WorldWideScience

Sample records for spacetime

  1. Space-Time Crystal and Space-Time Group.

    Science.gov (United States)

    Xu, Shenglong; Wu, Congjun

    2018-03-02

    Crystal structures and the Bloch theorem play a fundamental role in condensed matter physics. We extend the static crystal to the dynamic "space-time" crystal characterized by the general intertwined space-time periodicities in D+1 dimensions, which include both the static crystal and the Floquet crystal as special cases. A new group structure dubbed a "space-time" group is constructed to describe the discrete symmetries of a space-time crystal. Compared to space and magnetic groups, the space-time group is augmented by "time-screw" rotations and "time-glide" reflections involving fractional translations along the time direction. A complete classification of the 13 space-time groups in one-plus-one dimensions (1+1D) is performed. The Kramers-type degeneracy can arise from the glide time-reversal symmetry without the half-integer spinor structure, which constrains the winding number patterns of spectral dispersions. In 2+1D, nonsymmorphic space-time symmetries enforce spectral degeneracies, leading to protected Floquet semimetal states. We provide a general framework for further studying topological properties of the (D+1)-dimensional space-time crystal.

  2. Spacetime equals entanglement

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Yasunori [Berkeley Center for Theoretical Physics, Department of Physics, University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, Kashiwa 277-8583 (Japan); Salzetta, Nico, E-mail: nsalzetta@berkeley.edu [Berkeley Center for Theoretical Physics, Department of Physics, University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sanches, Fabio; Weinberg, Sean J. [Berkeley Center for Theoretical Physics, Department of Physics, University of California, Berkeley, CA 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-12-10

    We study the Hilbert space structure of classical spacetimes under the assumption that entanglement in holographic theories determines semiclassical geometry. We show that this simple assumption has profound implications; for example, a superposition of classical spacetimes may lead to another classical spacetime. Despite its unconventional nature, this picture admits the standard interpretation of superpositions of well-defined semiclassical spacetimes in the limit that the number of holographic degrees of freedom becomes large. We illustrate these ideas using a model for the holographic theory of cosmological spacetimes.

  3. Spacetime from unentanglement

    Science.gov (United States)

    Nomura, Yasunori; Rath, Pratik; Salzetta, Nico

    2018-05-01

    The past decade has seen a tremendous effort toward unraveling the relationship between entanglement and emergent spacetime. These investigations have revealed that entanglement between holographic degrees of freedom is crucial for the existence of bulk spacetime. We examine this connection from the other end of the entanglement spectrum and clarify the assertion that maximally entangled states have no reconstructable spacetime. To do so, we first define the conditions for bulk reconstructability. Under these terms, we scrutinize two cases of maximally entangled holographic states. One is the familiar example of AdS black holes; these are dual to thermal states of the boundary conformal field theory. Sending the temperature to the cutoff scale makes the state maximally entangled and the respective black hole consumes the spacetime. We then examine the de Sitter limit of Friedmann-Robertson-Walker (FRW) spacetimes. This limit is maximally entangled if one formulates the boundary theory on the holographic screen. Paralleling the anti-de Sitter (AdS) black hole, we find the resulting reconstructable region of spacetime vanishes. Motivated by these results, we prove a theorem showing that maximally entangled states have no reconstructable spacetime. Evidently, the emergence of spacetime is endemic to intermediate entanglement. By studying the manner in which intermediate entanglement is achieved, we uncover important properties about the boundary theory of FRW spacetimes. With this clarified understanding, our final discussion elucidates the natural way in which holographic Hilbert spaces may house states dual to different geometries. This paper provides a coherent picture clarifying the link between spacetime and entanglement and develops many promising avenues of further work.

  4. Spacetime information

    International Nuclear Information System (INIS)

    Hartle, J.B.

    1995-01-01

    In usual quantum theory, the information available about a quantum system is defined in terms of the density matrix describing it on a spacelike surface. This definition must be generalized for extensions of quantum theory which neither require, nor always permit, a notion of state on a spacelike surface. In particular, it must be generalized for the generalized quantum theories appropriate when spacetime geometry fluctuates quantum mechanically or when geometry is fixed but not foliable by spacelike surfaces. This paper introduces a four-dimensional notion of the information available about a quantum system's boundary conditions in the various sets of decohering, coarse-grained histories it may display. This spacetime notion of information coincides with the familiar one when quantum theory is formulable in terms of states on spacelike surfaces but generalizes this notion when it cannot be so formulated. The idea of spacetime information is applied in several contexts: When spacetime geometry is fixed the information available through alternatives restricted to a fixed spacetime region is defined. The information available through histories of alternatives of general operators is compared to that obtained from the more limited coarse grainings of sum-over-histories quantum mechanics that refer only to coordinates. The definition of information is considered in generalized quantum theories. We consider as specific examples time-neutral quantum mechanics with initial and final conditions, quantum theories with nonunitary evolution, and the generalized quantum frameworks appropriate for quantum spacetime. In such theories complete information about a quantum system is not necessarily available on any spacelike surface but must be searched for throughout spacetime. The information loss commonly associated with the ''evolution of pure states into mixed states'' in black hole evaporation is thus not in conflict with the principles of generalized quantum mechanics

  5. Dynamics in non-globally-hyperbolic static spacetimes: III. Anti-de Sitter spacetime

    International Nuclear Information System (INIS)

    Ishibashi, Akihiro; Wald, Robert M

    2004-01-01

    In recent years, there has been considerable interest in theories formulated in anti-de Sitter (AdS) spacetime. However, AdS spacetime fails to be globally hyperbolic, so a classical field satisfying a hyperbolic wave equation on AdS spacetime need not have a well-defined dynamics. Nevertheless, AdS spacetime is static, so the possible rules of dynamics for a field satisfying a linear wave equation are constrained by our previous general analysis-given in paper II-where it was shown that the possible choices of dynamics correspond to choices of positive, self-adjoint extensions of a certain differential operator, A. In the present paper, we reduce the analysis of electromagnetic and gravitational perturbations in AdS spacetime to scalar wave equations. We then apply our general results to analyse the possible dynamics of scalar, electromagnetic and gravitational perturbations in AdS spacetime. In AdS spacetime, the freedom (if any) in choosing self-adjoint extensions of A corresponds to the freedom (if any) in choosing suitable boundary conditions at infinity, so our analysis determines all the possible boundary conditions that can be imposed at infinity. In particular, we show that other boundary conditions besides the Dirichlet and Neumann conditions may be possible, depending on the value of the effective mass for scalar field perturbations, and depending on the number of spacetime dimensions and type of mode for electromagnetic and gravitational perturbations

  6. Dynamics of quantum entanglement in de Sitter spacetime and thermal Minkowski spacetime

    Directory of Open Access Journals (Sweden)

    Zhiming Huang

    2017-10-01

    Full Text Available We investigate the dynamics of entanglement between two atoms in de Sitter spacetime and in thermal Minkowski spacetime. We treat the two-atom system as an open quantum system which is coupled to a conformally coupled massless scalar field in the de Sitter invariant vacuum or to a thermal bath in the Minkowski spacetime, and derive the master equation that governs its evolution. We compare the phenomena of entanglement creation, degradation, revival and enhancement for the de Sitter spacetime case with that for the thermal Minkowski spacetime case. We find that the entanglement dynamics of two atoms for these two spacetime cases behave quite differently. In particular, the two atoms interacting with the field in the thermal Minkowski spacetime (with the field in the de Sitter-invariant vacuum, under certain conditions, could be entangled, while they would not become entangled in the corresponding de Sitter case (in the corresponding thermal Minkowski case. Thus, although a single static atom in the de Sitter-invariant vacuum responds as if it were bathed in thermal radiation in a Minkowski universe, with the help of the different dynamic evolution behaviors of entanglement for two atoms one can in principle distinguish these two universes.

  7. Border of spacetime

    International Nuclear Information System (INIS)

    Harada, Tomohiro; Nakao, Ken-ichi

    2004-01-01

    It is still uncertain whether the cosmic censorship conjecture is true or not. To get a new insight into this issue, we propose the concept of the border of spacetime as a generalization of the spacetime singularity and discuss its visibility. The visible border, corresponding to the naked singularity, is not only relevant to mathematical completeness of general relativity but also a window into new physics in strongly curved spacetimes, which is in principle observable

  8. Quantum spacetime

    International Nuclear Information System (INIS)

    Doplicher, S.

    1996-01-01

    We review some recent result and work in progress on the quantum structure of spacetime at scales comparable with the Planck length; the models discussed here are operationally motivated by the limitations in the accuracy of localization of events in spacetime imposed by the interplay between quantum mechanics and classical general relativity. (orig.)

  9. The science of space-time

    International Nuclear Information System (INIS)

    Raine, D.J.; Heller, M.

    1981-01-01

    Analyzing the development of the structure of space-time from the theory of Aristotle to the present day, the present work attempts to sketch a science of relativistic mechanics. The concept of relativity is discussed in relation to the way in which space-time splits up into space and time, and in relation to Mach's principle concerning the relativity of inertia. Particular attention is given to the following topics: Aristotelian dynamics Copernican kinematics Newtonian dynamics the space-time of classical dynamics classical space-time in the presence of gravity the space-time of special relativity the space-time of general relativity solutions and problems in general relativity Mach's principle and the dynamics of space-time theories of inertial mass the integral formation of general relativity and the frontiers of relativity

  10. Quantum field in η-ξ spacetime

    International Nuclear Information System (INIS)

    Gui, Y.

    1990-01-01

    A new spacetime, η-ξ spacetime, is constructed. The quantum field in η-ξ spacetime is discussed. It is shown that the vacuum state of quantum field in η-ξ spacetime is a thermal state for an inertial observer in Minkowski spacetime, and the vacuum Green's functions in η-ξ spacetime are just the thermal Green's functions in usual statistical mechanics

  11. Antigravity from a spacetime defect

    OpenAIRE

    Klinkhamer, F. R.; Queiruga, J. M.

    2018-01-01

    We argue that there may exist spacetime defects embedded in Minkowski spacetime, which have negative active gravitational mass. One such spacetime defect then repels a test particle, corresponding to what may be called "antigravity."

  12. Fermion fields in η-ξ spacetime

    International Nuclear Information System (INIS)

    Gui, Y.

    1992-01-01

    Fermion fields in η-ζ spacetime are discussed. By the path-integral formulation of quantum field theory, we show that the (zero-temperature) Green's functions for Dirac fields on the Euclidean section in η-ζ spacetime are equal to the imaginary-time thermal Green's functions in Minkowski spacetime, and that the (zero-temperature) Green's functions on the Lorentzian section in η-ζ spacetime correspond to the real-time thermal Green's functions in Minkowski spacetime. The antiperiodicity of fermion fields in η-ζ spacetime originates from Lorentz transformation properties of the fields

  13. The space-time model according to dimensional continuous space-time theory

    International Nuclear Information System (INIS)

    Martini, Luiz Cesar

    2014-01-01

    This article results from the Dimensional Continuous Space-Time Theory for which the introductory theoretician was presented in [1]. A theoretical model of the Continuous Space-Time is presented. The wave equation of time into absolutely stationary empty space referential will be described in detail. The complex time, that is the time fixed on the infinite phase time speed referential, is deduced from the New View of Relativity Theory that is being submitted simultaneously with this article in this congress. Finally considering the inseparable Space-Time is presented the duality equation wave-particle.

  14. Perturbations of higher-dimensional spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Durkee, Mark; Reall, Harvey S, E-mail: M.N.Durkee@damtp.cam.ac.uk, E-mail: H.S.Reall@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2011-02-07

    We discuss linearized gravitational perturbations of higher-dimensional spacetimes. For algebraically special spacetimes (e.g. Myers-Perry black holes), we show that there exist local gauge invariant quantities linear in the metric perturbation. These are the higher-dimensional generalizations of the 4D Newman-Penrose scalars that (in an algebraically special vacuum spacetime) satisfy decoupled equations of motion. We show that decoupling occurs in more than four dimensions if, and only if, the spacetime admits a null geodesic congruence with vanishing expansion, rotation and shear. Decoupling of electromagnetic perturbations occurs under the same conditions. Although these conditions are not satisfied in black hole spacetimes, they are satisfied in the near-horizon geometry of an extreme black hole.

  15. Cauchy horizons in Gowdy spacetimes

    International Nuclear Information System (INIS)

    Chrusciel, Piotr T; Lake, Kayll

    2004-01-01

    We analyse exhaustively the structure of non-degenerate Cauchy horizons in Gowdy spacetimes, and we establish existence of a large class of non-polarized Gowdy spacetimes with such horizons. Our results here, together with the deep new results of Ringstroem, establish strong cosmic censorship in (toroidal) Gowdy spacetimes

  16. Spatial infinity in higher dimensional spacetimes

    International Nuclear Information System (INIS)

    Shiromizu, Tetsuya; Tomizawa, Shinya

    2004-01-01

    Motivated by recent studies on the uniqueness or nonuniqueness of higher dimensional black hole spacetime, we investigate the asymptotic structure of spatial infinity in n-dimensional spacetimes (n≥4). It turns out that the geometry of spatial infinity does not have maximal symmetry due to the nontrivial Weyl tensor (n-1) C abcd in general. We also address static spacetime and its multipole moments P a 1 a 2 ···a s . Contrasting with four dimensions, we stress that the local structure of spacetimes cannot be unique under fixed multipole moments in static vacuum spacetimes. For example, we consider the generalized Schwarzschild spacetimes which are deformed black hole spacetimes with the same multipole moments as spherical Schwarzschild black holes. To specify the local structure of the static vacuum solution we need some additional information, at least the Weyl tensor (n-2) C abcd at spatial infinity

  17. Gauge Gravity and Space-Time

    OpenAIRE

    Wu, Ning

    2012-01-01

    When we discuss problems on gravity, we can not avoid some fundamental physical problems, such as space-time, inertia, and inertial reference frame. The goal of this paper is to discuss the logic system of gravity theory and the problems of space-time, inertia, and inertial reference frame. The goal of this paper is to set up the theory on space-time in gauge theory of gravity. Based on this theory, it is possible for human kind to manipulate physical space-time on earth, and produce a machin...

  18. Gravitational Lensing from a Spacetime Perspective

    Directory of Open Access Journals (Sweden)

    Perlick Volker

    2004-09-01

    Full Text Available The theory of gravitational lensing is reviewed from a spacetime perspective, without quasi-Newtonian approximations. More precisely, the review covers all aspects of gravitational lensing where light propagation is described in terms of lightlike geodesics of a metric of Lorentzian signature. It includes the basic equations and the relevant techniques for calculating the position, the shape, and the brightness of images in an arbitrary general-relativistic spacetime. It also includes general theorems on the classification of caustics, on criteria for multiple imaging, and on the possible number of images. The general results are illustrated with examples of spacetimes where the lensing features can be explicitly calculated, including the Schwarzschild spacetime, the Kerr spacetime, the spacetime of a straight string, plane gravitational waves, and others.

  19. Space-Time Chip Equalization for Maximum Diversity Space-Time Block Coded DS-CDMA Downlink Transmission

    Directory of Open Access Journals (Sweden)

    Petré Frederik

    2004-01-01

    Full Text Available In the downlink of DS-CDMA, frequency-selectivity destroys the orthogonality of the user signals and introduces multiuser interference (MUI. Space-time chip equalization is an efficient tool to restore the orthogonality of the user signals and suppress the MUI. Furthermore, multiple-input multiple-output (MIMO communication techniques can result in a significant increase in capacity. This paper focuses on space-time block coding (STBC techniques, and aims at combining STBC techniques with the original single-antenna DS-CDMA downlink scheme. This results into the so-called space-time block coded DS-CDMA downlink schemes, many of which have been presented in the past. We focus on a new scheme that enables both the maximum multiantenna diversity and the maximum multipath diversity. Although this maximum diversity can only be collected by maximum likelihood (ML detection, we pursue suboptimal detection by means of space-time chip equalization, which lowers the computational complexity significantly. To design the space-time chip equalizers, we also propose efficient pilot-based methods. Simulation results show improved performance over the space-time RAKE receiver for the space-time block coded DS-CDMA downlink schemes that have been proposed for the UMTS and IS-2000 W-CDMA standards.

  20. Statistics from dynamics in curved spacetime

    International Nuclear Information System (INIS)

    Parker, L.; Wang, Y.

    1989-01-01

    We consider quantum fields of spin 0, 1/2, 1, 3/2, and 2 with a nonzero mass in curved spacetime. We show that the dynamical Bogolubov transformations associated with gravitationally induced particle creation imply the connection between spin and statistics: By embedding two flat regions in a curved spacetime, we find that only when one imposes Bose-Einstein statistics for an integer-spin field and Fermi-Dirac statistics for a half-integer-spin field in the first flat region is the same type of statistics propagated from the first to the second flat region. This derivation of the flat-spacetime spin-statistics theorem makes use of curved-spacetime dynamics and does not reduce to any proof given in flat spacetime. We also show in the same manner that parastatistics, up to the fourth order, are consistent with the dynamical evolution of curved spacetime

  1. Divergence, spacetime dimension and fractal structure

    International Nuclear Information System (INIS)

    Nakamura, Hiroshi

    2000-01-01

    With a Cantor spacetime in mind, we assume the dimension of spacetime to be slightly smaller than four. Within the framework of QED, this dimension can be determined by calculating Feynman diagrams. We infer that the dimension of spacetime may be influenced by holes in space. (author)

  2. The free Maxwell field in curved spacetime

    International Nuclear Information System (INIS)

    Kueskue, M.

    2001-09-01

    The aim of this thesis is to discuss quantizations of the free Maxwell field in flat and curved spacetimes. First we introduce briefly some notions from tensor analysis and the causal structure of spacetime. As an introduction to the main topic, we review some aspects of the two axiomatic quantum field theories, Wightman theory and algebraic quantum field theory. We also give an introduction into concepts of the quantization of fields on curved spacetime backgrounds. Then the wave equation and quantization of the Maxwell field in flat spacetimes is discussed. It follows a review of J. Dimock's quantization of the Maxwell field on curved spacetimes and then we come to our main result: We show explicitly that the Maxwell field, defined by dF=0 and δF=0, has a well posed initial value formulation on arbitrary globally hyperbolic spacetime manifolds. We prove the existence and uniqueness of fundamental solutions without employing a vector potential. Thus our solution is also applicable to spacetimes not satisfying the Poincare lemma and should lead to a quantization of the Maxwell field on non-trivial spacetime backgrounds. This in turn provides the opportunity to investigate physical states on non-trivial spacetime-topologies and could lead to the discovery of new quantum phenomena. (orig.)

  3. The topology of geodesically complete space-times

    International Nuclear Information System (INIS)

    Lee, C.W.

    1983-01-01

    Two theorems are given on the topology of geodesically complete space-times which satisfy the energy condition. Firstly, the condition that a compact embedded 3-manifold in space-time be dentless is defined in terms of causal structure. Then it is shown that a dentless 3-manifold must separate space-time, and that it must enclose a compact portion of space-time. Further, it is shown that if the dentless 3-manifold is homeomorphic to S 3 then the part of space-time that it encloses must be simply connected. (author)

  4. Twistor Cosmology and Quantum Space-Time

    International Nuclear Information System (INIS)

    Brody, D.C.; Hughston, L.P.

    2005-01-01

    The purpose of this paper is to present a model of a 'quantum space-time' in which the global symmetries of space-time are unified in a coherent manner with the internal symmetries associated with the state space of quantum-mechanics. If we take into account the fact that these distinct families of symmetries should in some sense merge and become essentially indistinguishable in the unified regime, our framework may provide an approximate description of or elementary model for the structure of the universe at early times. The quantum elements employed in our characterisation of the geometry of space-time imply that the pseudo-Riemannian structure commonly regarded as an essential feature in relativistic theories must be dispensed with. Nevertheless, the causal structure and the physical kinematics of quantum space-time are shown to persist in a manner that remains highly analogous to the corresponding features of the classical theory. In the case of the simplest conformally flat cosmological models arising in this framework, the twistorial description of quantum space-time is shown to be effective in characterising the various physical and geometrical properties of the theory. As an example, a sixteen-dimensional analogue of the Friedmann-Robertson-Walker cosmologies is constructed, and its chronological development is analysed in some detail. More generally, whenever the dimension of a quantum space-time is an even perfect square, there exists a canonical way of breaking the global quantum space-time symmetry so that a generic point of quantum space-time can be consistently interpreted as a quantum operator taking values in Minkowski space. In this scenario, the breakdown of the fundamental symmetry of the theory is due to a loss of quantum entanglement between space-time and internal quantum degrees of freedom. It is thus possible to show in a certain specific sense that the classical space-time description is an emergent feature arising as a consequence of a

  5. Singularities in FLRW Spacetimes

    NARCIS (Netherlands)

    Lam, Huibert het; Prokopec, Tom

    2017-01-01

    We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept

  6. On the differentiability of space-time

    International Nuclear Information System (INIS)

    Clarke, C.J.S.

    1977-01-01

    It is shown that the differentiability of a space-time is implied by that of its Riemann tensor, assuming a priori only boundedness of the first derivations of the metric. Consequently all the results on space-time singularities proved in earlier papers by the author hold true in C 2- space-times. (author)

  7. Hyperbolic statics in space-time

    OpenAIRE

    Pavlov, Dmitry; Kokarev, Sergey

    2014-01-01

    Based on the concept of material event as an elementary material source that is concentrated on metric sphere of zero radius --- light-cone of Minkowski space-time, we deduce the analog of Coulomb's law for hyperbolic space-time field universally acting between the events of space-time. Collective field that enables interaction of world lines of a pair of particles at rest contains a standard 3-dimensional Coulomb's part and logarithmic addendum. We've found that the Coulomb's part depends on...

  8. Ambient cosmology and spacetime singularities

    CERN Document Server

    Antoniadis, Ignatios

    2015-01-01

    We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary.

  9. Type II universal spacetimes

    Czech Academy of Sciences Publication Activity Database

    Hervik, S.; Málek, Tomáš; Pravda, Vojtěch; Pravdová, Alena

    2015-01-01

    Roč. 32, č. 24 (2015), s. 245012 ISSN 0264-9381 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : einstein spacetimes * generalized gravities * universal spacetimes Subject RIV: BA - General Mathematics Impact factor: 2.837, year: 2015 http://iopscience.iop.org/article/10.1088/0264-9381/32/24/245012

  10. Why we observe an almost classical spacetime

    OpenAIRE

    Rosales, Jose-Luis; Sanchez-Gomez, Jose-Luis

    1997-01-01

    We argue that, in order to obtain decoherence of spacetime, we should consider quantum conformal metric fluctuations of spacetime. This could be the required environment in the problem of selfmeasurement of spacetime in quantum gravity.

  11. Singularities in FLRW spacetimes

    Science.gov (United States)

    het Lam, Huibert; Prokopec, Tomislav

    2017-12-01

    We point out that past-incompleteness of geodesics in FLRW spacetimes does not necessarily imply that these spacetimes start from a singularity. Namely, if a test particle that follows such a trajectory has a non-vanishing velocity, its energy was super-Planckian at some time in the past if it kept following that geodesic. That indicates a breakdown of the particle's description, which is why we should not consider those trajectories for the definition of an initial singularity. When one only considers test particles that do not have this breakdown of their trajectory, it turns out that the only singular FLRW spacetimes are the ones that have a scale parameter that vanishes at some initial time.

  12. Ambient cosmology and spacetime singularities

    International Nuclear Information System (INIS)

    Antoniadis, Ignatios; Cotsakis, Spiros

    2015-01-01

    We present a new approach to the issues of spacetime singularities and cosmic censorship in general relativity. This is based on the idea that standard 4-dimensional spacetime is the conformal infinity of an ambient metric for the 5-dimensional Einstein equations with fluid sources. We then find that the existence of spacetime singularities in four dimensions is constrained by asymptotic properties of the ambient 5-metric, while the non-degeneracy of the latter crucially depends on cosmic censorship holding on the boundary. (orig.)

  13. Spacetime and Euclidean geometry

    Science.gov (United States)

    Brill, Dieter; Jacobson, Ted

    2006-04-01

    Using only the principle of relativity and Euclidean geometry we show in this pedagogical article that the square of proper time or length in a two-dimensional spacetime diagram is proportional to the Euclidean area of the corresponding causal domain. We use this relation to derive the Minkowski line element by two geometric proofs of the spacetime Pythagoras theorem.

  14. On ``minimally curved spacetimes'' in general relativity

    OpenAIRE

    Dadhich, Naresh

    1997-01-01

    We consider a spacetime corresponding to uniform relativistic potential analogus to Newtonian potential as an example of ``minimally curved spacetime''. We also consider a radially symmetric analogue of the Rindler spacetime of uniform proper acceleration relative to infinity.

  15. Quantum fields in curved space-times

    International Nuclear Information System (INIS)

    Ashtekar, A.; Magnon, A.

    1975-01-01

    The problem of obtaining a quantum description of the (real) Klein-Gordon system in a given curved space-time is discussed. An algebraic approach is used. The *-algebra of quantum operators is constructed explicitly and the problem of finding its *-representation is reduced to that of selecting a suitable complex structure on the real vector space of the solutions of the (classical) Klein-Gordon equation. Since, in a static space-time, there already exists, a satisfactory quantum field theory, in this case one already knows what the 'correct' complex structure is. A physical characterization of this 'correct' complex structure is obtained. This characterization is used to extend quantum field theory to non-static space-times. Stationary space-times are considered first. In this case, the issue of extension is completely straightforward and the resulting theory is the natural generalization of the one in static space-times. General, non-stationary space-times are then considered. In this case the issue of extension is quite complicated and only a plausible extension is presented. Although the resulting framework is well-defined mathematically, the physical interpretation associated with it is rather unconventional. Merits and weaknesses of this framework are discussed. (author)

  16. Some Peculiarities of Newton-Hooke Space-Times

    OpenAIRE

    Tian, Yu

    2011-01-01

    Newton-Hooke space-times are the non-relativistic limit of (anti-)de Sitter space-times. We investigate some peculiar facts about the Newton-Hooke space-times, among which the "extraordinary Newton-Hooke quantum mechanics" and the "anomalous Newton-Hooke space-times" are discussed in detail. Analysis on the Lagrangian/action formalism is performed in the discussion of the Newton-Hooke quantum mechanics, where the path integral point of view plays an important role, and the physically measurab...

  17. Temperature and entropy of Schwarzschild-de Sitter space-time

    International Nuclear Information System (INIS)

    Shankaranarayanan, S.

    2003-01-01

    In the light of recent interest in quantum gravity in de Sitter space, we investigate semiclassical aspects of four-dimensional Schwarzschild-de Sitter space-time using the method of complex paths. The standard semiclassical techniques (such as Bogoliubov coefficients and Euclidean field theory) have been useful to study quantum effects in space-times with single horizons; however, none of these approaches seem to work for Schwarzschild-de Sitter space-time or, in general, for space-times with multiple horizons. We extend the method of complex paths to space-times with multiple horizons and obtain the spectrum of particles produced in these space-times. We show that the temperature of radiation in these space-times is proportional to the effective surface gravity--the inverse harmonic sum of surface gravity of each horizon. For the Schwarzschild-de Sitter space-time, we apply the method of complex paths to three different coordinate systems--spherically symmetric, Painleve, and Lemaitre. We show that the equilibrium temperature in Schwarzschild-de Sitter space-time is the harmonic mean of cosmological and event horizon temperatures. We obtain Bogoliubov coefficients for space-times with multiple horizons by analyzing the mode functions of the quantum fields near the horizons. We propose a new definition of entropy for space-times with multiple horizons, analogous to the entropic definition for space-times with a single horizon. We define entropy for these space-times to be inversely proportional to the square of the effective surface gravity. We show that this definition of entropy for Schwarzschild-de Sitter space-time satisfies the D-bound conjecture

  18. Spacetime symmetries and topology in bimetric relativity

    Science.gov (United States)

    Torsello, Francesco; Kocic, Mikica; Högâs, Marcus; Mörtsell, Edvard

    2018-04-01

    We explore spacetime symmetries and topologies of the two metric sectors in Hassan-Rosen bimetric theory. We show that, in vacuum, the two sectors can either share or have separate spacetime symmetries. If stress-energy tensors are present, a third case can arise, with different spacetime symmetries within the same sector. This raises the question of the best definition of spacetime symmetry in Hassan-Rosen bimetric theory. We emphasize the possibility of imposing ansatzes and looking for solutions having different Killing vector fields or different isometries in the two sectors, which has gained little attention so far. We also point out that the topology of spacetime imposes a constraint on possible metric combinations.

  19. Electrodynamics and Spacetime Geometry: Foundations

    Science.gov (United States)

    Cabral, Francisco; Lobo, Francisco S. N.

    2017-02-01

    We explore the intimate connection between spacetime geometry and electrodynamics. This link is already implicit in the constitutive relations between the field strengths and excitations, which are an essential part of the axiomatic structure of electromagnetism, clearly formulated via integration theory and differential forms. We review the foundations of classical electromagnetism based on charge and magnetic flux conservation, the Lorentz force and the constitutive relations. These relations introduce the conformal part of the metric and allow the study of electrodynamics for specific spacetime geometries. At the foundational level, we discuss the possibility of generalizing the vacuum constitutive relations, by relaxing the fixed conditions of homogeneity and isotropy, and by assuming that the symmetry properties of the electro-vacuum follow the spacetime isometries. The implications of this extension are briefly discussed in the context of the intimate connection between electromagnetism and the geometry (and causal structure) of spacetime.

  20. Toward a holographic theory for general spacetimes

    Science.gov (United States)

    Nomura, Yasunori; Salzetta, Nico; Sanches, Fabio; Weinberg, Sean J.

    2017-04-01

    We study a holographic theory of general spacetimes that does not rely on the existence of asymptotic regions. This theory is to be formulated in a holographic space. When a semiclassical description is applicable, the holographic space is assumed to be a holographic screen: a codimension-1 surface that is capable of encoding states of the gravitational spacetime. Our analysis is guided by conjectured relationships between gravitational spacetime and quantum entanglement in the holographic description. To understand basic features of this picture, we catalog predictions for the holographic entanglement structure of cosmological spacetimes. We find that qualitative features of holographic entanglement entropies for such spacetimes differ from those in AdS/CFT but that the former reduce to the latter in the appropriate limit. The Hilbert space of the theory is analyzed, and two plausible structures are found: a direct-sum and "spacetime-equals-entanglement" structure. The former preserves a naive relationship between linear operators and observable quantities, while the latter respects a more direct connection between holographic entanglement and spacetime. We also discuss the issue of selecting a state in quantum gravity, in particular how the state of the multiverse may be selected in the landscape.

  1. Minkowski Spacetime A Hundred Years Later

    CERN Document Server

    Petkov, Vesselin

    2009-01-01

    This volume is dedicated to the one hundredth anniversary of the publication of Hermann Minkowski's paper "Space and Time" in 1909. His work on the spacetime representation of special relativity had a huge impact on the twentieth century physics to the extent that modern physics would be impossible without the notion of spacetime. While there is consensus on the mathematical significance of spacetime in theoretical physics, for a hundred years there has been no consensus on the nature of spacetime itself. We owe Minkowski a clear answer to the question of the nature of spacetime -- whether it is only a mathematical space or represents a real four-dimensional world. A century after its publication the original Minkowski paper still represents an enrichment to the physicists, especially the relativists, who read it with the intent to fully investigate the depth of Minkowski's ideas on space and time and the physical meaning of special relativity. The volume begins with an excellent retranslation of Minkowski's ...

  2. Exact geodesic distances in FLRW spacetimes

    Science.gov (United States)

    Cunningham, William J.; Rideout, David; Halverson, James; Krioukov, Dmitri

    2017-11-01

    Geodesics are used in a wide array of applications in cosmology and astrophysics. However, it is not a trivial task to efficiently calculate exact geodesic distances in an arbitrary spacetime. We show that in spatially flat (3 +1 )-dimensional Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes, it is possible to integrate the second-order geodesic differential equations, and derive a general method for finding both timelike and spacelike distances given initial-value or boundary-value constraints. In flat spacetimes with either dark energy or matter, whether dust, radiation, or a stiff fluid, we find an exact closed-form solution for geodesic distances. In spacetimes with a mixture of dark energy and matter, including spacetimes used to model our physical universe, there exists no closed-form solution, but we provide a fast numerical method to compute geodesics. A general method is also described for determining the geodesic connectedness of an FLRW manifold, provided only its scale factor.

  3. Fermion systems in discrete space-time

    International Nuclear Information System (INIS)

    Finster, Felix

    2007-01-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure

  4. Fermion systems in discrete space-time

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Felix [NWF I - Mathematik, Universitaet Regensburg, 93040 Regensburg (Germany)

    2007-05-15

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  5. Fermion Systems in Discrete Space-Time

    OpenAIRE

    Finster, Felix

    2006-01-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  6. Fermion systems in discrete space-time

    Science.gov (United States)

    Finster, Felix

    2007-05-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  7. Deduction of Einstein equation from homogeneity of Riemann spacetime

    Science.gov (United States)

    Ni, Jun

    2012-03-01

    The symmetry of spacetime translation leads to the energy-momentum conservation. However, the Lagrange depends on spacetime coordinates, which makes the symmetry of spacetime translation different with other symmetry invariant explicitly under symmetry transformation. We need an equation to guarantee the symmetry of spacetime translation. In this talk, I will show that the Einstein equation can be deduced purely from the general covariant principle and the homogeneity of spacetime in the frame of quantum field theory. The Einstein equation is shown to be the equation to guarantee the symmetry of spacetime translation. Gravity is an apparent force due to the curvature of spacetime resulted from the conservation of energy-momentum. In the action of quantum field, only electroweak-strong interactions appear with curved spacetime metric determined by the Einstein equation.. The general covariant principle and the homogeneity of spacetime are merged into one basic principle: Any Riemann spacetime metric guaranteeing the energy-momentum conservation are equivalent, which can be called as the conserved general covariant principle. [4pt] [1] Jun Ni, Chin. Phys. Lett. 28, 110401 (2011).

  8. Conformal symmetry inheritance in null fluid spacetimes

    International Nuclear Information System (INIS)

    Tupper, B O J; Keane, A J; Hall, G S; Coley, A A; Carot, J

    2003-01-01

    We define inheriting conformal Killing vectors for null fluid spacetimes and find the maximum dimension of the associated inheriting Lie algebra. We show that for non-conformally flat null fluid spacetimes, the maximum dimension of the inheriting algebra is seven and for conformally flat null fluid spacetimes the maximum dimension is eight. In addition, it is shown that there are two distinct classes of non-conformally flat generalized plane wave spacetimes which possess the maximum dimension, and one class in the conformally flat case

  9. Causal boundary for stably causal space-times

    International Nuclear Information System (INIS)

    Racz, I.

    1987-12-01

    The usual boundary constructions for space-times often yield an unsatisfactory boundary set. This problem is reviewed and a new solution is proposed. An explicit identification rule is given on the set of the ideal points of the space-time. This construction leads to a satisfactory boundary point set structure for stably causal space-times. The topological properties of the resulting causal boundary construction are examined. For the stably causal space-times each causal curve has a unique endpoint on the boundary set according to the extended Alexandrov topology. The extension of the space-time through the boundary is discussed. To describe the singularities the defined boundary sets have to be separated into two disjoint sets. (D.Gy.) 8 refs

  10. Stochastic quantization of geometrodynamic curved space-time

    International Nuclear Information System (INIS)

    Prugovecki, E.

    1981-01-01

    It is proposed that quantum rather than classical test particles be used in recent operational definitions of space-time. In the resulting quantum space-time the role of test particle trajectories is taken over by propagators. The introduced co-ordinate values are stochastic rather than deterministic, the afore-mentioned propagators providing probability amplitudes describing fluctuations of measured co-ordinates around their mean values. It is shown that, if a geometrodynamic point of view based on 3 + 1 foliations of space-time is adopted, self-consistent families of propagators for quantum test particles in free fall can be constructed. The resulting formalism for quantum space-time is outlined and the quantization of spatially flat Robertson-Walker space-times is provided as an illustration. (author)

  11. Spacetime extensions Pt. 1

    International Nuclear Information System (INIS)

    Racz, I.

    1991-09-01

    The problem of the existence of local extensions of spacetime is considered. It is shown that for a spacetime including an incomplete inextendible non-coiling causal geodesic curve there exists a particular C k (resp. C k- ) local extension provided that the curvature and its covariant derivatives are well behaved up to order k + 1 (resp. k) along a family of causal geodetics (around the chosen one). (R.P.) 15 refs

  12. On the quantization of spacetime

    International Nuclear Information System (INIS)

    Banai, M.

    1981-01-01

    A program of quantization of relativistic local field theories in terms of Hilbert modules over non-commutative Csup*-algebras is outlined. The spacetime of the considered systems should become a ''quantum'' represented by a Hilbert space. Two suggestions are given for the possible determination this quantum spacetime. (author)

  13. The Historical Origins of Spacetime

    Science.gov (United States)

    Walter, Scott

    The idea of spacetime investigated in this chapter, with a view toward understanding its immediate sources and development, is the one formulated and proposed by Hermann Minkowski in 1908. Until recently, the principle source used to form historical narratives of Minkowski's discovery of spacetime has been Minkowski's own discovery account, outlined in the lecture he delivered in Cologne, entitled Space and time [1]. Minkowski's lecture is usually considered as a bona fide first-person narrative of lived events. According to this received view, spacetime was a natural outgrowth of Felix Klein's successful project to promote the study of geometries via their characteristic groups of transformations. Or as Minkowski expressed the same basic thought himself, the theory of relativity discovered by physicists in 1905 could just as well have been proposed by some late-nineteenth-century mathematician, by simply reflecting upon the groups of transformations that left invariant the form of the equation of a propagating light wave. Minkowski's publications and research notes provide a contrasting picture of the discovery of spacetime, in which group theory plays no direct part. In order to relate the steps of Minkowski's discovery, we begin with an account of Poincaré's theory of gravitation, where Minkowski found some of the germs of spacetime. Poincaré's geometric interpretation of the Lorentz transformation is examined, along with his reasons for not pursuing a four-dimensional vector calculus. In the second section, Minkowski's discovery and presentation of the notion of a world line in spacetime is presented. In the third and final section, Poincaré's and Minkowski's diagrammatic interpretations of the Lorentz transformation are compared.

  14. Possibility of extending space-time coordinates

    International Nuclear Information System (INIS)

    Wang Yongcheng.

    1993-11-01

    It has been shown that one coordinate system can describe a whole space-time region except some supersurfaces on which there are coordinate singularities. The conditions of extending a coordinate from real field to complex field are studied. It has been shown that many-valued coordinate transformations may help us to extend space-time regions and many-valued metric functions may make one coordinate region to describe more than one space-time regions. (author). 11 refs

  15. Partially massless graviton on beyond Einstein spacetimes

    Science.gov (United States)

    Bernard, Laura; Deffayet, Cédric; Hinterbichler, Kurt; von Strauss, Mikael

    2017-06-01

    We show that a partially massless graviton can propagate on a large set of spacetimes which are not Einstein spacetimes. Starting from a recently constructed theory for a massive graviton that propagates the correct number of degrees of freedom on an arbitrary spacetime, we first give the full explicit form of the scalar constraint responsible for the absence of a sixth degree of freedom. We then spell out generic conditions for the constraint to be identically satisfied, so that there is a scalar gauge symmetry which makes the graviton partially massless. These simplify if one assumes that spacetime is Ricci symmetric. Under this assumption, we find explicit non-Einstein spacetimes (some, but not all, with vanishing Bach tensors) allowing for the propagation of a partially massless graviton. These include in particular the Einstein static Universe.

  16. Realization of Robertson-Walker spacetimes as affine hypersurfaces

    International Nuclear Information System (INIS)

    Chen Bangyen

    2007-01-01

    Due to the growing interest in embeddings of spacetimes in higher dimensional spaces, we consider a special type of embedding. We prove that Robertson-Walker spacetimes can be embedded as centroaffine hypersurfaces and graph hypersurfaces in some affine spaces in such a way that the induced relative metrics are exactly the Lorentzian metrics on the Robertson-Walker spacetimes. Such realizations allow us to view Robertson-Walker spacetimes and their submanifolds as affine submanifolds in a natural way. Consequently, our realizations make it possible to apply the tools of affine differential geometry to study Robertson-Walker spacetimes and their submanifolds

  17. Semiclassical expanding discrete space-times

    International Nuclear Information System (INIS)

    Cobb, W.K.; Smalley, L.L.

    1981-01-01

    Given the close ties between general relativity and geometry one might reasonably expect that quantum effects associated with gravitation might also be tied to the geometry of space-time, namely, to some sort of discreteness in space-time itself. In particular it is supposed that space-time consists of a discrete lattice of points rather than the usual continuum. Since astronomical evidence seems to suggest that the universe is expanding, the lattice must also expand. Some of the implications of such a model are that the proton should presently be stable, and the universe should be closed although the mechanism for closure is quantum mechanical. (author)

  18. Closed Timelike Curves in Type II Non-Vacuum Spacetime

    International Nuclear Information System (INIS)

    Ahmed, Faizuddin

    2017-01-01

    Here we present a cyclicly symmetric non-vacuum spacetime, admitting closed timelike curves (CTCs) which appear after a certain instant of time, i.e., a time-machine spacetime. The spacetime is asymptotically flat, free-from curvature singularities and a four-dimensional extension of the Misner space in curved spacetime. The spacetime is of type II in the Petrov classification scheme and the matter field pure radiation satisfy the energy condition. (paper)

  19. Spacetime averaging of exotic singularity universes

    International Nuclear Information System (INIS)

    Dabrowski, Mariusz P.

    2011-01-01

    Taking a spacetime average as a measure of the strength of singularities we show that big-rips (type I) are stronger than big-bangs. The former have infinite spacetime averages while the latter have them equal to zero. The sudden future singularities (type II) and w-singularities (type V) have finite spacetime averages. The finite scale factor (type III) singularities for some values of the parameters may have an infinite average and in that sense they may be considered stronger than big-bangs.

  20. Simulations of black holes in compactified spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Zilhao, Miguel; Herdeiro, Carlos [Centro de Fisica do Porto, Departamento de Fisica e Astronomia, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto (Portugal); Cardoso, Vitor; Nerozzi, Andrea; Sperhake, Ulrich; Witek, Helvi [Centro Multidisciplinar de Astrofisica, Deptartamento de Fisica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Gualtieri, Leonardo, E-mail: mzilhao@fc.up.pt [Dipartimento di Fisica, Universita di Roma ' Sapienza' and Sezione INFN Roma1, P.A. Moro 5, 00185, Roma (Italy)

    2011-09-22

    From the gauge/gravity duality to braneworld scenarios, black holes in compactified spacetimes play an important role in fundamental physics. Our current understanding of black hole solutions and their dynamics in such spacetimes is rather poor because analytical tools are capable of handling a limited class of idealized scenarios, only. Breakthroughs in numerical relativity in recent years, however, have opened up the study of such spacetimes to a computational treatment which facilitates accurate studies of a wider class of configurations. We here report on recent efforts of our group to perform numerical simulations of black holes in cylindrical spacetimes.

  1. Constraints on string vacua with spacetime supersymmetry

    International Nuclear Information System (INIS)

    Banks, T.; California Univ., Santa Cruz; Dixon, L.J.

    1988-01-01

    We examine the consequences of extended spacetime supersymmetry for classical superstring vacua with four dimensions uncompactified. N=2 spacetime supersymmetry implies that the 'internal' N=1 superconformal algebra with central charge c=6 splits into a piece with c=4 which has N=4 superconformal invariance, and a piece with c=2 which is constructed from two free dimension 1/2 superfields. N=4 spacetime supersymmetry requires that the entire c=6 algebra be represented by six free superfields. Using the world-sheet properties of N=1 spacetime supersymmetric classical vacua, we show that spacetime supersymmetry cannot be continuously broken within a family of classical vacua. Finally, we argue that the effective field theories for classical vacua of superstring theories (whether space time supersymmetric or not) have no continuous global symmetries - all continuous symmetries are gauged. (orig.)

  2. Quantum relativity theory and quantum space-time

    International Nuclear Information System (INIS)

    Banai, M.

    1984-01-01

    A quantum relativity theory formulated in terms of Davis' quantum relativity principle is outlined. The first task in this theory as in classical relativity theory is to model space-time, the arena of natural processes. It is shown that the quantum space-time models of Banai introduced in another paper is formulated in terms of Davis's quantum relativity. The recently proposed classical relativistic quantum theory of Prugovecki and his corresponding classical relativistic quantum model of space-time open the way to introduce, in a consistent way, the quantum space-time model (the quantum substitute of Minkowski space) of Banai proposed in the paper mentioned. The goal of quantum mechanics of quantum relativistic particles living in this model of space-time is to predict the rest mass system properties of classically relativistic (massive) quantum particles (''elementary particles''). The main new aspect of this quantum mechanics is that it provides a true mass eigenvalue problem, and that the excited mass states of quantum relativistic particles can be interpreted as elementary particles. The question of field theory over quantum relativistic model of space-time is also discussed. Finally it is suggested that ''quarks'' should be considered as quantum relativistic particles. (author)

  3. Global spacetime symmetries in the functional Schroedinger picture

    International Nuclear Information System (INIS)

    Halliwell, J.J.

    1991-01-01

    In the conventional functional Schroedinger quantization of field theory, the background spacetime manifold is foliated into a set of three-surfaces and the quantum state of the field is represented by a wave functional of the field configurations on each three-surface. Although this procedure may be covariantly described, the wave functionals generally fail to carry a representation of the complete spacetime symmetry group of the background, such as the Poincare group in Minkowski spacetime, because spacetime symmetries generally involve distortions or motions of the three-surfaces themselves within that spacetime. In this paper, we show that global spacetime symmetries in the functional Schroedinger picture may be represented by parametrizing the field theory---raising to the status of dynamical variables the embedding variables describing the spacetime location of each three-surface. In particular, we show that the embedding variables provide a connection between the purely geometrical operation of an isometry group on the spacetime and the operation of the usual global symmetry generators (constructed from the energy-momentum tensor) on the wave functionals of the theory. We study the path-integral representation of the wave functionals of the parametrized field theory. We show how to construct, from the path integral, wave functionals that are annihilated by the global symmetry generators, i.e., that are invariant under global spacetime symmetry groups. The invariance of the class of histories summed over in the path integral is identified as the source of the invariance of the wave functionals. We apply this understanding to a study of vacuum states in the de Sitter spacetime. We make mathematically precise a previously given heuristic argument for the de Sitter invariance of the matter wave functionals defined by the no-boundary proposal of Hartle and Hawking

  4. Vacuum polarization in curved spacetime

    International Nuclear Information System (INIS)

    Guy, R.W.

    1979-01-01

    A necessary step in the process of understanding the quantum theory of gravity is the calculation of the stress-energy tensor of quantized fields in curved space-times. The determination of the stress tensor, a formally divergent object, is made possible in this dissertation by utilizing the zeta-function method of regularization and renormalization. By employing this scheme's representation of the renormalized effective action functional, an expression of the stress tensor for a massless, conformally invariant scalar field, first given by DeWitt, is derived. The form of the renormalized stress tensor is first tested in various examples of flat space-times. It is shown to vanish in Minkowski space and to yield the accepted value of the energy density in the Casimir effect. Next, the stress tensor is calculated in two space-times of constant curvature, the Einstein universe and the deSitter universe, and the results are shown to agree with those given by an expression of the stress tensor that is valid in conformally flat space-times. This work culminates in the determination of the stress tensor on the horizon of a Schwarzschild black hole. This is accomplished by approximating the radial part of the eigen-functions and the metric in the vicinity of the horizon. The stress tensor at this level approximation is found to be pure trace. The approximated forms of the Schwarzschild metric describes a conformally flat space-time that possesses horizons

  5. Black Hole Space-time In Dark Matter Halo

    OpenAIRE

    Xu, Zhaoyi; Hou, Xian; Gong, Xiaobo; Wang, Jiancheng

    2018-01-01

    For the first time, we obtain the analytical form of black hole space-time metric in dark matter halo for the stationary situation. Using the relation between the rotation velocity (in the equatorial plane) and the spherical symmetric space-time metric coefficient, we obtain the space-time metric for pure dark matter. By considering the dark matter halo in spherical symmetric space-time as part of the energy-momentum tensors in the Einstein field equation, we then obtain the spherical symmetr...

  6. Quantum mechanics on noncommutative spacetime

    International Nuclear Information System (INIS)

    Calmet, Xavier; Selvaggi, Michele

    2006-01-01

    We consider electrodynamics on a noncommutative spacetime using the enveloping algebra approach and perform a nonrelativistic expansion of the effective action. We obtain the Hamiltonian for quantum mechanics formulated on a canonical noncommutative spacetime. An interesting new feature of quantum mechanics formulated on a noncommutative spacetime is an intrinsic electric dipole moment. We note, however, that noncommutative intrinsic dipole moments are not observable in present experiments searching for an electric dipole moment of leptons or nuclei such as the neutron since they are spin independent. These experiments are sensitive to the energy difference between two states and the noncommutative effect thus cancels out. Bounds on the noncommutative scale found in the literature relying on such intrinsic electric dipole moments are thus incorrect

  7. Symmetry, structure, and spacetime

    CERN Document Server

    Rickles, Dean

    2007-01-01

    In this book Rickles considers several interpretative difficulties raised by gauge-type symmetries (those that correspond to no change in physical state). The ubiquity of such symmetries in modern physics renders them an urgent topic in philosophy of physics. Rickles focuses on spacetime physics, and in particular classical and quantum general relativity. Here the problems posed are at their most pathological, involving the apparent disappearance of spacetime! Rickles argues that both traditional ontological positions should be replaced by a structuralist account according to which relational

  8. The global monopole spacetime and its topological charge

    Science.gov (United States)

    Tan, Hongwei; Yang, Jinbo; Zhang, Jingyi; He, Tangmei

    2018-03-01

    We show that the global monopole spacetime is one of the exact solutions of the Einstein equations by treating the matter field as a non-linear sigma model, without the weak field approximation applied in the original derivation by Barriola and Vilenkin. Furthermore, we find the physical origin of the topological charge in the global monopole spacetime. Finally, we generalize the proposal which generates spacetime from thermodynamical laws to the case of spacetime with global monopole charge. Project supported by the National Natural Science Foundation of China (Grant Nos. 11273009 and 11303006).

  9. Spacetime coarse grainings in nonrelativistic quantum mechanics

    International Nuclear Information System (INIS)

    Hartle, J.B.

    1991-01-01

    Sum-over-histories generalizations of nonrelativistic quantum mechanics are explored in which probabilities are predicted, not just for alternatives defined on spacelike surfaces, but for alternatives defined by the behavior of spacetime histories with respect to spacetime regions. Closed, nonrelativistic systems are discussed whose histories are paths in a given configuration space. The action and the initial quantum state are assumed fixed and given. A formulation of quantum mechanics is used which assigns probabilities to members of sets of alternative coarse-grained histories of the system, that is, to the individual classes of a partition of its paths into exhaustive and exclusive classes. Probabilities are assigned to those sets which decohere, that is, whose probabilities are consistent with the sum rules of probability theory. Coarse graining by the behavior of paths with respect to regions of spacetime is described. For example, given a single region, the set of all paths may be partitioned into those which never pass through the region and those which pass through the region at least once. A sum-over-histories decoherence functional is defined for sets of alternative histories coarse-grained by spacetime regions. Techniques for the definition and effective computation of the relevant sums over histories by operator-product formulas are described and illustrated by examples. Methods based on Euclidean stochastic processes are also discussed and illustrated. Models of decoherence and measurement for spacetime coarse grainings are described. Issues of causality are investigated. Such spacetime generalizations of nonrelativistic quantum mechanics may be useful models for a generalized quantum mechanics of spacetime geometry

  10. Collision-free gases in spatially homogeneous space-times

    International Nuclear Information System (INIS)

    Maartens, R.; Maharaj, S.D.

