges to polycentricity such as the matching of the boundaries of those who benefit, those who contribute with the boundary of the resource. We describe some approaches that have been effectively utilized to address these challenges in forests in various parts of the world. We also provide a brief overview of how the concept of polycentricity helps in the analysis of climate change and the closely related international effort to reduce greenhouse gas emissions through degradation and deforestation (REDD.

  3. Plant diversity in hedgerows amidst Atlantic Forest fragments

    Directory of Open Access Journals (Sweden)

    Carolina C. C. Oliveira

    2015-06-01

    Full Text Available Hedgerows are linear structures found in agricultural landscapes that may facilitate dispersal of plants and animals and also serve as habitat. The aim of this study was to investigate the relationships among diversity and ecological traits of woody plants, hedgerow characteristics (size, age, and origin, and the structure of the surrounding Atlantic Forest landscape. Field data were collected from 14 hedgerows, and landscape metrics from 1000-m buffers surrounding hedgerows were recorded from a thematic map. In all sampled hedgerows, arboreal species were predominantly zoochoric and early-succession species, and hedgerow width was an important factor explaining the richness and abundance of this group of species. Connection with forest vegetation did not explain richness and abundance of animal-dispersed species, but richness of non-zoochoric species increased in more connected hedgerows. These results suggest that hedgerows are probably colonized by species arriving from nearby early-succession sites, forest fragment edges, and isolated trees in the matrix. Nonetheless, hedgerows provide resources for frugivorous animals and influence landscape connectivity, highlighting the importance of these elements in the conservation of biodiversity in fragmented and rural landscapes.

  4. 76 FR 51936 - Coconino and Kaibab National Forests, Arizona, Four-Forest Restoration Initiative

    Science.gov (United States)

    2011-08-19

    ...) 527-3620. FOR FURTHER INFORMATION CONTACT: Henry Provencio, 4 FRI Team Leader at (928) 226-4684 or via... natural role in these fire- adapted ponderosa pine forests. As a result, the forests have shifted from... important role on the landscape for hydrological function of watersheds and they are very important for...

  5. A Bayesian approach to landscape ecological risk assessment applied to the upper Grande Ronde watershed, Oregon

    Science.gov (United States)

    Kimberley K. Ayre; Wayne G. Landis

    2012-01-01

    We present a Bayesian network model based on the ecological risk assessment framework to evaluate potential impacts to habitats and resources resulting from wildfire, grazing, forest management activities, and insect outbreaks in a forested landscape in northeastern Oregon. The Bayesian network structure consisted of three tiers of nodes: landscape disturbances,...

  6. Remote Sensing of Forest Cover in Boreal Zones of the Earth

    Science.gov (United States)

    Sedykh, V. N.

    2011-12-01

    Ecological tension resulting from human activities generates a need for joint efforts of countries in the boreal zone aimed at sustainable forest development, including: conservation of forests binding carbon and ensuring stability of the atmosphere gas composition; preservation of purity and water content of forest areas as conditions ensuring sustainability of the historically formed structure of forest landscapes; and preservation of all flora and fauna species composition diversity as a condition for sustainable existence and functioning of forest ecosystems. We have to address these problems urgently due to climate warming which can interact with the forest cover. In particular, in the forest zone of Siberia, the climate aridization will inevitably result in periodic drying of shallow bogs and upland forests with thick forest litter. This will bring fires of unprecedented intensity which will lead to catastrophic atmospheric pollution. In this connection, the above problems can be solved only by the united efforts of boreal-zone countries, through establishing a uniform system for remote sensing of forests aimed at obtaining and periodic update of comprehensive information for rational decision-making in prevention of adverse human effect on the forest. A need to join efforts in this field of natural resource management is determined by disparate data which were created expressly for economic accounting units used mainly for the solution of economic timber resource problems. However, ecological tasks outlined above can be solved appropriately only by using uniform technologies that are registered within natural territorial complexes (landscapes) established throughout the entire boreal zone. Knowledge of forest state within natural territorial entities having specific physiographic conditions, with account for current and future anthropogenic load, allow one to define evidence-based forest growth potential at these landscapes to ensure development of

  7. [Estimation of Shenyang urban forest green biomass].

    Science.gov (United States)

    Liu, Chang-fu; He, Xing-yuan; Chen, Wei; Zhao, Gui-ling; Xu, Wen-duo

    2007-06-01

    Based on ARC/GIS and by using the method of "planar biomass estimation", the green biomass (GB) of Shenyang urban forests was measured. The results demonstrated that the GB per unit area was the highest (3.86 m2.m(-2)) in landscape and relaxation forest, and the lowest (2.27 m2.m(-2)) in ecological and public welfare forest. The GB per unit area in urban forest distribution area was 2.99 m2.m(-2), and that of the whole Shenyang urban area was 0.25 m2.m(-2). The total GB of Shenyang urban forests was about 1.13 x 10(8) m2, among which, subordinated forest, ecological and public welfare forest, landscape and relaxation forest, road forest, and production and management forest accounted for 36.64% , 23.99% , 19.38% , 16.20% and 3.79%, with their GB being 4. 15 x 10(7), 2.72 x 10(7), 2.20 x 10(7), 1.84 x 10(7) and 0.43 x 10(7) m2, respectively. The precision of the method "planar biomass estimation" was 91.81% (alpha = 0.05) by credit test.

  8. Forests, people, fire: Integrating the sciences to build capacity for an “All Lands” approach to forest restoration

    Science.gov (United States)

    Marie Oliver; Susan Charnley; Thomas Spies; Jeff Kline; Eric White

    2017-01-01

    Interest in landscape-scale approaches to fire management and forest restoration is growing with the realization that these approaches are critical to maintaining healthy forests and protecting nearby communities. However, coordinated planning and action across multiple ownerships have been elusive because of differing goals and forest management styles among...

  9. Determinants of plant community assembly in a mosaic of landscape units in central Amazonia: ecological and phylogenetic perspectives.

    Directory of Open Access Journals (Sweden)

    María Natalia Umaña

    Full Text Available The Amazon harbours one of the richest ecosystems on Earth. Such diversity is likely to be promoted by plant specialization, associated with the occurrence of a mosaic of landscape units. Here, we integrate ecological and phylogenetic data at different spatial scales to assess the importance of habitat specialization in driving compositional and phylogenetic variation across the Amazonian forest. To do so, we evaluated patterns of floristic dissimilarity and phylogenetic turnover, habitat association and phylogenetic structure in three different landscape units occurring in terra firme (Hilly and Terrace and flooded forests (Igapó. We established two 1-ha tree plots in each of these landscape units at the Caparú Biological Station, SW Colombia, and measured edaphic, topographic and light variables. At large spatial scales, terra firme forests exhibited higher levels of species diversity and phylodiversity than flooded forests. These two types of forests showed conspicuous differences in species and phylogenetic composition, suggesting that environmental sorting due to flood is important, and can go beyond the species level. At a local level, landscape units showed floristic divergence, driven both by geographical distance and by edaphic specialization. In terms of phylogenetic structure, Igapó forests showed phylogenetic clustering, whereas Hilly and Terrace forests showed phylogenetic evenness. Within plots, however, local communities did not show any particular trend. Overall, our findings suggest that flooded forests, characterized by stressful environments, impose limits to species occurrence, whereas terra firme forests, more environmentally heterogeneous, are likely to provide a wider range of ecological conditions and therefore to bear higher diversity. Thus, Amazonia should be considered as a mosaic of landscape units, where the strength of habitat association depends upon their environmental properties.

  10. Determinants of Plant Community Assembly in a Mosaic of Landscape Units in Central Amazonia: Ecological and Phylogenetic Perspectives

    Science.gov (United States)

    Umaña, María Natalia; Norden, Natalia; Cano, Ángela; Stevenson, Pablo R.

    2012-01-01

    The Amazon harbours one of the richest ecosystems on Earth. Such diversity is likely to be promoted by plant specialization, associated with the occurrence of a mosaic of landscape units. Here, we integrate ecological and phylogenetic data at different spatial scales to assess the importance of habitat specialization in driving compositional and phylogenetic variation across the Amazonian forest. To do so, we evaluated patterns of floristic dissimilarity and phylogenetic turnover, habitat association and phylogenetic structure in three different landscape units occurring in terra firme (Hilly and Terrace) and flooded forests (Igapó). We established two 1-ha tree plots in each of these landscape units at the Caparú Biological Station, SW Colombia, and measured edaphic, topographic and light variables. At large spatial scales, terra firme forests exhibited higher levels of species diversity and phylodiversity than flooded forests. These two types of forests showed conspicuous differences in species and phylogenetic composition, suggesting that environmental sorting due to flood is important, and can go beyond the species level. At a local level, landscape units showed floristic divergence, driven both by geographical distance and by edaphic specialization. In terms of phylogenetic structure, Igapó forests showed phylogenetic clustering, whereas Hilly and Terrace forests showed phylogenetic evenness. Within plots, however, local communities did not show any particular trend. Overall, our findings suggest that flooded forests, characterized by stressful environments, impose limits to species occurrence, whereas terra firme forests, more environmentally heterogeneous, are likely to provide a wider range of ecological conditions and therefore to bear higher diversity. Thus, Amazonia should be considered as a mosaic of landscape units, where the strength of habitat association depends upon their environmental properties. PMID:23028844

  11. Amazon Forest Structure from IKONOS Satellite Data and the Automated Characterization of Forest Canopy Properties

    Science.gov (United States)

    Michael Palace; Michael Keller; Gregory P. Asner; Stephen Hagen; Bobby . Braswell

    2008-01-01

    We developed an automated tree crown analysis algorithm using 1-m panchromatic IKONOS satellite images to examine forest canopy structure in the Brazilian Amazon. The algorithm was calibrated on the landscape level with tree geometry and forest stand data at the Fazenda Cauaxi (3.75◦ S, 48.37◦ W) in the eastern Amazon, and then compared with forest...

  12. Identifying the characteristic of SundaParahiyangan landscape for a model of sustainable agricultural landscape

    Science.gov (United States)

    Dahlan, M. Z.; Nurhayati, H. S. A.; Mugnisjah, W. Q.

    2017-10-01

    This study was an explorative study of the various forms of traditional ecological knowledge (TEK) of Sundanese people in the context of sustainable agriculture. The qualitative method was used to identify SundaParahiyangan landscape by using Rapid Participatory Rural Appraisal throughsemi-structured interviews, focus group discussions, and field survey. The Landscape Characteristic Assessment and Community Sustainability Assessment were used to analyze the characteristic of landscape to achieve the sustainable agricultural landscape criteria proposed by US Department of Agriculture. The results revealed that the SundaParahiyangan agricultural landscape has a unique characteristic as a result of the long-term adaptation of agricultural society to theirlandscape through a learning process for generations. In general, this character was reflected in the typical of Sundanese’s agroecosystems such as forest garden, mixed garden, paddy field, and home garden. In addition, concept of kabuyutan is one of the TEKs related to understanding and utilization of landscape has been adapted on revitalizing the role of landscape surrounding the agroecosystem as the buffer zone by calculating and designating protected areas. To support the sustainability of production area, integrated practices of agroforestry with low-external-input and sustainable agriculture (LEISA) system can be applied in utilizing and managing agricultural resources.