    1985-01-01

    The kinematical and dynamical properties of one-component collision-free gases in spatially homogeneous, locally rotationally symmetric (LRS) space-times are analyzed. Following Ray and Zimmerman [Nuovo Cimento B 42, 183 (1977)], it is assumed that the distribution function f of the gas inherits the symmetry of space-time, in order to construct solutions of Liouville's equation. The redundancy of their further assumption that f be based on Killing vector constants of the motion is shown. The Ray and Zimmerman results for Kantowski--Sachs space-time are extended to all spatially homogeneous LRS space-times. It is shown that in all these space-times the kinematic average four-velocity u/sup i/ can be tilted relative to the homogeneous hypersurfaces. This differs from the perfect fluid case, in which only one space-time admits tilted u/sup i/, as shown by King and Ellis [Commun. Math. Phys. 31, 209 (1973)]. As a consequence, it is shown that all space-times admit nonzero acceleration and heat flow, while a subclass admits nonzero vorticity. The stress π/sub i/j is proportional to the shear sigma/sub i/j by virtue of the invariance of the distribution function. The evolution of tilt and the existence of perfect fluid solutions is also discussed

  11. Accelerated observers and the notion of singular spacetime

    Science.gov (United States)

    Olmo, Gonzalo J.; Rubiera-Garcia, Diego; Sanchez-Puente, Antonio

    2018-03-01

    Geodesic completeness is typically regarded as a basic criterion to determine whether a given spacetime is regular or singular. However, the principle of general covariance does not privilege any family of observers over the others and, therefore, observers with arbitrary motions should be able to provide a complete physical description of the world. This suggests that in a regular spacetime, all physically acceptable observers should have complete paths. In this work we explore this idea by studying the motion of accelerated observers in spherically symmetric spacetimes and illustrate it by considering two geodesically complete black hole spacetimes recently described in the literature. We show that for bound and locally unbound accelerations, the paths of accelerated test particles are complete, providing further support to the regularity of such spacetimes.

  12. The space-time of dark-matter

    International Nuclear Information System (INIS)

    Dey, Dipanjan

    2015-01-01

    Dark-matter is a hypothetical matter which can't be seen but around 27% of our universe is made of it. Its distribution, evolution from early stage of our universe to present stage, its particle constituents all these are great unsolved mysteries of modern Cosmology and Astrophysics. In this talk I will introduce a special kind of space-time which is known as Bertrand Space-time (BST). I will show this space-time interestingly shows some dark-matter properties like- flat velocity curve, density profile of Dark-matter, total mass of Dark matter-halo, gravitational lensing etc, for that reason we consider BST is seeded by Dark-matter or it is a space-time of Dark-matter. At last I will show using modified gravity formalism the behaviour of the equation of state parameter of Dark-matter and the behaviour of the Newton's gravitational constant in the vicinity of the singularity. (author)

  13. The equivalence of perfect fluid space-times and viscous magnetohydrodynamic space-times in general relativity

    International Nuclear Information System (INIS)

    Tupper, B.O.J.

    1983-01-01

    The work of a previous article is extended to show that space-times which are the exact solutions of the field equations for a perfect fluid also may be exact solutions of the field equations for a viscous magnetohydrodynamic fluid. Conditions are found for this equivalence to exist and viscous magnetohydrodynamic solutions are found for a number of known perfect fluid space-times. (author)

  14. On Mass, Spacetime Curvature, and Gravity

    Science.gov (United States)

    Janis, Allen I.

    2018-01-01

    The frequently used analogy of a massive ball distorting an elastic sheet, which is used to illustrate why mass causes spacetime curvature and gravitational attraction, is criticized in this article. A different analogy that draws on the students' previous knowledge of spacetime diagrams in special relativity is suggested.

  15. Empty space-times with separable Hamilton-Jacobi equation

    International Nuclear Information System (INIS)

    Collinson, C.D.; Fugere, J.

    1977-01-01

    All empty space-times admitting a one-parameter group of motions and in which the Hamilton-Jacobi equation is (partially) separable are obtained. Several different cases of such empty space-times exist and the Riemann tensor is found to be either type D or N. The results presented here complete the search for empty space-times with separable Hamilton-Jacobi equation. (author)

  16. Quantum Spacetime: Mimicry of Paths and Black Holes

    Science.gov (United States)

    Spaans, Marco

    2015-08-01

    Since its inception, general relativity has been unreceptive to a marriage with the quantum aspects of our universe. Following the ideas of Einstein, one may pursue an approach that allows spacetime itself to take center stage. The quantum properties of matter are then carried by the dynamics of spacetime shape and connectivity. This monograph introduces the reader to the foundations of quantum spacetime in a manner accessible to researchers and students. Likewise, interested laymen that lack a strong background in quantum mechanics or spacetime studies but are keen to learn will find this book worthwhile. It is shown from first principles how spacetime is globally built up by paths which constitute entire histories in four dimensions. The central physical idea is that the collective existence of observers and observed derives from one mimicking the other unremittingly, thereby inducing tangible reality. This world of identity by mimicry creates a multitude of interacting histories. Throughout the text, thought experiments are used to derive physical principles. Obtained results are therefore intuitive and accessible to non-experts. This monograph also discusses consequences of quantum spacetime for black holes, dark energy, inflation, the Higgs boson, and the multiverse.

  17. Space-time and matter in 'prephysics'

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1985-05-01

    Many fundamental questions concerning the space-time and matter are asked and answered in ''prephysics'', a new line of physics (or philosophy but not metaphysics). They include the following: 1) ''Why is our space-time of 4 dimensions.'', 2) ''What is the ultimate form of matter.'' and 3) ''How was our universe created.''. (author)

  18. Finiteness principle and the concept of space-time

    International Nuclear Information System (INIS)

    Tati, T.

    1984-01-01

    It is shown that the non-space-time description can be given by a system of axioms under the postulate of a certain number of pre-supposed physical concepts in which space-time is not included. It is found that space-time is a compound concept of presupposed concepts of non-space-time description connected by an additional condition called 'space-time condition'. (L.C.) [pt

  19. Natural world physical, brain operational, and mind phenomenal space-time

    Science.gov (United States)

    Fingelkurts, Andrew A.; Fingelkurts, Alexander A.; Neves, Carlos F. H.

    2010-06-01

    Concepts of space and time are widely developed in physics. However, there is a considerable lack of biologically plausible theoretical frameworks that can demonstrate how space and time dimensions are implemented in the activity of the most complex life-system - the brain with a mind. Brain activity is organized both temporally and spatially, thus representing space-time in the brain. Critical analysis of recent research on the space-time organization of the brain's activity pointed to the existence of so-called operational space-time in the brain. This space-time is limited to the execution of brain operations of differing complexity. During each such brain operation a particular short-term spatio-temporal pattern of integrated activity of different brain areas emerges within related operational space-time. At the same time, to have a fully functional human brain one needs to have a subjective mental experience. Current research on the subjective mental experience offers detailed analysis of space-time organization of the mind. According to this research, subjective mental experience (subjective virtual world) has definitive spatial and temporal properties similar to many physical phenomena. Based on systematic review of the propositions and tenets of brain and mind space-time descriptions, our aim in this review essay is to explore the relations between the two. To be precise, we would like to discuss the hypothesis that via the brain operational space-time the mind subjective space-time is connected to otherwise distant physical space-time reality.

  20. Thermal particle production in two Taub-Nut type spacetimes

    International Nuclear Information System (INIS)

    Lapedes, A.S.

    1976-01-01

    The Hartle-Hawking method of deriving black hole radiance has been extended to non-asymptotically flat de Sitter spacetime by Gibbons and Hawking. We extend this work to Taub-Nut spacetime and a related and more physical spacetime constructed from it by Siklos. (orig./BJ) [de

  1. Quantization of spacetime and the corresponding quantum mechanics

    International Nuclear Information System (INIS)

    Banai, M.

    1983-11-01

    An axiomatic framework for describing general space-time models is outlined. Space-time models to which irreducible propositional systems belong as causal logics are quantum(q) theoretically interpretable and their event spaces are Hilbert spaces. As a basic assumption, the time t and the radial coordinate r of a q particle satisfy the CCR (t, r)=+-i(h/2π). The two cases will be considered simultaneously. In that case the even space is the Hilbert space L 2 (IR 3 ). Unitary symmetries consist of Poincare-like symmetries: translations, rotations and inversion, and of gauge-like symmetries. Space inversion implies the time inversion. This q space-time reveals a confinement phenomenon: the q particle is 'confined' in a (h/2π) size region of Minkowski space IM 4 at any time. One particle mechanics over q space-time provides mass eigenvalue equations for elementary particles. Prugovecki's stochastic q mechanics and q space-time offer a natural way for introducing and interpreting consistently such a q space-time and q particles living in it. The mass eigenstates of q particles generate Prugovecki's extended elementary particles. When (h/2π) → 0, these particles shrink to point particles and IM 4 is recovered as the classical (c) limit of q space-time. Conceptual considerations prefer the case (t, r)=+i(h/2π) and applications in hadron physics give the fit (h/2π) approx.2/5 fermi/GeV. (author)

  2. Spacetime edge geometry

    International Nuclear Information System (INIS)

    Dodson, C.T.J.

    1977-02-01

    This is the second part of a monograph intended to be a mathematically rigorous account of the current position of the bundle-completion of spacetime in general relativity; some new material is included

  3. The classification of static plane-symmetric spacetimes

    International Nuclear Information System (INIS)

    Ziad, M.

    1999-01-01

    According to the classical literature, here a complete classification of static plane-symmetric spacetimes according to their isometries and metrics is provided,without imposing any restriction on the stress-energy tensor. It turns out that these spacetimes admit G r as the maximal isometry groups whereas their Killing vector fields are obtained. The Einstein field equations are used to discuss the stress energy tensors of the spacetimes admitting higher symmetries along with their Segre' and Plebanski types and finally results are compared with those of Taub, Hall and Steele

  4. Matter fields in curved space-time

    International Nuclear Information System (INIS)

    Viet, Nguyen Ai; Wali, Kameshwar C.

    2000-01-01

    We study the geometry of a two-sheeted space-time within the framework of non-commutative geometry. As a prelude to the Standard Model in curved space-time, we present a model of a left- and a right- chiral field living on the two sheeted-space time and construct the action functionals that describe their interactions

  5. Spacetime Dynamics and Slow Neutrino Background

    Science.gov (United States)

    Zhang, Tianxi

    2018-06-01

    Space is a form of existence of matter, while time is a measure of change of the matter in the space. Issac Newton suggested that the space and time are absolute, not affected by matter and its motion. His first law of motion or the law of inertia says that, without net force acts on it, an object in motion remains the motion in a straight line at a constant speed. Ernest Mach proposed that the inertia of a body results from the gravitational interaction on the body by the rest of the entire universe. As mass is a measure of inertia, Mach’s principle can be simply stated as mass here is affected by matter there. On the basis of Mach’s principle, Albert Einstein considered the space and time to be relative and developed two theories of relativities. One called special relativity describes the effect of motion on spacetime and the other called general relativity describes the effect of matter on spacetime. Recently, the author has further considered reactions of the influenced spacetime on the moving objects, including photons. A moving object including a photon, because of its continuously keeping on displacement, disturbs the rest of the entire universe or distorts/curves the spacetime. The distorted or curved spacetime then generates an effective gravitational force to act back on the moving object or photon, so that reduces the object inertia or photon frequency. Considering the disturbance of spacetime by a photon is extremely weak, the author has modelled the effective gravitational force to be Newtonian and derived a new redshift-distance relation that not only perfectly explained the redshift-distance measurement of distant type Ia supernovae but also inherently obtained Hubble’s law as an approximate at small redshift. In this study, we will further analyse the reaction of the influenced spacetime on moving neutrinos and demonstrate the creation of slow neutrino (or tired neutrino) background that may be gravitationally orbiting around clusters

  6. K-causality and degenerate spacetimes

    Science.gov (United States)

    Dowker, H. F.; Garcia, R. S.; Surya, S.

    2000-11-01

    The causal relation K+ was introduced by Sorkin and Woolgar to extend the standard causal analysis of C2 spacetimes to those that are only C0. Most of their results also hold true in the case of metrics with degeneracies which are C0 but vanish at isolated points. In this paper we seek to examine K+ explicitly in the case of topology-changing `Morse histories' which contain degeneracies. We first demonstrate some interesting features of this relation in globally Lorentzian spacetimes. In particular, we show that K+ is robust and the Hawking and Sachs characterization of causal continuity translates into a natural condition in terms of K+. We then examine K+ in topology-changing Morse spacetimes with the degenerate points excised and then for the Morse histories in which the degenerate points are reinstated. We find further characterizations of causal continuity in these cases.

  7. Quantum Space-Time Deformed Symmetries Versus Broken Symmetries

    CERN Document Server

    Amelino-Camelia, G

    2002-01-01

    Several recent studies have concerned the faith of classical symmetries in quantum space-time. In particular, it appears likely that quantum (discretized, noncommutative,...) versions of Minkowski space-time would not enjoy the classical Lorentz symmetries. I compare two interesting cases: the case in which the classical symmetries are "broken", i.e. at the quantum level some classical symmetries are lost, and the case in which the classical symmetries are "deformed", i.e. the quantum space-time has as many symmetries as its classical counterpart but the nature of these symmetries is affected by the space-time quantization procedure. While some general features, such as the emergence of deformed dispersion relations, characterize both the symmetry-breaking case and the symmetry-deformation case, the two scenarios are also characterized by sharp differences, even concerning the nature of the new effects predicted. I illustrate this point within an illustrative calculation concerning the role of space-time symm...

  8. The Finsler spacetime framework. Backgrounds for physics beyond metric geometry

    International Nuclear Information System (INIS)

    Pfeifer, Christian

    2013-11-01

    The fundamental structure on which physics is described is the geometric spacetime background provided by a four dimensional manifold equipped with a Lorentzian metric. Most importantly the spacetime manifold does not only provide the stage for physical field theories but its geometry encodes causality, observers and their measurements and gravity simultaneously. This threefold role of the Lorentzian metric geometry of spacetime is one of the key insides of general relativity. During this thesis we extend the background geometry for physics from the metric framework of general relativity to our Finsler spacetime framework and ensure that the threefold role of the geometry of spacetime in physics is not changed. The geometry of Finsler spacetimes is determined by a function on the tangent bundle and includes metric geometry. In contrast to the standard formulation of Finsler geometry our Finsler spacetime framework overcomes the differentiability and existence problems of the geometric objects in earlier attempts to use Finsler geometry as an extension of Lorentzian metric geometry. The development of our nonmetric geometric framework which encodes causality is one central achievement of this thesis. On the basis of our well-defined Finsler spacetime geometry we are able to derive dynamics for the non-metric Finslerian geometry of spacetime from an action principle, obtained from the Einstein-Hilbert action, for the first time. We can complete the dynamics to a non-metric description of gravity by coupling matter fields, also formulated via an action principle, to the geometry of our Finsler spacetimes. We prove that the combined dynamics of the fields and the geometry are consistent with general relativity. Furthermore we demonstrate how to define observers and their measurements solely through the non-metric spacetime geometry. Physical consequence derived on the basis of our Finsler spacetime are: a possible solution to the fly-by anomaly in the solar system; the

  9. The Finsler spacetime framework. Backgrounds for physics beyond metric geometry

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Christian

    2013-11-15

    The fundamental structure on which physics is described is the geometric spacetime background provided by a four dimensional manifold equipped with a Lorentzian metric. Most importantly the spacetime manifold does not only provide the stage for physical field theories but its geometry encodes causality, observers and their measurements and gravity simultaneously. This threefold role of the Lorentzian metric geometry of spacetime is one of the key insides of general relativity. During this thesis we extend the background geometry for physics from the metric framework of general relativity to our Finsler spacetime framework and ensure that the threefold role of the geometry of spacetime in physics is not changed. The geometry of Finsler spacetimes is determined by a function on the tangent bundle and includes metric geometry. In contrast to the standard formulation of Finsler geometry our Finsler spacetime framework overcomes the differentiability and existence problems of the geometric objects in earlier attempts to use Finsler geometry as an extension of Lorentzian metric geometry. The development of our nonmetric geometric framework which encodes causality is one central achievement of this thesis. On the basis of our well-defined Finsler spacetime geometry we are able to derive dynamics for the non-metric Finslerian geometry of spacetime from an action principle, obtained from the Einstein-Hilbert action, for the first time. We can complete the dynamics to a non-metric description of gravity by coupling matter fields, also formulated via an action principle, to the geometry of our Finsler spacetimes. We prove that the combined dynamics of the fields and the geometry are consistent with general relativity. Furthermore we demonstrate how to define observers and their measurements solely through the non-metric spacetime geometry. Physical consequence derived on the basis of our Finsler spacetime are: a possible solution to the fly-by anomaly in the solar system; the

  10. Space-Time Disarray and Visual Awareness

    Directory of Open Access Journals (Sweden)

    Jan Koenderink

    2012-04-01

    Full Text Available Local space-time scrambling of optical data leads to violent jerks and dislocations. On masking these, visual awareness of the scene becomes cohesive, with dislocations discounted as amodally occluding foreground. Such cohesive space-time of awareness is technically illusory because ground truth is jumbled whereas awareness is coherent. Apparently the visual field is a construction rather than a (veridical perception.

  11. On the reconstruction of Lifshitz spacetimes

    International Nuclear Information System (INIS)

    Gentle, Simon A.; Keeler, Cynthia

    2016-01-01

    We consider the reconstruction of a Lifshitz spacetime from three perspectives: differential entropy (or ‘hole-ography’), causal wedges and entanglement wedges. We find that not all time-varying bulk curves in vacuum Lifshitz can be reconstructed via the differential entropy approach, adding a caveat to the general analysis of http://dx.doi.org/10.1007/JHEP10(2014)149. We show that the causal wedge for Lifshitz spacetimes degenerates, while the entanglement wedge requires the additional consideration of a set of boundary-emanating light-sheets. The need to include bulk surfaces with no clear field theory interpretation in the differential entropy construction and the change in the entanglement wedge formation both serve as warnings against a naive application of holographic entanglement entropy proposals in Lifshitz spacetimes.

  12. Thick domain wall spacetimes with and without reflection symmetry

    International Nuclear Information System (INIS)

    Melfo, Alejandra; Pantoja, Nelson; Skirzewski, Aureliano

    2003-01-01

    We show that different thick domain wall spacetimes, for which the scalar field configuration and the potential are the same, can be found as solutions to the coupled Einstein-scalar field equations, depending on whether or not reflection symmetry on the wall is imposed. Spacetimes with reflection symmetry may be dynamic or static, while the asymmetric ones are static. Asymmetric walls are asymptotically flat on one side and reduce to the Taub spacetime on the other. Examples of asymmetric thick walls in D-dimensional spacetimes are given, and previous analysis on the distributional thin-wall limit of the dynamic symmetric thick walls are extended to the asymmetric case. A new family of reflection symmetric, static thick domain wall spacetimes, including previously known Bogomol'nyi-Prasad-Sommerfield walls, is presented

  13. Quaternion wave equations in curved space-time

    Science.gov (United States)

    Edmonds, J. D., Jr.

    1974-01-01

    The quaternion formulation of relativistic quantum theory is extended to include curvilinear coordinates and curved space-time in order to provide a framework for a unified quantum/gravity theory. Six basic quaternion fields are identified in curved space-time, the four-vector basis quaternions are identified, and the necessary covariant derivatives are obtained. Invariant field equations are derived, and a general invertable coordinate transformation is developed. The results yield a way of writing quaternion wave equations in curvilinear coordinates and curved space-time as well as a natural framework for solving the problem of second quantization for gravity.

  14. Quantum theory of spinor field in four-dimensional Riemannian space-time

    International Nuclear Information System (INIS)

    Shavokhina, N.S.

    1996-01-01

    The review deals with the spinor field in the four-dimensional Riemannian space-time. The field beys the Dirac-Fock-Ivanenko equation. Principles of quantization of the spinor field in the Riemannian space-time are formulated which in a particular case of the plane space-time are equivalent to the canonical rules of quantization. The formulated principles are exemplified by the De Sitter space-time. The study of quantum field theory in the De Sitter space-time is interesting because it itself leads to a method of an invariant well for plane space-time. However, the study of the quantum spinor field theory in an arbitrary Riemannian space-time allows one to take into account the influence of the external gravitational field on the quantized spinor field. 60 refs

  15. Relativistic positioning in Schwarzschild space-time

    International Nuclear Information System (INIS)

    Puchades, Neus; Sáez, Diego

    2015-01-01

    In the Schwarzschild space-time created by an idealized static spherically symmetric Earth, two approaches -based on relativistic positioning- may be used to estimate the user position from the proper times broadcast by four satellites. In the first approach, satellites move in the Schwarzschild space-time and the photons emitted by the satellites follow null geodesics of the Minkowski space-time asymptotic to the Schwarzschild geometry. This assumption leads to positioning errors since the photon world lines are not geodesics of any Minkowski geometry. In the second approach -the most coherent one- satellites and photons move in the Schwarzschild space-time. This approach is a first order one in the dimensionless parameter GM/R (with the speed of light c=1). The two approaches give different inertial coordinates for a given user. The differences are estimated and appropriately represented for users located inside a great region surrounding Earth. The resulting values (errors) are small enough to justify the use of the first approach, which is the simplest and the most manageable one. The satellite evolution mimics that of the GALILEO global navigation satellite system. (paper)

  16. Spacetime extensions II

    Energy Technology Data Exchange (ETDEWEB)

    Racz, Istvan, E-mail: iracz@rmki.kfki.h [RMKI, H-1121 Budapest, Konkoly Thege Miklos ut 29-33 (Hungary)

    2010-08-07

    The global extendibility of smooth causal geodesically incomplete spacetimes is investigated. Denote by {gamma} one of the incomplete non-extendible causal geodesics of a causal geodesically incomplete spacetime (M, g{sub ab}). First, it is shown that it is always possible to select a synchronized family of causal geodesics {Gamma} and an open neighbourhood U of a final segment of {gamma} in M such that U comprises members of {Gamma}, and suitable local coordinates can be defined everywhere on U provided that {gamma} does not terminate either on a tidal force tensor singularity or on a topological singularity. It is also shown that if, in addition, the spacetime (M, g{sub ab}) is globally hyperbolic, and the components of the curvature tensor, and its covariant derivatives up to order k - 1 are bounded on U, and also the line integrals of the components of the kth-order covariant derivatives are finite along the members of {Gamma}-where all the components are meant to be registered with respect to a synchronized frame field on U-then there exists a C{sup k-} extension {Phi} : (M,g{sub ab}) {yields}(M,g{sub ab}) so that for each {gamma}-bar from {Gamma}, which is inextendible in (M, g{sub ab}), the image, {Phi}{gamma}-bar, is extendible in (M,g{sub ab}). Finally, it is also proved that whenever {gamma} does terminate on a topological singularity (M, g{sub ab}) cannot be generic.

  17. A short history of fractal-Cantorian space-time

    International Nuclear Information System (INIS)

    Marek-Crnjac, L.

    2009-01-01

    The article attempts to give a short historical overview of the discovery of fractal-Cantorian space-time starting from the 17th century up to the present. In the last 25 years a great number of scientists worked on fractal space-time notably Garnet Ord in Canada, Laurent Nottale in France and Mohamed El Naschie in England who gave an exact mathematical procedure for the derivation of the dimensionality and curvature of fractal space-time fuzzy manifold.

  18. Space-time neutronic analysis of postulated LOCA's in CANDU reactors

    International Nuclear Information System (INIS)

    Luxat, J.C.; Frescura, G.M.

    1978-01-01

    Space-time neutronic behaviour of CANDU reactors is of importance in the analysis and design of reactor safety systems. A methodology has been developed for simulating CANDU space-time neutronics with application to the analysis of postulated LOCA'S. The approach involves the efficient use of a set of computer codes which provide a capability to perform simulations ranging from detailed, accurate 3-dimensional space-time to low-cost survey calculations using point kinetics with some ''effective'' spatial content. A new, space-time kinetics code based upon a modal expansion approach is described. This code provides an inexpensive and relatively accurate scoping tool for detailed 3-dimensional space-time simulations. (author)

  19. Observable Zitterbewegung in curved spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Kobakhidze, Archil, E-mail: archilk@physics.usyd.edu.au [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Sydney, NSW 2006 (Australia); Manning, Adrian, E-mail: a.manning@physics.usyd.edu.au [ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Sydney, NSW 2006 (Australia); Tureanu, Anca, E-mail: anca.tureanu@helsinki.fi [Department of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki (Finland)

    2016-06-10

    Zitterbewegung, as it was originally described by Schrödinger, is an unphysical, non-observable effect. We verify whether the effect can be observed in non-inertial reference frames/curved spacetimes, where the ambiguity in defining particle states results in a mixing of positive and negative frequency modes. We explicitly demonstrate that such a mixing is in fact necessary to obtain the correct classical value for a particle's velocity in a uniformly accelerated reference frame, whereas in cosmological spacetime a particle does indeed exhibit Zitterbewegung.

  20. Observable Zitterbewegung in curved spacetimes

    Science.gov (United States)

    Kobakhidze, Archil; Manning, Adrian; Tureanu, Anca

    2016-06-01

    Zitterbewegung, as it was originally described by Schrödinger, is an unphysical, non-observable effect. We verify whether the effect can be observed in non-inertial reference frames/curved spacetimes, where the ambiguity in defining particle states results in a mixing of positive and negative frequency modes. We explicitly demonstrate that such a mixing is in fact necessary to obtain the correct classical value for a particle's velocity in a uniformly accelerated reference frame, whereas in cosmological spacetime a particle does indeed exhibit Zitterbewegung.

  1. Minkowski space-time is locally extendible

    International Nuclear Information System (INIS)

    Beem, J.K.

    1980-01-01

    An example of a real analytic local extension of Minkowski space-time is given in this note. This local extension is not across points of the b-boundary since Minkowski space-time has an empty b-boundary. Furthermore, this local extension is not across points of the causal boundary. The example indicates that the concept of local inextendibility may be less useful than originally envisioned. (orig.)

  2. Spacetimes admitting a universal redshift function

    International Nuclear Information System (INIS)

    Dautcourt, G.

    1987-01-01

    The conditions are given for a velocity congruence in a Riemannian spacetime admitting a universal redshift function R. This function allows to calculate in a simple way (as a quotient of R values taken at the emission and registration event) the redshift or blueshift connected with an emitter and observer both following the congruence. Spacetimes and congruences with an universal redshift function are shortly discussed. (author)

  3. On discrete models of space-time

    International Nuclear Information System (INIS)

    Horzela, A.; Kempczynski, J.; Kapuscik, E.; Georgia Univ., Athens, GA; Uzes, Ch.

    1992-02-01

    Analyzing the Einstein radiolocation method we come to the conclusion that results of any measurement of space-time coordinates should be expressed in terms of rational numbers. We show that this property is Lorentz invariant and may be used in the construction of discrete models of space-time different from the models of the lattice type constructed in the process of discretization of continuous models. (author)

  4. Gravitation and spacetime

    CERN Document Server

    Ohanian, Hans C

    2013-01-01

    The third edition of this classic textbook is a quantitative introduction for advanced undergraduates and graduate students. It gently guides students from Newton's gravitational theory to special relativity, and then to the relativistic theory of gravitation. General relativity is approached from several perspectives: as a theory constructed by analogy with Maxwell's electrodynamics, as a relativistic generalization of Newton's theory, and as a theory of curved spacetime. The authors provide a concise overview of the important concepts and formulas, coupled with the experimental results underpinning the latest research in the field. Numerous exercises in Newtonian gravitational theory and Maxwell's equations help students master essential concepts for advanced work in general relativity, while detailed spacetime diagrams encourage them to think in terms of four-dimensional geometry. Featuring comprehensive reviews of recent experimental and observational data, the text concludes with chapters on cosmology an...

  5. Stability of generic thin shells in conformally flat spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Amirabi, Z. [Eastern Mediterranean Univ., Gazimagusa (Turkey). Dept. of Physics

    2017-07-15

    Some important spacetimes are conformally flat; examples are the Robertson-Walker cosmological metric, the Einstein-de Sitter spacetime, and the Levi-Civita-Bertotti-Robinson and Mannheim metrics. In this paper we construct generic thin shells in conformally flat spacetime supported by a perfect fluid with a linear equation of state, i.e., p = ωσ. It is shown that, for the physical domain of ω, i.e., 0 < ω ≤ 1, such thin shells are not dynamically stable. The stability of the timelike thin shells with the Mannheim spacetime as the outer region is also investigated. (orig.)

  6. Scalar fields in black hole spacetimes

    Science.gov (United States)

    Thuestad, Izak; Khanna, Gaurav; Price, Richard H.

    2017-07-01

    The time evolution of matter fields in black hole exterior spacetimes is a well-studied subject, spanning several decades of research. However, the behavior of fields in the black hole interior spacetime has only relatively recently begun receiving some attention from the research community. In this paper, we numerically study the late-time evolution of scalar fields in both Schwarzschild and Kerr spacetimes, including the black hole interior. We recover the expected late-time power-law "tails" on the exterior (null infinity, timelike infinity, and the horizon). In the interior region, we find an interesting oscillatory behavior that is characterized by the multipole index ℓ of the scalar field. In addition, we also study the extremal Kerr case and find strong indications of an instability developing at the horizon.

  7. Space-Time Diffeomorphisms in Noncommutative Gauge Theories

    Directory of Open Access Journals (Sweden)

    L. Román Juarez

    2008-07-01

    Full Text Available In previous work [Rosenbaum M. et al., J. Phys. A: Math. Theor. 40 (2007, 10367–10382] we have shown how for canonical parametrized field theories, where space-time is placed on the same footing as the other fields in the theory, the representation of space-time diffeomorphisms provides a very convenient scheme for analyzing the induced twisted deformation of these diffeomorphisms, as a result of the space-time noncommutativity. However, for gauge field theories (and of course also for canonical geometrodynamics where the Poisson brackets of the constraints explicitely depend on the embedding variables, this Poisson algebra cannot be connected directly with a representation of the complete Lie algebra of space-time diffeomorphisms, because not all the field variables turn out to have a dynamical character [Isham C.J., Kuchar K.V., Ann. Physics 164 (1985, 288–315, 316–333]. Nonetheless, such an homomorphic mapping can be recuperated by first modifying the original action and then adding additional constraints in the formalism in order to retrieve the original theory, as shown by Kuchar and Stone for the case of the parametrized Maxwell field in [Kuchar K.V., Stone S.L., Classical Quantum Gravity 4 (1987, 319–328]. Making use of a combination of all of these ideas, we are therefore able to apply our canonical reparametrization approach in order to derive the deformed Lie algebra of the noncommutative space-time diffeomorphisms as well as to consider how gauge transformations act on the twisted algebras of gauge and particle fields. Thus, hopefully, adding clarification on some outstanding issues in the literature concerning the symmetries for gauge theories in noncommutative space-times.

  8. Spacetimes foliated by Killing horizons

    International Nuclear Information System (INIS)

    Pawlowski, Tomasz; Lewandowski, Jerzy; Jezierski, Jacek

    2004-01-01

    It seems to be expected that a horizon of a quasi-local type, such as a Killing or an isolated horizon, by analogy with a globally defined event horizon, should be unique in some open neighbourhood in the spacetime, provided the vacuum Einstein or the Einstein-Maxwell equations are satisfied. The aim of our paper is to verify whether that intuition is correct. If one can extend a so-called Kundt metric, in such a way that its null, shear-free surfaces have spherical spacetime sections, the resulting spacetime is foliated by so-called non-expanding horizons. The obstacle is Kundt's constraint induced at the surfaces by the Einstein or the Einstein-Maxwell equations, and the requirement that a solution be globally defined on the sphere. We derived a transformation (reflection) that creates a solution to Kundt's constraint out of data defining an extremal isolated horizon. Using that transformation, we derived a class of exact solutions to the Einstein or Einstein-Maxwell equations of very special properties. Each spacetime we construct is foliated by a family of the Killing horizons. Moreover, it admits another, transversal Killing horizon. The intrinsic and extrinsic geometries of the transversal Killing horizon coincide with the one defined on the event horizon of the extremal Kerr-Newman solution. However, the Killing horizon in our example admits yet another Killing vector tangent to and null at it. The geometries of the leaves are given by the reflection

  9. On de Sitter-like and Minkowski-like spacetimes

    International Nuclear Information System (INIS)

    Luebbe, Christian; Kroon, Juan Antonio Valiente

    2009-01-01

    Friedrich's proofs for the global existence results of de Sitter-like spacetimes and of semi-global existence of Minkowski-like spacetimes (Friedrich 1986 Commun. Math. Phys. 107 587) are re-examined and discussed, making use of the extended conformal field equations and a gauge based on conformal geodesics. In this gauge, the location of the conformal boundary of the spacetimes is known a priori once the initial data have been prescribed. Thus, it provides an analysis which is conceptually and calculationally simpler.

  10. Spinor Field Nonlinearity and Space-Time Geometry

    Science.gov (United States)

    Saha, Bijan

    2018-03-01

    Within the scope of Bianchi type VI,VI0,V, III, I, LRSBI and FRW cosmological models we have studied the role of nonlinear spinor field on the evolution of the Universe and the spinor field itself. It was found that due to the presence of non-trivial non-diagonal components of the energy-momentum tensor of the spinor field in the anisotropic space-time, there occur some severe restrictions both on the metric functions and on the components of the spinor field. In this report we have considered a polynomial nonlinearity which is a function of invariants constructed from the bilinear spinor forms. It is found that in case of a Bianchi type-VI space-time, depending of the sign of self-coupling constants, the model allows either late time acceleration or oscillatory mode of evolution. In case of a Bianchi VI 0 type space-time due to the specific behavior of the spinor field we have two different scenarios. In one case the invariants constructed from bilinear spinor forms become trivial, thus giving rise to a massless and linear spinor field Lagrangian. This case is equivalent to the vacuum solution of the Bianchi VI 0 type space-time. The second case allows non-vanishing massive and nonlinear terms and depending on the sign of coupling constants gives rise to accelerating mode of expansion or the one that after obtaining some maximum value contracts and ends in big crunch, consequently generating space-time singularity. In case of a Bianchi type-V model there occur two possibilities. In one case we found that the metric functions are similar to each other. In this case the Universe expands with acceleration if the self-coupling constant is taken to be a positive one, whereas a negative coupling constant gives rise to a cyclic or periodic solution. In the second case the spinor mass and the spinor field nonlinearity vanish and the Universe expands linearly in time. In case of a Bianchi type-III model the space-time remains locally rotationally symmetric all the time

  11. Cosmological applications of algebraic quantum field theory in curved spacetimes

    CERN Document Server

    Hack, Thomas-Paul

    2016-01-01

    This book provides a largely self-contained and broadly accessible exposition on two cosmological applications of algebraic quantum field theory (QFT) in curved spacetime: a fundamental analysis of the cosmological evolution according to the Standard Model of Cosmology; and a fundamental study of the perturbations in inflation. The two central sections of the book dealing with these applications are preceded by sections providing a pedagogical introduction to the subject. Introductory material on the construction of linear QFTs on general curved spacetimes with and without gauge symmetry in the algebraic approach, physically meaningful quantum states on general curved spacetimes, and the backreaction of quantum fields in curved spacetimes via the semiclassical Einstein equation is also given. The reader should have a basic understanding of General Relativity and QFT on Minkowski spacetime, but no background in QFT on curved spacetimes or the algebraic approach to QFT is required.

  12. Galilean generalized Robertson-Walker spacetimes: A new family of Galilean geometrical models

    Science.gov (United States)

    de la Fuente, Daniel; Rubio, Rafael M.

    2018-02-01

    We introduce a new family of Galilean spacetimes, the Galilean generalized Robertson-Walker spacetimes. This new family is relevant in the context of a generalized Newton-Cartan theory. We study its geometrical structure and analyse the completeness of its inextensible free falling observers. This sort of spacetimes constitutes the local geometric model of a much wider family of spacetimes admitting certain conformal symmetry. Moreover, we find some sufficient geometric conditions which guarantee a global splitting of a Galilean spacetime as a Galilean generalized Robertson-Walker spacetime.

  13. The signature triality of Majorana-Weyl spacetimes

    International Nuclear Information System (INIS)

    Andrade, M.A. de; Rojas, M.; Toppan, F.

    2000-05-01

    The Higher dimensional Majorana-Weyl spacetimes present space-time dualities which are induced by the Spin (8) triality automorphisms. Different signature versions of theories such as 10-dimensional SYM's superstrings, five-branes, F-theory, are shown to be interconnected via the S 3 permutation group. Bilinear and trilinear invariants under spacetime triality are introduced and their possible relevance in building models possessing a space-versus-time exchange symmetry is discussed. Moreover the Cartan's vector/chiral spinor/antichiral spinor triality of SO (8) and SO(4,4) is analyzed in detail and explicit formulas are produced in a Majorana-Weyl basis. This paper is the extended version of hep-th/9907148. (author)

  14. Conformal mechanics in Newton-Hooke spacetime

    International Nuclear Information System (INIS)

    Galajinsky, Anton

    2010-01-01

    Conformal many-body mechanics in Newton-Hooke spacetime is studied within the framework of the Lagrangian formalism. Global symmetries and Noether charges are given in a form convenient for analyzing the flat space limit. N=2 superconformal extension is built and a new class on N=2 models related to simple Lie algebras is presented. A decoupling similarity transformation on N=2 quantum mechanics in Newton-Hooke spacetime is discussed.

  15. Quantum Dynamics of Test Particle in Curved Space-Time

    International Nuclear Information System (INIS)

    Piechocki, W.

    2002-01-01

    To reveal the nature of space-time singularities of removable type we examine classical and quantum dynamics of a free particle in the Sitter type spacetimes. Consider space-times have different topologies otherwise are isometric. Our systems are integrable and we present analytic solutions of the classical dynamics. We quantize the systems by making use of the group theoretical method: we find an essentially self-adjoint representation of the algebra of observables integrable to the irreducible unitarity representation of the symmetry group of each consider gravitational system. The massless particle dynamics is obtained in the zero-mass limit of the massive case. Global properties of considered gravitational systems are of primary importance for the quantization procedure. Systems of a particle in space-times with removable singularities appear to be quantizable. We give specific proposal for extension of our analysis to space-times with essential type singularities. (author)

  16. Constant scalar curvature hypersurfaces in (3 + 1) -dimensional GHMC Minkowski spacetimes

    Science.gov (United States)

    Smith, Graham

    2018-06-01

    We prove that every (3 + 1) -dimensional flat GHMC Minkowski spacetime which is not a translation spacetime or a Misner spacetime carries a unique foliation by spacelike hypersurfaces of constant scalar curvature. In other words, we prove that every such spacetime carries a unique time function with isochrones of constant scalar curvature. Furthermore, this time function is a smooth submersion.

  17. Quantum space-time: a review

    International Nuclear Information System (INIS)

    Namsrai, K.

    1988-01-01

    The review presents systematically the results of studies which develop an idea of quantum properties of space-time in the microworld or near exotic objects (black holes, magnetic monopoles and others). On the basis of this idea motion equations of nonrelativistic and relativistic particles are studied. It is shown that introducing concept of quantum space-time at small distances (or near superdense matter) leads to an additional force giving rise to appearance of spiral-like behaviour of a particle along its classical trajectory. Given method is generalized to nonrelativistic quantum mechanics and to motion of a particle in gravitational force. In the latter case, there appears to be an antigravitational effect in the motion of a particle leading to different value of free-fall time (at least for gravitational force of exotic objects) for particles with different masses. Gravitational consequences of quantum space-time and tensor structures of physical quantities are investigated in detail. From experimental data on testing relativity and anisotropy of inertia estimation L ≤ 10 -22 cm on the value of the fundamental length is obtained. (author)

  18. Quantum space-times in the year 2002

    Indian Academy of Sciences (India)

    These ideas of space-time are suggested from developments in fuzzy physics, string theory, and deformation quantization. The review focuses on the ideas coming from fuzzy physics. We find models of quantum space-time like fuzzy 4 on which states cannot be localized, but which fluctuate into other manifolds like CP3.

  19. Space-time design of the public city

    CERN Document Server

    Thomaier, Susanne; Könecke, Benjamin; Zedda, Roberto; Stabilini, Stefano

    2013-01-01

    Time has become an increasingly important topic in urban studies and urban planning. The spatial-temporal interplay is not only of relevance for the theory of urban development and urban politics, but also for urban planning and governance. The space-time approach focuses on the human being with its various habits and routines in the city. Understanding and taking those habits into account in urban planning and public policies offers a new way to improve the quality of life in our cities. Adapting the supply and accessibility of public spaces and services to the inhabitants’ space-time needs calls for an integrated approach to the physical design of urban space and to the organization of cities. In the last two decades the body of practical and theoretical work on urban space-time topics has grown substantially. The book offers a state of the art overview of the theoretical reasoning, the development of new analytical tools, and practical experience of the space-time design of public cities in major Europea...

  20. Some spacetimes with higher rank Killing-Staeckel tensors

    International Nuclear Information System (INIS)

    Gibbons, G.W.; Houri, T.; Kubiznak, D.; Warnick, C.M.

    2011-01-01

    By applying the lightlike Eisenhart lift to several known examples of low-dimensional integrable systems admitting integrals of motion of higher-order in momenta, we obtain four- and higher-dimensional Lorentzian spacetimes with irreducible higher-rank Killing tensors. Such metrics, we believe, are first examples of spacetimes admitting higher-rank Killing tensors. Included in our examples is a four-dimensional supersymmetric pp-wave spacetime, whose geodesic flow is superintegrable. The Killing tensors satisfy a non-trivial Poisson-Schouten-Nijenhuis algebra. We discuss the extension to the quantum regime.

  1. Conserved quantities for stationary Einstein-Maxwell space-times

    International Nuclear Information System (INIS)

    Esposito, F.P.; Witten, L.

    1978-01-01

    It is shown that every stationary Einstein-Maxwell space-time has eight divergence-free vector fields and these are isolated in general form. The vector fields and associated conserved quantities are calculated for several families of space-times. (Auth.)

  2. The mechanical first law of black hole spacetimes with a cosmological constant and its application to the Schwarzschild-de Sitter spacetime

    International Nuclear Information System (INIS)

    Urano, Miho; Tomimatsu, Akira; Saida, Hiromi

    2009-01-01

    The mechanical first law (MFL) of black hole spacetimes is a geometrical relation which relates variations of the mass parameter and horizon area. While it is well known that the MFL of an asymptotic flat black hole is equivalent to its thermodynamical first law, however we do not know the detail of the MFL of black hole spacetimes with a cosmological constant which possess a black hole and cosmological event horizons. This paper aims to formulate an MFL of the two-horizon spacetimes. For this purpose, we try to include the effects of two horizons in the MFL. To do so, we make use of the Iyer-Wald formalism and extend it to regard the mass parameter and the cosmological constant as two independent variables which make it possible to treat the two horizons on the same footing. Our extended Iyer-Wald formalism preserves the existence of the conserved Noether current and its associated Noether charge, and gives an abstract form of the MFL of black hole spacetimes with a cosmological constant. Then, as a representative application of this formalism, we derive the MFL of the Schwarzschild-de Sitter (SdS) spacetime. Our MFL of the SdS spacetime relates the variations of three quantities: the mass parameter, the total area of the two horizons and the volume enclosed by the two horizons. If our MFL is regarded as a thermodynamical first law of the SdS spacetime, it offers a thermodynamically consistent description of the SdS black hole evaporation process: the mass decreases while the volume and the entropy increase. In our suggestion, a generalized second law is not needed to ensure the second law of SdS thermodynamics for its evaporation process.

  3. Feynman propagator and space-time transformation technique

    International Nuclear Information System (INIS)

    Nassar, A.B.

    1987-01-01

    We evaluate the exact propagator for the time-dependent two-dimensional charged harmonic oscillator in a time-varying magnetic field, by taking direct recourse to the corresponding Schroedinger equation. Through the usage of an appropriate space-time transformation, we show that such a propagator can be obtained from the free propagator in the new space-time coordinate system. (orig.)

  4. Mechanics and Newton-Cartan-like gravity on the Newton-Hooke space-time

    International Nuclear Information System (INIS)

    Tian Yu; Guo Hanying; Huang Chaoguang; Xu Zhan; Zhou Bin

    2005-01-01

    We focus on the dynamical aspects on Newton-Hooke space-time NH + mainly from the viewpoint of geometric contraction of the de Sitter spacetime with Beltrami metric. (The term spacetime is used to denote a space with non-degenerate metric, while the term space-time is used to denote a space with degenerate metric.) We first discuss the Newton-Hooke classical mechanics, especially the continuous medium mechanics, in this framework. Then, we establish a consistent theory of gravity on the Newton-Hooke space-time as a kind of Newton-Cartan-like theory, parallel to the Newton's gravity in the Galilei space-time. Finally, we give the Newton-Hooke invariant Schroedinger equation from the geometric contraction, where we can relate the conservative probability in some sense to the mass density in the Newton-Hooke continuous medium mechanics. Similar consideration may apply to the Newton-Hooke space-time NH - contracted from anti-de Sitter spacetime

  5. Solutions of weakened field equations in Gödel space-time

    Directory of Open Access Journals (Sweden)

    Aditya Mani Mishra

    2019-04-01

    Full Text Available We have solved Weakened field equations, collected work of Lovelock for cylindrically symmetric G¨odel type spacetime. A comparative study of these solutions to solution of Einstein’s field equation have shown. Conformality of Gödel spacetime has discussed with vanishing and non-vanishing scalar curvature of the spacetime.

  6. The inverse spatial Laplacian of spherically symmetric spacetimes

    International Nuclear Information System (INIS)

    Fernandes, Karan; Lahiri, Amitabha

    2017-01-01

    We derive the inverse spatial Laplacian for static, spherically symmetric backgrounds by solving Poisson’s equation for a point source. This is different from the electrostatic Green function, which is defined on the four dimensional static spacetime, while the equation we consider is defined on the spatial hypersurface of such spacetimes. This Green function is relevant in the Hamiltonian dynamics of theories defined on spherically symmetric backgrounds, and closed form expressions for the solutions we find are absent in the literature. We derive an expression in terms of elementary functions for the Schwarzschild spacetime, and comment on the relation of this solution with the known Green function of the spacetime Laplacian operator. We also find an expression for the Green function on the static pure de-Sitter space in terms of hypergeometric functions. We conclude with a discussion of the constraints of the electromagnetic field. (paper)

  7. How to use retarded Green's functions in de Sitter spacetime

    International Nuclear Information System (INIS)

    Higuchi, Atsushi; Cheong, Lee Yen

    2008-01-01

    We demonstrate in examples that the covariant retarded Green's functions in electromagnetism and linearized gravity work as expected in de Sitter spacetime. We first clarify how retarded Green's functions should be used in spacetimes with spacelike past infinity such as de Sitter spacetime. In particular, we remind the reader of a general formula which gives the field for given initial data on a Cauchy surface and a given source (a charge or stress-energy tensor distribution) in its future. We then apply this formula to three examples: (i) electromagnetism in the future of a Cauchy surface in Minkowski spacetime, (ii) electromagnetism in de Sitter spacetime, and (iii) linearized gravity in de Sitter spacetime. In each example the field is reproduced correctly as predicted by the general argument. In the third example we construct a linearized gravitational field from two equal point masses located at the 'North and South Poles' which is nonsingular on the cosmological horizon and satisfies a covariant gauge condition and show that this field is reproduced by the retarded Green's function with corresponding gauge parameters.

  8. Constraints on spacetime anisotropy and Lorentz violation from the GRAAL experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Zhe [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); Chinese Academy of Sciences, Theoretical Physics Center for Science Facilities, Beijing (China); Wang, Sai [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)

    2013-02-15

    The GRAAL experiment could constrain the variations of the speed of light. The anisotropy of the speed of light may imply that the spacetime is anisotropic. Finsler geometry is a reasonable candidate to deal with the spacetime anisotropy. In this paper, the Lorentz invariance violation (LIV) of the photon sector is investigated in the locally Minkowski spacetime. The locally Minkowski spacetime is a class of flat Finsler spacetime and refers a metric with the anisotropic departure from the Minkowski one. The LIV matrices used to fit the experimental data are represented in terms of these metric deviations. The GRAAL experiment constrains the spacetime anisotropy to be less than 10{sup -14}. In addition, we find that the simplest Finslerian photon sector could be viewed as a geometric representation of the photon sector in the minimal standard model extension (SME). (orig.)

  9. Space-Time Quantum Imaging

    Directory of Open Access Journals (Sweden)

    Ronald E. Meyers

    2015-03-01

    Full Text Available We report on an experimental and theoretical investigation of quantum imaging where the images are stored in both space and time. Ghost images of remote objects are produced with either one or two beams of chaotic laser light generated by a rotating ground glass and two sensors measuring the reference field and bucket field at different space-time points. We further observe that the ghost images translate depending on the time delay between the sensor measurements. The ghost imaging experiments are performed both with and without turbulence. A discussion of the physics of the space-time imaging is presented in terms of quantum nonlocal two-photon analysis to support the experimental results. The theoretical model includes certain phase factors of the rotating ground glass. These experiments demonstrated a means to investigate the time and space aspects of ghost imaging and showed that ghost imaging contains more information per measured photon than was previously recognized where multiple ghost images are stored within the same ghost imaging data sets. This suggests new pathways to explore quantum information stored not only in multi-photon coincidence information but also in time delayed multi-photon interference. The research is applicable to making enhanced space-time quantum images and videos of moving objects where the images are stored in both space and time.

  10. Quantum mechanics in fractional and other anomalous spacetimes

    NARCIS (Netherlands)

    Calcagni, Gianluca; Nardelli, Giuseppe; Scalisi, Marco

    2012-01-01

    We formulate quantum mechanics in spacetimes with real-order fractional geometry and more general factorizable measures. In spacetimes where coordinates and momenta span the whole real line, Heisenberg's principle is proven and the wave-functions minimizing the uncertainty are found. In spite of the

  11. Construction of spacetimes from initial data

    International Nuclear Information System (INIS)

    Isenberg, J.A.

    1979-01-01

    As relativistic effects become more accessible to physical experiment and observation, it becomes important to be able to theoretically analyze the behavior of relativistic model systems designed to incorporate such measurable effects. This dissertation describes in detail the initial value (IV) procedure for carrying out such analyses (i.e., for ''building spacetimes''). We report progress--of the author as well as others--in all of these areas: (1) The generalized Bergmann-Dirac (BD) procedure can be used to systematically translate any theory into 3+1 form. (2) The York procedure turns the constraints of Einstein's theory into a set of four elliptic equations for four unknowns (with the rest of the initial data ''relatively free''). (3) The maximal and K-foliation schemes appear to give preferred kinematics for the generic spacetimes one might build. We discuss the sense in which these foliations are preferred, and compare them with others. We then show how to find maximal and K-surfaces, both in a given spacetime (e.g. Schwarzschild) and in one being built from scratch. (4) Many physically interesting systems have symmetries which considerably simplify the equations. After discussing how, in general, one can build symmetries into initial data, and how one can use them to simplify the analysis, we look at a particular example symmetry: spacetimes with two space-like translation Killing Vectors. (''2T'')

  12. Quantum space-time and gravitational consequences

    International Nuclear Information System (INIS)

    Namsrai, K.

    1986-01-01

    Relativistic particle dynamics and basic physical quantities for the general theory of gravity are reconstructed from a quantum space-time point of view. An additional force caused by quantum space-time appears in the equation of particle motion, giving rise to a reformulation of the equivalence principle up to values of O(L 2 ), where L is the fundamental length. It turns out that quantum space-time leads to quantization of gravity, i.e. the metric tensor g/sub uv/ (/ZETA/) becomes operator-valued and is not commutative at different points x/sup micro/ and y/sup micro/ in usual space-time on a large scale, and its commutator depending on the ''vielbein'' field (gaugelike graviton field) is proportional to L 2 multiplied by a translationinvariant wave function propagated between points x/sup micro/ and y/sup micro/. In the given scheme, there appears to be an antigravitational effect in the motion of a particle in the gravitational force. This effect depends on the value of particle mass; when a particle is heavy its free-fall time is long compared to that for a light-weight particle. The problem of the change of time scale and the anisotropy of inertia are discussed. From experimental data from testing of the latter effect it follows that L ≤ 10 -22 cm

  13. Circular motion and Polish Doughnuts in NUT spacetime

    Science.gov (United States)

    Jefremov, Paul I.

    The astrophysical relevance of the NUT spacetime(s) is a matter of debate due to pathological properties exhibited by this solution. However, if it is realised in nature, then we should look for the characteristic imprints of it on possible observations. One of the major sources of data on black hole astrophysics is the accretion process. Using a simple but fully analytical ``Polish Doughnuts'' model of accretion disk one gets both qualitative and quantitative differences from the Kerr spacetime produced by the presence of the gravitomagnetic charge. The present paper is based on our work Jefremov & Perlick (2016).

  14. The causal structure of spacetime is a parameterized Randers geometry

    Energy Technology Data Exchange (ETDEWEB)

    Skakala, Jozef; Visser, Matt, E-mail: jozef.skakala@msor.vuw.ac.nz, E-mail: matt.visser@msor.vuw.ac.nz [School of Mathematics, Statistics and Operations Research, Victoria University of Wellington, PO Box 600, Wellington (New Zealand)

    2011-03-21

    There is a well-established isomorphism between stationary four-dimensional spacetimes and three-dimensional purely spatial Randers geometries-these Randers geometries being a particular case of the more general class of three-dimensional Finsler geometries. We point out that in stably causal spacetimes, by using the (time-dependent) ADM decomposition, this result can be extended to general non-stationary spacetimes-the causal structure (conformal structure) of the full spacetime is completely encoded in a parameterized (t-dependent) class of Randers spaces, which can then be used to define a Fermat principle, and also to reconstruct the null cones and causal structure.

  15. The causal structure of spacetime is a parameterized Randers geometry

    International Nuclear Information System (INIS)

    Skakala, Jozef; Visser, Matt

    2011-01-01

    There is a well-established isomorphism between stationary four-dimensional spacetimes and three-dimensional purely spatial Randers geometries-these Randers geometries being a particular case of the more general class of three-dimensional Finsler geometries. We point out that in stably causal spacetimes, by using the (time-dependent) ADM decomposition, this result can be extended to general non-stationary spacetimes-the causal structure (conformal structure) of the full spacetime is completely encoded in a parameterized (t-dependent) class of Randers spaces, which can then be used to define a Fermat principle, and also to reconstruct the null cones and causal structure.

  16. A composite model of the space-time and 'colors'

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1987-03-01

    A pregeometric and pregauge model of the space-time and ''colors'' in which the space-time metric and ''color'' gauge fields are both composite is presented. By the non-triviality of the model, the number of space-time dimensions is restricted to be not larger than the number of ''colors''. The long conjectured space-color correspondence is realized in the model action of the Nambu-Goto type which is invariant under both general-coordinate and local-gauge transformations. (author)

  17. Axiomatics of uniform space-time models

    International Nuclear Information System (INIS)

    Levichev, A.V.

    1983-01-01

    The mathematical statement of space-time axiomatics of the special theory of relativity is given; it postulates that the space-time M is the binding single boundary Hausedorf local-compact four-dimensional topological space with the given order. The theorem is proved: if the invariant order in the four-dimensional group M is given by the semi-group P, which contingency K contains inner points , then M is commutative. The analogous theorem is correct for the group of two and three dimensionalities

  18. Is the shell-focusing singularity of Szekeres space-time visible?

    International Nuclear Information System (INIS)

    Nolan, Brien C; Debnath, Ujjal

    2007-01-01

    The visibility of the shell-focusing singularity in Szekeres space-time--which represents quasispherical dust collapse--has been studied on numerous occasions in the context of the cosmic censorship conjecture. The various results derived have assumed that there exist radial null geodesics in the space-time. We show that such geodesics do not exist in general, and so previous results on the visibility of the singularity are not generally valid. More precisely, we show that the existence of a radial geodesic in Szekeres space-time implies that the space-time is axially symmetric, with the geodesic along the polar direction (i.e. along the axis of symmetry). If there is a second nonparallel radial geodesic, then the space-time is spherically symmetric, and so is a Lemaitre-Tolman-Bondi space-time. For the case of the polar geodesic in an axially symmetric Szekeres space-time, we give conditions on the free functions (i.e. initial data) of the space-time which lead to visibility of the singularity along this direction. Likewise, we give a sufficient condition for censorship of the singularity. We point out the complications involved in addressing the question of visibility of the singularity both for nonradial null geodesics in the axially symmetric case and in the general (nonaxially symmetric) case, and suggest a possible approach

  19. Thermal dimension of quantum spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Amelino-Camelia, Giovanni, E-mail: amelino@roma1.infn.it [Dipartimento di Fisica, Università “La Sapienza” and Sez. Roma1 INFN, P.le A. Moro 2, 00185 Roma (Italy); Brighenti, Francesco [Theoretical Physics, Blackett Laboratory, Imperial College, London, SW7 2BZ (United Kingdom); Dipartimento di Fisica e Astronomia dell' Università di Bologna and Sez. Bologna INFN, Via Irnerio 46, 40126 Bologna (Italy); Gubitosi, Giulia [Theoretical Physics, Blackett Laboratory, Imperial College, London, SW7 2BZ (United Kingdom); Santos, Grasiele [Dipartimento di Fisica, Università “La Sapienza” and Sez. Roma1 INFN, P.le A. Moro 2, 00185 Roma (Italy)

    2017-04-10

    Recent results suggest that a crucial crossroad for quantum gravity is the characterization of the effective dimension of spacetime at short distances, where quantum properties of spacetime become significant. This is relevant in particular for various scenarios of “dynamical dimensional reduction” which have been discussed in the literature. We are here concerned with the fact that the related research effort has been based mostly on analyses of the “spectral dimension”, which involves an unphysical Euclideanization of spacetime and is highly sensitive to the off-shell properties of a theory. As here shown, different formulations of the same physical theory can have wildly different spectral dimension. We propose that dynamical dimensional reduction should be described in terms of the “thermal dimension” which we here introduce, a notion that only depends on the physical content of the theory. We analyze a few models with dynamical reduction both of the spectral dimension and of our thermal dimension, finding in particular some cases where thermal and spectral dimension agree, but also some cases where the spectral dimension has puzzling properties while the thermal dimension gives a different and meaningful picture.

  20. Temporal and spatial foliations of spacetimes.

    Science.gov (United States)

    Herold, H.

    For the solution of initial-value problems in numerical relativity usually the (3+1) splitting of Einstein's equations is employed. An important part of this splitting is the choice of the temporal gauge condition. In order to estimate the quality of time-evolution schemes, different time slicings of given well-known spherically symmetric spacetimes have been studied. Besides the maximal slicing condition the harmonic slicing prescription has been used to calculate temporal foliations of the Schwarzschild and the Oppenheimer-Snyder spacetime. Additionally, the author has studied a recently proposed, geometrically motivated spatial gauge condition, which is defined by considering the foliations of the three-dimensional space-like hypersurfaces by 2-surfaces of constant mean extrinsic curvature. Apart from the equations for the shift vector, which can be derived for this gauge condition, he has investigated such spatial foliations for well-known stationary axially symmetric spacetimes, namely for the Kerr metric and for numerically determined solutions for rapidly rotating neutron stars.

  1. Tension perturbations of black brane spacetimes

    International Nuclear Information System (INIS)

    Traschen, Jennie; Fox, Daniel

    2004-01-01

    We consider black brane spacetimes that have at least one spatial translation Killing field that is tangent to the brane. A new parameter, the tension of a spacetime, is defined. The tension parameter is associated with spatial translations in much the same way that the ADM mass is associated with the time translation Killing field. In this work, we explore the implications of the spatial translation symmetry for small perturbations around a background black brane. For static-charged black branes we derive a law which relates the tension perturbation to the surface gravity times the change in the horizon area, plus terms that involve variations in the charges and currents. We find that as a black brane evaporates the tension decreases. We also give a simple derivation of a first law for black brane spacetimes. These constructions hold when the background stress-energy is governed by a Hamiltonian, and the results include arbitrary perturbative stress-energy sources

  2. Translational spacetime symmetries in gravitational theories

    International Nuclear Information System (INIS)

    Petti, R J

    2006-01-01

    How to include spacetime translations in fibre bundle gauge theories has been a subject of controversy, because spacetime symmetries are not internal symmetries of the bundle structure group. The standard method for including affine symmetry in differential geometry is to define a Cartan connection on an affine bundle over spacetime. This is equivalent to (1) defining an affine connection on the affine bundle, (2) defining a zero section on the associated affine vector bundle and (3) using the affine connection and the zero section to define an 'associated solder form', whose lift to a tensorial form on the frame bundle becomes the solder form. The zero section reduces the affine bundle to a linear bundle and splits the affine connection into translational and homogeneous parts; however, it violates translational equivariance/gauge symmetry. This is the natural geometric framework for Einstein-Cartan theory as an affine theory of gravitation. The last section discusses some alternative approaches that claim to preserve translational gauge symmetry

  3. The manifold model for space-time

    International Nuclear Information System (INIS)

    Heller, M.

    1981-01-01

    Physical processes happen on a space-time arena. It turns out that all contemporary macroscopic physical theories presuppose a common mathematical model for this arena, the so-called manifold model of space-time. The first part of study is an heuristic introduction to the concept of a smooth manifold, starting with the intuitively more clear concepts of a curve and a surface in the Euclidean space. In the second part the definitions of the Csub(infinity) manifold and of certain structures, which arise in a natural way from the manifold concept, are given. The role of the enveloping Euclidean space (i.e. of the Euclidean space appearing in the manifold definition) in these definitions is stressed. The Euclidean character of the enveloping space induces to the manifold local Euclidean (topological and differential) properties. A suggestion is made that replacing the enveloping Euclidean space by a discrete non-Euclidean space would be a correct way towards the quantization of space-time. (author)

  4. Translational spacetime symmetries in gravitational theories

    Energy Technology Data Exchange (ETDEWEB)

    Petti, R J [MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760 (United States)

    2006-02-07

    How to include spacetime translations in fibre bundle gauge theories has been a subject of controversy, because spacetime symmetries are not internal symmetries of the bundle structure group. The standard method for including affine symmetry in differential geometry is to define a Cartan connection on an affine bundle over spacetime. This is equivalent to (1) defining an affine connection on the affine bundle, (2) defining a zero section on the associated affine vector bundle and (3) using the affine connection and the zero section to define an 'associated solder form', whose lift to a tensorial form on the frame bundle becomes the solder form. The zero section reduces the affine bundle to a linear bundle and splits the affine connection into translational and homogeneous parts; however, it violates translational equivariance/gauge symmetry. This is the natural geometric framework for Einstein-Cartan theory as an affine theory of gravitation. The last section discusses some alternative approaches that claim to preserve translational gauge symmetry.

  5. The Chevreton tensor and Einstein-Maxwell spacetimes conformal to Einstein spaces

    International Nuclear Information System (INIS)

    Bergqvist, Goeran; Eriksson, Ingemar

    2007-01-01

    In this paper, we characterize the source-free Einstein-Maxwell spacetimes which have a trace-free Chevreton tensor. We show that this is equivalent to the Chevreton tensor being of pure radiation type and that it restricts the spacetimes to Petrov type N or O. We prove that the trace of the Chevreton tensor is related to the Bach tensor and use this to find all Einstein-Maxwell spacetimes with a zero cosmological constant that have a vanishing Bach tensor. Among these spacetimes we then look for those which are conformal to Einstein spaces. We find that the electromagnetic field and the Weyl tensor must be aligned, and in the case that the electromagnetic field is null, the spacetime must be conformally Ricci-flat and all such solutions are known. In the non-null case, since the general solution is not known on a closed form, we settle by giving the integrability conditions in the general case, but we do give new explicit examples of Einstein-Maxwell spacetimes that are conformal to Einstein spaces, and we also find examples where the vanishing of the Bach tensor does not imply that the spacetime is conformal to a C-space. The non-aligned Einstein-Maxwell spacetimes with vanishing Bach tensor are conformally C-spaces, but none of them are conformal to Einstein spaces

  6. Quantum field theory in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P C.W. [King' s Coll., London (UK)

    1976-09-30

    It is stated that recent theoretical developments indicate that the presence of gravity (curved space-time) can give rise to important new quantum effects, such as cosmological particle production and black-hole evaporation. These processes suggest intriguing new relations between quantum theory, thermodynamics and space-time structure and encourage the hope that a better understanding of a full quantum theory of gravity may emerge from this approach.

  7. Approaching space-time through velocity in doubly special relativity

    International Nuclear Information System (INIS)

    Aloisio, R.; Galante, A.; Grillo, A.F.; Luzio, E.; Mendez, F.

    2004-01-01

    We discuss the definition of velocity as dE/d vertical bar p vertical bar, where E, p are the energy and momentum of a particle, in doubly special relativity (DSR). If this definition matches dx/dt appropriate for the space-time sector, then space-time can in principle be built consistently with the existence of an invariant length scale. We show that, within different possible velocity definitions, a space-time compatible with momentum-space DSR principles cannot be derived

  8. Ghost neutrinos as test fields in curved space-time

    International Nuclear Information System (INIS)

    Audretsch, J.

    1976-01-01

    Without restricting to empty space-times, it is shown that ghost neutrinos (their energy-momentum tensor vanishes) can only be found in algebraically special space-times with a neutrino flux vector parallel to one of the principal null vectors of the conformal tensor. The optical properties are studied. There are no ghost neutrinos in the Kerr-Newman and in spherically symmetric space-times. The example of a non-vacuum gravitational pp-wave accompanied by a ghost neutrino pp-wave is discussed. (Auth.)

  9. On the architecture of spacetime geometry

    International Nuclear Information System (INIS)

    Bianchi, Eugenio; Myers, Robert C

    2014-01-01

    We propose entanglement entropy as a probe of the architecture of spacetime in quantum gravity. We argue that the leading contribution to this entropy satisfies an area law for any sufficiently large region in a smooth spacetime, which, in fact, is given by the Bekenstein–Hawking formula. This conjecture is supported by various lines of evidence from perturbative quantum gravity, simplified models of induced gravity, the AdS/CFT correspondence and loop quantum gravity, as well as Jacobson's ‘thermodynamic’ perspective of gravity. (paper)

  10. Entropy in Spacetime and Topological Hair

    Science.gov (United States)

    Hyun, Young-Hwan; Kim, Yoonbai

    2018-01-01

    Global topological soliton of the hedgehog ansatz is added to de Sitter spacetime in arbitrary dimensions larger than three, and then thermodynamic law is checked at the cosmological horizon. All geometric and thermodynamic quantities are varied in the presence of a long-range interacting matter distribution with negative pressure, however the entropy-area relation is satisfied in the exact form. Its geometry involves deficit solid angle but maintains a single horizon which allows unique temperature normalization, different from the case of Schwarzschild-de Sitter spacetime.

  11. FLRW cosmology in Weyl-integrable space-time

    Energy Technology Data Exchange (ETDEWEB)

    Gannouji, Radouane [Department of Physics, Faculty of Science, Tokyo University of Science, 1–3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Nandan, Hemwati [Department of Physics, Gurukula Kangri Vishwavidayalaya, Haridwar 249404 (India); Dadhich, Naresh, E-mail: gannouji@rs.kagu.tus.ac.jp, E-mail: hntheory@yahoo.co.in, E-mail: nkd@iucaa.ernet.in [IUCAA, Post Bag 4, Ganeshkhind, Pune 411 007 (India)

    2011-11-01

    We investigate the Weyl space-time extension of general relativity (GR) for studying the FLRW cosmology through focusing and defocusing of the geodesic congruences. We have derived the equations of evolution for expansion, shear and rotation in the Weyl space-time. In particular, we consider the Starobinsky modification, f(R) = R+βR{sup 2}−2Λ, of gravity in the Einstein-Palatini formalism, which turns out to reduce to the Weyl integrable space-time (WIST) with the Weyl vector being a gradient. The modified Raychaudhuri equation takes the form of the Hill-type equation which is then analysed to study the formation of the caustics. In this model, it is possible to have a Big Bang singularity free cyclic Universe but unfortunately the periodicity turns out to be extremely short.

  12. Presheaves of Superselection Structures in Curved Spacetimes

    Science.gov (United States)

    Vasselli, Ezio

    2015-04-01

    We show that superselection structures on curved spacetimes that are expected to describe quantum charges affected by the underlying geometry are categories of sections of presheaves of symmetric tensor categories. When an embedding functor is given, the superselection structure is a Tannaka-type dual of a locally constant group bundle, which hence becomes a natural candidate for the role of the gauge group. Indeed, we show that any locally constant group bundle (with suitable structure group) acts on a net of C* algebras fulfilling normal commutation relations on an arbitrary spacetime. We also give examples of gerbes of C* algebras, defined by Wightman fields and constructed using projective representations of the fundamental group of the spacetime, which we propose as solutions for the problem that existence and uniqueness of the embedding functor are not guaranteed.

  13. Planck-scale-modified dispersion relations in FRW spacetime

    Science.gov (United States)

    Rosati, Giacomo; Amelino-Camelia, Giovanni; Marcianò, Antonino; Matassa, Marco

    2015-12-01

    In recent years, Planck-scale modifications of the dispersion relation have been attracting increasing interest also from the viewpoint of possible applications in astrophysics and cosmology, where spacetime curvature cannot be neglected. Nonetheless, the interplay between Planck-scale effects and spacetime curvature is still poorly understood, particularly in cases where curvature is not constant. These challenges have been so far postponed by relying on an ansatz, first introduced by Jacob and Piran. We propose here a general strategy of analysis of the effects of modifications of the dispersion relation in Friedmann-Robertson-Walker spacetimes, applicable both to cases where the relativistic equivalence of frames is spoiled ("preferred-frame scenarios") and to the alternative possibility of "DSR-relativistic theories," theories that are fully relativistic but with relativistic laws deformed so that the modified dispersion relation is observer independent. We show that the Jacob-Piran ansatz implicitly assumes that spacetime translations are not affected by the Planck scale, while under rather general conditions, the same Planck-scale quantum-spacetime structures producing modifications of the dispersion relation also affect translations. Through the explicit analysis of one of the effects produced by modifications of the dispersion relation, an effect amounting to Planck-scale corrections to travel times, we show that our concerns are not merely conceptual but rather can have significant quantitative implications.

  14. Stereoscopic visualization in curved spacetime: seeing deep inside a black hole

    International Nuclear Information System (INIS)

    Hamilton, Andrew J S; Polhemus, Gavin

    2010-01-01

    Stereoscopic visualization adds an additional dimension to the viewer's experience, giving them a sense of distance. In a general relativistic visualization, distance can be measured in a variety of ways. We argue that the affine distance, which matches the usual notion of distance in flat spacetime, is a natural distance to use in curved spacetime. As an example, we apply affine distance to the visualization of the interior of a black hole. Affine distance is not the distance perceived with normal binocular vision in curved spacetime. However, the failure of binocular vision is simply a limitation of animals that have evolved in flat spacetime, not a fundamental obstacle to depth perception in curved spacetime. Trinocular vision would provide superior depth perception.

  15. Gravitational lensing and ghost images in the regular Bardeen no-horizon spacetimes

    International Nuclear Information System (INIS)

    Schee, Jan; Stuchlík, Zdeněk

    2015-01-01

    We study deflection of light rays and gravitational lensing in the regular Bardeen no-horizon spacetimes. Flatness of these spacetimes in the central region implies existence of interesting optical effects related to photons crossing the gravitational field of the no-horizon spacetimes with low impact parameters. These effects occur due to existence of a critical impact parameter giving maximal deflection of light rays in the Bardeen no-horizon spacetimes. We give the critical impact parameter in dependence on the specific charge of the spacetimes, and discuss 'ghost' direct and indirect images of Keplerian discs, generated by photons with low impact parameters. The ghost direct images can occur only for large inclination angles of distant observers, while ghost indirect images can occur also for small inclination angles. We determine the range of the frequency shift of photons generating the ghost images and determine distribution of the frequency shift across these images. We compare them to those of the standard direct images of the Keplerian discs. The difference of the ranges of the frequency shift on the ghost and direct images could serve as a quantitative measure of the Bardeen no-horizon spacetimes. The regions of the Keplerian discs giving the ghost images are determined in dependence on the specific charge of the no-horizon spacetimes. For comparison we construct direct and indirect (ordinary and ghost) images of Keplerian discs around Reissner-Nördström naked singularities demonstrating a clear qualitative difference to the ghost direct images in the regular Bardeen no-horizon spacetimes. The optical effects related to the low impact parameter photons thus give clear signature of the regular Bardeen no-horizon spacetimes, as no similar phenomena could occur in the black hole or naked singularity spacetimes. Similar direct ghost images have to occur in any regular no-horizon spacetimes having nearly flat central region

  16. The scalar wave equation in a Schwarzschild spacetime

    International Nuclear Information System (INIS)

    Stewart, J.M.; Schmidt, B.G.

    1978-09-01

    This paper studies the asymptotic behaviour of solutions of the zero rest mass scalar wave equation in the Schwarzschild spacetime in a neighbourhood of spatial infinity, which includes parts of future and past null infinity. The behaviour of such fields is essentially different from that which accurs in a flat spacetime. (orig.) [de

  17. Equatorial circular orbits in the Kerr-de Sitter spacetimes

    International Nuclear Information System (INIS)

    Stuchlik, Zdenek; Slany, Petr

    2004-01-01

    Equatorial motion of test particles in Kerr-de Sitter spacetimes is considered. Circular orbits are determined, their properties are discussed for both black-hole and naked-singularity spacetimes, and their relevance for thin accretion disks is established. The circular orbits constitute two families that coalesce at the so-called static radius. The orientation of the motion along the circular orbits is, in accordance with case of asymptotically flat Kerr spacetimes, defined by relating the motion to the locally nonrotating frames. The minus-family orbits are all counterrotating, while the plus-family orbits are usually corotating relative to these frames. However, the plus-family orbits become counterrotating in the vicinity of the static radius in all Kerr-de Sitter spacetimes, and they become counterrotating in the vicinity of the ring singularity in Kerr-de Sitter naked-singularity spacetimes with a low enough rotational parameter. In such spacetimes, the efficiency of the conversion of the rest energy into heat energy in the geometrically thin plus-family accretion disks can reach extremely high values exceeding the efficiency of the annihilation process. The transformation of a Kerr-de Sitter naked singularity into an extreme black hole due to accretion in the thin disks is briefly discussed for both the plus-family and minus-family disks. It is shown that such a conversion leads to an abrupt instability of the innermost parts of the plus-family accretion disks that can have strong observational consequences

  18. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.

  19. Constant scalar curvature hypersurfaces in extended Schwarzschild space-time

    International Nuclear Information System (INIS)

    Pareja, M. J.; Frauendiener, J.

    2006-01-01

    We present a class of spherically symmetric hypersurfaces in the Kruskal extension of the Schwarzschild space-time. The hypersurfaces have constant negative scalar curvature, so they are hyperboloidal in the regions of space-time which are asymptotically flat

  20. Differential Space-Time Block Code Modulation for DS-CDMA Systems

    Directory of Open Access Journals (Sweden)

    Liu Jianhua

    2002-01-01

    Full Text Available A differential space-time block code (DSTBC modulation scheme is used to improve the performance of DS-CDMA systems in fast time-dispersive fading channels. The resulting scheme is referred to as the differential space-time block code modulation for DS-CDMA (DSTBC-CDMA systems. The new modulation and demodulation schemes are especially studied for the down-link transmission of DS-CDMA systems. We present three demodulation schemes, referred to as the differential space-time block code Rake (D-Rake receiver, differential space-time block code deterministic (D-Det receiver, and differential space-time block code deterministic de-prefix (D-Det-DP receiver, respectively. The D-Det receiver exploits the known information of the spreading sequences and their delayed paths deterministically besides the Rake type combination; consequently, it can outperform the D-Rake receiver, which employs the Rake type combination only. The D-Det-DP receiver avoids the effect of intersymbol interference and hence can offer better performance than the D-Det receiver.

  1. Metric space construction for the boundary of space-time

    International Nuclear Information System (INIS)

    Meyer, D.A.

    1986-01-01

    A distance function between points in space-time is defined and used to consider the manifold as a topological metric space. The properties of the distance function are investigated: conditions under which the metric and manifold topologies agree, the relationship with the causal structure of the space-time and with the maximum lifetime function of Wald and Yip, and in terms of the space of causal curves. The space-time is then completed as a topological metric space; the resultant boundary is compared with the causal boundary and is also calculated for some pertinent examples

  2. Photon motion in Kerr-de Sitter spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Charbulak, Daniel; Stuchlik, Zdenek [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic)

    2017-12-15

    We study the general motion of photons in the Kerr-de Sitter black-hole and naked singularity spacetimes. The motion is governed by the impact parameters X, related to the axial symmetry of the spacetime, and q, related to its hidden symmetry. Appropriate 'effective potentials' governing the latitudinal and radial motion are introduced and their behavior is examined by the 'Chinese boxes' technique giving regions allowed for the motion in terms of the impact parameters. Restrictions on the impact parameters X and q are established in dependence on the spacetime parameters M, Λ, a. The motion can be of orbital type (crossing the equatorial plane, q > 0) and vortical type (tied above or below the equatorial plane, q < 0). It is shown that for negative values of q, the reality conditions imposed on the latitudinal motion yield stronger constraints on the parameter X than that following from the reality condition of the radial motion, excluding the existence of vortical motion of constant radius. The properties of the spherical photon orbits of the orbital type are determined and used along with the properties of the effective potentials as criteria of classification of the KdS spacetimes according to the properties of the motion of the photon. (orig.)

  3. Emergent/quantum gravity: macro/micro structures of spacetime

    International Nuclear Information System (INIS)

    Hu, B L

    2009-01-01

    Emergent gravity views spacetime as an entity emergent from a more complete theory of interacting fundamental constituents valid at much finer resolution or higher energies, usually assumed to be above the Planck energy. In this view general relativity is an effective theory valid only at long wavelengths and low energies. We describe the tasks of emergent gravity from any ('top-down') candidate theory for the microscopic structure of spacetime (quantum gravity), namely, identifying the conditions and processes or mechanisms whereby the familiar macroscopic spacetime described by general relativity and matter content described by quantum field theory both emerge with high probability and reasonable robustness. We point out that this task may not be so easy as commonly conjured (as implied in the 'theory of everything') because there are emergent phenomena which cannot simply be deduced from a given micro-theory. Going in the opposite direction ('bottom-up') is the task of quantum gravity, i.e., finding a theory for the microscopic structure of spacetime, which, in this new view, cannot come from quantizing the metric or connection forms because they are the collective variables which are meaningful only for the macroscopic theory (valid below the Planck energy). This task looks very difficult or almost impossible because it entails reconstructing lost information. We point out that the situation may not be so hopeless if we ask the right questions and have the proper tools for what we want to look for. We suggest pathways to move 'up' (in energy) from the given macroscopic conditions of classical gravity and quantum field theory to the domain closer to the micro-macro interface where spacetime emerged and places to look for clues or tell-tale signs at low energy where one could infer indirectly some salient features of the micro-structure of spacetime.

  4. Spontaneous symmetry breaking in curved space-time

    International Nuclear Information System (INIS)

    Toms, D.J.

    1982-01-01

    An approach dealing with some of the complications which arise when studying spontaneous symmetry breaking beyond the tree-graph level in situations where the effective potential may not be used is discussed. These situations include quantum field theory on general curved backgrounds or in flat space-times with non-trivial topologies. Examples discussed are a twisted scalar field in S 1 xR 3 and instabilities in an expanding universe. From these it is seen that the topology and curvature of a space-time may affect the stability of the vacuum state. There can be critical length scales or times beyond which symmetries may be broken or restored in certain cases. These features are not present in Minkowski space-time and so would not show up in the usual types of early universe calculations. (U.K.)

  5. Lorentz violations in multifractal spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Calcagni, Gianluca [Instituto de Estructura de la Materia, CSIC, Madrid (Spain)

    2017-05-15

    Using the recent observation of gravitational waves (GW) produced by a black-hole merger, we place a lower bound on the energy above which a multifractal spacetime would display an anomalous geometry and, in particular, violations of Lorentz invariance. In the so-called multifractional theory with q-derivatives, we show that the deformation of dispersion relations is much stronger than in generic quantum-gravity approaches (including loop quantum gravity) and, contrary to the latter, present observations on GWs can place very strong bounds on the characteristic scales at which spacetime deviates from standard Minkowski. The energy at which multifractal effects should become apparent is E{sub *} > 10{sup 14} GeV (thus improving previous bounds by 12 orders of magnitude) when the exponents in the measure are fixed to their central value 1 / 2. We also estimate, for the first time, the effect of logarithmic oscillations in the measure (corresponding to a discrete spacetime structure) and find that they do not change much the bounds obtained in their absence, unless the amplitude of the oscillations is fine tuned. This feature, unavailable in known quantum-gravity scenarios, may help the theory to avoid being ruled out by gamma-ray burst (GRB) observations, for which E{sub *} > 10{sup 17} GeV or greater. (orig.)

  6. Entropy of space-time outcome in a movement speed-accuracy task.

    Science.gov (United States)

    Hsieh, Tsung-Yu; Pacheco, Matheus Maia; Newell, Karl M

    2015-12-01

    The experiment reported was set-up to investigate the space-time entropy of movement outcome as a function of a range of spatial (10, 20 and 30 cm) and temporal (250-2500 ms) criteria in a discrete aiming task. The variability and information entropy of the movement spatial and temporal errors considered separately increased and decreased on the respective dimension as a function of an increment of movement velocity. However, the joint space-time entropy was lowest when the relative contribution of spatial and temporal task criteria was comparable (i.e., mid-range of space-time constraints), and it increased with a greater trade-off between spatial or temporal task demands, revealing a U-shaped function across space-time task criteria. The traditional speed-accuracy functions of spatial error and temporal error considered independently mapped to this joint space-time U-shaped entropy function. The trade-off in movement tasks with joint space-time criteria is between spatial error and timing error, rather than movement speed and accuracy. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Geodesics in Goedel-type space-times

    International Nuclear Information System (INIS)

    Calvao, M.O.; Soares, I.D.; Tiomno, J.

    1988-01-01

    The geodesic curves of the homogeneous Goedel-type space-times, which constitute a two-parameter ({ l and Ω}) class of solutions presented to several theories of gravitation (general relativity, Einstein-Cartan and higher derivative) are investigated. The qualitative properties of those curves by means of the introduction of an effective potential and then accomplish the analytical integration of the equations of motion are examined. It is shown that some of the qualitative features of the free motion in Godel's universe (l 2 =2Ω 2 ) are preserved in all space-times, namely the projections of the geodesics onto the 2-surface (r,ψ) are simple closed curves, and the geodesics for which the ratio of azymuthal angular momentum to total energy, υ is equal to zero always cross the origin r = o. However, two new cases appear: (i) radially unbounded geodesics with υ assuming any (real) value, which may occur only for the causal space-times (l 2 ≥ 4 Ω 2 ), and (ii) geodesics with υ bounded both below and above, which always occur for the circular family (l 2 [pt

  8. Towards a theory of spacetime theories

    CERN Document Server

    Schiemann, Gregor; Scholz, Erhard

    2017-01-01

    This contributed volume is the result of a July 2010 workshop at the University of Wuppertal Interdisciplinary Centre for Science and Technology Studies which brought together world-wide experts from physics, philosophy and history, in order to address a set of questions first posed in the 1950s: How do we compare spacetime theories? How do we judge, objectively, which is the “best” theory? Is there even a unique answer to this question? The goal of the workshop, and of this book, is to contribute to the development of a meta-theory of spacetime theories. Such a meta-theory would reveal insights about specific spacetime theories by distilling their essential similarities and differences, deliver a framework for a class of theories that could be helpful as a blueprint to build other meta-theories, and provide a higher level viewpoint for judging which theory most accurately describes nature. But rather than drawing a map in broad strokes, the focus is on particularly rich regions in the “space of spaceti...

  9. Space-time algebra for the generalization of gravitational field

    Indian Academy of Sciences (India)

    The Maxwell–Proca-like field equations of gravitolectromagnetism are formulated using space-time algebra (STA). The gravitational wave equation with massive gravitons and gravitomagnetic monopoles has been derived in terms of this algebra. Using space-time algebra, the most generalized form of ...

  10. Spacetime algebra as a powerful tool for electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Dressel, Justin, E-mail: prof.justin.dressel@gmail.com [Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521 (United States); Center for Emergent Matter Science (CEMS), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Bliokh, Konstantin Y. [Center for Emergent Matter Science (CEMS), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Interdisciplinary Theoretical Science Research Group (iTHES), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Nori, Franco [Center for Emergent Matter Science (CEMS), RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2015-08-08

    We present a comprehensive introduction to spacetime algebra that emphasizes its practicality and power as a tool for the study of electromagnetism. We carefully develop this natural (Clifford) algebra of the Minkowski spacetime geometry, with a particular focus on its intrinsic (and often overlooked) complex structure. Notably, the scalar imaginary that appears throughout the electromagnetic theory properly corresponds to the unit 4-volume of spacetime itself, and thus has physical meaning. The electric and magnetic fields are combined into a single complex and frame-independent bivector field, which generalizes the Riemann–Silberstein complex vector that has recently resurfaced in studies of the single photon wavefunction. The complex structure of spacetime also underpins the emergence of electromagnetic waves, circular polarizations, the normal variables for canonical quantization, the distinction between electric and magnetic charge, complex spinor representations of Lorentz transformations, and the dual (electric–magnetic field exchange) symmetry that produces helicity conservation in vacuum fields. This latter symmetry manifests as an arbitrary global phase of the complex field, motivating the use of a complex vector potential, along with an associated transverse and gauge-invariant bivector potential, as well as complex (bivector and scalar) Hertz potentials. Our detailed treatment aims to encourage the use of spacetime algebra as a readily available and mature extension to existing vector calculus and tensor methods that can greatly simplify the analysis of fundamentally relativistic objects like the electromagnetic field.

  11. Spacetime algebra as a powerful tool for electromagnetism

    Science.gov (United States)

    Dressel, Justin; Bliokh, Konstantin Y.; Nori, Franco

    2015-08-01

    We present a comprehensive introduction to spacetime algebra that emphasizes its practicality and power as a tool for the study of electromagnetism. We carefully develop this natural (Clifford) algebra of the Minkowski spacetime geometry, with a particular focus on its intrinsic (and often overlooked) complex structure. Notably, the scalar imaginary that appears throughout the electromagnetic theory properly corresponds to the unit 4-volume of spacetime itself, and thus has physical meaning. The electric and magnetic fields are combined into a single complex and frame-independent bivector field, which generalizes the Riemann-Silberstein complex vector that has recently resurfaced in studies of the single photon wavefunction. The complex structure of spacetime also underpins the emergence of electromagnetic waves, circular polarizations, the normal variables for canonical quantization, the distinction between electric and magnetic charge, complex spinor representations of Lorentz transformations, and the dual (electric-magnetic field exchange) symmetry that produces helicity conservation in vacuum fields. This latter symmetry manifests as an arbitrary global phase of the complex field, motivating the use of a complex vector potential, along with an associated transverse and gauge-invariant bivector potential, as well as complex (bivector and scalar) Hertz potentials. Our detailed treatment aims to encourage the use of spacetime algebra as a readily available and mature extension to existing vector calculus and tensor methods that can greatly simplify the analysis of fundamentally relativistic objects like the electromagnetic field.

  12. Naked singularity in the global structure of critical collapse spacetimes

    International Nuclear Information System (INIS)

    Frolov, Andrei V.; Pen, U.-L.

    2003-01-01

    We examine the global structure of scalar field critical collapse spacetimes using a characteristic double-null code. It can integrate past the horizon without any coordinate problems, due to the careful choice of constraint equations used in the evolution. The limiting sequence of sub- and supercritical spacetimes presents an apparent paradox in the expected Penrose diagrams, which we address in this paper. We argue that the limiting spacetime converges pointwise to a unique limit for all r>0, but not uniformly. The r=0 line is different in the two limits. We interpret that the two different Penrose diagrams differ by a discontinuous gauge transformation. We conclude that the limiting spacetime possesses a singular event, with a future removable naked singularity

  13. Energy in the Kantowski–Sachs space-time using teleparallel ...

    Indian Academy of Sciences (India)

    Energy in the Kantowski–Sachs space-time using teleparallel geometry ... Kantowski–Sachs metric; teleparallelism; gravitational energy. Abstract. The purpose of this paper is to examine the energy content of the inflationary Universe described by Kantowski–Sachs space-time in quasilocal approach of teleparallel gravity ...

  14. Black holes in loop quantum gravity: the complete space-time.

    Science.gov (United States)

    Gambini, Rodolfo; Pullin, Jorge

    2008-10-17

    We consider the quantization of the complete extension of the Schwarzschild space-time using spherically symmetric loop quantum gravity. We find an exact solution corresponding to the semiclassical theory. The singularity is eliminated but the space-time still contains a horizon. Although the solution is known partially numerically and therefore a proper global analysis is not possible, a global structure akin to a singularity-free Reissner-Nordström space-time including a Cauchy horizon is suggested.

  15. Pre-Big Bang, space-time structure, asymptotic Universe. Spinorial space-time and a new approach to Friedmann-like equations

    Science.gov (United States)

    Gonzalez-Mestres, Luis

    2014-04-01

    Planck and other recent data in Cosmology and Particle Physics can open the way to controversial analyses concerning the early Universe and its possible ultimate origin. Alternatives to standard cosmology include pre-Big Bang approaches, new space-time geometries and new ultimate constituents of matter. Basic issues related to a possible new cosmology along these lines clearly deserve further exploration. The Planck collaboration reports an age of the Universe t close to 13.8 Gyr and a present ratio H between relative speeds and distances at cosmic scale around 67.3 km/s/Mpc. The product of these two measured quantities is then slightly below 1 (about 0.95), while it can be exactly 1 in the absence of matter and cosmological constant in patterns based on the spinorial space-time we have considered in previous papers. In this description of space-time we first suggested in 1996-97, the cosmic time t is given by the modulus of a SU(2) spinor and the Lundmark-Lemaître-Hubble (LLH) expansion law turns out to be of purely geometric origin previous to any introduction of standard matter and relativity. Such a fundamental geometry, inspired by the role of half-integer spin in Particle Physics, may reflect an equilibrium between the dynamics of the ultimate constituents of matter and the deep structure of space and time. Taking into account the observed cosmic acceleration, the present situation suggests that the value of 1 can be a natural asymptotic limit for the product H t in the long-term evolution of our Universe up to possible small corrections. In the presence of a spinorial space-time geometry, no ad hoc combination of dark matter and dark energy would in any case be needed to get an acceptable value of H and an evolution of the Universe compatible with observation. The use of a spinorial space-time naturally leads to unconventional properties for the space curvature term in Friedmann-like equations. It therefore suggests a major modification of the standard

  16. Space-Time Geometry of Quark and Strange Quark Matter

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We study quark and strange quark matter in the context of general relativity. For this purpose, we solve Einstein's field equations for quark and strange quark matter in spherical symmetric space-times. We analyze strange quark matter for the different equations of state (EOS) in the spherical symmetric space-times, thus we are able to obtain the space-time geometries of quark and strange quark matter. Also, we discuss die features of the obtained solutions. The obtained solutions are consistent with the results of Brookhaven Laboratory, i.e. the quark-gluon plasma has a vanishing shear (i.e. quark-gluon plasma is perfect).

  17. Dynamics in stationary, non-globally hyperbolic spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Seggev, Itai [Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637 (United States)

    2004-06-07

    Classically, the dynamics of a scalar field in a non-globally hyperbolic spacetime is ill-posed. Previously, a prescription was given for defining dynamics in static spacetimes in terms of a second-order operator acting on a Hilbert space defined on static slices. The present work extends this result by giving a similar prescription for defining dynamics in stationary spacetimes obeying certain mild assumptions. The prescription is defined in terms of a first-order operator acting on a different Hilbert space from that used in the static prescription. It preserves the important properties of the earlier prescription: the formal solution agrees with the Cauchy evolution within the domain of dependence, and smooth data of compact support always give rise to smooth solutions. In the static case, the first-order formalism agrees with the second-order formalism (using specifically the Friedrichs extension). Applications to field quantization are also discussed.

  18. Holography and Entanglement in Flat Spacetime

    International Nuclear Information System (INIS)

    Li Wei; Takayanagi, Tadashi

    2011-01-01

    We propose a holographic correspondence of the flat spacetime based on the behavior of the entanglement entropy and the correlation functions. The holographic dual theory turns out to be highly nonlocal. We argue that after most part of the space is traced out, the reduced density matrix gives the maximal entropy and the correlation functions become trivial. We present a toy model for this holographic dual using a nonlocal scalar field theory that reproduces the same property of the entanglement entropy. Our conjecture is consistent with the entropy of Schwarzschild black holes in asymptotically flat spacetimes.

  19. Special relativity derived from spacetime magma.

    Science.gov (United States)

    Greensite, Fred

    2014-01-01

    We present a derivation of relativistic spacetime largely untethered from specific physical considerations, in constrast to the many physically-based derivations that have appeared in the last few decades. The argument proceeds from the inherent magma (groupoid) existing on the union of spacetime frame components [Formula: see text] and Euclidean [Formula: see text] which is consistent with an "inversion symmetry" constraint from which the Minkowski norm results. In this context, the latter is also characterized as one member of a class of "inverse norms" which play major roles with respect to various unital [Formula: see text]-algebras more generally.

  20. Special relativity derived from spacetime magma.

    Directory of Open Access Journals (Sweden)

    Fred Greensite

    Full Text Available We present a derivation of relativistic spacetime largely untethered from specific physical considerations, in constrast to the many physically-based derivations that have appeared in the last few decades. The argument proceeds from the inherent magma (groupoid existing on the union of spacetime frame components [Formula: see text] and Euclidean [Formula: see text] which is consistent with an "inversion symmetry" constraint from which the Minkowski norm results. In this context, the latter is also characterized as one member of a class of "inverse norms" which play major roles with respect to various unital [Formula: see text]-algebras more generally.

  1. Global properties of physically interesting Lorentzian spacetimes

    Science.gov (United States)

    Nawarajan, Deloshan; Visser, Matt

    Under normal circumstances most members of the general relativity community focus almost exclusively on the local properties of spacetime, such as the locally Euclidean structure of the manifold and the Lorentzian signature of the metric tensor. When combined with the classical Einstein field equations this gives an extremely successful empirical model of classical gravity and classical matter — at least as long as one does not ask too many awkward questions about global issues, (such as global topology and global causal structure). We feel however that this is a tactical error — even without invoking full-fledged “quantum gravity” we know that the standard model of particle physics is also an extremely good representation of some parts of empirical reality; and we had better be able to carry over all the good features of the standard model of particle physics — at least into the realm of semi-classical quantum gravity. Doing so gives us some interesting global features that spacetime should possess: On physical grounds spacetime should be space-orientable, time-orientable, and spacetime-orientable, and it should possess a globally defined tetrad (vierbein, or in general a globally defined vielbein/n-bein). So on physical grounds spacetime should be parallelizable. This strongly suggests that the metric is not the fundamental physical quantity; a very good case can be made for the tetrad being more fundamental than the metric. Furthermore, a globally-defined “almost complex structure” is almost unavoidable. Ideas along these lines have previously been mooted, but much is buried in the pre-arXiv literature and is either forgotten or inaccessible. We shall revisit these ideas taking a perspective very much based on empirical physical observation.

  2. A new derivation of the conformally flat stationary cyclic non-circular spacetimes

    International Nuclear Information System (INIS)

    Ayon-Beato, Eloy; Campuzano, Cuauhtemoc; GarcIa, Alberto

    2007-01-01

    We present an alternative way to derive the conformally flat stationary cyclic non-circular spacetimes. We show that there is no room for stationary axisymmetric non-circular axisymmetric spacetimes. We reproduce the well know results for this sort of spacetimes recently reported in [1

  3. A new derivation of the conformally flat stationary cyclic non-circular spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Ayon-Beato, Eloy [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico); Campuzano, Cuauhtemoc [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico); GarcIa, Alberto [Department of Physics, University of California, Davis, CA 95616 (United States)

    2007-11-15

    We present an alternative way to derive the conformally flat stationary cyclic non-circular spacetimes. We show that there is no room for stationary axisymmetric non-circular axisymmetric spacetimes. We reproduce the well know results for this sort of spacetimes recently reported in [1].

  4. On electric field in anti-de Sitter spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Lee Yen, E-mail: lee-yencheong@petronas.com.my, E-mail: chewxy01813@gmail.com, E-mail: dennis.ling@petronas.com.my; Yan, Chew Xiao, E-mail: lee-yencheong@petronas.com.my, E-mail: chewxy01813@gmail.com, E-mail: dennis.ling@petronas.com.my; Ching, Dennis Ling Chuan, E-mail: lee-yencheong@petronas.com.my, E-mail: chewxy01813@gmail.com, E-mail: dennis.ling@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, Bandar Seri Iskandar, Tronoh 31750, Perak (Malaysia)

    2014-10-24

    In this paper we calculate the electromagnetic field produced using retarded Green's function in Anti-de Sitter spacetime (AdS). Since this spacetime is non-globally hyperbolic and has no Cauchy surface, we only consider the field originated from a charge moving along its geodesic in the region consists of points covered by future null geodesic of the charge.

  5. Space-time structure

    CERN Document Server

    Schrödinger, Erwin

    1985-01-01

    In response to repeated requests this classic book on space-time structure by Professor Erwin Schrödinger is now available in the Cambridge Science Classics series. First published in 1950, and reprinted in 1954 and 1960, this lucid and profound exposition of Einstein's 1915 theory of gravitation still provides valuable reading for students and research workers in the field.

  6. Quantum spacetime operationally based on propagators for extended test particles

    International Nuclear Information System (INIS)

    Prugovecki, E.

    1981-01-01

    By taking into account the quantum aspects intrinsic to any operational definition of spatio-temporal relationships, a stochastic concept of spacetime emerges. In relation to its classical counterpart is realized as a stochastic mean around which quantum fluctuations become negligible only in the limit of macroscopic spacetime intervals. The test-particle propagators used in the proposed quantum concept of spacetime are derived by solving in a consistent manner the localizability problem for relativistic particles. This is achieved in the framework of the stochastic phase space formulation of quantum mechanics, which in the nonrelativistic context is shown to result from systems of imprimitivity related to phase space conserved probability currents derivable from bona fide convariant probability densities in stochastic phase spaces of one particle systems, which can be interpreted as due to measurements performed with extended rather than pointlike test particles. The associated particle propagators can be therefore consistently related to coordinate probability densities measurable by the exchange of photons in between test particles from a chosen standard. Quantum spacetime is defined as the family of propagators corresponding to all conceivable coherent flows of test particles. This family of free-fall propagators has to satisfy certain self-consistency conditions as well as consistent laws of motion which inplicitly determine the stochastic geometro-dynamics of quantum space-time. Field theory on quantum spacetime retains many of the formal features of conventional quantum field theory. On a fundamental epistemological level stochastic geometries emerge as essential prerequisites in the construction of spacetime models that would be operationally based and yet consistent with the relativity principle as well as with the uncertinty principle

  7. Space-Time Water-Filling for Composite MIMO Fading Channels

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We analyze the ergodic capacity and channel outage probability for a composite MIMO channel model, which includes both fast fading and shadowing effects. The ergodic capacity and exact channel outage probability with space-time water-filling can be evaluated through numerical integrations, which can be further simplified by using approximated empirical eigenvalue and maximal eigenvalue distribution of MIMO fading channels. We also compare the performance of space-time water-filling with spatial water-filling. For MIMO channels with small shadowing effects, spatial water-filling performs very close to space-time water-filling in terms of ergodic capacity. For MIMO channels with large shadowing effects, however, space-time water-filling achieves significantly higher capacity per antenna than spatial water-filling at low to moderate SNR regimes, but with a much higher channel outage probability. We show that the analytical capacity and outage probability results agree very well with those obtained from Monte Carlo simulations.

  8. The algebra of observables in Gaußian normal spacetime coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Bodendorfer, Norbert [Faculty of Physics, University of Warsaw,Pasteura 5, 02-093, Warsaw (Poland); Duch, Paweł [Institute of Physics, Jagiellonian University,Łojasiewicza 11, 30-348 Kraków (Poland); Lewandowski, Jerzy; Świeżewski, Jędrzej [Faculty of Physics, University of Warsaw,Pasteura 5, 02-093, Warsaw (Poland)

    2016-01-11

    We discuss the canonical structure of a spacetime version of the radial gauge, i.e. Gaußian normal spacetime coordinates. While it was found for the spatial version of the radial gauge that a “local” algebra of observables can be constructed, it turns out that this is not possible for the spacetime version. The technical reason for this observation is that the new gauge condition needed to upgrade the spatial to a spacetime radial gauge does not Poisson-commute with the previous gauge conditions. It follows that the involved Dirac bracket is inherently non-local in the sense that no complete set of observables can be found which is constructed locally and at the same time has local Dirac brackets. A locally constructed observable here is defined as a finite polynomial of the canonical variables at a given physical point specified by the Gaußian normal spacetime coordinates.

  9. Linear confinement of a scalar particle in a Goedel-type spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Vitoria, R.L.L.; Furtado, C.; Bakke, K. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa-PB (Brazil)

    2018-01-15

    Based on the studies of confinement of quarks, we introduce a linear scalar potential into the relativistic quantum dynamics of a scalar particle. Then we analyze the linear confinement of a relativistic scalar particle in a Goedel-type spacetime in the presence of a topological defect. We consider a Goedel-type spacetime associated with null curvature, i.e., the Som-Raychaudhuri spacetime, which is characterized by the presence of vorticity in the spacetime. Then we search for analytical solutions to the Klein-Gordon equation and analyze the influence of the topology of the cosmic string and the vorticity on the relativistic energy levels. (orig.)

  10. Spontaneously broken continuous symmetries in hyperbolic (or open) de Sitter spacetime

    International Nuclear Information System (INIS)

    Ratra, B.

    1994-01-01

    The functional Schroedinger approach is used to study scalar field theory in hyperbolic (or open) de Sitter spacetime. While on intermediate length scales (small compared to the spatial curvature length scale) the massless minimally coupled scalar field two-point correlation function does have a term that varies logarithmically with scale, as in flat and closed de Sitter spacetime, the spatial curvature tames the infrared behavior of this correlation function at larger scales in the open model. As a result, and contrary to what happens in flat and closed de Sitter spacetime, spontaneously broken continuous symmetries are not restored in open de Sitter spacetime (with more than one spatial dimension)

  11. Fermi field and Dirac oscillator in a Som-Raychaudhuri space-time

    Science.gov (United States)

    de Montigny, Marc; Zare, Soroush; Hassanabadi, Hassan

    2018-05-01

    We investigate the relativistic dynamics of a Dirac field in the Som-Raychaudhuri space-time, which is described by a Gödel-type metric and a stationary cylindrical symmetric solution of Einstein field equations for a charged dust distribution in rigid rotation. In order to analyze the effect of various physical parameters of this space-time, we solve the Dirac equation in the Som-Raychaudhuri space-time and obtain the energy levels and eigenfunctions of the Dirac operator by using the Nikiforov-Uvarov method. We also examine the behaviour of the Dirac oscillator in the Som-Raychaudhuri space-time, in particular, the effect of its frequency and the vorticity parameter.

  12. Quaternionic formulation of tachyons, superluminal transformations and a complex space-time

    Energy Technology Data Exchange (ETDEWEB)

    Imaeda, K [Dublin Inst. for Advanced Studies (Ireland)

    1979-04-11

    A theory of tachyons and superluminal transformations is developed on the basis of the quaternionic formulation. A complex space-time adn a complex transformation group which contains both Lorentz transformations and superluminal transformations are introduced. The complex space-time '' the biquaternion space'' which is closed under the superluminal transformations is introduced. The principle of special relativity, such as the conservation of the quadratic form of the metric of the space-time, and the principle of duality are extended to the complex space-time and to bradyons, luxons and tachyons under the complex transformations. SeVeral characteristic features of the superluminal transformations and of tachyons are derived.

  13. Casimir energy density for spherical universes in n-dimensional spacetime

    International Nuclear Information System (INIS)

    Oezcan, Mustafa

    2006-01-01

    We consider the Casimir effect for the massless conformal scalar field in an n-dimensional, closed, static universe. We calculate the renormalized vacuum energy density using the covariant point-splitting method, the mode-sum regularization and the renormalized vacuum energy with the zeta-function regularization. We observe that all odd spacetime dimensions give us the zero renormalized vacuum energy density. For even spacetime dimensions the renormalized vacuum energy density oscillates in sign. The result agrees with three regularization techniques. The Casimir energy density for spherical universes in n-dimensional spacetime is regarded as interesting both to understand the correspondence between the sign of the effect and the dimension of manifold in topology and as a key to confirming the Casimir energy for half spherical universes (manifold with boundary) in n-dimensional spacetime

  14. MEST- avoid next extinction by a space-time effect

    Science.gov (United States)

    Cao, Dayong

    2013-03-01

    Sun's companion-dark hole seasonal took its dark comets belt and much dark matter to impact near our earth. And some of them probability hit on our earth. So this model kept and triggered periodic mass extinctions on our earth every 25 to 27 million years. After every impaction, many dark comets with very special tilted orbits were arrested and lurked in solar system. When the dark hole-Tyche goes near the solar system again, they will impact near planets. The Tyche, dark comet and Oort Cloud have their space-time center. Because the space-time are frequency and amplitude square of wave. Because the wave (space-time) can make a field, and gas has more wave and fluctuate. So they like dense gas ball and a dark dense field. They can absorb the space-time and wave. So they are ``dark'' like the dark matter which can break genetic codes of our lives by a dark space-time effect. So the upcoming next impaction will cause current ``biodiversity loss.'' The dark matter can change dead plants and animals to coal, oil and natural gas which are used as energy, but break our living environment. According to our experiments, which consciousness can use thought waves remotely to change their systemic model between Electron Clouds and electron holes of P-N Junction and can change output voltages of solar cells by a life information technology and a space-time effect, we hope to find a new method to the orbit of the Tyche to avoid next extinction. (see Dayong Cao, BAPS.2011.APR.K1.17 and BAPS.2012.MAR.P33.14) Support by AEEA

  15. Perturbative Critical Behavior from Spacetime Dependent Couplings

    International Nuclear Information System (INIS)

    Torroba, Gonzalo

    2012-01-01

    We find novel perturbative fixed points by introducing mildly spacetime-dependent couplings into otherwise marginal terms. In four-dimensional QFT, these are physical analogues of the small-ε Wilson-Fisher fixed point. Rather than considering 4-ε dimensions, we stay in four dimensions but introduce couplings whose leading spacetime dependence is of the form λx κ μ κ , with a small parameter κ playing a role analogous to ε. We show, in φ 4 theory and in QED and QCD with massless flavors, that this leads to a critical theory under perturbative control over an exponentially wide window of spacetime positions x. The exact fixed point coupling λ * (x) in our theory is identical to the running coupling of the translationally invariant theory, with the scale replaced by 1/x. Similar statements hold for three-dimensional φ 6 theories and two-dimensional sigma models with curved target spaces. We also describe strongly coupled examples using conformal perturbation theory.