  13. Characterizing European cultural landscapes: Accounting for structure, management intensity and value of agricultural and forest landscapes

    NARCIS (Netherlands)

    Tieskens, Koen F.; Schulp, Catharina J.E.; Levers, Christian; Lieskovský, Juraj; Kuemmerle, Tobias; Plieninger, Tobias; Verburg, Peter H.

    Abstract Almost all rural areas in Europe have been shaped or altered by humans and can be considered cultural landscapes, many of which now are considered to entail valuable cultural heritage. Current dynamics in land management have put cultural landscapes under a huge pressure of agricultural

  14. Advances in Canadian forest hydrology, 1999-2003

    Science.gov (United States)

    Buttle, J. M.; Creed, I. F.; Moore, R. D.

    2005-01-01

    Understanding key hydrological processes and properties is critical to sustaining the ecological, economic, social and cultural roles of Canada's varied forest types. This review examines recent progress in studying the hydrology of Canada's forest landscapes. Work in some areas, such as snow interception, accumulation and melt under forest cover, has led to modelling tools that can be readily applied for operational purposes. Our understanding in other areas, such as the link between runoff-generating processes in different forest landscapes and hydrochemical fluxes to receiving waters, is much more tentative. The 1999-2003 period saw considerable research examining hydrological and biogeochemical responses to natural and anthropogenic disturbance of forest landscapes, spurred by major funding initiatives at the provincial and federal levels. This work has provided valuable insight; however, application of the findings beyond the experimental site is often restricted by such issues as a limited consideration of the background variability of hydrological systems, incomplete appreciation of hydrological aspects at the experiment planning stage, and experimental design problems that often bedevil studies of basin response to disturbance. Overcoming these constraints will require, among other things, continued support for long-term hydroecological monitoring programmes, the embedding of process measurement and modelling studies within these programmes, and greater responsiveness to the vagaries of policy directions related to Canada's forest resources. Progress in these and related areas will contribute greatly to the development of hydrological indicators of sustainable forest management in Canada. Copyright

  15. Music and gardens in Granada. Debussy and Forestier’s French mark in Spanish artistic creation

    Directory of Open Access Journals (Sweden)

    Laura Sanz García

    2018-01-01

    Full Text Available This article aims to delve into the aspects that connect both Spanish and French musicians and landscapers’ works around the cultural image of Spain, as well as the importance of gardens in the visual inspiration of impressionist music. For that purpose, the text presents an analysis of the thematic and stylistic parallelisms between two outstanding French artists, the composer Claude Debussy and the landscape architect Jean-Claude Nicolas Forestier, in relation to the Arab-Andalusian exotism and, more specifically, to the gardens of Granada. To their common interest in representing the authentic essence of all that is Spanish, one should add the same avant-garde intention and a series of themes that translate into artistic terms their personal interpretation of Al-Andalus. On the other hand, the infl uence exercised by Debussy and Forestier on the Spanish artists –such as Falla and Javier de Winthuysen–, relates France once more to the development of modern art and music in Spain. This interdisciplinary analysis reveals a common sensibility in the axis France Spain and between two artistic disciplines apparently uneven as music and gardening. Debussy and Forestier, as well as their Spanish “disciples”, intend to overcome the romantic images of Spain, using the Hispano-Arabic cliché to update their respective artistic languages, in music and landscape architecture, in the transition to the 20th century.

  16. CALIBRATION OF DISTRIBUTED SHALLOW LANDSLIDE MODELS IN FORESTED LANDSCAPES

    Directory of Open Access Journals (Sweden)

    Gian Battista Bischetti

    2010-09-01

    Full Text Available In mountainous-forested soil mantled landscapes all around the world, rainfall-induced shallow landslides are one of the most common hydro-geomorphic hazards, which frequently impact the environment and human lives and properties. In order to produce shallow landslide susceptibility maps, several models have been proposed in the last decade, combining simplified steady state topography- based hydrological models with the infinite slope scheme, in a GIS framework. In the present paper, two of the still open issues are investigated: the assessment of the validity of slope stability models and the inclusion of root cohesion values. In such a perspective the “Stability INdex MAPping” has been applied to a small forested pre-Alpine catchment, adopting different calibrating approaches and target indexes. The Single and the Multiple Calibration Regions modality and three quantitative target indexes – the common Success Rate (SR, the Modified Success Rate (MSR, and a Weighted Modified Success Rate (WMSR herein introduced – are considered. The results obtained show that the target index can 34 003_Bischetti(569_23 1-12-2010 9:48 Pagina 34 significantly affect the values of a model’s parameters and lead to different proportions of stable/unstable areas, both for the Single and the Multiple Calibration Regions approach. The use of SR as the target index leads to an over-prediction of the unstable areas, whereas the use of MSR and WMSR, seems to allow a better discrimination between stable and unstable areas. The Multiple Calibration Regions approach should be preferred, using information on space distribution of vegetation to define the Regions. The use of field-based estimation of root cohesion and sliding depth allows the implementation of slope stability models (SINMAP in our case also without the data needed for calibration. To maximize the inclusion of such parameters into SINMAP, however, the assumption of a uniform distribution of

  17. A Sustainable Tourism Paradigm: Opportunities and Limits for Forest Landscape Planning

    Directory of Open Access Journals (Sweden)

    Dina Rizio

    2014-04-01

    Full Text Available The promotion of sustainable tourism models has been widely debated; many pages have been devoted to the attempt to provide the subject with a strong theoretical base and coherent structure. This said, it is still the case that, although such frameworks are crucial for the development of appropriate planning and policy instruments, their actual implementation continue to be fraught with difficulties. These problems are exacerbated when sustainable tourism entails development opportunities which require the support of the local community and the management of natural resources which are typically common goods. Under these circumstances, new management structures, which can both satisfy the needs of the local community and ensure the appropriate stewardship of the natural resources, must be created. Management solutions are not always easy to define and often need to be considered within a general framework, based on which individual cases are then formulated. This study analyses the connections between models of sustainable tourism and natural resource management considering the forest landscape case. This relationship is first examined from a theoretical perspective and then within a case study, in order to highlight the dual approach—both general and within a specific context.

  18. Landscape changes in a neotropical forest-savanna ecotone zone in central Brazil: The role of protected areas in the maintenance of native vegetation.

    Science.gov (United States)

    Garcia, Andrea S; Sawakuchi, Henrique O; Ferreira, Manuel Eduardo; Ballester, Maria Victoria R

    2017-02-01

    In the Amazon-savanna ecotone in northwest Brazil, the understudied Araguaia River Basin contains high biodiversity and seasonal wetlands. The region is representative of tropical humid-dry ecotone zones, which have experienced intense land use and land cover (LULC) conversions. Here we assessed the LULC changes for the last four decades in the central portion of the Araguaia River Basin to understand the temporal changes in the landscape composition and configuration outside and inside protected areas. We conducted these analyzes by LULC mapping and landscape metrics based on patch classes. During this period, native vegetation was reduced by 26%. Forests were the most threatened physiognomy, with significant areal reduction and fragmentation. Native vegetation cover was mainly replaced by croplands and pastures. Such replacement followed spatial and temporal trends related to the implementation of protected areas and increases in population cattle herds. The creation of most protected areas took place between 1996 and 2007, the same period during which the conversion of the landscape matrix from natural vegetation to agriculture occurred. We observed that protected areas mitigate fragmentation, but their roles differ according to their location and level of protection. Still, we argue that landscape characteristics, such as suitability for agriculture, also influence landscape conversions and should be considered when establishing protected areas. The information provided in this study can guide new research on species conservation and landscape planning, as well as improve the understanding of the impacts of landscape composition and configuration changes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. From Target to Implementation: Perspectives for the International Governance of Forest Landscape Restoration

    Directory of Open Access Journals (Sweden)

    Till Pistorius

    2014-03-01

    Full Text Available Continuing depletion of forest resources, particularly in tropical developing countries, has turned vast areas of intact ecosystems into urbanized and agricultural lands. The degree of degradation varies, but in most cases, the ecosystem functions and the ability to provide a variety of ecosystem services are severely impaired. In addition to many other challenges, successful forest restoration of these lands requires considerable resources and funding, but the ecological, economic and social benefits have the potential to outweigh the investment. As a consequence, at the international policy level, restoration is seen as a field of land use activities that provides significant contributions to simultaneously achieving different environmental and social policy objectives. Accordingly, different policy processes at the international policy level have made ecological landscape restoration a global priority, in particular the Convention on Biological Diversity with the Aichi Target 15 agreed upon in 2010, which aims at restoring 15% of all degraded land areas by 2020. While such ambitious policy targets are important for recognizing and agreeing upon solutions for environmental problems, they are unlikely to be further substantiated or governed. The objective of this paper is thus to develop a complementary governance approach to the top-down implementation of the Aichi target. Drawing on collaborative and network governance theories, we discuss the potential of a collaborative networked governance approach and perspectives for overcoming the inherent challenges facing a rapid large-scale restoration of degraded lands.

  20. Moving Forest di Expo 2015

    Directory of Open Access Journals (Sweden)

    Michela Moretti

    2015-12-01

    Full Text Available The paper proposes a reading of the Expo 2015 landscape project through the essay "Moving Forest "by Franco Zagari and Benedetto Selleri; in which the authors trace the design process of the exposition site. It describes the design features of the green spaces that surround and mark the Exposition City. The green project is the connection between innovation, technology and rural landscape, like that surrounds the site. The Expo map represents one of the largest landscape projects in the last years in Europe, with its 300,000 square meters, organized in a sequence of different landscape that improve a gradual transition from the rural and natural landscape outside, to the urban landscape inside the exposition city.

  1. Changes in soil moisture drive soil methane uptake along a fire regeneration chronosequence in a eucalypt forest landscape.

    Science.gov (United States)

    Fest, Benedikt; Wardlaw, Tim; Livesley, Stephen J; Duff, Thomas J; Arndt, Stefan K

    2015-11-01

    Disturbance associated with severe wildfires (WF) and WF simulating harvest operations can potentially alter soil methane (CH4 ) oxidation in well-aerated forest soils due to the effect on soil properties linked to diffusivity, methanotrophic activity or changes in methanotrophic bacterial community structure. However, changes in soil CH4 flux related to such disturbances are still rarely studied even though WF frequency is predicted to increase as a consequence of global climate change. We measured in-situ soil-atmosphere CH4 exchange along a wet sclerophyll eucalypt forest regeneration chronosequence in Tasmania, Australia, where the time since the last severe fire or harvesting disturbance ranged from 9 to >200 years. On all sampling occasions, mean CH4 uptake increased from most recently disturbed sites (9 year) to sites at stand 'maturity' (44 and 76 years). In stands >76 years since disturbance, we observed a decrease in soil CH4 uptake. A similar age dependency of potential CH4 oxidation for three soil layers (0.0-0.05, 0.05-0.10, 0.10-0.15 m) could be observed on incubated soils under controlled laboratory conditions. The differences in soil CH4 uptake between forest stands of different age were predominantly driven by differences in soil moisture status, which affected the diffusion of atmospheric CH4 into the soil. The observed soil moisture pattern was likely driven by changes in interception or evapotranspiration with forest age, which have been well described for similar eucalypt forest systems in south-eastern Australia. Our results imply that there is a large amount of variability in CH4 uptake at a landscape scale that can be attributed to stand age and soil moisture differences. An increase in severe WF frequency in response to climate change could potentially increase overall forest soil CH4 sinks. © 2015 John Wiley & Sons Ltd.

  2. Spatial patterns and processes for shifting cultivation landscape in Garo Hills, India.

    Science.gov (United States)

    Ashish Kumar; Bruce G. Marcot; P.S. Roy

    2006-01-01

    We analyzed a few spatial patterns and processes of a shifting cultivation landscape in the Garo Hills of Meghalaya state in North East India, where about 85% of land belongs to native community. The landscape comprised 2459 km2 of land with forest cover and shifting cultivation patches over 69% and 7% area of landscape, respectively. The mean...

  3. Clustering Timber Harvests and the Effects of Dynamic Forest Management Policy on Forest Fragmentation

    Science.gov (United States)

    Eric J. Gustafson

    1998-01-01

    To integrate multiple uses (mature forest and commodity production) better on forested lands, timber management strategies that cluster harvests have been proposed. One such approach clusters harvest activity in space and time, and rotates timber production zones across the landscape with a long temporal period (dynamic zoning). Dynamic zoning has...

  4. Losing a jewel—Rapid declines in Myanmar’s intact forests from 2002-2014

    Science.gov (United States)

    Horning, Ned; Khaing, Thiri; Thein, Zaw Min; Aung, Kyaw Moe; Aung, Kyaw Htet; Phyo, Paing; Tun, Ye Lin; Oo, Aung Htat; Neil, Anthony; Thu, Win Myo; Songer, Melissa; Huang, Qiongyu; Connette, Grant; Leimgruber, Peter

    2017-01-01

    New and rapid political and economic changes in Myanmar are increasing the pressures on the country’s forests. Yet, little is known about the past and current condition of these forests and how fast they are declining. We mapped forest cover in Myanmar through a consortium of international organizations and environmental non-governmental groups, using freely-available public domain data and open source software tools. We used Landsat satellite imagery to assess the condition and spatial distribution of Myanmar’s intact and degraded forests with special focus on changes in intact forest between 2002 and 2014. We found that forests cover 42,365,729 ha or 63% of Myanmar, making it one of the most forested countries in the region. However, severe logging, expanding plantations, and degradation pose increasing threats. Only 38% of the country’s forests can be considered intact with canopy cover >80%. Between 2002 and 2014, intact forests declined at a rate of 0.94% annually, totaling more than 2 million ha forest loss. Losses can be extremely high locally and we identified 9 townships as forest conversion hotspots. We also delineated 13 large (>100,000 ha) and contiguous intact forest landscapes, which are dispersed across Myanmar. The Northern Forest Complex supports four of these landscapes, totaling over 6.1 million ha of intact forest, followed by the Southern Forest Complex with three landscapes, comprising 1.5 million ha. These remaining contiguous forest landscape should have high priority for protection. Our project demonstrates how open source data and software can be used to develop and share critical information on forests when such data are not readily available elsewhere. We provide all data, code, and outputs freely via the internet at (for scripts: https://bitbucket.org/rsbiodiv/; for the data: http://geonode.themimu.info/layers/geonode%3Amyan_lvl2_smoothed_dec2015_resamp) PMID:28520726

  5. Divergence in Forest-Type Response to Climate and Weather: Evidence for Regional Links Between Forest-Type Evenness and Net Primary Productivity

    Science.gov (United States)

    Bradford, J.B.

    2011-01-01

    Climate change is altering long-term climatic conditions and increasing the magnitude of weather fluctuations. Assessing the consequences of these changes for terrestrial ecosystems requires understanding how different vegetation types respond to climate and weather. This study examined 20 years of regional-scale remotely sensed net primary productivity (NPP) in forests of the northern Lake States to identify how the relationship between NPP and climate or weather differ among forest types, and if NPP patterns are influenced by landscape-scale evenness of forest-type abundance. These results underscore the positive relationship between temperature and NPP. Importantly, these results indicate significant differences among broadly defined forest types in response to both climate and weather. Essentially all weather variables that were strongly related to annual NPP displayed significant differences among forest types, suggesting complementarity in response to environmental fluctuations. In addition, this study found that forest-type evenness (within 8 ?? 8 km2 areas) is positively related to long-term NPP mean and negatively related to NPP variability, suggesting that NPP in pixels with greater forest-type evenness is both higher and more stable through time. This is landscape- to subcontinental-scale evidence of a relationship between primary productivity and one measure of biological diversity. These results imply that anthropogenic or natural processes that influence the proportional abundance of forest types within landscapes may influence long-term productivity patterns. ?? 2011 Springer Science+Business Media, LLC (outside the USA).

  6. Genetic evidence for landscape effects on dispersal in the army ant Eciton burchellii.

    Science.gov (United States)

    Soare, Thomas W; Kumar, Anjali; Naish, Kerry A; O'Donnell, Sean

    2014-01-01

    Inhibited dispersal, leading to reduced gene flow, threatens populations with inbreeding depression and local extinction. Fragmentation may be especially detrimental to social insects because inhibited gene flow has important consequences for cooperation and competition within and among colonies. Army ants have winged males and permanently wingless queens; these traits imply male-biased dispersal. However, army ant colonies are obligately nomadic and have the potential to traverse landscapes. Eciton burchellii, the most regularly nomadic army ant, is a forest interior species: colony raiding activities are limited in the absence of forest cover. To examine whether nomadism and landscape (forest clearing and elevation) affect population genetic structure in a montane E. burchellii population, we reconstructed queen and male genotypes from 25 colonies at seven polymorphic microsatellite loci. Pairwise genetic distances among individuals were compared to pairwise geographical and resistance distances using regressions with permutations, partial Mantel tests and random forests analyses. Although there was no significant spatial genetic structure in queens or males in montane forest, dispersal may be male-biased. We found significant isolation by landscape resistance for queens based on land cover (forest clearing), but not on elevation. Summed colony emigrations over the lifetime of the queen may contribute to gene flow in this species and forest clearing impedes these movements and subsequent gene dispersal. Further forest cover removal may increasingly inhibit Eciton burchellii colony dispersal. We recommend maintaining habitat connectivity in tropical forests to promote population persistence for this keystone species. © 2013 John Wiley & Sons Ltd.

  7. Analysis of the development of land use in the Morava River floodplain, with special emphasis on the landscape matrix

    Directory of Open Access Journals (Sweden)

    Kilianová Helena

    2017-03-01

    Full Text Available The results of an analysis of land use development in the Morava River floodplain (Czech Republic using GIS from 1836 to the present, are the subject of this article. The results are based on the analysis of historical maps, using the landscape matrix assessment of the Morava River floodplain. The final analyses were processed from land use maps of the floodplain at a scale of 1 : 25,000 in five time horizons. These maps were compared with the present state of landscape by GIS methods. The study area was assessed according to five geomorphological areas from the northern/higher part to the southern/lower part of floodplain. In 1836 the landscape matrix of the floodplain was composed of meadows and forests. Forest components decreased minimally but the changes are more important. The grassland area (meadows and pastures decreased but arable land, as well as settlements, increased very significantly. In the 1950s the landscape matrix was composed of a mosaic of alluvial forests, meadows and arable land. Currently, the predominant landscape matrix consists of arable land and isolated forest complexes.

  8. Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives.

    Science.gov (United States)

    Joly, Carlos A; Metzger, Jean Paul; Tabarelli, Marcelo

    2014-11-01

    The Brazilian Atlantic Forest hosts one of the world's most diverse and threatened tropical forest biota. In many ways, its history of degradation describes the fate experienced by tropical forests around the world. After five centuries of human expansion, most Atlantic Forest landscapes are archipelagos of small forest fragments surrounded by open-habitat matrices. This 'natural laboratory' has contributed to a better understanding of the evolutionary history and ecology of tropical forests and to determining the extent to which this irreplaceable biota is susceptible to major human disturbances. We share some of the major findings with respect to the responses of tropical forests to human disturbances across multiple biological levels and spatial scales and discuss some of the conservation initiatives adopted in the past decade. First, we provide a short description of the Atlantic Forest biota and its historical degradation. Secondly, we offer conceptual models describing major shifts experienced by tree assemblages at local scales and discuss landscape ecological processes that can help to maintain this biota at larger scales. We also examine potential plant responses to climate change. Finally, we propose a research agenda to improve the conservation value of human-modified landscapes and safeguard the biological heritage of tropical forests. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  9. Forest dynamics.

    Science.gov (United States)

    Frelich, Lee

    2016-01-01

    Forest dynamics encompass changes in stand structure, species composition, and species interactions with disturbance and environment over a range of spatial and temporal scales. For convenience, spatial scale is defined as individual tree, neighborhood, stand, and landscape. Whether a given canopy-leveling disturbance will initiate a sequence of development in structure with little change in composition or initiate an episode of succession depends on a match or mismatch, respectively, with traits of the dominant tree species that allow the species to survive disturbance. When these match, certain species-disturbance type combinations lock in a pattern of stand and landscape dynamics that can persist for several generations of trees; thus, dominant tree species regulate, as well as respond to, disturbance. A complex interaction among tree species, neighborhood effects, disturbance type and severity, landform, and soils determines how stands of differing composition form and the mosaic of stands that compose the landscape. Neighborhood effects (e.g., serotinous seed rain, sprouting, shading, leaf-litter chemistry, and leaf-litter physical properties) operate at small spatial extents of the individual tree and its neighbors but play a central role in forest dynamics by contributing to patch formation at stand scales and dynamics of the entire landscape. Dominance by tree species with neutral to negative neighborhood effects leads to unstable landscape dynamics in disturbance-prone regions, wherein most stands are undergoing succession; stability can only occur under very low-severity disturbance regimes. Dominance by species with positive effects leads to stable landscape dynamics wherein only a small proportion of stands undergo succession at any one time. Positive neighborhood effects are common in temperate and boreal zones, whereas negative effects are more common in tropical climates. Landscapes with positive dynamics have alternate categories of dynamics

  10. A Complex Network Theory Approach for the Spatial Distribution of Fire Breaks in Heterogeneous Forest Landscapes for the Control of Wildland Fires.