  16. Classical black holes: the nonlinear dynamics of curved spacetime.

    Science.gov (United States)

    Thorne, Kip S

    2012-08-03

    Numerical simulations have revealed two types of physical structures, made from curved spacetime, that are attached to black holes: tendexes, which stretch or squeeze anything they encounter, and vortexes, which twist adjacent inertial frames relative to each other. When black holes collide, their tendexes and vortexes interact and oscillate (a form of nonlinear dynamics of curved spacetime). These oscillations generate gravitational waves, which can give kicks up to 4000 kilometers per second to the merged black hole. The gravitational waves encode details of the spacetime dynamics and will soon be observed and studied by the Laser Interferometer Gravitational Wave Observatory and its international partners.

  17. Perturbative spacetimes from Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Luna, Andrés [School of Physics and Astronomy, University of Glasgow,Glasgow G12 8QQ, Scotland (United Kingdom); Monteiro, Ricardo [Theoretical Physics Department, CERN,Geneva (Switzerland); Nicholson, Isobel; Ochirov, Alexander; O’Connell, Donal [Higgs Centre for Theoretical Physics,School of Physics and Astronomy, The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom); Westerberg, Niclas [Institute of Photonics and Quantum Sciences,School of Engineering and Physical Sciences, Heriot-Watt University,Edinburgh (United Kingdom); Higgs Centre for Theoretical Physics,School of Physics and Astronomy, The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom); White, Chris D. [Centre for Research in String Theory,School of Physics and Astronomy, Queen Mary University of London,327 Mile End Road, London E1 4NS (United Kingdom)

    2017-04-12

    The double copy relates scattering amplitudes in gauge and gravity theories. In this paper, we expand the scope of the double copy to construct spacetime metrics through a systematic perturbative expansion. The perturbative procedure is based on direct calculation in Yang-Mills theory, followed by squaring the numerator of certain perturbative diagrams as specified by the double-copy algorithm. The simplest spherically symmetric, stationary spacetime from the point of view of this procedure is a particular member of the Janis-Newman-Winicour family of naked singularities. Our work paves the way for applications of the double copy to physically interesting problems such as perturbative black-hole scattering.

  18. Radar orthogonality and radar length in Finsler and metric spacetime geometry

    Science.gov (United States)

    Pfeifer, Christian

    2014-09-01

    The radar experiment connects the geometry of spacetime with an observers measurement of spatial length. We investigate the radar experiment on Finsler spacetimes which leads to a general definition of radar orthogonality and radar length. The directions radar orthogonal to an observer form the spatial equal time surface an observer experiences and the radar length is the physical length the observer associates to spatial objects. We demonstrate these concepts on a forth order polynomial Finsler spacetime geometry which may emerge from area metric or premetric linear electrodynamics or in quantum gravity phenomenology. In an explicit generalization of Minkowski spacetime geometry we derive the deviation from the Euclidean spatial length measure in an observers rest frame explicitly.

  19. Killing spinors as a characterisation of rotating black hole spacetimes

    International Nuclear Information System (INIS)

    Cole, Michael J; Kroon, Juan A Valiente

    2016-01-01

    We investigate the implications of the existence of Killing spinors in a spacetime. In particular, we show that in vacuum and electrovacuum a Killing spinor, along with some assumptions on the associated Killing vector in an asymptotic region, guarantees that the spacetime is locally isometric to the Kerr or Kerr–Newman solutions. We show that the characterisation of these spacetimes in terms of Killing spinors is an alternative expression of characterisation results of Mars (Kerr) and Wong (Kerr–Newman) involving restrictions on the Weyl curvature and matter content. (paper)

  20. We live in the quantum 4-dimensional Minkowski space-time

    OpenAIRE

    Hwang, W-Y. Pauchy

    2015-01-01

    We try to define "our world" by stating that "we live in the quantum 4-dimensional Minkowski space-time with the force-fields gauge group $SU_c(3) \\times SU_L(2) \\times U(1) \\times SU_f(3)$ built-in from the outset". We begin by explaining what "space" and "time" are meaning for us - the 4-dimensional Minkowski space-time, then proceeding to the quantum 4-dimensional Minkowski space-time. In our world, there are fields, or, point-like particles. Particle physics is described by the so-called ...

  1. How to use the cosmological Schwinger principle for energy flux, entropy, and 'atoms of space-time' to create a thermodynamic space-time and multiverse

    International Nuclear Information System (INIS)

    Beckwith, Andrew

    2011-01-01

    We make explicit an idea by Padmanabhan in DICE 2010, as to finding 'atoms of space-time' permitting a thermodynamic treatment of emergent structure similar to Gibbs treatment of statistical physics. That is, an ensemble of gravitons is used to give an 'atom' of space-time congruent with relic GW. The idea is to reduce the number of independent variables to get a simple emergent space-time structure of entropy. An electric field, based upon the cosmological Schwinger principle, is linked to relic heat flux, with entropy production tied in with candidates as to inflaton potentials. The effective electric field links with the Schwinger 1951s result of an E field leading to pairs of e + e - charges nucleated in space-time volume V · t. Note that in most inflationary models, the assumption is for a magnetic field, not an electric field. An electric field permits a kink-anti-kink construction of an emergent structure, which includes Glinka's recent pioneering approach to a Multiverse. Also an E field allows for an emergent relic particle frequency range between one and 100 GHz. The novel contribution is a relic E field, instead of a B field, in relic space-time 'atom' formation and vacuum nucleation of the same.

  2. On Fermat's principle for causal curves in time oriented Finsler spacetimes

    Science.gov (United States)

    Gallego Torromé, Ricardo; Piccione, Paolo; Vitório, Henrique

    2012-12-01

    In this work, a version of Fermat's principle for causal curves with the same energy in time orientable Finsler spacetimes is proved. We calculate the second variation of the time arrival functional along a geodesic in terms of the index form associated with the Finsler spacetime Lagrangian. Then the character of the critical points of the time arrival functional is investigated and a Morse index theorem in the context of Finsler spacetime is presented.

  3. Analysis of interacting quantum field theory in curved spacetime

    International Nuclear Information System (INIS)

    Birrell, N.D.; Taylor, J.G.

    1980-01-01

    A detailed analysis of interacting quantized fields propagating in a curved background spacetime is given. Reduction formulas for S-matrix elements in terms of vacuum Green's functions are derived, special attention being paid to the possibility that the ''in'' and ''out'' vacuum states may not be equivalent. Green's functions equations are obtained and a diagrammatic representation for them given, allowing a formal, diagrammatic renormalization to be effected. Coordinate space techniques for showing renormalizability are developed in Minkowski space, for lambdaphi 3 /sub() 4,6/ field theories. The extension of these techniques to curved spacetimes is considered. It is shown that the possibility of field theories becoming nonrenormalizable there cannot be ruled out, although, allowing certain modifications to the theory, phi 3 /sub( 4 ) is proven renormalizable in a large class of spacetimes. Finally particle production from the vacuum by the gravitational field is discussed with particular reference to Schwarzschild spacetime. We shed some light on the nonlocalizability of the production process and on the definition of the S matrix for such processes

  4. Quantum healing of classical singularities in power-law spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Helliwell, T M [Department of Physics, Harvey Mudd College, Claremont, CA 91711 (United States); Konkowski, D A [Department of Mathematics, US Naval Academy, Annapolis, MD 21402 (United States)

    2007-07-07

    We study a broad class of spacetimes whose metric coefficients reduce to powers of a radius r in the limit of small r. Among these four-parameter 'power-law' metrics, we identify those parameters for which the spacetimes have classical singularities as r {yields} 0. We show that a large set of such classically-singular spacetimes is nevertheless non-singular quantum mechanically, in that the Hamiltonian operator is essentially self-adjoint, so that the evolution of quantum wave packets lacks the ambiguity associated with scattering off singularities. Using these metrics, the broadest class yet studied to compare classical with quantum singularities, we explore the physical reasons why some that are singular classically are 'healed' quantum mechanically, while others are not. We show that most (but not all) of the remaining quantum-mechanically singular spacetimes can be excluded if either the weak energy condition or the dominant energy condition is invoked, and we briefly discuss the effect of this work on the strong cosmic censorship conjecture.

  5. ISCO and Principal Null Congruences in Extremal Kerr Spacetime

    International Nuclear Information System (INIS)

    Pradhan, Parthapratim

    2012-01-01

    The effective potential in universal like coordinates(U, V, θ, φ), which are smooth across the event horizon is derived and investigated the ISCO(Innermost Stable Circular Orbits) explicitly in these coordinates for extremal Kerr spacetime. Extremization of the effective potential for timelike circular orbit shows that the existence of a stable circular geodesics in the extremal spacetime for direct orbit, precisely on the event horizon in terms of the radial coordinate which coincides with the principal null geodesic congruences of the event horizon. These null geodesic congruences mold themselves to the spacetime curvature in such a way that Weyl conformal tensor and its dual are vanished, that is why they are in-fact doubly degenerate principal null congruences.

  6. How to observe a non-Kerr spacetime using gravitational waves.

    Science.gov (United States)

    Apostolatos, Theocharis A; Lukes-Gerakopoulos, Georgios; Contopoulos, George

    2009-09-11

    We present a generic criterion which can be used in gravitational-wave data analysis to distinguish an extreme-mass-ratio inspiral into a Kerr background spacetime from one into a non-Kerr spacetime. We exploit the fact that when an integrable system, such as the system that describes geodesic orbits in a Kerr spacetime, is perturbed, the tori in phase space which initially corresponded to resonances disintegrate so as to form Birkhoff chains on a surface of section. The KAM curves of the islands in such a chain share the same ratio of frequencies, even though the frequencies themselves vary from one KAM curve to another inside an island. However the KAM curves, which do not lie in a Birkhoff chain, do not share this characteristic property. Such a temporal constancy of the ratio of frequencies during the evolution of the gravitational-wave signal will signal a non-Kerr spacetime.

  7. The representation of spacetime through steep time functions

    Science.gov (United States)

    Minguzzi, Ettore

    2018-02-01

    In a recent work I showed that the family of smooth steep time functions can be used to recover the order, the topology and the (Lorentz-Finsler) distance of spacetime. In this work I present the main ideas entering the proof of the (smooth) distance formula, particularly the product trick which converts metric statements into causal ones. The paper ends with a second proof of the distance formula valid for globally hyperbolic Lorentzian spacetimes.

  8. Motions of charged particles in Goedel-type spacetimes

    International Nuclear Information System (INIS)

    Figueiredo, Bartolomeu D.B.

    1996-10-01

    Goedel-type spacetimes in Hehl's non propagating torsion theory are reconsidered by supposing that the curvature source is a Weyssenhoff-Raab fluid and an electromagnetic field. The electromagnetic field implies space time homogeneity and admits a dual interpretation. From the trajectories of the test particles, it is shown that there is a class of such spacetimes for which charged particles can reach regions inaccessible to neutral particles or even photons. (author). 21 refs., 1 fig

  9. On the minimum uncertainty of space-time geodesics

    International Nuclear Information System (INIS)

    Diosi, L.; Lukacs, B.

    1989-10-01

    Although various attempts for systematic quantization of the space-time geometry ('gravitation') have appeared, none of them is considered fully consistent or final. Inspired by a construction of Wigner, the quantum relativistic limitations of measuring the metric tensor of a certain space-time were calculated. The result is suggested to be estimate for fluctuations of g ab whose rigorous determination will be a subject of a future relativistic quantum gravity. (author) 11 refs

  10. Causal structure of analogue spacetimes

    International Nuclear Information System (INIS)

    Barcelo, Carlos; Liberati, Stefano; Sonego, Sebastiano; Visser, Matt

    2004-01-01

    The so-called 'analogue models of general relativity' provide a number of specific physical systems, well outside the traditional realm of general relativity, that nevertheless are well-described by the differential geometry of curved spacetime. Specifically, the propagation of perturbations in these condensed matter systems is described by 'effective metrics' that carry with them notions of 'causal structure' as determined by an exchange of quasi-particles. These quasi-particle-induced causal structures serve as specific examples of what can be done in the presence of a Lorentzian metric without having recourse to the Einstein equations of general relativity. (After all, the underlying analogue model is governed by its own specific physics, not necessarily by the Einstein equations.) In this paper we take a careful look at what can be said about the causal structure of analogue spacetimes, focusing on those containing quasi-particle horizons, both with a view to seeing what is different from standard general relativity, and what the similarities might be. For definiteness, and because the physics is particularly simple to understand, we will phrase much of the discussion in terms of acoustic disturbances in moving fluids, where the underlying physics is ordinary fluid mechanics, governed by the equations of traditional hydrodynamics, and the relevant quasi-particles are the phonons. It must however be emphasized that this choice of example is only for the sake of pedagogical simplicity and that our considerations apply generically to wide classes of analogue spacetimes

  11. Revisiting Special Relativity: A Natural Algebraic Alternative to Minkowski Spacetime

    Science.gov (United States)

    Chappell, James M.; Iqbal, Azhar; Iannella, Nicolangelo; Abbott, Derek

    2012-01-01

    Minkowski famously introduced the concept of a space-time continuum in 1908, merging the three dimensions of space with an imaginary time dimension , with the unit imaginary producing the correct spacetime distance , and the results of Einstein’s then recently developed theory of special relativity, thus providing an explanation for Einstein’s theory in terms of the structure of space and time. As an alternative to a planar Minkowski space-time of two space dimensions and one time dimension, we replace the unit imaginary , with the Clifford bivector for the plane that also squares to minus one, but which can be included without the addition of an extra dimension, as it is an integral part of the real Cartesian plane with the orthonormal basis and . We find that with this model of planar spacetime, using a two-dimensional Clifford multivector, the spacetime metric and the Lorentz transformations follow immediately as properties of the algebra. This also leads to momentum and energy being represented as components of a multivector and we give a new efficient derivation of Compton’s scattering formula, and a simple formulation of Dirac’s and Maxwell’s equations. Based on the mathematical structure of the multivector, we produce a semi-classical model of massive particles, which can then be viewed as the origin of the Minkowski spacetime structure and thus a deeper explanation for relativistic effects. We also find a new perspective on the nature of time, which is now given a precise mathematical definition as the bivector of the plane. PMID:23300566

  12. Topology of classical vacuum space-time

    International Nuclear Information System (INIS)

    Cho, Y.M.

    2007-04-01

    We present a topological classification of classical vacuum space-time. Assuming the 3-dimensional space allows a global chart, we show that the static vacuum space-time of Einstein's theory can be classified by the knot topology π 3 (S 3 ) = π 3 (S 2 ). Viewing Einstein's theory as a gauge theory of Lorentz group and identifying the gravitational connection as the gauge potential of Lorentz group, we construct all possible vacuum gravitational connections which give a vanishing curvature tensor. With this we show that the vacuum connection has the knot topology, the same topology which describes the multiple vacua of SU(2) gauge theory. We discuss the physical implications of our result in quantum gravity. (author)

  13. Mach's principle and space-time structure

    International Nuclear Information System (INIS)

    Raine, D.J.

    1981-01-01

    Mach's principle, that inertial forces should be generated by the motion of a body relative to the bulk of matter in the universe, is shown to be related to the structure imposed on space-time by dynamical theories. General relativity theory and Mach's principle are both shown to be well supported by observations. Since Mach's principle is not contained in general relativity this leads to a discussion of attempts to derive Machian theories. The most promising of these appears to be a selection rule for solutions of the general relativistic field equations, in which the space-time metric structure is generated by the matter content of the universe only in a well-defined way. (author)

  14. Swimming versus swinging effects in spacetime

    International Nuclear Information System (INIS)

    Gueron, Eduardo; Maia, Clovis A. S.; Matsas, George E. A.

    2006-01-01

    Wisdom has recently unveiled a new relativistic effect, called 'spacetime swimming', where quasirigid free bodies in curved spacetimes can 'speed up', 'slow down' or 'deviate' their falls by performing local cyclic shape deformations. We show here that for fast enough cycles this effect dominates over a nonrelativistic related one, named here 'space swinging', where the fall is altered through nonlocal cyclic deformations in Newtonian gravitational fields. We expect, therefore, to clarify the distinction between both effects leaving no room to controversy. Moreover, the leading contribution to the swimming effect predicted by Wisdom is enriched with a higher order term and the whole result is generalized to be applicable in cases where the tripod is in large redshift regions

  15. Class of continuous timelike curves determines the topology of spacetime

    International Nuclear Information System (INIS)

    Malament, D.B.

    1977-01-01

    The title assertion is proven, and two corollaries are established. First, the topology of every past and future distinguishing spacetime is determined by its causal structure. Second, in every spacetime the path topology of Hawking, King, and McCarthy codes topological, differential, and conformal structure

  16. Pre-Big Bang, space-time structure, asymptotic Universe

    Directory of Open Access Journals (Sweden)

    Gonzalez-Mestres Luis

    2014-04-01

    Full Text Available Planck and other recent data in Cosmology and Particle Physics can open the way to controversial analyses concerning the early Universe and its possible ultimate origin. Alternatives to standard cosmology include pre-Big Bang approaches, new space-time geometries and new ultimate constituents of matter. Basic issues related to a possible new cosmology along these lines clearly deserve further exploration. The Planck collaboration reports an age of the Universe t close to 13.8 Gyr and a present ratio H between relative speeds and distances at cosmic scale around 67.3 km/s/Mpc. The product of these two measured quantities is then slightly below 1 (about 0.95, while it can be exactly 1 in the absence of matter and cosmological constant in patterns based on the spinorial space-time we have considered in previous papers. In this description of space-time we first suggested in 1996-97, the cosmic time t is given by the modulus of a SU(2 spinor and the Lundmark-Lemaître-Hubble (LLH expansion law turns out to be of purely geometric origin previous to any introduction of standard matter and relativity. Such a fundamental geometry, inspired by the role of half-integer spin in Particle Physics, may reflect an equilibrium between the dynamics of the ultimate constituents of matter and the deep structure of space and time. Taking into account the observed cosmic acceleration, the present situation suggests that the value of 1 can be a natural asymptotic limit for the product H t in the long-term evolution of our Universe up to possible small corrections. In the presence of a spinorial space-time geometry, no ad hoc combination of dark matter and dark energy would in any case be needed to get an acceptable value of H and an evolution of the Universe compatible with observation. The use of a spinorial space-time naturally leads to unconventional properties for the space curvature term in Friedmann-like equations. It therefore suggests a major modification of

  17. Thermodynamics in Curved Space-Time and Its Application to Holography

    Directory of Open Access Journals (Sweden)

    Yong Xiao

    2015-03-01

    Full Text Available The thermodynamic behaviors of a system living in a curved space-time are different from those of a system in a flat space-time. We have investigated the thermodynamics for a system consisting of relativistic massless bosons. We show that a strongly curved metric will produce a large enhancement of the degrees of freedom in the formulae of energy and entropy of the system, as a comparison to the case in a flat space-time. We are mainly concerned with its implications to holography, including the derivations of holographic entropy and holographic screen.

  18. A class of almost equilibrium states in Robertson-Walker spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Kueskue, Muharrem

    2008-11-06

    In quantum field theory in curved spacetimes the construction of the algebra of observables of linear fields is today well understood. However, it remains a non-trivial task to construct physically meaningful states on the algebra. For instance, we are in the unsatisfactory situation that there exist no examples of states suited to describe local thermal equilibrium in a non-stationary spacetime. In this thesis, we construct a class of states for the Klein-Gordon field in Robertson-Walker spacetimes, which seem to provide the first example of thermal states in a spacetime without time translation symmetry. More precisely, in the setting of real, linear, scalar fields in Robertson-Walker spacetimes we define on the set of homogeneous, isotropic, quasi-free states a free energy functional that is based on the averaged energy density measured by an isotropic observer along his worldline. This functional is well defined and lower bounded by a suitable quantum energy inequality. Subsequently, we minimize this functional and obtain states that we interpret as 'almost equilibrium states'. It turns out that the states of low energy are the ground states of the almost equilibrium states. Finally, we prove that the almost equilibrium states satisfy the Hadamard condition, which qualifies them as physically meaningful states. (orig.)

  19. A class of almost equilibrium states in Robertson-Walker spacetimes

    International Nuclear Information System (INIS)

    Kueskue, Muharrem

    2008-01-01

    In quantum field theory in curved spacetimes the construction of the algebra of observables of linear fields is today well understood. However, it remains a non-trivial task to construct physically meaningful states on the algebra. For instance, we are in the unsatisfactory situation that there exist no examples of states suited to describe local thermal equilibrium in a non-stationary spacetime. In this thesis, we construct a class of states for the Klein-Gordon field in Robertson-Walker spacetimes, which seem to provide the first example of thermal states in a spacetime without time translation symmetry. More precisely, in the setting of real, linear, scalar fields in Robertson-Walker spacetimes we define on the set of homogeneous, isotropic, quasi-free states a free energy functional that is based on the averaged energy density measured by an isotropic observer along his worldline. This functional is well defined and lower bounded by a suitable quantum energy inequality. Subsequently, we minimize this functional and obtain states that we interpret as 'almost equilibrium states'. It turns out that the states of low energy are the ground states of the almost equilibrium states. Finally, we prove that the almost equilibrium states satisfy the Hadamard condition, which qualifies them as physically meaningful states. (orig.)

  20. Some aspects of quantum field theory in non-Minkowskian space-times

    International Nuclear Information System (INIS)

    Toms, D.J.

    1980-01-01

    Several aspects of quantum field theory in space-times which are different from Minkowski space-time, either because of the presence of a non-zero curvature or as a consequence of the topology of the manifold, are discussed. The Casimir effect is a quantum field theory in a space-time which has a different topology. A short review of some of its popular derivations is presented with comments. Renormalization of interacting scalar field theories in a flat space-time with a non-Minkowskian topology is considered. The presence of a non-trivial topology can lead to additional non-local divergent terms in the Schwinger-Dyson equations for a general scalar field theory; however, the theory may be renormalized with the same choice of counterterms as in Minkowski space-time. Propagators can develop poles corresponding to the generation of a topological mass. Zeta-function regularization is shown to fit naturally into the functional approach to the effective potential. This formalism is used to calculate the effective potential for some scalar field theories in non-Minkowskian space-times. Topological mass generation is discussed, and it is shown how radiative corrections can lead to spontaneous symmetry breaking. One- and two-loop contributions to the vacuum energy density are obtained for both massless and massive fields. In the massive case the role of renormalization in removing non-local divergences is discussed

  1. Space-time modeling of soil moisture

    Science.gov (United States)

    Chen, Zijuan; Mohanty, Binayak P.; Rodriguez-Iturbe, Ignacio

    2017-11-01

    A physically derived space-time mathematical representation of the soil moisture field is carried out via the soil moisture balance equation driven by stochastic rainfall forcing. The model incorporates spatial diffusion and in its original version, it is shown to be unable to reproduce the relative fast decay in the spatial correlation functions observed in empirical data. This decay resulting from variations in local topography as well as in local soil and vegetation conditions is well reproduced via a jitter process acting multiplicatively over the space-time soil moisture field. The jitter is a multiplicative noise acting on the soil moisture dynamics with the objective to deflate its correlation structure at small spatial scales which are not embedded in the probabilistic structure of the rainfall process that drives the dynamics. These scales of order of several meters to several hundred meters are of great importance in ecohydrologic dynamics. Properties of space-time correlation functions and spectral densities of the model with jitter are explored analytically, and the influence of the jitter parameters, reflecting variabilities of soil moisture at different spatial and temporal scales, is investigated. A case study fitting the derived model to a soil moisture dataset is presented in detail.

  2. A Note on the Problem of Proper Time in Weyl Space-Time

    Science.gov (United States)

    Avalos, R.; Dahia, F.; Romero, C.

    2018-02-01

    We discuss the question of whether or not a general Weyl structure is a suitable mathematical model of space-time. This is an issue that has been in debate since Weyl formulated his unified field theory for the first time. We do not present the discussion from the point of view of a particular unification theory, but instead from a more general standpoint, in which the viability of such a structure as a model of space-time is investigated. Our starting point is the well known axiomatic approach to space-time given by Elhers, Pirani and Schild (EPS). In this framework, we carry out an exhaustive analysis of what is required for a consistent definition for proper time and show that such a definition leads to the prediction of the so-called "second clock effect". We take the view that if, based on experience, we were to reject space-time models predicting this effect, this could be incorporated as the last axiom in the EPS approach. Finally, we provide a proof that, in this case, we are led to a Weyl integrable space-time as the most general structure that would be suitable to model space-time.

  3. Distributed space-time coding

    CERN Document Server

    Jing, Yindi

    2014-01-01

    Distributed Space-Time Coding (DSTC) is a cooperative relaying scheme that enables high reliability in wireless networks. This brief presents the basic concept of DSTC, its achievable performance, generalizations, code design, and differential use. Recent results on training design and channel estimation for DSTC and the performance of training-based DSTC are also discussed.

  4. Quantum communications and quantum metrology in the spacetime of a rotating planet

    Energy Technology Data Exchange (ETDEWEB)

    Kohlrus, Jan; Louko, Jorma [University of Nottingham, School of Mathematical Sciences, Nottingham (United Kingdom); Bruschi, David Edward [The Hebrew University of Jerusalem, Racah Institute of Physics and Quantum Information Science Centre, Jerusalem (Israel); University of York, York Centre for Quantum Technologies, Department of Physics, York (United Kingdom); Fuentes, Ivette [University of Nottingham, School of Mathematical Sciences, Nottingham (United Kingdom); University of Vienna, Faculty of Physics, Wien (Austria)

    2017-12-15

    We study how quantum systems that propagate in the spacetime of a rotating planet are affected by the curved background. Spacetime curvature affects wavepackets of photons propagating from Earth to a satellite, and the changes in the wavepacket encode the parameters of the spacetime. This allows us to evaluate quantitatively how quantum communications are affected by the curved spacetime background of the Earth and to achieve precise measurements of Earth's Schwarzschild radius and equatorial angular velocity. We then provide a comparison with the state of the art in parameter estimation obtained through classical means. Satellite to satellite communications and future directions are also discussed. (orig.)

  5. Warped product space-times

    Science.gov (United States)

    An, Xinliang; Wong, Willie Wai Yeung

    2018-01-01

    Many classical results in relativity theory concerning spherically symmetric space-times have easy generalizations to warped product space-times, with a two-dimensional Lorentzian base and arbitrary dimensional Riemannian fibers. We first give a systematic presentation of the main geometric constructions, with emphasis on the Kodama vector field and the Hawking energy; the construction is signature independent. This leads to proofs of general Birkhoff-type theorems for warped product manifolds; our theorems in particular apply to situations where the warped product manifold is not necessarily Einstein, and thus can be applied to solutions with matter content in general relativity. Next we specialize to the Lorentzian case and study the propagation of null expansions under the assumption of the dominant energy condition. We prove several non-existence results relating to the Yamabe class of the fibers, in the spirit of the black-hole topology theorem of Hawking–Galloway–Schoen. Finally we discuss the effect of the warped product ansatz on matter models. In particular we construct several cosmological solutions to the Einstein–Euler equations whose spatial geometry is generally not isotropic.

  6. Motions of charged particles in Goedel-type spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, Bartolomeu D.B. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1996-10-01

    Goedel-type spacetimes in Hehl`s non propagating torsion theory are reconsidered by supposing that the curvature source is a Weyssenhoff-Raab fluid and an electromagnetic field. The electromagnetic field implies space time homogeneity and admits a dual interpretation. From the trajectories of the test particles, it is shown that there is a class of such spacetimes for which charged particles can reach regions inaccessible to neutral particles or even photons. (author). 21 refs., 1 fig.

  7. Neutrino oscillations in curved spacetime: A heuristic treatment

    International Nuclear Information System (INIS)

    Cardall, C.Y.; Fuller, G.M.

    1997-01-01

    We discuss neutrino oscillations in curved spacetime. Our heuristic approach can accommodate matter effects and gravitational contributions to neutrino spin precession in the presence of a magnetic field. By way of illustration, we perform explicit calculations in the Schwarzschild geometry. In this case, gravitational effects on neutrino oscillations are intimately related to the redshift. We discuss how spacetime curvature could affect the resonance position and adiabaticity of matter-enhanced neutrino flavor conversion. copyright 1997 The American Physical Society

  8. Linear bosonic and fermionic quantum gauge theories on curved spacetimes

    International Nuclear Information System (INIS)

    Hack, Thomas-Paul; Schenkel, Alexander

    2012-05-01

    We develop a general setting for the quantization of linear bosonic and fermionic field theories subject to local gauge invariance and show how standard examples such as linearized Yang-Mills theory and linearized general relativity fit into this framework. Our construction always leads to a well-defined and gauge-invariant quantum field algebra, the centre and representations of this algebra, however, have to be analysed on a case-by-case basis. We discuss an example of a fermionic gauge field theory where the necessary conditions for the existence of Hilbert space representations are not met on any spacetime. On the other hand, we prove that these conditions are met for the Rarita-Schwinger gauge field in linearized pure N=1 supergravity on certain spacetimes, including asymptotically flat spacetimes and classes of spacetimes with compact Cauchy surfaces. We also present an explicit example of a supergravity background on which the Rarita-Schwinger gauge field can not be consistently quantized.

  9. Linear bosonic and fermionic quantum gauge theories on curved spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Thomas-Paul [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Schenkel, Alexander [Bergische Univ., Wuppertal (Germany). Fachgruppe Physik

    2012-05-15

    We develop a general setting for the quantization of linear bosonic and fermionic field theories subject to local gauge invariance and show how standard examples such as linearized Yang-Mills theory and linearized general relativity fit into this framework. Our construction always leads to a well-defined and gauge-invariant quantum field algebra, the centre and representations of this algebra, however, have to be analysed on a case-by-case basis. We discuss an example of a fermionic gauge field theory where the necessary conditions for the existence of Hilbert space representations are not met on any spacetime. On the other hand, we prove that these conditions are met for the Rarita-Schwinger gauge field in linearized pure N=1 supergravity on certain spacetimes, including asymptotically flat spacetimes and classes of spacetimes with compact Cauchy surfaces. We also present an explicit example of a supergravity background on which the Rarita-Schwinger gauge field can not be consistently quantized.

  10. R=0 spacetimes and self-dual Lorentzian wormholes

    International Nuclear Information System (INIS)

    Dadhich, Naresh; Kar, Sayan; Mukherjee, Sailajananda; Visser, Matt

    2002-01-01

    A two-parameter family of spherically symmetric, static Lorentzian wormholes is obtained as the general solution of the equation ρ=ρ t =0, where ρ=T ij u i u j , ρ t =(T ij -(1/2)Tg ij )u i u j , and u i u i =-1. This equation characterizes a class of spacetimes which are 'self-dual' (in the sense of electrogravity duality). The class includes the Schwarzschild black hole, a family of naked singularities, and a disjoint family of Lorentzian wormholes, all of which have a vanishing scalar curvature (R=0). The properties of these spacetimes are discussed. Using isotropic coordinates we delineate clearly the domains of parameter space for which wormholes, nakedly singular spacetimes and the Schwarzschild black hole can be obtained. A model for the required 'exotic' stress-energy is discussed, and the notion of traversability for the wormholes is also examined

  11. A global conformal extension theorem for perfect fluid Bianchi space-times

    International Nuclear Information System (INIS)

    Luebbe, Christian; Tod, Paul

    2008-01-01

    A global extension theorem is established for isotropic singularities in polytropic perfect fluid Bianchi space-times. When an extension is possible, the limiting behaviour of the physical space-time near the singularity is analysed

  12. A 1 + 5-dimensional gravitational-wave solution. Curvature singularity and spacetime singularity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Zhu [Tianjin University, Department of Physics, Tianjin (China); Li, Wen-Du [Tianjin University, Department of Physics, Tianjin (China); Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Dai, Wu-Sheng [Nankai University, Theoretical Physics Division, Chern Institute of Mathematics, Tianjin (China); Nankai University and Tianjin University, LiuHui Center for Applied Mathematics, Tianjin (China)

    2017-12-15

    We solve a 1 + 5-dimensional cylindrical gravitational-wave solution of the Einstein equation, in which there are two curvature singularities. Then we show that one of the curvature singularities can be removed by an extension of the spacetime. The result exemplifies that the curvature singularity is not always a spacetime singularity; in other words, the curvature singularity cannot serve as a criterion for spacetime singularities. (orig.)

  13. Test fields on compact spacetimes: Problems, some partial results and speculations

    International Nuclear Information System (INIS)

    Yurtsever, U.

    1989-09-01

    In this paper we study some basic aspects of (Lorentzian) field theory on compact Lorentz manifolds. All compact spacetimes are acausal, i.e. possess closed timelike curves; this makes them a useful testbed in analyzing some new notions of causality that we will introduce for more general acausal spacetimes. In addition, studying compact spacetimes in their own right raises a wide range of fascinating mathematical problems some of which we will explore. We will see that it is reasonable to expect Lorentzian field theory on a compact spacetime to provide information on the topology of the underlying manifold; if this is true, then this information is likely to be ''orthogonal'' (or complementary) to the information obtained through the study of Euclidean field theory. (author). 45 refs, 2 figs

  14. Quasinormal modes in pure de Sitter spacetimes

    International Nuclear Information System (INIS)

    Du Daping; Wang Bin; Su Ruheng

    2004-01-01

    We have studied scalar perturbations as well as fermion perturbations in pure de Sitter spacetimes. For scalar perturbations we have shown that well-defined quasinormal modes in d-dimensions can exist provided that the mass of scalar field m>(d-1/2l). The quasinormal modes of fermion perturbations in three and four dimensional cases have also been investigated. We found that different from other dimensional cases, in the three dimensional pure de Sitter spacetime there is no quasinormal mode for the s-wave. This interesting difference caused by the spacial dimensions is true for both scalar and fermion perturbations

  15. Gauge fields in algebraically special space-times

    International Nuclear Information System (INIS)

    Torres del Castillo, G.F.

    1985-01-01

    It is shown that in an algebraically special space-time which admits a congruence of null strings, a source-free gauge field aligned with the congruence is determined by a matrix potential which has to satisfy a second-order differential equation with quadratic nonlinearities. The Einstein--Yang--Mills equations are then reduced to a scalar and two matrix equations. In the case of self-dual gauge fields in a self-dual space-time, the existence of an infinite set of conservation laws, of an associated linear system, and of infinitesimal Baecklund transformations is demonstrated. All the results apply for an arbitrary gauge group

  16. Spacetime transformations from a uniformly accelerated frame

    International Nuclear Information System (INIS)

    Friedman, Yaakov; Scarr, Tzvi

    2013-01-01

    We use the generalized Fermi–Walker transport to construct a one-parameter family of inertial frames which are instantaneously comoving to a uniformly accelerated observer. We explain the connection between our approach and that of Mashhoon. We show that our solutions of uniformly accelerated motion have constant acceleration in the comoving frame. Assuming the weak hypothesis of locality, we obtain local spacetime transformations from a uniformly accelerated frame K′ to an inertial frame K. The spacetime transformations between two uniformly accelerated frames with the same acceleration are Lorentz. We compute the metric at an arbitrary point of a uniformly accelerated frame. (paper)

  17. Three-generation neutrino oscillations in curved spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-Hao, E-mail: yhzhang1994@gmail.com; Li, Xue-Qian, E-mail: lixq@nankai.edu.cn

    2016-10-15

    Three-generation MSW effect in curved spacetime is studied and a brief discussion on the gravitational correction to the neutrino self-energy is given. The modified mixing parameters and corresponding conversion probabilities of neutrinos after traveling through celestial objects of constant densities are obtained. The method to distinguish between the normal hierarchy and inverted hierarchy is discussed in this framework. Due to the gravitational redshift of energy, in some extreme situations, the resonance energy of neutrinos might be shifted noticeably and the gravitational effect on the self-energy of neutrino becomes significant at the vicinities of spacetime singularities.

  18. The causal boundary of wave-type spacetimes

    International Nuclear Information System (INIS)

    Flores, J.L.; Sanchez, M.

    2008-01-01

    A complete and systematic approach to compute the causal boundary of wave-type spacetimes is carried out. The case of a 1-dimensional boundary is specially analyzed and its critical appearance in pp-wave type spacetimes is emphasized. In particular, the corresponding results obtained in the framework of the AdS/CFT correspondence for holography on the boundary, are reinterpreted and very widely generalized. Technically, a recent new definition of causal boundary is used and stressed. Moreover, a set of mathematical tools is introduced (analytical functional approach, Sturm-Liouville theory, Fermat-type arrival time, Busemann-type functions)

  19. Space-time structure and the origin of physical law

    International Nuclear Information System (INIS)

    Green, M.A.

    1980-01-01

    In the first part of this theses the author adopts a traditional world view, with space-time a topologically simple geometrical manifold, matter being represented by smooth classical fields, and space a Riemannian submanifold of space-time. It is shown how to characterize the space-time geometry in terms of fields defined on three-dimensional space. Accepting a finite number of the fields induced on space as independent initial data, a procedure is given for constructing dynamical and constraint equations which will propagate these fields forward in time. When the initial data are restricted to include only the hypersurface metric and the extrinsic curvature, the resulting equations combine to form the Einstein gravitational field equations with the cosmological term. The synthesis of gravitational and quantum physics is approached by proposing that the objective world underlying the perceived world is a four-dimensional topological manifold w, with no physically significant field structure and an unconstrianed and complex global topology. Conventional space-time is then a topologically simple replacement manifold for w. A preliminary outline of the correspondence is presented, based on a similarity between a natural graphical representation of 2 and the Feynman graphs of quantum field theory

  20. ABC of multi-fractal spacetimes and fractional sea turtles

    Energy Technology Data Exchange (ETDEWEB)

    Calcagni, Gianluca [Instituto de Estructura de la Materia, CSIC, Madrid (Spain)

    2016-04-15

    We clarify what it means to have a spacetime fractal geometry in quantum gravity and show that its properties differ from those of usual fractals. A weak and a strong definition of multi-scale and multi-fractal spacetimes are given together with a sketch of the landscape of multi-scale theories of gravitation. Then, in the context of the fractional theory with q-derivatives, we explore the consequences of living in a multi-fractal spacetime. To illustrate the behavior of a non-relativistic body, we take the entertaining example of a sea turtle. We show that, when only the time direction is fractal, sea turtles swim at a faster speed than in an ordinary world, while they swim at a slower speed if only the spatial directions are fractal. The latter type of geometry is the one most commonly found in quantum gravity. For time-like fractals, relativistic objects can exceed the speed of light, but strongly so only if their size is smaller than the range of particle-physics interactions. We also find new results about log-oscillating measures, the measure presentation and their role in physical observations and in future extensions to nowhere-differentiable stochastic spacetimes. (orig.)

  1. ABC of multi-fractal spacetimes and fractional sea turtles

    International Nuclear Information System (INIS)

    Calcagni, Gianluca

    2016-01-01

    We clarify what it means to have a spacetime fractal geometry in quantum gravity and show that its properties differ from those of usual fractals. A weak and a strong definition of multi-scale and multi-fractal spacetimes are given together with a sketch of the landscape of multi-scale theories of gravitation. Then, in the context of the fractional theory with q-derivatives, we explore the consequences of living in a multi-fractal spacetime. To illustrate the behavior of a non-relativistic body, we take the entertaining example of a sea turtle. We show that, when only the time direction is fractal, sea turtles swim at a faster speed than in an ordinary world, while they swim at a slower speed if only the spatial directions are fractal. The latter type of geometry is the one most commonly found in quantum gravity. For time-like fractals, relativistic objects can exceed the speed of light, but strongly so only if their size is smaller than the range of particle-physics interactions. We also find new results about log-oscillating measures, the measure presentation and their role in physical observations and in future extensions to nowhere-differentiable stochastic spacetimes. (orig.)

  2. ABC of multi-fractal spacetimes and fractional sea turtles

    Science.gov (United States)

    Calcagni, Gianluca

    2016-04-01

    We clarify what it means to have a spacetime fractal geometry in quantum gravity and show that its properties differ from those of usual fractals. A weak and a strong definition of multi-scale and multi-fractal spacetimes are given together with a sketch of the landscape of multi-scale theories of gravitation. Then, in the context of the fractional theory with q-derivatives, we explore the consequences of living in a multi-fractal spacetime. To illustrate the behavior of a non-relativistic body, we take the entertaining example of a sea turtle. We show that, when only the time direction is fractal, sea turtles swim at a faster speed than in an ordinary world, while they swim at a slower speed if only the spatial directions are fractal. The latter type of geometry is the one most commonly found in quantum gravity. For time-like fractals, relativistic objects can exceed the speed of light, but strongly so only if their size is smaller than the range of particle-physics interactions. We also find new results about log-oscillating measures, the measure presentation and their role in physical observations and in future extensions to nowhere-differentiable stochastic spacetimes.

  3. Revisiting special relativity: a natural algebraic alternative to Minkowski spacetime.

    Directory of Open Access Journals (Sweden)

    James M Chappell

    Full Text Available Minkowski famously introduced the concept of a space-time continuum in 1908, merging the three dimensions of space with an imaginary time dimension [Formula: see text], with the unit imaginary producing the correct spacetime distance [Formula: see text], and the results of Einstein's then recently developed theory of special relativity, thus providing an explanation for Einstein's theory in terms of the structure of space and time. As an alternative to a planar Minkowski space-time of two space dimensions and one time dimension, we replace the unit imaginary [Formula: see text], with the Clifford bivector [Formula: see text] for the plane that also squares to minus one, but which can be included without the addition of an extra dimension, as it is an integral part of the real Cartesian plane with the orthonormal basis [Formula: see text] and [Formula: see text]. We find that with this model of planar spacetime, using a two-dimensional Clifford multivector, the spacetime metric and the Lorentz transformations follow immediately as properties of the algebra. This also leads to momentum and energy being represented as components of a multivector and we give a new efficient derivation of Compton's scattering formula, and a simple formulation of Dirac's and Maxwell's equations. Based on the mathematical structure of the multivector, we produce a semi-classical model of massive particles, which can then be viewed as the origin of the Minkowski spacetime structure and thus a deeper explanation for relativistic effects. We also find a new perspective on the nature of time, which is now given a precise mathematical definition as the bivector of the plane.

  4. Revisiting special relativity: a natural algebraic alternative to Minkowski spacetime.

    Science.gov (United States)

    Chappell, James M; Iqbal, Azhar; Iannella, Nicolangelo; Abbott, Derek

    2012-01-01

    Minkowski famously introduced the concept of a space-time continuum in 1908, merging the three dimensions of space with an imaginary time dimension [Formula: see text], with the unit imaginary producing the correct spacetime distance [Formula: see text], and the results of Einstein's then recently developed theory of special relativity, thus providing an explanation for Einstein's theory in terms of the structure of space and time. As an alternative to a planar Minkowski space-time of two space dimensions and one time dimension, we replace the unit imaginary [Formula: see text], with the Clifford bivector [Formula: see text] for the plane that also squares to minus one, but which can be included without the addition of an extra dimension, as it is an integral part of the real Cartesian plane with the orthonormal basis [Formula: see text] and [Formula: see text]. We find that with this model of planar spacetime, using a two-dimensional Clifford multivector, the spacetime metric and the Lorentz transformations follow immediately as properties of the algebra. This also leads to momentum and energy being represented as components of a multivector and we give a new efficient derivation of Compton's scattering formula, and a simple formulation of Dirac's and Maxwell's equations. Based on the mathematical structure of the multivector, we produce a semi-classical model of massive particles, which can then be viewed as the origin of the Minkowski spacetime structure and thus a deeper explanation for relativistic effects. We also find a new perspective on the nature of time, which is now given a precise mathematical definition as the bivector of the plane.

  5. Decoherence and disentanglement of qubits detecting scalar fields in an expanded spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yujie; Dai, Yue [Fudan University, Department of Physics and State Key Laboratory of Surface Physics, Shanghai (China); Shi, Yu [Fudan University, Department of Physics and State Key Laboratory of Surface Physics, Shanghai (China); Fudan University, Collaborative Innovation Center of Advanced Microstructures, Shanghai (China)

    2017-09-15

    We consider Unruh-Wald qubit detector model adopted for the far future region of an exactly solvable 1 + 1 dimensional scalar field theory in a toy model of Robertson-Walker expanding spacetime. It is shown that the expansion of the spacetime in its history enhances the decoherence of the qubit coupled with a scalar field. Moreover, we consider two entangled qubits, each locally coupled with a scalar field. The expansion of the spacetime in its history degrades the entanglement between the qubits, and it can lead to entanglement's sudden death if the initial entanglement is small enough. The details depend on the parameters characterizing the expansion of the spacetime. This work, on a toy model, suggests that the history of the spacetime might be probed through the coherent and entanglement behavior of the future detectors of quantum fields. In the present toy model, the two cosmological parameters can be determined from the quantum informational quantities of the detectors. (orig.)

  6. Decoherence and disentanglement of qubits detecting scalar fields in an expanded spacetime

    International Nuclear Information System (INIS)

    Li, Yujie; Dai, Yue; Shi, Yu

    2017-01-01

    We consider Unruh-Wald qubit detector model adopted for the far future region of an exactly solvable 1 + 1 dimensional scalar field theory in a toy model of Robertson-Walker expanding spacetime. It is shown that the expansion of the spacetime in its history enhances the decoherence of the qubit coupled with a scalar field. Moreover, we consider two entangled qubits, each locally coupled with a scalar field. The expansion of the spacetime in its history degrades the entanglement between the qubits, and it can lead to entanglement's sudden death if the initial entanglement is small enough. The details depend on the parameters characterizing the expansion of the spacetime. This work, on a toy model, suggests that the history of the spacetime might be probed through the coherent and entanglement behavior of the future detectors of quantum fields. In the present toy model, the two cosmological parameters can be determined from the quantum informational quantities of the detectors. (orig.)

  7. Dark energy from discrete spacetime.

    Directory of Open Access Journals (Sweden)

    Aaron D Trout

    Full Text Available Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.

  8. Gravastars with higher dimensional spacetimes

    Science.gov (United States)

    Ghosh, Shounak; Ray, Saibal; Rahaman, Farook; Guha, B. K.

    2018-07-01

    We present a new model of gravastar in the higher dimensional Einsteinian spacetime including Einstein's cosmological constant Λ. Following Mazur and Mottola (2001, 2004) we design the star with three specific regions, as follows: (I) Interior region, (II) Intermediate thin spherical shell and (III) Exterior region. The pressure within the interior region is equal to the negative matter density which provides a repulsive force over the shell. This thin shell is formed by ultra relativistic plasma, where the pressure is directly proportional to the matter-energy density which does counter balance the repulsive force from the interior whereas the exterior region is completely vacuum assumed to be de Sitter spacetime which can be described by the generalized Schwarzschild solution. With this specification we find out a set of exact non-singular and stable solutions of the gravastar which seems physically very interesting and reasonable.

  9. Dark energy from discrete spacetime.

    Science.gov (United States)

    Trout, Aaron D

    2013-01-01

    Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.

  10. Energy conditions and spacetime singularities

    International Nuclear Information System (INIS)

    Tipler, F.J.

    1978-01-01

    In this paper, a number of theorems are proven which collectively show that singularities will occur in spacetime under weaker energy conditions than the strong energy condition. In particular, the Penrose theorem, which uses only the weak energy condition but which applies only to open universes, is extended to all closed universes which have a Cauchy surface whose universal covering manifold is not a three-sphere. Furthermore, it is shown that the strong energy condition in the Hawking-Penrose theorem can be replaced by the weak energy condition and the assumption that the strong energy condition holds only on the average. In addition, it is demonstrated that if the Universe is closed, then the existence of singularities follows from the averaged strong energy condition alone. It is argued that any globally hyperbolic spacetime which satisfies the weak energy condition and which contains a black hole must be null geodesically incomplete

  11. A flat space-time relativistic explanation for the perihelion advance of Mercury

    OpenAIRE

    Behera, Harihar; Naik, P. C.

    2003-01-01

    Starting with the flat space-time relativistic versions of Maxwell-Heaviside's toy model vector theory of gravity and introducing the gravitational analogues for the electromagnetic Lienard-Wiechert potentials together with the notion of a gravitational Thomas Precession; the observed anomalous perihelion advance of Mercury's orbit is here explained as a relativistic effect in flat (Minkowski) space-time, unlike Einstein's curved space-time relativistic explanation. In this new explanation fo...

  12. Generalized Fermat's principle and action for light rays in a curved spacetime

    Science.gov (United States)

    Frolov, Valeri P.

    2013-09-01

    We start with formulation of the generalized Fermat’s principle for light propagation in a curved spacetime. We apply Pontryagin’s minimum principle of the optimal control theory and obtain an effective Hamiltonian for null geodesics in a curved spacetime. We explicitly demonstrate that dynamical equations for this Hamiltonian correctly reproduce null geodesic equations. Other forms of the action for light rays in a curved spacetime are also discussed.

  13. Tensorial spacetime geometries and background-independent quantum field theory

    International Nuclear Information System (INIS)

    Raetzel, Dennis

    2012-01-01

    Famously, Einstein read off the geometry of spacetime from Maxwell's equations. Today, we take this geometry that serious that our fundamental theory of matter, the standard model of particle physics, is based on it. However, it seems that there is a gap in our understanding if it comes to the physics outside of the solar system. Independent surveys show that we need concepts like dark matter and dark energy to make our models fit with the observations. But these concepts do not fit in the standard model of particle physics. To overcome this problem, at least, we have to be open to matter fields with kinematics and dynamics beyond the standard model. But these matter fields might then very well correspond to different spacetime geometries. This is the basis of this thesis: it studies the underlying spacetime geometries and ventures into the quantization of those matter fields independently of any background geometry. In the first part of this thesis, conditions are identified that a general tensorial geometry must fulfill to serve as a viable spacetime structure. Kinematics of massless and massive point particles on such geometries are introduced and the physical implications are investigated. Additionally, field equations for massive matter fields are constructed like for example a modified Dirac equation. In the second part, a background independent formulation of quantum field theory, the general boundary formulation, is reviewed. The general boundary formulation is then applied to the Unruh effect as a testing ground and first attempts are made to quantize massive matter fields on tensorial spacetimes.

  14. On maximal surfaces in asymptotically flat space-times

    International Nuclear Information System (INIS)

    Bartnik, R.; Chrusciel, P.T.; O Murchadha, N.

    1990-01-01

    Existence of maximal and 'almost maximal' hypersurfaces in asymptotically flat space-times is established under boundary conditions weaker than those considered previously. We show in particular that every vacuum evolution of asymptotically flat data for Einstein equations can be foliated by slices maximal outside a spatially compact set and that every (strictly) stationary asymptotically flat space-time can be foliated by maximal hypersurfaces. Amongst other uniqueness results, we show that maximal hypersurface can be used to 'partially fix' an asymptotic Poincare group. (orig.)

  15. Approximate spacetime symmetries and conservation laws

    Energy Technology Data Exchange (ETDEWEB)

    Harte, Abraham I [Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 (United States)], E-mail: harte@uchicago.edu

    2008-10-21

    A notion of geometric symmetry is introduced that generalizes the classical concepts of Killing fields and other affine collineations. There is a sense in which flows under these new vector fields minimize deformations of the connection near a specified observer. Any exact affine collineations that may exist are special cases. The remaining vector fields can all be interpreted as analogs of Poincare and other well-known symmetries near timelike worldlines. Approximate conservation laws generated by these objects are discussed for both geodesics and extended matter distributions. One example is a generalized Komar integral that may be taken to define the linear and angular momenta of a spacetime volume as seen by a particular observer. This is evaluated explicitly for a gravitational plane wave spacetime.

  16. No-horizon theorem for spacetimes with spacelike G{sub 1} isometry groups

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Sergio M C V [Department of Physics, Yale University, New Haven, CT 06511 (United States)

    2003-12-21

    We consider four-dimensional spacetimes (M, g) which obey the Einstein equations G = T and admit a global spacelike G{sub 1} = R isometry group. By means of dimensional reduction and local analysis on the reduced (2 + 1) spacetime, we obtain a sufficient condition on T which guarantees that (M, g) cannot contain apparent horizons. Given any (3 + 1) spacetime with spacelike translational isometry, the no-horizon condition can be readily tested without the need for dimensional reduction. This provides thus a useful and encompassing apparent horizon test for G{sub 1}-symmetric spacetimes. We argue that this adds further evidence towards the validity of the hoop conjecture and signals possible (albeit arguably unlikely) violations of strong cosmic censorship.