    Science.gov (United States)

    Russo, Lucia; Russo, Paola; Siettos, Constantinos I

    2016-01-01

    Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches) which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a) an artificial forest of randomly distributed density of vegetation, and (b) a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire.

  11. A Complex Network Theory Approach for the Spatial Distribution of Fire Breaks in Heterogeneous Forest Landscapes for the Control of Wildland Fires.

    Directory of Open Access Journals (Sweden)

    Lucia Russo

    Full Text Available Based on complex network theory, we propose a computational methodology which addresses the spatial distribution of fuel breaks for the inhibition of the spread of wildland fires on heterogeneous landscapes. This is a two-level approach where the dynamics of fire spread are modeled as a random Markov field process on a directed network whose edge weights are determined by a Cellular Automata model that integrates detailed GIS, landscape and meteorological data. Within this framework, the spatial distribution of fuel breaks is reduced to the problem of finding network nodes (small land patches which favour fire propagation. Here, this is accomplished by exploiting network centrality statistics. We illustrate the proposed approach through (a an artificial forest of randomly distributed density of vegetation, and (b a real-world case concerning the island of Rhodes in Greece whose major part of its forest was burned in 2008. Simulation results show that the proposed methodology outperforms the benchmark/conventional policy of fuel reduction as this can be realized by selective harvesting and/or prescribed burning based on the density and flammability of vegetation. Interestingly, our approach reveals that patches with sparse density of vegetation may act as hubs for the spread of the fire.

  12. Scale-specific correlations between habitat heterogeneity and soil fauna diversity along a landscape structure gradient.

    Science.gov (United States)

    Vanbergen, Adam J; Watt, Allan D; Mitchell, Ruth; Truscott, Anne-Marie; Palmer, Stephen C F; Ivits, Eva; Eggleton, Paul; Jones, T Hefin; Sousa, José Paulo

    2007-09-01

    Habitat heterogeneity contributes to the maintenance of diversity, but the extent that landscape-scale rather than local-scale heterogeneity influences the diversity of soil invertebrates-species with small range sizes-is less clear. Using a Scottish habitat heterogeneity gradient we correlated Collembola and lumbricid worm species richness and abundance with different elements (forest cover, habitat richness and patchiness) and qualities (plant species richness, soil variables) of habitat heterogeneity, at landscape (1 km(2)) and local (up to 200 m(2)) scales. Soil fauna assemblages showed considerable turnover in species composition along this habitat heterogeneity gradient. Soil fauna species richness and turnover was greatest in landscapes that were a mosaic of habitats. Soil fauna diversity was hump-shaped along a gradient of forest cover, peaking where there was a mixture of forest and open habitats in the landscape. Landscape-scale habitat richness was positively correlated with lumbricid diversity, while Collembola and lumbricid abundances were negatively and positively related to landscape spatial patchiness. Furthermore, soil fauna diversity was positively correlated with plant diversity, which in turn peaked in the sites that were a mosaic of forest and open habitat patches. There was less evidence that local-scale habitat variables (habitat richness, tree cover, plant species richness, litter cover, soil pH, depth of organic horizon) affected soil fauna diversity: Collembola diversity was independent of all these measures, while lumbricid diversity positively and negatively correlated with vascular plant species richness and tree canopy density. Landscape-scale habitat heterogeneity affects soil diversity regardless of taxon, while the influence of habitat heterogeneity at local scales is dependent on taxon identity, and hence ecological traits, e.g. body size. Landscape-scale habitat heterogeneity by providing different niches and refuges, together

  13. Worker morphology of the ant Gnamptogenys striatula Mayr (Formicidae, Ectatomminae in different landscapes from the Atlantic Forest domain

    Directory of Open Access Journals (Sweden)

    Roseli F. Oliveira

    2015-03-01

    Full Text Available Morphological traits, such as size and shape, may reflect a combination of ecological and evolutionary responses by organisms. Ants have been used to evaluate the relationship between the environment and species coexistence and morphology. In the present study, we analyzed the morphology of workers of Gnamptogenys striatula Mayr in different landscapes from the Atlantic Domain in southeastern Brazil, focusing on the variation in the morphological attributes of these populations compared to those from a dense ombrophilous forest. Eighteen morphological traits of functional importance for interactions between workers and the environment were measured to characterize the size and shape of the workers. In general, the results show that ants of urban areas possess some morphological attributes of smaller size, with highly overlapped morphological space between the populations in forested ecosystems. Further, some of the traits related to predation were relatively smaller in modified land areas than in the populations from preserved areas of dense ombrophilous forest. These results help broaden the knowledge regarding morphological diversity in G. striatula, suggesting that the characterization of the morphology may be important to quantify the effects of land use on morphological diversity, and presumably, to facilitate the use of ants as biological indicators.

  14. Combining aesthetic with ecological values for landscape sustainability.

    Science.gov (United States)

    Yang, Dewei; Luo, Tao; Lin, Tao; Qiu, Quanyi; Luo, Yunjian

    2014-01-01

    Humans receive multiple benefits from various landscapes that foster ecological services and aesthetic attractiveness. In this study, a hybrid framework was proposed to evaluate ecological and aesthetic values of five landscape types in Houguanhu Region of central China. Data from the public aesthetic survey and professional ecological assessment were converted into a two-dimensional coordinate system and distribution maps of landscape values. Results showed that natural landscapes (i.e. water body and forest) contributed positively more to both aesthetic and ecological values than semi-natural and human-dominated landscapes (i.e. farmland and non-ecological land). The distribution maps of landscape values indicated that the aesthetic, ecological and integrated landscape values were significantly associated with landscape attributes and human activity intensity. To combine aesthetic preferences with ecological services, the methods (i.e. field survey, landscape value coefficients, normalized method, a two-dimensional coordinate system, and landscape value distribution maps) were employed in landscape assessment. Our results could facilitate to identify the underlying structure-function-value chain, and also improve the understanding of multiple functions in landscape planning. The situation context could also be emphasized to bring ecological and aesthetic goals into better alignment.

  15. A landscape analysis plan

    Science.gov (United States)

    Nancy E. Fleenor

    2002-01-01

    A Landscape Analysis Plan (LAP) sets out broad guidelines for project development within boundaries of the Kings River Sustainable Forest Ecosystems Project. The plan must be a dynamic, living document, subject to change as new information arises over the course of this very long-term project (several decades). Two watersheds, each of 32,000 acres, were dedicated to...

  16. The importance of Ficus (Moraceae) trees for tropical forest restoration

    DEFF Research Database (Denmark)

    Cottee-Jones, H. Eden W.; Bajpai, Omesh; Chaudhary, Lal B.

    2016-01-01

    Forest restoration is an increasingly important tool to offset and indeed reverse global deforestation rates. One low cost strategy to accelerate forest recovery is conserving scattered native trees that persist across disturbed landscapes and which may act as seedling recruitment foci. Ficus trees...... restoration agents than other remnant trees in disturbed landscapes, and therefore the conservation of these trees should be prioritized....

  17. Hydrological principles for sustainable management of forest ecosystems

    Science.gov (United States)

    Irena F. Creed; Gabor Z. Sass; Jim M. Buttle; Julia A. Jones

    2011-01-01

    Forested landscapes around the world are changing as a result of human activities, including forest management, fire suppression, mountaintop mining, conversion of natural forests to plantations, and climate change (Brockerhoff et al., 2008; Cyr et al., 2009; Johnston et al., 2010; Miller et al., 2009; Kelly et al., 2010; Palmer et al., 2010). Forests...

  18. Restoration of landscapes disrupted by open pit mining

    Energy Technology Data Exchange (ETDEWEB)

    Chuvilov, M.I.; Vasil' kov, Yu.M.

    1982-01-01

    Practical recommendations are given for restoring landscapes which are suitable to the stripped rocks of the ''Korkinskiy'' section of the ''chelyabinskugol''' Union. The creation is proposed of broad terraces on the slopes for forest plantings. By first fulfilling a complex of agrotechnical measures, plantings are designed with consideration of ensuring a forest growth.

  19. Landscape-scale tropical forest dynamics: Relating canopy traits and topographically derived hydrologic indices in a floodplain system using CAO-AToMS

    Science.gov (United States)

    Chadwick, K.; Asner, G. P.

    2012-12-01

    The geomorphology of floodplains in the humid tropics has been used to infer basic classifications of forest types. However, analysis of the landscape-scale topographic and hydrologic patterns underpinning spatial variation in forest composition and function remain elusive due to the sparse coverage of forest plots, coarse resolution remotely sensed data, and the challenges of collecting first order hydrologic data. Airborne remote measurements provide an opportunity to consider the relationship between high-resolution topographic and derived hydrologic environmental gradients, and forest canopy characteristics with important cascading effects on ecosystem function and biosphere-atmosphere interactions. In 2011, the Carnegie Airborne Observatory (CAO) Airborne Taxonomic Mapping System (AToMS) was used to map a large section of the Los Amigos Conservation Concession harboring largely intact lowland humid tropical forest in the southwestern Peruvian Amazon. The CAO Visible-Shortwave Imaging Spectrometer (VSWIR) collected 480-band high-fidelity imaging spectroscopy data of the forest canopy, while its high-resolution dual waveform LiDAR captured information on canopy structure and the underlying terrain. The data were used to quantify relationships between topographic and hydrologic gradients and forest functional traits. Results suggest strong local hydrogeomorphic control over vegetation spectral properties with known relationships to canopy functional traits, including pigment and nutrient concentrations and light capture, as well as canopy structural characteristics, including vegetation height, understory plant cover, and aboveground biomass. Data from CAO-AToMS reveals local-scale patterns in environmental conditions and ecological variation that meets or exceeds the variation previously reported across ecosystems of the Western Amazon Basin.

  20. Changes in Orchid Bee Communities Across Forest-Agroecosystem Boundaries in Brazilian Atlantic Forest Landscapes.

    Science.gov (United States)

    De Aguiar, Willian Moura; Sofia, Silvia H; Melo, Gabriel A R; Gaglianone, Maria Cristina

    2015-12-01

    Deforestation has dramatically reduced the extent of Atlantic Forest cover in Brazil. Orchid bees are key pollinators in neotropical forest, and many species are sensitive to anthropogenic interference. In this sense understanding the matrix permeability for these bees is important for maintaining genetic diversity and pollination services. Our main objective was to assess whether the composition, abundance, and diversity of orchid bees in matrices differed from those in Atlantic forest. To do this we sampled orchid bees at 4-mo intervals from 2007 to 2009 in remnants of Atlantic Forest, and in the surrounding pasture and eucalyptus matrices. The abundance, richness, and diversity of orchid bees diminished significantly from the forest fragment toward the matrix points in the eucalyptus and pasture. Some common or intermediate species in the forest areas, such as Eulaema cingulata (F.) and Euglossa fimbriata Moure, respectively, become rare species in the matrices. Our results show that the orchid bee community is affected by the matrices surrounding the forest fragments. They also suggest that connections between forest fragments need to be improved using friendly matrices that can provide more favorable conditions for bees and increase their dispersal between fragments. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Examining shifts in Carabidae assemblages across a forest-agriculture ecotone.