  17. Quantum singularities in (2+1) dimensional matter coupled black hole spacetimes

    International Nuclear Information System (INIS)

    Unver, O.; Gurtug, O.

    2010-01-01

    Quantum singularities considered in the 3D Banados-Teitelboim-Zanelli (BTZ) spacetime by Pitelli and Letelier [Phys. Rev. D 77, 124030 (2008)] is extended to charged BTZ and 3D Einstein-Maxwell-dilaton gravity spacetimes. The occurrence of naked singularities in the Einstein-Maxwell extension of the BTZ spacetime both in linear and nonlinear electrodynamics as well as in the Einstein-Maxwell-dilaton gravity spacetimes are analyzed with the quantum test fields obeying the Klein-Gordon and Dirac equations. We show that with the inclusion of the matter fields, the conical geometry near r=0 is removed and restricted classes of solutions are admitted for the Klein-Gordon and Dirac equations. Hence, the classical central singularity at r=0 turns out to be quantum mechanically singular for quantum particles obeying the Klein-Gordon equation but nonsingular for fermions obeying the Dirac equation. Explicit calculations reveal that the occurrence of the timelike naked singularities in the considered spacetimes does not violate the cosmic censorship hypothesis as far as the Dirac fields are concerned. The role of horizons that clothes the singularity in the black hole cases is replaced by repulsive potential barrier against the propagation of Dirac fields.

  18. Global properties of locally rotational symmetric Bianchi I spacetimes in the Einstein-Yang-Mills-dilaton system

    Energy Technology Data Exchange (ETDEWEB)

    Narita, Makoto [Department of Mathematics, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan (China)

    2006-12-21

    We discuss the strong cosmic censorship conjecture for cosmological spacetimes in the Einstein-Yang-Mills-dilaton system. Locally rotational symmetric Bianchi I spacetimes are considered. We show local and global existence theorems for the system. Asymptotic behaviour for the spacetimes is also investigated. The curvature invariant is blowup at the initial singularities and the spacetimes are future geodesic complete. Thus, the strong cosmic censorship conjecture for the spacetimes holds.

  19. Global properties of locally rotational symmetric Bianchi I spacetimes in the Einstein-Yang-Mills-dilaton system

    International Nuclear Information System (INIS)

    Narita, Makoto

    2006-01-01

    We discuss the strong cosmic censorship conjecture for cosmological spacetimes in the Einstein-Yang-Mills-dilaton system. Locally rotational symmetric Bianchi I spacetimes are considered. We show local and global existence theorems for the system. Asymptotic behaviour for the spacetimes is also investigated. The curvature invariant is blowup at the initial singularities and the spacetimes are future geodesic complete. Thus, the strong cosmic censorship conjecture for the spacetimes holds

  20. Energy conditions of non-singular black hole spacetimes in conformal gravity

    International Nuclear Information System (INIS)

    Toshmatov, Bobir; Bambi, Cosimo; Ahmedov, Bobomurat; Abdujabbarov, Ahmadjon; Stuchlik, Zdenek

    2017-01-01

    Conformal gravity can elegantly solve the problem of spacetime singularities present in Einstein's gravity. For every physical spacetime, there is an infinite family of conformally equivalent singularity-free metrics. In the unbroken phase, every non-singular metric is equivalent and can be used to infer the physical properties of the spacetime. In the broken phase, a Higgs-like mechanism should select a certain vacuum, which thus becomes the physical one. However, in the absence of the complete theoretical framework we do not know how to select the right vacuum. In this paper, we study the energy conditions of non-singular black hole spacetimes obtained in conformal gravity assuming they are solutions of Einstein's gravity with an effective energy-momentum tensor. We check whether such conditions can be helpful to select the vacuum of the broken phase. (orig.)

  1. Energy conditions of non-singular black hole spacetimes in conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    Toshmatov, Bobir [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics, Opava (Czech Republic); Ulugh Beg Astronomical Institute, Tashkent (Uzbekistan); Bambi, Cosimo [Fudan University, Department of Physics, Center for Field Theory and Particle Physics, Shanghai (China); Eberhard-Karls Universitaet Tuebingen, Theoretical Astrophysics, Tuebingen (Germany); Ahmedov, Bobomurat [Ulugh Beg Astronomical Institute, Tashkent (Uzbekistan); National University of Uzbekistan, Tashkent (Uzbekistan); Abdujabbarov, Ahmadjon [Ulugh Beg Astronomical Institute, Tashkent (Uzbekistan); National University of Uzbekistan, Tashkent (Uzbekistan); Tashkent University of Information Technologies, Tashkent (Uzbekistan); Stuchlik, Zdenek [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics, Opava (Czech Republic)

    2017-08-15

    Conformal gravity can elegantly solve the problem of spacetime singularities present in Einstein's gravity. For every physical spacetime, there is an infinite family of conformally equivalent singularity-free metrics. In the unbroken phase, every non-singular metric is equivalent and can be used to infer the physical properties of the spacetime. In the broken phase, a Higgs-like mechanism should select a certain vacuum, which thus becomes the physical one. However, in the absence of the complete theoretical framework we do not know how to select the right vacuum. In this paper, we study the energy conditions of non-singular black hole spacetimes obtained in conformal gravity assuming they are solutions of Einstein's gravity with an effective energy-momentum tensor. We check whether such conditions can be helpful to select the vacuum of the broken phase. (orig.)

  2. Space-Time Chip Equalization for Maximum Diversity Space-Time Block Coded DS-CDMA Downlink Transmission

    NARCIS (Netherlands)

    Leus, G.; Petré, F.; Moonen, M.

    2004-01-01

    In the downlink of DS-CDMA, frequency-selectivity destroys the orthogonality of the user signals and introduces multiuser interference (MUI). Space-time chip equalization is an efficient tool to restore the orthogonality of the user signals and suppress the MUI. Furthermore, multiple-input

  3. Odd-parity perturbations of the self-similar LTB spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, Emily M; Nolan, Brien C, E-mail: emilymargaret.duffy27@mail.dcu.ie, E-mail: brien.nolan@dcu.ie [School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2011-05-21

    We consider the behaviour of odd-parity perturbations of those self-similar LemaItre-Tolman-Bondi spacetimes which admit a naked singularity. We find that a perturbation which evolves from initially regular data remains finite on the Cauchy horizon. Finiteness is demonstrated by considering the behaviour of suitable energy norms of the perturbation (and pointwise values of these quantities) on natural spacelike hypersurfaces. This result holds for a general choice of initial data and initial data surface. Finally, we examine the perturbed Weyl scalars in order to provide a physical interpretation of our results. Taken on its own, this result does not support cosmic censorship; however, a full perturbation of this spacetime would include even-parity perturbations, so we cannot conclude that this spacetime is stable to all linear perturbations.

  4. New examples of marginally trapped surfaces and tubes in warped spacetimes

    International Nuclear Information System (INIS)

    Flores, J L; Haesen, S; Ortega, M

    2010-01-01

    In this paper we provide new examples of marginally trapped surfaces and tubes in FLRW spacetimes by using a basic relation between these objects and CMC surfaces in 3-manifolds. We also provide a new method to construct marginally trapped surfaces in closed FLRW spacetimes, which is based on the classical Hopf map. The utility of this method is illustrated by providing marginally trapped surfaces crossing the expanding and collapsing regions of a closed FLRW spacetime. The approach introduced in this paper is also extended to twisted spaces.

  5. Backreaction in the future behavior of an expanding vacuum spacetime

    Science.gov (United States)

    Lott, John

    2018-02-01

    We perform a rescaling analysis to analyze the future behavior of a class of T 2-symmetric vacuum spacetimes. We show that on the universal cover, there is C 0-convergence to a spatially homogeneous spacetime that does not satisfy the vacuum Einstein equations. Research partially supported by NSF grant DMS-1510192.

  6. Theorizing Space-Time Relations in Education: The Concept of Chronotope

    Science.gov (United States)

    Ritella, Giuseppe; Ligorio, Maria Beatrice; Hakkarainen, Kai

    2016-01-01

    Due to ongoing cultural-historical transformations, the space-time of learning is radically changing, and theoretical conceptualizations are needed to investigate how such evolving space-time frames can function as a ground for learning. In this article, we argue that the concept of chronotope--from Greek chronos and topos, meaning time and…

  7. Representations of spacetime: Formalism and ontological commitment

    Science.gov (United States)

    Bain, Jonathan Stanley

    This dissertation consists of two parts. The first is on the relation between formalism and ontological commitment in the context of theories of spacetime, and the second is on scientific realism. The first part begins with a look at how the substantivalist/relationist debate over the ontological status of spacetime has been influenced by a particular mathematical formalism, that of tensor analysis on differential manifolds (TADM). This formalism has motivated the substantivalist position known as manifold substantivalism. Chapter 1 focuses on the hole argument which maintains that manifold substantivalism is incompatible with determinism. I claim that the realist motivations underlying manifold substantivalism can be upheld, and the hole argument avoided, by adopting structural realism with respect to spacetime. In this context, this is the claim that it is the structure that spacetime points enter into that warrants belief and not the points themselves. In Chapter 2, an elimination principle is defined by means of which a distinction can be made between surplus structure and essential structure with respect to formulations of a theory in two distinct mathematical formulations and some prior ontological commitments. This principle is then used to demonstrate that manifold points may be considered surplus structure in the formulation of field theories. This suggests that, if we are disposed to read field theories literally, then, at most, it should be the essential structure common to all alternative formulations of such theories that should be taken literally. I also investigate how the adoption of alternative formalisms informs other issues in the philosophy of spacetime. Chapter 3 offers a realist position which takes a semantic moral from the preceding investigation and an epistemic moral from work done on reliability. The semantic moral advises us to read only the essential structure of our theories literally. The epistemic moral shows us that such structure

  8. States of low energy on Robertson-Walker spacetimes

    International Nuclear Information System (INIS)

    Olbermann, Heiner

    2007-01-01

    We construct a new class of physical states of the free Klein-Gordon field in Robertson-Walker spacetimes. This is done by minimizing the expectation value of smeared stress-energy. We get an explicit expression for the state depending on the smearing function. We call it a state of low energy. States of low energy are an improvement of the concept of adiabatic vacua on Robertson-Walker spacetimes. The latter are approximations of the former. It is shown that states of low energy are Hadamard states

  9. Van Stockum-Bonnor spacetimes of rigidly rotating dust

    International Nuclear Information System (INIS)

    Bratek, Lukasz; Jalocha, Joanna; Kutschera, Marek

    2007-01-01

    Stationary, axisymmetric, and asymptotically flat spacetimes of dust of which trajectories are integral curves of the time translation Killing vector are investigated. The flow has no Newtonian limit. Asymptotic flatness implies the existence of singularities of the curvature scalar that are distributions and that are not isolated from regularity regions of the flow. The singularities are closely related to the presence of additional stresses that contribute negative active mass to the total (Komar) mass, which is zero for asymptotically flat spacetimes. Several families of solutions were constructed

  10. Quantum field theory in curved space-time

    International Nuclear Information System (INIS)

    Najmi, A.-H.

    1982-09-01

    The problem of constructing states for quantum field theories in nonstationary background space-times is set out. A formalism in which the problem of constructing states can be attacked more easily than at present is presented. The ansatz of energy-minimization as a means of constructing states is formulated in this formalism and its general solution for the free scalar field is found. It has been known, in specific cases, that such states suffer from the problem of unitary inequivalence (the pathology). An example in Minowski space-time is presented in which global operators, such as the particle-number operator, do not exist but all physical observables, such as the renormalized energy density are finite. This model has two Fock-sectors as its space of physical states. A simple extension of this model, i.e. enlarging the Fock-space of states is found not to remedy the pathology: in a Robertson-Walker space-time the quantum field acquires an infinite amount of renormalized energy density to the future of the hypersurface on which the energy density is minimized. Finally, the solution of the ansatz of energy minimization for the free, massive Hermitian fermion field is presented. (author)

  11. Renormalization of the δ expansion in curved space-time

    International Nuclear Information System (INIS)

    Cho, H.T.

    1991-01-01

    Renormalization of a recently proposed δ expansion for a self-interacting scalar field theory in curved space-time is examined. The explicit calculation is carried out up to order δ 2 , which indicates that the expansion is renormalizable, but reduces to essentially the λφ 4 theory when the cutoff is removed. A similar conclusion has been reached in a previous paper where the case of flat space-time is considered

  12. Covariant Theory of Gravitation in the Spacetime with Finsler Structure

    OpenAIRE

    Huang, Xin-Bing

    2007-01-01

    The theory of gravitation in the spacetime with Finsler structure is constructed. It is shown that the theory keeps general covariance. Such theory reduces to Einstein's general relativity when the Finsler structure is Riemannian. Therefore, this covariant theory of gravitation is an elegant realization of Einstein's thoughts on gravitation in the spacetime with Finsler structure.

  13. Racing a quantum computer through Minkowski spacetime

    International Nuclear Information System (INIS)

    Biamonte, Jacob D

    2010-01-01

    The Lorentzian length of a timelike curve connecting both endpoints of a computation in Minkowski spacetime is smaller than the Lorentzian length of the corresponding geodesic. In this talk, I will point out some properties of spacetime that allow an inertial classical computer to outperform a quantum one, at the completion of a long journey. We will focus on a comparison between the optimal quadratic Grover speed up from quantum computing and an n=2 speedup using classical computers and relativistic effects. These results are not practical as a new model of computation, but allow us to probe the ultimate limits physics places on computers.

  14. Flat synchronizations in spherically symmetric space-times

    International Nuclear Information System (INIS)

    Herrero, Alicia; Morales-Lladosa, Juan Antonio

    2010-01-01

    It is well known that the Schwarzschild space-time admits a spacelike slicing by flat instants and that the metric is regular at the horizon in the associated adapted coordinates (Painleve-Gullstrand metric form). We consider this type of flat slicings in an arbitrary spherically symmetric space-time. The condition ensuring its existence is analyzed, and then, we prove that, for any spherically symmetric flat slicing, the densities of the Weinberg momenta vanish. Finally, we deduce the Schwarzschild solution in the extended Painleve-Gullstrand-LemaItre metric form by considering the coordinate decomposition of the vacuum Einstein equations with respect to a flat spacelike slicing.

  15. IDEAL characterization of isometry classes of FLRW and inflationary spacetimes

    Science.gov (United States)

    Canepa, Giovanni; Dappiaggi, Claudio; Khavkine, Igor

    2018-02-01

    In general relativity, an IDEAL (Intrinsic, Deductive, Explicit, ALgorithmic) characterization of a reference spacetime metric g 0 consists of a set of tensorial equations T[g]  =  0, constructed covariantly out of the metric g, its Riemann curvature and their derivatives, that are satisfied if and only if g is locally isometric to the reference spacetime metric g 0. The same notion can be extended to also include scalar or tensor fields, where the equations T[g, φ]=0 are allowed to also depend on the extra fields ϕ. We give the first IDEAL characterization of cosmological FLRW spacetimes, with and without a dynamical scalar (inflaton) field. We restrict our attention to what we call regular geometries, which uniformly satisfy certain identities or inequalities. They roughly split into the following natural special cases: constant curvature spacetime, Einstein static universe, and flat or curved spatial slices. We also briefly comment on how the solution of this problem has implications, in general relativity and inflation theory, for the construction of local gauge invariant observables for linear cosmological perturbations and for stability analysis.

  16. Relativistic and nonrelativistic classical field theory on fivedimensional space-time

    International Nuclear Information System (INIS)

    Kunzle, H.P.; Duval, C.

    1985-07-01

    This paper is a sequel to earlier ones in which, on the one hand, classical field theories were described on a curved Newtonian space-time, and on the other hand, the Newtonian gravitation theory was formulated on a fivedimensional space-time with a metric of signature and a covariantly constant vector field. Here we show that Lagrangians for matter fields are easily formulated on this extended space-time from simple invariance arguments and that stress-energy tensors can be derived from them in the usual manner so that four-dimensional space-time expressions are obtained that are consistent in the relativistic as well as in the Newtonian case. In the former the theory is equivalent to General Relativity. When the magnitude of the distinguished vector field vanishes equations for the (covariant) Newtonian limit follow. We demonstrate this here explicity in the case of the Klein-Gordon/Schroedinger and the Dirac field and its covariant nonrelativistic analogue, the Levy-Leblond field. Especially in the latter example the covariant Newtonian theory simplifies dramatically in this fivedimensional form

  17. Axisymmetric Electrovacuum Spacetimes with AN Additional Killing Vector and Radiation

    Science.gov (United States)

    Pravdová, A.; Bičák, J.

    2002-12-01

    In the present note we briefly summarize our recent work [1, 2] on possible additional symmetries of axially symmetric electrovacuum spacetimes which admit radiation. The main result states that only boost and rotation (axially) symmetric electrovacuum spacetimes can be radiative and asymptotically flat at null infinity {J} which admits global sections. If an additional symmetry is a translational spacelike or null Killing field the spacetime represents cylindrical or plane-type waves, local {J} may still exist but some of its generators are missing. Boost-rotation symmetric spacetimes are the only known exact explicit radiative solutions of Einstein's equations describing moving objects - singularities or black holes uniformly accelerated along the axis of symmetry. They are radiative and admit a smooth {J} although at least four points of {J} are missing. They represent the only known examples in which arbitrarily strong initial data with the given symmetry can be chosen on a hyperboloidal hypersurface which evolve into a complete, smooth null infinity and regular timelike infinity. For the latest reviews, containing a number of relevant references, see [3, 4]...

  18. Ray trajectories for Alcubierre spacetime

    International Nuclear Information System (INIS)

    Anderson, Tom H; Mackay, Tom G; Lakhtakia, Akhlesh

    2011-01-01

    The Alcubierre spacetime was simulated by means of a Tamm medium which is asymptotically identical to vacuum and has constitutive parameters which are continuous functions of the spatial coordinates. Accordingly, the Tamm medium is amenable to physical realization as a micro- or nanostructured metamaterial. A comprehensive characterization of ray trajectories in the Tamm medium was undertaken, within the geometric-optics regime. Propagation directions corresponding to evanescent waves were identified: these occur in the region of the Tamm medium which corresponds to the warp bubble of the Alcubierre spacetime, especially for directions perpendicular to the velocity of the warp bubble at high speeds of that bubble. Ray trajectories are acutely sensitive to the magnitude and direction of the warp bubble's velocity, but rather less sensitive to the thickness of the transition zone between the warp bubble and its background. In particular, for rays which travel in the same direction as the warp bubble, the latter acts as a focusing lens, most notably at high speeds

  19. Notes on entropy force in general spherically symmetric spacetimes

    International Nuclear Information System (INIS)

    Cai Ronggen; Cao Liming; Ohta, Nobuyoshi

    2010-01-01

    In a recent paper [arXiv:1001.0785], Verlinde has shown that the Newton gravity appears as an entropy force. In this paper we show how gravity appears as entropy force in Einstein's equation of gravitational field in a general spherically symmetric spacetime. We mainly focus on the trapping horizon of the spacetime. We find that when matter fields are absent, the change of entropy associated with the trapping horizon indeed can be identified with an entropy force. When matter fields are present, we see that heat flux of matter fields also leads to the change of entropy. Applying arguments made by Verlinde and Smolin, respectively, to the trapping horizon, we find that the entropy force is given by the surface gravity of the horizon. The cases in the untrapped region of the spacetime are also discussed.

  20. On signature change in p-adic space-times

    International Nuclear Information System (INIS)

    Dragovic, B.G.

    1991-01-01

    Change of signature by linear coordinate transformations in p-adic space-times is considered. In this paper it is shown that there exists arbitrary change of trivial signature in Q p n for all n ≥ 1 if p ≡ 1 (mod 4). In other cases it is possible to change only even number of the signs of the signature. The authors suggest new concept of signature with respect to distinct quadratic extensions, of Q p . If space-time dimension is restricted to four there is no signature change

  1. Null geodesic deviation II. Conformally flat space--times

    International Nuclear Information System (INIS)

    Peters, P.C.

    1975-01-01

    The equation of geodesic deviation is solved in conformally flat space--time in a covariant manner. The solution is given as an integral equation for general geodesics. The solution is then used to evaluate second derivatives of the world function and derivatives of the parallel propagator, which need to be known in order to find the Green's function for wave equations in curved space--time. A method of null geodesic limits of two-point functions is discussed, and used to find the scalar Green's function as an iterative series

  2. Pseudo-Newtonian Equations for Evolution of Particles and Fluids in Stationary Space-times

    Energy Technology Data Exchange (ETDEWEB)

    Witzany, Vojtěch; Lämmerzahl, Claus, E-mail: vojtech.witzany@zarm.uni-bremen.de, E-mail: claus.laemmerzahl@zarm.uni-bremen.de [ZARM, Universität Bremen, Am Fallturm, D-28359 Bremen (Germany)

    2017-06-01

    Pseudo-Newtonian potentials are a tool often used in theoretical astrophysics to capture some key features of a black hole space-time in a Newtonian framework. As a result, one can use Newtonian numerical codes, and Newtonian formalism, in general, in an effective description of important astrophysical processes such as accretion onto black holes. In this paper, we develop a general pseudo-Newtonian formalism, which pertains to the motion of particles, light, and fluids in stationary space-times. In return, we are able to assess the applicability of the pseudo-Newtonian scheme. The simplest and most elegant formulas are obtained in space-times without gravitomagnetic effects, such as the Schwarzschild rather than the Kerr space-time; the quantitative errors are smallest for motion with low binding energy. Included is a ready-to-use set of fluid equations in Schwarzschild space-time in Cartesian and radial coordinates.

  3. The Spacetime Memory of Geometric Phases and Quantum Computing

    CERN Document Server

    Binder, B

    2002-01-01

    Spacetime memory is defined with a holonomic approach to information processing, where multi-state stability is introduced by a non-linear phase-locked loop. Geometric phases serve as the carrier of physical information and geometric memory (of orientation) given by a path integral measure of curvature that is periodically refreshed. Regarding the resulting spin-orbit coupling and gauge field, the geometric nature of spacetime memory suggests to assign intrinsic computational properties to the electromagnetic field.

  4. Uniqueness of flat spherically symmetric spacelike hypersurfaces admitted by spherically symmetric static spacetimes

    Science.gov (United States)

    Beig, Robert; Siddiqui, Azad A.

    2007-11-01

    It is known that spherically symmetric static spacetimes admit a foliation by flat hypersurfaces. Such foliations have explicitly been constructed for some spacetimes, using different approaches, but none of them have proved or even discussed the uniqueness of these foliations. The issue of uniqueness becomes more important due to suitability of flat foliations for studying black hole physics. Here, flat spherically symmetric spacelike hypersurfaces are obtained by a direct method. It is found that spherically symmetric static spacetimes admit flat spherically symmetric hypersurfaces, and that these hypersurfaces are unique up to translation under the timelike Killing vector. This result guarantees the uniqueness of flat spherically symmetric foliations for such spacetimes.

  5. Navigability of Random Geometric Graphs in the Universe and Other Spacetimes.

    Science.gov (United States)

    Cunningham, William; Zuev, Konstantin; Krioukov, Dmitri

    2017-08-18

    Random geometric graphs in hyperbolic spaces explain many common structural and dynamical properties of real networks, yet they fail to predict the correct values of the exponents of power-law degree distributions observed in real networks. In that respect, random geometric graphs in asymptotically de Sitter spacetimes, such as the Lorentzian spacetime of our accelerating universe, are more attractive as their predictions are more consistent with observations in real networks. Yet another important property of hyperbolic graphs is their navigability, and it remains unclear if de Sitter graphs are as navigable as hyperbolic ones. Here we study the navigability of random geometric graphs in three Lorentzian manifolds corresponding to universes filled only with dark energy (de Sitter spacetime), only with matter, and with a mixture of dark energy and matter. We find these graphs are navigable only in the manifolds with dark energy. This result implies that, in terms of navigability, random geometric graphs in asymptotically de Sitter spacetimes are as good as random hyperbolic graphs. It also establishes a connection between the presence of dark energy and navigability of the discretized causal structure of spacetime, which provides a basis for a different approach to the dark energy problem in cosmology.

  6. Contextualising renal patient routines: Everyday space-time contexts, health service access, and wellbeing.

    Science.gov (United States)

    McQuoid, Julia; Jowsey, Tanisha; Talaulikar, Girish

    2017-06-01

    Stable routines are key to successful illness self-management for the growing number of people living with chronic illness around the world. Yet, the influence of chronically ill individuals' everyday contexts in supporting routines is poorly understood. This paper takes a space-time geographical approach to explore the everyday space-time contexts and routines of individuals with chronic kidney disease (CKD). We ask: what is the relationship between renal patients' space-time contexts and their ability to establish and maintain stable routines, and, what role does health service access play in this regard? We draw from a qualitative case study of 26 individuals with CKD in Australia. Data comprised self-reported two day participant diaries and semi-structured interviews. Thematic analysis of interview transcripts was guided by an inductive-deductive approach. We examined the embeddedness of routines within the space-time contexts of participants' everyday lives. We found that participants' everyday space-time contexts were highly complex, especially for those receiving dialysis and/or employed, making routines difficult to establish and vulnerable to disruption. Health service access helped shape participants' everyday space-time contexts, meaning that incidences of unpredictability in accessing health services set-off 'ripple effects' within participants' space-time contexts, disrupting routines and making everyday life negotiation more difficult. The ability to absorb ripple effects from unpredictable health services without disrupting routines varied by space-time context. Implications of these findings for the deployment of the concept of routine in health research, the framing of patient success in self-managing illness, and health services design are discussed. In conclusion, efforts to understand and support individuals in establishing and maintaining routines that support health and wellbeing can benefit from approaches that contextualise and de

  7. Homotheties of cylindrically symmetric static spacetimes

    International Nuclear Information System (INIS)

    Qadir, A.; Ziad, M.; Sharif, M.

    1998-08-01

    In this note we consider the homotheties of cylindrically symmetric static spacetimes. We find that we can provide a complete list of all metrics that admit non-trivial homothetic motions and are cylindrically symmetric static. (author)

  8. Gauge-invariant non-spherical metric perturbations of Schwarzschild black-hole spacetimes

    International Nuclear Information System (INIS)

    Nagar, Alessandro; Rezzolla, Luciano

    2005-01-01

    The theory of gauge-invariant non-spherical metric perturbations of Schwarzschild black-hole spacetimes is now well established. Yet, as different notations and conventions have been used throughout the years, the literature on the subject is often confusing and sometimes confused. The purpose of this review is to review and collect the relevant expressions related to the Regge-Wheeler and Zerilli equations for the odd and even-parity perturbations of a Schwarzschild spacetime. Special attention is paid to the form they assume in the presence of matter-sources and, for the two most popular conventions in the literature, to the asymptotic expressions and gravitational-wave amplitudes. Besides pointing out some inconsistencies in the literature, the expressions collected here could serve as a quick reference for the calculation of the perturbations of a Schwarzschild black-hole spacetime driven by generic sources and for those approaches in which gravitational waves are extracted from numerically generated spacetimes. (topical review)

  9. Spacetime and orbits of bumpy black holes

    International Nuclear Information System (INIS)

    Vigeland, Sarah J.; Hughes, Scott A.

    2010-01-01

    Our Universe contains a great number of extremely compact and massive objects which are generally accepted to be black holes. Precise observations of orbital motion near candidate black holes have the potential to determine if they have the spacetime structure that general relativity demands. As a means of formulating measurements to test the black hole nature of these objects, Collins and Hughes introduced ''bumpy black holes'': objects that are almost, but not quite, general relativity's black holes. The spacetimes of these objects have multipoles that deviate slightly from the black hole solution, reducing to black holes when the deviation is zero. In this paper, we extend this work in two ways. First, we show how to introduce bumps which are smoother and lead to better behaved orbits than those in the original presentation. Second, we show how to make bumpy Kerr black holes--objects which reduce to the Kerr solution when the deviation goes to zero. This greatly extends the astrophysical applicability of bumpy black holes. Using Hamilton-Jacobi techniques, we show how a spacetime's bumps are imprinted on orbital frequencies, and thus can be determined by measurements which coherently track the orbital phase of a small orbiting body. We find that in the weak field, orbits of bumpy black holes are modified exactly as expected from a Newtonian analysis of a body with a prescribed multipolar structure, reproducing well-known results from the celestial mechanics literature. The impact of bumps on strong-field orbits is many times greater than would be predicted from a Newtonian analysis, suggesting that this framework will allow observations to set robust limits on the extent to which a spacetime's multipoles deviate from the black hole expectation.

  10. Stationary axisymmetric four dimensional space-time endowed with Einstein metric

    International Nuclear Information System (INIS)

    Hasanuddin; Azwar, A.; Gunara, B. E.

    2015-01-01

    In this paper, we construct Ernst equation from vacuum Einstein field equation for both zero and non-zero cosmological constant. In particular, we consider the case where the space-time admits axisymmetric using Boyer-Lindquist coordinates. This is called Kerr-Einstein solution describing a spinning black hole. Finally, we give a short discussion about the dynamics of photons on Kerr-Einstein space-time

  11. Discrete causal theory emergent spacetime and the causal metric hypothesis

    CERN Document Server

    Dribus, Benjamin F

    2017-01-01

    This book evaluates and suggests potentially critical improvements to causal set theory, one of the best-motivated approaches to the outstanding problems of fundamental physics. Spacetime structure is of central importance to physics beyond general relativity and the standard model. The causal metric hypothesis treats causal relations as the basis of this structure. The book develops the consequences of this hypothesis under the assumption of a fundamental scale, with smooth spacetime geometry viewed as emergent. This approach resembles causal set theory, but differs in important ways; for example, the relative viewpoint, emphasizing relations between pairs of events, and relationships between pairs of histories, is central. The book culminates in a dynamical law for quantum spacetime, derived via generalized path summation.

  12. Spacetimes of Weyl and Ricci type N in higher dimensions

    International Nuclear Information System (INIS)

    Kuchynka, M; Pravdová, A

    2016-01-01

    We study the geometrical properties of null congruences generated by an aligned null direction of the Weyl tensor (WAND) in spacetimes of Weyl and Ricci type N (possibly with a non-vanishing cosmological constant) in an arbitrary dimension. We prove that a type N Ricci tensor and a type III or N Weyl tensor have to be aligned. In such spacetimes, the multiple WAND has to be geodetic. For spacetimes with type N aligned Weyl and Ricci tensors, the canonical form of the optical matrix in the twisting and non-twisting cases is derived and the dependence of the Weyl and the Ricci tensors and Ricci rotation coefficients on the affine parameter of the geodetic null congruence generated by the WAND is obtained. (paper)

  13. Relativistic helicity and link in Minkowski space-time

    International Nuclear Information System (INIS)

    Yoshida, Z.; Kawazura, Y.; Yokoyama, T.

    2014-01-01

    A relativistic helicity has been formulated in the four-dimensional Minkowski space-time. Whereas the relativistic distortion of space-time violates the conservation of the conventional helicity, the newly defined relativistic helicity conserves in a barotropic fluid or plasma, dictating a fundamental topological constraint. The relation between the helicity and the vortex-line topology has been delineated by analyzing the linking number of vortex filaments which are singular differential forms representing the pure states of Banach algebra. While the dimension of space-time is four, vortex filaments link, because vorticities are primarily 2-forms and the corresponding 2-chains link in four dimension; the relativistic helicity measures the linking number of vortex filaments that are proper-time cross-sections of the vorticity 2-chains. A thermodynamic force yields an additional term in the vorticity, by which the vortex filaments on a reference-time plane are no longer pure states. However, the vortex filaments on a proper-time plane remain to be pure states, if the thermodynamic force is exact (barotropic), thus, the linking number of vortex filaments conserves

  14. Classification of non-Riemannian doubled-yet-gauged spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Morand, Kevin [Universidad Andres Bello, Departamento de Ciencias Fisicas, Santiago de Chile (Chile); Universidad Tecnica Federico Santa Maria, Centro Cientifico-Tecnologico de Valparaiso, Departamento de Fisica, Valparaiso (Chile); Park, Jeong-Hyuck [Sogang University, Department of Physics, Seoul (Korea, Republic of); Institute for Basic Science (IBS), Center for Theoretical Physics of the Universe, Seoul (Korea, Republic of)

    2017-10-15

    Assuming O(D,D) covariant fields as the 'fundamental' variables, double field theory can accommodate novel geometries where a Riemannian metric cannot be defined, even locally. Here we present a complete classification of such non-Riemannian spacetimes in terms of two non-negative integers, (n, anti n), 0 ≤ n + anti n ≤ D. Upon these backgrounds, strings become chiral and anti-chiral over n and anti n directions, respectively, while particles and strings are frozen over the n + anti n directions. In particular, we identify (0, 0) as Riemannian manifolds, (1, 0) as non-relativistic spacetime, (1, 1) as Gomis-Ooguri non-relativistic string, (D-1, 0) as ultra-relativistic Carroll geometry, and (D, 0) as Siegel's chiral string. Combined with a covariant Kaluza-Klein ansatz which we further spell, (0, 1) leads to Newton-Cartan gravity. Alternative to the conventional string compactifications on small manifolds, non-Riemannian spacetime such as D = 10, (3, 3) may open a new scheme for the dimensional reduction from ten to four. (orig.)

  15. Electromagnetic-field equations in the six-dimensional space-time R6

    International Nuclear Information System (INIS)

    Teli, M.T.; Palaskar, D.

    1984-01-01

    Maxwell's equations (without monopoles) for electromagnetic fields are obtained in six-dimensional space-time. The equations possess structural symmetry in space and time, field and source densities. Space-time-symmetric conservation laws and field solutions are obtained. The results are successfully correlated with their four-dimensional space-time counterparts

  16. On scattering of scalar waves in static space-times, particularly Schwarzschild

    International Nuclear Information System (INIS)

    Beig, R.

    1982-01-01

    This paper aims at laying foundations of a rigorous scattering theory for scalar waves in a static space-time. The treatment includes geometries which can be thought of as representing the exterior of a black hole. Schwarzschild space-time, as a particular example, is studied in more detail. (Auth.)

  17. Spacetime-varying couplings and Lorentz violation

    International Nuclear Information System (INIS)

    Kostelecky, V. Alan; Lehnert, Ralf; Perry, Malcolm J.

    2003-01-01

    Spacetime-varying coupling constants can be associated with violations of local Lorentz invariance and CPT symmetry. An analytical supergravity cosmology with a time-varying fine-structure constant provides an explicit example. Estimates are made for some experimental constraints

  18. Twin paradox in de Sitter spacetime

    International Nuclear Information System (INIS)

    Boblest, Sebastian; Wunner, Guenter; Mueller, Thomas

    2011-01-01

    The 'twin paradox' of special relativity offers the possibility of making interstellar flights within a lifetime. For very long journeys with velocities close to the speed of light, however, we have to take into account the expansion of the universe. Inspired by the work of Rindler on hyperbolic motion in curved spacetime, we study the worldline of a uniformly accelerated observer in de Sitter spacetime and the communication between the travelling observer and an observer at rest. This paper is intended to give graduate students who are familiar with special relativity and have some basic experience of general relativity a deeper insight into accelerated motion in general relativity, into the relationship between the proper times of different observers and the propagation of light signals between them, and into the use of compactification to describe the global structure of a relativistic model.

  19. A no-go theorem for the consistent quantization of the massive gravitino on Robertson-Walker spacetimes and arbitrary spin 3/2 fields on general curved spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Thomas-Paul; Makedonski, Mathias [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik

    2011-06-15

    We first introduce a set of conditions which assure that a free spin (3)/(2) field with m{>=}0 can be consistently ('unitarily') quantized on all four-dimensional curved spacetimes, i.e. also on spacetimes which are not assumed to be solutions of the Einstein equations. We discuss a large - and, as we argue, exhaustive - class of spin (3)/(2) field equations obtained from the Rarita-Schwinger equation by the addition of non-minimal couplings and prove that no equation in this class fulfils all sufficient conditions. Afterwards, we investigate the situation in supergravity, where the curved background is usually assumed to satisfy the Einstein equations and, hence, detailed knowledge on the spacetime curvature is available. We provide a necessary condition for the unitary quantization of a spin (3)/(2) Majorana field and prove that this condition is not met by supergravity models in four-dimensional Robertson-Walker spacetimes if local supersymmetry is broken. Our proof is model-independent as we merely assume that the gravitino has the standard kinetic term. (orig.)

  20. Causal fermion systems: A quantum space-time emerging from an action principle

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Felix [Mathematics Department, University of Regensburg (Germany)

    2013-07-01

    Causal fermion systems provide a general framework for the formulation of relativistic quantum theory. A particular feature is that space-time is a secondary object which emerges by minimizing an action. The aim of the talk is to give a simple introduction, with an emphasis on conceptual issues. We begin with Dirac spinors in Minkowski space and explain how to formulate the system as a causal fermion system. As an example in curved space-time, we then consider spinors on a globally hyperbolic space-time. An example on a space-time lattice illustrates that causal fermion systems also allow for the description of discrete space-times. These examples lead us to the general definition of causal fermion systems. The causal action principle is introduced. We outline how for a given minimizer, one has notions of causality, connection and curvature, which generalize the classical notions and give rise to a proposal for a ''quantum geometry''. In the last part of the talk, we outline how quantum field theory can be described in this framework and discuss the relation to other approaches.

  1. Small black holes in global AdS spacetime

    Science.gov (United States)

    Jokela, Niko; Pönni, Arttu; Vuorinen, Aleksi

    2016-04-01

    We study the properties of two-point functions and quasinormal modes in a strongly coupled field theory holographically dual to a small black hole in global anti-de Sitter spacetime. Our results are seen to smoothly interpolate between known limits corresponding to large black holes and thermal AdS space, demonstrating that the Son-Starinets prescription works even when there is no black hole in the spacetime. Omitting issues related to the internal space, the results can be given a field theory interpretation in terms of the microcanonical ensemble, which provides access to energy densities forbidden in the canonical description.

  2. Stationary closed strings in five-dimensional flat spacetime

    Science.gov (United States)

    Igata, Takahisa; Ishihara, Hideki; Nishiwaki, Keisuke

    2012-11-01

    We investigate stationary rotating closed Nambu-Goto strings in five-dimensional flat spacetime. The stationary string is defined as a world sheet that is tangent to a timelike Killing vector. The Nambu-Goto equation of motion for the stationary string is reduced to the geodesic equation on the orbit space of the isometry group action generated by the Killing vector. We take a linear combination of a time-translation vector and space-rotation vectors as the Killing vector, and explicitly construct general solutions of stationary rotating closed strings in five-dimensional flat spacetime. We show a variety of their configurations and properties.

  3. An accurate metric for the spacetime around neutron stars

    OpenAIRE

    Pappas, George

    2016-01-01

    The problem of having an accurate description of the spacetime around neutron stars is of great astrophysical interest. For astrophysical applications, one needs to have a metric that captures all the properties of the spacetime around a neutron star. Furthermore, an accurate appropriately parameterised metric, i.e., a metric that is given in terms of parameters that are directly related to the physical structure of the neutron star, could be used to solve the inverse problem, which is to inf...

  4. Bose-Einstein condensation for a self-interacting theory in curved spacetime

    OpenAIRE

    Lee, Min-Ho; Kim, Hyeong-Chan; Kim, Jae Kwan

    1993-01-01

    The effective action is derived for a self-interacting theory with a finite fixed $O(2)$ charge at finite temperature in curved spacetime. We obtain the high temperature expansion of the effective action in the weak coupling limit. In the relativistic temperature, we discuss about the phase transition in a homogeneous spacetime.

  5. Geodesic congruences in warped spacetimes

    International Nuclear Information System (INIS)

    Ghosh, Suman; Dasgupta, Anirvan; Kar, Sayan

    2011-01-01

    In this article, we explore the kinematics of timelike geodesic congruences in warped five-dimensional bulk spacetimes, with and without thick or thin branes. Beginning with geodesic flows in the Randall-Sundrum anti-de Sitter geometry without and with branes, we find analytical expressions for the expansion scalar and comment on the effects of including thin branes on its evolution. Later, we move on to congruences in more general warped bulk geometries with a cosmological thick brane and a time-dependent extra dimensional scale. Using analytical expressions for the velocity field, we interpret the expansion, shear and rotation (ESR) along the flows, as functions of the extra dimensional coordinate. The evolution of a cross-sectional area orthogonal to the congruence, as seen from a local observer's point of view, is also shown graphically. Finally, the Raychaudhuri and geodesic equations in backgrounds with a thick brane are solved numerically in order to figure out the role of initial conditions (prescribed on the ESR) and spacetime curvature on the evolution of the ESR.

  6. Space-Time and Architecture

    Science.gov (United States)

    Field, F.; Goodbun, J.; Watson, V.

    Architects have a role to play in interplanetary space that has barely yet been explored. The architectural community is largely unaware of this new territory, for which there is still no agreed method of practice. There is moreover a general confusion, in scientific and related fields, over what architects might actually do there today. Current extra-planetary designs generally fail to explore the dynamic and relational nature of space-time, and often reduce human habitation to a purely functional problem. This is compounded by a crisis over the representation (drawing) of space-time. The present work returns to first principles of architecture in order to realign them with current socio-economic and technological trends surrounding the space industry. What emerges is simultaneously the basis for an ecological space architecture, and the representational strategies necessary to draw it. We explore this approach through a work of design-based research that describes the construction of Ocean; a huge body of water formed by the collision of two asteroids at the Translunar Lagrange Point (L2), that would serve as a site for colonisation, and as a resource to fuel future missions. Ocean is an experimental model for extra-planetary space design and its representation, within the autonomous discipline of architecture.

  7. A stochastic space-time model for intermittent precipitation occurrences

    KAUST Repository

    Sun, Ying; Stein, Michael L.

    2016-01-01

    Modeling a precipitation field is challenging due to its intermittent and highly scale-dependent nature. Motivated by the features of high-frequency precipitation data from a network of rain gauges, we propose a threshold space-time t random field (tRF) model for 15-minute precipitation occurrences. This model is constructed through a space-time Gaussian random field (GRF) with random scaling varying along time or space and time. It can be viewed as a generalization of the purely spatial tRF, and has a hierarchical representation that allows for Bayesian interpretation. Developing appropriate tools for evaluating precipitation models is a crucial part of the model-building process, and we focus on evaluating whether models can produce the observed conditional dry and rain probabilities given that some set of neighboring sites all have rain or all have no rain. These conditional probabilities show that the proposed space-time model has noticeable improvements in some characteristics of joint rainfall occurrences for the data we have considered.

  8. A stochastic space-time model for intermittent precipitation occurrences

    KAUST Repository

    Sun, Ying

    2016-01-28

    Modeling a precipitation field is challenging due to its intermittent and highly scale-dependent nature. Motivated by the features of high-frequency precipitation data from a network of rain gauges, we propose a threshold space-time t random field (tRF) model for 15-minute precipitation occurrences. This model is constructed through a space-time Gaussian random field (GRF) with random scaling varying along time or space and time. It can be viewed as a generalization of the purely spatial tRF, and has a hierarchical representation that allows for Bayesian interpretation. Developing appropriate tools for evaluating precipitation models is a crucial part of the model-building process, and we focus on evaluating whether models can produce the observed conditional dry and rain probabilities given that some set of neighboring sites all have rain or all have no rain. These conditional probabilities show that the proposed space-time model has noticeable improvements in some characteristics of joint rainfall occurrences for the data we have considered.

  9. A geometric renormalization group in discrete quantum space-time

    International Nuclear Information System (INIS)

    Requardt, Manfred

    2003-01-01

    We model quantum space-time on the Planck scale as dynamical networks of elementary relations or time dependent random graphs, the time dependence being an effect of the underlying dynamical network laws. We formulate a kind of geometric renormalization group on these (random) networks leading to a hierarchy of increasingly coarse-grained networks of overlapping lumps. We provide arguments that this process may generate a fixed limit phase, representing our continuous space-time on a mesoscopic or macroscopic scale, provided that the underlying discrete geometry is critical in a specific sense (geometric long range order). Our point of view is corroborated by a series of analytic and numerical results, which allow us to keep track of the geometric changes, taking place on the various scales of the resolution of space-time. Of particular conceptual importance are the notions of dimension of such random systems on the various scales and the notion of geometric criticality

  10. Space-time symmetry and quantum Yang-Mills gravity how space-time translational gauge symmetry enables the unification of gravity with other forces

    CERN Document Server

    Hsu, Jong-Ping

    2013-01-01

    Yang-Mills gravity is a new theory, consistent with experiments, that brings gravity back to the arena of gauge field theory and quantum mechanics in flat space-time. It provides solutions to long-standing difficulties in physics, such as the incompatibility between Einstein's principle of general coordinate invariance and modern schemes for a quantum mechanical description of nature, and Noether's 'Theorem II' which showed that the principle of general coordinate invariance in general relativity leads to the failure of the law of conservation of energy. Yang-Mills gravity in flat space-time a

  11. Density perturbations due to the inhomogeneous discrete spatial structure of space-time

    International Nuclear Information System (INIS)

    Wolf, C.

    1998-01-01

    For the case that space-time permits an inhomogeneous discrete spatial structure due to varying gravitational fields or a foam-like structure of space-time, it is demonstrated that thermodynamic reasoning implies that matter-density perturbations will arise in the early universe

  12. Circular geodesic of Bardeen and Ayon-Beato-Garcia regular black-hole and no-horizon spacetimes

    Science.gov (United States)

    Stuchlík, Zdeněk; Schee, Jan

    2015-12-01

    In this paper, we study circular geodesic motion of test particles and photons in the Bardeen and Ayon-Beato-Garcia (ABG) geometry describing spherically symmetric regular black-hole or no-horizon spacetimes. While the Bardeen geometry is not exact solution of Einstein's equations, the ABG spacetime is related to self-gravitating charged sources governed by Einstein's gravity and nonlinear electrodynamics. They both are characterized by the mass parameter m and the charge parameter g. We demonstrate that in similarity to the Reissner-Nordstrom (RN) naked singularity spacetimes an antigravity static sphere should exist in all the no-horizon Bardeen and ABG solutions that can be surrounded by a Keplerian accretion disc. However, contrary to the RN naked singularity spacetimes, the ABG no-horizon spacetimes with parameter g/m > 2 can contain also an additional inner Keplerian disc hidden under the static antigravity sphere. Properties of the geodesic structure are reflected by simple observationally relevant optical phenomena. We give silhouette of the regular black-hole and no-horizon spacetimes, and profiled spectral lines generated by Keplerian rings radiating at a fixed frequency and located in strong gravity region at or nearby the marginally stable circular geodesics. We demonstrate that the profiled spectral lines related to the regular black-holes are qualitatively similar to those of the Schwarzschild black-holes, giving only small quantitative differences. On the other hand, the regular no-horizon spacetimes give clear qualitative signatures of their presence while compared to the Schwarschild spacetimes. Moreover, it is possible to distinguish the Bardeen and ABG no-horizon spacetimes, if the inclination angle to the observer is known.

  13. Hamiltonian Dynamics of Doubly-Foliable Space-Times

    Directory of Open Access Journals (Sweden)

    Cecília Gergely

    2018-01-01

    Full Text Available The 2 + 1 + 1 decomposition of space-time is useful in monitoring the temporal evolution of gravitational perturbations/waves in space-times with a spatial direction singled-out by symmetries. Such an approach based on a perpendicular double foliation has been employed in the framework of dark matter and dark energy-motivated scalar-tensor gravitational theories for the discussion of the odd sector perturbations of spherically-symmetric gravity. For the even sector, however, the perpendicularity has to be suppressed in order to allow for suitable gauge freedom, recovering the 10th metric variable. The 2 + 1 + 1 decomposition of the Einstein–Hilbert action leads to the identification of the canonical pairs, the Hamiltonian and momentum constraints. Hamiltonian dynamics is then derived via Poisson brackets.

  14. Petrov classification and holographic reconstruction of spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Gath, Jakob [Centre de Physique Théorique, Ecole Polytechnique, CNRS UMR 7644,91128 Palaiseau Cedex (France); Mukhopadhyay, Ayan [Department of Physics, University of Crete,Heraklion 71003 (Greece); Petkou, Anastasios C. [Department of Physics, Institute of Theoretical Physics,Aristotle University of Thessaloniki,54124, Thessaloniki (Greece); Petropoulos, P. Marios [Centre de Physique Théorique, Ecole Polytechnique, CNRS UMR 7644,91128 Palaiseau Cedex (France); Siampos, Konstantinos [Albert Einstein Center for Fundamental Physics,Institute for Theoretical Physics, Bern University, Sidlerstrasse 5, 3012 Bern (Switzerland)

    2015-09-01

    Using the asymptotic form of the bulk Weyl tensor, we present an explicit approach that allows us to reconstruct exact four-dimensional Einstein spacetimes which are algebraically special with respect to Petrov’s classification. If the boundary metric supports a traceless, symmetric and conserved complex rank-two tensor, which is related to the boundary Cotton and energy-momentum tensors, and if the hydrodynamic congruence is shearless, then the bulk metric is exactly resummed and captures modes that stand beyond the hydrodynamic derivative expansion. We illustrate the method when the congruence has zero vorticity, leading to the Robinson-Trautman spacetimes of arbitrary Petrov class, and quote the case of non-vanishing vorticity, which captures the Plebański-Demiański Petrov D family.

  15. Covariant fields on anti-de Sitter spacetimes

    Science.gov (United States)

    Cotăescu, Ion I.

    2018-02-01

    The covariant free fields of any spin on anti-de Sitter (AdS) spacetimes are studied, pointing out that these transform under isometries according to covariant representations (CRs) of the AdS isometry group, induced by those of the Lorentz group. Applying the method of ladder operators, it is shown that the CRs with unique spin are equivalent with discrete unitary irreducible representations (UIRs) of positive energy of the universal covering group of the isometry one. The action of the Casimir operators is studied finding how the weights of these representations (reps.) may depend on the mass and spin of the covariant field. The conclusion is that on AdS spacetime, one cannot formulate a universal mass condition as in special relativity.

  16. A comparison between space-time video descriptors

    Science.gov (United States)

    Costantini, Luca; Capodiferro, Licia; Neri, Alessandro

    2013-02-01

    The description of space-time patches is a fundamental task in many applications such as video retrieval or classification. Each space-time patch can be described by using a set of orthogonal functions that represent a subspace, for example a sphere or a cylinder, within the patch. In this work, our aim is to investigate the differences between the spherical descriptors and the cylindrical descriptors. In order to compute the descriptors, the 3D spherical and cylindrical Zernike polynomials are employed. This is important because both the functions are based on the same family of polynomials, and only the symmetry is different. Our experimental results show that the cylindrical descriptor outperforms the spherical descriptor. However, the performances of the two descriptors are similar.

  17. Individuation in Quantum Mechanics and Space-Time

    Science.gov (United States)

    Jaeger, Gregg

    2010-10-01

    Two physical approaches—as distinct, under the classification of Mittelstaedt, from formal approaches—to the problem of individuation of quantum objects are considered, one formulated in spatiotemporal terms and one in quantum mechanical terms. The spatiotemporal approach itself has two forms: one attributed to Einstein and based on the ontology of space-time points, and the other proposed by Howard and based on intersections of world lines. The quantum mechanical approach is also provided here in two forms, one based on interference and another based on a new Quantum Principle of Individuation (QPI). It is argued that the space-time approach to individuation fails and that the quantum approach offers several advantages over it, including consistency with Leibniz’s Principle of Identity of Indiscernibles.

  18. Space-time supersymmetry of extended fermionic strings in 2 + 2 dimensions

    International Nuclear Information System (INIS)

    Ketov, S.V.

    1993-04-01

    The N = 2 fermionic string theory is revisited in light of its recently proposed equivalence to the non-compact N = 4 fermionic string model. The issues of space-time Lorentz covariance and supersymmetry for the BRST quantized N = 2 strings living in uncompactified 2 + 2 dimensions are discussed. The equivalent local quantum supersymmetric field theory appears to be the most transparent way to represent the space-time symmetries of the extended fermionic strings and their interactions. Our considerations support the Siegel's ideas about the presence of SO(2,2) Lorentz symmetry as well as at least two self-dual space-time supersymmetries in the theory of the N = 2(4) fermionic strings, though we do not have a compelling reason to argue about the necessity of the maximal space-time supersymmetry. The world-sheet arguments about the absence of all string massive modes in the physical spectrum, and the vanishing of all string-loop amplitudes in the Polyakov approach, are given on the basis of general consistency of the theory. (orig.)

  19. Indoor Off-Body Wireless Communication: Static Beamforming versus Space-Time Coding

    Directory of Open Access Journals (Sweden)

    Patrick Van Torre

    2012-01-01

    Full Text Available The performance of beamforming versus space-time coding using a body-worn textile antenna array is experimentally evaluated for an indoor environment, where a walking rescue worker transmits data in the 2.45 GHz ISM band, relying on a vertical textile four-antenna array integrated into his garment. The two transmission scenarios considered are static beamforming at low-elevation angles and space-time code based transmit diversity. Signals are received by a base station equipped with a horizontal array of four dipole antennas providing spatial receive diversity through maximum-ratio combining. Signal-to-noise ratios, bit error rate characteristics, and signal correlation properties are assessed for both off-body transmission scenarios. Without receiver diversity, the performance of space-time coding is generally better. In case of fourth-order receiver diversity, beamforming is superior in line-of-sight conditions. For non-line-of-sight propagation, the space-time codes perform better as soon as bit error rates are low enough for a reliable data link.

  20. Search of wormholes in different dimensional non-commutative inspired space-times with Lorentzian distribution

    Energy Technology Data Exchange (ETDEWEB)

    Bhar, Piyali; Rahaman, Farook [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India)

    2014-12-01

    In this paper we ask whether the wormhole solutions exist in different dimensional noncommutativity-inspired spacetimes. It is well known that the noncommutativity of the space is an outcome of string theory and it replaced the usual point-like object by a smeared object. Here we have chosen the Lorentzian distribution as the density function in the noncommutativity-inspired spacetime. We have observed that the wormhole solutions exist only in four and five dimensions; however, in higher than five dimensions no wormhole exists. For five dimensional spacetime, we get a wormhole for a restricted region. In the usual four dimensional spacetime, we get a stable wormhole which is asymptotically flat. (orig.)

  1. Null geodesics and embedding diagrams of the interior Schwarzschild--de Sitter spacetimes with uniform density

    International Nuclear Information System (INIS)

    Stuchlik, Zdenek; Hledik, Stanislav; Soltes, Jiri; Ostgaard, Erlend

    2001-01-01

    Null geodesics and embedding diagrams of central planes in the ordinary space geometry and the optical reference geometry of the interior Schwarzschild--de Sitter spacetimes with uniform density are studied. For completeness, both positive and negative values of the cosmological constant are considered. The null geodesics are restricted to the central planes of these spacetimes, and their properties can be reflected by an 'effective potential.' If the interior spacetime is extremely compact, the effective potential has a local maximum corresponding to a stable circular null geodesic around which bound null geodesics are concentrated. The upper limit on the size of the interior spacetimes containing bound null geodesics is R=3M, independently of the value of the cosmological constant. The embedding diagrams of the central planes of the ordinary geometry into three-dimensional Euclidean space are well defined for the complete interior of all spacetimes with a repulsive cosmological constant, but the planes cannot be embedded into the Euclidean space in the case of spacetimes with subcritical values of an attractive cosmological constant. On the other hand, the embedding diagrams of the optical geometry are well defined for all of the spacetimes, and the turning points of these diagrams correspond to the radii of the circular null geodesics. All the embedding diagrams, for both the ordinary and optical geometry, are smoothly matched to the corresponding embedding diagrams of the external vacuum Schwarzschild--de Sitter spacetimes

  2. Explicit Minkowski invariance and differential calculus in the quantum space-time

    International Nuclear Information System (INIS)

    Xu Zhan.

    1991-11-01

    In terms of the R-circumflex matrix of the quantum group SL q (2), the explicit Minkowski coordinate commutation relations in the four-dimensional quantum space-time are given, and the invariance of the Minkowski metric is shown. The differential calculus in this quantum space-time is discussed and the corresponding commutation relations are proposed. (author). 17 refs

  3. Detecting space-time cancer clusters using residential histories

    Science.gov (United States)

    Jacquez, Geoffrey M.; Meliker, Jaymie R.

    2007-04-01

    Methods for analyzing geographic clusters of disease typically ignore the space-time variability inherent in epidemiologic datasets, do not adequately account for known risk factors (e.g., smoking and education) or covariates (e.g., age, gender, and race), and do not permit investigation of the latency window between exposure and disease. Our research group recently developed Q-statistics for evaluating space-time clustering in cancer case-control studies with residential histories. This technique relies on time-dependent nearest neighbor relationships to examine clustering at any moment in the life-course of the residential histories of cases relative to that of controls. In addition, in place of the widely used null hypothesis of spatial randomness, each individual's probability of being a case is instead based on his/her risk factors and covariates. Case-control clusters will be presented using residential histories of 220 bladder cancer cases and 440 controls in Michigan. In preliminary analyses of this dataset, smoking, age, gender, race and education were sufficient to explain the majority of the clustering of residential histories of the cases. Clusters of unexplained risk, however, were identified surrounding the business address histories of 10 industries that emit known or suspected bladder cancer carcinogens. The clustering of 5 of these industries began in the 1970's and persisted through the 1990's. This systematic approach for evaluating space-time clustering has the potential to generate novel hypotheses about environmental risk factors. These methods may be extended to detect differences in space-time patterns of any two groups of people, making them valuable for security intelligence and surveillance operations.

  4. How to defeat Wüthrich's abysmal embarrassment argument against space-time structuralism

    NARCIS (Netherlands)

    F.A. Muller (Archibald)

    2011-01-01

    textabstractIn his award-winning contribution to the biannual PSA conference at Pittsburgh in 2008, Christian Wüthrich mounted an argument against structuralism about spacetime in the context of the general theory of relativity (GTR), to the effect that structuralists cannot discern space-time

  5. A quantum field theory of simplicial geometry and the emergence of spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Oriti, Daniele [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, Minnaert Building, Leuvenlaan 4, Utrecht (Netherlands)

    2007-05-15

    We present the case for a fundamentally discrete quantum spacetime and for Group Field Theories as a candidate consistent description of it, briefly reviewing the key properties of the GFT formalism. We then argue that the outstanding problem of the emergence of a continuum spacetime and of General Relativity from fundamentally discrete quantum structures should be tackled from a condensed matter perspective and using purely QFT methods, adapted to the GFT context. We outline the picture of continuum spacetime as a condensed phase of a GFT and a research programme aimed at realizing this picture in concrete terms.

  6. Singular trajectories: space-time domain topology of developing speckle fields

    Science.gov (United States)

    Vasil'ev, Vasiliy; Soskin, Marat S.

    2010-02-01

    It is shown the space-time dynamics of optical singularities is fully described by singularities trajectories in space-time domain, or evolution of transverse coordinates(x, y) in some fixed plane z0. The dynamics of generic developing speckle fields was realized experimentally by laser induced scattering in LiNbO3:Fe photorefractive crystal. The space-time trajectories of singularities can be divided topologically on two classes with essentially different scenario and duration. Some of them (direct topological reactions) consist from nucleation of singularities pair at some (x, y, z0, t) point, their movement and annihilation. They possess form of closed loops with relatively short time of existence. Another much more probable class of trajectories are chain topological reactions. Each of them consists from sequence of links, i.e. of singularities nucleation in various points (xi yi, ti) and following annihilation of both singularities in other space-time points with alien singularities of opposite topological indices. Their topology and properties are established. Chain topological reactions can stop on the borders of a developing speckle field or go to infinity. Examples of measured both types of topological reactions for optical vortices (polarization C points) in scalar (elliptically polarized) natural developing speckle fields are presented.

  7. Space-time and Local Gauge Symmetries

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Symmetries of Particle Physics: Space-time and Local Gauge Symmetries. Sourendu Gupta. General Article Volume 6 Issue 2 February 2001 pp 29-38. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. Derivation of Electromagnetism from the Elastodynamics of the Spacetime Continuum

    Directory of Open Access Journals (Sweden)

    Millette P. A.

    2013-04-01

    Full Text Available We derive Electromagnetism from the Elastodynamics of the Spacetime Continuum based on the identification of the theory’s antisymmetric rotation tensor with the elec- tromagnetic field-strength tensor. The theory provides a physical explanation of the electromagnetic potential, which arises from transverse ( shearing displacements of the spacetime continuum, in contrast to mass which arises from longitudinal (dilatational displacements. In addition, the theory provides a physical explanation of the current density four-vector, as the 4-gradient of the volume dilatation of the spacetime con- tinuum. The Lorentz condition is obtained directly from the theory. In addition, we obtain a generalization of Electromagnetism for the situation where a volume force is present, in the general non-macroscopic case. Maxwell’s equations are found to remain unchanged, but the current density has an additional term proportional to the volume force.

  9. Kerr-de Sitter spacetime, Penrose process, and the generalized area theorem

    Science.gov (United States)

    Bhattacharya, Sourav

    2018-04-01

    We investigate various aspects of energy extraction via the Penrose process in the Kerr-de Sitter spacetime. We show that the increase in the value of a positive cosmological constant, Λ , always reduces the efficiency of this process. The Kerr-de Sitter spacetime has two ergospheres associated with the black hole and the cosmological event horizons. We prove by analyzing turning points of the trajectory that the Penrose process in the cosmological ergoregion is never possible. We next show that in this process both the black hole and cosmological event horizons' areas increase, and the latter becomes possible when the particle coming from the black hole ergoregion escapes through the cosmological event horizon. We identify a new, local mass function instead of the mass parameter, to prove this generalized area theorem. This mass function takes care of the local spacetime energy due to the cosmological constant as well, including that which arises due to the frame-dragging effect due to spacetime rotation. While the current observed value of Λ is quite small, its effect in this process could be considerable in the early Universe scenario where its value is much larger, where the two horizons could have comparable sizes. In particular, the various results we obtain here are also evaluated in a triply degenerate limit of the Kerr-de Sitter spacetime we find, in which radial values of the inner, the black hole and the cosmological event horizons are nearly coincident.

  10. Is space-time symmetry a suitable generalization of parity-time symmetry?

    International Nuclear Information System (INIS)

    Amore, Paolo; Fernández, Francisco M.; Garcia, Javier

    2014-01-01

    We discuss space-time symmetric Hamiltonian operators of the form H=H 0 +igH ′ , where H 0 is Hermitian and g real. H 0 is invariant under the unitary operations of a point group G while H ′ is invariant under transformation by elements of a subgroup G ′ of G. If G exhibits irreducible representations of dimension greater than unity, then it is possible that H has complex eigenvalues for sufficiently small nonzero values of g. In the particular case that H is parity-time symmetric then it appears to exhibit real eigenvalues for all 00. We illustrate the main theoretical results and conclusions of this paper by means of two- and three-dimensional Hamiltonians exhibiting a variety of different point-group symmetries. - Highlights: • Space-time symmetry is a generalization of PT symmetry. • The eigenvalues of a space-time Hamiltonian are either real or appear as pairs of complex conjugate numbers. • In some cases all the eigenvalues are real for some values of a potential-strength parameter g. • At some value of g space-time symmetry is broken and complex eigenvalues appear. • Some multidimensional oscillators exhibit broken space-time symmetry for all values of g

  11. Topology and incompleteness for 2+1-dimensional cosmological spacetimes

    Science.gov (United States)

    Fajman, David

    2017-06-01

    We study the long-time behavior of the Einstein flow coupled to matter on 2-dimensional surfaces. We consider massless matter models such as collisionless matter composed of massless particles, massless scalar fields and radiation fluids and show that the maximal globally hyperbolic development of homogeneous and isotropic initial data on the 2-sphere is geodesically incomplete in both time directions, i.e. the spacetime recollapses. This behavior also holds for open sets of initial data. In particular, we construct classes of recollapsing 2+1-dimensional spacetimes with spherical spatial topology which provide evidence for a closed universe recollapse conjecture for massless matter models in 2+1 dimensions. Furthermore, we construct solutions with toroidal and higher genus topology for the massless matter fields, which in both cases are future complete. The spacetimes with toroidal topology are 2+1-dimensional analogies of the Einstein-de Sitter model. In addition, we point out a general relation between the energy-momentum tensor and the Kretschmann scalar in 2+1 dimensions and use it to infer strong cosmic censorship for all these models. In view of this relation, we also recall corresponding models containing massive particles, constructed in a previous work and determine the nature of their initial singularities. We conclude that the global structure of non-vacuum cosmological spacetimes in 2+1 dimensions is determined by the mass of particles and—in the homogeneous and isotropic setting studied here—verifies strong cosmic censorship.

  12. Two theorems on flat space-time gravitational theories

    International Nuclear Information System (INIS)

    Castagnino, M.; Chimento, L.

    1980-01-01

    The first theorem states that all flat space-time gravitational theories must have a Lagrangian with a first term that is an homogeneous (degree-1) function of the 4-velocity usup(i), plus a functional of nsub(ij)usup(i)usup(j). The second theorem states that all gravitational theories that satisfy the strong equivalence principle have a Lagrangian with a first term gsub(ij)(x)usup(i)usup(j) plus an irrelevant term. In both cases the theories must issue from a unique variational principle. Therefore, under this condition it is impossible to find a flat space-time theory that satisfies the strong equivalence principle. (author)

  13. Spinors, superalgebras and the signature of space-time

    CERN Document Server

    Ferrara, S.

    2001-01-01

    Superconformal algebras embedding space-time in any dimension and signature are considered. Different real forms of the $R$-symmetries arise both for usual space-time signature (one time) and for Euclidean or exotic signatures (more than one times). Application of these superalgebras are found in the context of supergravities with 32 supersymmetries, in any dimension $D \\leq 11$. These theories are related to $D = 11, M, M^*$ and $M^\\prime$ theories or $D = 10$, IIB, IIB$^*$ theories when compactified on Lorentzian tori. All dimensionally reduced theories fall in three distinct phases specified by the number of (128 bosonic) positive and negative norm states: $(n^+,n^-) = (128,0), (64,64), (72,56)$.

  14. The separating topology for the space-times of general relativity

    International Nuclear Information System (INIS)

    Lindstroem, U.

    1977-08-01

    The separating topology, first suggested by Zeeman, is defined for the space-times of general relativity. It is defined by a basis. A number of properties are derived. The topology induces the ordinary Euclidean topology on space-like hypersurfaces as well as on timelike curves and the discrete topology on null-cones. The group of auto-homeomorphisms is found to be the group of smooth conformal diffeomorphisms if the space-time is strongly causal. (author)

  15. Inextendibilty of the Maximal Global Hyperbolic Development in Electrogowdy spacetimes

    Directory of Open Access Journals (Sweden)

    Nungesser Ernesto

    2013-09-01

    Full Text Available The problem of determinism in General Relativity appears even if one assumes that the spacetime is globally hyperbolic, i.e. that it contains a hypersurface that is intersected by any causal curve exactly once. The strong cosmic censorship hypothesis is essentially the hypothesis that General Relativity is a predictable theory and thus a crucial issue in Classical General Relativity. We sketch here the proof for the case of Electrogowdy spacetimes.

  16. Holographic analysis of dispersive pupils in space--time optics

    International Nuclear Information System (INIS)

    Calatroni, J.; Vienot, J.C.

    1981-01-01

    Extension of space--time optics to objects whose transparency is a function of the temporal frequency v = c/lambda is examined. Considering the effects of such stationary pupils on white light waves, they are called temporal pupils. It is shown that simultaneous encoding both in the space and time frequency domains is required to record pupil parameters. The space-time impulse response and transfer functions are calculated for a dispersive nonabsorbent material. An experimental method providing holographic recording of the dispersion curve of any transparent material is presented

  17. Casimir densities for a boundary in Robertson-Walker spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Saharian, A.A., E-mail: saharian@ictp.i [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, 0025 Yerevan (Armenia); Setare, M.R., E-mail: rezakord@ipm.i [Department of Science of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of)

    2010-04-12

    For scalar and electromagnetic fields we evaluate the vacuum expectation value of the energy-momentum tensor induced by a curved boundary in the Robertson-Walker spacetime with negative spatial curvature. In order to generate the vacuum densities we use the conformal relation between the Robertson-Walker and Rindler spacetimes and the corresponding results for a plate moving by uniform proper acceleration through the Fulling-Rindler vacuum. For the general case of the scale factor the vacuum energy-momentum tensor is presented as the sum of the boundary free and boundary induced parts.

  18. Casimir densities for a boundary in Robertson-Walker spacetime

    International Nuclear Information System (INIS)

    Saharian, A.A.; Setare, M.R.

    2010-01-01

    For scalar and electromagnetic fields we evaluate the vacuum expectation value of the energy-momentum tensor induced by a curved boundary in the Robertson-Walker spacetime with negative spatial curvature. In order to generate the vacuum densities we use the conformal relation between the Robertson-Walker and Rindler spacetimes and the corresponding results for a plate moving by uniform proper acceleration through the Fulling-Rindler vacuum. For the general case of the scale factor the vacuum energy-momentum tensor is presented as the sum of the boundary free and boundary induced parts.

  19. Holographic analysis of dispersive pupils in space--time optics

    Energy Technology Data Exchange (ETDEWEB)

    Calatroni, J.; Vienot, J.C.

    1981-06-01

    Extension of space--time optics to objects whose transparency is a function of the temporal frequency v = c/lambda is examined. Considering the effects of such stationary pupils on white light waves, they are called temporal pupils. It is shown that simultaneous encoding both in the space and time frequency domains is required to record pupil parameters. The space-time impulse response and transfer functions are calculated for a dispersive nonabsorbent material. An experimental method providing holographic recording of the dispersion curve of any transparent material is presented.

  20. Quantization of a scalar field in the Kerr spacetime

    International Nuclear Information System (INIS)

    Ford, L.H.

    1974-01-01

    A discussion of field quantization in a curved background spacetime is presented, with emphasis on the quantization of a scalar field in the Kerr spacetime. The ambiguity in the choice of a Fock space is discussed. The example of quantized fields in a rotating frame of reference in Minkowski space is analyzed, and it is shown that there is a preferred choice of states which makes particle number an invariant under transformation to the rotating frame. This choice allows the existence of negative energy quanta of the field

  1. Sinh-Gordon, cosh-Gordon, and Liouville equations for strings and multistrings in constant curvature spacetimes

    International Nuclear Information System (INIS)

    Larsen, A.L.; Sanchez, N.

    1996-01-01

    We find that the fundamental quadratic form of classical string propagation in (2+1)-dimensional constant curvature spacetimes solves the sinh-Gordon equation, the cosh-Gordon equation, or the Liouville equation. We show that in both de Sitter and anti endash de Sitter spacetimes (as well as in the 2+1 black hole anti endash de Sitter spacetime), all three equations must be included to cover the generic string dynamics. The generic properties of the string dynamics are directly extracted from the properties of these three equations and their associated potentials (irrespective of any solution). These results complete and generalize earlier discussions on this topic (until now, only the sinh-Gordon sector in de Sitter spacetime was known). We also construct new classes of multistring solutions, in terms of elliptic functions, to all three equations in both de Sitter and anti endash de Sitter spacetimes. Our results can be straightforwardly generalized to constant curvature spacetimes of arbitrary dimension, by replacing the sinh-Gordon equation, the cosh-Gordon equation, and the Liouville equation by their higher dimensional generalizations. copyright 1996 The American Physical Society

  2. Exact solutions of space-time fractional EW and modified EW equations

    International Nuclear Information System (INIS)

    Korkmaz, Alper

    2017-01-01

    The bright soliton solutions and singular solutions are constructed for the space-time fractional EW and the space-time fractional modified EW (MEW) equations. Both equations are reduced to ordinary differential equations by the use of fractional complex transform (FCT) and properties of modified Riemann–Liouville derivative. Then, various ansatz method are implemented to construct the solutions for both equations.

  3. Gravity Probe B: Examining Einstein's Spacetime with Gyroscopes. An Educator's Guide with Activities in Space Science.

    Science.gov (United States)

    Range, Shannon K'doah; Mullins, Jennifer

    This teaching guide introduces a relativity gyroscope experiment aiming to test two unverified predictions of Albert Einstein's general theory of relativity. An introduction to the theory includes the following sections: (1) "Spacetime, Curved Spacetime, and Frame-Dragging"; (2) "'Seeing' Spacetime with Gyroscopes"; (3)…

  4. What have we learned from quantum field theory in curved space-time

    International Nuclear Information System (INIS)

    Fulling, S.A.

    1984-01-01

    The paper reviews the quantum field theory in curved space-time. Field quantization in gravitational backgrounds; particle creation by black holes; Hawking radiation; quantum field theory in curved space-time; covariant renormalization of the stress-energy-momentum tensor; quantum field theory and quantum gravity; are all discussed. (U.K.)

  5. Poincare covariance and κ-Minkowski spacetime

    International Nuclear Information System (INIS)

    Dabrowski, Ludwik; Piacitelli, Gherardo

    2011-01-01

    A fully Poincare covariant model is constructed as an extension of the κ-Minkowski spacetime. Covariance is implemented by a unitary representation of the Poincare group, and thus complies with the original Wigner approach to quantum symmetries. This provides yet another example (besides the DFR model), where Poincare covariance is realised a la Wigner in the presence of two characteristic dimensionful parameters: the light speed and the Planck length. In other words, a Doubly Special Relativity (DSR) framework may well be realised without deforming the meaning of 'Poincare covariance'. -- Highlights: → We construct a 4d model of noncommuting coordinates (quantum spacetime). → The coordinates are fully covariant under the undeformed Poincare group. → Covariance a la Wigner holds in presence of two dimensionful parameters. → Hence we are not forced to deform covariance (e.g. as quantum groups). → The underlying κ-Minkowski model is unphysical; covariantisation does not cure this.

  6. Dirac equation in 2-dimensional curved spacetime, particle creation, and coupled waveguide arrays

    Energy Technology Data Exchange (ETDEWEB)

    Koke, Christian, E-mail: christian.koke@stud.uni-heidelberg.de [Institut für theoretische Physik, Philosophenweg 16, D-69120 Heidelberg (Germany); Noh, Changsuk, E-mail: changsuk@kias.re.kr [Korea Institute for Advanced Study, 85 Hoegiro, Seoul 130-722 (Korea, Republic of); Angelakis, Dimitris G., E-mail: dimitris.angelakis@gmail.com [Centre for Quantum Technologies, National University of Singapore, 2 Science Drive 3, 117542 (Singapore); School of Electronic and Computer Engineering, Technical University of Crete, Chania, Crete, 73100 (Greece)

    2016-11-15

    When quantum fields are coupled to gravitational fields, spontaneous particle creation may occur similarly to when they are coupled to external electromagnetic fields. A gravitational field can be incorporated as a background spacetime if the back-action of matter on the field can be neglected, resulting in modifications of the Dirac or Klein–Gordon equations for elementary fermions and bosons respectively. The semi-classical description predicts particle creation in many situations, including the expanding-universe scenario, near the event horizon of a black hole (the Hawking effect), and an accelerating observer in flat spacetime (the Unruh effect). In this work, we give a pedagogical introduction to the Dirac equation in a general 2D spacetime and show examples of spinor wave packet dynamics in flat and curved background spacetimes. In particular, we cover the phenomenon of particle creation in a time-dependent metric. Photonic analogs of these effects are then proposed, where classical light propagating in an array of coupled waveguides provides a visualisation of the Dirac spinor propagating in a curved 2D spacetime background. The extent to which such a single-particle description can be said to mimic particle creation is discussed.

  7. Existence and stability of circular orbits in general static and spherically symmetric spacetimes

    Science.gov (United States)

    Jia, Junji; Liu, Jiawei; Liu, Xionghui; Mo, Zhongyou; Pang, Xiankai; Wang, Yaoguang; Yang, Nan

    2018-02-01

    The existence and stability of circular orbits (CO) in static and spherically symmetric (SSS) spacetime are important because of their practical and potential usefulness. In this paper, using the fixed point method, we first prove a necessary and sufficient condition on the metric function for the existence of timelike COs in SSS spacetimes. After analyzing the asymptotic behavior of the metric, we then show that asymptotic flat SSS spacetime that corresponds to a negative Newtonian potential at large r will always allow the existence of CO. The stability of the CO in a general SSS spacetime is then studied using the Lyapunov exponent method. Two sufficient conditions on the (in)stability of the COs are obtained. For null geodesics, a sufficient condition on the metric function for the (in)stability of null CO is also obtained. We then illustrate one powerful application of these results by showing that three SSS spacetimes whose metric function is not completely known will allow the existence of timelike and/or null COs. We also used our results to assert the existence and (in)stabilities of a number of known SSS metrics.

  8. Fermion Systems in Discrete Space-Time Exemplifying the Spontaneous Generation of a Causal Structure

    Science.gov (United States)

    Diethert, A.; Finster, F.; Schiefeneder, D.

    As toy models for space-time at the Planck scale, we consider examples of fermion systems in discrete space-time which are composed of one or two particles defined on two up to nine space-time points. We study the self-organization of the particles as described by a variational principle both analytically and numerically. We find an effect of spontaneous symmetry breaking which leads to the emergence of a discrete causal structure.

  9. Space-time uncertainty and approaches to D-brane field theory

    International Nuclear Information System (INIS)

    Yoneya, Tamiaki

    2008-01-01

    In connection with the space-time uncertainty principle which gives a simple qualitative characterization of non-local or non-commutative nature of short-distance space-time structure in string theory, the author's recent approaches toward field theories for D-branes are briefly outlined, putting emphasis on some key ideas lying in the background. The final section of the present report is devoted partially to a tribute to Yukawa on the occasion of the centennial of his birth. (author)

  10. Maximum Likelihood Blind Channel Estimation for Space-Time Coding Systems

    Directory of Open Access Journals (Sweden)

    Hakan A. Çırpan

    2002-05-01

    Full Text Available Sophisticated signal processing techniques have to be developed for capacity enhancement of future wireless communication systems. In recent years, space-time coding is proposed to provide significant capacity gains over the traditional communication systems in fading wireless channels. Space-time codes are obtained by combining channel coding, modulation, transmit diversity, and optional receive diversity in order to provide diversity at the receiver and coding gain without sacrificing the bandwidth. In this paper, we consider the problem of blind estimation of space-time coded signals along with the channel parameters. Both conditional and unconditional maximum likelihood approaches are developed and iterative solutions are proposed. The conditional maximum likelihood algorithm is based on iterative least squares with projection whereas the unconditional maximum likelihood approach is developed by means of finite state Markov process modelling. The performance analysis issues of the proposed methods are studied. Finally, some simulation results are presented.

  11. Radiative processes of two entangled atoms in cosmic string spacetime

    Science.gov (United States)

    Cai, Huabing; Ren, Zhongzhou

    2018-01-01

    We investigate the radiative processes of two static two-level atoms in a maximally entangled state coupled to vacuum electromagnetic field in the cosmic string spacetime. We find that the decay rate from the entangled state to the ground state crucially depends on the atomic separation, the polarization directions of the individual atoms, the atom-string distance and the deficit angle induced by the string. As the atom-string distance increases, the decay rate oscillates around the result in Minkowski spacetime and the amplitude gradually decreases. The oscillation is more severe for larger planar angle deficit. We analyze the decay rate in different circumstances such as near zone and specific polarization cases. Some comparisons between symmetric and antisymmetric states are performed. By contrast with the case in Minkowski spacetime, we can reveal the effects of the cosmic string on the radiative properties of the entangled atoms.

  12. On the electromagnetic field and the Teukolsky relations in arbitrary space-times

    International Nuclear Information System (INIS)

    Coll, B.; Ferrando, J.J.

    1985-01-01

    The relations on the electromagnetic field obtained by Teukolsky for type D, vacuum space-times are studied. The role played by the maxwellian geometry of the basic tetrad is shown. It is proved that Teukolsky relations are, generically, incomplete. Once completed, their generalization to arbitrary space-times is given [fr

  13. Rotating spacetimes with asymptotic nonflat structure and the gyromagnetic ratio

    International Nuclear Information System (INIS)

    Aliev, Alikram N.

    2008-01-01

    In general relativity, the gyromagnetic ratio for all stationary, axisymmetric, and asymptotically flat Einstein-Maxwell fields is known to be g=2. In this paper, we continue our previous works of examination of this result for rotating charged spacetimes with asymptotic nonflat structure. We first consider two instructive examples of these spacetimes: The spacetime of a Kerr-Newman black hole with a straight cosmic string on its axis of symmetry and the Kerr-Newman Taub-NUT (Newman-Unti-Tamburino) spacetime. We show that for both spacetimes the gyromagnetic ratio g=2 independent of their asymptotic structure. We also extend this result to a general class of metrics which admit separation of variables for the Hamilton-Jacobi and wave equations. We proceed with the study of the gyromagnetic ratio in higher dimensions by considering the general solution for rotating charged black holes in minimal five-dimensional gauged supergravity. We obtain the analytic expressions for two distinct gyromagnetic ratios of these black holes that are associated with their two independent rotation parameters. These expressions reveal the dependence of the gyromagnetic ratio on both the curvature radius of the AdS background and the parameters of the black holes: The mass, electric charge, and two rotation parameters. We explore some special cases of interest and show that when the two rotation parameters are equal to each other and the rotation occurs at the maximum angular velocity, the gyromagnetic ratio g=4 regardless of the value of the electric charge. This agrees precisely with our earlier result obtained for general Kerr-AdS black holes with a test electric charge. We also show that in the Bogomol'nyi-Prasad-Sommerfield (BPS) limit the gyromagnetic ratio for a supersymmetric black hole with equal rotation parameters ranges between 2 and 4

  14. Scalar bosons under the influence of noninertial effects in the cosmic string spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Santos, L.C.N.; Barros, C.C. [Universidade Federal de Santa Catarina, Dept. de Fisica, CFM, Florianopolis, SC (Brazil)

    2017-03-15

    In this paper we present two different classes of solutions for the Klein-Gordon equation in the presence of a scalar potential under the influence of noninertial effects in the cosmic string spacetime. We show that noninertial effects restrict the physical region of the spacetime where the particle can be placed, and furthermore that the energy levels are shifted by these effects. In addition, we show that the presence of a Coulomb-like scalar potential allows the formation of bound states when the Klein-Gordon equation is considered in this kind of spacetime. (orig.)

  15. Cosmic microwave background and inflation in multi-fractional spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Calcagni, Gianluca [Instituto de Estructura de la Materia,CSIC, Serrano 121, 28006 Madrid (Spain); Kuroyanagi, Sachiko [Department of Physics, Nagoya University,Chikusa, Nagoya 464-8602 (Japan); Institute for Advanced Research, Nagoya University,Chikusa, Nagoya 464-8602 (Japan); Tsujikawa, Shinji [Department of Physics, Faculty of Science, Tokyo University of Science,1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)

    2016-08-18

    We use FIRAS and Planck 2015 data to place observational bounds on inflationary scenarios in multi-fractional spacetimes with q-derivatives. While a power-law expansion in the geometric time coordinate is subject to the usual constraints from the tensor-to-scalar ratio, model-independent best fits of the black-body and scalar spectra yield upper limits on the free parameters of the multi-fractal measure of the theory. When the measure describing the fractal spacetime geometry is non-oscillating, information on the CMB black-body spectrum places constraints on the theory independent from but weaker than those obtained from the Standard Model, astrophysical gravitational waves and gamma-ray bursts (GRBs). When log oscillations are included and the measure describes a discrete fractal spacetime at microscopic scales, we obtain the first observational constraints on the amplitudes of such oscillations and find, in general, strong constraints on the multi-scale geometry and on the dimension of space. These results complete the scan and reduction of the parameter space of the theory. Black-body bounds are obtained also for the theory with weighted derivatives.

  16. Space-Time Fractional Diffusion-Advection Equation with Caputo Derivative

    Directory of Open Access Journals (Sweden)

    José Francisco Gómez Aguilar

    2014-01-01

    Full Text Available An alternative construction for the space-time fractional diffusion-advection equation for the sedimentation phenomena is presented. The order of the derivative is considered as 0<β, γ≤1 for the space and time domain, respectively. The fractional derivative of Caputo type is considered. In the spatial case we obtain the fractional solution for the underdamped, undamped, and overdamped case. In the temporal case we show that the concentration has amplitude which exhibits an algebraic decay at asymptotically large times and also shows numerical simulations where both derivatives are taken in simultaneous form. In order that the equation preserves the physical units of the system two auxiliary parameters σx and σt are introduced characterizing the existence of fractional space and time components, respectively. A physical relation between these parameters is reported and the solutions in space-time are given in terms of the Mittag-Leffler function depending on the parameters β and γ. The generalization of the fractional diffusion-advection equation in space-time exhibits anomalous behavior.

  17. Cosmic microwave background and inflation in multi-fractional spacetimes

    International Nuclear Information System (INIS)

    Calcagni, Gianluca; Kuroyanagi, Sachiko; Tsujikawa, Shinji

    2016-01-01

    We use FIRAS and Planck 2015 data to place observational bounds on inflationary scenarios in multi-fractional spacetimes with q-derivatives. While a power-law expansion in the geometric time coordinate is subject to the usual constraints from the tensor-to-scalar ratio, model-independent best fits of the black-body and scalar spectra yield upper limits on the free parameters of the multi-fractal measure of the theory. When the measure describing the fractal spacetime geometry is non-oscillating, information on the CMB black-body spectrum places constraints on the theory independent from but weaker than those obtained from the Standard Model, astrophysical gravitational waves and gamma-ray bursts (GRBs). When log oscillations are included and the measure describes a discrete fractal spacetime at microscopic scales, we obtain the first observational constraints on the amplitudes of such oscillations and find, in general, strong constraints on the multi-scale geometry and on the dimension of space. These results complete the scan and reduction of the parameter space of the theory. Black-body bounds are obtained also for the theory with weighted derivatives.

  18. Special relativity and space-time geometry.

    Science.gov (United States)

    Molski, M.

    An attempt has been made to formulate the special theory of relativity in a space-time that is explicitly absolute and strictly determines the kinematical characteristics of a particle in uniform translational motion. The approach developed is consistent with Einstein's relativity and permits explanation of the inertia phenomenon.

  19. Dark Energy and Spacetime Symmetry

    Directory of Open Access Journals (Sweden)

    Irina Dymnikova

    2017-03-01

    Full Text Available The Petrov classification of stress-energy tensors provides a model-independent definition of a vacuum by the algebraic structure of its stress-energy tensor and implies the existence of vacua whose symmetry is reduced as compared with the maximally symmetric de Sitter vacuum associated with the Einstein cosmological term. This allows to describe a vacuum in general setting by dynamical vacuum dark fluid, presented by a variable cosmological term with the reduced symmetry which makes vacuum fluid essentially anisotropic and allows it to be evolving and clustering. The relevant solutions to the Einstein equations describe regular cosmological models with time-evolving and spatially inhomogeneous vacuum dark energy, and compact vacuum objects generically related to a dark energy: regular black holes, their remnants and self-gravitating vacuum solitons with de Sitter vacuum interiors—which can be responsible for observational effects typically related to a dark matter. The mass of objects with de Sitter interior is generically related to vacuum dark energy and to breaking of space-time symmetry. In the cosmological context spacetime symmetry provides a mechanism for relaxing cosmological constant to a needed non-zero value.

  20. Space-time least-squares Petrov-Galerkin projection in nonlinear model reduction.

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Youngsoo [Sandia National Laboratories (SNL-CA), Livermore, CA (United States). Extreme-scale Data Science and Analytics Dept.; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carlberg, Kevin Thomas [Sandia National Laboratories (SNL-CA), Livermore, CA (United States). Extreme-scale Data Science and Analytics Dept.

    2017-09-01

    Our work proposes a space-time least-squares Petrov-Galerkin (ST-LSPG) projection method for model reduction of nonlinear dynamical systems. In contrast to typical nonlinear model-reduction methods that first apply Petrov-Galerkin projection in the spatial dimension and subsequently apply time integration to numerically resolve the resulting low-dimensional dynamical system, the proposed method applies projection in space and time simultaneously. To accomplish this, the method first introduces a low-dimensional space-time trial subspace, which can be obtained by computing tensor decompositions of state-snapshot data. The method then computes discrete-optimal approximations in this space-time trial subspace by minimizing the residual arising after time discretization over all space and time in a weighted ℓ2-norm. This norm can be de ned to enable complexity reduction (i.e., hyper-reduction) in time, which leads to space-time collocation and space-time GNAT variants of the ST-LSPG method. Advantages of the approach relative to typical spatial-projection-based nonlinear model reduction methods such as Galerkin projection and least-squares Petrov-Galerkin projection include: (1) a reduction of both the spatial and temporal dimensions of the dynamical system, (2) the removal of spurious temporal modes (e.g., unstable growth) from the state space, and (3) error bounds that exhibit slower growth in time. Numerical examples performed on model problems in fluid dynamics demonstrate the ability of the method to generate orders-of-magnitude computational savings relative to spatial-projection-based reduced-order models without sacrificing accuracy.

  1. Eruptive Massive Vector Particles of 5-Dimensional Kerr-Gödel Spacetime

    Science.gov (United States)

    Övgün, A.; Sakalli, I.

    2018-02-01

    In this paper, we investigate Hawking radiation of massive spin-1 particles from 5-dimensional Kerr-Gödel spacetime. By applying the WKB approximation and the Hamilton-Jacobi ansatz to the relativistic Proca equation, we obtain the quantum tunneling rate of the massive vector particles. Using the obtained tunneling rate, we show how one impeccably computes the Hawking temperature of the 5-dimensional Kerr-Gödel spacetime.

  2. Topological properties and global structure of space-time

    International Nuclear Information System (INIS)

    Bergmann, P.G.; De Sabbata, V.

    1986-01-01

    This book presents information on the following topics: measurement of gravity and gauge fields using quantum mechanical probes; gravitation at spatial infinity; field theories on supermanifolds; supergravities and Kaluza-Klein theories; boundary conditions at spatial infinity; singularities - global and local aspects; matter at the horizon of the Schwarzschild black hole; introluction to string theories; cosmic censorship and the strengths of singularities; conformal quantisation in singular spacetimes; solar system tests in transition; integration and global aspects of supermanifolds; the space-time of the bimetric general relativity theory; gravitation without Lorentz invariance; a uniform static magnetic field in Kaluza-Klein theory; introduction to topological geons; and a simple model of a non-asymptotically flat Schwarzschild black hole

  3. Convexity and the Euclidean Metric of Space-Time

    Directory of Open Access Journals (Sweden)

    Nikolaos Kalogeropoulos

    2017-02-01

    Full Text Available We address the reasons why the “Wick-rotated”, positive-definite, space-time metric obeys the Pythagorean theorem. An answer is proposed based on the convexity and smoothness properties of the functional spaces purporting to provide the kinematic framework of approaches to quantum gravity. We employ moduli of convexity and smoothness which are eventually extremized by Hilbert spaces. We point out the potential physical significance that functional analytical dualities play in this framework. Following the spirit of the variational principles employed in classical and quantum Physics, such Hilbert spaces dominate in a generalized functional integral approach. The metric of space-time is induced by the inner product of such Hilbert spaces.

  4. Quasi-local mass in the covariant Newtonian spacetime

    International Nuclear Information System (INIS)

    Wu, Y-H; Wang, C-H

    2008-01-01

    In general relativity, quasi-local energy-momentum expressions have been constructed from various formulae. However, the Newtonian theory of gravity gives a well-known and a unique quasi-local mass expression (surface integration). Since geometrical formulation of Newtonian gravity has been established in the covariant Newtonian spacetime, it provides a covariant approximation from relativistic to Newtonian theories. By using this approximation, we calculate the Komar integral, the Brown-York quasi-local energy and the Dougan-Mason quasi-local mass in the covariant Newtonian spacetime. It turns out that the Komar integral naturally gives the Newtonian quasi-local mass expression; however, further conditions (spherical symmetry) need to be made for Brown-York and Dougan-Mason expressions

  5. On the geodesic incompleteness of spacetimes containing marginally (outer) trapped surfaces

    International Nuclear Information System (INIS)

    Costa e Silva, I P

    2012-01-01

    In a recent paper, Eichmair et al (2012 arXiv:1204.0278v1) have proved a Gannon–Lee-type singularity theorem based on the existence of marginally outer trapped surfaces (MOTS) on noncompact initial data sets for globally hyperbolic spacetimes. A natural question is whether the corresponding incomplete geodesics could still be complete in a possible non-globally hyperbolic extension of spacetime. In this paper, some variants of their result are given with weaker causality assumptions, thus suggesting that the answer is generically negative, at least if the putative extension has no closed timelike curves. We consider first marginally trapped surfaces (MTS) in chronological spacetimes, introducing the natural notion of a generic MTS, a notion also applicable to MOTS. In particular, a Hawking–Penrose-type singularity theorem is proven in chronological spacetimes with dimension n ⩾ 3 containing a generic MTS. Such surfaces naturally arise as cross-sections of quasi-local generalizations of black hole horizons, such as dynamical and trapping horizons, and we discuss some natural conditions which ensure the existence of MTS in initial data sets. Nevertheless, much of the more recent literature has focused on MOTS rather than MTS as quasi-local substitutes for the description of black holes, as they are arguably more natural and easier to handle in a number of situations. It is therefore pertinent to ask to what extent one can deduce the existence of singularities in the presence of MOTS alone. We address this issue and show that singularities indeed arise in the presence of generic MOTS, but under slightly stronger causal conditions than those in the case of MTS (specifically, for causally simple spacetimes). On the other hand, we show that with additional conditions on the MOTS itself, namely that it is either the boundary of a compact spatial region, or strictly stable in a suitable sense, a Penrose–Hawking-type singularity theorem can still be established for

  6. Spherically symmetric cosmological spacetimes with dust and radiation — numerical implementation

    International Nuclear Information System (INIS)

    Lim, Woei Chet; Regis, Marco; Clarkson, Chris

    2013-01-01

    We present new numerical cosmological solutions of the Einstein Field Equations. The spacetime is spherically symmetric with a source of dust and radiation approximated as a perfect fluid. The dust and radiation are necessarily non-comoving due to the inhomogeneity of the spacetime. Such a model can be used to investigate non-linear general relativistic effects present during decoupling or big-bang nucleosynthesis, as well as for investigating void models of dark energy with isocurvature degrees of freedom. We describe the full evolution of the spacetime as well as the redshift and luminosity distance for a central observer. After demonstrating accuracy of the code, we consider a few example models, and demonstrate the sensitivity of the late time model to the degree of inhomogeneity of the initial radiation contrast

  7. Spherically symmetric cosmological spacetimes with dust and radiation — numerical implementation

    Science.gov (United States)

    Lim, Woei Chet; Regis, Marco; Clarkson, Chris

    2013-10-01

    We present new numerical cosmological solutions of the Einstein Field Equations. The spacetime is spherically symmetric with a source of dust and radiation approximated as a perfect fluid. The dust and radiation are necessarily non-comoving due to the inhomogeneity of the spacetime. Such a model can be used to investigate non-linear general relativistic effects present during decoupling or big-bang nucleosynthesis, as well as for investigating void models of dark energy with isocurvature degrees of freedom. We describe the full evolution of the spacetime as well as the redshift and luminosity distance for a central observer. After demonstrating accuracy of the code, we consider a few example models, and demonstrate the sensitivity of the late time model to the degree of inhomogeneity of the initial radiation contrast.

  8. Nonextreme and ultraextreme domain walls and their global space-times

    International Nuclear Information System (INIS)

    Cvetic, M.; Griffies, S.; Soleng, H.H.

    1993-01-01

    Nonextreme walls (bubbles with two insides) and ultraextreme walls (bubbles of false vacuum decay) are discussed. Their respective energy densities are higher and lower than that of the corresponding extreme (supersymmetric), planar domain wall. These singularity free space-times exhibit nontrivial causal structure analogous to certain nonextreme black holes. We focus on anti--de Sitter--Minkowski walls and comment on Minkowski-Minkowski walls with trivial extreme limit, as well as walls adjacent to de Sitter space-times with no extreme limit

  9. Topology and isometries of the de Sitter space-time

    International Nuclear Information System (INIS)

    Mitskevich, N.V.; Senin, Yu.E.

    1982-01-01

    Spaces with a constant four-dimensional curvature, which are locally isometric to the de Sitter space-time but differing from it in topology are considered. The de Sitter spaces are considered in coordinates fitted at best for introduction of topology for three cross sections: S 3 , S 1 x S 2 , S 1 x S 2 x S 3 . It is shown that the de Sitter space-time covered by the family of layers, each of them is topologically identical, may be covered by another family of topologically identical layers. But layers in these families will have different topology

  10. The scalar wave equation in a Schwarzschild space-time

    International Nuclear Information System (INIS)

    Schmidt, B.G.; Stewart, J.M.

    1979-01-01

    This paper studies the asymptotic behaviour of solutions of the zero rest mass scalar wave equation in the Schwarzschild space-time in a neighbourhood of spatial infinity which includes parts of future and pass null infinity. The behaviour of such fields is essentially different from that which occurs in a flat space-time. In particular fields which have a Bondi-type expansion in powers of 'r(-1)' near past null infinity do not have such an expansion near future null infinity. Further solutions which have physically reasonable Cauchy data probably fail to have Bondi-type expansions near null infinity. (author)

  11. On quantization of free fields in stationary space-times

    International Nuclear Information System (INIS)

    Moreno, C.

    1977-01-01

    In Section 1 the structure of the infinite-dimensional Hamiltonian system described by the Klein-Gordon equation (free real scalar field) in stationary space-times with closed space sections, is analysed, an existence and uniqueness theorem is given for the Lichnerowicz distribution kernel G 1 together with its proper Fourier expansion, and the Hilbert spaces of frequency-part solutions defined by means of G 1 are constructed. In Section 2 an analysis, a theorem and a construction similar to the above are formulated for the free real field spin 1, mass m>0, in one kind of static space-times. (Auth.)

  12. Lorentz covariant tempered distributions in two-dimensional space-time

    International Nuclear Information System (INIS)

    Zinov'ev, Yu.M.

    1989-01-01

    The problem of describing Lorentz covariant distributions without any spectral condition has hitherto remained unsolved even for two-dimensional space-time. Attempts to solve this problem have already been made. Zharinov obtained an integral representation for the Laplace transform of Lorentz invariant distributions with support in the product of two-dimensional future light cones. However, this integral representation does not make it possible to obtain a complete description of the corresponding Lorentz invariant distributions. In this paper the author gives a complete description of Lorentz covariant distributions for two-dimensional space-time. No spectral conditions is assumed

  13. Trajectory data analyses for pedestrian space-time activity study.

    Science.gov (United States)

    Qi, Feng; Du, Fei

    2013-02-25

    It is well recognized that human movement in the spatial and temporal dimensions has direct influence on disease transmission(1-3). An infectious disease typically spreads via contact between infected and susceptible individuals in their overlapped activity spaces. Therefore, daily mobility-activity information can be used as an indicator to measure exposures to risk factors of infection. However, a major difficulty and thus the reason for paucity of studies of infectious disease transmission at the micro scale arise from the lack of detailed individual mobility data. Previously in transportation and tourism research detailed space-time activity data often relied on the time-space diary technique, which requires subjects to actively record their activities in time and space. This is highly demanding for the participants and collaboration from the participants greatly affects the quality of data(4). Modern technologies such as GPS and mobile communications have made possible the automatic collection of trajectory data. The data collected, however, is not ideal for modeling human space-time activities, limited by the accuracies of existing devices. There is also no readily available tool for efficient processing of the data for human behavior study. We present here a suite of methods and an integrated ArcGIS desktop-based visual interface for the pre-processing and spatiotemporal analyses of trajectory data. We provide examples of how such processing may be used to model human space-time activities, especially with error-rich pedestrian trajectory data, that could be useful in public health studies such as infectious disease transmission modeling. The procedure presented includes pre-processing, trajectory segmentation, activity space characterization, density estimation and visualization, and a few other exploratory analysis methods. Pre-processing is the cleaning of noisy raw trajectory data. We introduce an interactive visual pre-processing interface as well as an

  14. Differential Space-Time Modulation for Wideband Wireless Networks

    National Research Council Canada - National Science Library

    Li, Hongbin

    2006-01-01

    .... The objective was to provide full spatio-spectral diversity and coding gain at affordable decoding complexity without the burden of estimating the underlying space-time frequency-selective channel...

  15. QCD in a nonsimply connected spacetime: The topological origin of flavours and topological gluon mass generation

    International Nuclear Information System (INIS)

    Goncharov, Yu.P.

    1982-01-01

    In a spacetime having a nontrivial topology QCD may have properties which are absent for QCD in Minkowski spacetime. Two new possibilities for QCD are discussed by the example of spacetime with topology R x (S 1 ) 3 and flat metric: the topological origin of flavours and topological gluon mass generation. (orig.)

  16. Measuring space-time fuzziness with high energy γ-ray detectors

    Directory of Open Access Journals (Sweden)

    Cattaneo Paolo Walter

    2017-01-01

    Full Text Available There are several suggestions to probe space-time fuzziness (also known as space-time foam due to the quantum mechanics nature of space-time. These effects are predicted to be very small, being related to the Planck length, so that the only hope to experimentally detect them is to look at particles propagating along cosmological distances. Some phenomenological approaches suggest that photons originating from pointlike sources at cosmological distance experience path length fluctuation that could be detected. Also the direction of flight of such photons may be subject to a dispersion such that the image of a point-like source is blurred and detected as a disk. An experimentally accessible signature may be images of point-like sources larger that the size due to the Point Spread Function of the instrument. This additional broadening should increase with distance and photon energy. Some concrete examples that can be studied with the AGILE and FERMI-LAT γ -ray satellite experiments are discussed.

  17. Brownian motion in Robertson-Walker spacetimes from electromagnetic vacuum fluctuations

    International Nuclear Information System (INIS)

    Bessa, Carlos H. G.; Bezerra, V. B.; Ford, L. H.

    2009-01-01

    We consider the effects of the vacuum fluctuations of a quantized electromagnetic field on particles in an expanding universe. We find that these particles typically undergo Brownian motion and acquire a nonzero mean squared velocity that depends on the scale factor of the universe. This Brownian motion can be interpreted as due to noncancellation of anticorrelated vacuum fluctuations in the time-dependent background spacetime. Alternatively, one can interpret this effect as the particles acquiring energy from the background spacetime geometry, a phenomenon that cannot occur in a static spacetime. We treat several types of coupling between the electromagnetic field and the particles and several model universes. We also consider both free particles, which, on the average, move on geodesics, and particles in bound systems. There are significant differences between these two cases, which illustrates that nongeodesic motion alters the effects of the vacuum fluctuations. We discuss the possible applications of this Brownian motion effect to cosmological scenarios.

  18. Quantum field theory in curved spacetime and black hole thermodynamics

    CERN Document Server

    Wald, Robert M

    1994-01-01

    In this book, Robert Wald provides a coherent, pedagogical introduction to the formulation of quantum field theory in curved spacetime. He begins with a treatment of the ordinary one-dimensional quantum harmonic oscillator, progresses through the construction of quantum field theory in flat spacetime to possible constructions of quantum field theory in curved spacetime, and, ultimately, to an algebraic formulation of the theory. In his presentation, Wald disentangles essential features of the theory from inessential ones (such as a particle interpretation) and clarifies relationships between various approaches to the formulation of the theory. He also provides a comprehensive, up-to-date account of the Unruh effect, the Hawking effect, and some of its ramifications. In particular, the subject of black hole thermodynamics, which remains an active area of research, is treated in depth. This book will be accessible to students and researchers who have had introductory courses in general relativity and quantum f...

  19. Quantum field theory of the universe in the Kantowski-Sachs space-time

    International Nuclear Information System (INIS)

    Shen, Y.; Tan, Z.

    1996-01-01

    In this paper, the quantum field theory of the universe in the Kantowski-Sachs space-time is studied. An analogue of proceedings in quantum field theory is applied in curved space-time to the Kantowski-Sachs space-time, obtaining the wave function of the universe satisfied the Wheeler-DeWitt equation. Regarding the wave function as a universe field in the minisuperspace, the authors can not only overcome the difficulty of the probabilistic interpretation in quantum cosmology, but also come to the conclusion that there is multiple production of universes. The average number of the produced universes from nothing is calculated. The distribution of created universe is given. It is the Planckian distribution

  20. From Discrete Space-Time to Minkowski Space: Basic Mechanisms, Methods and Perspectives

    Science.gov (United States)

    Finster, Felix

    This survey article reviews recent results on fermion systems in discrete space-time and corresponding systems in Minkowski space. After a basic introduction to the discrete setting, we explain a mechanism of spontaneous symmetry breaking which leads to the emergence of a discrete causal structure. As methods to study the transition between discrete space-time and Minkowski space, we describe a lattice model for a static and isotropic space-time, outline the analysis of regularization tails of vacuum Dirac sea configurations, and introduce a Lorentz invariant action for the masses of the Dirac seas. We mention the method of the continuum limit, which allows to analyze interacting systems. Open problems are discussed.