    Science.gov (United States)

    Leslie, T W; Biddinger, D J; Rohr, J R; Hulting, A G; Mortensen, D A; Fleischer, S J

    2014-02-01

    Northeastern U.S. farms are often situated adjacent to forestland due to the heterogeneous nature of the landscape. We investigated how forested areas influence Carabidae diversity within nearby crop fields by establishing transects of pitfall traps. Trapping extended across a forest-agriculture ecotone consisting of maize, an intermediate mowed grass margin, and a forest edge. Carabidae diversity was compared among the three habitats, and community and population dynamics were assessed along the transect. We used a principal response curve to examine and visualize community change across a spatial gradient. The highest levels of richness and evenness were observed in the forest community, and carabid assemblages shifted significantly across the ecotone, especially at the forest-grass interface. Despite strong ecotone effects, population distributions showed that some species were found in all three habitats and seemed to thrive at the ecotone. Based on similarity indices, carabid assemblages collected in maize adjacent to forest differed from carabid assemblages in maize not adjacent to forest. We conclude that forest carabid assemblages exhibit high degrees of dissimilarity with those found in agricultural fields and forested areas should thus be retained in agricultural landscapes to increase biodiversity at the landscape scale. However, ecotone species found at forest edges can still noticeably influence carabid community composition within neighboring agricultural fields. Further studies should determine how these shifts in carabid assemblages influence agroecosystem services in relation to ecosystem services observed in fields embedded in an agricultural matrix.

  2. Coupled Socio-Ecological Drivers of Carbon Storage in South African Coastal Lowland Landscapes

    Science.gov (United States)

    Smithwick, E. A.

    2011-12-01

    The amount of carbon stored in African terrestrial ecosystems is unknown, varying from 30 to >250 Mg C ha-1 in tropical forests. Several prominent efforts are improving this estimate through forest inventories and modeling, but carbon storage varies across ecosystems and some ecosystems remain vastly understudied. This is critical given that Africa's net carbon flux ranges from a source to a substantial carbon sink, making it one of the weakest links in the global carbon cycle. One such understudied ecosystem is the coastal lowland forest along the Eastern Cape of South Africa, which lies between two internationally recognized biodiversity hotspots and is a current focus of conservation efforts in the region. Six permanent forest plots were established within two nature reserves during February 2011. Using empirical wood density estimates, aboveground tree carbon was estimated using established allometric equations. Results indicated that forests store between 50 and 100 Mg C ha-1, with significant variability among sites. However, the landscapes of the nature reserves differ significantly in the amount of forest cover due to differences in fire frequencies (ranging from 100 years), which are largely determined by rates of wildlife poaching within nature reserves. Thus, although estimates of forest carbon storage are heterogeneous within Eastern Cape forests, landscape-scale carbon storage is governed largely by human activities and reflects strongly coupled socio-ecological drivers. Estimates of landscape-scale carbon storage can help guide conservation management strategies and form the basis of future modeling efforts exploring interactions of climate, disturbance, and human livelihoods.

  3. Assessing biomass accumulation in second growth forests of Puerto Rico using airborne lidar

    Science.gov (United States)

    Martinuzzi, S.; Cook, B.; Corp, L. A.; Morton, D. C.; Helmer, E.; Keller, M.

    2017-12-01

    Degraded and second growth tropical forests provide important ecosystem services, such as carbon sequestration and soil stabilization. Lidar data measure the three-dimensional structure of forest canopies and are commonly used to quantify aboveground biomass in temperate forest landscapes. However, the ability of lidar data to quantify second growth forest biomass in complex, tropical landscapes is less understood. Our goal was to evaluate the use of airborne lidar data to quantify aboveground biomass in a complex tropical landscape, the Caribbean island of Puerto Rico. Puerto Rico provides an ideal place for studying biomass accumulation because of the abundance of second growth forests in different stages of recovery, and the high ecological heterogeneity. Puerto Rico was almost entirely deforested for agriculture until the 1930s. Thereafter, agricultural abandonment resulted in a mosaic of second growth forests that have recovered naturally under different types of climate, land use, topography, and soil fertility. We integrated forest plot data from the US Forest Service, Forest Inventory and Analysis (FIA) Program with recent lidar data from NASA Goddard's Lidar, Hyperspectral, and Thermal (G-LiHT) airborne imager to quantify forest biomass across the island's landscape. The G-LiHT data consisted on targeted acquisitions over the FIA plots and other forested areas representing the environmental heterogeneity of the island. To fully assess the potential of the lidar data, we compared the ability of lidar-derived canopy metrics to quantify biomass alone, and in combination with intensity and topographic metrics. The results presented here are a key step for improving our understanding of the patterns and drivers of biomass accumulation in tropical forests.

  4. Edge effects and geometric constraints: a landscape-level empirical test.

    Science.gov (United States)

    Ribeiro, Suzy E; Prevedello, Jayme A; Delciellos, Ana Cláudia; Vieira, Marcus Vinícius

    2016-01-01

    Edge effects are pervasive in landscapes yet their causal mechanisms are still poorly understood. Traditionally, edge effects have been attributed to differences in habitat quality along the edge-interior gradient of habitat patches, under the assumption that no edge effects would occur if habitat quality was uniform. This assumption was questioned recently after the recognition that geometric constraints tend to reduce population abundances near the edges of habitat patches, the so-called geometric edge effect (GEE). Here, we present the first empirical, landscape-level evaluation of the importance of the GEE in shaping abundance patterns in fragmented landscapes. Using a data set on the distribution of small mammals across 18 forest fragments, we assessed whether the incorporation of the GEE into the analysis changes the interpretation of edge effects and the degree to which predictions based on the GEE match observed responses. Quantitative predictions were generated for each fragment using simulations that took into account home range, density and matrix use for each species. The incorporation of the GEE into the analysis changed substantially the interpretation of overall observed edge responses at the landscape scale. Observed abundances alone would lead to the conclusion that the small mammals as a group have no consistent preference for forest edges or interiors and that the black-eared opossum Didelphis aurita (a numerically dominant species in the community) has on average a preference for forest interiors. In contrast, incorporation of the GEE suggested that the small mammal community as a whole has a preference for forest edges, whereas D. aurita has no preference for forest edges or interiors. Unexplained variance in edge responses was reduced by the incorporation of GEE, but remained large, varying greatly on a fragment-by-fragment basis. This study demonstrates how to model and incorporate the GEE in analyses of edge effects and that this

  5. Fire Data as Proxy for Anthropogenic Landscape Change in the Yucatán

    Directory of Open Access Journals (Sweden)

    Marco Millones

    2017-09-01

    Full Text Available Fire is one of the earliest and most common tools used by humans to modify the earth surface. Landscapes in the Yucatán Peninsula are composed of a mosaic of old growth subtropical forest, secondary vegetation, grasslands, and agricultural land that represent a well-documented example of anthropogenic intervention, much of which involves the use of fire. This research characterizes land use systems and land cover changes in the Yucatán during the 2000–2010 time period. We used an active fire remotely sensed data time series from the Moderate Resolution Imaging Spectroradiometer (MODIS, in combination with forest loss, and anthrome map sources to (1 establish the association between fire and land use change in the region; and (2 explore links between the spatial and temporal patterns of fire and specific types of land use practices, including within- and between-anthromes variability. A spatial multinomial logit model was constructed using fire, landscape configuration, and a set of commonly used control variables to estimate forest persistence, non-forest persistence, and change. Cross-tabulations and descriptive statistics were used to explore the relationships between fire occurrence, location, and timing with respect to the geography of land use. We also compared fire frequencies within and between anthrome groups using a negative binomial model and Tukey pairwise comparisons. Results show that fire data broadly reproduce the geography and timing of anthropogenic land change. Findings indicate that fire and landscape configuration is useful in explaining forest change and non-forest persistence, especially in fragmented (mosaicked landscapes. Absence of fire occurrence is related usefully to the persistence of spatially continuous core areas of older growth forest. Fire has a positive relationship with forest to non-forest change and a negative relationship with forest persistence. Fire is also a good indicator to distinguish between

  6. Simulating stand-level harvest prescriptions across landscapes: LANDIS PRO harvest module design

    Science.gov (United States)

    Jacob S. Fraser; Hong S. He; Stephen R. Shifley; Wen J. Wang; Frank R. Thompson

    2013-01-01

    Forest landscape models (FLMs) are an important tool for assessing the long-term cumulative effects of harvest over large spatial extents. However, they have not been commonly used to guide forest management planning and on-the-ground operations. This is largely because FLMs track relatively simplistic vegetation information such as age cohort presence/absence, forest...

  7. Projected gains and losses of wildlife habitat from bioenergy-induced landscape change

    Science.gov (United States)

    Tarr, Nathan M.; Rubino, Matthew J.; Costanza, Jennifer K.; McKerrow, Alexa; Collazo, Jaime A.; Abt, Robert C.

    2016-01-01

    Domestic and foreign renewable energy targets and financial incentives have increased demand for woody biomass and bioenergy in the southeastern United States. This demand is expected to be met through purpose-grown agricultural bioenergy crops, short-rotation tree plantations, thinning and harvest of planted and natural forests, and forest harvest residues. With results from a forest economics model, spatially explicit state-and-transition simulation models, and species–habitat models, we projected change in habitat amount for 16 wildlife species caused by meeting a renewable fuel target and expected demand for wood pellets in North Carolina, USA. We projected changes over 40 years under a baseline ‘business-as-usual’ scenario without bioenergy production and five scenarios with unique feedstock portfolios. Bioenergy demand had potential to influence trends in habitat availability for some species in our study area. We found variation in impacts among species, and no scenario was the ‘best’ or ‘worst’ across all species. Our models projected that shrub-associated species would gain habitat under some scenarios because of increases in the amount of regenerating forests on the landscape, while species restricted to mature forests would lose habitat. Some forest species could also lose habitat from the conversion of forests on marginal soils to purpose-grown feedstocks. The conversion of agricultural lands on marginal soils to purpose-grown feedstocks increased habitat losses for one species with strong associations with pasture, which is being lost to urbanization in our study region. Our results indicate that landscape-scale impacts on wildlife habitat will vary among species and depend upon the bioenergy feedstock portfolio. Therefore, decisions about bioenergy and wildlife will likely involve trade-offs among wildlife species, and the choice of focal species is likely to affect the results of landscape-scale assessments. We offer general principals

  8. Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient.

    Science.gov (United States)

    Orihuela, Rodrigo L L; Peres, Carlos A; Mendes, Gabriel; Jarenkow, João A; Tabarelli, Marcelo

    2015-01-01

    We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.

  9. Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient.

    Directory of Open Access Journals (Sweden)

    Rodrigo L L Orihuela

    Full Text Available We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide.

  10. Tropical Forest Fragmentation Limits Movements, but Not Occurrence of a Generalist Pollinator Species.

    Directory of Open Access Journals (Sweden)

    Noelia L Volpe

    Full Text Available Habitat loss and fragmentation influence species distributions and therefore ecological processes that depend upon them. Pollination may be particularly susceptible to fragmentation, as it depends on frequent pollinator movement. Unfortunately, most pollinators are too small to track efficiently which has precluded testing the hypothesis that habitat fragmentation reduces or eliminates pollen flow by disrupting pollinator movement. We used radio-telemetry to examine space use of the green hermit hummingbird (Phaethornis guy, an important 'hub' pollinator of understory flowering plants across substantial portions of the neotropics and the primary pollinator of a keystone plant which shows reduced pollination success in fragmented landscapes. We found that green hermits strongly avoided crossing large stretches of non-forested matrix and preferred to move along stream corridors. Forest gaps as small as 50 m diminished the odds of movement by 50%. Green hermits occurred almost exclusively inside the forest, with the odds of occurrence being 8 times higher at points with >95% canopy cover compared with points having <5% canopy cover. Nevertheless, surprisingly. the species occurred in fragmented landscapes with low amounts of forest (~30% within a 2 km radius. Our results indicate that although green hermits are present even in landscapes with low amounts of tropical forest, movement within these landscapes ends up strongly constrained by forest gaps. Restricted movement of pollinators may be an underappreciated mechanism for widespread declines in pollination and plant fitness in fragmented landscapes, even when in the presence of appropriate pollinators.

  11. Landscape And Edge Effects On The Distribution Of Mammalian Predators In Missouri

    Science.gov (United States)

    William D. Dijak; Frank R. Thompson III

    2000-01-01

    Raccoons (Procyon lotor), opossums (Didelphis virginiana), and striped skunks (Mephitis mephitis) are predators of forest songbird eggs and nestlings. We examined the relative abundance of these predators at landscape and local scales to better understand predation risks. At the landscape scale, we examined the...

  12. Forest Cover Estimation in Ireland Using Radar Remote Sensing: A Comparative Analysis of Forest Cover Assessment Methodologies

    Science.gov (United States)

    Devaney, John; Barrett, Brian; Barrett, Frank; Redmond, John; O`Halloran, John

    2015-01-01

    Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1–98.5%), with differences between the two classifiers being minimal (forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting. PMID:26262681

  13. Risk and cooperation: managing hazardous fuel in mixed ownership landscapes

    Science.gov (United States)

    A. Paige Fischer; Susan. Charnley

    2012-01-01

    Managing natural processes at the landscape scale to promote forest health is important, especially in the case of wildfire, where the ability of a landowner to protect his or her individual parcel is constrained by conditions on neighboring ownerships. However, management at a landscape scale is also challenging because it requires cooperation on plans and actions...

  14. Factors influencing non-native tree species distribution in urban landscapes

    Science.gov (United States)

    Wayne C. Zipperer

    2010-01-01

    Non-native species are presumed to be pervasive across the urban landscape. Yet, we actually know very little about their actual distribution. For this study, vegetation plot data from Syracuse, NY and Baltimore, MD were used to examine non-native tree species distribution in urban landscapes. Data were collected from remnant and emergent forest patches on upland sites...

  15. Do rising temperatures always increase forest productivity? Interacting effects of temperature, precipitation, cloudiness and soil texture on tree species growth and competition

    Science.gov (United States)

    Eric J. Gustafson; Brian R. Miranda; Arjan M.G. De Bruijn; Brian R. Sturtevant; Mark E. Kubiske

    2017-01-01

    Forest landscape models (FLM) are increasingly used to project the effects of climate change on forested landscapes, yet most use phenomenological approaches with untested assumptions about future forest dynamics. We used a FLM that relies on first principles to mechanistically simulate growth (LANDIS-II with PnET-Succession) to systematically explore how landscapes...

  16. Effect of landscape matrix type on nesting ecology of the Northern Cardinal

    Science.gov (United States)

    R.A. Sargent; J.C. Kilgo; B.R. Chapman; K.V. Miller

    2015-01-01

    Spatial distribution of forests relative to other habitats in a landscape may influence nest success of songbirds. For example, nest predation in mature forests increases as the percentage of clear-cut land in the surrounding matrix increases (Yahner and Scott 1988). Blake and Karr (1987) noted that birds breeding in forest fragments may incorporate adjacent habitats,...

  17. Estimating Net Primary Production of Swedish Forest Landscapes by Combining Mechanistic Modeling and Remote Sensing

    DEFF Research Database (Denmark)

    Tagesson, Håkan Torbern; Smith, Benjamin; Løfgren, Anders

    2009-01-01

    and the Beer-Lambert law. LAI estimates were compared with satellite-extrapolated field estimates of LAI, and the results were generally acceptable. NPP estimates directly from the dynamic vegetation model and estimates obtained by combining the model estimates with remote sensing information were, on average......The aim of this study was to investigate a combination of satellite images of leaf area index (LAI) with processbased vegetation modeling for the accurate assessment of the carbon balances of Swedish forest ecosystems at the scale of a landscape. Monthly climatologic data were used as inputs...... in a dynamic vegetation model, the Lund Potsdam Jena-General Ecosystem Simulator. Model estimates of net primary production (NPP) and the fraction of absorbed photosynthetic active radiation were constrained by combining them with satellite-based LAI images using a general light use efficiency (LUE) model...

  18. Landscape spatial configuration is a key driver of wild bee demographics.

    Science.gov (United States)

    Neokosmidis, Lazaros; Tscheulin, Thomas; Devalez, Jelle; Petanidou, Theodora

    2018-02-01

    The majority of studies investigating the effects of landscape composition and configuration on bee populations have been conducted in regions of intensive agricultural production, ignoring regions which are dominated by seminatural habitats, such as the islands of the Aegean Archipelago. In addition, research so far has focused on the landscape impacts on bees sampled in cropped fields while the landscape effects on bees inhabiting seminatural habitats are understudied. Here, we investigate the impact of the landscape on wild bee assemblages in 66 phryganic (low scrubland) communities on 8 Aegean islands. We computed landscape metrics (total area and total perimeter-area ratio) in 4 concentric circles (250, 500, 750, and 1000 m) around the center of each bee sampling site including 3 habitat groups (namely phrygana, cultivated land, and natural forests). We further measured the local flower cover in 25 quadrats distributed randomly at the center of each sampling site. We found that the landscape scale is more important than the local scale in shaping abundance and species richness of bees. Furthermore, habitat configuration was more important than the total area of habitats, probably because it affects bees' movement across the landscape. Phrygana and natural forests had a positive effect on bee demographics, while cultivated land had a negative effect. This demonstrates that phryganic specialists drive bee assemblages in these seminatural landscapes. This finding, together with the shown importance of landscape scale, should be considered for the management of wild bees with special emphasis placed on the spatial configuration of seminatural habitats. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  19. Studying fire mitigation strategies in multi-ownership landscapes: balancing the management of fire-dependent ecosystems and fire risk

    Science.gov (United States)

    Brian R. Sturtevant; Brian R. Miranda; Jian Yang; Hong S. He; Eric J. Gustafson; Robert M. Scheller

    2009-01-01

    Public forests are surrounded by land over which agency managers have no control, and whose owners expect the public forest to be a "good neighbor." Fire risk abatement on multi-owner landscapes containing flammable but fire-dependent ecosystems epitomizes the complexities of managing public lands. We report a case study that applies a landscape disturbance...

  20. Assessment of forest management influences on total live aboveground tree biomass in William B Bankhead National Forest, Alabama

    Science.gov (United States)

    Callie Schweitzer; Dawn Lemke; Wubishet Tadesse; Yong Wang

    2015-01-01

    Forests contain a large amount of carbon (C) stored as tree biomass (above and below ground), detritus, and soil organic material. The aboveground tree biomass is the most rapid change component in this forest C pool. Thus, management of forest resources can influence the net C exchange with the atmosphere by changing the amount of C stored, particularly in landscapes...

  1. To Tree, or not to Tree: Sediment Storage in Forested and Non-forested Mountainous Hillslopes of the Bitterroot Mountains, MT

    Science.gov (United States)

    Quinn, C.; Dixon, J. L.; Wilcox, A. C.

    2017-12-01

    In steep, mountainous landscapes, interactions between soil, rock, and biotic factors combine to form complex feedbacks. Here, we explore the dynamic interplay between soil and vegetation and its influence on hillslope sediment storage and movement in the Bitterroot Range of Montana's Rocky Mountains. We focus on a set of analogous forested and non-forested hillslopes along Lost Horse Creek, where avalanche paths determine vegetative density without significant impact on other topographic variables. LiDAR, high-resolution aerial photography, and field mapping are used to determine the local and landscape variables that influence soil cover and sediment storage. We find high-resolution surface roughness is a useful remote proxy to identify bedrock and boulder outcrops, particularly beneath canopy cover. Based on this analysis and field mapping, the spatial extent of soil cover does not vary significantly between forested and non-forested regions, though soils are generally thicker under forest cover. We additionally measure fallout radiogenic nuclides (FRNs; Cs-137 and Pb-210) in soils across 40 sites to provide insight into short-term soil erosion and movement. Preliminary results show high spatial variability in FRN activities of mineral soils in both systems, which may reflect either spatially variable delivery or soil erosion. Additionally, FRN activity of surface litter and duff at the forest floor is three to four times higher than mineral soils in both the forested and non-forested sites, suggesting that FRNs may provide a novel tracer of carbon storage and export. Our results show that the coupled use of isotopic tracers and high resolution spatial data reveal quantitative insights into landscape scale hillslope soil dynamics.

  2. Deforestation Impacts on Bat Functional Diversity in Tropical Landscapes.

    Directory of Open Access Journals (Sweden)

    Rodrigo García-Morales

    Full Text Available Functional diversity is the variability in the functional roles carried out by species within ecosystems. Changes in the environment can affect this component of biodiversity and can, in turn, affect different processes, including some ecosystem services. This study aimed to determine the effect of forest loss on species richness, abundance and functional diversity of Neotropical bats. To this end, we identified six landscapes with increasing loss of forest cover in the Huasteca region of the state of Hidalgo, Mexico. We captured bats in each landscape using mist nets, and calculated functional diversity indices (functional richness and functional evenness along with species richness and abundance. We analyzed these measures in terms of percent forest cover. We captured 906 bats (Phyllostomidae and Mormoopidae, including 10 genera and 12 species. Species richness, abundance and functional richness per night are positively related with forest cover. Generalized linear models show that species richness, abundance and functional richness per night are significantly related with forest cover, while seasonality had an effect on abundance and functional richness. Neither forest cover nor season had a significant effect on functional evenness. All these findings were consistent across three spatial scales (1, 3 and 5 km radius around sampling sites. The decrease in species, abundance and functional richness of bats with forest loss may have implications for the ecological processes they carry out such as seed dispersal, pollination and insect predation, among others.