  1. On the existence of conformal Killing vectors for ST-homogeneous Godel type space-times

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Y.; Patino, A.; Percoco, U. [Laboratorio de Fisica Teorica, Facultad de Ciencias Universidad de los Andes, Merida 5101 (Venezuela); Tsamparlis, M. [seccion de Astronomia-Astrofisica-Mecanica, Universidad de Atenas, Atenas 157 83 (Greece)

    2006-07-01

    Tsamparlis with another authors have developed a systematic method for computing of the conformal algebra of 1+3 space-times. The proper CKV's are found in terms of gradient CKVs of the 3-space. In this paper we apply Tsamparlis' results to the study CKVs of the Godel ST-Homogeneous type spacetimes. We find that the only space-time admitting proper CKV's is the ST-Homogeneous Godel type with m{sup 2} = 4{omega}{sup 2} (RT). (Author)

  2. Space-time modeling of timber prices

    Science.gov (United States)

    Mo Zhou; Joseph Buongriorno

    2006-01-01

    A space-time econometric model was developed for pine sawtimber timber prices of 21 geographically contiguous regions in the southern United States. The correlations between prices in neighboring regions helped predict future prices. The impulse response analysis showed that although southern pine sawtimber markets were not globally integrated, local supply and demand...

  3. Type III and N universal spacetimes

    Czech Academy of Sciences Publication Activity Database

    Hervik, S.; Pravda, Vojtěch; Pravdová, Alena

    2014-01-01

    Roč. 31, č. 21 (2014), s. 215005 ISSN 0264-9381 R&D Projects: GA ČR GA13-10042S Institutional support: RVO:67985840 Keywords : universal spacetimes * generalized gravity * exact solutions Subject RIV: BA - General Mathematics Impact factor: 3.168, year: 2014 http://iopscience.iop.org/0264-9381/31/21/215005/article

  4. Quantum energy-momentum tensor in space-time with time-like killing vector

    International Nuclear Information System (INIS)

    Frolov, V.P.; Zel'nikov, A.I.

    1987-01-01

    An approximate expression for the vacuum and thermal average μν > ren of the stress-energy tensor of conformal massless fields in static Ricci-flat space-times is constructed. The application of this approximation to the space-time of a Schwarzschild black hole and its relation to the Page-Brown-Ottewill approximation are briefly discussed. (orig.)

  5. Mass change and motion of a scalar charge in cosmological spacetimes

    International Nuclear Information System (INIS)

    Haas, Roland; Poisson, Eric

    2005-01-01

    Continuing previous work reported in an earlier paper (Burko, Harte and Poisson 2002 Phys. Rev. D 65 124006), we calculate the self-force acting on a point scalar charge in a wide class of cosmological spacetimes. The self-force produces two types of effect. The first is a time-changing inertial mass, and this is calculated exactly for a particle at rest relative to the cosmological fluid. We show that for certain cosmological models, the mass decreases and then increases back to its original value. For all other models except de Sitter spacetime, the mass is restored only to a fraction of its original value. For de Sitter spacetime the mass steadily decreases. The second effect is a deviation relative to geodesic motion, and we calculate this for a charge that moves slowly relative to the dust in a matter-dominated cosmology. We show that the net effect of the self-force is to push on the particle. We show that this is not an artefact of the scalar theory: the electromagnetic self-force acting on an electrically charged particle also pushes on the particle. The paper concludes with a demonstration that the pushing effect can also occur in the context of slow-motion electrodynamics in flat spacetime

  6. Nonminimally coupled scalar fields may not curve spacetime

    International Nuclear Information System (INIS)

    Ayon-Beato, Eloy; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge

    2005-01-01

    It is shown that flat spacetime can be dressed with a real scalar field that satisfies the nonlinear Klein-Gordon equation without curving spacetime. Surprisingly, this possibility arises from the nonminimal coupling of the scalar field with the curvature, since a footprint of the coupling remains in the energy-momentum tensor even when gravity is switched off. Requiring the existence of solutions with vanishing energy-momentum tensor fixes the self-interaction potential as a local function of the scalar field depending on two coupling constants. The solutions describe shock waves and, in the Euclidean continuation, instanton configurations in any dimension. As a consequence of this effect, the tachyonic solutions of the free massive Klein-Gordon equation become part of the vacuum

  7. Space-Time Foam in 2D and the Sum Over Topologies

    International Nuclear Information System (INIS)

    Loll, R.; Westra, W.

    2003-01-01

    It is well-known that the sum over topologies in quantum gravity is ill-defined, due to a super-exponential growth of the number of geometries as a function of the space-time volume, leading to a badly divergent gravitational path integral. Not even in dimension 2, where a non-perturbative quantum gravity theory can be constructed explicitly from a (regularized) path integral, has this problem found a satisfactory solution. In the present work, we extend a previous 2d Lorentzian path integral, regulated in terms of Lorentzian random triangulations, to include space-times with an arbitrary number of handles. We show that after the imposition of physically motivated causality constraints, the combined sum over geometries and topologies is well-defined and possesses a continuum limit which yields a concrete model of space-time foam in two dimensions. (author)

  8. Space-Time Data Fusion

    Science.gov (United States)

    Braverman, Amy; Nguyen, Hai; Olsen, Edward; Cressie, Noel

    2011-01-01

    Space-time Data Fusion (STDF) is a methodology for combing heterogeneous remote sensing data to optimally estimate the true values of a geophysical field of interest, and obtain uncertainties for those estimates. The input data sets may have different observing characteristics including different footprints, spatial resolutions and fields of view, orbit cycles, biases, and noise characteristics. Despite these differences all observed data can be linked to the underlying field, and therefore the each other, by a statistical model. Differences in footprints and other geometric characteristics are accounted for by parameterizing pixel-level remote sensing observations as spatial integrals of true field values lying within pixel boundaries, plus measurement error. Both spatial and temporal correlations in the true field and in the observations are estimated and incorporated through the use of a space-time random effects (STRE) model. Once the models parameters are estimated, we use it to derive expressions for optimal (minimum mean squared error and unbiased) estimates of the true field at any arbitrary location of interest, computed from the observations. Standard errors of these estimates are also produced, allowing confidence intervals to be constructed. The procedure is carried out on a fine spatial grid to approximate a continuous field. We demonstrate STDF by applying it to the problem of estimating CO2 concentration in the lower-atmosphere using data from the Atmospheric Infrared Sounder (AIRS) and the Japanese Greenhouse Gasses Observing Satellite (GOSAT) over one year for the continental US.

  9. Conformal Killing vectors in Robertson-Walker spacetimes

    International Nuclear Information System (INIS)

    Maartens, R.; Maharaj, S.d.

    1986-01-01

    It is well known that Robertson-Walker spacetimes admit a conformal Killingl vector normal to the spacelike homogeneous hypersurfaces. Because these spacetimes are conformally flat, there are a further eight conformal Killing vectors, which are neither normal nor tangent to the homogeneous hypersurfaces. The authors find these further conformal Killing vectors and the Lie algebra of the full G 15 of conformal motions. Conditions on the metric scale factor are determined which reduce some of the conformal Killing vectors to homothetic Killing vectors or Killing vectors, allowing one to regain in a unified way the known special geometries. The non-normal conformal Killing vectors provide a counter-example to show that conformal motions do not, in general, map a fluid flow conformally. These non-normal vectors are also used to find the general solution of the null geodesic equation and photon Liouville equation. (author)

  10. Space-time modeling of electricity spot prices

    DEFF Research Database (Denmark)

    Abate, Girum Dagnachew; Haldrup, Niels

    In this paper we derive a space-time model for electricity spot prices. A general spatial Durbin model that incorporates the temporal as well as spatial lags of spot prices is presented. Joint modeling of space-time effects is necessarily important when prices and loads are determined in a network...... in the spot price dynamics. Estimation of the spatial Durbin model show that the spatial lag variable is as important as the temporal lag variable in describing the spot price dynamics. We use the partial derivatives impact approach to decompose the price impacts into direct and indirect effects and we show...... that price effects transmit to neighboring markets and decline with distance. In order to examine the evolution of the spatial correlation over time, a time varying parameters spot price spatial Durbin model is estimated using recursive estimation. It is found that the spatial correlation within the Nord...

  11. El Naschie's Cantorian space-time and general relativity by means of Barbilian's group. A Cantorian fractal axiomatic model of space-time

    International Nuclear Information System (INIS)

    Gottlieb, I.; Agop, M.; Jarcau, M.

    2004-01-01

    One builds the vacuum metrics of the stationary electromagnetic field through the complex potential model. There are thus emphasized both a variational principle, independent on the Ricci tensor, and some internal symmetries of the vacuum solutions. One shows that similar results may be obtained using the Barbiliant's group. By analytical continuation of a Barbilian transformation the link between the fixed points of the modular groups of the vacuum and the golden mean PHI=(1/(1+PHI))=(√5-1)/2 of ε (∞) space-time is established. Finally, a Cantorian fractal axiomatic model of the space-time is presented. The model is explained using a set of coupled equations which may describe the self organizing processes at the solid-liquid, plasma-plasma, and superconductor-superconductor interfaces

  12. Using adaptive antenna array in LTE with MIMO for space-time processing

    Directory of Open Access Journals (Sweden)

    Abdourahamane Ahmed Ali

    2015-04-01

    Full Text Available The actual methods of improvement the existent wireless transmission systems are proposed. Mathematical apparatus is considered and proved by models, graph of which are shown, using the adaptive array antenna in LTE with MIMO for space-time processing. The results show that improvements, which are joined with space-time processing, positively reflects on LTE cell size or on throughput

  13. Solutions to the maximal spacelike hypersurface equation in generalized Robertson-Walker spacetimes

    Directory of Open Access Journals (Sweden)

    Henrique F. de Lima

    2018-03-01

    Full Text Available We apply some generalized maximum principles for establishing uniqueness and nonexistence results concerning maximal spacelike hypersurfaces immersed in a generalized Robertson-Walker (GRW spacetime, which is supposed to obey the so-called timelike convergence condition (TCC. As application, we study the uniqueness and nonexistence of entire solutions of a suitable maximal spacelike hypersurface equation in GRW spacetimes obeying the TCC.

  14. Joint Estimation and Decoding of Space-Time Trellis Codes

    Directory of Open Access Journals (Sweden)

    Zhang Jianqiu

    2002-01-01

    Full Text Available We explore the possibility of using an emerging tool in statistical signal processing, sequential importance sampling (SIS, for joint estimation and decoding of space-time trellis codes (STTC. First, we provide background on SIS, and then we discuss its application to space-time trellis code (STTC systems. It is shown through simulations that SIS is suitable for joint estimation and decoding of STTC with time-varying flat-fading channels when phase ambiguity is avoided. We used a design criterion for STTCs and temporally correlated channels that combats phase ambiguity without pilot signaling. We have shown by simulations that the design is valid.

  15. The omega effect as a discriminant for spacetime foam

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Sarben [Department of Physics, King' s College London, University of London, Strand, London WC2R 2LS (United Kingdom)

    2008-08-01

    If there is CPT violation, the nature of entanglement for neutral meson pairs produced in meson factories may, on general grounds, be affected. The new form of entanglement is the omega effect. Gravitational decoherence, due to spacetime foam, may be one route for deviations from CPT invariance. Two models of spacetime foam are considered. One, based on non-critical string theory, is able to produce the new correlations in a natural way. The other, based on the paradigm of thermal-like baths, is shown to be surprisingly resistant to producing the effect even on exercising a total freedom of choice for the state of the bath.

  16. Quantum fields in a big-crunch-big-bang spacetime

    International Nuclear Information System (INIS)

    Tolley, Andrew J.; Turok, Neil

    2002-01-01

    We consider quantum field theory on a spacetime representing the big-crunch-big-bang transition postulated in ekpyrotic or cyclic cosmologies. We show via several independent methods that an essentially unique matching rule holds connecting the incoming state, in which a single extra dimension shrinks to zero, to the outgoing state in which it reexpands at the same rate. For free fields in our construction there is no particle production from the incoming adiabatic vacuum. When interactions are included the particle production for fixed external momentum is finite at the tree level. We discuss a formal correspondence between our construction and quantum field theory on de Sitter spacetime

  17. Homothetic matter collineations of LRS Bianchi type I spacetimes

    Science.gov (United States)

    Hussain, Tahir; Rahim, Waqas

    2017-12-01

    A complete classification of locally rotationally symmetric (LRS) Bianchi type I spacetimes via homothetic matter collineations (HMCs) is presented. For non-degenerate energy-momentum tensor, a general form of the vector field generating HMCs is found, subject to some integrability conditions. Solving the integrability conditions in different cases, it is found that the LRS Bianchi type I spacetimes admit 6-, 7-, 8-, 10- or 11-dimensional Lie algebra of HMCs. When the energy-momentum tensor is degenerate, two cases give 6 and 11 HMCs, while the remaining cases produce infinite number of HMCs. Some LRS Bianchi type I metrics are provided admitting HMCs.

  18. Structure of the gravitational field at spatial infinity. II. Asymptotically Minkowskian space--times

    International Nuclear Information System (INIS)

    Persides, S.

    1980-01-01

    A new formulation is established for the study of the asymptotic structure at spatial infinity of asymptotically Minkowskian space--times. First, the concept of an asymptotically simple space--time at spatial infinity is defined. This is a (physical) space--time (M,g) which can be imbedded in an unphysical space--time (M,g) with a boundary S, a C/sup infinity/ metric g and a C/sup infinity/ scalar field Ω such that Ω=0 on S, Ω>0 on M-S, and g/sup munu/ + g/sup mulambda/ g/sup nurho/ Ω/sub vertical-barlambda/ Ω/sub vertical-barrho/=Ω -2 g/sup murho/ +Ω -4 g/sup mulambda/ g/sup nurho/ Ω/sub ;/lambda Ω/sub ;/rho on M. Then an almost asymptotically flat space--time (AAFS) is defined as an asymptotically simple space--time for which S is isometric to the unit timelike hyperboloid and g/sup munu/ Ω/sub vertical-barmu/ Ω/sub vertical-barnu/ =Ω -4 g/sup munu/ Ω/sub ;/μΩ/sub ;/ν=-1 on S. Equivalent definitions are given in terms of the existence of coordinate systems in which g/sub munu/ or g/sub munu/ have simple explicitly given forms. The group of asymptotic symmetries of (M,g) is studied and is found to be isomorphic to the Lorentz group. The asymptotic behavior of an AAFS is studied. It is proven that the conformal metric g/sub munu/=Ω 2 g/sub munu/ gives C/sup lambdamurhonu/=0, Ω -1 C/sup lambdamurhonu/ Ω/sub ;/μ =0, Ω -2 C/sup lambdamurhonu/ Ω/sub ;/μ Ω/sub ;/ν=0 on S

  19. Global structure of spacetimes

    International Nuclear Information System (INIS)

    Geroch, R.; Horowitz, G.T.

    1979-01-01

    An extended introduction is followed by a section entitled: 'what is the topology of our universe', in which such topics are considered as the underlying manifold, the qualitative behaviour of the light-cones, causal structure, and determinism. In the next section - 'is our universe singular', the famous singularity theorems are discussed. Finally, under 'how noticeably singular is our universe', the issue of cosmic censorship is discussed, i.e. that of whether or not one expects in certain circumstances that surviving observers will be able to detect singular behaviour in spacetime. (U.K.)

  20. Spacetime representation of topological phononics

    Science.gov (United States)

    Deymier, Pierre A.; Runge, Keith; Lucas, Pierre; Vasseur, Jérôme O.

    2018-05-01

    Non-conventional topology of elastic waves arises from breaking symmetry of phononic structures either intrinsically through internal resonances or extrinsically via application of external stimuli. We develop a spacetime representation based on twistor theory of an intrinsic topological elastic structure composed of a harmonic chain attached to a rigid substrate. Elastic waves in this structure obey the Klein–Gordon and Dirac equations and possesses spinorial character. We demonstrate the mapping between straight line trajectories of these elastic waves in spacetime and the twistor complex space. The twistor representation of these Dirac phonons is related to their topological and fermion-like properties. The second topological phononic structure is an extrinsic structure composed of a one-dimensional elastic medium subjected to a moving superlattice. We report an analogy between the elastic behavior of this time-dependent superlattice, the scalar quantum field theory and general relativity of two types of exotic particle excitations, namely temporal Dirac phonons and temporal ghost (tachyonic) phonons. These phonons live on separate sides of a two-dimensional frequency space and are delimited by ghost lines reminiscent of the conventional light cone. Both phonon types exhibit spinorial amplitudes that can be measured by mapping the particle behavior to the band structure of elastic waves.

  1. Investigation of unstable periodic space-time states in distributed active system with supercritical current

    International Nuclear Information System (INIS)

    Koronovskij, A.A.; Rempen, I.S.; Khramov, A.E.

    2003-01-01

    The set of the unstable periodic space-time states, characterizing the chaotic space-time dynamics of the electron beam with the supercritical current in the Pierce diode is discussed. The Lyapunov indicators of the revealed instable space-time states of the chaotic dynamics of the distributed self-excited system are calculated. It is shown that change in the set of the unstable periodic states in dependence on the Pierce parameter is determined by change in the various orbits stability, which is demonstrated by the values of senior Lyapunov unstable state index [ru

  2. Separation of massive field equation of arbitrary spin in Robertson-Walker space-time

    International Nuclear Information System (INIS)

    Zecca, A.

    2006-01-01

    The massive spin-(3/2) field equation is explicitly integrated in the Robertson-Walker space-time by the Newman Penrose formalism. The solution is obtained by extending a separation procedure previously used to solve the spin-1 equation. The separated time dependence results in two coupled equations depending on the cosmological background evolution. The separated angular equations are explicitly integrated and the eigenvalues determined. The separated radial equations are integrated in the flat space-time case. The separation method of solution is then generalized, by induction, to prove the main result, that is the separability of the massive field equations of arbitrary spin in the Robertson-Walker space-time

  3. Strings in arbitrary space-time dimensions

    International Nuclear Information System (INIS)

    Fabbrichesi, M.E.; Leviant, V.M.

    1988-01-01

    A modified approach to the theory of a quantum string is proposed. A discussion of the gauge fixing of conformal symmetry by means of Kac-Moody algebrae is presented. Virasoro-like operators are introduced to cancel the conformal anomaly in any number of space-time dimensions. The possibility of massless states in the spectrum is pointed out. 18 refs

  4. Chaos in Kundt Type-III Spacetimes

    International Nuclear Information System (INIS)

    Sakalli, I.; Halilsoy, M.

    2011-01-01

    We consider geodesic motion in a particular Kundt type-III spacetime in which the Einstein-Yang-Mills equations admit the solutions. On a particular surface as constraint, we project the geodesics into the (x, y) plane and treat the problem as a two-dimensional one. Our numerical study shows that chaotic behavior emerges under reasonable conditions. (general)

  5. Quantum teleportation and Kerr-Newman spacetime

    Institute of Scientific and Technical Information of China (English)

    Ge Xian-Hui; Shen You-Gen

    2005-01-01

    We consider the teleportation in the background of Kerr-Newman spacetime. Because of the Hawking effect, the fidelity of the teleportation is reduced. The results also show the fidelity is closely related to the mass, charge and rotating velocity of the black hole: high fidelity can be reached for massive, slowly rotating Kerr-Newman black holes.

  6. The Thermal Entropy Density of Spacetime

    Directory of Open Access Journals (Sweden)

    Rongjia Yang

    2013-01-01

    Full Text Available Introducing the notion of thermal entropy density via the first law of thermodynamics and assuming the Einstein equation as an equation of thermal state, we obtain the thermal entropy density of any arbitrary spacetime without assuming a temperature or a horizon. The results confirm that there is a profound connection between gravity and thermodynamics.

  7. Application of hierarchical clustering method to classify of space-time rainfall patterns

    Science.gov (United States)

    Yu, Hwa-Lung; Chang, Tu-Je

    2010-05-01

    Understanding the local precipitation patterns is essential to the water resources management and flooding mitigation. The precipitation patterns can vary in space and time depending upon the factors from different spatial scales such as local topological changes and macroscopic atmospheric circulation. The spatiotemporal variation of precipitation in Taiwan is significant due to its complex terrain and its location at west pacific and subtropical area, where is the boundary between the pacific ocean and Asia continent with the complex interactions among the climatic processes. This study characterizes local-scale precipitation patterns by classifying the historical space-time precipitation records. We applied the hierarchical ascending clustering method to analyze the precipitation records from 1960 to 2008 at the six rainfall stations located in Lan-yang catchment at the northeast of the island. Our results identify the four primary space-time precipitation types which may result from distinct driving forces from the changes of atmospheric variables and topology at different space-time scales. This study also presents an important application of the statistical downscaling to combine large-scale upper-air circulation with local space-time precipitation patterns.

  8. Gupta-Bleuler Quantization of the Maxwell Field in Globally Hyperbolic Space-Times

    Science.gov (United States)

    Finster, Felix; Strohmaier, Alexander

    2015-08-01

    We give a complete framework for the Gupta-Bleuler quantization of the free electromagnetic field on globally hyperbolic space-times. We describe one-particle structures that give rise to states satisfying the microlocal spectrum condition. The field algebras in the so-called Gupta-Bleuler representations satisfy the time-slice axiom, and the corresponding vacuum states satisfy the microlocal spectrum condition. We also give an explicit construction of ground states on ultrastatic space-times. Unlike previous constructions, our method does not require a spectral gap or the absence of zero modes. The only requirement, the absence of zero-resonance states, is shown to be stable under compact perturbations of topology and metric. Usual deformation arguments based on the time-slice axiom then lead to a construction of Gupta-Bleuler representations on a large class of globally hyperbolic space-times. As usual, the field algebra is represented on an indefinite inner product space, in which the physical states form a positive semi-definite subspace. Gauge transformations are incorporated in such a way that the field can be coupled perturbatively to a Dirac field. Our approach does not require any topological restrictions on the underlying space-time.

  9. Ringing in de Sitter spacetime

    Directory of Open Access Journals (Sweden)

    Alex Buchel

    2018-03-01

    Full Text Available Hydrodynamics is a universal effective theory describing relaxation of quantum field theories towards equilibrium. Massive QFTs in de Sitter spacetime are never at equilibrium. We use holographic gauge theory/gravity correspondence to describe relaxation of a QFT to its Bunch–Davies vacuum — an attractor of its late-time dynamics. Specifically, we compute the analogue of the quasinormal modes describing the relaxation of a holographic toy model QFT in de Sitter.

  10. Extended Rindler spacetime and a new multiverse structure

    Science.gov (United States)

    Araya, Ignacio J.; Bars, Itzhak

    2018-04-01

    This is the first of a series of papers in which we use analyticity properties of quantum fields propagating on a spacetime to uncover a new multiverse geometry when the classical geometry has horizons and/or singularities. The nature and origin of the "multiverse" idea presented in this paper, that is shared by the fields in the standard model coupled to gravity, are different from other notions of a multiverse. Via analyticity we are able to establish definite relations among the universes. In this paper we illustrate these properties for the extended Rindler space, while black hole spacetime and the cosmological geometry of mini-superspace (see Appendix B) will appear in later papers. In classical general relativity, extended Rindler space is equivalent to flat Minkowski space; it consists of the union of the four wedges in (u ,v ) light-cone coordinates as in Fig. 1. In quantum mechanics, the wavefunction is an analytic function of (u ,v ) that is sensitive to branch points at the horizons u =0 or v =0 , with branch cuts attached to them. The wave function is uniquely defined by analyticity on an infinite number of sheets in the cut analytic (u ,v ) spacetime. This structure is naturally interpreted as an infinite stack of identical Minkowski geometries, or "universes", connected to each other by analyticity across branch cuts, such that each sheet represents a different Minkowski universe when (u ,v ) are analytically continued to the real axis on any sheet. We show in this paper that, in the absence of interactions, information does not flow from one Rindler sheet to another. By contrast, for an eternal black hole spacetime, which may be viewed as a modification of Rindler that includes gravitational interactions, analyticity shows how information is "lost" due to a flow to other universes, enabled by an additional branch point and cut due to the black hole singularity.

  11. Exact Solution of Space-Time Fractional Coupled EW and Coupled MEW Equations Using Modified Kudryashov Method

    International Nuclear Information System (INIS)

    Raslan, K. R.; Ali, Khalid K.; EL-Danaf, Talaat S.

    2017-01-01

    In the present paper, we established a traveling wave solution by using modified Kudryashov method for the space-time fractional nonlinear partial differential equations. The method is used to obtain the exact solutions for different types of the space-time fractional nonlinear partial differential equations such as, the space-time fractional coupled equal width wave equation (CEWE) and the space-time fractional coupled modified equal width wave equation (CMEW), which are the important soliton equations. Both equations are reduced to ordinary differential equations by the use of fractional complex transform and properties of modified Riemann–Liouville derivative. We plot the exact solutions for these equations at different time levels. (paper)

  12. Quantum gravity effects in Myers-Perry space-times

    International Nuclear Information System (INIS)

    Litim, Daniel F.; Nikolakopoulos, Konstantinos

    2014-01-01

    We study quantum gravity effects for Myers-Perry black holes assuming that the leading contributions arise from the renormalization group evolution of Newton’s coupling. Provided that gravity weakens following the asymptotic safety conjecture, we find that quantum effects lift a degeneracy of higher-dimensional black holes, and dominate over kinematical ones induced by rotation, particularly for small black hole mass, large angular momentum, and higher space-time dimensionality. Quantum-corrected space-times display inner and outer horizons, and show the existence of a black hole of smallest mass in any dimension. Ultra-spinning solutions no longer persist. Thermodynamic properties including temperature, specific heat, the Komar integrals, and aspects of black hole mechanics are studied as well. Observing a softening of the ring singularity, we also discuss the validity of classical energy conditions

  13. A space-time rainfall generator for highly convective Mediterranean rainstorms

    Directory of Open Access Journals (Sweden)

    S. Salsón

    2003-01-01

    Full Text Available Distributed hydrological models require fine resolution rainfall inputs, enhancing the practical interest of space-time rainfall models, capable of generating through numerical simulation realistic space-time rainfall intensity fields. Among different mathematical approaches, those based on point processes and built upon a convenient analytical description of the raincell as the fundamental unit, have shown to be particularly suitable and well adapted when extreme rainfall events of convective nature are considered. Starting from previous formulations, some analytical refinements have been considered, allowing practical generation of space-time rainfall intensity fields for that type of rainstorm events. Special attention is placed on the analytical description of the spatial and temporal evolution of the rainfall intensities produced by the raincells. After deriving the necessary analytical results, the seven parameters of the model have been estimated by the method of moments, for each of the 30 selected rainfall events in the Jucar River Basin (ValenciaSpain – period 1991 to 2000, using 5-min aggregated rainfall data series from an automatic raingauge network.

  14. Thermodynamics of (d+1)-dimensional NUT-charged AdS spacetimes

    International Nuclear Information System (INIS)

    Clarkson, R.; Fatibene, L.; Mann, R.B.

    2003-01-01

    We consider the thermodynamic properties of (d+1)-dimensional spacetimes with NUT charges. Such spacetimes are asymptotically locally anti-de Sitter (or flat), with non-trivial topology in their spatial sections, and can have fixed point sets of the Euclidean time symmetry that are either (d-1)-dimensional (called 'bolts') or of lower dimensionality (pure 'NUTs'). We compute the free energy, conserved mass, and entropy for 4, 6, 8 and 10 dimensions for each, using both Noether charge methods and the AdS/CFT-inspired counterterm approach. We then generalize these results to arbitrary dimensionality. We find in 4k+2 dimensions that there are no regions in parameter space in the pure NUT case for which the entropy and specific heat are both positive, and so all such spacetimes are thermodynamically unstable. For the pure NUT case in 4k dimensions a region of stability exists in parameter space that decreases in size with increasing dimensionality. All bolt cases have some region of parameter space for which thermodynamic stability can be realized

  15. Geodesic flows in a charged black hole spacetime with quintessence

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Hemwati [Gurukul Kangri Vishwavidyalaya, Department of Physics, Haridwar, Uttarakhand (India); Uniyal, Rashmi [Gurukul Kangri Vishwavidyalaya, Department of Physics, Haridwar, Uttarakhand (India); Government Degree College, Department of Physics, Tehri Garhwal, Uttarakhand (India)

    2017-08-15

    We investigate the evolution of timelike geodesic congruences, in the background of a charged black hole spacetime surrounded by quintessence. The Raychaudhuri equations for three kinematical quantities namely the expansion scalar, shear and rotation along the geodesic flows in such spacetime are obtained and solved numerically. We have also analysed both the weak and the strong energy conditions for the focussing of timelike geodesic congruences. The effect of the normalisation constant (α) and the equation of state parameter (ε) on the evolution of the expansion scalar is discussed, for the congruences with and without an initial shear and rotation. It is observed that there always exists a critical value of the initial expansion below which we have focussing with smaller values of the normalisation constant and the equation of state parameter. As the corresponding values of both of these parameters are increased, no geodesic focussing is observed. The results obtained are then compared with those of the Reissner Nordstroem and Schwarzschild black hole spacetimes as well as their de Sitter black hole analogues accordingly. (orig.)

  16. Geodesic flows in a charged black hole spacetime with quintessence

    International Nuclear Information System (INIS)

    Nandan, Hemwati; Uniyal, Rashmi

    2017-01-01

    We investigate the evolution of timelike geodesic congruences, in the background of a charged black hole spacetime surrounded by quintessence. The Raychaudhuri equations for three kinematical quantities namely the expansion scalar, shear and rotation along the geodesic flows in such spacetime are obtained and solved numerically. We have also analysed both the weak and the strong energy conditions for the focussing of timelike geodesic congruences. The effect of the normalisation constant (α) and the equation of state parameter (ε) on the evolution of the expansion scalar is discussed, for the congruences with and without an initial shear and rotation. It is observed that there always exists a critical value of the initial expansion below which we have focussing with smaller values of the normalisation constant and the equation of state parameter. As the corresponding values of both of these parameters are increased, no geodesic focussing is observed. The results obtained are then compared with those of the Reissner Nordstroem and Schwarzschild black hole spacetimes as well as their de Sitter black hole analogues accordingly. (orig.)

  17. The effective mass of the Kerr spacetime

    International Nuclear Information System (INIS)

    Kulkarni, R.; Chellathurai, V.; Dadhich, N.

    1988-01-01

    The expressions for the effective mass of rotating spacetimes existing in the literature do not incorporate the rotational contribution at all. We generalise a result of Cohen and de Felice [1984, J. Math. Phys. 25, 992] and show how rotational effects can be taken into account. (author)

  18. Unified approach to redshift in cosmological/black hole spacetimes and synchronous frame

    Science.gov (United States)

    Toporensky, A. V.; Zaslavskii, O. B.; Popov, S. B.

    2018-01-01

    Usually, interpretation of redshift in static spacetimes (for example, near black holes) is opposed to that in cosmology. In this methodological note, we show that both explanations are unified in a natural picture. This is achieved if, considering the static spacetime, one (i) makes a transition to a synchronous frame, and (ii) returns to the original frame by means of local Lorentz boost. To reach our goal, we consider a rather general class of spherically symmetric spacetimes. In doing so, we construct frames that generalize the well-known Lemaitre and Painlevé-Gullstand ones and elucidate the relation between them. This helps us to understand, in a unifying approach, how gravitation reveals itself in different branches of general relativity. This framework can be useful for general relativity university courses.

  19. Initial data sets for the Schwarzschild spacetime

    International Nuclear Information System (INIS)

    Gomez-Lobo, Alfonso Garcia-Parrado; Kroon, Juan A. Valiente

    2007-01-01

    A characterization of initial data sets for the Schwarzschild spacetime is provided. This characterization is obtained by performing a 3+1 decomposition of a certain invariant characterization of the Schwarzschild spacetime given in terms of concomitants of the Weyl tensor. This procedure renders a set of necessary conditions--which can be written in terms of the electric and magnetic parts of the Weyl tensor and their concomitants--for an initial data set to be a Schwarzschild initial data set. Our approach also provides a formula for a static Killing initial data set candidate--a KID candidate. Sufficient conditions for an initial data set to be a Schwarzschild initial data set are obtained by supplementing the necessary conditions with the requirement that the initial data set possesses a stationary Killing initial data set of the form given by our KID candidate. Thus, we obtain an algorithmic procedure of checking whether a given initial data set is Schwarzschildean or not

  20. A spacetime cloak, or a history editor

    Science.gov (United States)

    McCall, Martin W.; Favaro, Alberto; Kinsler, Paul; Boardman, Allan

    2011-02-01

    We introduce a new type of electromagnetic cloak, the spacetime cloak (STC), which conceals events rather than objects. Non-emitting events occurring during a restricted period are never suspected by a distant observer. The cloak works by locally manipulating the speed of light of an initially uniform light distribution, whilst the light rays themselves always follow straight paths. Any 'perfect' spacetime cloak would necessarily rely upon the technology of electromagnetic metamaterials, which has already been shown to be capable of deforming light in ways hitherto unforeseen—to produce, for example, an electromagnetic object cloak. Nevertheless, we show how it is possible to use intensity-dependent refractive indices to construct an approximate STC, an implementation that would enable the distinct signature of successful event cloaking to be observed. Potential demonstrations include systems that apparently violate quantum statistics, 'interrupt-without-interrupt' computation on convergent data channels and the illusion of a Star Trek transporter.

  1. Neutrino oscillations in the Kerr-Newman spacetime

    International Nuclear Information System (INIS)

    Ren Jun; Zhang Chengmin

    2010-01-01

    The mass neutrino oscillation in the Kerr-Newman (K-N) spacetime is studied in the plane θ = θ 0 , and general equations of the oscillation phases are given. The effect of the rotation and electric charge on the phase is presented. Then, we consider three special cases. (1) The neutrinos travel along the geodesics with angular momentum L = aE in the equatorial plane. (2) The neutrinos travel along the geodesics with L = 0 in the equatorial plane. (3) The neutrinos travel along the radial geodesics in the direction θ = 0. Finally, we calculate the proper oscillation length in the K-N spacetime. The effect of the gravitational field on the oscillation length is embodied in the gravitational red shift factor. When the neutrino travels out of the gravitational field, a blue shift of the oscillation length takes place. We discuss the variation of the oscillation length influenced by the gravitational field strength, the rotation a 2 and charge Q.

  2. Relativity for everyone how space-time bends

    CERN Document Server

    Fischer, Kurt

    2015-01-01

    This book, now in a revised and updated second edition, explains the theory of special and general relativity in detail without approaching Einstein's life or the historical background. The text is formulated in such a way that the reader will be able to understand the essence intuitively, and new sections have been added on time machines, the twin paradoxes, and tensors. The first part of the book focuses on the essentials of special relativity. It explains the famous equivalence between mass and energy and tells why Einstein was able to use the theory of electrodynamics as a template for his "electrodynamics of moving bodies". General relativity is then addressed, mainly with the help of thought experiments. Reference is made to the previously introduced special relativity and the equivalence principle and, using many figures, it is explained how space-time is bending under gravity. The climax of the book is the Einstein equation of gravity, which describes the way in which matter bends space-time. The read...

  3. A spacetime cloak, or a history editor

    International Nuclear Information System (INIS)

    McCall, Martin W; Favaro, Alberto; Kinsler, Paul; Boardman, Allan

    2011-01-01

    We introduce a new type of electromagnetic cloak, the spacetime cloak (STC), which conceals events rather than objects. Non-emitting events occurring during a restricted period are never suspected by a distant observer. The cloak works by locally manipulating the speed of light of an initially uniform light distribution, whilst the light rays themselves always follow straight paths. Any 'perfect' spacetime cloak would necessarily rely upon the technology of electromagnetic metamaterials, which has already been shown to be capable of deforming light in ways hitherto unforeseen—to produce, for example, an electromagnetic object cloak. Nevertheless, we show how it is possible to use intensity-dependent refractive indices to construct an approximate STC, an implementation that would enable the distinct signature of successful event cloaking to be observed. Potential demonstrations include systems that apparently violate quantum statistics, 'interrupt-without-interrupt' computation on convergent data channels and the illusion of a Star Trek transporter

  4. On the structure of space-time caustics

    International Nuclear Information System (INIS)

    Rosquist, K.

    1983-01-01

    Caustics formed by timelike and null geodesics in a space-time M are investigated. Care is taken to distinguish the conjugate points in the tangent space (T-conjugate points) from conjugate points in the manifold (M-conjugate points). It is shown that most nonspacelike conjugate points are regular, i.e. with all neighbouring conjugate points having the same degree of degeneracy. The regular timelike T-conjugate locus is shown to be a smooth 3-dimensional submanifold of the tangent space. Analogously, the regular null T-conjugate locus is shown to be a smooth 2-dimensional submanifold of the light cone in the tangent space. The smoothness properties of the null caustic are used to show that if an observer sees focusing in all directions, then there will necessarily be a cusp in the caustic. If, in addition, all the null conjugate points have maximal degree of degeneracy (as in the closed Friedmann-Robertson-Walker universes), then the space-time is closed. (orig.)

  5. Spacetime completeness of non-singular black holes in conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bambi, Cosimo; Rachwał, Lesław [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai (China); Modesto, Leonardo, E-mail: bambi@fudan.edu.cn, E-mail: lmodesto@sustc.edu.cn, E-mail: grzerach@gmail.com [Department of Physics, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055 (China)

    2017-05-01

    We explicitly prove that the Weyl conformal symmetry solves the black hole singularity problem, otherwise unavoidable in a generally covariant local or non-local gravitational theory. Moreover, we yield explicit examples of local and non-local theories enjoying Weyl and diffeomorphism symmetry (in short co-covariant theories). Following the seminal paper by Narlikar and Kembhavi, we provide an explicit construction of singularity-free spherically symmetric and axi-symmetric exact solutions for black hole spacetimes conformally equivalent to the Schwarzschild or the Kerr spacetime. We first check the absence of divergences in the Kretschmann invariant for the rescaled metrics. Afterwords, we show that the new types of black holes are geodesically complete and linked by a Newman-Janis transformation just as in standard general relativity (based on Einstein-Hilbert action). Furthermore, we argue that no massive or massless particles can reach the former Schwarzschild singularity or touch the former Kerr ring singularity in a finite amount of their proper time or of their affine parameter. Finally, we discuss the Raychaudhuri equation in a co-covariant theory and we show that the expansion parameter for congruences of both types of geodesics (for massless and massive particles) never reaches minus infinity. Actually, the null geodesics become parallel at the r =0 point in the Schwarzschild spacetime (the origin) and the focusing of geodesics is avoided. The arguments of regularity of curvature invariants, geodesic completeness, and finiteness of geodesics' expansion parameter ensure us that we are dealing with singularity-free and geodesically-complete black hole spacetimes.

  6. A bootstrap based space-time surveillance model with an application to crime occurrences

    Science.gov (United States)

    Kim, Youngho; O'Kelly, Morton

    2008-06-01

    This study proposes a bootstrap-based space-time surveillance model. Designed to find emerging hotspots in near-real time, the bootstrap based model is characterized by its use of past occurrence information and bootstrap permutations. Many existing space-time surveillance methods, using population at risk data to generate expected values, have resulting hotspots bounded by administrative area units and are of limited use for near-real time applications because of the population data needed. However, this study generates expected values for local hotspots from past occurrences rather than population at risk. Also, bootstrap permutations of previous occurrences are used for significant tests. Consequently, the bootstrap-based model, without the requirement of population at risk data, (1) is free from administrative area restriction, (2) enables more frequent surveillance for continuously updated registry database, and (3) is readily applicable to criminology and epidemiology surveillance. The bootstrap-based model performs better for space-time surveillance than the space-time scan statistic. This is shown by means of simulations and an application to residential crime occurrences in Columbus, OH, year 2000.

  7. Local and nonlocal space-time singularities

    International Nuclear Information System (INIS)

    Konstantinov, M.Yu.

    1985-01-01

    The necessity to subdivide the singularities into two classes: local and nonlocal, each of them to be defined independently, is proved. Both classes of the singularities are defined, and the relation between the definitions introduced and the standard definition of singularities, based on space-time, incompleteness, is established. The relation between definitions introduced and theorems on the singularity existence is also established

  8. Komar integrals in asymptotically anti-de Sitter space-times

    International Nuclear Information System (INIS)

    Magnon, A.

    1985-01-01

    Recently, boundary conditions governing the asymptotic behavior of the gravitational field in the presence of a negative cosmological constant have been introduced using Penrose's conformal techniques. The subsequent analysis has led to expressions of conserved quantities (associated with asymptotic symmetries) involving asymptotic Weyl curvature. On the other hand, if the underlying space-time is equipped with isometries, a generalization of the Komar integral which incorporates the cosmological constant is also available. Thus, in the presence of an isometry, one is faced with two apparently unrelated definitions. It is shown that these definitions agree. This coherence supports the choice of boundary conditions for asymptotically anti-de Sitter space-times and reinforces the definitions of conserved quantities

  9. Interference Cancellation Using Space-Time Processing and Precoding Design

    CERN Document Server

    Li, Feng

    2013-01-01

    Interference Cancellation Using Space-Time Processing and Precoding Design introduces original design methods to achieve interference cancellation, low-complexity decoding and full diversity for a series of multi-user systems. In multi-user environments, co-channel interference will diminish the performance of wireless communications systems. In this book, we investigate how to design robust space-time codes and pre-coders to suppress the co-channel interference when multiple antennas are available.   This book offers a valuable reference work for graduate students, academic researchers and engineers who are interested in interference cancellation in wireless communications. Rigorous performance analysis and various simulation illustrations are included for each design method.   Dr. Feng Li is a scientific researcher at Cornell University.

  10. Construction of codimension 1 immersions of spacetime: the exceptional case

    International Nuclear Information System (INIS)

    Edelen, Dominic G B

    2005-01-01

    The Frobenius theorem was used in Edelen (2003 Class. Quantum Grav. 20 3661) to obtain a general body of results for the immersion of spacetime in flat spaces of higher dimension. This addendum completes those results for the exceptional case of immersions of codimension 1 where the Frobenius theorem need not be applied. Local actions of the Poincare groups SO(2, 3)--T(5) or SO(1, 4) -- T(5) are used to obtain immersions of spacetime of codimension 1 that involve six arbitrary functions of the four immersion parameters and an arbitrary constant. Explicit calculations are given for several cases. (addendum)

  11. Geodesics of electrically and magnetically charged test particles in the Reissner-Nordstroem space-time: Analytical solutions

    International Nuclear Information System (INIS)

    Grunau, Saskia; Kagramanova, Valeria

    2011-01-01

    We present the full set of analytical solutions of the geodesic equations of charged test particles in the Reissner-Nordstroem space-time in terms of the Weierstrass weierp, σ, and ζ elliptic functions. Based on the study of the polynomials in the θ and r equations, we characterize the motion of test particles and discuss their properties. The motion of charged test particles in the Reissner-Nordstroem space-time is compared with the motion of neutral test particles in the field of a gravitomagnetic monopole. Electrically or magnetically charged particles in the Reissner-Nordstroem space-time with magnetic or electric charges, respectively, move on cones similar to neutral test particles in the Taub-NUT space-times.

  12. Spacetimes containing slowly evolving horizons

    International Nuclear Information System (INIS)

    Kavanagh, William; Booth, Ivan

    2006-01-01

    Slowly evolving horizons are trapping horizons that are ''almost'' isolated horizons. This paper reviews their definition and discusses several spacetimes containing such structures. These include certain Vaidya and Tolman-Bondi solutions as well as (perturbatively) tidally distorted black holes. Taking into account the mass scales and orders of magnitude that arise in these calculations, we conjecture that slowly evolving horizons are the norm rather than the exception in astrophysical processes that involve stellar-scale black holes

  13. On the de Sitter and Nariai spacetimes in a generalized theory of gravitation

    International Nuclear Information System (INIS)

    Nariai, Hidekazu.

    1985-07-01

    A possibility of obtaining the de Sitter and Nariai spacetimes in a generalized theory of gravitation (which was in succession proposed by Utiyama-DeWitt, Parker-Fulling-Hu and Gurovich-Starobinski) is examined. It is shown that the generalized theory with a suitable fixation of three parameters admit both spacetimes, just like the general theory of relativity. (author)

  14. On the performance of diagonal lattice space-time codes

    KAUST Repository

    Abediseid, Walid

    2013-11-01

    There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple output (MIMO) channel. All the coding design up-to-date focuses on either high-performance, high rates, low complexity encoding and decoding, or targeting a combination of these criteria [1]-[9]. In this paper, we analyze in details the performance limits of diagonal lattice space-time codes under lattice decoding. We present both lower and upper bounds on the average decoding error probability. We first derive a new closed-form expression for the lower bound using the so-called sphere lower bound. This bound presents the ultimate performance limit a diagonal lattice space-time code can achieve at any signal-to-noise ratio (SNR). The upper bound is then derived using the union-bound which demonstrates how the average error probability can be minimized by maximizing the minimum product distance of the code. Combining both the lower and the upper bounds on the average error probability yields a simple upper bound on the the minimum product distance that any (complex) lattice code can achieve. At high-SNR regime, we discuss the outage performance of such codes and provide the achievable diversity-multiplexing tradeoff under lattice decoding. © 2013 IEEE.

  15. Lorentz invariance violation and electromagnetic field in an intrinsically anisotropic spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Zhe [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); Chinese Academy of Sciences, Theoretical Physics Center for Science Facilities, Beijing (China); Wang, Sai [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)

    2012-09-15

    Recently, Kostelecky [V.A. Kostelecky, Phys. Lett. B 701, 137 (2011)] proposed that the spontaneous Lorentz invariance violation (sLIV) is related to Finsler geometry. Finsler spacetime is intrinsically anisotropic and naturally induces Lorentz invariance violation (LIV). In this paper, the electromagnetic field is investigated in locally Minkowski spacetime. The Lagrangian is presented explicitly for the electromagnetic field. It is compatible with the one in the standard model extension (SME). We show the Lorentz-violating Maxwell equations as well as the electromagnetic wave equation. The formal plane wave solution is obtained for the electromagnetic wave. The speed of light may depend on the direction of light and the lightcone may be enlarged or narrowed. The LIV effects could be viewed as influence from an anisotropic media on the electromagnetic wave. In addition, birefringence of light will not emerge at the leading order in this model. A constraint on the spacetime anisotropy is obtained from observations on gamma-ray bursts (GRBs). (orig.)

  16. Gravitomagnetic bending angle of light with finite-distance corrections in stationary axisymmetric spacetimes

    Science.gov (United States)

    Ono, Toshiaki; Ishihara, Asahi; Asada, Hideki

    2017-11-01

    By using the Gauss-Bonnet theorem, the bending angle of light in a static, spherically symmetric and asymptotically flat spacetime has been recently discussed, especially by taking account of the finite distance from a lens object to a light source and a receiver [Ishihara, Suzuki, Ono, Asada, Phys. Rev. D 95, 044017 (2017), 10.1103/PhysRevD.95.044017]. We discuss a possible extension of the method of calculating the bending angle of light to stationary, axisymmetric and asymptotically flat spacetimes. For this purpose, we consider the light rays on the equatorial plane in the axisymmetric spacetime. We introduce a spatial metric to define the bending angle of light in the finite-distance situation. We show that the proposed bending angle of light is coordinate-invariant by using the Gauss-Bonnet theorem. The nonvanishing geodesic curvature of the photon orbit with the spatial metric is caused in gravitomagnetism, even though the light ray in the four-dimensional spacetime follows the null geodesic. Finally, we consider Kerr spacetime as an example in order to examine how the bending angle of light is computed by the present method. The finite-distance correction to the gravitomagnetic deflection angle due to the Sun's spin is around a pico-arcsecond level. The finite-distance corrections for Sgr A* also are estimated to be very small. Therefore, the gravitomagnetic finite-distance corrections for these objects are unlikely to be observed with present technology.

  17. Spacetime quantum probabilities II: Relativized descriptions and Popperian propensities

    Science.gov (United States)

    Mugur-Schächter, M.

    1992-02-01

    In the first part of this work(1) we have explicated the spacetime structure of the probabilistic organization of quantum mechanics. We have shown that each quantum mechanical state, in consequence of the spacetime characteristics of the epistemic operations by which the observer produces the state to be studied and the processes of qualification of these, brings in a tree-like spacetime structure, a “quantum mechanical probability tree,” that transgresses the theory of probabilities as it now stands. In this second part we develop the general implications of these results. Starting from the lowest level of cognitive action and creating an appropriate symbolism, we construct a “relativizing epistemic syntax,” a “general method of relativized conceptualization” where—systematically—each description is explicitly referred to the epistemic operations by which the observer produces the entity to be described and obtains qualifications of it. The method generates a typology of increasingly complex relativized descriptions where the question of realism admits of a particularly clear pronouncement. Inside this typology the epistemic processes that lie—UNIVERSALLY—at the basis of any conceptualization, reveal a tree-like spacetime structure. It appears in particular that the spacetime structure of the relativized representation of a probabilistic description, which transgresses the nowadays theory of probabilities, is the general mould of which the quantum mechanical probability trees are only particular realizations. This entails a clear definition of the descriptional status of quantum mechanics. While the recognition of the universal cognitive content of the quantum mechanical formalism opens up vistas toward mathematical developments of the relativizing epistemic syntax. The relativized representation of a probabilistic description leads with inner necessity to a “morphic” interpretation of probabilities that can be regarded as a formalized and

  18. Revisiting scalar geodesic synchrotron radiation in Kerr spacetime

    International Nuclear Information System (INIS)

    Macedo, Caio F.B.; Crispino, Luis C.B.

    2011-01-01

    Full text: The Kerr solution [R. P. Kerr, Phys. Rev. D 11, 5 (1963)] is one of the most important black hole solutions of Einstein equations. It describes a chargeless rotating black hole, with Schwarzschild black hole as a particular case. It is estimated, inferred using distinct methods, that most black hole candidates have a considerable value of the rotation parameter [E. Berti, V. Cardoso, and A. Starinets, Classical Quantum Gravity 26, 163001 (2009)]. Although the Schwarzschild solution is suitable for a great variety of phenomena in star and black hole physics, the Kerr solution becomes very important in the explanation of the electrodynamical aspects of accretion disks for binary X-ray sources [The Kerr Spacetime: Rotating Black Holes in General Relativity, edited by D. L. Wiltshire, M. Visser, and S. M. Scott (Cambridge University Press, Cambridge, 2009)]. Thus, the investigation of how radiation emission processes are modified by the nontrivial curvature of rotating black holes is particularly important. As a first approximation to the problem, one can consider a moving particle, minimally coupled to the massless scalar field, in circular geodesic motion. The radiation emitted in this configuration is called scalar geodesic synchrotron radiation. In this work, we revisit the main aspects of scalar geodesic synchrotron radiation in Kerr spacetime, including some effects occurring in the high-frequency approximation. Our results can be readily compared with the results of the equivalent phenomena in Schwarzschild spacetime. (author)

  19. Fermion Fields in BTZ Black Hole Space-Time and Entanglement Entropy

    Directory of Open Access Journals (Sweden)

    Dharm Veer Singh

    2015-01-01

    Full Text Available We study the entanglement entropy of fermion fields in BTZ black hole space-time and calculate prefactor of the leading and subleading terms and logarithmic divergence term of the entropy using the discretized model. The leading term is the standard Bekenstein-Hawking area law and subleading term corresponds to first quantum corrections in black hole entropy. We also investigate the corrections to entanglement entropy for massive fermion fields in BTZ space-time. The mass term does not affect the area law.

  20. Observables and dispersion relations in κ-Minkowski spacetime

    Science.gov (United States)

    Aschieri, Paolo; Borowiec, Andrzej; Pachoł, Anna

    2017-10-01

    We revisit the notion of quantum Lie algebra of symmetries of a noncommutative spacetime, its elements are shown to be the generators of infinitesimal transformations and are naturally identified with physical observables. Wave equations on noncommutative spaces are derived from a quantum Hodge star operator. This general noncommutative geometry construction is then exemplified in the case of κ-Minkowski spacetime. The corresponding quantum Poincaré-Weyl Lie algebra of in-finitesimal translations, rotations and dilatations is obtained. The d'Alembert wave operator coincides with the quadratic Casimir of quantum translations and it is deformed as in Deformed Special Relativity theories. Also momenta (infinitesimal quantum translations) are deformed, and correspondingly the Einstein-Planck relation and the de Broglie one. The energy-momentum relations (dispersion relations) are consequently deduced. These results complement those of the phenomenological literature on the subject.

  1. Cosmic Censorship for Gowdy Spacetimes.

    Science.gov (United States)

    Ringström, Hans

    2010-01-01

    Due to the complexity of Einstein's equations, it is often natural to study a question of interest in the framework of a restricted class of solutions. One way to impose a restriction is to consider solutions satisfying a given symmetry condition. There are many possible choices, but the present article is concerned with one particular choice, which we shall refer to as Gowdy symmetry. We begin by explaining the origin and meaning of this symmetry type, which has been used as a simplifying assumption in various contexts, some of which we shall mention. Nevertheless, the subject of interest here is strong cosmic censorship. Consequently, after having described what the Gowdy class of spacetimes is, we describe, as seen from the perspective of a mathematician, what is meant by strong cosmic censorship. The existing results on cosmic censorship are based on a detailed analysis of the asymptotic behavior of solutions. This analysis is in part motivated by conjectures, such as the BKL conjecture, which we shall therefore briefly describe. However, the emphasis of the article is on the mathematical analysis of the asymptotics, due to its central importance in the proof and in the hope that it might be of relevance more generally. The article ends with a description of the results that have been obtained concerning strong cosmic censorship in the class of Gowdy spacetimes.