  3. Deforestation Impacts on Bat Functional Diversity in Tropical Landscapes.

    Science.gov (United States)

    García-Morales, Rodrigo; Moreno, Claudia E; Badano, Ernesto I; Zuria, Iriana; Galindo-González, Jorge; Rojas-Martínez, Alberto E; Ávila-Gómez, Eva S

    2016-01-01

    Functional diversity is the variability in the functional roles carried out by species within ecosystems. Changes in the environment can affect this component of biodiversity and can, in turn, affect different processes, including some ecosystem services. This study aimed to determine the effect of forest loss on species richness, abundance and functional diversity of Neotropical bats. To this end, we identified six landscapes with increasing loss of forest cover in the Huasteca region of the state of Hidalgo, Mexico. We captured bats in each landscape using mist nets, and calculated functional diversity indices (functional richness and functional evenness) along with species richness and abundance. We analyzed these measures in terms of percent forest cover. We captured 906 bats (Phyllostomidae and Mormoopidae), including 10 genera and 12 species. Species richness, abundance and functional richness per night are positively related with forest cover. Generalized linear models show that species richness, abundance and functional richness per night are significantly related with forest cover, while seasonality had an effect on abundance and functional richness. Neither forest cover nor season had a significant effect on functional evenness. All these findings were consistent across three spatial scales (1, 3 and 5 km radius around sampling sites). The decrease in species, abundance and functional richness of bats with forest loss may have implications for the ecological processes they carry out such as seed dispersal, pollination and insect predation, among others.

  4. Adaptive economic and ecological forest management under risk

    Science.gov (United States)

    Joseph Buongiorno; Mo Zhou

    2015-01-01

    Background: Forest managers must deal with inherently stochastic ecological and economic processes. The future growth of trees is uncertain, and so is their value. The randomness of low-impact, high frequency or rare catastrophic shocks in forest growth has significant implications in shaping the mix of tree species and the forest landscape...

  5. Carrot or stick? Modelling how landowner behavioural responses can cause incentive-based forest governance to backfire.

    Directory of Open Access Journals (Sweden)

    Kirsten A Henderson

    Full Text Available Mitigating the negative impacts of declining worldwide forest cover remains a significant socio-ecological challenge, due to the dominant role of human decision-making. Here we use a Markov chain model of land-use dynamics to examine the impact of governance on forest cover in a region. Each land parcel can be either forested or barren (deforested, and landowners decide whether to deforest their parcel according to perceived value (utility. We focus on three governance strategies: yearly incentive for conservation, one-time penalty for deforestation and one-time incentive for reforestation. The incentive and penalty are incorporated into the expected utility of forested land, which decreases the net gain of deforestation. By analyzing the equilibrium and stability of the landscape dynamics, we observe four possible outcomes: a stationary-forested landscape, a stationary-deforested landscape, an unstable landscape fluctuating near the equilibrium, and a cyclic-forested landscape induced by synchronized deforestation. We find that the two incentive-based strategies often result in highly fluctuating forest cover over decadal time scales or longer, and in a few cases, reforestation incentives actually decrease the average forest cover. In contrast, a penalty for deforestation results in the stable persistence of forest cover (generally >30%. The idea that larger conservation incentives will always yield higher and more stable forest cover is not supported in our findings. The decision to deforest is influenced by more than a simple, "rational" cost-benefit analysis: social learning and myopic, stochastic decision-making also have important effects. We conclude that design of incentive programs may need to account for potential counter-productive long-term effects due to behavioural feedbacks.

  6. Carrot or Stick? Modelling How Landowner Behavioural Responses Can Cause Incentive-Based Forest Governance to Backfire

    Science.gov (United States)

    Henderson, Kirsten A.; Anand, Madhur; Bauch, Chris T.

    2013-01-01

    Mitigating the negative impacts of declining worldwide forest cover remains a significant socio-ecological challenge, due to the dominant role of human decision-making. Here we use a Markov chain model of land-use dynamics to examine the impact of governance on forest cover in a region. Each land parcel can be either forested or barren (deforested), and landowners decide whether to deforest their parcel according to perceived value (utility). We focus on three governance strategies: yearly incentive for conservation, one-time penalty for deforestation and one-time incentive for reforestation. The incentive and penalty are incorporated into the expected utility of forested land, which decreases the net gain of deforestation. By analyzing the equilibrium and stability of the landscape dynamics, we observe four possible outcomes: a stationary-forested landscape, a stationary-deforested landscape, an unstable landscape fluctuating near the equilibrium, and a cyclic-forested landscape induced by synchronized deforestation. We find that the two incentive-based strategies often result in highly fluctuating forest cover over decadal time scales or longer, and in a few cases, reforestation incentives actually decrease the average forest cover. In contrast, a penalty for deforestation results in the stable persistence of forest cover (generally >30%). The idea that larger conservation incentives will always yield higher and more stable forest cover is not supported in our findings. The decision to deforest is influenced by more than a simple, “rational” cost-benefit analysis: social learning and myopic, stochastic decision-making also have important effects. We conclude that design of incentive programs may need to account for potential counter-productive long-term effects due to behavioural feedbacks. PMID:24204942

  7. INSECT AS BIOLOGICAL INDICATOR FROM PROTECTED TO THE DISTURB LANDSCAPE IN CENTRAL JAVA INDONESIA

    Directory of Open Access Journals (Sweden)

    Karuniawan Puji Wicaksono

    2011-02-01

    Full Text Available In the biological science, invertebrate (especially insect diversity is relatively well known. Yet, little study about their interaction with specific land use or specific system function. With the rapid changes of landscape, biodiversity is also changes in response to human impact; due to each organism have the specific interaction with certain environment. In this research, the assessment of insect order in the different landscape types was conducted using several method of trapping to understand the specific pattern of insect which are inhabited the landscape. The objectives of this research were monitored the Insect diversity, its ecological importance to agro-forestry ecosystem, and compare it with other forest type in this area. Another objective was determined the insect characteristic as the indicator of environmental quality on each land-use system (forest, agro-forestry, plantation and monoculture. Monoculture agriculture has the largest number of Lepidoptera and Hemiptera order (herbivore insect dominated while in agro-forest system has the largest number of Diptera and coleoptera order. Protected forest, plantation forest and agro-forestry showed the similar index number which shows the similar ecological services for the insect as their habitat. However, in the monoculture agriculture, there was an unbalance insect composition and high dominance.

  8. Modeling soil erosion and transport on forest landscape

    Science.gov (United States)

    Ge Sun; Steven G McNulty

    1998-01-01

    Century-long studies on the impacts of forest management in North America suggest sediment can cause major reduction on stream water quality. Soil erosion patterns in forest watersheds are patchy and heterogeneous. Therefore, patterns of soil erosion are difficult to model and predict. The objective of this study is to develop a user friendly management tool for land...

  9. Scientific Bases for a Participatory Forest Landscape Management ...

    African Journals Online (AJOL)

    In Madagascar – a biodiversity hotspot of international importance – the villagers depend on the forest first for its soil as a reserve of arable land as well as a shelter and a pasture for the herds, and second for the production of timber, charcoal and other forest products. Most of the currently proposed conservation ...

  10. Historical fire regime and forest variability on two eastern Great Basin fire-sheds (USA)

    Science.gov (United States)

    Stanley G. Kitchen

    2012-01-01

    Proper management of naturally forested landscapes requires knowledge of key disturbance processes and their effects on species composition and structure. Spatially-intensive fire and forest histories provide valuable information about how fire and vegetation may vary and interact on heterogeneous landscapes. I constructed 800-year fire and tree recruitment...

  11. Are High-Severity Fires Burning at Much Higher Rates Recently than Historically in Dry-Forest Landscapes of the Western USA?

    Science.gov (United States)

    Baker, William L

    2015-01-01

    Dry forests at low elevations in temperate-zone mountains are commonly hypothesized to be at risk of exceptional rates of severe fire from climatic change and land-use effects. Their setting is fire-prone, they have been altered by land-uses, and fire severity may be increasing. However, where fires were excluded, increased fire could also be hypothesized as restorative of historical fire. These competing hypotheses are not well tested, as reference data prior to widespread land-use expansion were insufficient. Moreover, fire-climate projections were lacking for these forests. Here, I used new reference data and records of high-severity fire from 1984-2012 across all dry forests (25.5 million ha) of the western USA to test these hypotheses. I also approximated projected effects of climatic change on high-severity fire in dry forests by applying existing projections. This analysis showed the rate of recent high-severity fire in dry forests is within the range of historical rates, or is too low, overall across dry forests and individually in 42 of 43 analysis regions. Significant upward trends were lacking overall from 1984-2012 for area burned and fraction burned at high severity. Upward trends in area burned at high severity were found in only 4 of 43 analysis regions. Projections for A.D. 2046-2065 showed high-severity fire would generally be still operating at, or have been restored to historical rates, although high projections suggest high-severity fire rotations that are too short could ensue in 6 of 43 regions. Programs to generally reduce fire severity in dry forests are not supported and have significant adverse ecological impacts, including reducing habitat for native species dependent on early-successional burned patches and decreasing landscape heterogeneity that confers resilience to climatic change. Some adverse ecological effects of high-severity fires are concerns. Managers and communities can improve our ability to live with high-severity fire in

  12. A tool for assessing ecological status of forest ecosystem

    Science.gov (United States)

    Rahman Kassim, Abd; Afizzul Misman, Muhammad; Azahari Faidi, Mohd; Omar, Hamdan

    2016-06-01

    Managers and policy makers are beginning to appreciate the value of ecological monitoring of artificially regenerated forest especially in urban areas. With the advent of more advance technology in precision forestry, high resolution remotely sensed data e.g. hyperspectral and LiDAR are becoming available for rapid and precise assessment of the forest condition. An assessment of ecological status of forest ecosystem was developed and tested using FRIM campus forest stand. The forest consisted of three major blocks; the old growth artificially regenerated native species forests, naturally regenerated forest and recent planted forest for commercial timber and other forest products. Our aim is to assess the ecological status and its proximity to the mature old growth artificially regenerated stand. We used airborne LiDAR, orthophoto and thirty field sampling quadrats of 20x20m for ground verification. The parameter assessments were grouped into four broad categories: a. forest community level-composition, structures, function; landscape structures-road network and forest edges. A metric of parameters and rating criteria was introduced as indicators of the forest ecological status. We applied multi-criteria assessment to categorize the ecological status of the forest stand. The paper demonstrates the application of the assessment approach using FRIM campus forest as its first case study. Its potential application to both artificially and naturally regenerated forest in the variety of Malaysian landscape is discussed

  13. Predicting Potential Fire Severity Using Vegetation, Topography and Surface Moisture Availability in a Eurasian Boreal Forest Landscape

    Directory of Open Access Journals (Sweden)