  2. Problems of space-time behaviour of nuclear reactors

    International Nuclear Information System (INIS)

    Obradovic, D.

    1966-01-01

    This paper covers a review of literature and mathematical methods applied for space-time behaviour of nuclear reactors. The review of literature is limited to unresolved problems and trends of actual research in the field of reactor physics [sr

  3. Simple model of variation of the signature of a space-time metric

    International Nuclear Information System (INIS)

    Konstantinov, M.Yu.

    2004-01-01

    The problem on the changes in the space-time signature metrics is discussed. The simple model, wherein the space-time metrics signature is determined by the nonlinear scalar field, is proposed. It is shown that both classical and quantum description of changes in the metrics signature is possible within the frames of the considered model; the most characteristic peculiarities and variations of the classical and quantum descriptions are also briefly noted [ru

  4. Vector mass in curved space-times

    International Nuclear Information System (INIS)

    Maia, M.D.

    The use of the Poincare-symmetry appears to be incompatible with the presence of the gravitational field. The consequent problem of the definition of the mass operator is analysed and an alternative definition based on constant curvature tangent spaces is proposed. In the case where the space-time has no killing vector fields, four independent mass operators can be defined at each point. (Author) [pt

  5. Quantum corrections in thermal states of fermions on anti-de Sitter space-time

    Science.gov (United States)

    Ambruş, Victor E.; Winstanley, Elizabeth

    2017-12-01

    We study the energy density and pressure of a relativistic thermal gas of massless fermions on four-dimensional Minkowski and anti-de Sitter space-times using relativistic kinetic theory. The corresponding quantum field theory quantities are given by components of the renormalized expectation value of the stress-energy tensor operator acting on a thermal state. On Minkowski space-time, the renormalized vacuum expectation value of the stress-energy tensor is by definition zero, while on anti-de Sitter space-time the vacuum contribution to this expectation value is in general nonzero. We compare the properties of the vacuum and thermal expectation values of the energy density and pressure for massless fermions and discuss the circumstances in which the thermal contribution dominates over the vacuum one.

  6. Quasinormal modes and strong cosmic censorship in near-extremal Kerr-Newman-de Sitter black-hole spacetimes

    Science.gov (United States)

    Hod, Shahar

    2018-05-01

    The quasinormal resonant modes of massless neutral fields in near-extremal Kerr-Newman-de Sitter black-hole spacetimes are calculated in the eikonal regime. It is explicitly proved that, in the angular momentum regime a bar >√{1 - 2 Λ bar/4 + Λ bar / 3 }, the black-hole spacetimes are characterized by slowly decaying resonant modes which are described by the compact formula ℑ ω (n) =κ+ ṡ (n + 1/2 ) [here the physical parameters { a bar ,κ+ , Λ bar , n } are respectively the dimensionless angular momentum of the black hole, its characteristic surface gravity, the dimensionless cosmological constant of the spacetime, and the integer resonance parameter]. Our results support the validity of the Penrose strong cosmic censorship conjecture in these black-hole spacetimes.

  7. Rotating spacetimes of Goedel-type

    International Nuclear Information System (INIS)

    Reboucas, M.J.; Teixeira, A.F.F.

    1986-01-01

    The Goedel-type Riemannian manifolds are examined under two different assumptions on the algebraic structure of the energy-momentum tensor. All Goedel-type manifolds of either Segre type [1,(1,111)] or [(1,11)1] are shown to be spacetime-homogeneous. A generalization of Bampi-Zordan theorem is presented. All Goedel-type Riemannian manifolds of the algebric tachyon fluid type are shown to be conformally flat and isometric to Reboucas-Tiomno model. The conformal form of Reboucas-Tiomno is given. (Author) [pt

  8. Numerical simulation of electromagnetic waves in Schwarzschild space-time by finite difference time domain method and Green function method

    Science.gov (United States)

    Jia, Shouqing; La, Dongsheng; Ma, Xuelian

    2018-04-01

    The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.

  9. A Tutorial Review on Fractal Spacetime and Fractional Calculus

    Science.gov (United States)

    He, Ji-Huan

    2014-11-01

    This tutorial review of fractal-Cantorian spacetime and fractional calculus begins with Leibniz's notation for derivative without limits which can be generalized to discontinuous media like fractal derivative and q-derivative of quantum calculus. Fractal spacetime is used to elucidate some basic properties of fractal which is the foundation of fractional calculus, and El Naschie's mass-energy equation for the dark energy. The variational iteration method is used to introduce the definition of fractional derivatives. Fractal derivative is explained geometrically and q-derivative is motivated by quantum mechanics. Some effective analytical approaches to fractional differential equations, e.g., the variational iteration method, the homotopy perturbation method, the exp-function method, the fractional complex transform, and Yang-Laplace transform, are outlined and the main solution processes are given.

  10. Foundations of a spacetime path formalism for relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Seidewitz, Ed

    2006-01-01

    Quantum field theory is the traditional solution to the problems inherent in melding quantum mechanics with special relativity. However, it has also long been known that an alternative first-quantized formulation can be given for relativistic quantum mechanics, based on the parametrized paths of particles in spacetime. Because time is treated similarly to the three space coordinates, rather than as an evolution parameter, such a spacetime approach has proved particularly useful in the study of quantum gravity and cosmology. This paper shows how a spacetime path formalism can be considered to arise naturally from the fundamental principles of the Born probability rule, superposition, and Poincare invariance. The resulting formalism can be seen as a foundation for a number of previous parametrized approaches in the literature, relating, in particular, 'off-shell' theories to traditional on-shell quantum field theory. It reproduces the results of perturbative quantum field theory for free and interacting particles, but provides intriguing possibilities for a natural program for regularization and renormalization. Further, an important consequence of the formalism is that a clear probabilistic interpretation can be maintained throughout, with a natural reduction to nonrelativistic quantum mechanics

  11. Poisson's equation in de Sitter space-time

    Energy Technology Data Exchange (ETDEWEB)

    Pessa, E [Rome Univ. (Italy). Ist. di Matematica

    1980-11-01

    Based on a suitable generalization of Poisson's equation for de Sitter space-time the form of gravitation's law in 'projective relativity' is examined; it is found that, in the interior case, a small difference with the customary Newtonian law arises. This difference, of a repulsive character, can be very important in cosmological problems.

  12. Topology and Singularities in Cosmological Spacetimes Obeying the Null Energy Condition

    Science.gov (United States)

    Galloway, Gregory J.; Ling, Eric

    2018-06-01

    We consider globally hyperbolic spacetimes with compact Cauchy surfaces in a setting compatible with the presence of a positive cosmological constant. More specifically, for 3 + 1 dimensional spacetimes which satisfy the null energy condition and contain a future expanding compact Cauchy surface, we establish a precise connection between the topology of the Cauchy surfaces and the occurrence of past singularities. In addition to the Penrose singularity theorem, the proof makes use of some recent advances in the topology of 3-manifolds and of certain fundamental existence results for minimal surfaces.

  13. In a distinguishing spacetime the horismos relation generates the causal relation

    International Nuclear Information System (INIS)

    Minguzzi, E

    2009-01-01

    It is proved that in a distinguishing spacetime the horismos relation E + = J + /I + generates the causal relation J + . In other words two causally related events are joined by a chain of horismotically related events, or again, the causal relation is the smallest transitive relation containing the horismos relation. The result is sharp in the sense that the distinction cannot be weakened to future or past distinction. Finally, it is proved that a spacetime in which the horismos relation generates the causal relation is necessarily non-total imprisoning.

  14. Effective spacetime understanding emergence in effective field theory and quantum gravity

    CERN Document Server

    Crowther, Karen

    2016-01-01

    This book discusses the notion that quantum gravity may represent the "breakdown" of spacetime at extremely high energy scales. If spacetime does not exist at the fundamental level, then it has to be considered "emergent", in other words an effective structure, valid at low energy scales. The author develops a conception of emergence appropriate to effective theories in physics, and shows how it applies (or could apply) in various approaches to quantum gravity, including condensed matter approaches, discrete approaches, and loop quantum gravity.

  15. Coproduct and star product in field theories on Lie-algebra noncommutative space-times

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Arzano, Michele

    2002-01-01

    We propose a new approach to field theory on κ-Minkowski noncommutative space-time, a popular example of Lie-algebra space-time. Our proposal is essentially based on the introduction of a star product, a technique which is proving to be very fruitful in analogous studies of canonical noncommutative space-times, such as the ones recently found to play a role in the description of certain string-theory backgrounds. We find to be incorrect the expectation, previously reported in the literature, that the lack of symmetry of the κ-Poincare coproduct should lead to interaction vertices that are not symmetric under exchanges of the momenta of identical particles entering the relevant processes. We show that in κ-Minkowski the coproduct and the star product must indeed treat momenta in a nonsymmetric way, but the overall structure of interaction vertices is symmetric under exchange of identical particles. We also show that in κ-Minkowski field theories it is convenient to introduce the concepts of 'planar' and 'nonplanar' Feynman loop diagrams, again in close analogy with the corresponding concepts previously introduced in the study of field theories in canonical noncommutative space-times

  16. The Motion of Point Particles in Curved Spacetime

    Directory of Open Access Journals (Sweden)

    Eric Poisson

    2011-09-01

    Full Text Available This review is concerned with the motion of a point scalar charge, a point electric charge, and a point mass in a specified background spacetime. In each of the three cases the particle produces a field that behaves as outgoing radiation in the wave zone, and therefore removes energy from the particle. In the near zone the field acts on the particle and gives rise to a self-force that prevents the particle from moving on a geodesic of the background spacetime. The self-force contains both conservative and dissipative terms, and the latter are responsible for the radiation reaction. The work done by the self-force matches the energy radiated away by the particle. The field's action on the particle is difficult to calculate because of its singular nature: the field diverges at the position of the particle. But it is possible to isolate the field's singular part and show that it exerts no force on the particle -- its only effect is to contribute to the particle's inertia. What remains after subtraction is a regular field that is fully responsible for the self-force. Because this field satisfies a homogeneous wave equation, it can be thought of as a free field that interacts with the particle; it is this interaction that gives rise to the self-force. The mathematical tools required to derive the equations of motion of a point scalar charge, a point electric charge, and a point mass in a specified background spacetime are developed here from scratch. The review begins with a discussion of the basic theory of bitensors (Part I. It then applies the theory to the construction of convenient coordinate systems to chart a neighbourhood of the particle's word line (Part II. It continues with a thorough discussion of Green's functions in curved spacetime (Part III. The review presents a detailed derivation of each of the three equations of motion (Part IV. Because the notion of a point mass is problematic in general relativity, the review concludes (Part V

  17. A novel spacetime concept for describing electronic motion within a helium atom

    OpenAIRE

    Xu, Kunming

    2007-01-01

    Euclidean space and linear algebra do not characterize dynamic electronic orbitals satisfactorily for even the motion of both electrons in an inert helium atom cannot be defined in reasonable details. Here the author puts forward a novel two-dimensional spacetime model from scratch in the context of defining both electrons in a helium atom. Space and time are treated as two orthogonal, symmetric and complementary quantities under the atomic spacetime. Electronic motion observed the rule of di...

  18. Can De Sitter spacetime be a final state of the contracting universe

    International Nuclear Information System (INIS)

    Berezin, V.A.

    1984-01-01

    This chapter attempts to phenomenologically describe the final stage of the Universe contraction. A model equation of state is used to demonstrate that during a cosmological contraction a de Sitter spacetime may be produced. It is shown that a equilibrium thermodynamic description of the matter in cosmological models leads to the absence of particle creation. It is proposed that these nonequilibrium processes be taken into account by introducing a new additional thermodynamic variable showing the explicit time dependence of all thermodynamic potentials into the thermodynamic relations. The spacetime is assumed to be homogeneous and isotropic, and the energy momentum tensor includes not only the energy density and pressure for the matter and radiation, but it also includes contributions due to vacuum polarization by correspondent fields. It is demonstrated that it is possible to reach in principle the de Sitter spacetime as the limit of the contraction

  19. Projected space-time and varying speed of light

    International Nuclear Information System (INIS)

    Iovane, G.; Bellucci, S.; Benedetto, E.

    2008-01-01

    In this paper starting from El Naschie's Cantorian space-time and our model of projected Universe, we consider its properties in connection with varying speed of light. A possible way-out of the related problem is provided by the Fantappie group approach

  20. Re-examination of globally flat space-time.

    Directory of Open Access Journals (Sweden)

    Michael R Feldman

    Full Text Available In the following, we offer a novel approach to modeling the observed effects currently attributed to the theoretical concepts of "dark energy," "dark matter," and "dark flow." Instead of assuming the existence of these theoretical concepts, we take an alternative route and choose to redefine what we consider to be inertial motion as well as what constitutes an inertial frame of reference in flat space-time. We adopt none of the features of our current cosmological models except for the requirement that special and general relativity be local approximations within our revised definition of inertial systems. Implicit in our ideas is the assumption that at "large enough" scales one can treat objects within these inertial systems as point-particles having an insignificant effect on the curvature of space-time. We then proceed under the assumption that time and space are fundamentally intertwined such that time- and spatial-translational invariance are not inherent symmetries of flat space-time (i.e., observable clock rates depend upon both relative velocity and spatial position within these inertial systems and take the geodesics of this theory in the radial Rindler chart as the proper characterization of inertial motion. With this commitment, we are able to model solely with inertial motion the observed effects expected to be the result of "dark energy," "dark matter," and "dark flow." In addition, we examine the potential observable implications of our theory in a gravitational system located within a confined region of an inertial reference frame, subsequently interpreting the Pioneer anomaly as support for our redefinition of inertial motion. As well, we extend our analysis into quantum mechanics by quantizing for a real scalar field and find a possible explanation for the asymmetry between matter and antimatter within the framework of these redefined inertial systems.

  1. Kundt spacetimes as solutions of topologically massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chow, David D K; Pope, C N; Sezgin, Ergin [George P and Cynthia W Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843-4242 (United States)

    2010-05-21

    We obtain new solutions of topologically massive gravity. We find the general Kundt solutions, which in three dimensions are spacetimes admitting an expansion-free null geodesic congruence. The solutions are generically of algebraic type II, but special cases are types III, N or D. Those of type D are the known spacelike-squashed AdS{sub 3} solutions and of type N are the known AdS pp-waves or new solutions. Those of types II and III are the first known solutions of these algebraic types. We present explicitly the Kundt solutions that are constant scalar invariant (CSI) spacetimes, for which all scalar polynomial curvature invariants are constant, whereas for the general case, we reduce the field equations to a series of ordinary differential equations. The CSI solutions of types II and III are deformations of spacelike-squashed AdS{sub 3} and the round AdS{sub 3}, respectively.

  2. Nonlocality and Multipartite Entanglement in Asymptotically Flat Space-Times

    International Nuclear Information System (INIS)

    Moradi, Shahpoor; Amiri, Firouz

    2016-01-01

    We study the Bell's inequality and multipartite entanglement generation for initially maximally entangled states of free Dirac field in a non inertial frame and asymptotically flat Robertson–Walker space-time. For two qubit case, we show that the Bell's inequality always is violated as measured by the accelerated observers which are in the causally connected regions. On the other hand, for those observers in the causally disconnected regions inequality is not violated for any values of acceleration. The generated three qubit state from two qubit state due to acceleration of one parties has a zero 3-tangle. For a three qubit state, the inequality violated for measurements done by both causally connected and disconnected observers. Initially GHZ state with non zero 3-tangle, in accelerated frame, transformed to a four qubit state with vanishing 4-tangle value. On the other hand, for a W-state with zero 3-tangle, in non inertial frame, transformed to a four qubit state with a non-zero 4-tangle acceleration dependent. In an expanding space-time with asymptotically flat regions, for an initially maximally entangled state, the maximum value of violation of Bell's inequality in the far past decreased in the far future due to cosmological particle creation. For some initially maximally entangled states, the generated four qubit state due to expansion of space-time, has non vanishing 4-tangle. (paper)

  3. Exploratory space-time analyses of Rift Valley Fever in South Africa in 2008-2011.

    Directory of Open Access Journals (Sweden)

    Raphaëlle Métras

    Full Text Available Rift Valley fever (RVF is a zoonotic arbovirosis for which the primary hosts are domestic livestock (cattle, sheep and goats. RVF was first described in South Africa in 1950-1951. Mechanisms for short and long distance transmission have been hypothesised, but there is little supporting evidence. Here we describe RVF occurrence and spatial distribution in South Africa in 2008-11, and investigate the presence of a contagious process in order to generate hypotheses on the different mechanisms of transmission.A total of 658 cases were extracted from World Animal Health Information Database. Descriptive statistics, epidemic curves and maps were produced. The space-time K-function was used to test for evidence of space-time interaction. Five RVF outbreak waves (one in 2008, two in 2009, one in 2010 and one in 2011 of varying duration, location and size were reported. About 70% of cases (n = 471 occurred in 2010, when the epidemic was almost country-wide. No strong evidence of space-time interaction was found for 2008 or the second wave in 2009. In the first wave of 2009, a significant space-time interaction was detected for up to one month and over 40 km. In 2010 and 2011 a significant intense, short and localised space-time interaction (up to 3 days and 15 km was detected, followed by one of lower intensity (up to 2 weeks and 35 to 90 km.The description of the spatiotemporal patterns of RVF in South Africa between 2008 and 2011 supports the hypothesis that during an epidemic, disease spread may be supported by factors other than active vector dispersal. Limitations of under-reporting and space-time K-function properties are discussed. Further spatial analyses and data are required to explain factors and mechanisms driving RVF spread.

  4. Spacetime replication of continuous variable quantum information

    International Nuclear Information System (INIS)

    Hayden, Patrick; Nezami, Sepehr; Salton, Grant; Sanders, Barry C

    2016-01-01

    The theory of relativity requires that no information travel faster than light, whereas the unitarity of quantum mechanics ensures that quantum information cannot be cloned. These conditions provide the basic constraints that appear in information replication tasks, which formalize aspects of the behavior of information in relativistic quantum mechanics. In this article, we provide continuous variable (CV) strategies for spacetime quantum information replication that are directly amenable to optical or mechanical implementation. We use a new class of homologically constructed CV quantum error correcting codes to provide efficient solutions for the general case of information replication. As compared to schemes encoding qubits, our CV solution requires half as many shares per encoded system. We also provide an optimized five-mode strategy for replicating quantum information in a particular configuration of four spacetime regions designed not to be reducible to previously performed experiments. For this optimized strategy, we provide detailed encoding and decoding procedures using standard optical apparatus and calculate the recovery fidelity when finite squeezing is used. As such we provide a scheme for experimentally realizing quantum information replication using quantum optics. (paper)

  5. Macroscopic Spacetime Shortcuts in the Manyfold Universe

    CERN Document Server

    Loup, F

    2004-01-01

    Recently the idea of a Manyfold Universe was proposed by some authors to explain Dark Matter . In this study we assume that the Standard Model(SM) of particles and fields with gravity propagating in the Higher Dimensional Spacetime(Bulk) while other interactions are confined to 3+1 Einsteinian spacetime(Brane) is not due to open strings and closed loops but instead is due to the capability of gravity as the weakest and "smallest" interaction to penetrate these small Bulk size ($10^{-31}$m to $10^{-35}$m) while protons,neutrons and other interactions stronger and "larger" than gravity do not "fits" in the size of the Bulk and remains trapped on the Brane and we present a equation to justify this point of view. Our picture relies over the geometrical beauty of the Manyfold Universe proposal that Dark Matter is chemically identical to ordinary matter but lies on other Folds. Also the geometrical point of view for the small size of the Bulk eliminates the need of trapping mechanisms to confine matter in the Brane...

  6. Coupling non-gravitational fields with simplicial spacetimes

    International Nuclear Information System (INIS)

    McDonald, Jonathan R; Miller, Warner A

    2010-01-01

    The inclusion of source terms in discrete gravity is a long-standing problem. Providing a consistent coupling of source to the lattice in the Regge calculus (RC) yields a robust unstructured spacetime mesh applicable to both numerical relativity and quantum gravity. RC provides a particularly insightful approach to this problem with its purely geometric representation of spacetime. The simplicial building blocks of RC enable us to represent all matter and fields in a coordinate-free manner. We provide an interpretation of RC as a discrete exterior calculus framework into which non-gravitational fields naturally couple with the simplicial lattice. Using this approach we obtain a consistent mapping of the continuum action for non-gravitational fields to the Regge lattice. In this paper we apply this framework to scalar, vector and tensor fields. In particular we reconstruct the lattice action for (1) the scalar field, (2) Maxwell field tensor and (3) Dirac particles. The straightforward application of our discretization techniques to these three fields demonstrates a universal implementation of the coupling source to the lattice in RC.

  7. Inflationary scenario from higher curvature warped spacetime

    International Nuclear Information System (INIS)

    Banerjee, Narayan; Paul, Tanmoy

    2017-01-01

    We consider a five dimensional warped spacetime, in presence of the higher curvature term like F(R) = R + αR 2 in the bulk, in the context of the two-brane model. Our universe is identified with the TeV scale brane and emerges as a four dimensional effective theory. From the perspective of this effective theory, we examine the possibility of ''inflationary scenario'' by considering the on-brane metric ansatz as an FRW one. Our results reveal that the higher curvature term in the five dimensional bulk spacetime generates a potential term for the radion field. Due to the presence of radion potential, the very early universe undergoes a stage of accelerated expansion and, moreover, the accelerating period of the universe terminates in a finite time. We also find the spectral index of curvature perturbation (n s ) and the tensor to scalar ratio (r) in the present context, which match with the observational results based on the observations of Planck (Astron. Astrophys. 594, A20, 2016). (orig.)

  8. Inflationary scenario from higher curvature warped spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Narayan [Indian Institute of Science Education and Research Kolkata, Department of Physical Sciences, Nadia, West Bengal (India); Paul, Tanmoy [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)

    2017-10-15

    We consider a five dimensional warped spacetime, in presence of the higher curvature term like F(R) = R + αR{sup 2} in the bulk, in the context of the two-brane model. Our universe is identified with the TeV scale brane and emerges as a four dimensional effective theory. From the perspective of this effective theory, we examine the possibility of ''inflationary scenario'' by considering the on-brane metric ansatz as an FRW one. Our results reveal that the higher curvature term in the five dimensional bulk spacetime generates a potential term for the radion field. Due to the presence of radion potential, the very early universe undergoes a stage of accelerated expansion and, moreover, the accelerating period of the universe terminates in a finite time. We also find the spectral index of curvature perturbation (n{sub s}) and the tensor to scalar ratio (r) in the present context, which match with the observational results based on the observations of Planck (Astron. Astrophys. 594, A20, 2016). (orig.)

  9. Particle creation in inhomogeneous spacetimes

    International Nuclear Information System (INIS)

    Frieman, J.A.

    1989-01-01

    We study the creation of particles by inhomogeneous perturbations of spatially flat Friedmann-Robertson-Walker cosmologies. For massless scalar fields, the pair-creation probability can be expressed in terms of geometric quantities (curvature invariants). The results suggest that inhomogeneities on scales up to the particle horizon will be damped out near the Planck time. Perturbations on scales larger than the horizon are explicitly shown to yield no created pairs. The results generalize to inhomogeneous spacetimes several earlier studies of pair creation in homogeneous anisotropic cosmologies

  10. Space, Time, and Spacetime Physical and Philosophical Implications of Minkowski's Unification of Space and Time

    CERN Document Server

    Petkov, Vesselin

    2010-01-01

    This volume is dedicated to the centennial anniversary of Minkowski's discovery of spacetime. It contains selected papers by physicists and philosophers on the Nature and Ontology of Spacetime. The first six papers, comprising Part I of the book, provide examples of the impact of Minkowski's spacetime representation of special relativity on the twentieth century physics. Part II also contains six papers which deal with implications of Minkowski's ideas for the philosophy of space and time. The last part is represented by two papers which explore the influence of Minkowski's ideas beyond the philosophy of space and time.

  11. QCD-instantons and conformal space-time inversion symmetry

    International Nuclear Information System (INIS)

    Klammer, D.

    2008-04-01

    In this paper, we explore the appealing possibility that the strong suppression of large-size QCD instantons - as evident from lattice data - is due to a surviving conformal space-time inversion symmetry. This symmetry is both suggested from the striking invariance of highquality lattice data for the instanton size distribution under inversion of the instanton size ρ→(left angle ρ right angle 2 )/(ρ) and from the known validity of space-time inversion symmetry in the classical instanton sector. We project the instanton calculus onto the four-dimensional surface of a five-dimensional sphere via conformal stereographic mapping, before investigating conformal inversion. This projection to a compact, curved geometry is both to avoid the occurence of divergences and to introduce the average instanton size left angle ρ right angle from the lattice data as a new length scale. The average instanton size is identified with the radius b of this 5d-sphere and acts as the conformal inversion radius. For b= left angle ρ right angle, our corresponding results are almost perfectly symmetric under space-time inversion and in good qualitative agreement with the lattice data. For (ρ)/(b)→0 we recover the familiar results of instanton perturbation theory in flat 4d-space. Moreover, we illustrate that a (weakly broken) conformal inversion symmetry would have significant consequences for QCD beyond instantons. As a further successful test for inversion symmetry, we present striking implications for another instanton dominated lattice observable, the chirality-flip ratio in the QCD vacuum. (orig.)

  12. Noether analysis of the twisted Hopf symmetries of canonical noncommutative spacetimes

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Gubitosi, Giulia; Marciano, Antonino; Martinetti, Pierre; Mercati, Flavio; Briscese, Fabio

    2008-01-01

    We study the twisted Hopf-algebra symmetries of observer-independent canonical spacetime noncommutativity, for which the commutators of the spacetime coordinates take the form [x^ μ ,x^ ν ]=iθ μν with observer-independent (and coordinate-independent) θ μν . We find that it is necessary to introduce nontrivial commutators between transformation parameters and spacetime coordinates, and that the form of these commutators implies that all symmetry transformations must include a translation component. We show that with our noncommutative transformation parameters the Noether analysis of the symmetries is straightforward, and we compare our canonical-noncommutativity results with the structure of the conserved charges and the ''no-pure-boost'' requirement derived in a previous study of κ-Minkowski noncommutativity. We also verify that, while at intermediate stages of the analysis we do find terms that depend on the ordering convention adopted in setting up the Weyl map, the final result for the conserved charges is reassuringly independent of the choice of Weyl map and (the corresponding choice of) star product.

  13. Quantum statistical entropy corresponding to cosmic horizon in five-dimensional spacetime

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The generalized uncertainty relation is introduced to calculate the quantum statis-tical entropy corresponding to cosmic horizon. By using the new equation of state density motivated by the generalized uncertainty relation, we discuss entropies of Bose field and Fermi field on the background of five-dimensional spacetime. In our calculation, we need not introduce cutoff. There is no divergent logarithmic term in the original brick-wall method. And it is obtained that the quantum statistical en-tropy corresponding to cosmic horizon is proportional to the area of the horizon. Further it is shown that the entropy corresponding to cosmic horizon is the entropy of quantum state on the surface of horizon. The black hole’s entropy is the intrinsic property of the black hole. The entropy is a quantum effect. In our calculation, by using the quantum statistical method, we obtain the partition function of Bose field and Fermi field on the background of five-dimensional spacetime. We provide a way to study the quantum statistical entropy corresponding to cosmic horizon in the higher-dimensional spacetime.

  14. Circular orbits in cosmic string and Schwarzschild-AdS spacetime with Fermi-Walker transport

    International Nuclear Information System (INIS)

    Bakke, K.; Furtado, C.; Carvalho, A.M. de

    2009-01-01

    In this paper we discuss the Fermi-Walker transport of vectors along orbits in cosmic string and Schwarzschild-AdS spacetimes. We analyze the influence of acceleration on these holonomies. An effect similar to Thomas precession is observed within the process of Fermi-Walker transport along these circular orbits which are studied in the limit of vanishing cosmological constant in Schwarzschild-AdS case; also we obtain Fermi-Walker transport in a Schwarzschild background. In the case of a Schwarzschild spacetime, we analyze the quantized band holonomy invariance. In the limit of zero acceleration we recover the well-known results for holonomy matrix obtained by parallel transport in all these spacetimes. (orig.)

  15. Surface density of spacetime degrees of freedom from equipartition law in theories of gravity

    International Nuclear Information System (INIS)

    Padmanabhan, T.

    2010-01-01

    I show that the principle of equipartition, applied to area elements of a surface ∂V which are in equilibrium at the local Davies-Unruh temperature, allows one to determine the surface number density of the microscopic spacetime degrees of freedom in any diffeomorphism invariant theory of gravity. The entropy associated with these degrees of freedom matches with the Wald entropy for the theory. This result also allows one to attribute an entropy density to the spacetime in a natural manner. The field equations of the theory can then be obtained by extremizing this entropy. Moreover, when the microscopic degrees of freedom are in local thermal equilibrium, the spacetime entropy of a bulk region resides on its boundary.

  16. Evaluating methods for estimating space-time paths of individuals in calculating long-term personal exposure to air pollution

    Science.gov (United States)

    Schmitz, Oliver; Soenario, Ivan; Vaartjes, Ilonca; Strak, Maciek; Hoek, Gerard; Brunekreef, Bert; Dijst, Martin; Karssenberg, Derek

    2016-04-01

    Air pollution is one of the major concerns for human health. Associations between air pollution and health are often calculated using long-term (i.e. years to decades) information on personal exposure for each individual in a cohort. Personal exposure is the air pollution aggregated along the space-time path visited by an individual. As air pollution may vary considerably in space and time, for instance due to motorised traffic, the estimation of the spatio-temporal location of a persons' space-time path is important to identify the personal exposure. However, long term exposure is mostly calculated using the air pollution concentration at the x, y location of someone's home which does not consider that individuals are mobile (commuting, recreation, relocation). This assumption is often made as it is a major challenge to estimate space-time paths for all individuals in large cohorts, mostly because limited information on mobility of individuals is available. We address this issue by evaluating multiple approaches for the calculation of space-time paths, thereby estimating the personal exposure along these space-time paths with hyper resolution air pollution maps at national scale. This allows us to evaluate the effect of the space-time path and resulting personal exposure. Air pollution (e.g. NO2, PM10) was mapped for the entire Netherlands at a resolution of 5×5 m2 using the land use regression models developed in the European Study of Cohorts for Air Pollution Effects (ESCAPE, http://escapeproject.eu/) and the open source software PCRaster (http://www.pcraster.eu). The models use predictor variables like population density, land use, and traffic related data sets, and are able to model spatial variation and within-city variability of annual average concentration values. We approximated space-time paths for all individuals in a cohort using various aggregations, including those representing space-time paths as the outline of a persons' home or associated parcel

  17. Unsupervised action classification using space-time link analysis

    DEFF Research Database (Denmark)

    Liu, Haowei; Feris, Rogerio; Krüger, Volker

    2010-01-01

    In this paper we address the problem of unsupervised discovery of action classes in video data. Different from all existing methods thus far proposed for this task, we present a space-time link analysis approach which matches the performance of traditional unsupervised action categorization metho...

  18. Kundt spacetimes minimally coupled to scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Tahamtan, T. [Charles University, Institute of Theoretical Physics, Faculty of Mathematics and Physics, Prague 8 (Czech Republic); Astronomical Institute, Czech Academy of Sciences, Prague (Czech Republic); Svitek, O. [Charles University, Institute of Theoretical Physics, Faculty of Mathematics and Physics, Prague 8 (Czech Republic)

    2017-06-15

    We derive an exact solution belonging to the Kundt class of spacetimes both with and without a cosmological constant that are minimally coupled to a free massless scalar field. We show the algebraic type of these solutions and give interpretation of the results. Subsequently, we look for solutions additionally containing an electromagnetic field satisfying nonlinear field equations. (orig.)

  19. Space-time transformations in radial path integrals

    International Nuclear Information System (INIS)

    Steiner, F.

    1984-09-01

    Nonlinear space-time transformations in the radial path integral are discussed. A transformation formula is derived, which relates the original path integral to the Green's function of a new quantum system with an effective potential containing an observable quantum correction proportional(h/2π) 2 . As an example the formula is applied to spherical Brownian motion. (orig.)

  20. A new general purpose event horizon finder for 3D numerical spacetimes

    International Nuclear Information System (INIS)

    Diener, Peter

    2003-01-01

    I present a new general purpose event horizon finder for full 3D numerical spacetimes. It works by evolving a complete null surface backwards in time. The null surface is described as the zero-level set of a scalar function, which in principle is defined everywhere. This description of the surface allows the surface, trivially, to change topology, making this event horizon finder able to handle numerical spacetimes where two (or more) black holes merge into a single final black hole

  1. Numerical calculation of the entanglement entropy for scalar field in dilaton spacetimes

    Science.gov (United States)

    Huang, Shifeng; Fang, Xiongjun; Jing, Jiliang

    2018-06-01

    Using coupled harmonic oscillators model, we numerical analyze the entanglement entropy of massless scalar field in Gafinkle-Horowitz-Strominger (GHS) dilaton spacetime and Gibbons-Maeda (GM) dilaton spacetime. By numerical fitting, we find that the entanglement entropy of the dilaton black holes receive contribution from dilaton charge and is proportional to the area of the event horizon. It is interesting to note that the results of numerical fitting are coincide with ones obtained by using brick wall method and Euclidean path integral approach.

  2. Newton-Hooke spacetimes, Hpp-waves and the cosmological constant

    International Nuclear Information System (INIS)

    Gibbons, G W; Patricot, C E

    2003-01-01

    We show explicitly how the Newton-Hooke groups N ± 10 act as symmetries of the equations of motion of non-relativistic cosmological models with a cosmological constant. We give the action on the associated non-relativistic spacetimes M ± 4 and show how these may be obtained from a null reduction of five-dimensional homogeneous pp-wave Lorentzian spacetimes M ± 5 . This allows us to realize the Newton-Hooke groups and their Bargmann-type central extensions as subgroups of the isometry groups of M ± 5 . The extended Schroedinger-type conformal group is identified and its action on the equations of motion given. The non-relativistic conformal symmetries also have applications to time-dependent harmonic oscillators. Finally we comment on a possible application to Gao's generalization of the matrix model

  3. Tensorial spacetime geometries carrying predictive, interpretable and quantizable matter dynamics

    International Nuclear Information System (INIS)

    Rivera Hernandez, Sergio

    2012-01-01

    Which tensor fields G on a smooth manifold M can serve as a spacetime structure? In the first part of this thesis, it is found that only a severely restricted class of tensor fields can provide classical spacetime geometries, namely those that can carry predictive, interpretable and quantizable matter dynamics. The obvious dependence of this characterization of admissible tensorial spacetime geometries on specific matter is not a weakness, but rather presents an insight: it was Maxwell theory that justified Einstein to promote Lorentzian manifolds to the status of a spacetime geometry. Any matter that does not mimick the structure of Maxwell theory, will force us to choose another geometry on which the matter dynamics of interest are predictive, interpretable and quantizable. These three physical conditions on matter impose three corresponding algebraic conditions on the totally symmetric contravariant coefficient tensor field P that determines the principal symbol of the matter field equations in terms of the geometric tensor G: the tensor field P must be hyperbolic, time-orientable and energy-distinguishing. Remarkably, these physically necessary conditions on the geometry are mathematically already sufficient to realize all kinematical constructions familiar from Lorentzian geometry, for precisely the same structural reasons. This we were able to show employing a subtle interplay of convex analysis, the theory of partial differential equations and real algebraic geometry. In the second part of this thesis, we then explore general properties of any hyperbolic, time-orientable and energy-distinguishing tensorial geometry. Physically most important are the construction of freely falling non-rotating laboratories, the appearance of admissible modified dispersion relations to particular observers, and the identification of a mechanism that explains why massive particles that are faster than some massless particles can radiate off energy until they are slower than all

  4. Tensorial spacetime geometries carrying predictive, interpretable and quantizable matter dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Rivera Hernandez, Sergio

    2012-02-15

    Which tensor fields G on a smooth manifold M can serve as a spacetime structure? In the first part of this thesis, it is found that only a severely restricted class of tensor fields can provide classical spacetime geometries, namely those that can carry predictive, interpretable and quantizable matter dynamics. The obvious dependence of this characterization of admissible tensorial spacetime geometries on specific matter is not a weakness, but rather presents an insight: it was Maxwell theory that justified Einstein to promote Lorentzian manifolds to the status of a spacetime geometry. Any matter that does not mimick the structure of Maxwell theory, will force us to choose another geometry on which the matter dynamics of interest are predictive, interpretable and quantizable. These three physical conditions on matter impose three corresponding algebraic conditions on the totally symmetric contravariant coefficient tensor field P that determines the principal symbol of the matter field equations in terms of the geometric tensor G: the tensor field P must be hyperbolic, time-orientable and energy-distinguishing. Remarkably, these physically necessary conditions on the geometry are mathematically already sufficient to realize all kinematical constructions familiar from Lorentzian geometry, for precisely the same structural reasons. This we were able to show employing a subtle interplay of convex analysis, the theory of partial differential equations and real algebraic geometry. In the second part of this thesis, we then explore general properties of any hyperbolic, time-orientable and energy-distinguishing tensorial geometry. Physically most important are the construction of freely falling non-rotating laboratories, the appearance of admissible modified dispersion relations to particular observers, and the identification of a mechanism that explains why massive particles that are faster than some massless particles can radiate off energy until they are slower than all

  5. Quantum field theory in curved graphene spacetimes, Lobachevsky geometry, Weyl symmetry, Hawking effect, and all that

    Science.gov (United States)

    Iorio, Alfredo; Lambiase, Gaetano

    2014-07-01

    The solutions of many issues, of the ongoing efforts to make deformed graphene a tabletop quantum field theory in curved spacetimes, are presented. A detailed explanation of the special features of curved spacetimes, originating from embedding portions of the Lobachevsky plane into R3, is given, and the special role of coordinates for the physical realizations in graphene is explicitly shown, in general, and for various examples. The Rindler spacetime is reobtained, with new important differences with respect to earlier results. The de Sitter spacetime naturally emerges, for the first time, paving the way to future applications in cosmology. The role of the Bañados, Teitelboim, and Zanelli (BTZ) black hole is also briefly addressed. The singular boundary of the pseudospheres, "Hilbert horizon," is seen to be closely related to the event horizon of the Rindler, de Sitter, and BTZ kind. This gives new, and stronger, arguments for the Hawking phenomenon to take place. An important geometric parameter, c, overlooked in earlier work, takes here its place for physical applications, and it is shown to be related to graphene's lattice spacing, ℓ. It is shown that all surfaces of constant negative curvature, K =-r-2, are unified, in the limit c/r→0, where they are locally applicable to the Beltrami pseudosphere. This, and c=ℓ, allow us (a) to have a phenomenological control on the reaching of the horizon; (b) to use spacetimes different from the Rindler spacetime for the Hawking phenomenon; and (c) to approach the generic surface of the family. An improved expression for the thermal LDOS is obtained. A nonthermal term for the total LDOS is found. It takes into account (i) the peculiarities of the graphene-based Rindler spacetime; (ii) the finiteness of a laboratory surface; and (iii) the optimal use of the Minkowski quantum vacuum, through the choice of this Minkowski-static boundary.

  6. Parallel-propagated frame along null geodesics in higher-dimensional black hole spacetimes

    International Nuclear Information System (INIS)

    Kubiznak, David; Frolov, Valeri P.; Connell, Patrick; Krtous, Pavel

    2009-01-01

    In [arXiv:0803.3259] the equations describing the parallel transport of orthonormal frames along timelike (spacelike) geodesics in a spacetime admitting a nondegenerate principal conformal Killing-Yano 2-form h were solved. The construction employed is based on studying the Darboux subspaces of the 2-form F obtained as a projection of h along the geodesic trajectory. In this paper we demonstrate that, although slightly modified, a similar construction is possible also in the case of null geodesics. In particular, we explicitly construct the parallel-transported frames along null geodesics in D=4, 5, 6 Kerr-NUT-(A)dS spacetimes. We further discuss the parallel transport along principal null directions in these spacetimes. Such directions coincide with the eigenvectors of the principal conformal Killing-Yano tensor. Finally, we show how to obtain a parallel-transported frame along null geodesics in the background of the 4D Plebanski-Demianski metric which admits only a conformal generalization of the Killing-Yano tensor.

  7. A higher order space-time Galerkin scheme for time domain integral equations

    KAUST Repository

    Pray, Andrew J.

    2014-12-01

    Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method\\'s efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.

  8. An analysis of Born–Infeld determinantal gravity in Weitzenböck spacetime

    Directory of Open Access Journals (Sweden)

    Franco Fiorini

    2016-12-01

    Full Text Available The Born–Infeld theory of the gravitational field formulated in Weitzenböck spacetime is studied in detail. The action, constructed quadratically upon the torsion two-form, reduces to Einstein gravity in the low field limit where the Born–Infeld constant λ goes to infinity, and it is described by second order field equations for the vielbein field in D spacetime dimensions. The equations of motion are derived, and a number of properties coming from them are discussed. In particular, we show that under fairly general circumstances, the equations of motion are those of Einstein's General Relativity plus an energy-momentum tensor of purely geometrical character. This tensor is obtained solely from the parallelization defining the spacetime structure, which is encoded in a set of D smooth, everywhere non-null, globally defined 1-forms ea. Spherical symmetry is studied as an example, and we comment on the emergence of the Schwarzschild geometry within this framework. Potential (regular extensions of it are envisioned.

  9. A higher order space-time Galerkin scheme for time domain integral equations

    KAUST Repository

    Pray, Andrew J.; Beghein, Yves; Nair, Naveen V.; Cools, Kristof; Bagci, Hakan; Shanker, Balasubramaniam

    2014-01-01

    Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method's efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.

  10. A multi-element cosmological model with a complex space-time topology

    Science.gov (United States)

    Kardashev, N. S.; Lipatova, L. N.; Novikov, I. D.; Shatskiy, A. A.

    2015-02-01

    Wormhole models with a complex topology having one entrance and two exits into the same space-time of another universe are considered, as well as models with two entrances from the same space-time and one exit to another universe. These models are used to build a model of a multi-sheeted universe (a multi-element model of the "Multiverse") with a complex topology. Spherical symmetry is assumed in all the models. A Reissner-Norström black-hole model having no singularity beyond the horizon is constructed. The strength of the central singularity of the black hole is analyzed.

  11. Aspects of space-time dualities

    CERN Document Server

    Giveon, Amit

    1996-01-01

    Duality groups of Abelian gauge theories on four manifolds and their reduction to two dimensions are considered. The duality groups include elements that relate different space-times in addition to relating different gauge-coupling matrices. We interpret (some of) such dualities as the geometrical symmetries of compactified theories in higher dimensions. In particular, we consider compactifications of a (self-dual) 2-form in 6-D, and compactifications of a self-dual 4-form in 10-D. Relations with a self-dual superstring in 6-D and with the type IIB superstring are discussed.

  12. Classification of Teleparallel Homothetic Vector Fields in Cylindrically Symmetric Static Space-Times in Teleparallel Theory of Gravitation

    International Nuclear Information System (INIS)

    Shabbir, Ghulam; Khan, Suhail

    2010-01-01

    In this paper we classify cylindrically symmetric static space-times according to their teleparallel homothetic vector fields using direct integration technique. It turns out that the dimensions of the teleparallel homothetic vector fields are 4, 5, 7 or 11, which are the same in numbers as in general relativity. In case of 4, 5 or 7 proper teleparallel homothetic vector fields exist for the special choice to the space-times. In the case of 11 teleparallel homothetic vector fields the space-time becomes Minkowski with all the zero torsion components. Teleparallel homothetic vector fields in this case are exactly the same as in general relativity. It is important to note that this classification also covers the plane symmetric static space-times. (general)

  13. Negative branes, supergroups and the signature of spacetime

    Science.gov (United States)

    Dijkgraaf, Robbert; Heidenreich, Ben; Jefferson, Patrick; Vafa, Cumrun

    2018-02-01

    We study the realization of supergroup gauge theories using negative branes in string theory. We show that negative branes are intimately connected with the possibility of timelike compactification and exotic spacetime signatures previously studied by Hull. Isolated negative branes dynamically generate a change in spacetime signature near their worldvolumes, and are related by string dualities to a smooth M-theory geometry with closed timelike curves. Using negative D3-branes, we show that SU(0| N) supergroup theories are holographically dual to an exotic variant of type IIB string theory on {dS}_{3,2}× {\\overline{S}}^5 , for which the emergent dimensions are timelike. Using branes, mirror symmetry and Nekrasov's instanton calculus, all of which agree, we derive the Seiberg-Witten curve for N=2 SU( N | M ) gauge theories. Together with our exploration of holography and string dualities for negative branes, this suggests that supergroup gauge theories may be non-perturbatively well-defined objects, though several puzzles remain.

  14. Optical Properties of Quantum Vacuum. Space-Time Engineering

    International Nuclear Information System (INIS)

    Gevorkyan, A. S.; Gevorkyan, A. A.

    2011-01-01

    The propagation of electromagnetic waves in the vacuum is considered taking into account quantum fluctuations in the limits of Maxwell-Langevin (ML) type stochastic differential equations. For a model of fluctuations, type of 'white noise', using ML equations a partial differential equation of second order is obtained which describes the quantum distribution of virtual particles in vacuum. It is proved that in order to satisfy observed facts, the Lamb Shift etc, the virtual particles should be quantized in unperturbed vacuum. It is shown that the quantized virtual particles in toto (approximately 86 percent) are condensed on the 'ground state' energy level. It is proved that the extension of Maxwell electrodynamics with inclusion of quantum vacuum fluctuations may be constructed on a 6D space-time continuum, where 4D is Minkowski space-time and 2D is a compactified subspace. In detail is studied of vacuum's refraction indexes under the influence of external electromagnetic fields.

  15. Asymptotically simple spacetimes and mass loss due to gravitational waves

    Science.gov (United States)

    Saw, Vee-Liem

    The cosmological constant Λ used to be a freedom in Einstein’s theory of general relativity (GR), where one had a proclivity to set it to zero purely for convenience. The signs of Λ or Λ being zero would describe universes with different properties. For instance, the conformal structure of spacetime directly depends on Λ: null infinity ℐ is a spacelike, null, or timelike hypersurface, if Λ > 0, Λ = 0, or Λ 0 in Einstein’s theory of GR. A quantity that depends on the conformal structure of spacetime, especially on the nature of ℐ, is the Bondi mass which in turn dictates the mass loss of an isolated gravitating system due to energy carried away by gravitational waves. This problem of extending the Bondi mass to a universe with Λ > 0 has spawned intense research activity over the past several years. Some aspects include a closer inspection on the conformal properties, working with linearization, attempts using a Hamiltonian formulation based on “linearized” asymptotic symmetries, as well as obtaining the general asymptotic solutions of de Sitter-like spacetimes. We consolidate on the progress thus far from the various approaches that have been undertaken, as well as discuss the current open problems and possible directions in this area.

  16. Positioning with stationary emitters in a two-dimensional space-time

    International Nuclear Information System (INIS)

    Coll, Bartolome; Ferrando, Joan Josep; Morales, Juan Antonio

    2006-01-01

    The basic elements of the relativistic positioning systems in a two-dimensional space-time have been introduced in a previous work [Phys. Rev. D 73, 084017 (2006)] where geodesic positioning systems, constituted by two geodesic emitters, have been considered in a flat space-time. Here, we want to show in what precise senses positioning systems allow to make relativistic gravimetry. For this purpose, we consider stationary positioning systems, constituted by two uniformly accelerated emitters separated by a constant distance, in two different situations: absence of gravitational field (Minkowski plane) and presence of a gravitational mass (Schwarzschild plane). The physical coordinate system constituted by the electromagnetic signals broadcasting the proper time of the emitters are the so called emission coordinates, and we show that, in such emission coordinates, the trajectories of the emitters in both situations, the absence and presence of a gravitational field, are identical. The interesting point is that, in spite of this fact, particular additional information on the system or on the user allows us not only to distinguish both space-times, but also to complete the dynamical description of emitters and user and even to measure the mass of the gravitational field. The precise information under which these dynamical and gravimetric results may be obtained is carefully pointed out

  17. A unique Fock quantization for fields in non-stationary spacetimes

    International Nuclear Information System (INIS)

    Cortez, Jerónimo; Marugán, Guillermo A. Mena; Olmedo, Javier; Velhinho, José M.

    2010-01-01

    In curved spacetimes, the lack of criteria for the construction of a unique quantization is a fundamental problem undermining the significance of the predictions of quantum field theory. Inequivalent quantizations lead to different physics. Recently, however, some uniqueness results have been obtained for fields in non-stationary settings. In particular, for vacua that are invariant under the background symmetries, a unitary implementation of the classical evolution suffices to pick up a unique Fock quantization in the case of Klein-Gordon fields with time-dependent mass, propagating in a static spacetime whose spatial sections are three-spheres. In fact, the field equation can be reinterpreted as describing the propagation in a Friedmann-Robertson-Walker spacetime after a suitable scaling of the field by a function of time. For this class of fields, we prove here an even stronger result about the Fock quantization: the uniqueness persists when one allows for linear time-dependent transformations of the field in order to account for a scaling by background functions. In total, paying attention to the dynamics, there exists a preferred choice of quantum field, and only one SO(4)-invariant Fock representation for it that respects the standard probabilistic interpretation along the evolution. The result has relevant implications e.g. in cosmology

  18. An observational criterion to look for an inspiral in a non-Kerr spacetime

    International Nuclear Information System (INIS)

    Apostolatos, Theocharis A; Lukes-Gerakopoulos, Georgios; Deligiannis, John; Contopoulos, George

    2009-01-01

    In this short article we present a useful observational tool for gravitational wave detectors. More specifically, if we are looking for extreme-mass-ratio inspiraling objects in a non-Kerr spacetime, we could exploit the consequences of the KAM and the Poincare-Birkhoff theorem which predicts plateaus in the ratio of frequencies f ρ /f z , that are related to a generic geodesic orbit in such a spacetime, as a function of the initial conditions of the orbit itself. While both these frequencies are changing under radiation reaction, their ratio is expected to stay stationary if it passes through such a plateau. Therefore, if detectors are able to discern the fundamental frequencies due to ρ and z oscillations of the orbit, they could in principle detect the non-Kerr-ness of the spacetime involved, just by monitoring the ratio of these two frequencies.

  19. Singularities and the geometry of spacetime

    Science.gov (United States)

    Hawking, Stephen

    2014-11-01

    The aim of this essay is to investigate certain aspects of the geometry of the spacetime manifold in the General Theory of Relativity with particular reference to the occurrence of singularities in cosmological solutions and their relation with other global properties. Section 2 gives a brief outline of Riemannian geometry. In Section 3, the General Theory of Relativity is presented in the form of two postulates and two requirements which are common to it and to the Special Theory of Relativity, and a third requirement, the Einstein field equations, which distinguish it from the Special Theory. There does not seem to be any alternative set of field equations which would not have some undeseriable features. Some exact solutions are described. In Section 4, the physical significance of curvature is investigated using the deviation equation for timelike and null curves. The Riemann tensor is decomposed into the Ricci tensor which represents the gravitational effect at a point of matter at that point and the Welyl tensor which represents the effect at a point of gravitational radiation and matter at other points. The two tensors are related by the Bianchi identities which are presented in a form analogous to the Maxwell equations. Some lemmas are given for the occurrence of conjugate points on timelike and null geodesics and their relation with the variation of timelike and null curves is established. Section 5 is concerned with properties of causal relations between points of spacetime. It is shown that these could be used to determine physically the manifold structure of spacetime if the strong causality assumption held. The concepts of a null horizon and a partial Cauchy surface are introduced and are used to prove a number of lemmas relating to the existence of a timelike curve of maximum length between two sets. In Section 6, the definition of a singularity of spacetime is given in terms of geodesic incompleteness. The various energy assumptions needed to prove

  20. Hawking radiation of Dirac particles in the hot NUT-Kerr-Newman spacetime

    International Nuclear Information System (INIS)

    Ahmed, M.

    1991-01-01

    The Hawking radiation of charged Dirac particles on the horizons of the hot NUT-Kerr-Newman spacetime is studied in this paper. To this end, we obtain the radial decoupled Dirac equation for the electron in the hot NUT-Kerr-Newman spacetime. Next we solve the Dirac equation near the horizons. Finally, by analytic continuation, the Hawking thermal spectrum formula of Dirac particles is obtained. The problem of the Hawking evaporation of Dirac particles in the hot NUT-Kerr-Newman background is thus solved. (orig.)