    Lei Fang

    2018-03-01

    Full Text Available Severity of wildfires is a critical component of the fire regime and plays an important role in determining forest ecosystem response to fire disturbance. Predicting spatial distribution of potential fire severity can be valuable in guiding fire and fuel management planning. Spatial controls on fire severity patterns have attracted growing interest, but few studies have attempted to predict potential fire severity in fire-prone Eurasian boreal forests. Furthermore, the influences of fire weather variation on spatial heterogeneity of fire severity remain poorly understood at fine scales. We assessed the relative importance and influence of pre-fire vegetation, topography, and surface moisture availability (SMA on fire severity in 21 lightning-ignited fires occurring in two different fire years (3 fires in 2000, 18 fires in 2010 of the Great Xing’an Mountains with an ensemble modeling approach of boosted regression tree (BRT. SMA was derived from 8-day moderate resolution imaging spectroradiometer (MODIS evapotranspiration products. We predicted the potential distribution of fire severity in two fire years and evaluated the prediction accuracies. BRT modeling revealed that vegetation, topography, and SMA explained more than 70% of variations in fire severity (mean 83.0% for 2000, mean 73.8% for 2010. Our analysis showed that evergreen coniferous forests were more likely to experience higher severity fires than the dominant deciduous larch forests of this region, and deciduous broadleaf forests and shrublands usually burned at a significantly lower fire severity. High-severity fires tended to occur in gentle and well-drained slopes at high altitudes, especially those with north-facing aspects. SMA exhibited notable and consistent negative association with severity. Predicted fire severity from our model exhibited strong agreement with the observed fire severity (mean r2 = 0.795 for 2000, 0.618 for 2010. Our results verified that spatial variation

  14. Landscape controls on the timing of spring, autumn, and growing season length in mid-Atlantic forests

    Science.gov (United States)

    Elmore, A.J.; Guinn, S.M.; Minsley, B.J.; Richardson, A.D.

    2012-01-01

    The timing of spring leaf development, trajectories of summer leaf area, and the timing of autumn senescence have profound impacts to the water, carbon, and energy balance of ecosystems, and are likely influenced by global climate change. Limited field-based and remote-sensing observations have suggested complex spatial patterns related to geographic features that influence climate. However, much of this variability occurs at spatial scales that inhibit a detailed understanding of even the dominant drivers. Recognizing these limitations, we used nonlinear inverse modeling of medium-resolution remote sensing data, organized by day of year, to explore the influence of climate-related landscape factors on the timing of spring and autumn leaf-area trajectories in mid-Atlantic, USA forests. We also examined the extent to which declining summer greenness (greendown) degrades the precision and accuracy of observations of autumn offset of greenness. Of the dominant drivers of landscape phenology, elevation was the strongest, explaining up to 70% of the spatial variation in the onset of greenness. Urban land cover was second in importance, influencing spring onset and autumn offset to a distance of 32 km from large cities. Distance to tidal water also influenced phenological timing, but only within ~5 km of shorelines. Additionally, we observed that (i) growing season length unexpectedly increases with increasing elevation at elevations below 275 m; (ii) along gradients in urban land cover, timing of autumn offset has a stronger effect on growing season length than does timing of spring onset; and (iii) summer greendown introduces bias and uncertainty into observations of the autumn offset of greenness. These results demonstrate the power of medium grain analyses of landscape-scale phenology for understanding environmental controls on growing season length, and predicting how these might be affected by climate change.

  15. Regional Forest Fragmentation and the Nesting Success of Migratory Birds

    Science.gov (United States)

    Scott K. Robinson; Frank R. Thompson III; Therese M. Donovan; Donald R. Whitehead; John Faaborg

    1995-01-01

    Forest fragmentation, the disruption in the continuity of forest habitat, is hypothesized to be a major cause of population decline for, some species of forest birds because fragmentation reduces nesting (reproductive) success. Nest predation and parasitism by cowbirds increased with forest fragmentation in nine midwestern (United States)landscapes that varied from 6...

  16. The Conservation Value of Traditional Rural Landscapes: The Case of Woodpeckers in Transylvania, Romania.

    Science.gov (United States)

    Dorresteijn, Ine; Hartel, Tibor; Hanspach, Jan; von Wehrden, Henrik; Fischer, Joern

    2013-01-01

    Land use change is a major threat to global biodiversity. Forest species face the dual threats of deforestation and intensification of forest management. In regions where forests are under threat, rural landscapes that retain structural components of mature forests potentially provide valuable additional habitat for some forest species. Here, we illustrate the habitat value of traditional wood pastures for a woodpecker assemblage of six species in southern Transylvania, Romania. Wood pastures are created by long-term stable silvo-pastoral management practices, and are composed of open grassland with scattered large, old trees. Because of their demanding habitat requirements, woodpeckers share habitat with many other bird species, and have been considered as possible indicator species for bird species diversity. We first compared woodpecker assemblages between forests and wood pastures. Second, we grouped features of wood pastures into three spatial contexts and addressed how these features related to the occurrence of three woodpecker species that are formally protected. Woodpecker species composition, but not the number of species, differed between forests and wood pastures, with the green woodpecker occurring more commonly in wood pastures, and the lesser spotted woodpecker more commonly in forests. Within wood pastures, the intermediate context (especially surrounding forest cover) best explained the presence of the grey-headed and middle spotted woodpecker. By contrast, variables describing local vegetation structure and characteristics of the surrounding landscape did not affect woodpecker occurrence in wood pastures. In contrast to many other parts of Europe, in which several species of woodpeckers have declined, the traditional rural landscape of Transylvania continues to provide habitat for several woodpecker species, both in forests and wood pastures. Given the apparent habitat value of wood pastures for woodpeckers we recommend wood pastures be explicitly

  17. The Conservation Value of Traditional Rural Landscapes: The Case of Woodpeckers in Transylvania, Romania.

    Directory of Open Access Journals (Sweden)

    Ine Dorresteijn

    Full Text Available Land use change is a major threat to global biodiversity. Forest species face the dual threats of deforestation and intensification of forest management. In regions where forests are under threat, rural landscapes that retain structural components of mature forests potentially provide valuable additional habitat for some forest species. Here, we illustrate the habitat value of traditional wood pastures for a woodpecker assemblage of six species in southern Transylvania, Romania. Wood pastures are created by long-term stable silvo-pastoral management practices, and are composed of open grassland with scattered large, old trees. Because of their demanding habitat requirements, woodpeckers share habitat with many other bird species, and have been considered as possible indicator species for bird species diversity. We first compared woodpecker assemblages between forests and wood pastures. Second, we grouped features of wood pastures into three spatial contexts and addressed how these features related to the occurrence of three woodpecker species that are formally protected. Woodpecker species composition, but not the number of species, differed between forests and wood pastures, with the green woodpecker occurring more commonly in wood pastures, and the lesser spotted woodpecker more commonly in forests. Within wood pastures, the intermediate context (especially surrounding forest cover best explained the presence of the grey-headed and middle spotted woodpecker. By contrast, variables describing local vegetation structure and characteristics of the surrounding landscape did not affect woodpecker occurrence in wood pastures. In contrast to many other parts of Europe, in which several species of woodpeckers have declined, the traditional rural landscape of Transylvania continues to provide habitat for several woodpecker species, both in forests and wood pastures. Given the apparent habitat value of wood pastures for woodpeckers we recommend wood

  18. The Conservation Value of Traditional Rural Landscapes: The Case of Woodpeckers in Transylvania, Romania

    Science.gov (United States)

    Dorresteijn, Ine; Hartel, Tibor; Hanspach, Jan; von Wehrden, Henrik; Fischer, Joern

    2013-01-01

    Land use change is a major threat to global biodiversity. Forest species face the dual threats of deforestation and intensification of forest management. In regions where forests are under threat, rural landscapes that retain structural components of mature forests potentially provide valuable additional habitat for some forest species. Here, we illustrate the habitat value of traditional wood pastures for a woodpecker assemblage of six species in southern Transylvania, Romania. Wood pastures are created by long-term stable silvo-pastoral management practices, and are composed of open grassland with scattered large, old trees. Because of their demanding habitat requirements, woodpeckers share habitat with many other bird species, and have been considered as possible indicator species for bird species diversity. We first compared woodpecker assemblages between forests and wood pastures. Second, we grouped features of wood pastures into three spatial contexts and addressed how these features related to the occurrence of three woodpecker species that are formally protected. Woodpecker species composition, but not the number of species, differed between forests and wood pastures, with the green woodpecker occurring more commonly in wood pastures, and the lesser spotted woodpecker more commonly in forests. Within wood pastures, the intermediate context (especially surrounding forest cover) best explained the presence of the grey-headed and middle spotted woodpecker. By contrast, variables describing local vegetation structure and characteristics of the surrounding landscape did not affect woodpecker occurrence in wood pastures. In contrast to many other parts of Europe, in which several species of woodpeckers have declined, the traditional rural landscape of Transylvania continues to provide habitat for several woodpecker species, both in forests and wood pastures. Given the apparent habitat value of wood pastures for woodpeckers we recommend wood pastures be explicitly

  19. The role of strategic forest inventories in aiding land management decision-making: Examples from the U.S

    Science.gov (United States)

    W. Keith Moser; Renate Bush; John D. Shaw; Mark H. Hansen; Mark D. Nelson

    2010-01-01

    A major challenge for today’s resource managers is the linking of standand landscape-scale dynamics. The U.S. Forest Service has made major investments in programs at both the stand- (national forest project) and landscape/regional (Forest Inventory and Analysis [FIA] program) levels. FIA produces the only comprehensive and consistent statistical information on the...

  20. State-and-transition simulation modeling to compare outcomes of alternative management scenarios under two natural disturbance regimes in a forested landscape in northeastern Wisconsin, USA

    Directory of Open Access Journals (Sweden)

    Amanda Swearingen

    2015-07-01

    Full Text Available Comparisons of the potential outcomes of multiple land management strategies and an understanding of the influence of potential increases in climate-related disturbances on these outcomes are essential for long term land management and conservation planning. To provide these insights, we developed an approach that uses collaborative scenario development and state-and-transition simulation modeling to provide land managers and conservation practitioners with a comparison of potential landscapes resulting from alternative management scenarios and climate conditions, and we have applied this approach in the Wild Rivers Legacy Forest (WRLF area in northeastern Wisconsin. Three management scenarios were developed with input from local land managers, scientists, and conservation practitioners: 1 continuation of current management, 2 expanded working forest conservation easements, and 3 cooperative ecological forestry. Scenarios were modeled under current climate with contemporary probabilities of natural disturbance and under increased probability of windthrow and wildfire that may result from climate change in this region. All scenarios were modeled for 100 years using the VDDT/TELSA modeling suite. Results showed that landscape composition and configuration were relatively similar among scenarios, and that management had a stronger effect than increased probability of windthrow and wildfire. These findings suggest that the scale of the landscape analysis used here and the lack of differences in predominant management strategies between ownerships in this region play significant roles in scenario outcomes. The approach used here does not rely on complex mechanistic modeling of uncertain dynamics and can therefore be used as starting point for planning and further analysis.